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Abstract 

It has been suggested that a developmental log-to-linear shift 
in children’s performance on number line estimation tasks is 
diagnostic of their underlying representations of numerical 
magnitude (Siegler & Opfer, 2003). However, in the study 
presented herein, we were able to induce a similar log-to-
linear shift on number line estimation tasks among adults by 
manipulating their familiarity with the numbers we used as 
stimuli. We offer this evidence as an existence proof that 
differences in performance on number line estimation tasks 
may not necessarily be indicative of fundamental differences 
in the formats of people’s underlying numerical magnitude 
representations. Rather, they may be diagnostic of differences 
in people’s understandings of what magnitudes are 
represented by symbolic numbers.  
Keywords: Number line, Number, Numeracy, Estimation 
Approximate number system 
 
Numerical estimation is an important part of 

mathematical cognition for both children and adults. Indeed, 
numerical estimation seems to play a central role in a wide 
range of mathematical activities (see Siegler & Booth, 2005 
for a review). In recognition of its importance, Siegler and 
colleagues have focused on the ability to estimate numerical 
magnitudes as a key indicator of number sense in 
developmental studies (Siegler & Booth, 2004; Siegler & 
Opfer, 2003) 

Perhaps the most well known of these numerical 
estimation tasks is the number line estimation task. This task 
requires that participants estimate the location of a number 
on a line with numerical anchors at each end. This task not 
only involves magnitude estimation, but also the ability to 
translate between symbolic numbers and mental 
magnitudes. Siegler and colleagues have helped illuminate a 
typical developmental trend observed on such number line 
estimation tasks: young children show a tendency to 
compress numbers logarithmically, whereas adults do not 
(e.g., Siegler & Booth, 2004; Siegler & Opfer, 2003). That 
is, when asked to mark the position where a number n is on 
the line, children typically place the mark at a spot 
approximated by log(n) instead of n. With development, 
these estimates become more linear (Siegler & Opfer, 
2003). Importantly, the linearity of children’s magnitude 
estimates on these tasks is correlated with a wide range of 
numeracy measures, including counting ability, number 
naming, digit magnitude comparison, and achievement test 
scores (e.g., Booth, 2005; Ramani & Siegler, 2008; Siegler 
& Booth, 2004). 

According to the log-to-linear shift hypothesis, the 

logarithmic compression found in children is diagnostic of 
their underlying representations of numerical magnitude. 
This view suggests that children’s performance is 
logarithmic because their underlying mental representations 
of  numerical magnitudes are logarithmically compressed 
(Dehaene, 1997; Siegler, 2009). Siegler and colleagues 
further theorize that experience and schooling lead to the 
development of a linear representation of numerical 
magnitude. More specifically, they propose that though the 
logarithmic and linear representations continue to coexist,  
individuals can learn to invoke the linear representation 
when it is appropriate (Siegler & Opfer, 2003).  

Three pieces of evidence appear to support this 
hypothesis. First, children’s estimates become more linear 
with schooling and experience. Second, the linearity of 
children’s estimates predicts a wide range of numeracy 
measures. These include counting ability, number naming, 
digit magnitude comparison, and achievement test scores, 
perhaps indicating that the hypothesized linear ruler is 
widely applied once it is developed (Siegler & Booth, 
2004). Finally,, children’s estimates are more linear within 
number ranges that are more familiar to them but remain 
logarithmic on larger, more unfamiliar scales (Siegler & 
Opfer, 2003). This in particular has been taken as evidence 
that the logarithmic and linear rulers coexist. 

The log-to-linear shift hypothesis, however, is not without 
controversy. A recent critique put forth by Barth and 
Paladino (2010) raised questions about the interpretation of 
children’s apparently logarithmic performance. The critique 
argued that the shift from logarithmic to linear performance 
on number line tasks is not diagnostic of some basic change 
in children’s underlying representation of number, but is 
instead due to knowledge constraints interfering with the 
default method for completing the task. Barth and Paladino 
argue that number line estimation cannot properly be seen as 
a pure numerical estimation task. Rather, such placement 
tasks are actually a form of proportion judgment task – a 
task in which ratio between items must be evaluated. 
Indeed, previous literature in psychophysics has shown that 
estimation tasks that combine two measures in a 
complementary fashion such that they sum to a fixed total 
should be characterized as proportion judgment tasks (e.g., 
Hollands & Dyre, 2000; Spence, 1990; Stevens, 1957). 
Thus, because estimating a number’s place on a number line 
involves both the estimate of that numbers’ placement 
relative to the zero anchor point and of its complement’s 
placement relative to the rightmost anchor, the task is 
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essentially a proportion judgment. For example, when 
placing 25 on a 0-100 line, it should be 25 units away from 
0, and 75 units away from 100, and should therefore be 
placed 25/(25+75), or one fourth of the total length of the 
line away from 0. 

Proportion judgment tasks tend to yield linear 
relationships between the actual proportion of the stimulus 
presented and the judged proportion, even when using 
stimuli for which pure magnitude estimation tasks yield a 
compressive relationship between actual and perceived 
stimulus intensity (see Hollands & Dyre, 2000; Spence, 
1990). This linear performance results because the 
underlying compressive function is mapped to fractionated 
distances according to a cyclical power model, which 
approximates linearity because of the reference points that 
are perceived linearly (Spence, 1990). Importantly, this 
model predicts linear performance even given a compressive 
underlying representation of number.  

These findings raise questions regarding young children’s 
apparently logarithmic performance on the number line task. 
Why, given a proportion judgment task, do children’s 
representations appear to be nonlinear in the first place, 
when psychophysics – even given a logarithmic underlying 
representation – might predict otherwise? One possible 
answer is that certain assumptions of the psychophysics 
proportion judgment model may be violated when young 
children perform number line estimation tasks, impeding 
their use of the default comparison procedure for 
performing the tasks.  

To judge a proportion, one must know the approximate 
magnitude of the whole (the rightmost anchor). Indeed, the 
proportion judgment model assumes that participants have 
access to the magnitudes at both ends of the line. Although 
this assumption is logical when perceptual continua are used 
to indicate the anchors at each end of the line (e.g., bar 
length on a bar graph, see Spence, 1990), this is not 
necessarily the case with tasks that require young children to 
understand the magnitudes of symbolic numbers. 
Essentially, people who do not have a correct understanding 
of the values represented by both the high and low anchor 
points lack the knowledge needed to fully render number 
line estimation tasks as proportion judgment tasks. In line 
with this argument, Barth and Paladino (2010) proposed a 
modification of the proportion judgment model positing that 
unknowledgeable children rescale the uppermost anchor 
point relative to some idiosyncratic default high end 
numbers. This model fit children’s performance data as well 
as the logarithmic model favored by Siegler and colleagues 
(but see Barth & Paladino, 2010 for a discussion of how 
their model may better predict error patterns for estimates). 
Ebersbach, Luwel, Frick, Onghena, et al. (2008) similarly 
proposed that children’s apparently logarithmic performance 
resulted from knowledge of the limits of their understanding 
of what numbers represent, but rather suggest that their 
performance could best be modeled by a two stage linear 
function with an overly steep slope up to the point of correct 
understanding, and an overly shallow slope thereafter, 

reflecting a clustering of unmapped values towards the end 
of the line, while known value occupy the bulk of the 
available space. 

Research on children’s abilities to identify symbolic 
numbers by name provides at least some tangential support 
for the knowledge constraint hypothesis.  For example, 
young children often cannot consistently name symbolic 
numbers above twenty, even when they can recite those 
numbers as part of the count sequence (Wright, 1994; see 
also Clarke & Shinn, 2004). One might question whether 
estimates based on any unrecognizable number should have 
a one-to-one mapping to any particular numerical 
magnitude, particularly given Siegler and Opfer’s (2003) 
finding that children’s estimates are linear within familiar 
number ranges but look logarithmic when ranges expand to 
include unfamiliar numbers.  This apparently logarithmic 
performance may be an artifact of unfamiliarity rather than 
the result of using two different mental representations.  

The Current Study 
The current experiment uses adult data to raise questions 

about whether performance on number line estimation tasks 
is diagnostic of people’s underlying representations of 
number. It is important to note that the consequences of 
failure to understand the values represented by high anchor 
points need not be limited to children. Indeed, if Barth and 
Paladino (2010) are correct, and logarithmic performance is 
an artifact of a lack of numerical understanding, then even 
highly numerate adults should show logarithmic 
performance on such tasks under sufficiently confusing 
conditions. There is little to suggest that adults should rely 
on a logarithmic ruler in the number ranges that we 
presented in this task. Therefore, if logarithmic performance 
were found in adults, it would be natural to conclude that it 
is an artifact of the knowledge constraints imposed on the 
task, rather than a product of adults’ underlying 
representations of number. This would serve as an existence 
proof that logarithmic compression on number line 
estimation tasks can result from knowledge constraints (i.e., 
a lack of numerical understanding of anchor values) rather 
than from use of logarithmic ruler for underlying 
representations of numerical magnitude (compare with 
Ebersbach et. al., 2008; Barth & Paladino, 2010).  

We investigated whether or not imposing knowledge 
constraints could elicit “logarithmic” performance from 
adults on a number line task. We presented adults with 
several number line estimation tasks, some of which were 
designed to encourage participants to hold mistaken 
assumptions about the magnitude of the high-end anchor of 
the line. We hypothesized that performance up to the 
erroneously assumed anchor values would be approximately 
linear. We further hypothesized that participants would 
show some confusion when presented with stimuli that 
violated their expectations by exceeding the assumed high 
anchor value. We also expected that participants would 
lump these unexpectedly high value numbers together in
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Table 1: Stimulus description for each estimation set. 
 

Notation Stimulus Set Anchor Stimulus Stimulus Values Used in 
Condition 

Decimal 0-100 Decimal Decimal 2 3 7 12 16 23 29 40 58 72 82 2 
Decimal 0-1000 Decimal Decimal 2 4 6 18 25 72 157 233 395 582 820 2 
Decimal 16-32k Decimal Decimal 16032 16064 16096 16288 16400 17136 

18480 19680 22240 25195 28960 
1 & 2 

Decimal 0-32k Decimal Decimal 64 128 192 576 800 2272 4960 7360 
12480 18390 25920 

1 & 2 

All Exponential Exponential Exponential .002x10
4.5

 .004x10
4.5

 .006x10
4.5

 .018x10
4.5

 
.025 x10

4.5
 .072x10

4.5
 .157x10

4.5
 .233x10

4.5
 

.395x10
4.5

 .582x10
4.5

 .820x10
4.5

 

1 & 2 

Decimal Stimuli – Exponential 
Anchors 

Exponential Decimal Same as Decimal 0-32k 1 

Decimal Stimuli – Exponential 
Anchors Calibrated 

Exponential Decimal Same as Decimal 0-32k 1 

Exponential Stimuli – Decimal 
Anchors 

Decimal Exponential Same as All Exponential 2 

Exponential Stimuli – Decimal 
Anchors Calibrated 

Decimal  Exponential Same as All Exponential 2 

 
a compressed space toward the uppermost anchor, such 
that performance on stimuli past the assumed high-end 
anchor value would yield a linear slope near zero. Finally, 
we hypothesized that the positively sloped section (below 
the assumed high anchor value) and the flatter section 
section (above the assumed high anchor value) together 
would yield a set that was well fit by a logarithmic line.  

Method 
This study investigated how incomplete knowledge about 
the magnitude of numerical anchors affect adults’ 
performance in number line estimation tasks. We used 
different notational systems (i.e., standard decimal 
notation and exponential notation using fractional powers) 
to create confusion about the relative values of high 
endpoints anchors and to-be-placed stimuli. 
  
Participants 
Participants were 67 undergraduate students from the 
University of Notre Dame, participating for course credit.  

 
Materials and Design  
Participants completed the experiment individually, with 
all training and testing stimuli presented on iMac 5.1 
computers using Superlab 4 software (Cedrus 
Corporation, 2007). Each problem involved a 14.7-cm 
long line with anchor values printed below the line at the 
right and the left. The numbers to be estimated appeared 
approximately 1.5 cm above the center of the line. 
Participants were asked to place a cursor at the 
appropriate point on the number line and to indicate their 
answers via mouse click. Participants were given up to 15 
seconds to answer on each trial. 

Similar distributions of numbers to be estimated were 
generated for each set of lines. Anchors and stimuli were 
presented in either decimal notation (e.g., 192, 576) or in 
exponential notation (e.g., .006x104.5, .018x104.5). The left 
end of each line was labeled “0”, and the right end varied 
according to number set as described below. The numbers 
to be estimated for the 0-100 line were adapted from 
Barth and Paladino (2010). The numbers to be estimated 
for the 0-1000 line were adapted from Siegler & Opfer 
(2003). Stimuli for all other sets were generated by 
multiplying the 0-1000 stimuli by the appropriate 
constants so that the distributions of numbers to be 
estimated remained identical across scales (See Table 1). 
Each stimulus within each set was presented twice.  

With our key manipulation, we sought to create a 
situation for adults that would parallel a situation in which 
a child might not have knowledge of the upper anchor for 
the number line estimation task. Pilot studies led us to 
settle upon the upper anchor of .999x104.5. When 
confronted with this exponential notation, none of our 
pilot subjects correctly determined that its value was 
equivalent to 31,623. Rather, most assumed that it was 
roughly equal to 10,000. We expected that participants 
would perform linearly for stimuli up to the assumed 
anchor value (typically 10,000), but that stimuli that 
exceeded this value would be compressed into a small 
space at the right end of the line  

In all, there were ten different sets of number line tasks: 
 

Controls 
• Decimal 0-1000. These lines presented both anchors 

and stimuli in decimal notation, with anchors at 0 and 
1000. 
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Table 2: Least-squares fit information for different estimation sets. 
 

Stimulus Set Linear R2 
Slope Log R2 Best Fit 

Decimal 0-100 1.00 1.04 0.76 Linear t(10) = -6.95, p < .01 
Decimal 0-1000 0.99 0.98 0.63 Linear t(10) = -4.57, p < .01 
Decimal 16-32k 0.99 0.99 0.74 Linear t(10) = -8.90, p < .01 
Decimal 0-32k 1.00 0.90 0.71 Linear t(10) = -4.93, p < .01 
All Exponential 0.99 0.95 0.63 Linear t(10) = -4.20, p < .01 
Decimal Stimuli - Exponential Anchors 0.85 1.21 0.91 No Significant Difference 

 t(10) = .63, p = .55 
Decimal Stimuli – Exponential Anchors Calibrated 0.99 0.92 0.69 Linear t(10) = -4.74, p < .01 
Exponential Stimuli – Decimal Anchors 0.93 0.34 0.84 No Significant Difference 

t(10) = -.96, p = .36 
Exponential Stimuli – Decimal Anchors Calibrated 0.99 0.90 0.64 Linear t(10) = -4.18, p < .01 
 
• Decimal 0-100. These lines presented both anchors and 

stimuli in decimal notation, with anchors at 0 and 100. 
• Decimal 0-32k. These lines presented both anchors and 

stimuli in decimal notation, with anchors at 0 and 
31,623. 

• Decimal 16-32k. These lines presented both anchors 
and stimuli in decimal notation, with anchors at 16,000 
and 31,623. 

• All Exponential. These lines presented both anchors and 
stimuli in exponential notation, with anchors at 0 and 
.999x104.5 

 
Incompatible Notation  
• Decimal Stimuli - Exponential Anchors. These lines 

presented anchors in exponential notation and stimuli in 
decimal notation. Anchors were at 0 and .999x104.5.  

• Decimal Stimuli – Exponential Anchors Calibrated. 
Before beginning trials within this set, participants were 
shown a single slide with the proper location of 16,000 
marked on the number line  (approximately half-way). 
Otherwise, this set was identical to the decimal stimuli-
exponential anchor set. 

• Exponential Stimuli - Decimal Anchors. These lines 
presented anchors in decimal notation and stimuli in 
exponential notation. Anchors were at 0 and 31,623. 

• Exponential Stimuli – Decimal Anchors Calibrated. 
Before beginning trials within this set, participants were 
shown a single slide with the proper location of . 
.500x104.5 marked on the number line  (approximately 
half-way). Otherwise, this set was identical to the 
exponential stimuli-decimal anchor set. 

Procedure 
Each participant completed several different sets of 
number line estimation tasks. Participants were randomly 
assigned to either of two conditions that varied the 
representational format of the endpoint anchors and to-
be–estimated numbers (see Table 1). Condition 1 had 35 
participants and condition 2 had 32 participants. All tasks 
were completed consecutively in one hour-long session.  
 
 

 
Analyses, Results and Discussion 

Analyses 
The primary analyses involved comparisons of the fit of 
linear and logarithmic models to the median estimates for 
the numerical values. Specifically, we followed the 
method of Siegler and Booth (2006). First, we calculated 
the median estimate for each stimulus as generated by 
participants. Then the differences between median 
estimates and the number predicted by the best-fitting 
logarithmic and linear functions were compared via 
paired samples t-tests. The results of model comparisons 
for each set are summarized in Table 2. 

Results and Discussion 
Controls Performance on all control tasks were well 
accounted for by linear functions. These included the 
Decimal 1-100, Decimal 1-1000, Decimal 0-32k, 
Decimals 16-32k, and All Exponential sets. Because these 
sets were best fit by linear functions across conditions, the 
data were collapsed across conditions within each set (see 
Table 2). The fact that each of these sets yielded linear 
results supports the conclusion that participants’ baseline 
performance was linear across the number ranges tested in 
the experiment. Importantly, the data showed that 
performance was linear for both decimal notation and 
exponential notation formats in the case for which the 
same format was used for both anchors and stimuli. 
 
Decimal Stimuli - Exponential Anchors In contrast to 
control trial estimates, the estimates for this set were fit 
equally well by linear and logarithmic functions. In fact, 
though statistically insignificant, the absolute value of the 
variance explained was greater for the logarithmic model 
than for the linear model (see Table 2). It is doubtful, 
however, that this pattern of performance was due to the 
use of a logarithmic ruler, as performance in the control 
conditions demonstrated that participants were very 
capable of performing linearly in the same range in both 
standard and exponential notation. Instead, the 
compression seems to have been an artifact of confusion 
on the task (see Figure 1). 

1939



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Performance before and after receiving information about a single data point 

 As predicted, there was a stark contrast between the 
linearity of performance for stimuli beneath 10,000 and 
the linearity of performance for stimuli above 10,000. For 
stimuli of value less than 10,000, aggregate performance 
was very linear with a slope well above 1, (R2 

= .98 vs. 
.83, linear slope = 2.72). This is confirmed by analysis of 
the individual data. Out of 32 participants, 22 (69%) were 
best fit by a linear function with a slope of 2 or greater in 
this range. Such high slopes are consistent with what 
would be predicted if participants thought the rightmost 
endpoint was approximately 10,000. 
 On the other hand, performance on stimuli greater than 
10,000 was equally well fit by both linear and logarithmic 
functions.(R2 

= .99  vs. .99, linear slope = .33). Both types 
of functions fit well because there were only three data 
points for median estimates in this range (12,480, 18,390, 
and 25,920). Upon analyzing individual data, which 
included two data points for each estimate, it became 
clear that the data were not well behaved: the 
performances for 24 of 32 participants (78%) failed to fit 
a linear function with a slope different from zero in this 
range. This is particularly interesting given that 
performance on the decimal 16-32k set yielded linear 
performance in the same range. This suggests that the 
ostensibly logarithmic performance was due to confusion 
about the value of the uppermost anchor as opposed to the 
use of a logarithmic ruler. What looks like a compressive 
function was an artifact of how knowledge constraints 
affected adults’ default procedure for executing the task. 
 
Decimal Stimuli – Exponential Anchors Calibrated 
Performance with this group was far better fit with a 
linear function than with a compressive function (see 
Table 2). With the addition of a single slide, performance 
on this set changed dramatically (see Figure 1). The slide 
allowed participants to calibrate their estimates, making 

the value of the uppermost anchor meaningful. This is 
consistent with the hypothesis that the compressive 
performance was not indicative of the underlying 
representation, but was instead an artifact of confusion 
about the value of the uppermost anchor. 
 
Exponential Stimuli - Decimal Anchors This set yielded 
linear performance, despite the compressive performance 
seen for the set using the converse notation (see Table 2). 
The slope of performance with this set is of particular 
interest. Even though the relative distances between the 
placements of the stimuli were linearly consistent, 
participants typically placed the large majority of the 
stimuli on the leftward third of the line. Indeed, the slope 
of .34 is what would be expected if participants thought 
that .999x104.5 was equivalent to 10,000. When we 
rescaled the data in a way corresponding to the 
assumption that .999x104.5 was actually equivalent to 
10,000, the data yielded a slope of 1.10, again suggesting 
that performance was an artifact of mistaken assumptions 
about the uppermost anchor. 
 
Exponential Stimuli - Decimal Anchors Calibrated 
With the addition of a single slide, performance on this 
set changed dramatically. Performance was still linear but 
the slope was greatly increased, yielding a value closer to 
1, as opposed to the slope of .35 seen for the uncalibrated 
set (see Table 2). Note that it was not the form of the 
function that changed – it was linear for both sets – but its 
slope. Performance on this set corroborates our 
conclusions from the Decimal Stimuli - Exponential 
Anchor set: Divergence from linear performance with a 
slope of 1 is more the consequence of knowledge 
constraints than the result of different underlying 
representations of the numerical stimuli. 
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General Discussion 
Adult performance in this study matched our predictions. 
Participants performed linearly on all tasks for which the 
values of the anchor points were unambiguous. However, 
when the (misleading) exponential notation was used, 
performance appeared more compressive.. Performance in 
this case was modeled at least as well by a logarithmic 
function as by a linear function. Because adults were 
linear over the same range in multiple notations, it seems 
that the compressive performance was an artifact of 
knowledge constraints. These performance patterns match 
those that should result from attempting to complete a 
proportion judgment task under conditions where 
necessary information (i.e., the values of anchors and to-
be-placed stimuli) is incorrect or lacking.   
 These data are problematic for the stance that 
logarithmic performance on number line tasks is evidence 
that mental representations of numerical magnitude are 
logarithmically compressed. In particular, these results 
raise questions about whether children’s logarithmic 
performance on number line placement tasks is due to 
them only having logarithmic representations available to 
them for a given number range. The current situation with 
adults is one case in which logarithmic looking 
performance was due to task constraints instead of 
reflecting a shift in the underlying representational 
system. Such considerations may similarly apply to 
children as well as to adults. 
 In sum, we offer these results as an existence proof that 
differences in performance on number line estimation 
tasks may not necessarily be indicative of fundamental 
differences in the format of people’s underlying 
representations of numerical magnitude. Rather, they may 
be diagnostic of differences in people’s understanding of 
what magnitudes are represented by a given numerical 
stimulus. This would explain Siegler and colleagues’ 
consistent findings that linearity of performance on 
number line estimation tasks correlates with success in 
other areas of numerical ability (Ramani & Siegler, 2008; 
Siegler & Booth, 2004; Whyte & Bull, 2008). These tasks 
may not have been tracking changes in children’s 
underlying numerical magnitude representations; they 
may instead have been gauging the extent to which 
children understood what values symbolic numbers 
represented. We suggest that such number line estimation 
tasks may prove useful in evaluating children’s current 
level of understanding of the meaning of numbers, and 
agree with the thesis that they might serve as learning 
tools for helping children map decimal numbers and 
number words to appropriate mental magnitudes (Ramani 
& Siegler, 2008; Siegler, 2009). A series of studies is 
currently in progress to further investigate these 
possibilities. Particularly, we plan to investigate whether 
individual differences in children’s number knowledge 
predict the points at which their number line placement 
estimates begin to appear logarithmic. 
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