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Abstract: The clinical management of bone defects caused by trauma or nonunion fractures 

remains a challenge in orthopedic practice due to the poor integration and biocompatibility 

properties of the scaffold or implant material. In the current work, the osteogenic properties 

of carboxyl-modified single-walled carbon nanotubes (COOH–SWCNTs) were investigated 

in vivo and in vitro. When human preosteoblasts and murine embryonic stem cells were 

cultured on coverslips sprayed with COOH–SWCNTs, accelerated osteogenic differentiation 

was manifested by increased expression of classical bone marker genes and an increase in the 

secretion of osteocalcin, in addition to prior mineralization of the extracellular matrix. These 

results predicated COOH–SWCNTs’ use to further promote osteogenic differentiation in vivo. 

In contrast, both cell lines had difficulties adhering to multi-walled carbon nanotube-based 

scaffolds, as shown by scanning electron microscopy. While a suspension of SWCNTs caused 

cytotoxicity in both cell lines at levels 20 μg/mL, these levels were never achieved by release 

from sprayed SWCNTs, warranting the approach taken. In vivo, human allografts formed by the 

combination of demineralized bone matrix or cartilage particles with SWCNTs were implanted 

into nude rats, and ectopic bone formation was analyzed. Histological analysis of both types 

of implants showed high permeability and pore connectivity of the carbon nanotube-soaked 

implants. Numerous vascularization channels appeared in the formed tissue, additional progenitor 

cells were recruited, and areas of de novo ossification were found 4 weeks post-implantation. 

Induction of the expression of bone-related genes and the presence of secreted osteopontin protein 

were also confirmed by quantitative polymerase chain reaction analysis and immunofluores-

cence, respectively. In summary, these results are in line with prior contributions that highlight 

the suitability of SWCNTs as scaffolds with high bone-inducing capabilities both in vitro and 

in vivo, confirming them as alternatives to current bone-repair therapies.

Keywords: human allografts, demineralized bone matrix, cartilage particles, bone regeneration

Introduction
Current surgical procedures for the treatment of bone defects including those resulting 

from tumor resection, trauma, and abnormal bone growth enjoy only partial success, and 

often lead to multiple surgeries. Among these limitations, patients must face responses 

such as quick degradation of implants, poor osteointegration, and fractures. During the 

past few decades, efforts have been made to mitigate these challenges through the use 

of new metal prostheses and the development of new biocompatible materials, such 

as biodegradable polymers, and collagen- and calcium-based scaffolds.1–4

Nanotechnology offers a wide range of alternatives to design new materials that can 

be applied to regenerative medicine. Examples of these nanomaterials include carbon 

nanotubes (CNTs), an allotrope form of carbon5,6 that shows excellent  properties to be 
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employed in diverse fields.7–9 In addition, CNT’s geometry 

resembles triple collagen fibrils.10,11 An individual single-

walled CNT (SW-CNT) is a thin fiber about 1–5 μm in length 

and 0.5–1.5 nm in diameter, closely mimicking the length and 

diameter of collagen fibrils, making them ideal candidates 

for tissue engineering. Despite of their beneficial geometry, 

the application of CNTs in regenerative medicine has caused 

some controversy; a number of published reports have 

questioned their biocompatibility.12–15 However, more recent 

reports on manufactured CNTs using improved methods, 

which reduces heavy metal componentry, have emphasized 

their utility and are reviewed by Tran et al.16

The application of any type of biomaterial in bone regen-

eration must satisfy three criteria; the biomaterial must be: 

1) osteoconductive, sustaining colonization by precursor 

cells and allowing the formation of new vessels; 2) osteoin-

ductive, stimulating bone cell differentiation of precursors; 

and 3) osteointegrative with host bone tissue. Using these 

three criteria, we and others have shown that high-purity 

CNT preparations sprayed on glass surfaces sustained bone 

cell proliferation as well as electrical activities underlying 

osteoblast secretory functions and matrix mineralization.17–19 

In addition, in closely related bioengineering fields, chemi-

cally modified CNTs alone or in combination with distinct 

composite materials have been applied to facilitate neu-

ronal growth, cartilage, and myocardial tissue differentia-

tion, among other applications.20–32 Furthermore, CNTs in 

 suspension have also been investigated as potential carriers 

for drug delivery, and have been shown to have no effect on 

vital functions of cells.31,32

In the current work, we have evaluated the bone-inducing 

properties of carboxyl (COOH)-modified CNTs by conducting 

in vitro experiments on two models of progenitor cells, human 

fetal osteoblasts (hFOBs) and murine embryonic stem cells 

(mESCs), and we have further investigated bone induction in 

vivo in a rat model. While multi-walled, negatively charged 

CNTs altered the adhesive and proliferative properties of cells, 

single-walled carbon nanotubes (SWCNTs) in suspension had 

a putative cytotoxic impact at concentrations 20 μg/mL. 

However, SWCNTs improved differentiation of both hFOB 

and mESC progenitors into osteoblasts in vitro, as confirmed 

by an increase in messenger ribonucleic acid (mRNA), abun-

dance of bone-lineage genes, an earlier induction of extracel-

lular matrix (ECM) mineralization, and induced secretion 

of osteocalcin (Ocn) protein. In vivo, human allografts of 

demineralized bone matrix (DBM) and cartilage particles 

soaked in SWCNT suspension were implanted into athymic 

rats. Histological analysis of resulting tissue and mRNA levels 

of bone marker genes suggested that the tissue formed upon 

transplantation of SWCNT-soaked DBM was more mature 

than that of SWCNT-soaked cartilage particles. In summary, 

our results highlight the relevance of SWCNT-based scaffolds 

in promoting bone formation in vivo and in vitro.

Materials and methods
cNT preparation
Aqueous solutions of carboxyl-modified single- and multi- 

walled CNTs, (COOH–SWCNTs and COOH–MWCNTs, 

respectively; NanoLab Inc., Waltham, MA, USA) were 

sprayed onto glass coverslips (30 mm diameter). Briefly, 

100 μg/mL of sonicated CNT suspension was sprayed onto 

preheated (160°C) glass coverslips, allowed to air-dry, and 

then irradiated with ultraviolet light prior to use in cell culture. 

CNT features are described in Table 1.

cell culture
hFOBs (line 1.19) and mESCs (line D3) were obtained 

from ATCC (American Type Culture Collection, Rockville, 

MD, USA). hFOB 1.19 cells were cultured as previously 

described.33 Culture medium was changed every other day 

and differentiation induced at 39.5°C when cells reached 80% 

percentage of confluence. Routine culture methods and differ-

entiation media for mESCs containing β-glycerophosphate, 

ascorbic acid, and 1α 25(OH)
2
 vitamin D

3 
factors were used, 

as previously described.34 For both hFOB 1.19 and mESCs 

cell lines, 3,500 cells/cm2 were seeded onto CNT-sprayed 

coverslips, and differentiation was induced for 28 days.

Analysis of cellular morphology
Cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium 

cacodylate buffer for 1 hour at room temperature (RT). Cov-

erslips were washed three times in 0.1 M sodium cacodylate 

and RT-incubated in a solution containing 1% osmium tetrox-

ide in 0.1% sodium cacodylate. Coverslips were dehydrated 

in a graded ethanol series (30%, 50%, 70%, 90%, and 100%), 

and subjected to critical-point drying for 1 hour. Specimens 

were sputter-coated with gold palladium (SCD 040; Oerlikon 

Balzers Coating AG, Balzers, Liechtenstein) and imaged in a 

scanning electron microscope (SEM; Philips XL30, Philips/

FEI Corporation, Eindhoven, the Netherlands) at an accel-

erating voltage of 10 kV. All SEM reagents were purchased 

from Electron Microscopy Sciences (Hatfield, PA, USA).

cytotoxicity assays
Cytotoxic influence of in-suspension SWCNTs was deter-

mined by XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2-

H-tetrazolium-5-carboxanilide) assay (XTT cell proliferation 

assay kit; ATCC) following the manufacturer’s instructions. 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4279

Improved osteogenesis by COOH–SWCNTs-based grafts

Briefly, 4×103 cells/well were seeded into 96-well tissue 

plates and incubated for 24 hours with SWCNT suspen-

sions at the following concentrations: 1, 5, 10, 20, 25, 50, 

75, and 100 μg/mL. Potential release of sprayed SWCNTs 

from coverslips into the media was assayed for 34 days. 

Measurements were performed at 490 nm (λ) in a micro-plate 

absorbance reader (iMark; Bio-Rad Laboratories, Hercules, 

CA, USA).

Biochemical and immunostaining assays
Quantitation of mineralized ECM from hFOBs and mESCs 

was performed at day 14, and again at day 28 upon differen-

tiation induction. Briefly, cells were fixed in 100% ethanol 

for 15 minutes and subsequently stained for 1 hour in 0.2% 

alizarin red solution (pH 6.4) at RT. Cells were then washed 

in an ascending ethanol series to remove unspecific signals. 

Bound alizarin red was extracted using 20% methanol and 

10% acetic acid in water. After 15 minutes, the methanolic 

mixture was transferred to a 96-well plate and quantified at 

450 nm. Resulting values were normalized to the protein 

content (bicinchoninic acid protein assay; Thermo Fisher 

Scientific, Waltham, MA, USA).

Ocn protein secreted to ECM was detected by immuno-

fluorescence. Cells were fixed in ice-cold methanol/acetone 

(7:3) for 15 minutes at -20°C. Subsequently, a blocking 

step was performed with 10% fetal bovine serum and 0.5% 

bovine serum albumin in 1× phosphate buffered saline 

(PBS) for 30 minutes at 37°C prior to incubation with an 

anti-osteocalcin rabbit polyclonal antibody (EMD Millipore, 

Billerica, MA, USA). After washing in 1× PBS, samples 

were incubated with Alexa Fluor® 488 donkey anti-rabbit 

immunoglobulin G (Thermo Fisher Scientific, Waltham, 

MA, USA) secondary antibody in the presence of 4′, 6-di-

amidino-2-phenylindole (Millipore) to counterstain nuclei. 

Secondary antibody was visualized with a fluorescence 

microscope (Eclipse Ti; Nikon Instruments, Melville, NY, 

USA). A similar procedure was followed to immune detect 

osteopontin (Opn) protein.

gene expression analysis
Total RNA isolation from cells (RNAqueous®-4PCR Kit; 

Thermo Fisher Scientific) and from the ribcage of 4-week-old 

rats (RNeasy® Plus Mini Kit; Qiagen NV, Venlo, the 

Netherlands) was conducted according to manufacturers’ 

instructions. Total RNA isolation from cartilage fractions was 

performed as described by Mallein-Gerin and Gouttenoire.35 

In all cases, cyclic deoxyribonucleic acid (cDNA) was 

synthesized with an iScript™ cDNA Synthesis Kit (BioRad 

Laboratories). Primers used are listed in Table S1. Real-

time quantitative polymerase chain reaction (RT-PCR) was 

performed in an ABI 7900HT instrument using Fast SYBR® 

Green Master Mix (Thermo Fisher Scientific). Expression 

fold values are shown as 2(-ΔΔCt), which are relative to con-

trol conditions and normalized to endogenous control gene 

expression. RT-PCR products corresponding to pluripotent 

genes were visualized on 2% Tris-Borate-EDTA (ethylene-

diaminetetraacetic acid) agarose gels. 

Rat implant preparation and surgery
Thin human femur cortical bone strips, of 10–12 mm in 

length and 4–5 mm in width, were microperforated with a 

350°μ diameter drill, creating 20 perforations/cm2. Lipid was 

then extracted with 95% ethanol and diethyl ether. Demin-

eralization and sterilization were conducted as described by 

Gendler.36 After aeration, bone allografts were freeze-dried 

for 5 days and then packaged into double plastic pouches. 

One-half of bone implants were treated with SWCNTs, 

while the other half was not. CNT treatment consisted of 

placing the implants into 1 g/L COOH–SWCNT solution 

for 12 hours at 20°C, followed by several washes with run-

ning deionized sterile water for 12 hours at 20°C. Before 

implantation, allografts were reconstituted in physiologic 

PBS for 30 minutes. Cartilage preparations were excised 

from cadaver donors under aseptic conditions, as previously 

described.37,38 Briefly, cartilaginous sections were washed, 

frozen in liquid nitrogen vapor, and then transferred to a 

freeze-drying chamber with the external condenser set at 

60°C and the sheaf between 20°C–30°C (VirTis Bench Top 

Pro Freeze Dryer, SP Scientific, Warminster, PA, USA). 

Cartilage sections were freeze-dried to a residual moisture 

content of 3%–6%, and subsequently ground in a turbo 

grinding mill (PALLMANN Maschinenfabrik GmBH & 

Co. KG, Zweibrücken, Germany) into particles 200–300 μm 

in size.

Table 1 Technical characteristics of carbon nanotubes

Carbon nanotubes Length Diameter Purity Chemical functionalization Fabrication method

COOH–SWCNTs 1–5 μm 1.5 nm 95% cOOh– cVD

COOH–MWCNTs 5–20 μm 25 nm 95% cOOh– cVD

Abbreviations: CNTs, carbon nanotubes; COOH–SWCNTS, carboxyl-modified single-walled nanotubes; COOH–MWCNTs, carboxyl-modified multi-walled nanotubes, 
cVD, chemical vapor deposition.
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All animal studies were conducted in accordance 

with the principles and procedures outlined by the 

University of California Guidelines for Animal Research. 

Isoflurane-vapor-anesthetized, 6-week-old nude rats (Crl:NIH-

Foxn1rnu) were used for implant surgery. Implant incision and 

preparation was conducted as previously described.39 Incisions 

of 1 cm were made parallel to the most caudal rib, and a 1.5 cm 

cavity prepared for implant placement by inserting a blunt 

probe rostrally under the skin to create a chamber overlying the 

lateral rib cage. For each rat, untreated implants were inserted 

into the cavity on the right side of the animal, and SWCNT-

treated implants inserted on the left. Incisions were carefully 

closed with skin staples, and the animals returned to their cages 

for recovery. No systemic effects caused by SWCNTs from 

treated implants were observed on control implants.

Histological analysis
After 4 weeks, excised allografts were fixed in neutral buff-

ered formalin (Sigma-Aldrich) and post-fixed in Bouin’s 

fluid (Sigma-Aldrich) after washing for 24 hours in 1× PBS. 

Specimens were then dehydrated in graded ethanol, cleared 

in xylene, embedded flat in paraffin, and sectioned along their 

longitudinal axis at 10 μm. Sections were collected on acid-

cleaned glass slides, dried at 40°C overnight, and stained with 

hematoxylin and eosin. After staining, sections were dehy-

drated, cover-slipped with DPX Mountant (Sigma-Aldrich 

Co., St Louis, MO, USA) and digitally imaged with a cooled 

charge-coupled device camera mounted on an Olympus 

DMRXA microscope (Olympus Corporation, Tokyo, Japan). 

Images collected at the same magnification were cropped 

and assembled into composites with Adobe Photoshop CS4 

Software (Adobe Systems Inc., San Jose, CA, USA).

statistical analysis
All data are expressed as mean ± standard deviation of mean 

of at least three independent experiments. For statistical 

analysis, one-way analysis of variance (ANOVA) test was 

used and a value of P0.05 was considered statistically 

significant.

Results
Effect of SWCNT scaffolds 
on cell morphology 
To investigate whether CNT-induced nanoroughness might 

cause putative changes on cell number and morphology, both 

hFOB and mESC cell lines were cultured on COOH–SW-

CNT- and COOH–MWCNT-sprayed coverslips for 3 days. 

SEM revealed typical cell diameters of ~40 μm in hFOB 

cells, with flat, growing cell bodies (Figure 1A–C). Higher 

magnification revealed the presence of nanometer-scale 

cytoplasmic prolongations (Figure 1E and F) for these cells 

on both types of CNT scaffolds, while prolongations were 

less abundant – or practically absent – on control coverslips 

(Figure 1D). Nanosized prolongations were more abundant 

on MWCNTs (Figure 1F), suggesting that cells attempted 

to adhere to this type of substrate (denoted by white arrows 

in Figure 1F). While hFOBs showed a reduction in number 

when grown on MWCNTs (Figure 1C), mESCs showed typi-

cal colony morphology on control (Figure 1G and H) and on 

SWCNT (Figure 1J and K) coverslips. The number of hFOB 

and mESC colonies was compared, and similar results were 

noted for controls (Figure 1G) and SWCNTs (Figure 1H). 

However, similar to other results described in this section,  

a reduction in mECS colony number plus an abnormally round 

morphology was observed on COOH–MWCNTs ( Figure 1I), 

confirming our previous suspicions that an increase in the 

dimension of our tested scaffolds represented an impairment 

of these cell lines’ adhesion. In addition, higher magnification 

revealed the presence of nano-prolongations on scaffolds, 

which allow adhesion of colonies to COOH–SWCNTs 

( Figure 1K); in contrast, nano-prolongations were absent 

from controls (Figure 1J). This data confirmed the notion that 

a dimensional increase in scaffold geometry from single- to 

multi-walled structures impaired cellular adhesion, and that 

this impairment is independent of the cell line tested. There-

fore, further investigation on COOH–MWCNT substrates 

was not included in this work. 

Impact of SWCNTs on cell viability
To determine possible cytotoxic effects of SWCNTs in 

suspension on the proliferative properties of both progeni-

tors, XTT assays were conducted. SWCNT concentrations 

ranged from 1–100 μg/mL. Our assays revealed that COOH–

SWCNT concentrations 20 μg/mL elicited cytotoxicity 

(P0.01) in both cell lines, causing a decrease to 47% and 

22% viable cells for hFOB and mESC lines, respectively 

(Figure 2A and B). Based on these results, we then deter-

mined whether the highest noncytotoxic concentration would 

affect cell proliferation long-term. Cells cultured for up to 

72 hours did not show any overt negative effects on their 

proliferative properties (Figure 2C). 

Finally, release of SWCNTs from coverslips into the 

medium was analyzed for a period of 34 days (Figure 2D) 

by collecting the liquid phase every 2 days, as described in 

the “Methods” section. Maximum SWCNT concentration 

peaks of ~2.5–3 μg/mL were found at 18, 30, and 34 days 

(Figure 2D). These concentrations were about 10-fold lower 

than the cytotoxic concentration identified previously in this 
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section (Figure 2A and B). Minimal release of SWCNTs into 

the medium ensured the absence of cytotoxic effects, predi-

cated further experimentation, and validated the suitability 

of the chosen coating procedure.

Influence of SWCNT scaffolds 
on osteogenic differentiation 
To examine osteoinductive effects of SWCNTs on mESCs, 

we initially investigated whether SWCNTs could pro-

voke any change in mRNA abundance of the three master 

regulators of pluripotency, Oct3/4, Nanog, and Sox-2. By 

conventional and quantitative RT-PCR (Figure S1), mRNA 

abundance of these genes was measured from three different 

passages (P3, P6, and P9) of cells cultured on SWCNTs. 

Levels of all three mRNAs remained unchanged compared 

to levels found for cells grown on control coverslips. From 

these quantitative data and from the absence of morpho-

logical changes in mESC colonies, it may be inferred that 

CNTs used in our current research do not alter the identity 

of undifferentiated ESCs. 

Control

A B C

D E F

G H I

J K L

COOH–SWCNTs COOH–MWCNTs

Figure 1 Scanning electron microscopy micrographs of hFOB (A–F) and mesc (G–L) cell lines after 3 days of culture on control and carboxyl-modified CNTs.
Notes: hFOB cells growing on control, COOH–SWCNT, and COOH–MWCNT substrates (A, B, and C, respectively); establishment of cytoplasmic nanoprotrusions on control, 
COOH–SWCNT, and COOH–MWCNT scaffolds, as seen at higher magnification (D, E, and F, respectively); and mESC colonies adhering to control scaffolds, COOH–SWCNTs, 
and COOH–MWCNTs (G, H, and I, respectively). Inset (I) shows abnormal morphology of colonies grown on COOH–MWCNTs magnified; higher magnifications depict 
establishment of nanoprotrusions on control and COOH–SWCNT substrates (J and K, respectively); inferred increase in nanoroughness introduced by COOH–MWCNTs (L). 
White arrows in Figures 1E, F and K depict the establishment of cytoplasmic prolongations of the cells to adhere to the scaffold.
Abbreviations: hFOB, human fetal osteoblast; mesc, murine embryonic stem cell; cNTs, carbon nanotubes; COOH–SWCNTs, carboxyl-modified single-walled CNTs; 
COOH–MWCNTs, carboxyl-modified multi-walled CNTs.
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We also investigated the influence of SWCNTs on 

osteogenic differentiation potential of both mESC and hFOB 

progenitors (Figure 3A, panels a–f, respectively). For 

mESCs, a cell medium lacking leukemia inhibitor factor but 

with proper osteogenic factors added, was used. The earliest 

mineralization on SWCNT scaffolds was observed at day 7 

(Figure 3A, panel d), as evidenced by the presence of small, 

mineralized aggregates (indicated by white arrows), which 

were absent on control coverslips (Figure 3A, panel a). 

Differences in mineralization became more evident at days 

14 and 28, as larger mineralized aggregates were found on 

SWCNT coverslips (Figure 3A, panels e and f) as compared 

to controls (Figure 3A, panels b and c).

mRNA abundance of representative bone marker genes 

osterix (Osx), collagen type I (Col I), osteopontin (Opn), and 

osteocalcin (Ocn) was then assayed. The analysis revealed 

that expression levels of Osx and Opn genes were signifi-

cantly upregulated in mESCs differentiated on SWCNTs at 

all assessed time points (P0.05, Figure 3B). Specifically, 

Osx expression was upregulated 2.4-, 3.8-, and 3.4-fold on 

SWCNTs, followed by similar increases in Ocn expression at 

the two later time points, reflecting the function of Ocn as a 

marker of fully matured osteoblasts. In contrast, overall Col I 

expression did not show any statistical difference compared 

to controls, except on day 14 when it was slightly increased 

(to 1.7-fold) from cells differentiated on SWCNTs.

Similarly, mineralized nodules were absent on control 

coverslips (Figure 3C, panel b), but appeared as early as day 

14 in hFOBs cultured on SWCNTs (white arrows in Figure 3C,  

panel e). Toward the end of the experiment, the number and 

size of mineralized nodules was only slightly higher and the 

color only slightly darker on SWCNTs than on control cover-

slips (Figure 3C, panels c and f, respectively). We quantified 

the expression levels of bone-related genes using the same 

methodology (Figure 3D). Due to only minor microscopic 

differences observed in osteogenic yield, additional osteoblast 

genes were included in the assessment of bone specific gene 

expression: core binding factor alpha-1 (Cbfa-1), and alka-

line phosphatase (Alp), two early–intermediately expressed 

markers. The expression level of all genes was significantly 

elevated at all assessed time points, with the exception of Col 

I and Ocn, which were elevated from day 14 onward. Specifi-

cally, Cbfa-1, Osx, and Alp genes showed an early, steady 

state expression maintained at a similar level (2- to 2.5-fold 
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walled carbon nanotubes; sD, standard deviation.
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Figure 3 Induced osteogenic differentiation in mESC and hFOB cell lines cultured on COOH–SWCNTs. 
Notes: representative images taken at days 7, 14, and 28 of mESCs (A) and hFOBs (C) on control (panels a–c), and COOH–SWCNT (panels d–f) substrates. White arrows denote 
formation of early-mineralized nodules into ecM. scale bar =500 μm. Quantitative expression of bone-related markers shown in bar graphs (B, D, and F). results normalized to 
endogenous B-actin relative to controls. Dashed lines (B and D) indicate values of target genes in control conditions; *P0.01 vs respective control group. Immune-fluorescence 
images (E) depict presence of secreted Ocn (green color) in mESCs and hFOBs on control (panels a and e) and COOH–SWCNT (panels c and g) substrates. scale bar =500 μm. 
Counterstaining with DAPI (blue color) is shown in (E) (panels b, d, f, and h). Bar graph (F) shows normalized alizarin red quantitation from hFOBs and mescs on all substrates. 
*P0.01.
Abbreviations: mesc, murine embryonic stem cell; hFOB, human fetal osteoblast; COOH–SWCNTs, carboxyl-modified single-walled carbon nanotubes; ECM, extracellular 
matrix; mRNA, messenger RNA; vs, versus; Ocn, osteocalcin protein; DAPI, 4’,6-diamidino-2-phenylindole; Cbfa-1, core-binding alpha factor I; Osx, osterix; Col I, collagen type I; 
Alp, alkaline phosphatase; Opn, osteopontin; Ocn, osteocalcin.

over controls) across the 28-day window on SWCNTs. For 

Opn and Ocn, a steeper upregulation was found between the 

first and second week of differentiation, and their expression 

was maintained at all later time points at ~3.7- and 2.7-fold 

over controls, respectively. Taken together, our results 

revealed a positive influence of SWCNT scaffolds on osteo-

genic differentiation yield of hFOB and mESC progenitors. 

To further validate whether the presence of SWCNT 

scaffolds accelerates the formation of fully mature osteoblast 

cells, we evaluated the presence of secreted Ocn protein 

at day 28 of the osteogenic induction protocol. As seen 

in Figure 3E, results revealed a major abundance of Ocn, 

shown in green, when mESCs and hFOBs were differenti-

ated on SWCNTs (panels c and g, respectively) compared 
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to control differentiations (panels a and e), correlating with 

mRNA levels discussed previously in this section. Finally, 

alizarin red assays at days 14 and 28 confirmed a general 

increase in the deposition of mineralized matrix on SWCNTs. 

This deposition was more accelerated at the end of differ-

entiation (2-fold) than at mid-term evaluation (1.5-fold, day 

14) for mESCs. Similarly, mineralization from differentiated 

hFOBs revealed an increase of up to 2.75- and 1.8-fold at days 

14 and 28 compared to mineralization on control scaffolds. 

ectopic bone formation after DBM 
and SWCNT-treated cartilage 
allograft implantation 
In an attempt to translate in vitro results into in vivo 

application of CNTs, 6-week-old nude rats were subjected 

to implantation with human DBM and cartilage particle 

allografts, which had been soaked in SWCNTs. Implants 

were subcutaneously placed into pouches in the pectoralis 

muscle, and subsequent ectopic bone formation observed. 

To provide an overview of implantation methodology, 

selected areas and number of perforations made are shown 

in Figures S2 and S3. Four weeks post-implantation, 

implant containing both SWCNTs and DBM (indicated as 

“NT” in Figures 4 and 5) were well populated by host cells 

and vascular channels, indicating the high permeability and  

pore interconnectivity of these scaffolds (Figure 4C–E, 

and at higher magnification in Figure 4F). In both control 

and treated implants, interiors of microperforations were  

ingrown with a large number of vascular channels, and with 

host cells of different morphology ranging from loosely 

packed connective tissue cells to densely packed, mesen-

chymal cells, or differentiated active osteoblasts and encased 

osteocytes (Figure 4A and B and Figure 4C–G for control 

and SWCNT implants, respectively). The secretory activity 

of surrounding osteoblasts depositing new bone matrix and 

thereby eroding the microperforations’ outlines, was also a 

common phenomenon in both instances, while the recruitment 

of densely packed mesenchymal cells was greater surrounding 

SWCNT grafts (Figure 4C and E) than in controls (Figure 4A 

and B). In addition, cartilaginous areas were highly abundant 

close to SWCNT/DBM implants, indicating the presence of 

new endochondral ossification centers (Figure 4D).

A C E

FDB
Figure 4 Histological sections of DBM with or without COOH–SWCNT scaffolds 4 weeks post-implantation on rat pectoris muscle.
Notes: Images from untreated control implants: DBM with COOH–SWCNT scaffolds (A); DBM without COOH–SWCNT scaffolds (B). Images from treated DBM plus 
COOH–SWCNT-treated implants at 10× magnification (C–E); inset in (D) at 40× magnification (F). acronyms and white arrows indicate presence of relevant events. 
Abbreviations: DBM, demineralized bone matrix; COOH–SWCNT, carboxyl-modified single-walled carbon nanotube; OB, osteoblasts; OC, osteocytes; V, vascular 
channels; NT, nanotubes; HL, Howship’s lacunae; CA, cartilage; CT, connective tissue; MC, mesenchymal cells.
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ectopic bone formation upon implantation 
of SWCNT-treated cartilage allografts 
Human cartilage preparations combined with SWCNTs were 

also implanted into the pectoralis muscle of nude rats, using 

the same methodology described in the previous section. 

Low magnification images show an overview of how and 

where cartilage-SWCNT implants were placed (Figure S4). 

Four weeks post-implantation, high compatibility of grafts 

with host tissue, absence of relevant inflammatory signals, 

recruitment of mesenchymal progenitor cells, and the pres-

ence of aligned osteoblasts were observed (Figure 5A–D). 

High osteoblast activity was also evidenced by the presence 

of ossification events on cartilage particles, especially clear in 

Figure 5A, in all selected areas. However, remarkable differ-

ences were found, such as large amounts of connective tissue, 

Howship’s lacunae which identify multinucleated osteoclasts 

(Figure 5A and B), and the presence of few osteocytes. This 

suggested an early–intermediate ossification stage compared 

to the more advanced ossification in DBM implants.

To compare the effectiveness of both transplants quanti-

tatively, mRNA levels of bone-specific genes were used as a 

measure for osteoinductivity (Figure 6B). Increased expres-

sion of Cbfa-1, Col I, Opn, and Ocn genes (5.6-, 4.1-, 5.3-, 

and 4.4-fold, respectively) was found in cartilage/SWCNT 

implants compared to untreated groups. Similar behavior 

was observed in the case of DBM/SWCNT implants, where 

the expression of Cbfa-1, Opn, and Ocn was 6.0-, 9.5-, and 

6.9-fold higher than in the control, while Col I expression 

was downregulated. These data confirmed the notion that 

the tissue was more mature in CNT-treated transplants. In 

addition, the upregulation observed for Opn markers, an 

early–intermediate indicator of bone formation, correlated 

with the highest abundance of its encoded protein in both 

treated specimens (Figure 6A, panels c and g for DBM- and 

cartilage-treated implants, respectively). 

Discussion
Nanotechnology has allowed the possibility of manufacturing 

materials, such as CNTs, that can be utilized in distinct bio-

logic fields. Although CNTs have been studied extensively, 

their applications are still controversial due to the appear-

ance of cytotoxic effects, especially when they are used in 

suspension.12–15 The main hypothesis for this study was that 

SWCNTs are ideal scaffolds to promote bone formation 

due to the similar geometry they share with collagen fibrils, 

a major component of osteoblasts’ ECM. This capability 

was assayed with two unspecialized cell lines, and further 

elucidated in vivo by using a nude rat model. hFOBs were 

selected as a cellular model for this study, because they prolif-

erate more quickly and are more homogeneous than primary 

cultured bone cells. In addition, they differentiate upon alter-

ing the culture temperature from 33.5°C to 39.5°C, without 

adding any osteogenic factor.34,40–42 Advantages of employ-

ing the second in vitro cell line, murine ESCs, lie in their 

A C

DB

Figure 5 Histology sections of cartilage granules soaked with COOH–SWCNT scaffolds 4 weeks post-implantation on rat pectoris muscle.
Notes: sections (A–D) at 10× magnification. All the parts of this Figure are the result of the implantation of human cartilage particles soaked with COOH-SWCNTs. Each 
part was selected from different areas of the tissue that reveal distinct stages of the osteogenic process. Acronyms and black arrows indicate relevant events. 
Abbreviations: COOH–SWCNT, carboxyl-modified single-walled carbon nanotube; OB, osteoblasts; V, vascular channels; NT, nanotubes; HL, Howship’s lacunae; CA, 
cartilage; CT, connective tissue; MC, mesenchymal cells.
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hence proliferation. Although this observation differs from 

previous reports,28,29 it was in line with our previous research 

on osteosarcoma rat cells,17 and could explain why SEM 

analysis – which indirectly revealed distinct levels of adhe-

sion of these progenitors for the selected substrates – failed 

for similar types of MWCNT scaffolds constructed by other 

research groups.19 Although we did not further investigate 

this matter, our observations may be the basis for further 

exploration into the study of the molecules mediating this 

difference in cell adhesion.

Second, in trying to shed light on the controversial 

application of CNTs for future biomedical purposes, we 

analyzed whether COOH–SWCNTs in suspension might 

have a cytotoxic effect. Our XTT experiments revealed a 

toxic effect on cell proliferation when SWCNT concentra-

tions were 20 μg/mL. Clearly, our results are positioned 

between those that did not describe toxic effects of CNTs 

in suspension,19 and those that contraindicate their use15 by 

providing a threshold concentration for toxicity. Furthermore, 

we evaluated the release of sprayed SWCNTs into the culture 

medium, a single key to the validation of the coverslip coat-

ing procedure, and results revealed the absence of significant 

leaking during the entire culture time. 

Before assaying the impact of SWCNT scaffolds on the 

osteogenic differentiation of mESCs, we determined the 

expression profile of canonical stemness genes. Although 

neither teratoma formation assays nor protein levels of 

pluripotent markers were investigated, the expression pro-

files of Oct3/4, Sox-2, and Nanog genes were maintained in 

mESCs cultured on control and SWCNT coverslips for up 

to a period of nine cell passages. In a second step, induction 

of osteogenesis of mESC and hFOB cells was analyzed. The 

three major phases occurring in osteogenesis have been well 

established in the past,44 and display a temporally and sequen-

tially organized expression pattern of typical markers. Thus, 

osteogenic differentiation is controlled by specific transcrip-

tion factors such as Cbfa-1 and Osx. Osx is a transcription 

factor acting downstream of Cbfa-1, and is implied in the 

regulation of genes such as Opn, Ocn, and Col I; it also par-

ticipates by translating mechanical stimuli into a coordinated 

cellular response to Cbfa-1.49–51 In general, we observed an  

upregulation of these markers that was sharper for Osx at 

early time points, suggesting that the expression of remaining 

genes might rely on this master regulator. In turn, it is known 

that ECM mineralization depends on the expression of Opn 

and Alp genes.52 These two genes were equally upregulated 

in our experimental conditions. As such, Opn, with encoded 

product connecting ECM organic and inorganic phases,52 

was upregulated at assayed time points. Very surprisingly, 
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Figure 6 Immune detection of secreted Opn protein and bone marker expression 
analysis performed on implants 4 weeks post-implantation.
Notes: The presence of Opn (A) in DBM (panels a–d) and cartilage implants (panels 
e–h); control DBM and cartilage implants (panels a and e, respectively); Opn in treated 
DBM and cartilage implants (panels c and g, respectively); counterstaining with DAPI 
(panels b, d, f, and h); scale bar =500 μm. ectopic bone formation (B) as measured 
by mRNA abundance. Results are normalized to endogenous gene Gapdh and are 
relative to the expression of the tested genes from untreated control implants. Full 
grey and black bars represent data obtained from Cartilage and DBM treated implants; 
*represents significant values relative to control type of implants. *P0.01.
Abbreviations: DBM, demineralized bone matrix; Opn, osteopontin protein; DaPI, 
4′,6-diamidino-2-phenylindole; cartilage-CNT, cartilage particles soaked in a COOH–
SWCNT suspension; DBM-CNT, demineralized bone matrix particles soaked in a 
COOH–SWCNT suspension; mRNA, messenger ribonucleic acid; Cbfa-1, core-
binding alpha factor I; Col I, collagen type I; Opn, osteopontin; Ocn, osteocalcin; Gapdh, 
glyceraldehyde-3-phosphate dehydrogenase; vs, versus; COOH–SWCNT, carboxyl-
modified single-walled carbon nanotube.

pluripotent nature,43 hence their capability to differentiate 

into bone cells,44,45 and in their prior extensive use in the 

toxicity screening of chemical compounds;44–48 they therefore 

represent a good model to test CNT-induced toxicity.

To identify whether CNT-based scaffolds induce changes 

in cellular morphology and cell or colony number of these 

progenitors, hFOBs and mESCs were subjected to SEM 

analysis. Three common conclusions were inferred from this 

analysis: 1) SWCNT modification of the substrate caused 

nanoscale cytoplasmic protrusions that ensured proper cel-

lular adhesion; 2) SWCNTs did not induce any morphological 

changes; but 3) MWCNTs induced morphological changes 

or reduction in cell numbers. The larger dimensions of the 

MWCNT fibrils thus seemed to impair cell adhesion, and 
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we did not find any significant differences in Col I expres-

sion during mESC differentiation. This led us to speculate 

that the presence of CNTs on the coverslips, which mimic 

collagen fibrils, avoids unnecessary production of collagens. 

Last, Ocn, a marker of fully differentiated osteoblasts, was  

upregulated in both cell lines, correlating with the higher 

abundance of its protein at the end of differentiation. 

DBM and cartilage particles are commonly used implants 

in surgical procedures and dental reconstruction. We analyzed 

ectopic bone formation in nude rats implanted with human 

DBM and cartilage allografts soaked with COOH–SWCNTs. 

The selection of COOH covalently bound to the SWCNT core 

was based on the fact that COOH increases water solubility 

of CNTs, thus enhancing their biocompatibility.17 In addi-

tion, microperforated bone was used rather than particulate 

bone preparations to allow for a more precise morphometric 

measurement of osteogenesis.37 Untreated implants were 

placed on the right side of each animal, while SWCNT 

implants were positioned on the left of side, thus reduc-

ing putative inter-animal variations. Histological analysis 

revealed an interconnectivity of implanted biomaterials and 

the absence of local inflammatory responses, suggesting a 

high biocompatibility. Erosion of microperforation walls, 

neo-vessel formation and recruitment of progenitor cells 

surrounding the biomaterials were an evident phenomenon 

in all instances 4 weeks after implantation. A large number 

of immersed osteocytes in SWCNT/DBM perforations 

suggested a more advanced stage of induced osteogenesis 

compared to untreated DBM. In contrast, ossification events 

were delayed in cartilage-based implants, while multinucle-

ated osteoclasts were mainly observed in treated implants, 

revealing increased bone remodeling activity. Further analy-

sis of gene expression revealed similar trends to prior assays, 

although the expression of Cbfa-1, Opn, and Ocn expression 

was more acute compared to control implants, emphasizing 

the differences between our study models. 

Conclusion
The results of this study demonstrated the osteogenic prop-

erties of SWCNTs in three different models: two cellular 

models from distinct species, and a rodent animal model. 

Improved osteogenesis was observed using different 

approaches and was found to be accentuated depending on 

the precommitment of each cell line. In contrast, results from 

our in vivo model reinforce prior studies of CNTs described 

to date.16–19 After 4 weeks’ implantation, initial evidence of 

enhanced ectopic bone formation was found. Histological 

sections of human allografts combined with SWCNTs fur-

ther confirmed by transcriptional analysis of classical bone 

markers and increased presence of secreted Opn protein, 

clearly revealed the osteoinductive properties of CNTs. 

Taken together, these results reinforce prior research done 

with CNTs and constitute an opened window to continue 

with further investigations in other models.
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Table S1 Nucleotide primer sequences of target genes

Gene Accession no Primer sequences (5′–3′) Amplicon (bp) 

Homo sapiens
Osx NM_152860.1 F: ccTcTgcgggacTcaacaac 

r: agcccaTTagTgcTTgTaaagg
128

Cbfa1 NM_001015051 F: gcggTgcaaacTTTcTccag 
r: acTgcTTgcagccTTaaaTgac

116

Alp NM_000478.2 F: acTggTacTcagacaacgagaT 
r: acgTcaaTgTcccTgaTgTTaTg

 97

Opn NM_001040058 F: TcaccTgTgccaTaccagTTa 
r: ggccacagcaTcTgggTaTT

86

Ocn NM_199173.2 F: cTcacacTccTcgcccTaTTg 
r: gcTTggacacaaaggcTgcac

109

Col I NM_000088.3 F: TgTTcagcTTTgTggaccTc 
r: TTggTgggaTgTcTTcgTcT

111

B-Actin NM_001101.3 F: gagcacagagccTcgccTTT 
r: TcaTcaTccaTggTgagcTgg

70

Rattus norvegicus
Cbfa-1 NM_053304.1 F: agccacacgTgTagTaaaggcTca 

r: aTTccacTTccTgcaaagcTgcTg
170

Col I NM_013414.1 F: acTTcccTacccagcaccTTcaaa 
r: aTgTTTccagTcTgcTgTgacccT

198

Ocn  NM_053470 F: agaacagacaagTcccacacagca 
r: TaTTcaccaccTTacTgcccTccT

185

Opn  NM_012881.2 F: TgagTTTggcagcTcagaggagaa 
r: aTcaTcgTccaTgTggTcaTggcT

199

Gapdh  NM_130458.3 F: acaagaTggTgaaggTcggTgTga 
r: agcTTcccaTTcTcagccTTgacT

199

Mus musculus
Osx  NM_017008.4 F: TcccTggaTaTgacTcaTcccT 

r: ccaaggagTaggTgTgTTgcc
93

Col I NM_007743.2 F: agTcgaTggcTgcTccaaaa 
r: agcaccaccaaTgTccagag

118

Opn NM_001204201.1 F: ggcTgaaTTcTgagggacTaacTa 
r: aagcTTcTTcTccTcTgagcTg

125

Ocn NM_031368 F: cgcTaccTTggagcTTcagT 
r: aTagcTcgTcacaagcaggg

88

Oct3/4 NM_001252452 F: agaggaTcaccTTggggTaca 
r: cgaagcgacagaTggTggTc

96

Nanog NM_028016 F: cacagTTTgccTagTTcTgagg 
r: gcaagaaTagTTcTcgggaTgaa

87

Sox-2 NM_011443 F: cggcacagaTgcaaccgaT 
r: ccgTTcaTgTaggTcTgcg

85

B-Actin NM_007393.3 F: gcTccggcaTgTgcaaag 
r: ccaTcacacccTggTgccTa

96

Abbreviations: Alp, alkaline phosphatase; Cbfa-1, Core-binding factor alpha1; Col I, Collagen type I; Ocn, Osteocalcin; Opn, Osteopontin; Osx, Osteorix; Nanog, Nanog 
homeobox; Oct3/4, Octamer-binding transcription factor 4; Sox-2, SRY-box containing gene 2; B-Actin, Beta-actin; Gapdh, Glyceraldehyde-3-phosphate dehydrogenase.
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Figure S1 Analysis of mRNA abundance of pluripotent genes from mESCs cultured on COOH-SWCNTs.
Notes: Left panel, representative agarose gel depicting the PCR products obtained from real-time-PCR analysis of Nanog, Oct 3/4, Sox-2 pluripotency-associated genes and 
endogenous control gene B-Actin. Total RNA fractions were isolated and cDNA synthesized from cells cultured at passages (P) 3, 6 and 9. Right panel; histogram from real-
time PCR analysis measuring the mRNA expression levels from the above pluripotency-associated genes. Results were normalized to endogenous B-Actin and relative to cells 
grown on glass control substrate. Bar graphs depict the means and standard deviations resulting from the analysis of gene expression from three independent experiments 
at the passages indicated.
Abbreviations: Oct3/4, Octamer-binding transcription factor 3/4; Nanog, Homeobox protein Nanog; Sox-2, Sex determining region Y-box 2; B-Actin, Beta actin; P3, P6 and P6, cell 
passages number 3, 6 and 9, respectively; COOH–SWCNT, carboxyl-modified single-walled carbon nanotube; mESC, murine embryonic stem cell; PCR, polymerase chain 
reaction.

Figure S2 Composition of haematoxylin-eosin images depicting three perforations of human DBM on rat pectoris muscle.
Notes: Perforations delimited by squared boxes were selected as representative control images in Figure 4 (referred as 4A and 4B). Overlapping of single images (magnification 
2.5×) was performed using the Adobe Photoshop CS4 software package.
Abbreviation: DBM, demineralized bone matrix.
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Figure S3 Composition of haematoxylin-eosin images depicting fourteen 
perforations of human DBM soaked in COOH-SWCNTs, on rat pectoris muscle.
Notes: Two out of these fourteen perforations were selected as representative 
images for DBM/COOH-CNTs implantation in Figure 4 (delimited by squared 
boxes and referred as 4C and 4D). Out of the perforations region, an area enriched 
by mesenchymal progenitors was also selected and included in Figure 4 (referred 
as 4E). Equally done than in Figure S2 overlapping of single images (magnification 
2.5×) was performed using the Adobe Photoshop CS4 package.
Abbreviations: COOH–SWCNT, carboxyl-modified single-walled carbon nano-
tube; DBM, demineralized bone matrix.

Figure S4 Composition of overlapping haematoxylin-eosin images corresponding 
to the transplantation of human cartilage particles soaked in COOH-SWCNTs on 
rat pectoris muscle.
Notes: In the composition cartilage particles perforations (referred by CA acronym) 
and their ossification (densely pink stained areas) can be noticed. Four areas, 
delimited by black line squared boxes, were selected as representative images of 
cartilage implants soaked with COOH-SWCNTs in Figure 5 (referred as 5A to 5D). 
Overlapping of singles images (magnification 2.5×) was performed using the Adobe 
Photoshop CS4 package.
Abbreviations: COOH–SWCNT, carboxyl-modified single-walled carbon nano-
tube; cOOh-cNT, .
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