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Abstract 
The techniques of normal form analysis, well known in the literature [1], can be used to 
provide a straightforward characterization of linear betatron dynamics in a coupled lattice.  
Here, we consider both the beam distribution and the betatron oscillations in a storage ring, 
assuming that the beam emittances and betatron actions respectively are provided as 
parameters.  We find that the beta functions for uncoupled motion generalize in a simple way to 
the coupled case.  Defined in the way that we propose, the beta functions remain well behaved 
(positive and finite) under all circumstances, and have essentially the same physical 
significance for the beam size and betatron oscillations as in the uncoupled case.  We discuss a 
technique for making direct measurements of the ratio of the coupled lattice functions at 
different points in the lattice. 
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1 Introduction 
Optimal performance of electron storage rings in synchrotron light sources and circular 
colliders often depends on good control of the betatron coupling.  Characterizing the coupling 
in a straightforward fashion becomes particularly important when the lattice includes regions 
where the beam is significantly coupled by design, as in the solenoid field of the interaction 
region of a collider.  In this note, we revisit the basic principles of betatron motion in coupled 
systems, and propose a simple way to characterize the coupling, relating to the equilibrium 
beam sizes and tilts and to the trajectories of free betatron oscillations.  We also discuss a 
possible method for direct detailed measurements of the quantities we use for describing the 
coupled dynamics, analogous to the phase advance measurements already used in some 
machines, for example PEP-II [2].  This work is motivated by possible application to PEP-II, 
and we illustrate some of the ideas we present by simulations using the PEP-II LER lattice. 
 
Characterization of the dynamics in an uncoupled lattice is achieved using the familiar Twiss 
parameters.  These parameters give the beam size locally throughout the lattice, if the beam 
emittance in each plane is known.  The same parameters give the local amplitude of oscillation 
of a single particle trajectory, if the betatron action of the trajectory is known.  In a coupled 
lattice, there are various techniques to choose from in characterizing the lattice.  In one 
commonly used approach [3], one finds a transformation that puts the single-turn 4×4 matrix 
into block diagonal form, and then performs the standard Twiss analysis on each of the 
decoupled 2×2 submatrices.  In some circumstances, the beta functions found from this method 
can be infinite or negative, and it can be difficult to get a clear idea of the dynamics simply by 
looking at a plot of the beta functions.  There are also sometimes subtleties involved in 
identifying the different modes at different places in the lattice [4]. 
 
An alternative and (we believe) simpler approach is provided by the standard normal form 
analysis.  Here, one again reduces the single-turn matrix to block diagonal form, but each 
submatrix is now simply a rotation.  The dynamics are characterized by elements of the matrix 
required to carry out this transformation.  The essential results are: 

• The required normalizing transformation is easily constructed from the eigenvectors of 
the single-turn matrix. 

• In the uncoupled case, elements of the normalizing transformation are identified with 
the beta functions, and this identification generalizes naturally to the coupled case. 

• The beta functions defined in this way are always positive and finite, and are still 
associated with the beam size and amplitude of betatron motion in the same way as the 
uncoupled case. 

• One can calculate complex functions (here called zeta functions) associated with the 
beta functions, that characterize the coupling.  For given emittances, the beam sizes and 
tilt are then given simply by: 

( ) ( ) III
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where the brackets  indicate an average over all particles in the beam. 

• One avoids geometric transformations of the axes, so there is never any confusion 
between horizontal and vertical motion. 

• It is possible to make direct measurements (i.e. without reference to a lattice model) of 
the phase advance and the ratios of the beta and coupling functions between different 
points in the lattice. 

 
The normal form analysis is well known in the literature [1].  None of the results presented 
here relating to the theory are new, but we stress their use for characterizing the dynamics in a 
coupled lattice in a simple and straightforward way.  We find it convenient to treat the problem 
of the beam distribution separately from the problem of single particle (or coherent) betatron 
oscillations.  In each case, we begin our analysis by reviewing the useful results from 
uncoupled dynamics, and then see how the theory may be generalized to the coupled case.  
Further generalization is possible to include longitudinal dynamics: Forest [5] has proposed a 
treatment of the lattice functions essentially similar to that used here, but explicitly including 
the longitudinal dynamics.   
 
We consider only linear transverse dynamics.  We also assume for our treatment of the beam 
distribution, that the horizontal and vertical emittances are known by some other means, or are 
put in as parameters.  These quantities cannot, in fact, be calculated simply from the single-turn 
map, since they are global quantities dependent, for example, on the dispersion arising from 
steering errors.  Methods are available (for example [6]) for calculating the equilibrium 
emittances in a general coupled electron storage ring, but to obtain agreement with reality it is 
necessary to know the detailed dispersion and alignment errors.  For practical purposes, it is 
often sufficient (and highly convenient) to have a method for calculating the beam distribution 
given the emittances as parameters – one can assume, for example, that the horizontal 
emittance is close to the natural emittance of the lattice, and the vertical emittance is a few 
percent of this. 
 
In considering the beam sizes, we assume that the beam distribution is Gaussian.  This is 
generally the case for electron storage rings, and it is sufficient to know just the second order 
moments of the phase space variables.  Furman [7] has shown how to calculate higher order 
moments for general beam distributions of the form ( ) ( )( )xx sg∝ρ , where g is a non-negative 
function of a single variable, and s is a quadratic function of the phase-space variables. 
 
The structure of this note is as follows.  In section 2, we show how the matched beam 
distribution at any point in the lattice may be calculated from the single-turn matrix at that 
point and the beam emittances.  Our final results are given in equations (11), (12) and (13).  In 
section 3, we consider how to define the coupled lattice functions from consideration of the 
trajectory of a single particle through the lattice.  It is here that we make use of the normal 
form analysis.  The useful results are contained in equations (1), (22), (23), and (24).  We 
finish section 3 by giving the simple relationships between the beam sizes and tilt, and the 
(well-behaved) lattice functions we have defined for coupled dynamics.  Finally, in section 0, 
we consider how direct measurements may be made of the phase advances and the lattice 
functions that we have defined in the previous section.  In principle, these measurements 
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should be straightforward, similar to those already used in some places (for example PEP-II 
[2]) for uncoupled lattices. 

2 Finding the Matched Beam Distribution 
The matched beam distribution at any point in a storage ring is defined by the condition that, at 
any point in the lattice, after a full turn the distribution remains the same.  Mathematically, if 
we define the covariance matrix (for motion in one dimension) in terms of averages over the 
co-ordinates of all particles in the beam: 











=

2

2

xx

x

pxp

xpx
  

then the matched distribution condition implies that: 

→   

under the transformation applied to all particles: 

xMx ⋅→  (2) 

where 







=

xp

x
x   

and M is a matrix representing the single-turn map. 

2.1 The Covariance Matrix in Uncoupled Motion 
In the uncoupled case, the Twiss parameters and the phase advance specify the single-turn 
matrix M: 

( ) ( ) ( )
( ) ( ) ( )





−−

+
=

xxxxx

xxxxx

µαµµγ
µβµαµ
sincossin

sinsincos
M  (3) 

The condition that M is symplectic reduces the number of independent parameters in this 
matrix from four to three.  We note three significant results: 

1. The eigenvalues of M are exp(±i x). 
2. The quantity Jx (the betatron action) defined by: 

22 22 xxxxxx pxpxJ βαγ ++=  (4) 

is conserved under the transformation (2). 
3. If we define the emittance of the beam as the average action over all particles in the 

beam: 

2
2
12

2
1

xxxxxxx pxpxJ βαγε ++==  
 

then the matched beam distribution is given by: 



 

 5

xxx

xxx

xx

p

xp

x

εγ

εα

εβ

=

−=

=

2

2

 (5) 

 
Before we generalize these results to coupled motion we write some of the above equations in 
a slightly different form.  Using notation suggested by Furman [7], the action defined by (4), 
may be written: 

xAx xxJ =2  (6) 

for an appropriate symmetric matrix Ax: 







=

xx

xx
x βα

αγ
A   

where: 

( ) 





==

x
x p

x
px xx   

(There is some risk of confusion of this notation for a vector with the brackets  used to 

indicate an average over a number of particles; if a bracket is paired with a bar | then the 
quantity indicated is always a vector.)  Since the equilibrium matched distribution must by 
definition be invariant under the transformation (2), it must be a function of the invariant 
action.  Thus, for a Gaussian distribution: 

( ) 





−=

x

x
x Npx

ε
ρ

2
exp,

xAx
  

where ρ is the density of particles in phase space and N is a normalization factor.  The 
covariance matrix is then: 

1

2

2
−=










= xx

xx

x

pxp

xpx
Aε  (7) 

which is the same as equations (5). 
 
In the uncoupled case there are of course two invariant actions, corresponding to horizontal and 
vertical motion.  For coupled motion, there are still only two invariants: there are just more 
terms in each of the invariants in the coupled case, than the three terms on the right hand side 
of equation (4).   If we can find these invariants in the general case (equivalent to finding the 
matrix A) then we can immediately write down the covariance matrix by a straightforward 
generalization of (7). 
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2.2 Generalization to Coupled Lattices 
We now work in two transverse dimensions, so that: 

( )








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==
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p

x

pypx xx  

 

We wish to find a four-by-four symmetric matrix A such that: 

xAx=xJ2   

is invariant under 

xMx →   

(Note that we have for now dropped the subscripts identifying the action J and the symmetric 
matrix A with a particular plane; we shall find that there are in fact two solutions for A, 
corresponding to two emittances).  The invariance of the action means that we require: 

AAMM =T  (8) 

To construct A, we use the eigenvectors of M: 

iii eeM λ=   

(Note that a subscript on e labels different eigenvectors, not components of a single 
eigenvector.)  For a symplectic matrix, the eigenvectors and eigenvalues satisfy: 

1=jiλλ   if  0≠ji eSe   

where S is the symplectic form: 



















−

−
=

0100

1000

0001

0010

S   

To obtain the correct beam distribution, it is important to normalize the eigenvectors so that: 



±

=
0

i
ji eSe       

1

1

≠
=

ji

ji

λλ
λλ

 (9) 

M has four eigenvectors; two associated with each of the tunes I,II.  The four eigenvalues are: 

III,i2e νπλ ±=   

 
Let us define a symmetric matrix B with components given by: 

jiijB eAe=   
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From equation (8), it follows that: 

jijijiji eAeeAeeAMMe == λλT   

and hence: 

ijijji BB =λλ   

Let us select a suitable ordering of the eigenvectors, so that 1e  and 2e  are associated with 

one eigenvalue (tune I), and 3e  and 4e  are associated with the other eigenvalue (tune II).  

Now we can use the above properties to write down two linearly independent solutions for the 
matrix B: 



















=












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





=

0100

1000

0000

0000

0000

0000

0001

0010

III BB  (10) 

and it follows that: 

III,T == ααα EBEA  (11) 

where E is the inverse of the matrix constructed from the eigenvectors ie  of the single-turn 

matrix M: 
















=−

4321
1 eeeeE   

From equation (11), we can write down two linearly independent quadratic invariants of the 
single-turn matrix M: 

xAx αα =J2  (12) 

which are the actions in the general (either coupled or uncoupled) case. 
 
We define emittances  corresponding to these invariants (and in turn to each of the two tunes) 
as simply the average action of all particles in the beam: 

ααε J=   

Given values for these emittances it is straightforward to generalize equation (7) for the beam 
distribution: 

1

II

II

I

I

−







+=

εε
AA

 (13) 
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2.3 Invariance of the Emittances Along a Beamline 
Let 1x  be the phase space vector of a particle at a point s1 in the lattice, and let M21 be the 

transfer matrix from s1 to some other point s2, so that: 

1212 xMx =   

Let A1 be a symmetric matrix defining an invariant of the single-turn matrix M1 at s1, that is: 

xAxxMAMx 111
T
1 =      for all x  (14) 

We can write the single-turn matrix M2 at s2 as: 
-1
211212 MMMM =   

Substituting for M1 in (14), and writing xMx 21=′ , we find: 

( ) ( ) xMAMxxMMAMMx ′′=′′ −−−− 1
211

T1
212

1
211

T1
21

T
2      for all x′   

and hence the symmetric matrix A2 given by: 

212
T
211 MAMA =   

defines an invariant of the single-turn matrix M2 at the point s2.  Now we observe that: 

( )

( )

( )1

111

121
1

211

T1-
21

T
211

1212
T
211

2222

2

2

sJ

sJ

=
=

=

=

=

−

xAx

xMMAMMx

xMAMx

xAx

  

It follows that for a given particle, each of the two actions is invariant along the beamline, and 
hence the emittances (the mean actions over all particles in the beam) are also invariant along 
the beamline. 

3 Betatron Trajectory in Uncoupled and Coupled Lattices 
The beam distribution describes averages over all particles in the beam.  A full characterization 
of the dynamics in a lattice includes a description of the trajectories of individual particles 
through the lattice.   

3.1 Betatron Trajectory in an Uncoupled Lattice 
Let us begin by considering the trajectory of a single particle through a storage ring lattice.  We 
continue to consider only transverse motion.  At some position s1 the horizontal phase space 
co-ordinates may be written in terms of action-angle variables Jx and x: 

( )

( ) ( )[ ]xxx
x

x
x

xxx

J
p

Jx

ϕαϕ
β

ϕβ

cossin
2

cos2

+−=

=
 (15) 
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Note that x and px satisfy equation (4); in other words, Jx is just the invariant action defined by 
(6).  Equations (15) may be written: 

xJNx =   

where 












−
=

xxx

x

ββα
β

1

0
N  (16) 

and 

( )
( )











−
=

xx

xx
x

J

J

ϕ
ϕ

sin2

cos2
J   

 
Any symplectic transformation applied to the phase space co-ordinates must preserve the area 
of the ellipse defined by (4).  It follows immediately that the action Jx is a constant of any 
single particle trajectory.  The matrix N is defined in terms of the local properties of the lattice, 
i.e. it is constructed from the Twiss parameters that describe the shape of the ellipse mapped 
out by the phase space co-ordinates on successive turns around the lattice.  N is the 
transformation that puts the single-turn matrix into “normal form”.   

( )xµRMNN =−1   

where R( ) is just a rotation matrix: 

( ) ( ) ( )
( ) ( )





−

=
θθ
θθ

θ
cossin

sincos
R   

We can write: 

( ) 1−= NNRM xµ   

which decomposes the single-turn matrix into matrices depending on the local properties (the 
Twiss parameters contained in N) and the global properties (the phase advance x).  We shall 
see that the normalizing transformation for the single-turn matrix in a coupled storage ring may 
be used to provide a convenient definition of the beta functions. 
 
Under the single-turn transformation: 

xMx →   

we have: 

xx JMNJN →   

or: 

( ) xxxx JRJMNNJ µ=→ −1   

Since 
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( ) ( )
( )











+−
+

=
xxx

xxx
xx

J

J

µϕ
µϕµ

sin2

cos2
JR   

the effect of the single-turn transformation is simply to advance the betatron phase angle x by 
the phase advance of the lattice. 
 
One further result will be useful.  We can show that, for the transfer matrix M21 from lattice 
position s1 to s2: 

( )xµ∆=− RNMN 121
1

2  (17) 

where N1 and N2 are the normalizing transformations of the single-turn matrices at s1 and s2 
� � � ��� � � � ��� 	 
���
 ���

x is the phase advance from s1 to s2.  To prove this, let 1x  be the phase 

space vector at position s1, and 2x  be the phase space vector at s2 obtained by transporting 

1x  along the beamline.  The action-angle variables are related to the Cartesian variables by: 

2
1

22

1
1

11

xNJ

xNJ
−

−

=

=

x

x
  

Since for symplectic transport the action Jx is conserved along the beamline, the transportation 
from s1 to s2 must simply be a rotation by the phase advance: 

( ) 12 xxx JRJ µ∆=   

The Cartesian variables at the two points are related by: 

1212 xMx =   

Combining the above equations gives: 

( ) 1
1

1121
1

2 xNRxMN −− ∆= xµ   

Since this must be true for any phase space vector 1x , equation (17) follows at once. 

3.2 Betatron Trajectory in a Coupled Lattice 
We now generalize the results of the previous section to the case of a coupled storage ring 
lattice.  The basic formula is again: 

JNx =  (18) 

where now: 

( )
( )

( )
( )




















−

−
=





















=

IIII

IIII

II

II

sin2

cos2

sin2

cos2

ϕ
ϕ
ϕ

ϕ

J

J

J

J

p

y

p

x

y

x Jx  (19) 

and the transformation N applied to the single-turn matrix M gives: 



 

 11

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )



















−

−
==−

IIII

IIII

II

II

III
1

cossin00

sincos00

00cossin

00sincos

,

µµ
µµ

µµ
µµ

µµRMNN  (20) 

N is readily constructed from the eigenvectors of M: 

iii eeM λ=   

where, as in section 2.2, the index i runs from 1 to 4, and labels different eigenvectors, not 
different components of a single eigenvector.  As before, we order the eigenvectors so that 1e  

and 2e  are associated with the eigenvalues exp(±i I), and 3e  and 4e  are associated with 

the eigenvalues exp(±i II).  We also use the normalization: 



±

=
0

i
ji eSe       

1

1

≠
=

ji

ji

λλ
λλ

 (21) 

Then we have: 


















−

+
−

+=
ii2

1 43
43

21
21

ee
ee

ee
eeN  (22) 

Since the eigenvectors come in complex conjugate pairs, the components of N are real.  With 
the normalization (21), the matrix N is symplectic.  There is a degeneracy in the normalization, 
in that if the matrix N satisfies (20), then so does the matrix NR( 1, 2) for any angles 1 and 

2.  We choose these angles such that n12 = n34 = 0, and (for convenience) n11>0 and n33>0.  
Then equation (18) can be written: 

( )
( )

( )
( )
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
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
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 (23) 

where the components of N, nij, are all known from the eigenvectors of the single-turn matrix 
M.  At a point in the lattice where there is no coupling, the four upper right and four lower left 

components of N are zero, xn β=11 , and yn β=33 .  We extend these definitions to the 

coupled case, and introduce the complex quantities x and y: 
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3231
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+=
+=

=

=

ζ
ζ

β

β

 (24) 

With these definitions, all quantities have clear physical meanings.  A particle trajectory is 
characterized by constant actions JI and JII, associated with the two tunes of the lattice.  If JII is 

zero, the local horizontal amplitude is xβ , and the local vertical amplitude is xζ .  Similarly, 

if JI is zero, the local vertical amplitude is yβ , and the local horizontal amplitude is yζ .   

 
The beta functions defined in this way are always finite and greater than zero.  If there is no 
local coupling, then the zeta functions x and y are zero.  The beta functions are also simply 
related to the beam size.  If we define the emittances in the usual way as averages over the 
action of all particles in the beam: 

IIIIII JJ == εε   

If the lattice is not close to a coupling resonance, then the phase angles satisfy: 

( ) ( ) 0coscos III =ϕϕ   

etc. for all combinations of cos and sin, and, from (23), the beam sizes may be written: 

( ) ( ) III

I

2

II
2

II

2

I
2

ReRe εζβεζβ

εζεβ

εζεβ

yyxx

xy

yx

xy

y

x

+=

+=

+=

 (1) 

The horizontal and vertical beam sizes are necessarily positive and finite; the beam tilt may be 
positive or negative.  The observed beam sizes will include the effects of dispersion and energy 
spread in the beam: these effects will add in the usual way (in quadrature) to the effects of the 
range of betatron amplitudes of particles in the beam. 
 
We can also generalize the Twiss alpha functions to the coupled case in a straightforward 
fashion.  Again working from equation (23), we find: 

( )
( ) I42324131II

II24142313I

εεα

εεα

nnnnyp

nnnnxp

yy

xx

++−=

++−=
  

where we have defined: 

4333

2111

nn

nn

y

x

−=
−=

α
α
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Note that in the uncoupled case - by inspection of equation (16) - these definitions reduce to 
the usual definitions of the Twiss alpha functions.  A general expression for a component of the 
covariance matrix is: 

( ) ( ) II4433I2211 εε jijijijiji nnnnnnnnxx +++=   

where i and j index the four components of the vector x defined in (19). 
 
Finally, note that as in the uncoupled case, the normalizing matrices at two different points in 
the lattice may be used to normalize the coupled transfer matrix between those two points: 

( )III121
1

2 , µµ ∆∆=− RNMN   

We see that at the same time, we obtain the phase advance between the two points in the 
lattice. 

3.3 Lattice Functions for General Phase of the Normalizing Transformation 
Forest has pointed out [5,8] that it must be possible to express the lattice functions in terms of 
components of the normalizing transformation, using expressions that are invariant under a 
change of phase N→NR( 1, 2).  In other words, it is not necessary to make the choice for the 
components of N, n12 = n34 = 0 (or, indeed, any choice at all). 
 
For example, it follows from (18) that: 

( ) ( )
( ) ( )
( ) ( ) II34143313I32123111

II
2
34

2
33I

2
32

2
31

2

II
2
14

2
13I

2
12

2
11

2

εε

εε

εε

nnnnnnnnxy

nnnny

nnnnx

+++=

+++=

+++=

  

These expressions suggest definitions for the beta functions: 

3231

1211

i

i

nn

nn

y

x

+=
+=

β
β

 (25) 

in terms of which, we can write: 

( ) ( ) III

II

2

I

22

II

2

I

22

ReRe εζβεζβ

εβεζ

εζεβ

yyxx

yx

yx

xy

y

x

∗∗ +=

+=

+=

  

Clearly, there are many possibilities for the definitions of the lattice functions.  Although the 
definitions (25) lead to simple expressions for the beam parameters that have a pleasing 
symmetry, they do not reduce to the conventional definitions in the case of an uncoupled 
lattice.  We therefore continue to use the definitions (24), which assume an appropriate phase 
has been chosen for the normalizing transformation. 

3.4 Independent Components of the Normalizing Transformation 
We noted above that following from equations (21) and (22), that the normalizing 
transformation N is symplectic.  We have used the degeneracy in N to fix two of the 
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components to zero; the symplectic condition then leaves only 8 remaining independent 
components.  For practical purposes, it can be convenient to specify N by giving only a 
minimal set of values.  There is some freedom in choosing which of the components are taken 
to be independent.  One additional complication, however, is that situations can occur when 
particular members out of the set of 8 selected independent components are zero.  In such 
cases, the values of some of the dependent components may not be determined.  For this 
reason, it is desirable to “overspecify” the matrix N by giving 10 of the components, rather 
than the minimal 8.  If the set of 10 is chosen appropriately, then the remaining components of 
the matrix can be found by simple, well behaved expressions. 
 
For example, let us assume that the components n22, n23, n24, n44 of N are not specified.  
Representing known components by �  and unknown components by ×, N may be written: 



















×

×××
=

���

���

�

���

0

0

N   

By inspection of (16), we see that in the uncoupled case, the beta and alpha functions will be 
directly associated with the independent components.  The zeta functions defined by (24) are 
also given by independent components.  Applying the symplectic condition yields the 
following expressions, from which the dependent components on the diagonal may be found: 

4231413244332211 1 nnnnnnnn −+==  (26a) 

The off-diagonal dependent components may then be found from: 

443121142411

4133433121132311

nnnnnn

nnnnnnnn

−=
+−=

 (26b) 

Since n11 and n33 are usually greater than zero, these expressions determine the unknown 
components in most cases.  There may be pathological situations in coupled lattices where 
either of the components n11 or n33 is zero, in which case alternative expressions will need to be 
used. 
 
Equations (26a-b) follow from the fact that the single turn transfer matrix is symplectic, and 
are in this sense analogous to the familiar expression for uncoupled motion (and not generally 
true for coupled motion): 

12 =−αβγ   

There are many similar relations to equations for a symplectic matrix; the choice of which ones 
to use depends on which components of the original matrix are chosen as the independent 
variables. 
 
In the limit of zero coupling, any components not in the two block diagonal sectors are zero, 
and we have for the dependent components on the diagonal: 
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11 44332211 →→ nnnn   

as expected from (16). 

3.5 The Normalizing Transformation and the Covariance Matrix 
It should not surprise the reader that there is a simple connection between the normalizing 
transformation of the single-turn map, and the covariance matrix.  To make this explicit, note 
that with J defined by (19), we can write: 

II
2
III

2
I 22 JJ == JBJJBJ   

where BI and BII are defined in (10), and: 







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








=
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












=
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0100

0000
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0000

0000

0010

0001

2
II

2
I BB   

Then, substituting for J from (18), we see at once: 

( ) ( ) 12
II

T1
II

12
I

T1
I

−−−− == NBNANBNA   

And we have the same expression for the covariance matrix: 
1

II

II

I

I

−







+=

εε
AA

 (13) 

This provides a simple alternative to the expressions in section 2.2 for calculating the 
covariance matrix. 

4 Example: Beam Sizes and Tilt in PEP-II LER 
We have presented two methods for calculating the beam sizes and tilt in a coupled lattice, 
given the beam emittances.  The first method, using equation (13), is based on the “matched” 
distribution, i.e. finding a distribution of particles in the beam that remains invariant under a 
full turn through the lattice.  The matrices required for the calculation are constructed in a 
straightforward fashion from the eigenvectors of the single-turn matrix at the required point, 
and since the eigenvectors are associated with the betatron tunes through the eigenvalues, there 
is no ambiguity between the planes.  The second method, using equation (1), uses the lattice 
functions calculated from elements of the matrix that puts the single-turn matrix into normal 
form.  These lattice functions are also calculated using the eigenvectors of the single-turn 
matrix, and the correspondence between the eigenvectors and the eigenvalues again directly 
associates the lattice functions with the tunes. 
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Figure 1 

Horizontal beam size through the PEP-II LER interaction region. 

 

 
Figure 2 

Vertical beam size through the PEP-II LER interaction region. 
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Figure 3 

Beam tilt through the PEP-II LER interaction region. 

Equations (13) and (1) can be easily implemented in any program with capability of calculating 
the eigenvalues and eigenvectors of a matrix.  It is convenient to use the AT accelerator code 
[9] running under Matlab.  This allows direct calculation of the single-turn matrix and the 
necessary analysis of this matrix in a single package.  As an example, we show here the results 
of calculations of the beam sizes and tilt through the interaction region of the PEP-II LER.  The 
presence of the solenoid in this region means that the design lattice is necessarily coupled.  We 
assume a horizontal beam emittance of 30 nm, and consider two different values for the 
vertical emittance, 0.3 nm and 3.0 nm.  We calculate the beam sizes and tilt using both 
equations (13) and (1).  The methods and the calculations are somewhat different, but the 
results should clearly be the same.  Figure 1 shows the horizontal beam size, Figure 2 shows 
the vertical beam size, and Figure 3 shows the beam tilt (the horizontal-vertical correlation).  
The two methods give identical results.  Note that the full lattice functions are shown in Figure 
4 and Figure 5.  In practice, (1) is rather more convenient, since the lattice functions need only 
be calculated once.  Equation (13) can be useful where all the beam correlations are required. 

5 Measurement of Coupled Lattice Parameters 
If it is possible to excite a bunch of particles to perform coherent betatron motion associated 
with just one of the two lattice tunes, then the phase advance and the ratios of beta and zeta 
functions at different points in the lattice may be measured in a straightforward way.  The 
excitation may be achieved, for example, by “shaking” the beam at a frequency close to the 
betatron frequency, as is often done for tune measurement.  Collecting sets of horizontal and 
vertical BPM readings then allows the lattice parameters to be determined.  The idea is to 
perform measurements analogous to the phase advance measurements already carried out for 
uncoupled lattices [2]. 
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Consider, for example, if coherent oscillations are excited such that JI has a non-zero value, 
while JII is zero.  Equation (23) gives us: 

( )
( )











−
⋅





=






II

II

3131

11

cos2

cos20

11
ϕ

ϕ
J

J

nn

n

y

x

ss

  

at the first BPM, and 
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Suppose we have a large number of readings for x1 = x(s1) and x2 = x(s2).  We see that if we 

plot x2 vs x1, all the points lie on an ellipse with area J
~

2  and with shape defined by the 

parameters α~ , β~ : 
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and as usual, 

1~~~ 2 =−αγβ   

Hence, the shape of the ellipse gives the phase advance between the BPMs, and the ratio of the 
beta functions at the BPMs. 
 
Similar results are obtained by plotting combinations of other variables: the various 
expressions obtained are shown in Table 1.  In each case, the phase determined is found from 
an expression of the form: 

( )
( ) α
θ
θ ~

sin

cos −=   
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Table 1 

Phase advances and lattice parameters determined from plots of BPM measurements of 
coherent betatron oscillations. 

Measurements Phase Determined 
γ
β
~

~
 

x2 vs x1 I 
( )
( )2

1

s

s

x

x

β
β

 

y2 vs x1 I + arg[ x(s2)] 
( )

( )2

1

s

s

x

x

ζ
β

 

x2 vs y1 I - arg[ x(s1)] 
( )
( )2

1

s

s

x

x

β
ζ

 

y2 vs y1 I + arg[ x(s2)] - arg[ x(s1)] 
( )
( )2

1

s

s

x

x

ζ
ζ

 

 

5.1 Simulation example: the PEP-II LER nominal lattice 
As an illustration of the technique, we consider the PEP-II LER lattice.  Although the 
technique can in principle be applied to any pair of BPMs, we select two BPMs near the 
interaction region, where the design lattice has significant coupling.  The beta and zeta 
functions in the lattice are shown in Figure 4 and Figure 5 respectively. 
 
We simulate data by tracking a particle with horizontal action 500 nm about 1000 turns 
through the lattice, recording the horizontal and vertical positions at two BPMs (at approximate 
locations 1094 m and 1099 m) at each turn.  In fact, it is not necessary that the data be on 
consecutive turns; only that the action be the same each time, and that a given reading on one 
BPM is taken on the same turn as the corresponding reading on the other BPM.  Knowing the 
normalizing transformation at the starting point, appropriate initial co-ordinates are easily 
determined from equation (18), choosing JI = 500 nm, JII = 0, and an arbitrary initial phase. 
 
If we plot different combinations of the horizontal and vertical co-ordinates against one 
another, we get the plots shown in Figure 6.  These plots are readily analyzed as described 
above, to determine the phase advance between the BPMs, and the ratio of the lattice functions 
at the two BPMs.  The results are given in Table 2. 
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Figure 4 

Square roots of the coupled beta functions (left, horizontal; and right, vertical) 
in the coupled region of the nominal PEP-II LER lattice. 

 

  
Figure 5 

Coupled zeta functions (left, horizontal; and right, vertical) in the coupled region of the nominal PEP-II 
LER lattice.  Outside the coupled region, the zeta functions are zero. 
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Figure 6 

Correlation plots between BPM readings in a tracking simulation for the nominal lattice. 

 

Table 2 

Comparison of phase advances and lattice parameters determined from the tracking simulation and from 
the model.  The upper number in each pair is the result of the fit to the simulated tracking data, and the 
lower number is the value determined from the model.  The results are for the nominal lattice model. 

Measurements Phase Determined 
γ
β
~

~
 

2.5613 7.6756 
x2 vs x1 I 

2.5728 

( )
( )2

1

s

s

x

x

β
β

 
7.6666 

-2.3614 156.33 
y2 vs x1 I + arg[ x(s2)] 

-2.3174 

( )
( )2

1

s

s

x

x

ζ
β

 
155.97 

0.9110 0.2304 
x2 vs y1 I - arg[ x(s1)] 

0.9142 

( )
( )2

1

s

s

x

x

β
ζ

 
0.2304 

-0.9594 4.6917 
y2 vs y1 I + arg[ x(s2)] - arg[ x(s1)] 

-0.9839 

( )
( )2

1

s

s

x

x

ζ
ζ

 
4.6871 
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5.2 Simulation example: the PEP-II LER “detuned” lattice 
Let us compare the above results with those obtained from a “detuned” lattice.  In this case, we 
use a lattice model derived from the actual magnet settings and steering on one date in 
November 2003.  The lattice functions are shown in Figure 7 and Figure 8.  Some beta beating 
is evident, but there is clearly a significant change in the coupling. 
 
We repeat the tracking simulation, again using JI = 500 nm, JII = 0, and determining the initial 
co-ordinates from (18) with the appropriate normalizing transformation for the new lattice.  
The correlation plots (for the same pair of BPMs) are shown in Figure 9, and the numerical 
results are given in Table 3.  We note that the values for the phase advances and the lattice 
functions calculated from the simulated tracking data are again in excellent agreement with the 
values calculated directly from the model.  The values in the “detuned” lattice are significantly 
different from those in the nominal lattice. 
 
It is of course possible to take data from adjacent BPMs throughout the lattice, and (assuming a 
global scale factor) compare the lattice functions derived from the BPM data with those 
calculated directly from the model. 
 
 

 
Figure 7 

Square roots of the coupled beta functions in the detuned PEP-II LER lattice. 
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Figure 8 

Coupled zeta functions in the detuned PEP-II LER lattice. 

 
Figure 9 

Correlation plots between BPM readings in a tracking simulation for the “detuned” lattice. 
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Table 3 

Comparison of phase advances and lattice parameters determined from the tracking simulation and from 
the model.  The upper number in each pair is the result of the fit to the simulated tracking data, and the 
lower number is the value determined from the model.  The results are for the “detuned” lattice model. 

Measurements Phase Determined γβ ~~
 

1.5867 2.3196 
x2 vs x1 I 

1.5889 

( )
( )2

1

s

s

x

x

β
β

 
2.3193 

-0.1863 1.7961 
y2 vs x1 I + arg[ x(s2)] 

-0.1887 

( )
( )2

1

s

s

x

x

ζ
β

 
1.8089 

0.8558 0.2231 
x2 vs y1 I - arg[ x(s1)] 

0.8521 

( )
( )2

1

s

s

x

x

β
ζ

 
0.2217 

2.8880 0.1727 
y2 vs y1 I + arg[ x(s2)] - arg[ x(s1)] 

2.9147 

( )
( )2

1

s

s

x

x

ζ
ζ

 
0.1729 

6 Conclusions 
We have shown that betatron coupling in a lattice may be characterized in a straightforward 
way using the existing techniques of normal form analysis.  Betatron trajectories are viewed as 
the sum of modes of oscillation with frequencies given by the tunes of the lattice; the beta 
functions continue (as in the uncoupled case) to give the local amplitude of oscillation, and are 
always positive and finite.  The beta functions generalized to coupled lattices are readily found 
from the single-turn matrix.  The co-ordinates we use are always the horizontal and vertical co-
ordinates of the laboratory frame, so there is no possibility of confusion resulting from 
geometric transformations of the co-ordinate frames.  If the beam emittances are known (or 
viewed as parameters), the generalized beta functions also give directly the beam distribution.  
We have also shown, with some illustrations from simulations in the PEP-II LER lattice, that it 
should be possible to make direct measurements of the significant quantities describing the 
coupled dynamics. 
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