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This dissertation examines the question of how phonological alternations are learnt. In

constraint-based models of phonological learning, it is hypothesized that prior learning of

phonotactics from the lexicon facilitates the learning of alternations. While this is an influential

assumption, the empirical evidence for it is equivocal. In this dissertation, I investigate this link

by examining the learning outcomes in cases where phonotactics and alternations mismatch,

particularly in cases of derived environment effects. For example, in Korean, /t/ palatalizes

to [c] before [i] across a morpheme boundary, yet [ti] sequences are attested within stems.

Derived-environment effects have proven theoretically challenging to account for precisely

because of the mismatch in generalizations within stems and across morpheme boundaries.

Using an artificial grammar learning paradigm, I first show that alternation learning is

facilitated when the phonotactics in the lexicon match the alternation. Participants who were

trained on a language with vowel harmony within stems and across morpheme boundaries

successfully learnt the vowel harmony alternation. Conversely, those who were trained on a

language without vowel harmony in stems (derived-environment effect language) failed to

learn the alternation across the morpheme boundary, despite being trained on this pattern. This

supports the hypothesis of current models of phonological learning. Yet, when participants

were only trained on a static phonotactic generalization, they did not readily extend this to
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unseen alternations. This suggests that learners are conservative, and need experience with

alternations before extending a learnt phonotactic generalization.

What does this mean for phonological patterns with a mismatch between phonotactics

and alternations? I present corpus analyses as well as computational learning simulations of

two cases which show these derived-environment patterns - Korean palatalization and Turkish

velar deletion. I show that in both cases the reported mismatches between phonotactics and

alternations are superficial. Korean palatalization is an active alternation supported by a gradient

phonotactic constraint in the lexicon. Turkish velar deletion, however, is a morphologically

circumscribed alternation with no accompanying phonotactic generalization in the lexicon. I

also briefly discuss how this statistical pattern in Turkish is similarly the case with the well-

known Finnish assibilation pattern. This undermines assumptions in previous analyses of these

patterns. Instead, I argue that there is a bias to maintain similar generalizations, captured

by more general constraints, in phonotactics as well as alternations. This further supports

the claim that learning phonotactics aids in learning alternations, and further suggests that

derived-environment patterns are typologically dispreferred.

I conclude by exploring how a bias for more general constraints might be implemented using

a Maximum Entropy learner, making specific use of the model’s prior. Specifically, I propose a

bias for the learner to prefer generalizations to be explained by more general constraints which

are blind to morphological structure, over constraints which reference morphological structure.

I show that, under such a model, a canonical derived-environment pattern with a mismatch in

phonotactics and alternations is never accurately learnt.
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CHAPTER 1

Introduction

Phonology is concerned with characterizing speakers’ tacit knowledge of the sound patterns

of their language. One component is knowledge about phonological alternations: when a

phoneme is pronounced in one way in a particular context, but in a different way in another.

For example, in English, the past tense suffix ‘-ed’ (/-d/) is produced as [-d] when it occurs

following a word with a final voiced obstruent (e.g. lag: /læg-d/ −→ [lægd]), and when /-d/ is

suffixed to a word with a final voiceless obstruent, the suffix surfaces as [-t] (e.g. lack: /læk-d/

−→ [lækt]). There is, therefore, an alternation between [t] and [d]. A fundamental question in

phonological research concerns how an alternation like this is learnt.

One factor that has been hypothesized to aide alternation learning is the prior learning of

another component of phonological knowledge: phonotactics (Hayes 2004, Prince & Tesar 2004,

Pater & Tessier 2005, Jarosz 2006, Tesar & Prince 2007, Hayes & Wilson 2008, Jarosz 2011).

In addition to knowledge about phonological alternations, speakers are also tacitly aware of

the legal and illegal sound sequences of words in their mental lexicon (i.e. phonotactics). For

example, in English, [kt] sequences are allowed in codas (e.g. act [ækt]) but [kd] is not (e.g.

akd [ækd] is not a possible word). It has further been observed that phonological alternations

often enforce the phonotactic constraints of the language (Chomsky & Halle 1968, Kenstowicz

& Kisseberth 1977). In the example above, the alternation from /-d/ to [-t] ensures that a

morphologically complex word is not produced with the phonotactically illegal sequence [kd]

(e.g. lack: /laek-d/ −→ *[laekd]). In fact, constraint-based models of phonology such as

Optimality Theory (Prince & Smolensky 1993/2004) encode this close relationship by capturing

generalizations about both alternations and phonotactics using a similar mechanism (i.e. the
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same markedness constraint): a constraint like *KD captures both the fact that words like akd

do not occur in English (phonotactics) and that /d/ alternates to [t] in words like lacked. The

intuition is that learning first that [kd] sequences are illegal in one’s language, a phonotactic

generalization, bootstraps the later learning of the alternation that avoids this sequence.

This hypothesis is plausible given that knowledge about native language phonotactics

seems to emerge before knowledge about phonological alternations. Moreover, a number of

computational models have showed support for the assumption that first learning phonotactic

knowledge aids in later learning of alternations (Jarosz 2006, 2011, Tesar & Prince 2007). Yet

while this is an influential hypothesis in models of phonological learning, it is one that lacks

strong experimental support. In this dissertation, we examine this question by investigating

what happens to learning when phonotactics mismatch alternations. What if [kd] were a legal

sequence in English? How might one learn to change /d/ to [t] in a word like lacked? The

overarching research questions are as follows:

1. Does phonotactic learning facilitate alternation learning?

2. How might a learning perspective on phonological mismatches shed light on how to

theoretically account for these kinds of phonological patterns?

1.1 Outline of dissertation

This dissertation is structured as follows. In the rest of this chapter, I discuss the background on

phonological learning in the domain of both phonotactics and alternations.

In Chapter 2, I provide a global overview on the general typology of mismatches between

phonotactics and alternations, focusing on reviewing the literature on derived-environment

effects. I then present the results of toy computational simulations that illustrate how alternation

learning in these cases might be more difficult.

In Chapter 3, I present the results of a series of artificial grammar learning experiments

that test directly the question of whether phonotactic matches aid alternation learning. The
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results indicate that, indeed, learning of an alternation is facilitated by phonotactic learning. In

fact, learners in the mismatch language failed to the learn alternation.

In Chapter 4, I examine two well-known examples of mismatches between phonotactics and

alternations (derived-environment effects): Korean palatalization and Turkish velar deletion.

I show that, in Korean, coronal stop + high front vocoid sequences [TI], which are repaired

across a suffix boundary, are actually heavily under-represented in the lexicon. I then show that

a phonotactic learner easily infers a constraint against such a constraint. This indicates that

stem-internal [TI] sequences are not completely well-formed, as is largely assumed in previous

analyses of these patterns. Contrastively, our investigation of Turkish reveals that, although

Turkish velar deletion is structurally similar on the surface as Korean palatalization, the lexical

statistics are quite different. In this case, there is no strong phonotactic generalization against

intervocalic velars in the lexicon. Concomitantly, the alternation is also much more constrained

in applicability. I also briefly consider another example, Finnish assibilation, and show that the

same statistical pattern with Turkish velar deletion is found there as well. I argue, therefore,

that derived-environment effects are by no means a unitary phenomenon, and moreover, the

empirical data do not support existing analytical assumptions of these patterns.

In Chapter 5, I present toy simulations of how the kinds of derived-environment patterns

we investigated in Chapter 4 could be learnt, further showing that a ‘true’ derived-environment

pattern is not easily learnable. I show how a bias for more general constraints could in principle

be implemented computationally by adjusting the value of the free parameters in a Maximum

Entropy grammar in favor of assigning weight to a less complex, more general, structure-blind

constraint.

Finally, I end in Chapter 6 by discussing the general implications of the results of this

dissertation and suggest fruitful avenues for future work.
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1.2 What guides phonological learning?

1.2.1 Phonotactics and static regularities in the lexicon

Speakers of a given language possess knowledge about what the legal and illegal sound se-

quences of their target language (i.e. phonotactics). Research on phonotactic acquisition in

infancy has shown that by 9 months of age, infants are sensitive to the phonotactic regularities

in their input and show preferences for words that conform to native language phonotactics

(Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk 1993, Friederici & Wessels 1993). They

are moreover able to use these distributional cues for the task of word segmentation (Jusczyk,

Hohne, & Bauman 1999, Mattys & Jusczyk 2001, Mattys, Jusczyk, Luce, & Morgan 1999, see

also Adriaans & Kager 2010). Infants also show the ability to distinguish words of differing

phonotactic probabilities (Jusczyk, Luce, & Charles-Luce 1994), thus indicating that their sensi-

tivity to phonotactic probabilities is fine-grained. Infants by 9-months of age then are capable

of learning phonotactic regularities from short exposure to novel stimuli (Saffran & Thiessen

2003, Chambers, Onishi, & Fisher 2003, K. S. White, Peperkamp, Kirk, & Morgan 2008).

Further, previous studies have shown that adult speakers not only encode the static gen-

eralizations in their language input, but can project this knowledge onto novel unseen forms.

Evidence for this comes from the domain of loanword adaptation whereby non-native words are

often repaired to conform to native language phonotactics (e.g. Paradis & Lacharité 1997, Kang

2010) as well as nonce-word rating experiments (e.g. Frisch & Zawaydeh 2001, Kager & Pater

2012, Hayes & White 2013, Moore-Cantwell & Sanders 2014). Moreover, artificial language

learning paradigms have shown that experimental participants with adult participants are able

to extract phonotactic regularities from a short exposure to a novel language and also apply

them to novel forms (Onishi, Chambers, & Fisher 2002, Linzen & Gallagher 2014). Furthermore,

it seems as though the encoding of these static generalizations is sensitive to the frequency

of word-types versus word-tokens (Richtsmeier 2011, Hamann, Apoussidou, & Boersma 2012,

Pierrehumbert 2003, Edwards, Beckman, & Munson 2004), with word-type frequency typically

being implicated in phonotactic learning. In fact, speakers’ well-formedness judgments often
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match the frequency with which that pattern occurs in the lexicon (Moore-Cantwell & Sanders

2014, Hayes & Londe 2006, Hayes, Siptár, Zuraw, & Londe 2009). Thus, both infant and

adult learners are able to induce phonotactic regularities in natural and artificial languages.

Furthermore, these studies also show that learners do not internalize these regularities in a

purely categorical way. Learners seem to be sensitive to the strength of a particular regularity

(as shown by their sensitivity to frequency of occurrence), suggesting that speakers knowledge

of static generalizations over their lexicons is gradient and dependent on the strength of the

trends in the lexicon.

1.2.2 Alternation learning

In addition to learning phonotactics, learners must also acquire the phonological alternations

in their target language. Phonological alternations occur when a particular morpheme varies

in pronunciation depending on context. For example, as noted above, the English past tense

/-d/ is pronounced as [t] following voiceless obstruents, but as [d] elsewhere. Part of a child’s

learning task must be to learn where these alternations occur, and what sounds are involved in

the alternation. How does this occur?

Evidence has been accumulating that alternation learning is guided by learning biases.

Biased learning of phonological alternations occurs when learners fail to pick up on phonological

patterns available in the input, or make certain assumptions in the face of ambiguous input.

Two common types of biases are often discussed in the literature: substantive and complexity

biases (see Moreton & Pater 2012a,b for an overview). Substantive biased learning (Wilson

2006) attributes a role to phonetics in how alternations are learnt (see also phonetically-based

phonology: Hayes, Kirchner, & Steriade 2004). Simply put, learners are predisposed to learning

phonological patterns that are motivated by perceptual and articulatory considerations. For

example, J. White (2014) and J. White & Sundara (2014) showed that adult and infant learners

trained on an artificial language generalize a learnt alternation asymmetrically from more

phonetically distant pairs to less distant pairs. When learners were trained on an alternation [p]

−→ [v], they generalized the alternation to [b] −→ [v]. When they were trained on [b] −→ [v],
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however, they did not generalize to [p] −→ [v]. In this case, learners seem predisposed to posit

alternations between more phonetically similar segments than more distant ones, evidence of a

learning bias based on the phonetic considerations. Not all studies that examined substantive

biases, however, show evidence in support of this. For example, studies that have compared

phonetically motivated vowel harmony and less phonetically motivated disharmony have failed

to find a learning difference (Pycha, Nowak, Shin, & Shosted 2003, Skoruppa & Peperkamp

2011).

Alongside substantive biases, learners have also exhibited complexity biases in favor of

alternations involving simpler patterns over more complex ones. Typically, the notion of

phonological complexity has been operationalized in terms of the number of phonological

features involved in defining the class of segments that are subject to a particular phonological

process, or that are required to change due to a phonological process (see Moreton & Pater

2012a for an overview). For example, participants in Pycha et al.’s (2003) study learned a

vowel harmony alternation much better when the generalization could be stated using one

feature (e.g. all front vowels take [-Ek], all back vowels tack [-2k]) than more features (e.g.

stems with final [i, ae, U] take [-Ek], stems with final [u, a, I] take [-2k]). In the latter case, the

generalization is formally more complex than the former, no matter how the rule is formulated.

Thus learners in Pycha et al.’s (2003) study were better able to learn an alternation which was

simpler, involving fewer features, than one which was more complex, involving more features.

Thus it is clear that some kinds of alternation patterns are easier to learn than others, based

on phonetic similarity between the segments in alternation or in terms of formal complexity, and

further that learners are biased to assume that phonological patterns operate over a word-sized

domain. In the next section, I review one other factor that has been argued to aid in alternation

learning: phonotactic knowledge.
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1.2.3 Linking phonotactic and alternation learning

In addition to the learning biases discussed in the previous section, another factor that has been

argued to aid in alternation learning is the prior knowledge about phonotactics (Hayes 2004,

Prince & Tesar 2004, Pater & Tessier 2005, Jarosz 2006, Tesar & Prince 2007, Hayes & Wilson

2008, Jarosz 2011). In fact, in constraint-based phonological models, such as Optimality Theory,

both phonotactic generalizations and alternations are often assumed to be encoded using the

same constraints, leading us to the prediction that they are learnt using a single mechanism.

Computational models that incorporate this assumption have had success in modeling the

developmental trajectory of alternations (e.g. Jarosz 2011). Further it is generally hypothesized

that phonotactic learning precedes alternation learning, for which the earliest evidence from

natural language learning has been shown at 12 months (Sundara, Kim, White, & Chong

2014). Infants have further been shown to be able to learn alternations in an artificial grammar

paradigm at the same age (K. S. White et al. 2008, J. White & Sundara 2014). Given that

the learning of phonotactics in a native language seems to emerge earlier at around 9 months

(Jusczyk et al. 1994, 1993, Friederici & Wessels 1993), the ability for phonotactics to aid in

alternation learning seems a possible learning scenario.

While phonotactic learning is hypothesized to aid in alternation learning in many models

of phonological learning, the experimental evidence in support of this hypothesis is equivocal.

Past research has focused on whether or not learners extend a static generalization or a learnt

alternation to novel items that involve the same type of generalization. That is, learners

are trained on alternations and tested on novel alternations, or trained on a phonotactic

generalization and tested on knowledge about that learnt phonotactic generalization. Typically

studies ignore how these types of phonological knowledge interact from a learning perspective.

In the most well-known study that examined this link, Pater & Tessier (2005), English

speakers were trained on one of two possible alternations. Participants assigned to Language

1 in (1), were trained on an alternation that relied on phonotactic constraint in English that

lax vowels do not occur in open syllables. This phonotactic generalization, however, does not
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engender any alternations in English. In Language 1, [t]-epenthesis occurred when a surface

vowel was lax and in an open syllable, such as in the singular forms of (1)(a-c). Epenthesis did

not occur in the plural forms or when the vowel was tense as in (1)(d-e). Crucially epenthesis

applied to ensure conformity to the existing English phonotactic constraint.

(1) Language 1 (Pater & Tessier 2005)

Root Plural Singular

a. /blI/ [blIso] [blIt]

b. /gE/ [gEso] [gEt]

c. /fl2/ [fl2so] [fl2t]

d. /blej/ [blejso] [blej]

e. /glEk/ [glEkso] [glEk]

Participants assigned to Language 2 (2) were trained on a similar epenthesis alternation, except

in this case the alternation was conditioned by the frontness of the vowel. Epenthesis occurred

following front vowels (2)(a-c) but not back (2)(d-e). Compared to Language 1, Language 2

was of the same formal complexity. Pater & Tessier (2005) argued that if alternations were

learnt by mere pattern induction without reference to phonotactic knowledge, then these two

languages should be equally easy to learn (equivalent accuracy). They predicted that if learners

utilized their existing knowledge of the phonotactics of English, then Language 1 should be

easier to learn than Language 2.

(2) Language 2 (Pater & Tessier 2005)

Root Plural Singular

a. /lij/ [lijso] [lijt]

b. /blej/ [blejso] [blejt]

c. /træ/ [træso] [træt]

d. /fuw/ [fuwso] [fuw]

e. /gluwk/ [gluwkso] [gluwk]
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Conforming to Pater & Tessier’s (2005) prediction, learners learnt the alternation better in the

language with phonotactic support (Language 1) than the one without (Language 2). However,

the authors point out that not only is Language 2 not phonotactically motivated, it is also

typologically unattested. Given that we know that unnatural patterns are at the very least

dispreferred by learners (Hayes et al. 2009, Becker, Ketrez, & Nevins 2011, Hayes & White

2013), it is possible that the poorer performance in Language 2 could be explained by this

alone. Due to this confound, a fairer and stronger test for a link between phonotactic and

alternation learning would be to look at whether learners generalize better (or faster) equally

natural generalizations where one has support from phonotactics but the other does not.

Given the lack of clear experimental evidence in support of this assumption, this dissertation’s

goal, therefore, is to examine how phonotactic learning influences alternation learning. In

particular, we will use artificial grammar learning to compare the success of alternation learning

in a language with matching phonotactics with one in which the phonotactics mismatch (Chapter

3). The mismatch language is modeled after derived-environment effects (a.k.a. non-derived

environment blocking; Kiparsky 1993; Chapter 2). In these cases, there is an active alternation

that is not supported by phonotactics with the very same sequences which are subject to an

alternation across a morpheme boundary nonetheless occurring in the lexicon. These types of

patterns thus provide a nice test case with which to examine the relationship between these two

types of phonological generalizations. Moreover, I hope to also move the theoretical discussion

about these mismatch patterns forward by bringing a novel learning-theoretic perspective on a

phonological pattern that has proven particularly thorny to account for (Chapter 4).

This dissertation is therefore as much about the relationship between phonotactic and

alternation learning as it is about derived-environment effects themselves. The goal then is to

use derived-environment effects as a means of probing the relationship between phonotactic

and alternation learning, then, in turn, using the results obtained to inform our theoretical

accounts of such patterns.
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CHAPTER 2

Alternations and phonotactics: Matches & Mismatches

2.1 Matches in static generalizations and dynamic alternations

It has often been observed that same phonological generalizations seem to hold both within a

morpheme and across a morpheme boundary. In English, for example, the past tense suffix /-d/

alternates to [t] following a word with a final voiceless consonant e.g. lack: /læk-d/ −→ [lækt])

to avoid the consonant cluster [kd] that is unattested in the lexicon. The qualities of these

generalizations are different, however. In the latter case, these phonological generalizations give

rise to alternations, an active process that changes the form of a morpheme from one context to

another. In the former, these are static phonotactic generalizations that describe the possible

sequences of sounds within morphemes in the lexicon. In earlier rule-based theories (Chomsky

& Halle 1968), these generalizations were stated separately in the grammar as phonological

rules and morpheme structure constraints. Yet this ignored the fact that phonological rules

often enforced static phonotactic restrictions in the lexicon, therefore a particular generalization

under a rule-based account was stated twice in the grammar (Duplication Problem: Kenstowicz

& Kisseberth 1977).

An example of the isomorphism between static phonotactic generalizations and active

alternations can be seen in Navajo sibilant harmony. In Navajo, (Sapir & Hoijer 1967, Kari 1976,

McDonough 1991, 2003, Fountain 1998) all sibilants in a root must agree in their [anterior]

feature. A list of Navajo sibilants (grouped by their value for the feature [anterior]) is given in

Table 2.1. The harmony restrictions tautomorphemically mean that hypothetical disharmonic
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Navajo roots in (2) are not attested, and only harmonic roots like those in (1) exist. All data

cited here are reproduced from Martin (2011), cited originally from Fountain (1998).

[+anterior] [-anterior]

s S

z Z

tsh tSh

ts tS

ts’ tS’

Table 2.1: Navajo sibilants by the feature [anterior]. Table reproduced from Martin (2011)

(1) Harmonic roots

a. /Ù’oZ/ ‘worm’

b. /ts’ózí/ ‘slender’

(2) Hypothetical disharmonic roots

a. *soS

b. *tSiz

This co-occurrence restriction also holds across morpheme boundaries, as in (3), with the prefix

sibilant typically harmonizing with the [anterior] feature of the root sibilant. So in (3a), the

prefix /-s-/ harmonizes to the root sibilant [Z], surfacing as [S]. In (3b), on the other hand, both

the prefix and root sibilants agree in anteriority and thus the prefix sibilant does not alternate.

(3) Navajo prefix+root

a. /ji-s-lééZ/ → [ji-S-lééZ] ‘it was painted’

b. /ji-s-tiz/ → [ji-s-tiz] ‘it was spun’
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In a rule-based (SPE) account (Chomsky & Halle 1968), the generalizations that hold over

individual morphemes in isolation were accounted for via context-free Morpheme Structure

Constraints (MSCs; Halle 1959, Stanley 1967, Kenstowicz & Kisseberth 1977). Generalizations

across morpheme boundaries, on the other hand, were captured by a separate mechanism,

phonological rules. Crucially, it was assumed that MSCs applied directly in the lexicon prior

to the cyclic application of any phonological rules. Due to these differences, Kenstowicz &

Kisseberth (1977) argued MSCs were thus totally distinct from phonological rules proper. This

redundancy of explanation of phonological phenomenon, where generalizations were stated

twice in the grammar, was questioned since this treatment suggested that “what appears to be a

single phenomenon in some sense must be treated as two unrelated phenomena" (Kenstowicz &

Kisseberth 1977:136). Patterns like this in which both tautomorphemic and heteromorphemic

phonological patterns can be accounted for by the same generalization led to what is known as

the “Duplication Problem."

The dispreference against this redundancy in the grammar led to the formulation of Opti-

mality Theory (Prince & Smolensky 1993/2004:henceforth OT). OT captured the same gener-

alization across different phonological domains by encoding this using the same markedness

constraint on output structure. Further, the invocation of a theory of Richness-of-the-base

(ROTB) explicitly denied the existence of any constraints on lexical representations (that is,

MSCs). Any such constraints are emergent properties from the grammar through constraint

ranking, thereby placing the explanatory burden for both static phonotactic patterns and active

processes into the grammar (i.e. CON). Thus in OT and its derivatives, phonotactic patterns

and alternations are captured by the same mechanism. Thus the sibilant harmony pattern

in Navajo above would be captured by a general constraint banning sequences of sibilants

that do not agree for the feature [anterior]. This applies both in the lexicon as well as to

morphologically complex forms engendering alternations. Yet, while the patterns in which

phonotactic generalizations in the lexicon and alternations at the morpheme boundary, like

Navajo harmony above, abound, there are many cases in the literature in which these two types

of phonological generalizations do not accord with each other. In the remainder of this chapter,
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I survey a set of cases in which these generalizations pull apart. I focus primarily on a set of

patterns collectively known as derived-environment effects (a.k.a. non-derived environment

blocking; Kiparsky 1993). In the latter part of this chapter, I present some toy simulations to

illustrate why learning of these mismatch patterns is problematic.

2.2 Mismatches in static and active generalizations

Paster (2013) provides a survey of cases in which static phonotactic and dynamic alternation

patterns pull apart from each other. She argues that if language change in OT involves constraint

re-ranking, and a single constraint allows you to capture both static and active generalizations,

then both static patterns and active processes should undergo changes in tandem. Paster

uses these mismatch cases to argue for the fact that static phonotactic generalizations and

alternations might need to be separately stated in the grammar, a position advanced earlier

in by Anderson (1974). In the following three sections, I survey the taxonomy (Table 2.2) of

observed interactions summarized in Paster (2013).

Static phonotactic

generalization
Alternation Example

4 4
Navajo sibilant harmony

(Across-the-board)

4 8
Marash Armenian vowel harmony

(Derived-environment blocking)

8 4
Korean /t/ patalization

(Derived-environment effect)

4 but different

characteristics

4 but different

characteristics
English Closed Syllable Shortening

Table 2.2: Summary of interactions between phonotactics in the lexicon and alternations
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2.2.1 Derived-Environment Blocking: Static phonotactic generalization but no alterna-

tion

One common example of a mismatch are derived-environment blocking patterns (DEB). In

these cases, a static phonotactic generalization that is true of the lexicon does not actually drive

an alternation. (Paster 2013:86-87) cites an example from the Marash variety of Armenian

(Vaux 1998). In this language, root vowels must be harmonic for both the features [back] and

[round] (inventory: [i], [y], [e], [ø], [E], [A], [o] and [u])

(4) Harmonic roots

a. khAnA ‘how many/much’ d. øsør ‘today’

b. ærin ‘blood’ e. ybyr ‘when’

c. hikhæ ‘soul’ f. urnog ‘example’

Like Navajo, disharmonic roots are unattested (e.g. *khury), indicating a phonotactic constraint

on harmony within roots. Unlike Navajo, however, this restriction does not hold across a

morpheme boundary, as shown in (5).

(5) Disharmonic words

a. As-i-m ‘say-theme.V-1SG’

b. bArthAgon-i-is ‘owing-be-2SG’

c. yr-iri ‘interrog.pron-PL.NOM (from Adjarian 1954)

Thus, despite the phonotactic restriction within roots, this restriction is not enforced by an

alternation. This type of mismatch pattern also seems to commonly occur with laryngeal co-

occurrence restrictions which often apply only to roots but not in a larger domain, such as across

a root and suffix boundary (Gallagher 2010, MacEachern 1999). In Sanskrit, for example, roots

(6) and roots with reduplicated material (7) can contain at most one aspirated stop (voiced or

voiceless) (i.e. Grassmann’s law; data from Anderson 1970).
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(6) Laryngeal co-occurrence restrictions in Sanskrit roots:

a. /ãHauk/ ‘approach’ */ãHaukh/

b. /kha:d/ ‘chew’ */kha:dH/

(7) Laryngeal co-occurrence restrictions in Sanskrit reduplicated forms:

a. Root: /phal/ ‘burst’ −→ [pa=phala] ‘have burst’ *[phaphala]

b. Root: /ãHauk/ ‘approach’ −→ [ãu=ãHauka] ‘have approached’ *[ãHuãHauka]

This phonotactic restriction, however, does not carry over across root-suffix boundaries, with

more than one aspirated stop allowed to occur in these contexts (8):

(8) No laryngeal restriction across root-suffix boundaries

a. Root: /bHr/ ‘bear’ −→ 2nd pl. active present: [bibHrtha] *[bibrtha]

b. Root: /dHa:/ ‘put’ −→ 2nd dual middle present: [dadHa:the] *[dada:the]

This contrasts with Ofo (MacEachern 1999) which has a similar laryngeal restriction on roots

but in this case this restriction carries over to heteromorphemic sequences (9):

(9) /oskha + afha/ −→ [oskafha] ‘the white or American egret’ (*oskhafha)

Derived-environment blocking cases thus present one example in which static phonotactic

generalizations and alternations pull apart, specifically where phonotactic generalizations are

observed in the lexicon but these do not motivate alternations thus permitting certain structures

only in underived environments.

2.2.2 Non-isomorphism between static generalization and active process

An intriguing example that Paster describes comes from English Closed Syllable Shortening

(Myers 1987:CSS). Unlike in derived-environment blocking, here a generalization is true both
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tautomorphemically and heteromorphemically, more or less. The exact characterization of each

generalization, however, differs depending on whether or not it is within a root or across the

morpheme boundary. Within a root, long vowels cannot occur before consonant clusters, unless

the cluster is coronal. Across a morpheme boundary, on the other hand, long vowels cannot

occur before any consonant clusters.

(10) Static phonotactic constraint: No long vowel before CC, unless coronal (examples from

(Paster 2013:87))

a. wild [w �aIld] (*wilb *[w �aIlb]) (coronal 4, analogous labial 8)

b. saint [sent] (*saimp *[semp]) (coronal 4, analogous labial 8)

(11) Alternation: No long vowels before any CC (examples from (Paster 2013:87))

a. convene [khanvin]- convention [khanvEnS@n] (coronal 8)

b. retain [rIthen] - retentive [rIthEntIv] (coronal 8)

c. describe [dIskr �aIb] - descriptive [dIskrIptIv] (labial 8)

In these cases, the phonotactic constraint motivating the alternation are more general in nature

(any consonant cluster), whereas the phonotactic constraint governing roots only holds in a

subset of contexts. Thus although the generalizations in both domains are similar, one would

likely have to state this generalization using two different constraints.

2.2.3 Derived-environment effects: active alternation with no phonotactic support

In addition to the cases discussed above, prominent examples in which phonotactic generaliza-

tions and alternations pull apart from each other are cases which exhibit active alternations

across morpheme boundaries but do not exhibit concomitant static generalizations within the

lexicon. These patterns are known in the literature as derived-environment effects (DEE; also

known as non-derived environment blocking, Kiparsky 1993, see also Wolf 2008 and Burzio

2011). These patterns will be the focus on this dissertation. One example that is often cited as
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the paradigmatic case of a derived-environment effect is Finnish assibilation (Kiparsky 1973,

1993, Anttila 2006). In (12), stem-final /t/ assibilates to [s] before [i]:

(12) Finnish assibilation: /t-i/ −→[s-i]

a. /halut-i/ −→ [halus-i] ‘want-3P.SG.PRET’ (*haluti)

b. cf. /halut-a/ −→ [halut-a] ‘want-INF’

While heteromorphemic /t-i/ sequences surface as [s-i], tautomorphemic /ti/ sequences are

protected and surface faithfully as in (13). In fact, in (13b), we notice that there are two

underlying sequences of /ti/, but only the heteromorphemic sequence assibilates whereas

the stem-internal one does not, further suggesting that the generalization seems sensitive to

morphological (or prosodic) structure.

(13) /ti/ protected within stems in Finnish

a. /aeiti/ −→ [aeiti] ‘mother’ (*aeisi)

b. /tilat-i/ −→ [tilasi] ‘order-3P.SG.PRET’ (*tilati, *silasi).

c. cf. /tilat-a/ −→ [tilata] ‘order-INF’ (*silata)

Interestingly, assibilation in Finnish is also fed by /e/-raising that applies to a set of /e/-final

nouns in (14) (Kiparsky 1993). This case contrasts with those in (13) since the nominative form

for ‘mother’ /aeiti/ does not show assibilation. Further, unlike the morphologically complex

forms in (12), (14) is an example of a phonologically derived environment effect, since it seems

that the prior application of /e/-raising allows for the assibilation rule to apply. For current

purposes, we will not be discussing phonologically derived environment effects, and will concern

ourselves primarily with morphologically derived environment effects. For a recent overview

of both morphologically and phonologically derived-environment effects, I direct readers to

Chapter 8 in Inkelas (2014).

(14) /e/-raising feeds assibilation
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a. /vete/ −→ [veti] −→ [vesi] ‘water (NOM)’

Another well-known example is /t/-palatalization in Korean (Kiparsky 1993, Iverson & Wheeler

1988, Oh 1995, T. Cho 2001). Across a morpheme boundary, underlying /t, th/ palatalize to [c,

ch] before /i/ and /j/ as seen in (15). However, analogous monomorphemic forms in (16) do

not palatalize. Here, there is a mismatch between tautomorphemic static generalizations ([ti] is

allowed) and the heteromorphemic dynamic generalization ([t-i] is repaired by palatalization).

(15) Derived palatalization

a. /mat-i/ −→ [maci] ‘eldest-NOM’1

b. /path-i/ −→ [pachi] ‘field-NOM’

(16) Underived blocking of palatalization

a. /mati/ −→ [mati] ‘knot, field’

b. /titi-ta/ −→ [titita] ‘to tread’

Turkish velar deletion (Zimmer & Abbott 1978, Inkelas & Orgun 1995, Inkelas, Orgun, & Zoll

1997, Inkelas 2000) is yet another example. Turkish has an active process that deletes velar

stops intervocalically. This occurs when vowel-initial suffixes are attached to the stem as in

(17). Velar stops do occur intervocalically, however, as in (18). Interestingly, the forms in (18)

contain two potential sites in which velar deletion can occur, but only the velar stop at the

morpheme boundary undergoes deletion.

(17) a. [bebek] ‘baby’ −→ [bebe-i] ‘baby-DAT’

b. [katalog] ‘catalogue’ −→ [katalo-u] ‘catalogue-3sg.POSS’

(18) a. [sokak] ‘street’ −→ [soka-a] ‘street-DAT’

1In reality, stops are voiced intervocalically, so the surface form of /mat-i/ is actually [maéi]. Since this does
not have a bearing on the discussion of palatalization, I will use the voiceless counterparts in each of these cases
for simplicity.
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b. [dakik] ‘precise’ −→ [daki-i] ‘precise-ACC’

Furthermore, mirroring the derived-environment blocking vowel harmony pattern in Western

Armenian (§2.1), Turkish presents another case of derived-environment effects involving vowel

harmony (Clements & Sezer 1982). In contrast the derived-environment blocking, here there is

an active alternation enforcing harmony across a morpheme boundary (19) but stems themselves

can be disharmonic (20). Heteromorphemic vowel harmony is enforced on disharmonic stems

by agreeing with the final vowel of the stem.

(19) Turkish vowel harmony across morpheme boundaries

a. /ip-lAr/2 −→ [ip-ler] ‘rope-NOM.PL’

b. /sap-lAr/ −→ [sap-lar] ‘stalk-NOM.PL’

(20) Disharmonic stems in Turkish:

a. takvim ‘calendar’

b. bobin ‘spool’

c. hesap ‘bank account’

d. silah ‘weapon’

In all of these cases so far, there is ostensibly an active alternation that is not supported by

a phonotactic generalization in the lexicon. Malagasy shows an extreme case of this where

the generalization enforced heteromorphemically is diametrically opposite of what is the

statistical trend in the lexicon. In general, Malagasy exhibits backness dissimilation in vowels

heteromorphemically. The examples in (21) show this alternation where the passive imperative

suffix /-u/ alternates to [-i] if there is a back vowel in the stem (Zymet 2014).3

2Capital vowels indicate vowels that undergo harmony.

3The alternation is actually somewhat gradient based on distance and is blocked by an intervening front vowel
(Zymet 2014)
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(21) Dissimilation locally and non-locally

a. /babu-u/ −→ [babu-i] ‘plunder’

b. /tuv-u/ −→ [tuv-i] ‘fulfill’

c. /undan-u/ −→ [undan-i] ‘bolster’

Given this active alternation, we might expect that there should be a phonotactic generalization

in the lexicon that favors disharmonic roots. In fact, as Zymet (2014) points out, there is

actually the opposite, albeit slight, preference for harmonic sequences. Malagasy thus evinces

an extreme case of derived-environment effect. Here the phonological alternation is not merely

phonotactically unmotivated, there is an active preference for the opposite pattern. For further

examples of derived-environment effects, I direct the reader to Chapter 8 in Wolf (2008).

Derived-environment patterns have proven to be a thorny problem for theoretical phonol-

ogy precisely because of these mismatches in generalization, as first pointed out by Kiparsky

(1973). Since then, a wealth of proposals have been put forth in the theoretical literature

to account for these patterns. Some of these restrict where rules can apply, such as in the

Revised Alternation Condition, which states that obligatory neutralization rules can only apply

in a derived environment (Kiparsky 1973, 1982b). In Korean, for example, this means that

coronal palatalization, a neutralizing rule, can only apply in a derived-environment (see also

Ahn 1985, Iverson 1987), and thus stem-internal non-derived sequences are protected. This

is also largely in the same spirit of Wolf’s (2008) proposal which interleaves morphological

and phonological operations, with derived-environment patterns applying only if preceded by

a morphological operation (i.e. affixation), or McCarthy’s (2003)’s Comparative Markedness

proposal. Łubowicz’s (2002) conjoined constraint account shares similar intuitions as well.

These proposals basically distinguish between “underlying” structures and new structures that

are created due to morphological operations. In a similar vein, Inkelas & Orgun (1995) and Oh

(1995) argue for an account in which stem-final segments which alternate (as in Turkish velar

deletion or Korean coronal palatalization) are left unsyllabified and therefore are “visible” to

the derived-environment rule, whereas stem-internal sequences are not. This prosodification
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account argues essentially that stem-internal and stem-final sequences have different prosodic

status and the fact that the latter alternates but the former does not falls out from this difference.

A second class of proposals deals with representational differences between tautomorphemic

and heteromorphemic sequences. Kiparsky (1993) for example proposed that stem-final seg-

ments (such as in Korean coronal palatalization) are underspecified featurally and subject to

different structure-building rules compared to stem-internal segments. T. Cho (2001) and

Bradley (2007) provide a similar take but from the perspective of gestural timing, where the tim-

ing relation between two gestures created by morpheme concatenation are not specified and are

thus more variable, hence the alternation due to gestural overlap. More recently, Inkelas (2015)

has proposed that alternating segments are more weakly represented than non-alternating

invariant segments within stems, resulting in two different faithfulness constraints: FAITHst rong

� FAITHweak. Inkelas proposes then that derived-environment effects result from the ranking of

FAITHst rong above Markedness.

All in all, these numerous proposals share in common the notion that tautomorphemic

sequences are in some way different from heteromorphemic sequences, either because they

are subject to different kinds of process application or because they are represented differently.

Implicit in these analyses is also the assumption that because they look similar structurally (i.e.

active alternations without a concomitant phonotactic generalization in the lexicon), they form

a class and are amenable to the same theoretical treatment. Recent work, however, has pointed

out that some canonical cases of derived-environment effects are likely not as clear cut insofar

as the alternation is less general than is predicted by most proposals (e.g. Finnish assibilation:

Anttila 2006). I return to this question in Chapter 4 with an in-depth investigation of two

well-known cases. What has often also been ignored in the theoretical literature is the question

of how these phonological patterns are learnt and how productive these patterns actually are.

Moreover, derived-environment effects provide a useful tool to investigate how phonotactics

and alternations interact in phonological learning, as we shall in see in Chapter 3. In the next

section, we first use toy simulations to illustrate why learning of alternations in these cases is

problematic.
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2.3 Learning mismatches: exploring possible outcomes

In enumerating different cases of mismatches in phonotactics and alternations, Paster (2013)

argues that this is evidence that these generalizations can evolve independently of each other

over time, therefore the close relationship between both types of knowledge is merely incidental.

A more extreme view is that static generalizations over the lexicon play no role in the explanation

of phonological alternations (e.g. Hale & Reiss 2008) or that they do not constitute phonological

knowledge at all. Hale & Reiss (2008) take the particularly strong view point that accounting

for static generalizations in the lexicon is to merely “ state descriptive generalizations about

the memorized content of the lexicon of a particular language. Even if we, as linguists, do find

generalizations in our description of the lexicon, there is no reason to posit these generalizations

as part of the speaker’s knowledge of their language, since they are computationally inert and

thus irrelevant to the input-output mappings that the grammar is responsible for." (Hale & Reiss

2008:17-18).

What these viewpoints ignore, however, is how exactly these generalizations are learnt

when they mismatch. The implicit assumption is that a learner is able to arrive at the correct

phonological generalization about phonotactics as well as alternations, even when the mis-

match. Is this the case? In this section, we begin investigating this question by presenting toy

simulations of learning in these mismatch cases. We will concentrate on three cases: (1) across-

the-board patterns (phonotactics and alternations accord), (2) derived-environment effects

(active alternation, no phonotactic generalization) and (3) derived-environment blocking (no

alternation, but active phonotactic generalization in lexicon). These mismatch patterns present

an interesting avenue into investigating the relationship between phonotactics and alternations

in learning. In particular, if we are interested in alternation learning, the comparison between

across-the-board patterns and derived-environment effects, where there are active alternations,

should prove particularly informative, since the sole difference here is whether or not the static

phonotactic generalizations accord with the alternation, thus providing a controlled way of

examining the problem.
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What are the predictions of the different models of the effect of phonotactics on alternation

learning? In modular accounts, like rule-based phonology, a lack of a static generalization,

specifically a mismatch, should have no impact on the learnability of a phonological alternation.

This is not to say that static generalizations are not part of the grammar, although Hale &

Reiss (2008) seem to argue for this, just that these two types of phonological knowledge are

separately encoded and do not interact. In constraint-based models of phonological learning,

it is hypothesized that phonotactic learning precedes, and so facilitates alternation learning

(Hayes 2004, Prince & Tesar 2004, Tesar & Prince 2007, Jarosz 2006, Hayes & Wilson 2008).

This predicts that derived-environment alternations should be more difficult to learn than an

across-the-board pattern. Both types of models then have clearly distinct predictions as to the

outcome of alternation learning, which we will explore in the rest of this dissertation. In the

next section, I present the results of a series of toy simulations that illustrate what phonotactic

generalizations are available at the outset of alternation learning given the different types of

language patterns surveyed above.

2.3.1 What does the initial stages of alternation learning look like?

The general OT assumption that phonotactics precedes alternation learning does not actually

completely answer the question of how exactly these two levels of generalization interaction.

Nor does it, on its own, answer the question of what the initial stages of alternation learning

should look like given an acquired phonotactic grammar. Different types of constraint learning

models predict differences in the way in which markedness constraints are ranked in the initial

stages of phonotactic learning. Here, I examine the outcome of a number of toy simulations

using two learning algorithms that utilize constraints: Constraint Demotion (Tesar 1997, Tesar

& Smolensky 1998) and Maximum Entropy models (Hayes & Wilson 2008). I discuss these in

turn in the following sections. Unfortunately, a learning algorithm for rule-based frameworks is

not available to my knowledge.

Before describing each of these models, however, I first describe the simplifying assumptions

made in the following simulations. It is also necessary at the outset to describe the different
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choice points available for ranking (or weighting) constraints and what the content of the

grammar is at the initial state of learning. In the simulations presented in this section, I adopt

the following simplifying assumptions:

(22) Simplifying assumptions:

a. Phonotactic learning is blind to morphological boundaries.

b. Phonotactic learning treats surfaces forms as underlying forms.

c. Phonotactic learning and alternation learning occur in separate stages.

d. The outcome of pure phonotactic learning is the initial state for alternation learn-

ing.

These assumptions are necessarily simplifying and the real picture is most likely much more

complex. For example, it is possibly the case that learners are able to do both phonotactic and

alternation learning at the same time, as certain morphological boundaries become available.

It suffices for the present purposes, however, to adopt these assumptions. Finally, I should

emphasize that the goal of this section is not to show how one of the existing analyses (e.g.

constraint conjunction) of derived environment effects could be learnt. Rather my goal is to

show why phonotactic mismatches, assuming a simple set of constraints, are problematic for

later phonological learning.

2.3.2 The learning data

The starting point for the learning data for the simulations below are three constructed toy

cases that mimic natural language patterns. The first across-the-board case, shows a pattern

in which a generalization is exceptionless both within and across a morpheme boundary. The

second case is a derived-environment effect pattern, like in Korean, in which there is an active

alternation . Finally, the third case, is a derived-environment blocking pattern, in which there

is a static generalization without an active alternation. The summary of the type of observed

forms given a Richness-of-the-Base-like input is given in Table 2.3.
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/..ti../ /..ci../ /..t+i/ /..c+i/

Across-the-board [ci] [c+i]

Derived-environment effect [ti] [ci] [c+i]

Derived-environment blocking [ci] [t+i] [c+i]

Table 2.3: Output forms given language type. Column headers are inputs assuming ROTB.

2.3.3 OT: Constraint demotion

The first model that I will be exploring is Recursive Constraint Demotion (CD; Tesar 1997,

Tesar & Smolensky 1998). The input to CD is a set of paired underlying (UR) and surface

representations (SR). In the initial stage of phonotactic learning, it is assumed that surface

representations are mapped onto themselves via the identity map, such that the UR and SR are

equivalent. For each input form, there is a set of rival outputs. In CD, it is assumed that the

grammar has access to both markedness and faithfulness (Input-Output: IO-F) constraints from

the outset of phonotactic learning (see Tesar & Smolensky 1998, Hayes 2004, Prince & Tesar

2004), together with the relevant violation profiles for each input-output pair.

CD evaluates input and output pairs. Specifically, CD generates a grammar that is consistent

with a set of elementary ranking arguments: a competition between two candidates from a

given input, where one is optimal and the other not. Each candidate is associated with their

own constraint-violation profile. The optimal candidate is deemed the winner and the other the

loser. The output of CD is a stratified hierarchy where within each strata, constraints do not

conflict with each other. The goal of the learner then is to rank the constraints in such a way

that all known ranking arguments derived from the learning data are satisfied simultaneously.

The algorithm can be summarized as follows (borrowing heavily from the summary in Hayes

2004: 169):
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(23) a. Start by collecting all winner-only preferring constraints (i.e. never violated by a

winner) and placing these in the highest stratum (i.e. top of the hierarchy).

b. Candidates that violate constraints in the newly established stratum more times

that the winner does are considered ‘explained’ and are taken out from the learning

set.

c. Of the remaining unranked constraints, find those that do not prefer any losers in

the remaining subset data and the place them in the next highest stratum.

d. Repeat (b) and (c) until all constraints have been assigned to strata.

Both Hayes (2004) and Prince & Tesar (2004) argue for an additional bias for maintaining

markedness constraints high in the hierarchy (see Gnanadesikan 2004). Put another way,

the learner is biased against faithfulness constraints, wanting by default to rank faithfulness

low. If a markedness constraint does not prefer any losers or winners (so it’s not active), it

will nonetheless be placed in the highest stratum, precisely because it prefers no losers in the

learning data. This is an important difference with a Maximum entropy model which we will

come back to below. Further, at the outset of alternation learning, it is often argued by many

that it is also assumed that Output-Output Faithfulness constraints (OO-F) are ranked above

markedness constraints (Hayes 2004, Tessier 2012). One therefore has a “default ranking" of

constraints as follows: OO-F� Markedness� IO-F.

The algorithm comes in at least three version: Regular constraint demotion (CD), Biased

constraint demotion (BCD: Prince & Tesar 2004) and Low-faithfulness constraint demotion

(LCD: Hayes 2004). All three are implemented in OTSoft (Hayes, Tesar, & Zuraw 2013). The

main difference between these models is what is done with the faithfulness constraints during

ranking. Both BCD and LCD are biased to favor ranking markedness above faithfulness during

the learning process. Regular CD does not have this bias. For the purposes of our current

simulation goals, this difference does not matter and the results from each of these algorithms

are the same. All the outcomes are reported from the BCD model.
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I adopt the following structure-blind markedness constraints banning [ti] and banning [ci]

in (24). I assume here that any constraints that are sensitive to morphological structure (e.g.

*T+I that penalizes sequences that span a morphological boundary (see Martin 2011)) are

unavailable during a stage of pure phonotactic learning.

(24) Markedness constraints:

a. *TI - No /-ti-/ sequences (structure-blind)

b. *CI - No /-ci-/ sequences (structure-blind)

Finally where necessary, the following general faithfulness constraint is assumed. We will

set aside the issue of Output-Output faithfulness for current purposes.

(25) Faithfulness constraints

a. IDENT(T) - Do not change [t] (or [c])

To summarize, for each of the two learning algorithms examined, simulations were run with

training from toy data that mimics either an Across-the-board, Derived-environment effect or

a Derived-environment blocking language. In each case, the output of the initial stages of

learning (constraint ranking or weights) were then used to predict output forms in the initial

stages of alternation learning.

In the next subsections, I report the outcomes of the phonotactic learning stages for each of

the language types. For each of these cases, I report what was fed into the model and what the

learnt constraint ranking was after phonotactic learning. I then report what is predicted once

alternation learning begins and morphological boundaries are available. All simulations were

run using OTSoft (Hayes et al. 2013).
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2.3.3.1 Across-the-board language

The BCD learner was asked to rank the following input in Table 2.4 in which [ti] sequences are

never observed.

*ti *ci Ident(t)

[ci] [ti] 0 1 1
[ci] 1 1

[c+i] [t+i] 0 1 1
[c+i] 1 1

Table 2.4: Across-the-board input

Given the input above, the learner learns the following constraint hierarchy in (26)

(26) Outcome of phonotactic learning: *TI � *CI � IDENT

Since the generalization is exceptionless, the difference between whether or not a structure-

sensitive constraint is active in this stage of learning matters not. The relevant markedness

constraints penalizing [ti] sequences remain high in the hierarchy. Note here that because the

learner is biased to demote faithfulness constraints below markedness constraints, *CI is ranked

above IDENT. When this hierarchy is applied to a novel /ti/ or /t+i/ sequence, the predicted

output candidates are both palatalized [ci] and [c+i] respectively. Thus, the right output for

alternations is trivially predicted which is unsurprising given the exceptionless pattern in the

training data.

2.3.3.2 Derived-environment effect language

The learner was then trained on a derived-environment effect language in Table. 2.5. In this

language, [ti] sequences are not found in across a morpheme boundary but are found within

stems. Given the input above, the learner learns the following constraint hierarchy:
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*ti *ci Ident(t)

[ti] [ti] 1 1
[ci] 0 1 1

[ci] [ti] 0 1 1
[ci] 1 1

[c+i] [t+i] 0 1 1
[c+i] 1 1

Table 2.5: Derived-environment effect input

(27) Outcome of phonotactic learning: IDENT � *TI,*CI

Since the learner does encounter [ti] in the input, it demotes the relevant constraint which

penalizes this sequence. Thus when a learner encounters a form that requires alternations, it

will predict that [t+i] will not alternate, and that stem-internal [ti] is well-formed, since IDENT

outranks the relevant structure-blind markedness constraint. Thus it does not capture the fact

that heteromorphemic [t+i] should be repaired to [c+i].

2.3.3.3 Derived-environment blocking language

Finally, the learner is trained on the a derived-environment blocking language. In this language,

[ti] sequences are not found in stems but are found across a morpheme boundary (Table. 2.6).

*ti *ci Ident(t)

[ci] [ti] 0 1 1
[ci] 1 1

[t+i] [t+i] 1 1
[c+i] 0 1 1

[c+i] [t+i] 0 1 1
[c+i] 1 1

Table 2.6: Derived-environment blocking input
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Given the input above, the learner learns the following constraint hierarchy:

(28) Outcome of phonotactic learning: IDENT � *TI,*CI

The first thing to notice is that the constraint hierarchy with this language are exactly the same

as those in the derived-environment effect case in the previous section. This is not surprising

given our assumptions that the learner does not have access to morphological boundaries at

this stage. Therefore, a morphologically complex form like /t+i/ and a monomorphemic form

like /ti/ have the same violation profiles, despite having different morphological composition.

While the learn successfully predicts that there should be no alternations, it fails to penalize

stem-internal [ti] sequences, exhibiting the opposite problem from the Derived-environment

effect language shown in the previous section. In both cases, the learner just learns that there

must be a contrast between [ci] and [ti] somewhere in the word.

2.3.3.4 BCD: Summary

In this section, I have briefly shown how a constraint demotion algorithm would handle mis-

match cases of phonotactics and alternations. Unsurprisingly, the learner learnt a constraint

ranking that successfully captures the across-the-board generalization in a language in which

[ti] sequences are never attested. Interestingly, since the phonotactic learner is blind to mor-

phological structure during phonotactic learning, the constraint hierarchy learnt from both a

derived-environment effect or derived-environment blocking language is the same. In both

cases, the relevant markedness constraint, the structure-blind general *TI, is ranked below

IDENT. The problem is that the learner cannot distinguish between where the [ti] sequences

appear. Thus it would predict that, after the phonotactic learning stage, the static phonotactic

pattern is not learnt in a derived-environment blocking language, and that the alternation is not

learnt in the derived-environment effect language. Thus the generalizations are more difficult

to learn in both of these cases compared to the across-the-board pattern.
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2.3.4 Maximum entropy grammars

A Maximum entropy model (MaxEnt) refers to a type of stochastic model that has been used

in the last decade or so, starting with Goldwater & Johnson (2003), to model phonological

grammars. Since Goldwater & Johnson (2003), MaxEnt models have been used in a number

of studies, for example in Hayes & Wilson’s (2008) study of phonotactic learning (for other

examples using MaxEnt see also Wilson 2006, Jäger 2007, Martin 2011, Pater, Staubs, Jesney,

& Smith 2012, Pater & Moreton 2012, Hayes & White 2013, a.o.)

For any given input x, the MaxEnt model assigns a probability to each potential output

candidate, y, using the formula in (29).

(29)

Pr(y|x) =
exp(−
∑m

i=1 wiCi(y, x))

Z

where Z =
∑

y∈Y (x)

exp(−
m
∑

i=1

wiCi(y, x))

The weights can be seen as representing the scaling of importance of a given constraint

relative to others in the grammar, with higher weights having a stronger role in decreasing the

probability of a given candidate output. Put simply, a penalty score (Hayes & Wilson 2008)

is calculated for each candidate by first multiplying, for each constraint, its weight wi by the

number of times a given input/output pair violates the constraint, Ci(y, x), then summing over

all the constraints in the grammar (i.e.
∑m

i=1 wiCi(y, x)). A Maxent value (Hayes & Wilson

2008) is then calculated by negating the score then raising the base of the natural logarithm e

to the result. This gets you the numerator in the above equation (i.e. exp(−
∑m

i=1 wiCi(y, x))).

Finally, the probability of the candidate is calculated by dividing the Maxent value by the the

sum of MaxEnt values of all possible output candidates, Z, which is the denominator.

It is worth noting that the implementation of MaxEnt, being a species of OT, has an assumed

GEN component that generates possible output candidates of a given input. The nature of

the constraints in CON can also be assumed. The difference, then, lies in the nature of EVAL.
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While in classical OT, as in CD, evaluation was based on strict ranking of constraints, predicting

categorical outcomes, MaxEnt generates a probability distribution over all possible output

candidates, allowing for the total probability to be unevenly divided across different candidates.

This particular property allows for the modeling of variable and gradient patterns in phonology

(Jäger 2007, Hayes et al. 2009, Hayes & Moore-Cantwell 2011, Daland et al. 2011, Hayes,

Wilson, & Shisko 2012, Hayes & White 2013, Kager & Pater 2012, Moore-Cantwell & Pater

2017).

One particularly attractive feature of MaxEnt models is that they are associated with a

learning algorithm (Berger, Pietra, & Pietra 1996) that provably converges on the “best" grammar,

given the data and constraints. The learner seeks to maximize the (log) probability of the

observed data (30), which minimizes the probability of the unobserved data. Importantly, the

calculation is sensitive to the number of observed tokens of input/output pairs during training. I

direct the reader to §4.2.1 in Hayes & Wilson (2008) for a more thorough discussion of this. For

our current purposes, it suffices to say that a MaxEnt model will be sensitive to the frequency

distribution of forms in the input. Finally, the objective function in MaxEnt also often includes

a “prior" which is subtracted from the probability of the data. This prior term, in (31), is a

Gaussian distribution over each constraint weight, with two free parameters: the mean µ and

standard deviation σ.

(30)

logPr(D) =
n
∏

j=1

Pr(y j|x j)

(31)
m
∑

i=1

(wi −µi)2

2σ2
i

(32)

[log
m
∑

i=1

Pr(y j|x j)]− [
m
∑

i=1

(wi −µi)2

2σ2
i

]
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The µ value for each constraint is the a priori preferred weight. This is subtracted from the

learnt weight and the difference is then squared. So as the constraints vary more from their µ

value, the penalty imposed by the prior increases. The σ2 term determines the degree to which

deviations from a constraint’s µ value is penalized. Being in the denominator, a high value of

σ2 decreases the value of the prior, thereby allowing for more freedom to deviate from µ. A

small value of σ2 does the opposite and imposes a greater penalty for deviations. Thus with

the priors, the goal of learning in a MaxEnt learner is to arrive the set of weights for a given set

of constraints that maximizes the objective function given in (32), where the prior term (31) is

subtracted from the log probability of the observed data (30). Together, the penalty imposed on

the model increases the more the learnt constraint weights diverge from their a priori values.

The crucial difference between CD and MaxEnt in this regard is that constraints which are not

active are not assigned any weight, i.e. the weight stays at µ.

The simulations presented in the following sections are implemented in the MaxEnt Grammar

Tool.4 As an initial assumption about the contents of the phonotactic grammar, I adopt the

stance taken by Hayes & Wilson (2008) that the initial phonotactic stage of learning only has

access to markedness constraints and not faithfulness constraints. The goal here is to just access

the likelihood of surface forms. This is already a major point of difference between MaxEnt

and CD, which requires the existence of IO-F constraints. The following parameters µ and σ

are set at 0 and 1000 respectively for all the relevant markedness constraints, and will be kept

constant for all simulations. We will also use the same markedness constraints from (24). In

this case, the learner does not need to be furnished with faithfulness constraints, unlike in the

BCD model.

For each language type, we ran a model using the same set of constraints as we used in

the BCD learning model previously. For current purposes, we are primarily interested in the

weight assigned to the markedness constraint after initial phonotactic learning, and we will set

4Software package developed by Colin Wilson with interface by Benjamin George. This is available for public
use on Bruce Hayes’s website at http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/.
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aside the issue of Output-Output faithfulness. The goal is to examine to what extent the initial

learning of the weight of the markedness constraint will allow for learning of an alternation.

For each language type, I present the input that the learner was trained on. I then report the

weights learnt in each simulation and the predicted results in the alternation stage of learning.

The probability of forms in the alternation stage were calculated in Excel using the learnt

weights from the initial phonotactic stage of learning.

2.3.4.1 Across-the-board language

We will assume that the input contains an equal ratio of sequences which occur within a

morpheme and across a morpheme boundary, and that this language only contains [ci] or [ti]

sequences. The trained and predicted ratios for the Across-the-board language is shown in

Table 2.7. In this language, there are no [ti] sequences, thus the ban against [ti] is a general

one and is observed both tautomorphemically and heteromorphemically.

Training proportion of total Predicted proportion of total

[t+i] 0 0

[c+i] 0.50 0.50

[ti] 0 0

[ci] 0.50 0.50

Table 2.7: Across-the-board language

*TI *CI

Weights 4.67 0

Table 2.8: Weights learnt after phonotactic learning for Across-the-board language

The learner successfully matches the ratio of sequences in the training data (Table 2.7. The

learnt weights of the relevant markedness constraints are given in Table 2.8. In this case, in the
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alternation stage, the learner arrives at the correct generalizations about both tautomorphemic

and heteromorphemic forms easily by weighing *TI highly (Table. 2.9). This is unsurprising

given that the generalization is across-the-board.

*T(+)I *C(+)I IDENT-F
wt = 4.67 wt = 0 wt = 0 exp−H Probability

/ti/ [ci] 0 1 1 1 0.99
[ti] 1 0 0 0.009 <0.01

/t+i/ [c+i] 0 1 1 1 0.99
[t+i] 1 0 0 0.009 <0.01

Table 2.9: Predicted alternations for structure-blind learner: Across-the-board language

The learner predicts successful learning of the alternation (>99%). It also correctly predicts

that stem-internal sequences are categorically ill-formed. Thus as expected, in an across-the-

board language, phonotactic learning successfully sets the learner up for alternation learning.

2.3.4.2 Derived-environment effect language

We will know consider what phonotactic learning might look like in a derived-environment effect

language. The learner was trained on an input similar to the one used for the across-the-board

simulation. In this case, stem-internal [ti] and [ci] sequences were equally represented, but

across the morpheme boundary only [c+i] is attested (Table 2.10).

Training proportion of total Predicted proportion of total

[ti] 0.25 0.13

[ci] 0.25 0.37

[t+i] 0 0.13

[c+i] 0.50 0.37

Table 2.10: DEE language
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*TI *C(+)I

Weights 1.09 0

Table 2.11: Weights learnt after phonotactic learning for DEE language

A learner that is blind to the morphological structure of the input misses the generalization

that [ti] only occurs within stems and not across morphological boundaries. All the learner sees

is that 75% of word forms contain [ci] and the remainder 25% contain [ti]. Because of this,

the learner still assigns some weight to the markedness constraint *TI. When this weight is

applied to alternations, alternations are predicted 75% of the time, and for stem-internal /ti/

there is still a preference for [ci], when there should be no such preference, since [ti] should be

completely well-formed.

*T(+)I *C(+)I IDENT-F
wt = 1.09 wt = 0 wt = 0 exp−H Probability

/ti/ [ci] 0 1 1 1 0.75
[ti] 1 0 0 0.34 0.25

/t+i/ [c+i] 0 1 1 1 0.75
[t+i] 1 0 0 0.34 0.25

Table 2.12: Predicted alternations for structure-blind learner: DEE language

2.3.4.3 Derived-environment blocking language

In the last simulation, we consider how learning in a derived-environment blocking language

might proceed. The input to the derived-environment blocking language is shown in Table.

2.13. This is the mirror image of a derived-environment effect language. Here [ti] sequences

do not appear within a morpheme but are allowed to appear across a morpheme boundary. The

predicted ratios of word forms is also shown in Table. 2.13, with the learnt constraint weights

shown in Table 2.14. Learning here looks exactly the same as in the derived-environment

language, both in terms of weight and the predictions for alternations (Tables ?? and 2.15). This
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is because the learner does not differentiate between [t+i] and [ti] sequences. All it takes into

account is the overall frequency of both any [ti] sequence in the input, and in our simulations,

this is always 25%. Thus the outcome of learning in both a derived-environment effect and

derived-environment blocking language turns out to be the same.

Training proportion of total Predicted proportion of total

[ti] 0 0.13

[ci] 0.50 0.37

[t+i] 0.25 0.13

[c+i] 0.25 0.37

Table 2.13: DEB language

*TI *CI

Weights 1.09 0

Table 2.14: Weights learnt after phonotactic learning for DEB language

*TI *CI IDENT-F
wt = 1.09 wt = 0 wt = 0 exp−H Probability

/ti/ [ci] 0 1 1 1 0.75
[ti] 1 0 0 0.34 0.25

/t+i/ [c+i] 0 1 1 1 0.75
[t+i] 1 0 0 0.34 0.25

Table 2.15: Predicted alternations for structure-blind learner: DEB language

2.3.4.4 MaxEnt: Summary

The toy simulations presented in the previous sections provide another basic confirmation of

the intuition that phonological patterns are easier to learn in an across-the-board language. The
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MaxEnt learner successfully learns the tautomorphemic and heteromorphemic generalizations

in this case. We also found that the learning outcomes were the same regardless of whether the

learner was trained on a derived-environment effect or derived-environment blocking language,

due to the fact that the learner has no initial access to morphological boundaries. In either

case, the learner predicts an overall preference for [ci] forms over [ti] forms since there are

more [ci] instances in the input (75% vs. 25% [ti]) regardless of morphological structure. Thus

in comparing between the derived-environment effect and across-the-board languages, the

simulations suggest that alternations in the derived-environment effect language are learnable,

although they are more difficult, as indicated by the lower predicted rate of alternations. At the

same time, the learner fails to learn that tautomorphemic [ti] is completely well-formed.

The toy simulations also show that alternations are wrongly predicted in the derived-

environment blocking language, where there should not be any alternations. But this might not

matter in the end since if Output-Output faithfulness is heavily weighted initially (Hayes 2004,

Do 2013, Tessier 2012), the learner will be biased to not posit any alternations anyway. And if

the learner does not see any alternations in the ambient language, OO-Faith will remain heavily

weighted blocking alternations from occurring. Thus it is possible that the a derived-environment

blocking pattern will be more learnable than a derived-environment effect pattern.

2.3.5 Summary: Preliminary modeling

In this section, I investigated the behavior of two constraint learning algorithms given three types

of phonological patterns in which the relation between tautomorphemic and heteromorphemic

generalizations differ. The goal was to examine how phonotactic learning differs in each of these

cases under the assumption that the learner does not have access to word-internal morphological

boundaries. There are a number of similarities that these two models share. Both models learn

an across-the-board pattern equally well. Both models basically distinguish between an across-

the-board language on the one hand, and derived-environment effect and derived-environment

blocking languages on the other. The main result here is that across-the-board languages are

predicted to be more successfully learnt from the outset than the other two which contain
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mismatches. Importantly, both models predict that the output of learning whether the input

language is a derived-environment effect and derived-environment blocking type, will be the

same, since the learner has no initial access to morphological boundaries.

In BCD, once a [ti] sequence is encountered, the constraint penalizing is immediately

demoted, predicting that these sequences will be entirely well-formed. MaxEnt, however, is

sensitive to the relative frequency of forms in the input. In our simulations, since although the

model learnt that [ti] sequences are not completely ill-formed, it still encoded the generalization

that overall [ci] sequences are more frequent relative to [ti] sequences. Thus even in a derived-

environment language, a MaxEnt model might nonetheless be able to encode a gradient

penalty against [ti] sequences which might then aid later alternation learning due to the over-

representation of [ci] relative to [ti]. This is not possible with a BCD model since it is not

stochastic.

Thus in this section, I have sketched out why patterns with a mismatch in phonotactics and

alternations might be difficult to learn. In the next chapter, I present the results of a series of

experiments that provide evidence for this conjecture.
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CHAPTER 3

Learning derived-environment patterns: experimental

investigations

3.1 Introduction

In the study of phonology, we are often concerned with accounting for phonological alternations:

when a particular morpheme is pronounced in one way in one context but in a different way

in a different context. In English for example, the past tense suffix -ed (/-d/) is pronounced

as a [d] when suffixed to a verb like lag (/laeg-d/ −→ [laegd]). But when suffixed to a verb

like lack /laek/ the suffix is pronounced as a [t], agreeing in voicing with the preceding stem-

final [k] (/laek-d/ −→ [laekt]). Thus, there is an alternation between [t] and [d] to ensure

that heteromorphemic instances of [kd] never surface. Of course, native speakers of English

understand that these two categorically distinct forms are instances of the same morpheme,

and tacitly know what context supports the occurrence of each of these phonological variants

(e.g. Gaskell & Marslen-Wilson 1996). Faced with variation of this sort, a child’s task must

necessarily involve learning the alternations in their native language. What might aid in the

learning of this?

A growing body of work in the last decade has examined the question of how alternation

learning proceeds. Many of these insights have been gained by using artificial grammar learning

experiments with adults (e.g. Wilson 2006) and infants (K. S. White et al. 2008, J. White &

Sundara 2014), as well as through computational modeling (Peperkamp, Calvez, Nadal, &

Dupoux 2006, Calamaro & Jarosz 2015). A useful starting point is for learners to track the

distribution of sounds to look for complementary distribution between two different segments
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(Peperkamp et al. 2006, Calamaro & Jarosz 2015). In fact, K. S. White et al. (2008) showed

that 12-month-old can rely on distributional information in an artificial language to learn an

alternation.

Previous work has also investigated different kinds of learning biases that might drive

learning of phonological alternations. One such bias is what is known as a “substantive” bias

which proposes that learners are guided by perceptual, articulatory and general phonetic

knowledge when learning phonological alternations (Wilson 2006, J. White 2014, Baer-Henney

& van de Vijver 2012, Finley & Badecker 2012), such that learners are biased to learn patterns

which accord with phonetic naturalness. Additionally, learners in artificial grammar learning

experiments have been shown to preferentially learn formally simple phonological patterns,

in particular, in terms of the number of relevant features that are involved with stating the

phonological generalization (Saffran & Thiessen 2003, Moreton 2008, see Moreton & Pater

2012a for a review).

In this chapter, I test whether learners knowledge of phonotactics (speakers’ tacit knowledge

of the licit and illicit sequences of sounds that can occur a language) can also facilitate the

learning of alternations. Taking an example again from English, act [ækt] is a word, but a

word like akd [ækd] is not a possible word since the [k] and [d] in hypothetical ækd are illegal

sequences. So if a child hears monomorphemic forms like [ækt] but never hears [ækd], she

might come to the conclusion that [kd] sequences are illegal in her language. Thus first learning

static phonotactic generalizations about monomorphemic forms will then aid in the learning

of alternations in multimorphemic forms. When faced with a novel morphologically complex

word that has a [kd] sequence due to morpheme concatenation, the child will already know

that this sequence has to be changed. The fact that phonotactics and phonological alternations

are consistent with each other has been observed as early as in Chomsky & Halle (1968:382).

In fact, in constraint-based theoretical phonology frameworks such as Optimality Theory (OT;

Prince & Smolensky 1993/2004), both generalizations are captured using a single mechanism.

Such models capture the generalization about the close relationship between phonotactics

and alternations by ensuring that both types of phonological knowledge are governed by the
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same constraint. Going back to the example above, a single constraint against [kd] sequences

is responsible for both ensuring that words like akd are not attested and that the past tense

morpheme /-d/ surfaces as [t] when following a voiceless [k] in lacked. This is in contrast to

rule-based models of phonology (Chomsky & Halle 1968) in which both of these were distinct

parts in the phonological grammar.

Capitalizing on this close relationship, recent computational models of alternation learning

assume that phonotactic learning occurs prior to alternation learning and that learning the

former aids in learning the latter (Hayes 2004, Hayes & Wilson 2008, Prince & Tesar 2004,

Tesar & Prince 2007, Jarosz 2006). The timeline in infant development of these two types

of phonological knowledge offers some support for this hypothesis: phonotactic knowledge

emerges first around 9 months of age (Jusczyk et al. 1994, Saffran & Thiessen 2003, Friederici

& Wessels 1993), while alternation learning has only been demonstrated a few months later at

12 months (K. S. White et al. 2008, J. White & Sundara 2014).

Although this is a widely held assumption, experimental evidence in support this assumption

is still unclear. In the current study, we examine whether phonotactic learning facilitates the

learning of alternations using an artificial grammar learning paradigm. To do so, we compare

the learning of alternations in two groups of learners who differ in whether or not they are

exposed to a supporting phonotactic generalization within stems. In the remainder of this

section, I first summarize the results of previous experimental investigations that have examined

the relation between phonotactics and alternations in learning.

3.1.1 Previous experimental investigations: phonotactics and alternations

Typically experimental studies on phonological learning have primarily focused on either the

learning of phonotactic knowledge alone (Skoruppa & Peperkamp 2011, Linzen & Gallagher

2014, Saffran & Thiessen 2003, Chambers et al. 2003, Chambers, Onishi, & Fisher 2010, 2011,

Onishi et al. 2002, Richtsmeier 2011) or the learning of phonological alternations alone (Wilson

2006, Kapatsinski 2010, Cristià, Mielke, Daland, & Peperkamp 2013, J. White 2014). In both
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sets of studies, the relationship between these two levels of generalization is ignored. Only

three studies have directly probed the link between phonotactic and alternation learning with

largely inconclusive results.

Pater & Tessier (2005) trained American English speakers on an alternation ([t]-epenthesis)

that was motivated by one of two phonotactic generalizations. One set of participants were

trained on an epenthesis rule that inserted a [t] when a lax vowel occurred finally (e.g. /blI/

−→[blIt] but /bli/ −→[bli]; Language 1). Here the alternation serves to enforce a phonotactic

generalization that is internalized by English speakers (Moreton 1999): lax vowels do not

occur in final open syllables. A second set of participants were trained on a language in which

epenthesis occurred following front vowels but not back vowels (e.g. /li/ −→[lit] but /fu/

−→[fu]; Language 2), a generalization that is not supported in the English lexicon. Conforming

to Pater & Tessier’s (2005) prediction, learners learnt the alternation better in the language with

phonotactic support ([t]-epenthesis following lax vowels) than the one without ([t]-epenthesis

following front vowels). However, the authors themselves point out that, while both languages

are of equivalent formal complexity, Language 2 is also typologically unnatural and unattested.

Given that previous studies have shown that learners show a dispreference against unnatural

patterns (Hayes et al. 2009, Becker et al. 2011, Hayes & White 2013), it is therefore possible

that the poorer performance in Language 2 could be explained by this alone. Thus although

Pater & Tessier’s (2005) results are consistent with a link between phonotactic and alternation

learning, they do not provide unequivocal evidence in support of it.

Two recent investigations by Pizzo (2015) and Chong (2016) have also failed to find

conclusive evidence for the link. Using a more controlled design, Chong (2016) trained

participants on an artificial language in which coronal stops (/t/ and /d/) palatalized to [Ù]

and [Ã] across a morpheme boundary before /i/. This palatalization rule is based on Korean

(Ahn 1985). In the Match language, [ti] and [di] sequences did not appear within stems,

ensuring a match between stem phonotactics and alternations. In the Mismatch language,

[ti] and [di] sequences did appear within stems mismatching with the alternation. Contrary

to expectations, participants in both languages learnt the alternation equally well. However,
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learners in the Match language did not infer a phonotactic constraint against [ti] or [di], despite

these sequences never appearing in their training data. Thus we cannot be sure whether

phonotactics aides in alternation learning since there was no evidence of phonotactic learning

in Chong’s learning experiment. What Chong’s study suggests though is that alternation-based

knowledge does not have a strong impact on phonotactic knowledge, a finding echoed by Pizzo

(2015). Using a poverty-of-stimulus design, Pizzo (2015) trained participants on an alternation

that involving either voicing assimilation (e.g. nemab+fa −→nemapfa) or place assimilation

(e.g. lobon+fa −→lobomfa) in consonant clusters. In the training data, there were no consonant

clusters within stems thus the evidence in the lexicon was ambiguous as to the nature of the

phonotactic generalization. In the test phase, participants were given a pair of novel stems

with stem-internal consonant clusters and had to decide which word belonged to the language

they had just learnt (e.g. voicing assimilation: madfas vs. matfas). For example, if participants

were trained on voicing assimilation, when faced with a pair like madfas vs. matfas, they

should prefer the latter since this conforms to the alternation pattern. Pizzo was interested in

seeing if participants extended their alternation knowledge to static phonotactics. Participants

only showed significant generalization from alternations to phonotactics when there was an

intermediate feedback stage where they were given explicit feedback on the task. In an implicit

learning task, Pizzo found no clear effect, although there was a numerical trend in the predicted

direction. Taken together, both Pizzo and Chong’s findings suggest that the relationship between

both types of phonological knowledge, if it exists at all, might be unidirectional.

The current study addresses the shortcomings of previous studies by building on the ex-

perimental design of Chong (2016). In order to probe the effect of phonotactic learning on

alternation learning, we need to compare two equally natural phonological patterns, with both

the alternation and phonotactic generalization being learnable in the laboratory setting. In

this paper, we manipulate the learning of a pattern of vowel harmony. Vowel harmony is a

phonological pattern in which vowel sequences have to agree in particular phonological features

(e.g. backness). Vowel harmony has many properties that make it a good process to test in an

artificial language experiment with English speakers. It is not a phonological pattern active
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in English, so we can control for first language phonotactic knowledge. Moreover, previous

studies using artificial grammar learning experiments have shown that learners, with a short

amount of exposure, are able to learn these harmony patterns and generalize to unseen words

(Finley & Badecker 2009, 2012, Pycha et al. 2003). Importantly for the current study, Skoruppa

& Peperkamp (2011) showed that participants are able to successfully learn a static phonotactic

generalization regarding well-formedness of words in an implicit learning task with relatively

short exposure. Finally, vowel harmony has been implicated in mismatches between stem

phonotactics and alternations that occur naturally across the world’s languages. Turkish, for

example, shows a vowel harmony alternation across a morpheme boundary, whereby adjacent

vowel sequences alternate to agree in backness with the final vowel of the root (Clements &

Sezer 1982, Lewis 1967) as shown in (1), although roots themselves can either be harmonic or

disharmonic as in (2).

(1) Turkish vowel harmony across morpheme boundaries (data from Clements & Sezer

1982: 216)

a. /ip-lAr/ 1 −→ [ip-ler] ‘rope-NOM.PL’

b. /sap-lAr/ −→ [sap-lar] ‘stalk-NOM.PL’

c. /son-In/2 −→ [son-un] ‘village-GEN.SG’

d. /jyz-In/ −→ [jyz-yn] ‘face-GEN.SG’

(2) Turkish vowel harmony and disharmony in stems (data from Crothers & Shibatani 1980:

64)

a. /sekiz/ ‘eight’

b. /oda/ ‘room’

c. /mezat/ ‘auction’

d. /kitap/ ‘book’

1The vowels in upper case indicate vowels in the suffix that harmonize to the vowel in the root.

2The surface form of the vowel ‘I’ in the suffix is derived by both rounding and backness harmony
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Thus vowel harmony is not only learnable in a laboratory setting in terms of both active

phonological alternations as well as static phonotactic generalizations, some languages with

vowel harmony do show mismatches between both of these generalizations. In this paper, we

test whether alternation learning of a vowel harmony process is facilitated when by a matching

phonotactic generalization.

3.2 Experiment 1: Full language

Experiment 1 was designed to compare alternation learning when there is a match or mismatch

in phonotactic generalizations within stems. Participants in this experiment were randomly as-

signed to one of three artificial languages involving vowel harmony: Harmonic, Semi-Harmonic

and Non-Harmonic. In all three languages, there was an exceptionless alternation pattern in

which the vowel in the plural suffix [-mu∼-mi] alternated to agree in backness with the final

vowel of the singular stem. Thus participants in all three languages were trained on the same

alternation with the same amount of evidence. Where the languages differed was in how much

stem phonotactic support there was for the alternation. In the Harmonic language, vowels in

all stems always agreed in backness (e.g. ["pime] but *["pimo]), supporting the alternation

pattern across the morpheme boundary. In the Non-Harmonic language, vowels in half the

stems agreed in backness (e.g. ["pime]), whereas the other half did not (e.g. ["pimo]), resulting

in a mismatch between the alternation pattern and stem phonotactics. In the Semi-Harmonic

language, vowels in 3/4 of the stems in agreed in backness whereas 1/4 did not.

Based on Skoruppa & Peperkamp’s (2011) findings, we expected Harmonic language learners

to learn the phonotactic pattern successfully. Because there is no such generalization available

for Non-Harmonic language learners, they should infer no phonotactic generalizations regarding

harmony. Finally, in the Semi-Harmonic language, we expected the learning of the phonotactic

constraint to be better than in the Non-Harmonic language, but worse than in the Harmonic

language group, given that learners seem to be sensitive to gradient statistical generalizations
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in their input language (Frisch & Zawaydeh 2001, Hayes et al. 2009, Becker et al. 2011, Hayes

2000).

What are the predictions for alternation learning? Learners in each language receive the same

amount of evidence for the alternation. If phonotactic learning facilitates alternation learning,

we expected that Non-Harmonic language learners will, despite the mismatch in phonotactics,

successfully learn the alternation pattern, and we should see no differences across groups. If,

however, phonotactic learning facilitates alternation learning then we expected a similar result

as with phonotactic learning: Harmonic language learners will learn the alternation the best,

Non-Harmonic learners the worst, and Semi-Harmonic language learners in between.

3.2.1 Methods

3.2.1.1 Participants

45 American English participants were recruited from the UCLA Psychology Pool. Participants

were randomly put into one of the three artificial language groups (15 in each). 25 more were

tested but were excluded due to having the wrong first language background (n = 4), knowing

a language with vowel harmony (i.e. Armenian; n = 1), not completing the experiment (n = 7),

recognizing the vowel harmony pattern (n = 2), taking notes (n = 3) and issues with playing

the sound files (n = 8).

3.2.1.2 Procedure

Participants were tested over the Internet using Experigen (Becker & Levine 2014), and were

told that they were going to learn words from a foreign language. They were asked to pay

attention to what they were hearing but were told that they did not have to memorize any of the

words. On each trial in the training phase, either singular or plural word forms were presented

auditorily accompanied by a corresponding image. That is, singular and plural word forms

were not presented side-by-side on the same trial. This ensured that the task did not overtly

provide a means of comparison between singular and plural forms. There were 3 training blocks
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with 64 trials each resulting in a total of 192 training trials. In each phase of the experiment,

participants were able to hear a particular stimulus item just once.

We then probed participants’ knowledge of stem phonotactics (blick test; Scholes 1966)

using a two-alternative forced-choice task in the first test phase as in Skoruppa & Peperkamp

(2011). Participants heard two novel CVCV words (one harmonic and one non-harmonic, e.g.

["gike] vs. ["giko]) and had to decide which belonged to the language they had learned. The

order of presentation of the two CVCV options was randomized such that harmonic words and

non-harmonic words occurred equally as the first member of the pair.

Finally, we tested participants’ knowledge of the phonological alternation in a wug test

(Berko 1958). Participants heard a novel CVCV singular stem with an accompanying image,

then heard two possible forms for the plural ([-mi] vs. [-mu]) and had to pick the correct word.

The order of presentation of each possible plural form was counterbalanced such that each

plural form occurred equally as the first member of the pair.

3.2.1.3 Artificial languages

Three artificial languages were constructed that consisted of bisyllabic CVCV singular stems,

along the lines of the artificial languages in Finley & Badecker (2009). CVCV singular stems were

constructed using consonants {p, b, t, d, k, g, m, n} and vowels {i, e, u, o}. The plural was marked

with a suffix that had two allomorphs [-mu] or [-mi] that agreed with the backness/roundness

specification of the final vowel of the stem. The allomorph [-mu] appeared when the final

vowel of the root was back/rounded [u, o], and the allomorph [-mi] appeared when the final

vowel of the root was front/unrounded [i, e]. Across all three languages, the plural suffix

always harmonized with the final vowel, with stems occurring equally frequently with the [-mu]

allomorph and the [-mi] allomorph (half each). Thus all three languages had the same amount

of evidence for the alternation (100%).

Where the languages differed was in the proportion of harmonic stems. In the Harmonic

language, all singular stems contained vowels that were harmonic for backness/roundness (e.g.
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["buno] but *["pume]). All harmonic V-V sequences occurred equally frequently. Contrastively,

in the Non-Harmonic language, half the stems contained harmonic vowel sequences (e.g.

["buno]) and half non-harmonic (e.g. ["pume]), yielding a mismatch between phonotactics

and alternations. All V-V sequences, both harmonic and non-harmonic, occurred equally

frequently. This means that the total number of harmonic V-V sequences was half that in the

Harmonic language. Finally, in the Semi-Harmonic language, three-quarters of stems contained

harmonic vowel sequences, with the remaining quarter of stems containing non-harmonic vowel

sequences. Each possible non-harmonic V-V sequences occurred just once. Non-Harmonic stems

were created by changing one of the vowels in a harmonic stem, thereby ensuring that as much

as possible was kept constant across all the languages. In total, 32 CVCV stems were created

for each language. A summary of the proportion of harmonic and non-harmonic stems across

all three languages is shown in Table 3.1, and a full list of training items can be found in the

Appendix.

Mismatch Match
‘Non-Harmonic ‘Semi-Harmonic’ ‘Harmonic’

Alternation
No. of harmonizing stems 32 (100%) 32 (100%) 32 (100%)

Stem phonotactic
No. of harmonic stems (e.g. [buno]) 16 (50%) 24 (75%) 32 (100%)
No. of non-harmonic stems (e.g. [pume]) 16 (50%) 8 (25%) 0 (0%)

Table 3.1: Summary of Artificial Languages

For the blick test, 16 pairs of novel test words were created using the same set of consonants

and vowels as the training stimuli. Each pair of blick test words contained a harmonic word

(e.g. ["gike]) and a non-harmonic word (e.g. ["giko]). Non-Harmonic words were created by

changing one of the vowels front/back specification while maintain the same height feature.

Half the blick items differed in the first vowel, and the other half in the second vowel. Finally,

for the wug test, 16 novel bisyllabic words were created in the same fashion except that only
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harmonic words were used. The same novel test stimuli in both blick and wug tests were used

with learners in all three language groups.

To confirm that the the constructed languages differed in terms of their inferrable stem

internal phonotactic generalizations, the languages were fed through the UCLA Phonotactic

Learner (Hayes & Wilson 2008). The learner was trained on the stimuli in the training phase

in each language and tested on both the test items in the blick test. Based on the outcome of

phonotactic learning, the learner assigns a penalty score to each test item, with a higher score

indicating that a particular item is less well-formed. For each pair of harmonic and non-harmonic

blick test items, a difference score was calculated by subtracting the penalty score assigned to the

harmonic word from the score assigned to the non-harmonic word (Non-harmonic-Harmonic).

A bigger difference score indicates a bigger preference for harmonic over non-harmonic blick

test items. As expected, there was a much stronger preference for the harmonic word in the

Harmonic language (Difference score = 8.76) than in both the Semi- (Difference score =

3.34) and Non-Harmonic languages (Difference score = 0.54). This derives from the fact that

the learner trained on the Harmonic language successfully inferred two bigram constraints

penalizing disharmonic vowel sequences, namely *[+back][-back] and *[-back][+back].

For completeness, we also report on the penalty scores assigned wug words. As with blick

test items, a difference score was calculated by subtracting the penalty score assigned to the

harmonic plural from the score assigned to the non-harmonic plural. The modeling simulations

confirmed the intuition that the alternation is indeed learnable in all three languages with the

learner learns a constraint that prefers harmonic plurals (e.g. [kobo-mu]) over non-harmonic

plurals (e.g. [kobo-mi]). This is indicated by a large difference in penalty score between non-

harmonic and harmonic wug words in all three languages (Harmonic: 7.13; Semi-Harmonic:

8.91; Non-Harmonic: 9.36). These simulations thus show that the languages do differ in terms

of stem-internal bigram phonotactics. Yet, as intended, the evidence in favor of the harmonic

plural (i.e. the alternation) is more or less equally available in the learning data across all three

languages.

50



3.2.1.4 Audio stimuli

Audio stimuli were recorded by a female phonetically-trained speaker of American English who

was naïve to the goal of the current study. Target words were always realized with declarative

intonation with stress placed on the initial syllable of the target word, ensuring that stress was

always on the same syllable in both singular and plural forms. Voiceless stops were always

produced with aspiration and voiced stops were produced with voicing through the entire

closure. Recordings were made using PCQuirer (Scicon R & D 2015) at a sampling rate of

22,050 Hz and were scaled to 70 dB.

3.2.1.5 Visual stimuli

Visual stimuli consisted of digital images of animals and everyday objects obtained freely over

the Internet (260 X 200 pixels). Singular images always contained just one animal/object and

plural images always contained two. An example pair of singular and plural images are shown

in Figure 3.1.

(a) Singular (b) Plural

Figure 3.1: Example pair of visual stimuli

51



3.2.2 Blick test: phonotactic generalizations

3.2.2.1 Predictions

We were interested in the nature of the phonotactic generalization learners arrived at after

training. Specifically, we were interested in whether learners show a preference for harmonic

over non-harmonic words. Given that harmonic and non-harmonic words occur with equal

frequency in their lexicon, we expected Non-Harmonic language learners to show no preference

for harmonic words. That is, they should not infer any phonotactic constraint from the learning

data. Harmonic language learners, however, never hear non-harmonic words, and thus should

show a strong preference for harmonic words over non-harmonic words. That is, Harmonic

language learners should infer a phonotactic constraint against non-harmonic words. Finally,

given that we know that speakers are sensitive to the statistics in the lexicon such that they show

gradient well-formedness judgments given gradient phonotactic evidence, we expected Semi-

Harmonic language learners to show a small preference for harmonic words over non-harmonic

words, but not to the same extent as Harmonic language learners.

3.2.2.2 Results

Figure 3.2(a) shows the rate of choosing harmonic words in the blick test across the three

language groups. We first analyze the rate of choosing harmonic words using mixed-effect

logistic regression (Jaeger 2008) with Language (Harmonic, Non-Harmonic and Semi-Harmonic)

as a categorical factor using the glmer function from the lme4 package (Bates, Maechler, Bolker,

& Walker 2015) in R (R Core Team 2015). The model also contained by-subject and by-

item random intercepts, as well as random slopes for Language by item. We were interested

in (a) whether participants’ performance in each language group was significantly different

from chance (i.e. is the intercept significant?), and (b) how the rate of choosing harmonic

words differed between each language group. Pairwise comparisons were conducted using the

multcomp package in R (Hothorn, Bretz, & Westfall 2008), and p-values were adjusted using

Shaffer’s correction for multiple comparisons (Shaffer 1995). Overall, Harmonic language
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(a) Blick test
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(b) Wug Test

Figure 3.2: Experiment 1: Rate of choosing harmonic words in (a) blick test and (b) wug test.
Each black dot represents a single participant with the large red-dot indicating mean rates for
each language group. The red lines indicate 95% confidence intervals.

learners showed a significant preference for harmonic words (β = 1.29, SE = 0.27, z = 4.76,

p <0.001) whereas Non-Harmonic language learners selected harmonic words at chance (β

= -0.003, SE = 0.24, z = -0.01, p = 0.99). Interestingly, Semi-Harmonic learners showed

chance-level preferences for harmonic stems (β = 0.43, SE = 0.27, z = 1.63, p = 0.31), despite

showing an overall numerical preference. Further, as predicted, Harmonic language learners

chose harmonic words significantly more than both Non-Harmonic learners (β = 1.30, SE =

0.28, z = 4.68, p <0.001) and Semi-Harmonic learners (β = 0.86, SE = 0.36, z = 2.40, p

= 0.03). There was no significant difference between the rate of choosing harmonic words

between Non-Harmonic and Semi-Harmonic learners (β = 0.44, SE = 0.35, z = 1.23, p =

0.31).

Although we failed to find a significant difference in preference for harmonic words between

the Non- and Semi-Harmonic language learners, we were nonetheless interested in whether, on

the whole, there was a significant relationship between the proportion of harmonic stems and

the rate of choosing harmonic stems. That is, we were interested in whether there was gradience
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in the response preferences that corresponded with the amount of phonotactic evidence in

the learning data. Another mixed effects logistic regression model was fit to the blick data

with proportion of harmonic stems as a continuous variable. The model also contained by-

subject and by-item random intercepts. This was the maximal model to converge. The rate of

choosing harmonic words increased significantly as a function of the proportion of harmonic

stems in the training language (β = 0.024, SE = 0.005, z = 4.73, p <0.001). That is, the

higher the proportion of harmonic stems in the language (in the Harmonic language) the more

likely learners chose harmonic words over non-harmonic words in the blick test. Thus, overall,

learners’ rates of choosing harmonic plurals conformed to lexical statistics.

The results from the blick test confirm that the nature of phonotactic generalizations learnt

from the training data differed given the differences in the lexical statistics in the input -

the variable that was primarily manipulated. Given this, what kinds of generalizations did

participants arrive at in terms of phonological alternations?

3.2.3 Wug test: phonological alternations

3.2.3.1 Predictions

Recall that in all three languages, there was consistent, exceptionless evidence for the phono-

logical alternation across the morpheme boundary. So unlike in the blick test, the correct

response in all three languages was the harmonic plural. For a singular like ["kobo], the correct

plural should be ["kobomu] and not *["kobomi] in all three languages. If learning phonotactics

does not influence alternation learning, we expect that learners in all three language groups

should learn the alternation equally well. If learning phonotactics facilitates the learning of

alternations, then we expected the strength of alternation learning to mirror that of phonotactic

learning.
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3.2.3.2 Results

The rate of choosing correct plurals in all three languages is shown in Figure 3.2(b). The rate of

choosing the correct plurals (i.e. harmonic plurals) was modeled in the same manner as in the

blick test. First, we analyzed the rate of choosing harmonic words using a mixed-effect logistic

regression with Language (Harmonic, Non-Harmonic and Semi-Harmonic) as a categorical

factor, with random intercepts by subject and item as well as an random slope for Language by

item. Harmonic learners showed significantly above chance rates of choosing the correct plural

(β = 1.43, SE = 0.30, z = 4.78, p <0.001), indicating successful learning of the alternation,

whereas Non-Harmonic learners did not learn the alternation and were at chance (β = 0.52,

SE = 0.27, z = 1.06, p = 0.29). Semi-Harmonic learners showed at chance rates of choosing

the correct plural (β = 0.52, SE = 0.27, z = 1.94, p = 0.16) as well. Pairwise comparisons

revealed, unsurprisingly, that Harmonic learners learned the alternation significantly better than

Non-Harmonic language learners (β = 1.12, SE = 0.40, z = 2.76, p = 0.02). Semi-Harmonic

language learners’ accuracy was significantly lower than Harmonic language learners (β =

0.91, SE = 0.40, z = 2.28, p = 0.045), and at the same time, not significantly different from

Non-Harmonic language learners (β = 0.21, SE = 0.40, z = 0.52, p = 0.60). Thus Harmonic

learners learnt the alternation, whereas those in the other two groups, on the whole, did not.

As in the blick test, we were also interested in examining whether the rate of choosing

harmonic plurals was proportional to proportion of harmonic stems. The rate of choosing

correct plurals was analyzed using a mixed-effects logistic regression model with proportion of

harmonic stems in each language as a linear independent factor. The model also contained by-

subject and by-item random intercepts. This was the maximal model to converge. Participants’

performance in the wug test mirrored that of participants’ in the blick test, with the rate of

choosing harmonic plurals increasing significantly as a function of the proportion of harmonic

stems in the training language (β = 0.022, SE = 0.008, z = 2.82, p = 0.005). Thus as in the

wug test, there was gradient learning of the phonological generalization.
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3.2.4 Correlation between phonotactics and alternations
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Figure 3.3: Experiment 1: Correlation of between performance in blick and wug tests

As seen in the previous sections, overall performance of participants in the wug test mirrored

performance on the blick test. To further investigate the relationship between phonotactic and

alternation learning, we inspected correlation between individual learner’s performance on

the blick test and their performance on the wug test. Figure 3.3 shows each learners’ strength

of alternation learning (wug test) as a function of phonotactic learning (blick test) collapsed

across all three language groups. There was a significant positive correlation between the rate

of choosing harmonic words in the blick test and the rate of choosing correct harmonic plurals

(R2 = 0.32, r(43)=0.56, p <0.001), suggesting that even on an individual participant’s level,

alternation learning was correlated with phonotactic learning.
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3.2.5 Discussion

The results of Experiment 1 show that alternations are more difficult to learn when stem

phonotactic generalizations mismatch with the dynamic generalization. I also replicated the

finding that participants show gradient phonotactic learning depending on the proportion of

harmonic stems in the training lexicon (Frisch & Zawaydeh 2001, Hayes et al. 2009, Becker et

al. 2011, Hayes 2000). Importantly, our results suggest that gradient learning of phonotactics

leads to the gradient learning of alternations. Thus, our results provide clear evidence that

matching phonotactics results in better learning of an alternation. In fact, participants in the

Non-Harmonic language groups failed to learn the alternation despite there being exceptionless

evidence for the alternation in the learning data. Performance by Semi-Harmonic learners

was intermediate between both Harmonic and Non-Harmonic learners. Given that the main

difference across the language groups was in terms of the proportion of harmonic stems, it seems

that the alternation learning task is made more difficult if stem phonotactics do not support

the dynamic generalization about alternations. More generally, on an individual level, the

accuracy of alternation learning correlated with the degree to which each participant inferred a

phonotactic constraint regarding harmonic stems, suggesting further that phonotactic learning

aids alternation learning.

While we found a significant overall positive linear relation between proportion of harmonic

stems and strength of both phonotactic and alternation learning, we failed to find a significant

difference between the Non-Harmonic and Semi-Harmonic learners when these groups were

directly compared. The difference in harmonic stem proportions between the Non- and Semi-

Harmonic languages and the Semi-Harmonic and Harmonic languages were both 25%, with the

Semi-Harmonic language being a mid-point between the two extremes. Thus the fact that there

is a larger difference between the latter than the former pairs suggests that the degree to which

exceptionality will affect the productivity of a particular phonotactic constraint or phonological

alternation is not completely proportional to the amount of phonotactic evidence in the lexicon.

While some recent work by Moore-Cantwell (2017) and Moore-Cantwell & Pater (2017) has

investigated this question from a computational perspective, it is as yet still an open question
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as to how exactly the degree of exceptionality affects productivity, an area that warrants further

examination.

The basic finding in Experiment 1 was that participants were not successful at learning

the alternation when the static phonotactic generalization in stems did not support the alter-

nation. When exposed to a language in which both types of generalizations accorded with

each other, participants successfully learnt the alternation. It is unclear what is necessary for

this however. That is, what kind of information in the input facilitates the learning of an

alternation? In the following series of experiments, we examine this question by varying what

participants are exposed to in training. In Experiment 2, we were interested in ascertaining if

morphological/semantic information was necessary for learners to learn the alternation.

3.3 Experiment 2: Distributional learning of full language

In Experiment 2, participants were only exposed to either the Harmonic or Non-Harmonic

languages, since we were primarily concerned with the learning outcomes in the two languages

which were most distinct from each other. Unlike in Experiment 1, in Experiment 2, participants

were trained on singulars and plurals without accompanying images. We can conceive this type

of learning as encouraging ‘pure phonotactic learning’ since participants are not given overt

semantic associations that might facilitate a morphological parse of the stimuli. Of course it is

possible that participants can still use transitional probabilities to segment the plural words

into stem and suffix (Saffran, Aslin, & Newport 1996), but in the absence of accompanying

images this would have to be implicit. Given that Finley & Badecker’s (2009) adopted a

training paradigm that did not have accompanying images, and found successful learning of the

harmony alternation, we expect participants exposed to the Harmonic language in Experiment

2 to successfully learn the alternation here as well. Note that the current task is more difficult

than Finley & Badecker’s (2009) since in their experiment participants were trained on both

the ‘unaffixed’ (e.g. [bidi]) and ‘affixed’ forms (e.g. [bidi-mi]) side-by-side on the same training

trial. In our experiment these forms are randomly ordered such that a direct comparison of the
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two forms is not available. Thus, if we obtain the same result here in a slightly more difficult

learning task, we can be confident of the robustness of learning.

3.3.1 Methods

3.3.1.1 Participants

30 participants were recruited from the UCLA Psychology Pool. Participants were randomly

put into one of the two artificial language groups (15 in each). 14 more were tested but were

excluded due to wrong first language background (n = 4), knowing a language with vowel

harmony (i.e. Armenian; n = 1), taking notes (n = 4), not completing (n = 1), one for having

consistent issues playing the sound files (n = 4).

3.3.1.2 Stimuli

Only stimuli from the Harmonic and Non-Harmonic languages in Experiment 1 were used in

Experiment 2.

3.3.1.3 Procedure

The general procedure was the same in Experiment 2 as in Experiment 1. There was a training

phase followed by two test phases, blick and wug tests. In Experiment 2, participants were told

that they were going to learn words from a new language, as in Experiment 1, but unlike in

Experiment 1, participants were not shown images that accompanied each word during the

training phase. Thus, participants did not have any semantic association and thus were not able

to parse the training stimuli as singular or plural. Like in Experiment 1, there were 3 training

blocks with a total of 192 training trials. After completing the training phase, participants moved

on to the blick phase as in the previous experiment. The wug phase differed from Experiment

1, however. Since participants did not get any images in training, we were concerned that

introducing images in the test phase would make the task more complex. Thus the ‘wug’ phase
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in this Experiment 2 resembled the blick test in that participants just heard two possible words,

corresponding to the two possible plurals, and had to decide which of those belonged to the

language they had just learnt without any images.

3.3.2 Results - Blick test: phonotactic generalizations
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(b) Wug Test

Figure 3.4: Experiment 2: Rate of choosingSemi-Harmonic harmonic words in (a) blick test and
(b) wug test. Each black dot represents a single participant with the large red-dot indicating
mean rates for each language group. The red lines indicate 95% confidence intervals.

The rate of choosing harmonic words in the blick test in Experiment 2 is shown in Figure

3.4(a). The rate of choosing harmonic words was analyzed using a mixed-effect logistic

regression with Language (Harmonic and Non-Harmonic) as a categorical factor. The model

also contained by-subject and by-item random intercepts, with Language as a random slope

for item. As in Experiment 1, we were interested in ascertaining whether each language

group’s performance significantly differed from chance and each other, and we did this using

the multcomp package which allowed for multiple simultaneous comparisons. Replicating

the results in Experiment 1, Harmonic language chose harmonic words significantly above

chance (β = 0.73, SE = 0.21, z = 3.47, p = 0.002), whereas Non-Harmonic language learners

60



were at chance (β = -0.10, SE = 0.25, z = -0.38, p = 0.70). Not surprisingly then, Harmonic

language learners chose harmonic words at a significantly higher rate than Non-Harmonic

language learners (β = 0.83, SE = 0.25, z = 3.31, p = 0.002). Harmonic language learners

thus successfully learnt a phonotactic generalization that word forms had to contain harmonic

vowel sequences. Contrastively, Non-Harmonic language learners, as expected, did not infer

any vowel harmony constraint and accepted both harmonic and non-harmonic words at more

or less equal rates.

3.3.3 Wug test: phonological alternations

3.3.3.1 Predictions

Given Finley & Badecker’s (2009) result, as well as the results in Experiment 1, we expect

that Harmonic language learners, despite not having semantic associations or a morphological

parse in training, should nonetheless successfully learn the alternation, whereas those in the

Non-Harmonic language group will fail to learn the alternation.

3.3.3.2 Results

The rate of choosing correct plurals in the wug test in Experiment 2 is shown in Figure 3.4(b).

As in Experiment 1 and the analysis of blick test performance previously, the rate of choosing

correct plurals was analyzed using a mixed-effect logistic regression with Language (Harmonic

and Non-Harmonic) as a categorical factor. The model also contained by-subject and by-item

random intercepts, with Language as a random slope for item. Mirroring again the blick test

performance, Harmonic language learners chose correct plurals significantly more often than

chance (β = 0.62, SE = 0.17, z = 3.60, p <0.001), and at a marginally significantly higher rate

than Non-Harmonic language learners (β = 0.37, SE = 0.23, z = 1.64, p = 0.10), who were

at chance (β = 0.25, SE = 0.15, z = 1.65, p = 0.10). This indicates that, replicating Finley

& Badecker’s (2009) finding, that Harmonic learners successfully learnt the alternation in a
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purely distributional learning training paradigm, without explicit access to a morphological

parse or semantic information.

3.3.4 Discussion

The results in Experiment 2 replicated the results of Experiment 1. The phonotactic gener-

alizations participants arrived at differed depending on the language they were trained on,

with the learners trained on the Harmonic language inferring a vowel harmony constraint,

whereas those trained on the Non-Harmonic language did not. The performance on alternation

learning here also mirrored participants’ performance in Experiment 1 with Harmonic language

learners successfully learning the alternation and Non-Harmonic learners failing to do so, as

indicated by their chance level performance on picking harmonic plurals. Recall that the sole

difference between Experiments 1 and 2 is the fact that in Experiment 2, participants did

not have explicit access to a morphological parse due to the absence of images in training.

Nonetheless, participants picked the correct allomorph of the plural in the wug task. Thus,

participants were still able to learn an alternation.

In Experiment 3, we extended this line of inquiry by examining whether learners are biased

to have alternations reflect stem phonotactics without any exposure to the alternation at all.

That is, do learners spontaneously expect alternations to reflect stem phonotactics in the absence

of any evidence. If phonotactics and alternations are indeed encoded using a single mechanism,

as in Optimality Theory, then we might expect participants to enforce a learnt phonotactic

constraint on unseen potentially alternating forms. This would be the strongest evidence of a

relationship between the two types of phonological knowledge.

3.4 Experiment 3: Stem-only training

In Experiment 3, using a poverty of stimulus design, we were interested in examining whether

or not learners spontaneously expect alternations to reflect a learned phonotactic generaliza-

tion. Participants were trained on the same languages as in Experiment 1. In Experiment 3,
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however, learners were only presented with singular CVCV stems and did not get exposed to

plurals in training. Thus, learners only had evidence for a static phonotactic generalization

but did not get evidence regarding phonological alternations. If learners spontaneously expect

alternations to reflect phonotactic generalizations, then we expect that learners should replicate

the performance in the wug test of Experiments 1 and 2, learning the alternation successfully

even without any evidence for this.

3.4.1 Methods

3.4.1.1 Participants

30 participants were recruited from the UCLA Psychology Pool. Participants were randomly

put into one of the two artificial language groups (15 in each). 6 more were tested but were

excluded due to having the wrong first language background (n = 3), not completing (n = 1),

having consistent technical issues playing the sound files and for taking notes in training (n =

1).

3.4.1.2 Stimuli

Only stimuli from the Harmonic and Non-Harmonic languages in Experiment 1 were used in

Experiment 3.

3.4.1.3 Procedure

The procedure in Experiment 3 was largely the same as in Experiment 1. In training, how-

ever, participants were only trained on bisyllabic singular stems (with accompanying images).

Participants were never familiarized on trisyllabic plural words. In order to provide the same

amount of learning data as in Experiment 1 and 2, there were 6 blocks of training instead of

the previous 3, since initial piloting revealed that phonotactic learning did not occur on just

3 blocks of training. This ensured that participants were exposed to 192 training trials (as in
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Experiments 1 and 2). The two test phases were the same as in Experiment 1. As in the wug

test in previous experiments, participants were told that they were going to hear two words for

a given image and that they had to pick the word they thought was correct for the language

they had just learnt. Thus, in the wug test, learners had to generalize a learnt phonotactic

generalization about bisyllabic singular stems to unseen alternations (trisyllabic plurals).

3.4.2 Results

3.4.2.1 Blick test: phonotactic generalizations
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Figure 3.5: Experiment 3: Rate of choosing harmonic words in (a) blick test and (b) wug test.
Each black dot represents a single participant with the large red-dot indicating mean rates for
each language group. The red lines indicate 95% confidence intervals.

The rate of choosing harmonic words in the blick test in Experiment 3 was analyzed in the

same way as in Experiment 2 (Figure 3.5(a)). Replicating the results of both Experiments 1

and 2, Harmonic language learners chose harmonic words significantly more often than chance

(β = 0.92, SE= 0.22, z = 4.18, p <0.001), and significantly more often than Non-Harmonic

language learners (β = 1.06, SE = 0.21, z = 5.13, p <0.001). As in both previous experiments,

Harmonic language learners inferred a phonotactic preference for harmonic words whereas
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Non-Harmonic language learners did not (β = -0.14, SE = 0.19, z = -0.74, p = 0.46), following

the available evidence in the training data.

3.4.2.2 Wug test: phonological alternations

The rate of choosing correct plurals in the wug test in Experiment 3 was analyzed in the

same ways in Experiment 2 (Figure 3.5(b)). Unlike in Experiments 1 and 2, learners in both

languages chose correct plurals at chance (Harmonic: β = 0.05, SE = 0.21, z = 0.25, p =

0.80; Non-Harmonic: β = -0.22, SE = 0.14, z = -1.53, p = 0.38), and there was no significant

difference in the rate of choosing correct plurals across both languages (β = 0.27, SE = 0.21, z

= 1.29, p = 0.38). This indicates that despite inferring a phonotactic generalization preferring

harmonic stems, Harmonic language learners nevertheless did not spontaneously extend this

generalization to a novel morphological domain.

Given the lack of a difference in alternation learning between the two language groups, we

were interested in ascertaining if participants showed a preference for one of the allomorphs

over the other, as a strategy for responding in the wug test. The rate of choosing the [-mu]

allomorph was calculated (Figure 3.6(a)) and analyzed in the same fashion as the preceding

analyses. Participants in the Harmonic group showed a preference for the [-mu] allomorph

as indicated by above chance rates of selecting it (β = 0.73, SE = 0.31, z = 2.38, p = 0.03),

whereas those in the Non-Harmonic group showed no such preference (β = 0.34, SE = 0.30, z

= 1.14, p = 0.25). Further, there was no correlation between their performance on the blick

test and the wug test in the Harmonic language in which participants showed learning of the

phonotactic constraint (Figure 3.6(b): R2 <0.1, r(13) = -0.08, p = 0.78).

3.4.3 Discussion

In Experiment 3, Harmonic language learners succeeded again in internalizing a phonotactic

generalization favoring harmonic bisyllabic stems. However, they failed to extend a learnt
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Figure 3.6: Experiment 3: (a) Rate of choosing [-mu] allomorph in Wug test. Each black dot
represents a single participant with the large red-dot indicating mean rates for each language
group. The red lines indicate 95% confidence intervals. (b) Correlation between phonotactic
and alternation learning in Harmonic language.

phonotactic generalization to an unseen plural alternation, suggesting that learners are highly

conservative in extending phonological generalizations to a novel morphological domain.

One reason that participants failed to extend the phonotactic to the alternation could be

basically that these two types of phonological knowledge are separately acquired, and therefore

exposure to alternations is required in order for an alternation to be learnt in the first place.

But there remains one other alternative possibility, that might have to do with task effects.

In Experiment 3, participants only heard bisyllabic stems in training. Then in the wug test,

participants had to generalize to novel trisyllabic forms since all plurals are trisyllabic, as well

as to a novel morphological context (i.e. plurals vs. singulars). Thus their failure to extend the

generalization could be due to the novel trisyllabic form of the plurals. In Experiment 4, we

tested this hypothesis.
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3.5 Experiment 4: Trisyllabic stems

To address the possibility that learners need to have exposure to trisyllabic forms in order to

generalize to unseen triysllabic plurals, in Experiment 4, half of the bisyllabic stems in the

training stimuli were modified to be trisyllabic by adding another CV syllable at the end. Thus

learners were exposed to both bisyllabic and trisyllabic stems in training, and were then asked

to extend the generalization to unseen trisyllabic plurals. So if learners succeed in generalizing

from a stem phonotactic to a phonological alternation, when exposed to trisyllabic stems in

training, it would suggest that learners do expect alternations to reflect phonotactics but require

experience with the relevant word shapes (i.e. trisyllabic words). If, however, participants

still fail to generalize to plurals, this would suggest that they require explicit evidence for

an alternation in order to learn it, but that when evidence for alternations are available that

learning this is aided if the phonotactics match the alternation.

3.5.1 Methods

3.5.1.1 Participants

30 participants were recruited from the UCLA Psychology Pool. Participants were randomly

put into one of the two artificial language groups (15 in each). 9 more were tested but were

excluded due to having the wrong first language background (n = 5), not completing (n = 1),

and having consistent issues with playing the sound files (n = 3).

3.5.1.2 Stimuli

In order to create trisyllabic stems, extra CV sequences were generated from the original set of

Cs {p, b, t, d, k, g, m, n} and Vs {i, e, u, o}, with each C and V occurring equally frequently in this

position (each C occurred twice and each V occurred four times), yielding 16 novel CVs. These

were concatenated with half of the stems (16 stems) in the training data used in Experiment 3

to create trisyllabic stems (e.g. old stem ["kete] + new CV [be] −→ new stem ["ketebe]). Half
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of this set of stems were non-harmonic in the Non-Harmonic language, but harmonic in the

Harmonic language. The other half were all harmonic in both languages. Thus the resulting

training set, contained half bisyllabic and half trisyllabic stems. Only two languages were used

for this experiment: Harmonic and Non-Harmonic. As in previous experiments, in the Harmonic

language, all stems were harmonic. In the Non-Harmonic language, however, half stems were

harmonic and half non-harmonic, split evenly across each stem type (bisyllabic and trisyllabic).

A full set of stimuli items are shown in the Appendix. We used the same test stimuli as in

Experiments 1-3, to maintain the ability to compare results across experiments. So learners

only needed to decide between bisyllabic words in the blick test.

New trisyllabic stems were recorded by the same speaker used for the original stimuli in

Experiment 1 using PCQuirer (Scicon R & D 2015) at a sampling rate of 22,050 Hz and were

rescaled to 70 dB. As in previous experiments, stress was always placed on the initial syllable,

voiceless stops were always aspirated and voiced stops always voiced throughout the closure.

As with the previous set of training data, the new training languages were fed into the

UCLA Phonotactic Learner. Recall that larger differences in penalty scores between disharmonic

and harmonic words indicates a larger preference for Harmonic over Disharmonic words. For

the blick words, there was a clear preference for harmonic words in the Harmonic language

(difference score = 9.78) but not in the Non-Harmonic language (difference score = 0.10).

Furthermore, there was a preference for harmonic plurals in the Harmonic language (difference

score = 7.71) but no such preference in the Non-Harmonic language (difference score = 0.82),

unlike what we saw previously. This is different from the training data used in Experiments 1

and 2 since there are no alternating plurals in this training set. The learner thus confirmed the

fact that the two languages differ in their phonotactic generalizations in support of harmonic

words. Thus if learners choose to extend their learnt phonotactic generalizations to wug plurals,

we expect them to show a preference for harmonic (i.e. correct) plurals. It is important to note

here that the learner does not have access to morphological boundaries, thus when faced with

a plural form it assesses the phonotactic legality of this form in the same way as a stem that just

contains one morpheme.
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3.5.1.3 Procedure

Training in Experiment 4 proceeded as in Experiment 3, with the sole difference that there

were trisyllabic stems in training (e.g. ["ketebe]). Once training was completed, participants

proceeded on to the two test phases, as in Experiments 1 and 3. Thus, as in Experiment 3,

participants had to generalize a phonotactic generalization about singular stems to unseen

plurals.

3.5.2 Results

3.5.2.1 Blick test: phonotactic generalizations
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Figure 3.7: Experiment 4: Rate of choosing harmonic words in (a) blick test and (b) wug test.
Each black dot represents a single participant with the large red-dot indicating mean rates for
each language group. The red lines indicate 95% confidence intervals.

The rate of choosing harmonic words in the blick test in Experiment 4 was analyzed in

the same way as in previous experiments (Figure 3.7(a)). Harmonic language learners chose

harmonic words significantly above chance (β = 0.68, SE = 0.17, z = 4.04, p <0.001), whereas

Non-Harmonic language learners were at chance (β = -0.03, SE = 0.17, z = -0.20, p =
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0.84). Importantly, Harmonic language learners showed a significantly stronger preference

for harmonic words over non-harmonic words (β = 0.71, SE = 0.19, z = 3.66, p <0.001)

compared to Non-Harmonic language learners. This replicates results of Experiments 1-3 that

show different phonotactic learning outcomes between both language groups depending on the

presence of non-harmonic stems in the lexicon, but with training using trisyllabic as well as

bisyllabic stems.

3.5.2.2 Wug test: phonological alternations

Participants’ responses (Figure 3.7(b)) in the wug test were analyzed in the same manner as in

previous experiments. Harmonic language learners chose correct (harmonic) plurals at a rate

that was not significantly different from chance (β = 0.04, SE = 0.26, z = 0.82, p >0.50), as

did Non-Harmonic language learners (β = -0.18, SE = 0.19, z = -0.95, p >0.50). Importantly,

there was no significant difference in terms of accuracy between both language groups (β =

0.21, SE = 0.26, z = 0.82, p >0.50). Thus, as in Experiment 3, participants did not extend the

phonotactic generalization about stems, including trisyllabic stems, to novel unseen plurals that

involved alternations.

As in Experiment 3, we further examined if participants in Experiment 4 showed a preference

for one of the allomorphs over the other. The rate of choosing the [-mu] allomorph over the

[-mi] allomorph was calculated and analyzed in the same manner as the rate of choosing correct

plurals. Our results revealed that participants in both language groups, on the whole, did not

choose one allomorph of the suffix exclusively over the other as seen in Figure 3.8(a), with

both groups choosing the [-mu] allomorph at chance rates (Harmonic language: β = 0.18, SE

= 0.20, z = 0.92, p = 0.72; Non-Harmonic language: β = 0.04, SE = 0.22, z = 0.18, p = 0.86).

Furthermore, there was also no correlation between their performance on the blick test and the

wug test in the Harmonic language in which participants showed learning of the phonotactic

constraint (Figure 3.8(b): R2 = 0.16, r(13) = 0.40, p = 0.14).
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Figure 3.8: Experiment 4: (a) Rate of choosing [-mu] allomorph in Wug test. Each black dot
represents a single participant with the large red-dot indicating mean rates for each language
group. The red lines indicate 95% confidence intervals. (b) Correlation between phonotactic
and alternation learning in Harmonic language.

3.5.3 Discussion

In Experiment 4, participants were trained on trisyllabic stems as well as bisyllabic stems, thus

they had exposure to trisyllabic forms in training, and could have extended a learnt phonotactic

generalization about trisyllabic forms to novel plurals that are all tri-syllabic. Harmonic language

learners, as expected, showed successful internalization of phonotactics, at least as indicated by

performance on the blick test with bisyllabic forms. Yet, contrary to expectations, Harmonic

language learners failed to extend this generalization to the novel alternation, replicating the

conservative behavior with regards to alternations in Experiment 3.

At first glance, the failure to extend the static phonotactic generalization might be surprising

if we consider the fact that learners in Finley & Badecker’s (2009) study were able to extend a

learnt generalization about trisyllabic forms to a novel alternation. The difference, however,

between our current experiment and Finley & Badecker’s (2009) is that in their experiment,

participants were trained explicitly on one alternation and test on a different one which still

71



conformed to the same abstract generalization involving harmony. In our experiment, learners

were not trained on any alternations but rather a static phonotactic generalization in singular

stems. In the wug test, they then had to extend this generalization to a novel unseen alternation

in plurals. Thus this presents a different task than that in Finley & Badecker (2009).

Together, the results of Experiment 3 and 4 show that learners are conservative in positing

alternations when there is no evidence in the input for them.

3.6 General Discussion

Using an artificial grammar learning paradigm, we investigated how phonotactics and al-

ternation learning interact. We specifically examined the question of whether the learning

of phonological alternations is facilitated when the phonotactic generalization within stems

matches the generalization that motivates alternations. In Experiment 1, we compared alterna-

tion learning across languages with three degrees of phonotactic match. Learners accurately

learnt the phonotactic generalization in each case. Importantly, learning of the alternation

was most successful in the Harmonic language where the phonotactics match the alternation.

Learners in the Non-Harmonic language did not learn the alternation, while Semi-Harmonic

language learners did. Further, in Experiment 2, learners showed the same learning behavior in

the absence of semantic information in training. Alternation learning, therefore, is facilitated

when phonotactics match. Learners, however, failed to extend a learnt phonotactic generaliza-

tion to a novel unseen alternation regardless of whether they were trained on bisyllabic stems

(Experiment 3) or trisyllabic stems (Experiment 4). Why did the results in Experiments 2 and 4

differ when learners in both experiments had trisyllabic forms in training? In Experiment 2,

although learners did not have accompanying pictures, they nonetheless had implicit access

to morphology since they were still exposed to plural word forms in training. Learners in

Experiment 4 did not have this, and in fact, were trained explicitly on trisyllabic stems. Further,

there were no pictures in the wug test in Experiment 2 so participants could have treated this

as a blick test. Thus a combination of both of these factors might have facilitated learners’
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performance on the wug task in Experiment 2. To sum up, although alternation learning is

facilitated when phonotactics match, learners are, nonetheless, conservative in extending a

phonotactic generalization to alternations.

What does this mean for the relationship between phonotactics and alternations in learning?

Taken together, the results of both Experiments 1 and 2 show that phonotactic mismatches

impede the learning of an alternation, suggesting that phonotactic learning facilitates alternation

learning. The amount of evidence for alternations was kept consistent, and exceptionless,

across the different language groups. Thus the failure of Non-Harmonic language learners to

successfully learn the alternation was in spite of there being evidence to support this in the

training data. A learning model in which phonotactic knowledge and alternation knowledge are

acquired completely separately and independently of each other thus fails to account for this

result. Our current study therefore provides experimental evidence in support of the hypothesis

that learning phonotactics facilitates learning of alternations (Hayes 2004, Hayes & Wilson

2008, Prince & Tesar 2004, Tesar & Prince 2007, Jarosz 2006). Our results also further confirm

that phonotactic learning is gradient and is consistent with the lexical statistics in the input

(Frisch & Zawaydeh 2001, A. W. Coetzee & Pater 2008). Learners showed a gradient preference

for harmonic words that was proportional to the lexical statistics of harmony in the training data.

Interestingly, the success with which learners’ learnt the alternation across all three languages

mirrored their performance on the phonotactic learning task. Thus our results not only show

that phonotactic learning is gradient, they also show that gradient phonotactic learning leads

to gradient alternation learning.

While phonotactic learning can facilitate alternation learning, learners do not readily assume

that alternations will reflect phonotactic generalizations. The lack of generalization in Experi-

ments 3 and 4 suggest that learners are conservative in extending a learnt static phonotactic

pattern to a novel alternation in across a different morphological domain. This likely reflects a

general anti-alternation bias which is enforced early in morphophonological learning (Benua

2000, Tessier 2012, Do 2013, Hayes 2004, McCarthy 1998). Thus it is likely we would only

see extension of the phonotactic generalization when learners experience alternations in the
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training language. What is clear though is that when both types of generalizations are available,

a matching phonotactic generalization aids the learning of the alternation.

Our study also contributes to the investigation of the directionality of influence between

phonotactics and alternation learning. In our experiment it seems that the nature of phonotactic

generalizations influences the ability to learn alternations, providing evidence for the flow of

information from phonotactics to alternations (c.f. Pater & Tessier 2005). What our experiments

suggest though is that the relation might be uni-directional and that alternation knowledge

may not affect phonotactic knowledge. Although the alternation pattern in the Non-Harmonic

language was always consistent, this did not affect learners’ phonotactic knowledge. That is,

since vowel sequences across a morpheme boundary always harmonized, even in the Non-

Harmonic language there are actually more harmonic vowel sequences than disharmonic vowel

sequences. Learners therefore had more overall evidence for harmonic vowel sequences, but the

presence of the alternation failed to influence what learners’ inferred about stem phonotactic

generalizations. This echoes recent findings by both Pizzo (2015) and Chong (2016) who failed

to robustly show an effect of alternation learning on the learning of stem-internal phonotactics.

As Pizzo (2015) points out, that phonotactics should affect alternations is intuitive given that

phonotactics seems to be acquired before alternations in infancy (Jusczyk et al. 1994, Saffran &

Thiessen 2003, Friederici & Wessels 1993, K. S. White et al. 2008, J. White & Sundara 2014).

The reverse relationship, with alternation learning affecting phonotactic knowledge, seems

less motivated. Whether the two kinds of phonological knowledge are encoded by the same

mechanism is still, however, an empirical question. At the very least, the fact that learners failed

to spontaneously extend phonotactic generalizations to alternations shows that the simplest

implementation is likely incorrect.

In addition to addressing the broader question regarding the relationship between phono-

tactics and alternations in learning, our study also has further implications for the learnability

of phonological alternations with mismatching phonotactics. These types of patterns are known

in the theoretical phonology literature as derived-environment effects (Kiparsky 1993). Tra-

ditional analyses of these patterns predict that the alternations should be productively learnt.

74



Yet, in Experiments 1 and 2, adults failed to learn the phonological alternation with cases of

mismatching phonotactics, despite being exposed to evidence of an alternation in the learning

data. This suggests the possibility that alternations in derived-environment patterns are more

difficult to learn when compared to a language in which alternations and phonotactics match,

making such language patterns typologically dispreferred. In fact, a ‘true’ derived-environment

pattern akin to the mismatch Non-Harmonic language used in our experiments seems to be

elusive.

Chong (under revision) shows that in one well-known example of derived-environment

effects, Turkish velar deletion (Inkelas 2000, 2011, Inkelas & Orgun 1995, Inkelas et al. 1997,

Lewis 1967, Sezer 1981, Zimmer & Abbott 1978), a careful inspection of the lexicon shows

that there is no phonotactic constraint against intervocalic velars in the lexicon. Yet there is

an alternation that deletes stem-final velars when these are followed by a vowel-initial suffix.

Thus exactly the same sequences that are allowed to occur within a stem are nonetheless

involved in an alternation across a morpheme boundary. Interestingly, however, the alternation

is highly morphologically-conditioned (Sezer 1981, Inkelas 2011), applying productively only

with polysyllabic nouns (Zimmer & Abbott 1978, Becker et al. 2011). Thus the alternation in

this case seems highly circumscribed, when the phonotactics mismatch.

What about the learning of Turkish Vowel Harmony on which the Non-Harmonic language

is based? Previous studies have shown that children as young as 2;0 show successful acquisition

of vowel harmony in their productions (Aksu-Koç & Slobin 1985). Further both van Kampen,

Parmaksiz, van de Vijver, & Höhle (2008) and Altan, Kaya, & Hohenberger (2016) show that

Turkish infants show early preferences for harmonic words over disharmonic ones. An early

study by Zimmer (1969) also showed that Turkish speakers show awareness of this harmony

pattern. Given our finding that the success of alternation learning was proportional to the

proportion of harmonic stems in the lexicon, what might the Turkish lexicon look like? To

ascertain this, vowel-vowel co-occurrences in polysyllabic roots in the Turkish Electronic Living

Lexicon (Inkelas, Küntay, Orgun, & Sprouse 2000) was calculated. There were a total of 12,491

polysyllabic roots. Table 3.2 shows the number of co-occurrences between front ([-back])
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and back ([+back]) vowels. Observed/Expected (O/E) values were calculated for each cell.

‘Observed’ (O) values are the total number of times each VV combination is found in the

corpus while ‘Expected’ (E) values are how often each VV combination is expected if each

V1 and V2 sequence co-occurred based on chance. Expected values were then calculated by

taking the product of the relevant marginal totals (row and column) and dividing it by the

grand total (for other examples of the use of this measure see A. Coetzee 2008, Frisch &

Zawaydeh 2001). O/E values are finally calculated by dividing the Observed by the Expected

value. An O/E value of 1 indicates that a particular sequence occurs at the expected rate of

occurrence, a value above 1 indicates over-representation of that particular VV and a value

under 1 indicates underrepresentation. The percentages in bold indicate the proportion of V1s

found in a particular V2 context and the percentages in italics indicate the proportion of V2s in

a V1 context. The marginal percentages (bottom row and final column) indicate the expected

proportions of each type of V1 and V2. We note that non-harmonic sequences (cells which

are not shaded) are significantly under-represented (χ2(1) = 3033.7, p <0.001) with O/E

values under 1. In fact, harmonic VV sequences are overrepresented in the corpus, and thus the

lexicon of Turkish shows a harmonic preference in VV sequences in the lexicon. It is possible

then that the Turkish vowel harmony alternation is aided by the preference for harmonic stems

in the lexicon. Thus the traditional description of Turkish as completely non-harmonic is not

supported by the corpus counts. Instead, based on the larger frequency of harmonic roots in

the Turkish lexicon, Turkish is better described as semi-harmonic.

Another well-known case of derived-environment effects is Korean palatalization (Kiparsky

1973, Iverson & Wheeler 1988, Kiparsky 1993, T. Cho 2001). There is some evidence that the

alternation in this productive across a suffix boundary (Jun & Lee 2007). Analysis of Korean

corpora also shows that this alternation is supported by a gradient phonotactic constraint in

the lexicon (Chong, under revision; see Chapter 4). Taken together, these studies show that

many of the well-known cases of derived-environment effects appear to be less than perfect

examples (see also Anttila 2006, Inkelas 2011). A ‘true’ derived-environment language with a

perfect mismatch between phonotactics and alternations, thus, has yet to be discovered, further
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V2: [-back] V2: [+back] Expected % of V2

V1: [-back]
5,649 (3,776)

67.80% / 65.85%
O/E = 1.50

2,930 (4,803)
32.20% / 25.92%

O/E = 0.61
44.01%

V1: [+back]
2,683 (4,556)

27.64% / 34.15%
O/E = 0.59

7,669 (5,796)
72.36% / 74.08%

O/E = 1.32
55.99%

Expected % of V1 45.32% 54.68%

Table 3.2: Occurrence of VV combinations: by V1 type (front [-back] vs. back [+back]) and by
V2 type (front [-back] vs. back [+back]) . Expected counts are in parentheses. Percentages in
bold: row percentages; Percentages in italics: column percentages. The cells in gray indicate
disharmonic sequences (i.e. [-back][+back] and [+back][-back])

supporting the idea that these patterns are dispreferred, likely due to the difficulty in learning

them.

All in all, this study has provided evidence for the basic claim that phonotactic learning

facilitates alternation learning. At the same time, we have also shown that learners are con-

servative in extending static phonotactic generalizations to novel alternations. Together, our

results suggest that both types of phonological knowledge cannot be entirely independent of

each other in a model of phonological learning, although the exact mechanism which links

them is still an open question. We have further shown that patterns which show a mismatch

between phonotactics and alternations are more difficult to learn, predicting that these patterns

should be dispreferred cross-linguistically. While the results of the current study indicate that

phonotactics and alternations interact in learning, the trajectory of learning across both types

of phonological knowledge especially in infancy remains unknown. Given the timeline of

phonological development in infancy, with phonotactic knowledge emerging before alternation

knowledge, it would be illuminating to examine when different kinds of alternation knowledge

emerge. Our prediction here is that phonotactically supported alternations should be learnt

first.
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Appendix

Table 3.3: Experiment 1 training lexicon: Harmonic language

No. Singular Plural No. Singular Plural

1 beme bememi 17 nedi nedimi

2 pege pegemi 18 gibe gibemi

3 degi degimi 19 nopu nopumu

4 tipe tipemi 20 kugo kugomu

5 mine minemi 21 gubu gubumu

6 kipi kipimi 22 neke nekemi

7 dimi dimimi 23 nibi nibimi

8 podo podomu 24 dopo dopomu

9 dobo dobomu 25 kete ketemi

10 tonu tonumu 26 peki pekimi

11 muto mutomu 27 tidi tidimi

12 buno bunomu 28 gomo gomomu

13 gutu gutumu 29 boku bokumu

14 budu budumu 30 pime pimemi

15 tegi tegimi 31 muko mukomu

16 motu motumu 32 kunu kunumu
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Table 3.4: Experiment 1 training lexicon: Semi-Harmonic language

No. Singular Plural No. Singular Plural

1 beme bememi 17 nedi nedimi

2 pege pegemi 18 gibe gibemi

3 degi degimi 19 nopu nopumu

4 tipe tipemi 20 kugo kugomu

5 mine minemi 21 gubu gubumu

6 kipi kipimi 22 neke nekemi

7 dimi dimimi 23 nibi nibimi

8 podo podomu 24 dopo dopomu

9 dobo dobomu 25 keto ketomu

10 tonu tonumu 26 peku pekumu

11 muto mutomu 27 tidu tidumu

12 buno bunomu 28 gome gomemi

13 gutu gutumu 29 boki bokimi

14 budu budumu 30 pume pumemi

15 tegi tegimi 31 miko mikomu

16 motu motumu 32 kuni kunimi
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Table 3.5: Experiment 1 training lexicon: Non-Harmonic language

No. Singular Plural No. Singular Plural

1 beme bememi 17 nodi nodimi

2 pege pegemi 18 gube gubemi

3 degi degimi 19 nepu nepumu

4 tipe tipemi 20 kigo kigomu

5 mine minemi 21 gibu gibumu

6 kipi kipimi 22 neko nekomu

7 dimi dimimi 23 nubi nubimi

8 podo podomu 24 dope dopemi

9 dobo dobomu 25 keto ketomu

10 tonu tonumu 26 peku pekumu

11 muto mutomu 27 tidu tidumu

12 buno bunomu 28 gome gomemi

13 gutu gutumu 29 boki bokimi

14 budu budumu 30 pume pumemi

15 tegi tegimi 31 miko mikomu

16 motu motumu 32 kuni kunimi
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Table 3.6: Experiment 4 training lexicon: Harmonic language

No. Singular No. Singular

1 beme 17 ketebe

2 pegebi 18 pekipe

3 degini 19 nedi

4 tipege 20 gibe

5 mine 21 tidigi

6 kipi 22 gomonu

7 dimi 23 bokumo

8 podoku 24 nopu

9 dobo 25 kugo

10 tonuto 26 gubu

11 mutoko 27 nekepi

12 buno 28 pime

13 gutu 29 nibi

14 budutu 30 dopodo

15 tegime 31 muko

16 motu 32 kunudu
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Table 3.7: Experiment 4 training lexicon: Non-Harmonic language

No. Singular No. Singular

1 beme 17 ketobe

2 pegebi 18 pekupe

3 degini 19 nodi

4 tipege 20 gube

5 mine 21 tidugi

6 kipi 22 gomenu

7 dimi 23 bokimo

8 podoku 24 nepu

9 dobo 25 kigo

10 tonuto 26 gibu

11 mutoko 27 nekopi

12 buno 28 pume

13 gutu 29 nubi

14 budutu 30 dopedo

15 tegime 31 miko

16 motu 32 kunidu
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Table 3.8: Blick test stimuli

No. Harmonic Non-Harmonic

1 deke doke

2 nepe nepo

3 pemi pomi

4 tebi tebu

5 kipe kupe

6 gike giko

7 dini dinu

8 kibi kubi

9 mogo moge

10 gono geno

11 podu podi

12 bogu begu

13 buto bito

14 numo nume

15 tudu tudi

16 mutu mitu
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Table 3.9: Wug test stimuli

No. Singular [-mi] Plural [-mu] Plural

1 mete metemi metemu

2 beke bekemi bekemu

3 neki nekimi nekimu

4 mipe mipemi mipemu

5 giti gitimi gitimu

6 pidi pidimi pidimu

7 kobo kobomi kobomu

8 konu konumi konumu

9 domu domumi domumu

10 tugo tugomi tugomu

11 tubu tubumi tubumu

12 gunu gunumi gunumu

13 bepi bepimi bepimu

14 dime dimemi dimemu

15 pugo pugomi pugomu

16 nodo nodomi nodomu
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CHAPTER 4

Derived environments and the lexicon

In Chapter 3, using artificial grammar learning experiments, I showed how learning an alterna-

tion is more difficult when the phonotactic generalization in stems mismatch the alternation (i.e.

a derived environment pattern).1 What does this mean for languages that actually show these

patterns? There is a hallowed literature on derived environment patterns dating back to Kiparsky

(1973). These analyses have in common the assumption that the alternation pattern across the

morpheme boundary is productive, with no phonotactic dispreference for morpheme-internal

sequences which are not repaired. Given that we found alternation learning to be more difficult

in the Non-Harmonic (derived environment) language in Chapter 3, are the alternations or

phonotactic generalizations actually productive in natural language examples? In this chapter,

I focus on examining whether there is phonotactic support in the lexicon for the alternation

in a derived environment pattern. I examine the lexicon in two well-known cases of derived

environment effects: Korean palatalization and Turkish velar deletion. I present corpus analyses

as well as computational learning simulations of both patterns. I show that in both patterns

the reported mismatches between phonotactics and alternations are superficial, undermining

previous analytic assumptions related to analyses of derived environment effects.

4.1 Introduction

It has been observed that phonological alternations at morphological boundaries often reflect

morpheme-internal static phonotactic patterns (Chomsky & Halle 1968, Kenstowicz & Kisseberth

1A version of this chapter is under revision for publication.
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1977, McCarthy 2002). Kenstowicz & Kisseberth (1977, 1979) give an example from Kirundi

(Meeusen 1959, Rodegem 1970) where vowels preceding nasal+consonant (NC) clusters are

[+long] as shown in (1):

(1) Vowels are [+long] before NC clusters within stems

a. [umu-ru:ndi] ‘a Rundi person’ *[umu-rundi]

b. [ku-ge:nd-a] ‘to go’ *[ku-gend-a]

Importantly, this static phonotactic generalization is also enforced across morpheme boundaries

by a phonological alternation, vowel lengthening. Underlying short vowels in /ku-/, /ba-/

and /umu-/ lengthen when prefixed before a stem containing an initial NC cluster as in (2a),

(2c) and (2e) but not a singleton in (2b), (2d) and (2f). Thus both the tautomorphemic

static phonotactic generalization and the heteromorphemic generalization that motivates the

phonological alternation can be captured using the same rule or constraint.

(2) Vowels lengthen before NC clusters across morpheme boundaries

a. /ku-n-dor-a/ −→ [ku:ndora] ‘to look at me’

b. cf. /ku-ror-a/ −→ [kurora] ‘to look at’

c. /ba-n-taba:re/ −→ [ba:ntaba:re] ‘that they help me’

d. cf. /ba-taba:re/ −→ [bataba:re] ‘that they help’

e. /umu-ntu/ −→ [umu:ntu] ‘person’

f. cf. /umu-gabo/ −→ [umugabo] ‘(married) man’

However, these two types of generalizations (static phonotactic generalizations about the

lexicon and dynamic generalizations about phonological alternations) do not always pattern

alike. Morphologically derived environment effects (also known as non-derived environment

blocking; e.g. Kiparsky 1973, 1993) are one such example of this mismatch (see Paster (2013)

for a recent review of other examples). A textbook example of derived environment effects is
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Korean palatalization. At morpheme boundaries, underlying stem-final coronal stops /t/ and

/th/ palatalize to [c] and [ch] respectively before a suffix-initial /i/ and /j/ as in (3) (Kiparsky

1973, Iverson & Wheeler 1988, Kiparsky 1993, T. Cho 2001).

(3) Palatalization across morpheme boundaries: /t, th/ −→/c, ch/ before /i/ and /j/ 2

a. /mat-i/ −→ [maci] ‘eldest-NOM’

b. /path-i/ −→ [pachi] ‘field-NOM’

c. /pat-hje-jo/ −→ [pachejo]3 ‘is butted’

However, palatalization fails to apply when the target consonant (/t/ or /th/) and /i/ or /j/ are

within the stem (i.e. tautomorphemic). Thus /ti/ and /thi/ sequences which are repaired at the

morpheme boundary are nonetheless attested within stems where they surface faithfully as in

(4).

(4) Blocking of palatalization tautomorphemically:

a. /mati/ −→ [mati] ’knot, joint’

b. /thim/ −→ [thim] ‘team’

Patterns such as these have continued to pose a challenge for phonological theory, starting with

Kiparsky (1973) (for a recent review and proposal see Inkelas 2014, 2015). Previous analyses of

such patterns in rule-based models (Chomsky & Halle 1968) or in Optimality Theory (Prince &

Smolensky 1993/2004) have focused on protecting morpheme internal non-derived sequences

(such as /ti/ in Korean) while ensuring that the very same sequences always alternate if they

occur due to morpheme concatenation. This has been achieved through a number of theoretical

2The tense stop, /t*/, does not occur word-finally (e.g. Sohn 1999). In this paper, we transcribe the palatal
consonants using the symbol for the palatal stop, although these are often transcribed using the symbol for the
alveolo-palatal affricate /c/.

3An independent process ensures that the lax stop /t/ followed by /h/ becomes aspirated and that the onglide

in /je/ deletes post-consonantally.
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tools such as underspecification (Kiparsky 1993), interleaving morphological operations and

phonological ones (Wolf 2008), conjoined constraints (Łubowicz 2002), and reference to new

or old input (Comparative Markedness; McCarthy 2003), amongst others. What these analyses

ignore, however, is the question of how productive these processes are and, relatedly, what

generalizations about these patterns are actually encoded by speakers in the grammar. For

example, Łubowicz (2002), examining Polish velar palatalization, concedes that the protected

stem-internal sequences she cites all appear in loanwords. She argues, however, that these words

have been wholly incorporated into the native grammar (Rubach 1984) since palatalization

applies in these words across the morpheme boundary, arguing against these examples being

purely exceptions to the phonological rule. Yet this argument ignores the question of how

phonotactically well-formed such protected sequences actually are in the phonological grammar

of Polish speakers.

In this chapter, I examine, using computational learning simulations, what static gener-

alizations are available to learners in derived environment effect patterns, focusing on two

well-known examples: Korean palatalization and Turkish velar deletion. I begin, in §2, by

looking critically at the analytic assumptions adopted by existing accounts of morphologically

derived environment effects. In §3, I provide the historical background regarding the palatal-

ization patterns in Korean, including the origins of the current generalization mismatch. I then

report the results of an in-depth corpus study of the Korean lexicon, as well as a phonotactic

learning simulation of Korean. I end §3 by presenting a new analysis of the Korean pattern using

lexically-specific constraints, arguing essentially that the stem-internal sequences protected from

palatalization in Korean are examples of gradient exceptionality. These findings are compared

to one other well-known case of morphologically derived environment effects, Turkish velar

deletion, in §4. The implications of these results are taken up in §5, where I argue that various

examples of morphologically derived environment effects, while structurally similar superficially,

are actually quite different from each other.

To preview the results, non-palatalized sequences in Korean are underrepresented in the

lexicon and this leads to the learning of a gradient phonotactic constraint that penalizes
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such sequences across-the-board. In Turkish, however, intervocalic velars, while somewhat

under-represented in the lexicon, are not sufficiently under-represented to be penalized by a

phonotactic learner. Thus two putatively similar cases of derived environment effects are shown

to have very different lexical statistics, providing evidence against the analysis of these patterns

in a unified way. Instead, our investigation suggests that one case, Korean palatalization, is an

example of gradient exceptionality, while the other case, Turkish velar deletion, is an example of

morphologically-conditioned phonology. Further, the data support the conjecture that languages

prefer to have static phonotactic generalizations and dynamic generalizations that are similar.

4.2 Morphological derived environment effects and analytic assumptions

4.2.1 The Derived environment condition

Analyses of derived environment patterns have largely made the assumption laid out in (5):

(5) DERIVED-ENVIRONMENT CONDITION: Morphological derivedness is a necessary and

sufficient condition for an applicable process to apply. (variously stated as the Strict

Cycle Condition or the Revised Alternation condition; e.g. Kiparsky 1982a, 1993; see

also Inkelas 2011, 2014)

On (5), a number of authors (e.g. Anttila 2006, Hammond 1992, Inkelas 2011, 2014) have

argued that what are often seen as canonical cases of morphologically derived environment

effects do not satisfy this condition, insofar as a derived environment (i.e. where the target

and environment of a rule are from two different morphemes) does not actually guarantee

that that a particular process would apply. That is, a derived environment, while a necessary

condition for a particular process to apply, is by no means a sufficient condition. One such

case that has been examined in greater detail is Finnish assibilation (Anttila 2006, Hammond

1992, Kiparsky 1973, 1993, 2003). In Finnish, stem-final /t/ become [s] before /i/. This rule

89



is generally characterized as only occurring across a morpheme boundary as in (6); it fails to

apply within stems (7).

(6) /t/ −→[s] / across a morpheme boundary (*ti):

a. /halut-i/ −→ [halusi] ‘want-PAST’

b. cf. /halut-a/ −→ [haluta] ‘want-INF’

c. /hakkat-i/ −→ [hakkasi] ‘beat-PAST’

d. cf. /hakkat-a/ −→ [hakkata] ‘beat-INF

(7) /ti/ sequences surface faithfully within stems:

a. /tilat-i/ −→ [tilasi] ‘order-PAST’ *[silasi]

b. /koti/ −→ [koti] ‘home’ *[kosi]

Yet the reality in the data is far more complex. Anttila (2006), citing Karlsson (1983), shows

that not all /i/-initial suffixes actually trigger assibilation. Assibilation only occurs uniformly

with the three suffixes shown in (8). Many other /i/-initial stem-level suffixes fail to trigger

assibilation despite satisfying the phonological (and morphologically-derived) environment for

process application as seen in (9). In at least one case, the suffix variably triggers assibilation

as in (10). I refer the reader to Anttila (2006) for a full analysis of these patterns (all data

in (8)-(10) are taken from Anttila 2006: 900-901). What is of note here is that upon closer

inspection, the derived environment effect pattern in Finnish fails to conform to the assumption

in (5) - having a derived environment does not guarantee that the rule will apply.
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(8) Triggering suffixes.

a. Plural /-i/: /vuote-i-nA/4 −→ vuosina ‘year-PL-ESS’

b. Past tense /-i/: /huuta-i-vAt-kO/ −→ huusivatko ‘shout-PAST-3P.PL-Q’

c. Superlative /-impA/: /uute-impA-nA/ −→ uusimpana ‘new-SUP-ESS’

(9) Non-triggering suffixes.

a. Instrumental /-ime/: /lentä-ime-n/ −→ lentimen
‘fly-INST-GEN’

(*lensimen)

b. Conditional /-isi/: /tunte-isi/ −→ tuntisi ‘feel-COND’ (*tunsisi)

(10) Variable trigger.

a. Adj. deriv. suffix /-inen/: /vete-inen/ −→ vesinen∼vetinen ‘watery’

The data from Finnish suggest that an account of putative derived environment effect patterns

cannot simply appeal to the derived condition, which although necessary is not a sufficient

condition for a particular process to apply. This suggests that the assumption about derived

environments in (5) is problematic, and instead argues for an account of these patterns as

potentially morpheme-specific or morphologically-conditioned phonology.

4.2.2 Phonotactic ‘productivity’

Together with the derived-environment condition, analyses that aim to capture the fact that

tautomorphemic /ti/ sequences exist in Finnish, for example, also assume that such sequences

are entirely phonotactically well-formed (11).

(11) PHONOTACTIC PRODUCTIVITY: Static phonotactic patterns that violate the derived envi-

ronment generalization are completely productive (i.e. morpheme-internal sequences

are phonotactically well-formed).

4Vowels in upper case undergo vowel harmony.
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Here I make a distinction between attestedness, which relates to whether particular phonotactic

sequences exist in the lexicon, and well-formedness which relates to native speakers’ grammatical

judgments of legal and illegal structures in their native language. Attestedness is a categorical

parameter since a particular sound sequence either exists or does not in the lexicon of a language,

to the extent that having even just one lexical item is sufficient for a particular sound sequence

to be attested. Well-formedness, however, is not a categorical notion: not all sound sequences

(or words) are created equal (e.g. Coleman & Pierrehumbert 1997, Hayes 2000, Pierrehumbert

1994, Schütze 1996). In the domain of phonotactics, in particular, a large body of evidence has

shown that speakers possess gradient intuitions (e.g. Bailey & Hahn 2001, A. Coetzee 2008,

Coleman & Pierrehumbert 1997, Frisch, Pierrehumbert, & Broe 2004, Frisch & Zawaydeh 2001,

Hay, Pierrehumbert, & Beckman 2003, Treiman, Kessler, Knewasser, Tincoff, & Bowman 2000)

and that listeners even use gradient well-formedness constraints in speech processing (Frisch,

Large, & Pisoni 2000, Kager & Shatzman 2007).

Thus, a second issue for morphologically derived environment effects is whether the se-

quences repaired by a phonological process really do count as fully well-formed in the static

patterns in the lexicon. In the same way that these patterns are not as general as was previously

thought in derived environments, it is possible that the static (non-derived) patterns in the

lexicon are not as widespread or ‘productive’ as we assume. Taking Korean as an example,

this would entail that not only is a sequence [ti] repaired at a morpheme boundary (due to a

constraint like *ti), but speakers actually show some dispreference for such sequences even

when they occur within stems. This question is taken up in the next section, using computational

learning simulations.

4.3 Korean palatalization

4.3.1 Historical origins and further background

How did the current mismatch develop historically in Korean? The origin of the current

ostensibly derived condition on palatalization dates back to Early Modern Korean (circa early
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nineteenth century; Y.-M. Y. Cho 2009, Lee & Ramsey 2011, and references therein). By the start

of the 19th century, palatalization was an obligatory process that was an across-the-board sound

change that neutralized the coronal stops /t, th, t*/ to their corresponding palatal affricate

counterparts /c, ch, c*/ before the high front vowel /i/ and the palatal glide /j/. This was

a process that applied both within morphemes and across morpheme boundaries. Thus for

a time both the static phonotactic generalization about the lexicon as well as the dynamic

generalization motivating alternations were in agreement.

The current mismatch in generalizations has three sources. The first was the monophthon-

gization of /1
“
i/ sequences to [i] which occurred following the sound change that involved

palatalization. Thus words that had underlying /t1
“
i/ or /th1

“
i/ became previously unattested [ti]

and [thi] (12).

(12) Source 1: historical monophthongization of /1
“
i/.

a. *2t1
“
i > 2ti ‘where’

b. *mat1
“
i > mati ‘joint’

The fact that surface [ti] or [thi] were not palatalized represents an example of diachronic

opacity, specifically counterfeeding. In principle, the monophthongization of /1
“
i/ could have

fed the palatalization process, but this did not occur, resulting in a generalization that was not

entirely surface true. This same process is also reflected in synchronic monophthongization of

/1
“
i/ sequences that were the result of morpheme concatenation (13).

(13) Source 2: synchronic monophthongization of /1
“
i/:

a. /t*1
“
-ita/ −→[t*1

“
ita] ∼ [t*ita] ‘to become aware’

eye-PASS-PRED

b. /th1
“
-ita/ −→[th1

“
ita] ∼ [thita] ‘to be open’

open-PASS-PRED
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The final source of /ti/ and /thi/ sequences are loanwords borrowed from English and other

European languages which were systematically borrowed in faithfully. Some examples are given

in (14).

(14) Source 3: Loanwords from English

a. /sitilom/ from ‘CD-ROM’

b. /anthikh1/ from ‘antique’

Cho’s (2009) broader observation in relation to morphologically derived environment effects is

the fact that many putative cases have a similar historical origin to that outlined for Korean:

a particular phonological process had historically applied across-the-board both tautomor-

phemically and heteromorphemically, but sequences which were previously unattested were

reintroduced through borrowing into the language as well as other independent phonological

processes. She points out that this is the case with other well-known examples of morphologically

derived environment effects such as Chamorro Vowel Lowering (Chung 1983), Finnish Vowel

Coalescence (Anttila 2009) and Polish First Velar Palatalization (Łubowicz 2002). Y.-M. Y. Cho

(2009) further suggests that words that are exceptions to the more general palatalization rule

are marginal in the lexicon because of their historical origins. In what follows, I examine Cho’s

claim about the marginality of /ti/ and /thi/ sequences in more detail and its consequences for

phonotactic learning.

4.3.2 Corpus study

In order to investigate the lexical trends pertaining to [ti] and [thi] sequences in Korean, I

examined two corpora. The first is a corpus compiled by the National Academy of Korean Lan-

guage (National Academy of Korean Language 2003).5 The NAKL corpus contains over 50,000

frequently used Korean words (native and Sino-Korean), including loanwords, as well as corre-

5Now the National Institute of Korean Language.
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sponding frequencies of each word from various, usually print, sources. The second is a corpus

of Child-Directed Speech (CDS) compiled from two sub-corpora from CHILDES (MacWhinney

2000). To facilitate analysis, both corpora were first pre-processed and each syllabary was split

up into its component Korean letters or digraphs using the grapheme-to-phonetic conversion

system of Kim, Lee, & Lee (2002). The system also applies regular neutralizing phonological

rules at the appropriate morphological boundaries detected in the process of conversion. The

corpus contains lexemes and thus any morphological boundaries would be due to derivational

suffixes. Note that the conversion system only applies transformations if there is already an

orthographic character available for the resulting sound, thus this does not reflect any purely

allophonic changes (such as intervocalic voicing).

4.3.3 NAKL

4.3.3.1 Entire lexicon

The final corpus, after any duplicate items were excluded, included 53,196 lexical items. We

were first interested in how many words in the corpus contained the consonant [t], [th] or

[t*] followed by [i] or [j] (I will refer to these as [Ti] or [Tj] respectively, and collectively as

[TI]). Although we do not have overt evidence of palatalization of /t*/ because these do not

occur word-finally, we are treating the coronal stop series here as a natural class, since these all

participated in the historical sound change. A count of [TI] entries in the corpus is given in

Table 1. One notices that out of a total of 53,196 words in the corpus, only 436 contained [TI]

sequences, less than 1% of the lexicon. One further notes that out of these words, 284 ( 65%)

are loanwords (e.g. /thim/ = team, etc.). Thus these sequences are rare in terms of absolute

type frequency in the corpus.
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Table 4.1: No. of words that contain [ti], [thi], [t*i], [tj], [thj] and [t*j] in NAKL corpus (and by
lexical strata).

CV Type Entire Lexicon Native Sino-Korean Loanword

[ti] 208 68 5 135

[thi] 167 30 4 133

[t*i] 32 28 4 0

[tj] 14 5 0 9

[thj] 15 4 4 7

[t*j] 0 0 0 0

Total 436 135 17 284

It is possible, though, that the rarity of words with such sequences is merely attributable to

either the overall rarity of the coronal stop series or the high front vocoids. To ascertain if the

rarity of [Ti] and [Tj] words is statistically significant given the independent frequency of its

components segments, a two-by-two contingency table was constructed (Table 2) that compared

the frequency of occurrence of these sequences compared to other CV combinations. Note here

that we are counting the type frequency of each CV sequence and not the number of words that

contain at these sequences as in Table 1 — for example, pata ‘sea’ contributes both to the upper

right ([ta]) and the lower right cells ([pa]). Observed/Expected (O/E) values were calculated

for each cell. ‘Observed’ (O) values are the total number of sequences of each CV combination

found in the corpus. ‘Expected’ (E) values are how frequently each CV combination is expected

if each C and V co-occurred based on chance. That is, given the independent occurrence of

the coronal stop series and the independent occurrence of high front vocoids, how often do

we expect to see them co-occur? Expected values were calculated by taking the product of

the relevant marginal totals (row and column) and dividing it by the grand total (for other

examples of the use of this heuristic, see A. Coetzee 2008, Frisch & Zawaydeh 2001). O/E

values are then calculated by dividing the Observed over the Expected value. An O/E value of

1 indicates that a particular sequence occurs at the expected rate of occurrence. O/E values
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above 1 indicate over-representation of that particular CV and O/E values under 1 indicate

under-representation, and we can thus compare the degree of attestedness in the corpus of

particular CV sequences. The percentages in bold indicate the proportion of vowels found

in a particular consonantal context and the percentages in italics indicate the proportion of

consonants in a particular vocalic context. The marginal percentages (bottom row and final

column) indicate the expected proportions.

[i , jV] ([I]) Other Vs Expected % of Cs

[t, th, t*] ([T])

454 (5,798)

1.63% / 1.43%

O/E = 0.08

27,424 (22,073)

98.37% / 22.75%

O/E = 1.24

18.31%

Other Cs

31,247 (25,903)

25.12% / 98.57%

O/E = 1.21

93,112 (98,672)

74.87% / 77.25%

O/E = 0.95

81.69%

Expected % of Cs 20.82% 79.18%

Table 4.2: Occurrence of CV combinations: by consonant type (T vs. other Cs) and vowel type
(i, j vs. other Vs). Expected counts are in parentheses. Percentages in bold: row percentages;
Percentages in italics: column percentages.

What is clear from Table 4.2 is that the actual observed number of [TI] sequences in the

NAKL corpus is about a tenth of what would be expected due to chance (randomly combining

each C and V), and this underrepresentation is statistically significant (χ2(1) = 7625.1, p <

0.001). While we expect about 18% of consonants to be /T/, only 1.43% of Cs in the [I] context

are [T], indicated by the percentages in italics. Similarly, while we expect about 21% of vowels

to be /I/, only 1.63% of [I]s occur with [T] (the percentages in bold). That is, [TI] sequences

occur at about a tenth the rate that we would expect them to occur given the independent

occurrence of [T] and [I].
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[i , jV] Other Vs Expected % of Cs

[c, ch, c*]

5,944 (5,051)

22.50% / 18.75%

O/E = 1.08

20,473 (20,916)

77.50% / 16.98%

O/E = 0.98

17.35%

Other Cs

25,757 (26,200)

20.47% / 81.25%

O/E = 0.98

100,063 (99,620)

79.53% / 83.02%

O/E = 1.00

82.65%

Expected % of Cs 20.82% 79.18%

Table 4.3: Occurrence of CV combinations: by consonant type (CH vs. other Cs) and vowel
type (i, j vs. other Vs) in the entire NAKL. Expected counts are in parentheses. Percentages in
bold: row percentages; Percentages in italics: column percentages.

As a comparison, Table 4.3 shows the same calculations for [c, ch, c*] and [i] or [jV]

sequences ([CHi] and [CHj] respectively). In this case, we see instead a small, statistically

significant (χ2(1) = 54.41, p < 0.001) over-representation of [CHi] and [CHj] sequences in

the corpus. This is perhaps expected given that historically /Ti/ and /Tj/ sequences palatalized

to [CHi] and [CHj] across-the-board, as was discussed above.

Thus, our corpus investigation so far supports the hypothesis that [Ti] and [Tj] sequences,

while attested in the Korean lexicon, are actually exceedingly rare and marginal, with a majority

of such words being loanwords. Even in loanwords, however, we might expect that such

sequences might be dispreferred. This would provide further evidence of a general constraint

against [TI] sequences. In the next section, I investigate this further by exploring the distribution

of [Ti] and [Tj] sequences in each stratum of the Korean lexicon.

4.3.3.2 Generalizations across different strata

The Korean lexicon can be divided into three strata. Beyond the native stratum, a large

proportion (as much as 60%) of the current Korean vocabulary is Sino-Korean (Sohn 1999).
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Although the exact time Chinese vocabulary entered the Korean lexicon is difficult to determine,

it is generally assumed that this occurred before 900 AD (Sohn 1999). Thus, when historical

palatalization occurred in the nineteenth century, it would have applied to both native and

Sino-Korean strata of the lexicon. Most loanwords from English and other European languages,

however, were likely only borrowed in relatively recently in the twentieth century and thus did

not undergo the historical palatalization process (Y.-M. Y. Cho 2009). In this section, we are

interested in examining whether the under-representation of [Ti] and [Tj] in the NAKL taken as

a whole is due purely to the native and Sino-Korean lexicon or whether or not this extends to

loanwords as well.

The entire NAKL corpus was divided into three sub-corpora corresponding to the different

lexical strata. This was done by identifying whether Roman orthography or Chinese orthography

were included in the comments field of the NAKL corpus. Tagging was done in the following order.

First, any entries with English orthography in the comments field were tagged as loanwords.

This was done even when there might have been a native or Sino-Korean derivational suffix.

Next, any of the remaining words tagged with Chinese orthography were tagged as Sino-Korean

words, even if these had native derivational suffixes. Whatever remained after the two rounds

of exclusion were coded as native words. Of the 53,196 words in the corpus, 13,459 were

native, 36,504 were Sino-Korean and 3,233 were loanwords. Two-by-two contingency tables

were constructed and O/E values were calculated in the same fashion as in section 4.1.1.

As can be seen in Table 4.4, in both the native and Sino-Korean strata of the lexicon, [TI]

are significantly under-represented (native: χ2(1) = 2829.3, p < 0.001; Sino-Korean: χ2(1)

= 5026, p < 0.001). In fact, the general distribution is comparable in both lexicons. In the

native stratum, we expect between 20-24% of CV sequences to be [TI] but we see less than 2%

of such cases, and in the Sino-Korean stratum, while we expect between 15-20% of CVs to be

[TI], less 1% of CVs actually are. When we turn to the loanword stratum (Table 4.6), we see

that the O/E for [TI] is much higher than in the native or Sino-Korean lexicons (0.70 vs. 0.07

or 0.005), although it is still statistically under-represented (χ2(1) = 57.63, p < 0.001). Thus,

while it seems that there are some qualitative differences in the native and Sino-Korean lexicons
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compared to the loanword lexicon, there is still a small dispreference for [TI] in loanwords,

despite English sequences /t, d, T, D/+/I, i/ (TI) being borrowed faithfully into Korean as [ti] or

[thi] (Y.-M. Y. Cho 2009). This suggests that Korean speakers extend an, albeit weaker, native

statistical dispreference to new loans.

[i , jV] Other Vs Expected % of Cs

[t, th, t*]

147 (1995)

1.48% / 1.79%

O/E = 0.07

9,761 (7,913)

98.52% / 29.94%

O/E = 1.23

24.27%

Other Cs

8,073 (6225)

26.12% / 98.21%

O/E = 1.30

22,839 (24,687)

73.88% / 70.06%

O/E = 0.93

75.73%

Expected % of Vs 20.14% 79.86%

Table 4.4: Occurrence of CV combinations: by consonant type (T vs. other Cs) and vowel type
(i, j vs. other Vs) - Native lexicon. Percentages in bold: row percentages; Percentages in italics:
column percentages.

[i , jV] Other Vs Expected % of Cs

[t, th, t*]

17 (3,380)

0.11% / 0.08%

O/E = 0.005

16,118 (12,755)

99.89% / 19.98%

O/E = 1.26

15.81%

Other Cs

21,358 (17,995)

24.86% / 99.92%

O/E = 1.19

64,727 (67,912)

75.14% / 80.02%

O/E = 0.95

84.19%

Expected % of Vs 20.95% 79.05%

Table 4.5: Occurrence of CV combinations: by consonant type (T vs. other Cs) and vowel type
(i, j vs. other Vs) - Sino-Korean lexicon. Percentages in bold: row percentages; Percentages in
italics: column percentages.
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[i , jV] Other Vs Expected % of Cs

[t, th, t*]

290 (412)

15.80% / 13.77%

O/E = 0.70

1,554 (1,423)

84.20% / 21.25%

O/E = 1.09

19.57%

Other Cs

1,825 (1,694)

24.08% / 86.23%

O/E = 1.07

5,728 (5,846)

75.92% / 78.75%

O/E = 0.98

80.43%

Expected % of Vs 22.46% 77.54%

Table 4.6: Occurrence of CV combinations: by consonant type (T vs. other Cs) and vowel type
(i, j vs. other Vs) - Loanwords. Percentages in bold: row percentages; Percentages in italics:
column percentages.

An alternative explanation for the under-representation of [TI] in the loanword sub-corpus

might be that Koreans are just matching the statistics of such sequences in English. That is, the

reason we see the lexical statistics in Korean is because Korean speakers are just borrowing in

[TI] words matching the proportion of [TI] words in English. Thus, the under-representation

here might reflect a generalization about the English lexicon and not the Korean one. To rule out

this possibility, we examined the rate of borrowing into Korean from English. For this analysis,

we consulted a separate corpus of Korean loanwords collated as well by the National Academy

of Korean Language (2001) which already contained the source of the Korean word in English

orthography and accompanying phonetic transcriptions. This corpus proved more appropriate

since we are interested here in the statistics of the English lexicon. An edited version of the

Carnegie Mellon University Pronunciation (CMU) dictionary was used here as a stand-in for

the entire English lexicon. This version of the CMU was edited by Hayes & White (2013) and

contains words with a CELEX (Baayen, Piepenbrock, & Gulikers 1995) frequency of >= 1, thus

101



it excludes very low frequency items.6 The CMU corpus was tagged for whether an English

word was loaned into Korean or not based on identifying CMU words that also appeared in the

NAKL loanword corpus. Out of the 2486 unique entries in the NAKL loanword corpus (2001),

only 1709 of these also appeared in the CMU. These were the only ones included in the counts

below in Table 4.7. Loanwords that did not appear in the edited CMU were not included since

we assumed that these were generally lower frequency items, such as acetal, adenosine etc.

/t, d, T, D + /I, i/ ([TI]) Other CVs

Expected % of

Loaned/Not

Loaned

LOANED

153 (242)

4.01% / 5.53%

O/E = 0.63

3,659 (3,570)

95.99% / 8.98%

O/E = 1.02

8.76%

NOT LOANED

2,612 (2,523)

6.58% / 94.47%

O/E = 1.04

37,097 (37,186)

93.42% / 91.02%

O/E = 1.00

91.24%

Expected % of CVs 6.35% 93.65%

Table 4.7: Observed/Expected counts of English CV sequences (loaned/not loaned against
TI/CV). Percentages in bold: row percentages; Percentages in italics: column percentages.

As can be see in Table 4.7, we expect, all else being equal, 8.76% of the English CV sequences

to be borrowed in to Korean, but only 5.53% of possible [TI] words are borrowed in. Similarly,

while we expect 6.35% of CVs to contain [TI], only 4.01% of loaned CVs do. Thus, given the

general expected rate of loaning English CV sequences into Korean, the number of English [TI]

sequences loaned in is significantly less than what we expect (χ2(1) = 38.01, p < 0.001). This

suggests then that the under-representation of [TI] sequences in the loanword stratum in Table

6Original version downloadable at: http://www.speech.cs.cmu.edu/cgi-bin/cmudict. Modified CMU version
available online at: http://www.linguistics.ucla.edu/people/hayes/PhonologicalNaturalness/TrainingData_Ha
yesAndWhite.txt
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6 is not a result of frequency matching with the lexicon of English. So even though Korean

speakers can borrow [TI] sequences faithfully, they seem to avoid doing so, suggestive of a

dispreference for word with such sequences.

4.3.4 Child-directed speech

In the previous section, we showed how [Ti] and [Tj] sequences are under-attested across all

the strata of the Korean lexicon. The NAKL corpus, however, represents a sample drawn from

adult sources (such as newspapers etc.). It is possible that these lexical statistics do not actually

reflect what a typical Korean-learning child might hear in acquisition, and is idiosyncratic to the

specific corpus we used. Thus if we are ultimately interested in the question of what is available

in the learning data for a child then our case is bolstered by an investigation of child-directed

speech (CDS). To ascertain how robust the statistical distributions we found in NAKL are, we

examined a corpus of Child-Directed Speech (CDS). A large corpus of CDS was created by

combining the two available Korean CDS corpora on CHILDES (MacWhinney 2000): the Jiwon

corpus (Ghim 2005) and the Ryu corpus (Ryu 2012, Ryu & Yasuhiro 2014). The Jiwon corpus

consists of recordings of a mother-child interaction for a single child from ages 2;0 to 2;3. The

Ryu corpus consists of longitudinal data from three children aged 1;3 to 3;9 with recorded

interactions with caregivers: mother, father, grandmother, and grandfather. Utterances from all

caregivers were included in the analysis. Since the CDS corpora involve play sessions with the

child, there are a number of transcribed utterances that contain “reduplicated” forms which

often contain repeated sequences of syllables or part-words. It is unclear if a child would

actually encode these “words’ in their lexicon, so such instances were filtered out as much as

possible. An arbitrary cut-off was adopted such that words with more than 20 segments were

excluded from the corpus. Almost all of the transcribed “words” with 20 segments or more fit

into the category of repetitions described above. That said, many of these cases which may

involve fewer repetitions fall under this criterion, but to filter out each of these forms would

require checking each word in the lexicon. The total resulting corpus for analysis had 40,317

words. O/E values were calculated in the same way as in previous analyses above.
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[i , jV] Other Vs Expected % of Cs

[t, th, t*]

524 (3,607)

3.18% / 1.95%

O/E = 0.15

15,937 (12,853)

96.82% / 16.60%

O/E = 1.24

13.39%

Other Cs

26,415 (23,332)

24.81% / 98.05%

O/E = 1.13

80,058 (83,140)

75.19% / 83.40%

O/E = 0.96

86.61%

Expected % of Vs 21.91% 78.09%

Table 4.8: Occurrence of CV combinations: by consonant type (T vs. other Cs) and vowel type
(i, j vs. other Vs) - CDS corpus. Percentages in bold: row percentages; Percentages in italics:
column percentages.

What we see in Table 4.8 then is a similarly, statistically significant (χ2(1) = 3895, p <

0.001), under-representation of [TI] in the CDS corpus as we saw in the NAKL corpus. To the

extent that CDS contains more frequent forms in the language, this result bolsters the argument

that even amongst more frequent forms, the lexical statistics we found for the lexicon as a

whole still hold.

4.3.5 Corpus Summary

To summarize, so far, we have examined two different Korean corpora, one of adult printed

sources and another of CDS. In both studies, [Ti] and [Tj] sequences, while attested, occur

significantly less than what we would expect given the independent occurrence of coronal stops

and high front vocoids. Interestingly, this statistical dispreference extends, albeit more weakly,

into loanwords as well where new borrowings contain fewer than expected such sequences,

even though these sequences are usually borrowed faithfully (Y.-M. Y. Cho 2009). Our initial

hypothesis then that [Ti] and [Tj] are marginal in the Korean lexicon is supported. In the
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next section, I describe a series of learning simulations that are aimed at ascertaining whether

learners could easily arrive at a markedness constraint along the line of *[Ti] or *[Tj].

4.3.6 Learning a phonotactic grammar of Korean

While the previous sections uncovered a statistical under-attestation of the relevant sequences

in Korean, this does not necessarily entail that such forms would be penalized by the grammar.

In this section, we are interested in ascertaining whether or not the underrepresentation of [Ti]

and [Tj] would actually translate into the learning of a constraint penalizing such sequences

in a phonotactic grammar. Both the NAKL and CDS corpora were used as learning data for

the UCLA Phonotactic Learner (Hayes & Wilson 2008). The entire NAKL corpus was included,

including loanwords. The motivation for including loanwords here was due to the fact that

we are assuming that in an early stage of phonotactic learning, a child does not have explicit

knowledge of lexical strata, thus as far as she is concerned there is no difference between

a native, Sino-Korean word or loanword. We assumed the following features in Table A1 in

Appendix A for the Korean phoneme inventory. Note that glide-vowel sequences were assumed

to be two separate segments for the purposes of this simulation. Also since /e/ and /E/ are

now merged in most speakers’ productions (Eychenne & Jang 2015, Shin, Kiaer, & Cha 2013),

these categories were both collapsed to /e/.

The phonotactic learner was asked to only find bigram constraints, with a maximum number

of constraints set at 180. The O/E accuracy threshold for constraints was set at 0.30, following

the simulations done by Hayes & Wilson (2008). Since type frequency is typically implicated in

the learning of phonotactic constraints over the lexicon (e.g. Pierrehumbert 2003, Edwards et

al. 2004, Richtsmeier 2011), each input had a frequency of 1 . All other parameters were set at

default. The key point to take note of is that we are making fairly uncontroversial assumptions

in the parameters of this simulation and the model is not being biased towards finding the

relevant constraints.
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No. Constraint Weight Description
1. *[+spread_glot][+word_boundary] 7.14 No aspirated stops word-finally
2. *[+word_boundary][+nasal,+dorsal] 6.67 No word-initial N

3. *[+const_glot][-approx.] 6.36
No tense stops preceding
non-approx. consonants

4. *[-lateral,-syllabic][+lateral] 6.16
No non-lateral consonant before a
lateral

5. *[-syllabic][+nasal,+dorsal] 5.99
N cannot occur following
consonants

6. *[-cons.,+front,-syll.][-labial,+high] 5.81 *[j1], *[ji]

Table 4.9: Top weighted constraints learned from NAKL corpus. Grey cells indicate constraints
that also fall into the top six in the simulation with Child-Directed Speech (Table 4.10)

4.3.6.1 Results: NAKL

As a first check of the results of the simulations, the highest weighted constraints were inspected

to see if these corresponded to well-known phonotactic constraints in Korean. The top six

constraints are shown in Table 4.9.

The learner discovers sensible constraints: the top six of these conform to what we know

about the phonotactic restrictions in Korean, such as *[+spread_glot][+word_boundary] which

ensures that aspirated stops do not occur word-finally (these neutralize to the lenis stops)

as well as constraints that require [N] to follow a vowel, *[-syllabic][+nasal,+dorsal] and

*[+word_boundary][+nasal,+dorsal].

Crucially, the learner discovers a constraint penalizing [Ti] and [Tj] sequences: *[-sonorant,-

strident][-spread_glot,-const_glot,+high,+front]7 (from here on *TI) and gives this a weight

of 1.916. This constraint is ranked 55th in weight out of 134 constraints that the learner

discovered. As a comparison the learner was run on a modified NAKL corpus in which [Ti] and

[Tj] sequences were excluded (so the generalization is artificially made exceptionless). In this

case, the learner assigns *TI a weight of 6.169 (ranked 4th out of 127). Thus, *TI in the Korean

7Note that the feature matrix here groups the vowels [i, j] together with the lenis [c] as a natural class. A
simulation run with an initial constraint that excludes [c] (i.e. just the vowels [i, j]) arrives at the same result.
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lexicon is not a categorical constraint, unsurprisingly, but it nonetheless is assigned a sizable

weight.

4.3.6.2 Results: Child-Directed Speech

No. Constraint Weight Description
1. *[+cont.,-lat.,-syll.][+word_bound.] 6.783 No word-final glides or fricatives

2. *[+spread_glot][-approximant] 6.599
No asp. stops preceding
non-approx. cons.

3. *[+const_glot][-approximant] 6.521
No tense stops preceding
non-approx. cons.

4. *[+const_glot][+word_boundary] 6.303 No tense stops word-finally
5. *[+spread_glot][+word_boundary] 6.204 No aspirated stops word-finally
6. *[+word_boundary][+nasal,+dorsal] 6.141 No word-initial [N]

Table 4.10: Top weighted constraints learned from CDS corpus. Grey cells indicate constraints
that also fall into the top six in the simulation with the NAKL corpus (Table 4.9)

As with the NAKL simulation we first inspected which constraints received the largest weights.

Reassuringly, the learner arrives at a similar list of high-ranked constraints (they share 3 out of

the top 6 constraints), and all six reflect well-known phonotactic restrictions in Korean (Table

4.10). Thus, the learner is arriving at sensible constraints that are similar to what was learned

with the adult corpus above.

As with the NAKL corpus previously, the phonotactic learner also assigns a considerable

weight, 1.599, to a constraint (*[-sonorant,-strident][-spread_glot,-const_glot,+high,+front])

that penalizes [Ti] and [Tj] sequences. This constraint is ranked 77 out of the 103 bigram

constraints posited by the model. As a comparison, a learner trained on a corpus without any

[Ti] and [Tj] sequences at all learns the same constraint but assigns it a weight of 6.015 (ranked

6th out of 107 constraints). The examination of the CDS corpus thus replicates our findings

with the adult NAKL corpus.
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4.3.7 Modeling Summary

Using default parameters, we have shown how a probabilistic phonotactic learning model

assigns a sizable weight to a constraint penalizing [Ti] and [Tj] sequences despite these forms

actually existing in the lexicon of Korean. This constraint was robustly attested in both a corpus

of words from printed sources and one of Child Directed Speech. To the extent that we assume

CDS contains highly frequent word forms, the replication of the basic finding in CDS provides

strong support for this constraint occurring in the learning data. We can conclude, therefore,

that the statistical under-representation we found does indeed translate into a well-formedness

penalty for words with [Ti] and [Tj]. This suggests that the implicit assumption in analyses of

morphologically derived environment effects that such sequences occur freely in the lexicon is

empirically not the case.

4.3.8 A new analysis

Both the corpus studies and phonotactic modeling simulations above suggest strongly that there

is a general structure-blind (Martin, 2011) markedness constraint, *TI, which is active in the

Korean grammar. That is, regardless of whether a morpheme boundary intervences between T

and I, the constraint still penalizes the sequence. Yet we also know that words with such forms

exist in the Korean lexicon, e.g. /mati/ ‘joint’. Thus an analysis of the Korean palatalization

pattern needs to predict that existing [TI] words should surface faithfully but it should also

penalize novel words that do contain such sequences. The analysis presented in this paper

builds on the new empirical data presented in the previous sections. An analysis of Korean

palatalization should:

1. make use of a general markedness constraint following the results of phonotactic learning.

2. capture the fact that [TI] sequences are under-represented (= less phonotactically well-

formed).
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3. Stem-internal sequences are essentially exceptions since there are few enough of such

cases when we take the Korean lexicon as a whole

4. capture the fact that existing words have fixed outputs containing stem-internal [TI].

5. predict categorical alternations at morpheme boundaries.

6. predict that a nonce word with stem-internal [TI] should be dispreferred.

To the best of my knowledge, palatalization is both general in that it applies to all suffixes

where the phonological conditions are met (15) and extends to loanwords (Jun & Lee 2007).

(15) Palatalization occurs in both inflectional and derivational suffixes (data from Cho,

2009)

a. /hE tot-i/ −→[hE toci] ‘sun-rise’

sun rise-NML

b. /kut-i/ −→[kuci] ‘firmly’

be.firm-ADV

c. /puth-i/ −→[puchi] ‘to affix’

adhere-CAUS

d. /path-ita/ −→[pachita] ‘to be the field’

field-COP

(i) and (iv) can be captured using a single markedness constraint in (16) that bans [TI] sequences

in the output.

(16) *[-sonorant,-strident][+high,+front,+tense] (*TI): Assign one violation mark to every

sequence of [t, th, t*][i, j] in the output.8

8I am assuming here that [j] is [+tense].
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This markedness constraint dominates a faithfulness constraint that bans spreading of palatal

features. I assume here that a number of features will be involved and [PAL] is a stand-in

for these. Palatalization therefore is modeled as the spreading of [PAL] from trigger to target,

assuming association lines as in Autosegmental Phonology (Goldsmith 1976, 1990) (Goldsmith,

1976, 1990). So (17) essentially blocks the association of [PAL] features to adjacent root

nodes (equivalent of a constraint like *SPREAD). In tableau (18), candidate (18)a violates the

higher-ranked markedness constraint *TI. Candidate (18)b, however, violates DEPLINK since

[PAL] is newly associated to the root node of the stem-final consonant, but does not violate

higher-ranked *TI.

(17) DEPLINK[PAL]: (following Jurgec 2011; cf. Itô, Mester, & Padgett 1995, a.o.) Let x i be

an input root node and xo its output correspondent. Assign one violation mark iff xo is

associated with the feature [PAL] and x i is not. (Abbreviated: DEPLINK)

(18) /mat-i/ ’eldest-NOM’
/mat-i/  

‘eldest-NOM’ *TI DEPLINK 

      a. [mat]i 
                  | 

[pal] 
*!  

 ☞ b. [mac]i] 
                     \| 

[pal]  * 

!

How might one capture the fact that existing words should have fixed outputs containing [TI],

but nonce words might be phonotactically dispreferred? In work on gradient well-formedness,

studies often test the predictions of a model on novel data (from well-formedness ratings or

rates of alternation from a wug test; e.g. Hayes et al. 2009). But as Moore-Cantwell and Pater

(2017; for a similar discussion of this issue, see Pater 2010, Zuraw 2000) point out, such studies

fail to account for the fact that existing words, which would be penalized by some markedness

constraint, surface faithfully.
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To account for these facts, Moore-Cantwell & Pater (2017) propose that the grammar

contains both general as well as lexically-specific versions of constraints, with every lexical item

associated with its own instantiation of a given constraint. While Moore-Cantwell and Pater

implement their model to capture gradient exceptionality using Maximum Entropy Grammar

(Goldwater & Johnson 2003, Hayes & Wilson 2008) it suffices presently to approximate this

using regular strict domination Optimality Theory (Prince & Smolensky 1993/2004). We want

the analysis to capture the fact that palatalization in Korean does apply reliably across morpheme

boundaries, while words like /mati/ ‘joint’ are really exceptions but surface faithfully and reliably

with [TI] sequences. I posit a lexically-specific version of the faithfulness constraint DEPLINK,

in (19). As with the general schema of indexed constraint, the indexed faithfulness constraint

is ranked higher than the markedness constraint and the general faithfulness constraint. The

constraint in (19) penalizes the spreading of [PAL] within the specific lexical item mati ‘joint’.

In tableau (20), candidate (20)b violates the higher-ranked indexed constraint, allowing the

faithful candidate (20)a to win despite violating the general markedness constraint *TI.

(19) DEPLINK joint : Let x i be an input root node and xo its output correspondent. Assign one

violation mark iff xo is associated with the feature [PAL] and x i is not, and iff xo and

[PAL] are both within the root/stem ‘joint’.

(20) /mati/ ’joint’
/mati/  
‘joint DEPLINKjoint *TI DEPLINK 

☞ a. [mati] 
                | 

[pal]  *  

     b. [maci] 
                  \| 

[pal] 
*!  * 

!

The tableau in (20) contrasts with that in (21). Here the target root node and the trigger [PAL]

are not within the same stem mat ‘eldest’. Thus the lexically-specific constraint is not violated
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by candidate (21)b which has the spreading of the [PAL] feature. The brackets are shown to

indicate the domain of the stem. Notice that the difference in (20) and (21) is whether or not

the trigger and target are in the same stem.

(21) /mat-i/ ’eldest-NOM’
/mat-i/  

‘eldest-NOM’ DEPLINKeldest *TI DEPLINK 

        a. [mat]i 
                    | 

[pal]  *!  

 ☞ b. [mac]i 
                     \| 

[pal]   * 

!

This analysis also extends to cases where there are two potential targets in a single stem, e.g.

/tik1t/ ‘letter ‘t”. The relevant lexically-specific constraint is given in (22), and the workings of

the constraints are shown in tableau (23). There are four possible candidates presented. The

indexed faithfulness constraint allows us to differentiate between the stem-internal [ti] sequence

and the [ti] sequence which are not in the same stem. So palatalization of the stem-internal [t]

in candidates (23)c and (23)d violate DEPLINKtik1t, but palatalization of stem-final [t] does not

as in (23)b. (23)a violates *TI more than (23)b, leaving (23)b as the correct output.

(22) DEPLINKtik1t: Let xi be an input root node and xo its output correspondent. Assign one

violation mark iff xo is associated with the feature [PAL] and x i is not, and iff xo and

[PAL] are both within the root/stem Ôtik1t’.
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(23) /tik1t-i/ ‘letter ‘t’-NOM’
/tikɨt-i/  DEPLINK‘tikɨt’ *TI DEPLINK 

a. [tikɨt]i                                                                           
|      | 

             [p]   [p] 
  *!*  

 ☞ b. [tikɨc]i                                                                           
|     \ | 

             [p]   [p]  * * 

     c. [cikɨt]i                                                                            
\|      | 

              [p]  [p] 
*! * * 

     d. [cikɨc]i                                                                           
\|    \ | 

              [p]  [p] 
*!  ** 

!

With these constraints a factorial typology predicts that candidate (23)c is never attested, since

this candidate is harmonically bounded (although this is not true in MaxEnt Grammar, since

harmonically bounded candidates are predicted be possible). The predicted winners based on

three different rankings are shown in (24).

(24) Factorial Typology

Ranking Predicted Candidate Pattern

DEPLINK, DEPLINKtik1t � *TI [tik1ti]
Across-the-board

non-alternation

*TI � DEPLINK, DEPLINKtik1t [cik1ci]
Across-the-board

alternation

DEPLINKtik1t � *TI � DEPLINK [tik1ci]

Derived-env. pattern

but specific to particular

lexical items
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The analysis presented here differs from previous proposals (e.g. constraint conjunction,

Łubowicz (2002); sequential faithfulness, Burzio 1997, Itô & Mester 2003, Wolf 2008; under-

specification, Kiparsky 1973; strength scales, Inkelas 2015; gestural timing, Bradley 2007, T. Cho

2001). In particular, the claim of the current analysis is that the stem-internal [TI] sequences

are exceptions to the more general markedness constraint that disprefers such sequences. That

is, the derived environment effect in Korean is really an example of exceptionality. The main

theoretical prediction that departs from previous analyses relates to how acceptable nonce

words with [TI] are to Korean speakers. Previous accounts, in ensuring stem-internal sequences

were completely well-formed, predict that such nonce words should be perfectly acceptable. The

current account, however, predicts that Korean speakers will rate words nonce words with TI as

less acceptable than other comparable sequences such as [ta] or [ci], since the general constraint

against such sequences (*TI) is ranked high, and there are no constraints that penalize the latter.

Further confirmation of this prediction awaits future work testing native speaker knowledge.

The analysis of Korean palatalization as case of exceptionality leads us to the question of

whether or not all other cases of derived environment effects fall into this category. We take

up this question in the next section, focusing on another putative derived environment effect

pattern, this time in Turkish.

4.4 Turkish velar deletion

Turkish velar deletion (Inkelas 2000, Inkelas & Orgun 1995, Inkelas et al. 1997, Lewis 1967,

Sezer 1981, Zimmer & Abbott 1978) is another oft-cited case of a derived environment effect.

Velars delete intervocalically if at a morpheme boundary (25), but are protected from deletion

within morphemes (26) (data from Inkelas, 2011, 2015):

114



(25) Suffix-boundary deletion

a. /bebek-In/9 −→[bebein] ‘baby-GEN’

b. cf. /bebek/ −→[bebek] ‘baby-NOM’

c. /ipek-A/ −→[ipee] ‘cotton-DAT’

d. cf. /ipek/ −→[ipek] ‘cotton-NOM’

(26) Deletion blocked morpheme-internally (from Inkelas 2011, 2015)

a. /hareket/ −→[hareket] ‘motion’

b. /sigorta/ −→[sigorta] ‘insurance’

c. /sokak-A/ −→[sokaa] ‘street-DAT’

d. /mekik-A/ −→[mekie] ‘(weaver’s) shuttle’

Inkelas (2011, 2014; see also Sezer 1981) points out that the specifics of the process are far

more nuanced. While velar deletion occurs in both native words and loanwords as well as

in morphologically simplex and complex stems, it fails to apply to verb roots, although the

phonological conditions are met as in (27). Here we have a minimal pair /gerek/ which can

either be a noun or verb. While the noun undergoes deletion (27a), the verb does not (27b)

despite satisfying the phonological conditions for velar deletion to occur.

(27) Verbal roots

a. /gerek-Ijor/ −→[gerekijor] ‘is necessary-PROG’ (verb)

b. cf. /gerek-i/ −→[gerei] ‘need-ACC’ (noun)

Furthermore, deletion does not seem to apply when the velar consonant is suffix-initial as in (28)

compared to when it is stem-final as seen in (25) despite both context being morphologically

derived.

9Capital vowels indicate vowels that undergo vowel harmony.
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(28) /-ki/ suffix

a. /sene-ki/ −→[seneki] ’year-REL’ (*senei)

b. /ada-dA-ki/ −→[adadaki] ’island-LOC-REL’ (*adadai)

The application of velar deletion seems to be confined to polysyllabic nouns, and is usually

blocked from occurring with monosyllabic nouns. Polysyllabic nouns in the Turkish Electronic

Living Lexicon (TELL: Inkelas et al. 2000) corpus have a deletion rate of overall 93% whereas

monosyllables have a deletion rate of only 3% (Becker et al. 2011) and Turkish speakers seem

to extend this trend to nonce words in wug testing (Becker et al. 2011, Zimmer & Abbott 1978).

Whether a particular lexeme alternates, however, is unpredictable. Becker et al. (2011) posit

an analysis which relies on lexically-specific constraint cloning for each lexical item where the

cloned faithfulness constraint (e.g. MAX) that blocks deletion is ranked above the markedness

constraint *VKV. It should be noted then that even in the context in which velar deletion most

readily applies, an analysis still necessitates lexically-specific constraints. Thus Turkish velar

deletion appears to be a less-than-canonical derived environment effect pattern.

It should already be clear at this point that although often described as morphologically

derived environment effects, Korean palatalization and Turkish velar deletion do not evince the

same phonological patterns. In Korean, palatalization is, to the best of my knowledge, productive

and general insofar as it applies to all suffixes which provide the appropriate phonological

environment. In Turkish, however, velar deletion is morphologically restricted to certain word

categories amongst other factors. This raises the question of how exactly these languages

might differ in terms of their static phonotactic generalizations. In Korean, while there were

indeed stem-internal exceptions to the constraint *TI, there was nonetheless a significant

under-representation of such sequences such that a reliable phonotactic generalization could be

learned. But how strongly is the constraint motivating velar deletion represented in the lexicon

of Turkish? In the following sections, I report on the results of an investigation of two corpora

parallel to what was examined in Korean.
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4.4.1 TELL Corpus

First, we examine the lexical statistics in TELL. TELL contains approximately 30,000 lexemes

that were compiled from a variety of existing dictionaries as well as transcribed pronunciations

from two speakers of a large proportion of these in various verbal and nominal inflected forms.

For current purposes, we will be querying the transcribed roots in the database. In total, the

resulting corpus contained 16,757 transcribed roots.10 O/E values were calculated in the same

way as in section 4. This time we were interested in comparing the velar stops /k, g/ vs. other

stops and affricates in the intervocalic context vs. all other contexts. Table 4.11 shows this

calculation, indicating that intervocalic velar stops occur significantly less than is expected in

intervocalic position, (χ2(1)= 23.16, p< 0.001). Yet while there seems to be a statistical under-

representation of velars intervocalically, one notes that that degree of under-representation

(roughly indicated by the size O/E values) is different from what we saw in Korean. Recall that

an O/E value of 1 indicates that a particular combination of segments co-occurs at essentially

an expected rate of co-occurrence given their independent frequency of occurrence; an O/E

of 0 indicates that a particular combination does not occur at all. In the Korean case, the O/E

value of [TI] sequences was much smaller, and in fact closer to 0, suggesting that the rarity of

such sequences. In Turkish, however, the O/E value for intervocalic velars is much closer to 1,

the expected rate of co-occurrence. Thus, we might expect then that these cases might play out

differently phonotactic learning (see section 7.3).

Given the grammatical category differences in terms of where velar deletion applies (broadly

speaking: nouns vs. verbs; Inkelas 2011, 2014, Sezer 1981), the corpus was next split into

two different sub-corpora based on whether lexical items could be classified as nouns or verbs.

Although the entries in TELL are not actually tagged for lexical category, we can infer a particular

entries lexical category by consulting which inflected forms are included. If the aorist, infinite

or causative cells were filled in, the entry was coded as a verb; if the predicative, accusative;

10We have not filtered out roots with duplicates that correspond to different lexemes in the analysis presented
here. Calculations using unique roots yield the same qualitative results. The current analysis is presented to allow
for the use of lexical category information.
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V_V Other contexts Expected % of Cs

/k, g/
1,389 (1,524)

17.77% / 33.25%
O/E = 0.91

6,426 (6,291)
82.23% / 37.25%

O/E = 1.02
36.47%

Other stops/affricates
2,789 (2,654)

20.50% / 66.75%
O/E = 1.05

10,823 (10,958)
79.51% / 62.75%

O/E = 0.99
63.53%

Expected % of
occurrence in context 19.50% 80.50%

Table 4.11: Occurrence of /k,g/ compared to other stops/affricates in V_V vs. other contexts.
Expected counts are in parentheses. Percentages in bold: row percentages; Percentages in
italics: column percentages.

V_V Other contexts Expected % of Cs

/k, g/
932 (1,049)

18.10% / 31.30%
O/E = 0.89

4,218 (4,101)
81.90% / 36.23%

O/E = 1.03
35.23%

Other stops/affricates
2,045 (1,928)

21.60% / 68.69%
O/E = 1.06

7,423 (7,540)
78.40% / 63.77%

O/E = 0.99
64.77%

Expected % of
occurrence in context 25.57% 79.63%

Table 4.12: Occurrence of /k, g/ compared to other stops/affricates in V_V vs. other contexts
in Turkish nouns. Expected counts are in parentheses. Percentages in bold: row percentages;
Percentages in italics: column percentages.

professional or possessive cells were filled in, these were coded as a noun. Roots in the corpus

for which lexical category could not be determined by the method above were excluded Ð these

usually involved only having a transcribed root with no other cells transcribed. In total, there

were 11,272 identified nouns and 1786 identified verbs. Since these forms were phonetically

transcribed, these transcriptions contained palatal stops [c] and [é] which are allophones of /k/

and /g/ respectively (e.g. Göksel & Kerslake 2005, Lewis 1967). These were recoded as /k/ and

/g/ respectively. The same calculations were then conducted on the noun corpus (Table 4.12)

and verb corpus (Table 4.13) separately. There was a significant statistical under-representation
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of intervocalic velars in nouns (χ2(1) = 25.01, p < 0.001), but not with verbs (χ2(1) = 0.24,

p = 0.63). The difference in distribution of intervocalic velars by lexical category might be

related to the fact that velar deletion at the morpheme boundary does not occur with verb but

largely occurs with nouns.

V_V Other contexts Expected % of Cs

/k, g/
89 (85)

12.34% / 41.98%
O/E = 1.04

632 (636)
87.66% / 39.97%

O/E = 0.99
40.21%

Other stops/affricates
123 (127)

11.47% / 58.02%
O/E = 0.97

949 (945)
88.53% / 60.02%

O/E = 1.00
59.79%

Expected % of
occurrence in context 13.41% 88.18%

Table 4.13: Occurrence of /k, g/ compared to other stops/affricates in V_V vs. other contexts
in Turkish verbs. Expected counts are in parentheses. Percentages in bold: row percentages;
Percentages in italics: column percentages.

4.4.2 Turkish CDS

Parallel with our investigation of Korean, in this section we examine two small corpora of CDS

in Turkish available also from CHILDES (MacWhinney 2000): the Aksu-Koçcorpus (Slobin

1982)and the Turkay corpus (Turkay 2012). The Aksu-Koç corpus contains caregiver-child

interactions with 34 children between the ages of 2;0 and 4;4. The Turkay corpus contains

caregiver-child interactions with just one child between the ages of 1;4 and 2;4. The corpora

were combined and cleaned of any English words. The resulting small corpus of 6,107 unique

“lexeme” (split on spaces in the transcript) presumably contains morphologically complex forms.

Note that we are not using a phonetically-transcribed corpus in this case and our analysis here

is based on orthography. However, we assume here that a child might plausibly store the entire

morphologically complex form at some stage of acquisition, and the lexical statistics are then

calculated over this proto-lexicon. Only one of the corpora is tagged which makes is difficult to

analyze lexical statistics by lexical category with these corpora, thus nouns and verbs were not
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separated out. As shown in Table 4.14, there is a statistically significant under-representation

(χ2(1) = 311.74, p < 0.001) of intervocalic velars, and the O/E value is much lower than what

we observed with the much larger TELL corpus.

V_V Other contexts Expected % of Cs

/k, g/
369 (699)

13.84% / 17.08%
O/E = 0.53

2,297 (1,967)
86.16% / 37.81%

O/E = 1.17
32.39%

Other stops/affricates
1,791 (1,461)

32.16% / 82.92%
O/E = 1.23

3,778 (4,108)
67.84% / 62.19%

O/E = 0.92
67.61%

Expected % of
occurrence in context 26.23% 73.70%

Table 4.14: Occurrence of /k, g/ compared to other stops/affricates in V_V vs. other contexts
in Turkish CDS. Expected counts are in parentheses. Percentages in bold: row percentages;
Percentages in italics: column percentages.

4.4.3 Modeling a Turkish grammar

Although we found evidence of statistical under-representation of intervocalic velars in both

TELL and the CDS corpora, it is not a given that these would be under-represented enough to

be penalized by a phonotactic learner. We note that unlike in Korean where O/E values were

all under 0.2, the O/E values for Turkish intervocalic velars are all above 0.5, suggesting a

smaller degree of under-representation. In this section, I present the results of two phonotactic

modeling simulations using the UCLA Phonotactic Learner, one trained on the entire TELL root

lexicon, another trained on the entire CDS corpus. To allow comparison with the results of the

Korean simulation, the O/E accuracy criterion for the learner was set at 0.3 as well in these

simulations. However, instead of being asking to find bigram constraints, the algorithm was in

this case asked to find trigram constraints since the relevant phonotactic constraint governs a

sequence of three segments. We assume a featural inventory in Table A2 in Appendix A.

The simulation with Child-Directed Speech utilizes corpora that are orthographically tran-

scribed which includes what is traditionally described as soft ‘g’ <ğ>. In speech, words with
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these characters are usually pronounced with lengthening of the preceding vowel instead.

Although Zimmer & Orgun (1999) transcribed this as [G], (Inkelas et al., 2000) report that

for their speakers in TELL this is usually realized as length on the previous vowel or produced

as a glide intervocalically (Göksel & Kerslake 2005, Lewis 1967). For the current purposes,

all orthographic instances of <ğ> were deleted, thus leaving vowel-vowel sequences where

<ğ> had occurred intervocalically to reflect as much as possible the actual phonetic realiza-

tion. Otherwise, because the Turkish orthographic system is fairly accurate vis-à-vis phonetic

pronunciation, no other transformations were conducted on the corpora.

Across both simulations, the phonotactic learner failed to learn a constraint that penalizes

intervocalic velars (*VKV; Inkelas & Orgun 1995) specifically. Recall that the parameters of these

simulations were the same as those in the Korean simulations, except for the fact that the learner

was asked to also find trigram constraints (not just bigram). The fact that the phonotactic

learner failed to discover a *VKV constraint in spite of the statistical under-representation of

such sequences suggests that finding statistical under-representation in the input does not entail

that a learner will actually notice this under-representation.11 That is, it seems the degree of

under-representation matters. The relevant O/E values were much higher in Turkish compared

to Korean, in most cases closer to 1 than 0. Thus even if intervocalic velars are under-represented

in Turkish, they are still relatively common compared to /TI/ sequences in Korean. Whatever

the case, making the same modelling assumptions, the learner does not learn a phonotactic

constraint against intervocalic velars in Turkish, but it does in Korean for [TI] sequences.

11In fact, even when the constraint *VKV was specified ahead of time, the model failed to assign it any weight,
although it assigns a very small weight when trained on the CDS corpus (0.37). This was the case even when we
allowed the learner to find more constraints (250). We might worry that the difference between Korean, where
the learner did discover *TI, and Turkish, where it did not discover *VKV, is due to the difference in complexity
between the two constraints. That is, for Korean, it was only necessary to search the space of bigram constraints,
while Turkish requires searching the larger space of trigram constraints. As a comparison, a trigram model was
run with the Korean NAKL corpus. While the model failed to discover the simple *TI constraint, instead breaking
the pattern into more specific constraints like *tti and *tj that combine to penalize TI, when the more general *TI
constraint was specified at the start of the simulation, the model always assigned this constraint a sizable weight
(∼1.5).
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4.4.4 Island of reliability: polysyllabic nouns?

Given Zimmer & Abbott (1978) finding that Turkish speakers extend velar deletion to nonsense

polysyllabic words, there is the possibility that there is an island of reliability for a phonotactic

generalization (Albright 2002). That is, there might possibly be a cophonology (Inkelas & Zoll

2007) or sublexicon (Becker & Gouskova 2016) of polysyllabic nouns in which there is a strong

and reliable phonotactic generalization (*VKV). To investigate this, we identified polysyllabic

nouns from our noun corpus described in §7.1 and calculated the same O/E values as above

shown in Table 4.15. We essentially find the same results as we found in Table 4.12 when we

considered all nouns. Given the failure to find a phonotactic constraint in the previous section,

it is unlikely that we would find one here either. Thus, it seems that although Turkish speakers

do seem to generalize velar deletion to novel polysyllabic nouns (Zimmer & Abbott 1978)), they

do not seem to be relying on a phonotactic generalization within the sublexicon of polysyllabic

nouns. In fact, a phonotactic learner similarly fails to penalize intervocalic velars in this case as

well, although if the relevant constraint is fed at the initialization of the model, it is given a

miniscule weight after learning (∼0.09).

V_V Other contexts Expected % of Cs

/k, g/

932 (1,044)

20.05% / 31.31%

O/E = 0.89

3,716 (3,604)

79.95% / 36.14%

O/E = 1.03

35.05%

Other stops/affricates

2,045 (1,933)

23.75% / 68.69%

O/E = 1.06

6,567 (6,679)

76.25% / 63.86%

O/E = 0.98

64.95%

Expected % of

occurrence in context
22.45% 77.55%

Table 4.15: Occurrence of /k, g/ compared to other stops/affricates in V_V vs. other contexts
in Turkish polysyllabic nouns. Expected counts are in parentheses. Percentages in bold: row
percentages; Percentages in italics: column percentages.
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4.4.5 Summary

In contrast to what we found with Korean, velar deletion in Turkish does not have strong

phonotactic support from the lexicon. We should note that although there is a statistically

significant under-representation of intervocalic velars in the lexicon as a whole, the set of nouns

as well as in CDS, this under-representation does not actually translate into the robust learning

of a phonotactic constraint that penalizes such sequences. It should be pointed out though that

the CDS corpus was much smaller than any of the other corpora examined in both Korean and

Turkish with just over 6,000 items.

Of course, with a richer phonological representation, it might be possible for a learner to

arrive at such a constraint. Indeed this is what Inkelas & Orgun (1995) propose, arguing that

velars which are syllabified at an earlier level of the morphological derivation (i.e. stem-internal

velars), are immune from deletion. Only unsyllabified, i.e. stem-final velars, are subject to the

*VKV constraint which triggers deletion. Their analysis further protects deletion from occurring

with verbal suffixes since these are attached at an earlier level of the derivation where *VKV is

not applicable. The important difference here is that there is not a simple phonotactic solution

to Turkish velar deletion, unlike in Korean where a constraint is readily arrived at without

reference to the derivational cycle. As Inkelas (2011) points out, velar deletion in Turkish is

essentially a case of morphologically-conditioned phonology.

4.5 Another brief example: Finnish Assibilation

In this section, I briefly present the results of a small corpus study of the lexicon of Finnish.

Recall that in Finnish, /t/ assibilates to [s] before [i] but only across a morpheme boundary

(see §2.1). The basic pattern is repeated below with the alternation occur across a morpheme

boundary in (29) but not within stems (30). As Anttila (2006) and Karlsson (1983) have

pointed out, however, not all suffixes engender the alternation despite meeting the phonological

requirements (31). In fact, the alternation seems to be limited to three suffixes in (32).
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(29) /t/ −→[s] / across a morpheme boundary (*ti):

a. /halut-i/ −→ [halusi] ‘want-PAST’

b. cf. /halut-a/ −→ [haluta] ‘want-INF’

c. /hakkat-i/ −→ [hakkasi] ‘beat-PAST’

d. cf. /hakkat-a/ −→ [hakkata] ‘beat-INF

(30) /ti/ sequences surface faithfully within stems:

a. /tilat-i/ −→ [tilasi] ‘order-PAST’ *[silasi]

b. /koti/ −→ [koti] ‘home’ *[kosi]

(31) Non-triggering suffixes.

a. Instrumental /-ime/: /lentä-ime-n/ −→ lentimen
‘fly-INST-GEN’

(*lensimen)

b. Conditional /-isi/: /tunte-isi/ −→ tuntisi ‘feel-COND’ (*tunsisi)

(32) Triggering suffixes for assibilation

a. Plural /-i/: /vuote-i-nA/12 −→ vuosina ‘year-PL-ESS’

b. Past tense /-i/: /huuta-i-vAt-kO/ −→ huusivatko ‘shout-PAST-3P.PL-Q’

c. Superlative /-impA/: /uute-impA-nA/ −→ uusimpana ‘new-SUP-ESS’

This pattern shares in common the morphologically restricted nature as the Turkish velar

deletion process described in the previous sections. The question then is whether the /ti/

sequences in the lexicon, which are repaired across a morpheme boundary, are underrepresented

or not. I consulted the “The Frequency Lexicon of the Finnish Newspaper Language” (CSC - IT

Center for Science 2004) which contains 9,996 of the most common lemmas taken from Finnish

newspapers. CV sequences were tabulated as in the previous sections above 4.16. We notice

that the O/E value for /ti/ sequences is 1 indicating that in this corpus /ti/ sequences occur

12Vowels in upper case undergo vowel harmony.
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at the expected rate. A chi-square test confirms that that there is no skew in the distribution

(χ2(1) = 0.065, p = 0.79), suggesting that there is no underrepresentation of /ti/ sequences in

Finnish. Therefore, there does not seem to be phonotactic support for the assibilation process

that occurs across a morpheme boundary in Finnish, making this parallel to the Turkish velar

deletion case described above. In both cases, there is no strong phonotactic support for the

alternation, and the alternation is highly restricted to specific morphological contexts.

/i/ Other Vs Expected % of Cs

/t/
795 (790)

16.12% / 46.19%
O/E = 1.00

4,138 (4143)
83.88% / 45.83%

O/E = 1.00
45.88%

Other Stops
926 (931)

15.92% / 53.08%
O/E = 1.00

4,892 (4,887)
84.008% / 54.17%

O/E = 1.00
54.12%

Expected % of Vs 16.01% 83.99%

Table 4.16: Occurrence of /t/ compared to other stops before /i/ vs. other contexts in Finnish.
Expected counts are in parentheses. Percentages in bold: row percentages; Percentages in
italics: column percentages.

4.6 General Discussion

The present chapter set out with the aim of examining in closer detail the quality of the

phonotactic generalizations available in languages with derived-environment effect patterns.

We investigated in detail two well-known examples of derived-environment effects: Korean

palatalization and Turkish velar deletion. I also briefly examined the lexical statistics as it

pertains to the well-known derived environment pattern in Finnish assibilation. We found

differing results with respect to the strength of the phonotactic constraint motivating the

phonological alternation in each case. These results were consistent across different types of

corpora within each language. Specifically, while there is a robust, albeit gradient, phonotactic

constraint dispreferring [TI] that is able to motivate alternations in Korean, no such constraint

dispreferring intervocalic velars is readily available in Turkish. Here I discuss the implications
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of these results for morphologically derived environment effects in general, as well as for

the relation between static phonotactic generalizations and phonological alterations, and the

learning of such generalizations.

4.6.1 Derived environment effects as a unified phenomemon?

A major finding of the current study is that despite structural similarities, patterns previously

described together as examples of morphologically derived environment effects are by no

means a unified phenomenon. On the surface, both Korean palatalization and Turkish velar

deletion share structural similarities in that the phonological process is purported to only apply

when the environment is achieved by virtue of the concatenation of two morphemes, but not

within morphemes. This surface similarity belies stark differences once we start looking more

closely at the quantitative patterns of alternations and the lexicon. On the one hand, in Korean,

there is a productive general phonological constraint that drives palatalization such that even

stem-internal forms violating this constraint are rare. On the other hand, in Turkish, velar

deletion is morphologically conditioned and not general, and the stem-internal forms that

contain intervocalic velars while occurring slightly less than expected, are nonetheless frequent

enough that there is no reliable penalty against them. Thus, these two cases are in some respects

opposites of each other.

More broadly speaking, our results call into question the traditional notion of morphologically

derived environment effects. In Korean and Turkish, both considered uncontroversial canonical

examples of morphologically derived environment effects, the actual patterns do not hold up to

scrutiny, especially when one takes into consideration the assumptions laid out in (5) and (11)

repeated here as (29) and (30).

(33) DERIVED-ENVIRONMENT CONDITION: Morphological derivedness is a necessary and

sufficient condition for a process to occur (variously stated as the Strict Cycle Condition

or the Revised Alternation condition; Kiparsky 1973, 1982b).
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(34) PHONOTACTIC PRODUCTIVITY: Static phonotactic patterns are completely productive

(i.e. morpheme-internal sequences are phonotactically well-formed).

Each of the cases examined here fails on one of these assumptions, Turkish on (33) (Inkelas 2011,

2014, Sezer 1981), and Korean on (34).13 A cursory survey of the literature on morphologically

derived environment effects indicates that many other well-known cases of derived environment

effects are similarly murky. Finnish assibilation (Anttila 2006) discussed in §2.1 and §4.6

is another example, which like Turkish velar deletion, fails on (33): a derived-environment

provides a necessary but not sufficient condition for the phonological process to apply.

Thus it seems that the most well-known cases of derived-environment effects are less canon-

ical than had previously thought, an observation previously articulated by Inkelas (2011, 2014).

Whereas Inkelas (2011, 2014) conjectures that many morphologically derived environment

effects might be instances of morphologically-conditioned phonology, our examination of Korean

here suggests that at least some putative derived environment effect cases are really instances

of gradient exceptionality. In Korean, stem-internal [TI] sequences are exceedingly rare and

come mostly from loanwords, the latter of which was first observed by Y.-M. Y. Cho (2009),

and confirmed quantitatively in more detail here. As Y.-M. Y. Cho (2009) further points out, a

number of other cases are similar in having exceptions that are mostly loanwords (e.g. Finnish

Vowel Coalescence (Anttila 2009), Polish First Velar Palatalization (Łubowicz 2002), see Y.-

M. Y. Cho (2009) for other examples). Thus, a closer inspection of the lexicon of other cases of

derived environment effects might well reveal a similar picture as in Korean where we observe

a dispreference tautomorphemically for sequences repaired heteromorphemically.

Taken together, these results argue for the assertion that patterns classified traditionally

as morphologically derived environment effects might in reality be cases of either gradient

13Korean arguably also violates (29) if we take into account compounding, where underlying /ti/ sequences can
also occur across compound (or prefix) boundaries (Oh 1995). But there is a conspiracy here where n-insertion
can variably occur to fix such sequences. It is an open question then as to the extent to which n-insertion applies
to prevent underlying /ti/ from surfacing (see also Martin 2011).
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exceptionality or morphologically conditioned phonology. Given this, one wonders what utility

there is to the very notion of a ‘derived environment effect’.

4.6.2 Derived environment effects and the relationship between static and dynamic gen-

eralizations

In the previous section, I argued for the fact that the two instances of morphologically derived

environment effects examined in this paper are really two different patterns. But while they

are indeed different from each other, they are similar insofar as the static generalizations and

dynamic ones motivating phonological alternations are much more closely linked than the

surface facts would suggest.

Morphologically derived environment effects are instances in which there is a loss of a static

phonotactic generalization, although the dynamic one motivating the alternation is still active

(Paster, 2013). Paster (2013) further suggests that these two levels of generalization are some-

what independent to the extent they can develop historically in different ways. Under this view,

however, we would expect to find that alternations are entirely productive heteromorphemically

and analogous segmental sequences are not in any way dispreferred tautomorphemically (i.e.

the patterns should conform to (29) and (30)). Yet as argued for above, this does not seem

to be the case. In fact, while there are indeed exceptions to the general constraint motivating

palatalization in Korean, constraint-violating stem-internal sequences are rare enough for a

reliable static phonotactic constraint against these same sequences to be learned. In Turkish,

contrastively, there is no strong phonotactic support for velar deletion - stem-internal VKV

sequences while less frequent than expected are nonetheless well-formed - and the alternation

is highly morphologically conditioned. Although the alternation is productive (Becker et al.

2011, Zimmer & Abbott 1978), it is unclear that there’s a straightforward way to account for this

without referring to morphological information or word category. Thus these cases of mismatch

in the static and dynamic generalizations turn out to only be apparent (Table 4.17). In Korean,

where the alternation is productive, there is also a gradient, static phonotactic generalization.

In Turkish, where there is no static phonotactic generalization, the alternation is much more
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constrained. This general pattern is one that is shared by both Turkish and Finnish in that

there is no static phonotactic pattern in the lexicon that supports the alternation, and in both

cases the alternation is highly morphologically conditioned. These facts perhaps suggest a bias

for the maintenance of broader, more general, phonological generalizations (see also Martin

2011), or at the very least a bias to maintain similar generalizations across different levels. So

while it is true that static phonotactic patterns and alternations can pull apart historically (as

happened in Korean through independent phonological processes and borrowings), the two do

not seem to be entirely independent. Thus any theory that posits complete independence of

stem phonotactic generalizations and alternations misses this relationship.

Table 4.17: Static phonotactics vs. alternations

Static generalization Alternation
Korean Yes (weaker) Yes

Turkish No
No-ish (Yes but very much

constrained)

Our results also have interesting implications from the phonological learning standpoint.

Constraint-based learning models (Hayes 2004, Hayes & Wilson 2008, Prince & Tesar 2004,

Tesar & Prince 2007) predict that patterns like morphologically derived environment effects

should be more difficult to learn. If phonotactic learning occurs prior to alternation learning,

then a learner might initially learn the wrong phonotactic generalization. For example, in

Turkish, a learner might initially learn to accept [VkV] although she would need to learn to

delete [k] in polysyllabic nouns later. In fact, Turkish learners do not seem to have access to a

robust phonotactic constraint that motivates velar deletion, even when we only consider the

part of the lexicon (polysyllabic nouns) where velar deletion reliably occurs. It is maybe not

surprising that the alternation is highly constrained in this case. Contrastively, if offending

words are rare enough, a probabilistic learner (e.g. Hayes & Wilson 2008, Jarosz 2006, 2011)

will nonetheless learn an, albeit weaker, more gradient phonotactic constraint. This is exactly

the situation in Korean with regards to palatalization. Such a finding thus argues against
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non-probabilistic learners such as Biased Constraint Demotion (Prince & Tesar 2004) which

would likely be too brittle to handle gradient well-formedness.

4.6.3 Conclusion

In this paper, we examined the relationship between static phonotactic patterns and phonological

alternations in two paradigmatic examples of derived environment effects: Korean palatalization

and Turkish velar deletion. We found that neither case conformed to the usual assumptions

regarding derived environment effects. They are in fact mirror-images of each other. In Korean,

there is an active alternation with a gradient static phonotactic constraint, whereas in Turkish,

there is a constrained alternation with no static phonotactic constraint. The significance of

our result lies in the fact that these supposedly structurally similar cases are not canonical

cases of derived environment effects, and moreover, they call into question the notion of

morphologically derived environment effects. Our results also suggest some bias to maintain

similar generalizations across different domains (tautomorphemically vs. heteromorphemically).

A number of avenues of investigation remain open. For one, it is a puzzle as to why Korean

allowed [TI] sequences to be borrowed in faithfully in the first place. Borrowing occurred after

the counterfeeding diachronic sound change was complete (Y.-M. Y. Cho 2009), producing

novel [TI] sequences. Yet as we saw from the corpus results, TI was strongly under-represented

in the native and Sino-Korean lexicons. So what allowed for faithful borrowings of [TI]? It is

possible here that other considerations regarding loanword adaptation are at play here which

prefer such forms (e.g. orthographic effects: Daland, Oh, & Kim 2015).

Further, given our finding of two different “types” of putative derived environment cases,

one wonders whether we would be able to construct a typology of derived environment patterns

that actually captures what these patterns look like. That is, do all derived environment patterns

reduce to either gradient exceptionality or morphologically conditioned phonology? Finally,

the findings of our study lead us to the conjecture that a derived environment effect is likely to
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only be productive if it is supported by a phonotactic generalization in the lexicon. If this is

unavailable, then learning breaks down, resulting in morphologically-condition phonology.
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Appendix

Table 4.18: Korean Features
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Table 4.19: Turkish Features
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CHAPTER 5

Simulating learning in derived-environment effects

In the previous chapter, we examined the phonotactic generalizations that were available in two

cases of derived-environment effects: Korean palatalization and Turkish velar deletion. While

previous analyses (e.g. Wolf 2008, Łubowicz 2002) had largely assumed that stem-internal

sequences that went against the cross-morpheme generalization were well-formed, I showed

that at least in one case, Korean palatalization, this assumption does not seem to hold. I then

proposed a sketch of a phonological analysis that argued for the purported derived-environment

pattern in Korean as a case of lexical exceptionality: words with surface [ti] in them are encoded

as lexical exceptions due to their rarity, thereby allowing for the general markedness to drive

the categorical alternation. It was also argued that another well-known derived-environment

pattern, Turkish velar deletion, is a case of morphologically-conditioned phonology insofar as

the alternation is only licensed in certain morphological contexts, although in these specific

contexts, it is largely productive. I further suggested that in both cases the purported mismatches

in terms of phonotactics and alternations belie generalizations that are actually more similar,

potentially indicating a bias for more general constraints (Martin 2011).

In this chapter, I sketch out how a bias in favor of more general phonological constraints

can be achieved in a MaxEnt grammar (see Chapter 2). I implement this by capitalizing on the

priors imposed on constraints and weights in MaxEnt learners which I discuss further in §1.

In §2-5, I present toy simulations of five different languages that differ in the degree to which

phonotactics and alternations mismatch.
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5.1 Favoring generality: Implementing with a prior

As described in Chapter 2, MaxEnt learners contain two free parameters for each constraint

(priors). The first is µ which is the preferred weight for a given constraint. In our simulations

below, these will be determined by the outcome of phonotactic learning of the various simulations

presented in the previous section. The second parameter is σ2 which determines how much the

weights are allowed depart from their preferred value µ. When σ2 is small, it is more difficult

for the weights to depart from their preferred value. In MaxEnt, when two constraints are

able to explain the same data, and they share the same µ and σ2 values, weight is uniformly

distributed across both constraints. Our simulations will make use of two types of markedness

constraints: structure-blind and structure-sensitive constraints. Structure-blind constraints do

not refer to any morphological structure, whereas structure-sensitive constraints do. So for

example, both structure-blind *TI, which penalizes any [ti] sequence, and structure-sensitive

*T+I, which penalizes [ti] sequences spanning a morpheme boundary, are able to explain the

categorical alternation of /t+i/ to [c+i]. All else being equal, a learner will assign the burden

of explanation (in terms of weight) equally across both constraints. Here, however, I will

present a model that encodes a bias for weights to be preferentially placed on the more general

structure-blind constraint *TI over the more specific structure-sensitive *T+I. So constraints

in these simulations will have different σ2 values. This perhaps captures the intuition that,

all else being equal, learners prefer more general, less complex constraints (Moreton & Pater

2012a, Hayes & Wilson 2008), where *T+I is more complex than *TI since the former references

morphological structure whereas the latter does not. The working assumption here is that it is

more difficult and more complex to learn structure-sensitive constraints, thus learners will prefer

the explanatory burden to be placed on the general constraint and not the structure-sensitive

one.
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We will assume the following constraints for this simulation:

(1) Constraints:

a. *TI: No TI sequences (anywhere)

b. *T+I: No TI sequences across a morpheme boundary

c. FAITH: Faithfulness constraint preventing palatalization

d. FAITHLexC1: Lexically-specific faithfulness constraint preventing palatalization within

a stem (for Lexical Class 1) (see Chapter 4 for a definition).

Here, we will assume that exceptional words with [ti] sequences that do not palatalize within

stems are part of a lexical class: Lexical Class 1 (LexC1). Thus the constraint FAITHLexC1 applies

only to words in the input, and not to novel /ti/ words. For the constraints *TI, *FAITH and

*FAITHLexC1 will have σ2 values set at a constant 500. What we will vary is the σ2 values for

the structure-sensitive constraint: 0.1, 10, 50, 100, 200, 300, 400 and 500. When σ2 is small,

we expect little weight to be assigned to the structure-sensitive *T+I constraint, and that the

weight assigned to this constraint will increase as the σ2 value increases to be the same as the

other constraints. The µ value for this constraint is set at 0. For each language, we will examine

the model’s prediction on untrained data. Specifically, we’re interested in examining what the

learner’s behavior is as the σ2 value changes.

5.2 Across-the-board language

We start the examination with a baseline language modeled on Korean palatalization except

that the ban on [ti] is across-the-board, so there is no mismatch between phonotactics and

alternations. The model was initialized with a µ value of 6.169 for *TI which was the weight

assigned to this constraint in the learning simulation in Chapter 4 in which the data set did not

contain any [ti] sequences. All other constraints are assigned a µ of 0. The learner is trained

on the input in Table 5.1. In this case, the lexically-specific FAITHLexC1 is not relevant, since
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there are no lexical exceptions to palatalization. This is left in the tableaux in Table 5.1 for

completeness and to aid comparison with the other simulations in this chapter that do make

use of this constraint. The learner is then tested on novel forms in Table 5.2. These will be the

same test items used in all the simulations reported below.

Input Ouput Freq. FAITHLexC1 *TI *T+I FAITH

/t+i/ [t+i] 0 1 1

[c+i] 1 1

/ti/LexC1 [ti] 0 1

[ci] 0 1 1

/c+i/ [t+i] 0 1 1 1

[c+i] 1

/ci/ [ti] 0 1 1

[ci] 1

Table 5.1: Input for across-the-board language

Input Ouput Freq. FAITHLexC1 *TI *T+I FAITH

/t+i/novel [t+i] 0 1 1

[c+i] 0 1

/ti/novel [ti] 0 1

[ci] 0 1

/c+i/novel [t+i] 0 1 1 1

[c+i] 0

/ci/novel [ti] 0 1 1

[ci] 0

Table 5.2: Novel test items
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Figure 5.1: Predicted probability of palatalization
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We expect in this language that the σ2 value of the *T+I constraint does not need to be

very high in order to learn the language since the generalization does not have to be accounted

for using the structure-sensitive *T+I constraint. Figures 5.1 and 5.2 show the predicted

probability of palatalization of the inputs /ti/novel and /t+i/novel with a range of σ2 values, and

the learnt weights for each of the constraints respectively. Here we concentrate on the forms

with underlying /ti/ sequences, since underlying /ci/ sequences are always predicted to surface

faithfully. We notice that as the value of σ2 increases, the weight assigned to *T+I increases,

and so does the rate of of palatalization for /t+i/ (dashed line in Figure 5.1). As the weight of

*T+I increases, this means that the weight of structure-blind *TI can be lower without sacrificing

any accuracy on the training data. But this has the unintended consequence of lowering the

rate of palatalization for /ti/novel which was not in the training data. As far as the learner is

concerned, this is of no consequence since it is still modeling the training data accurately. But

typically, we generally expect human learners to reject data that is not presented in training

(e.g. experiments in Chapter 3, Skoruppa & Peperkamp 2011, Linzen & Gallagher 2014). The

learner is, therefore, not accurately modeling human behavior, since [ti] sequences should be

rejected. Counterintuitively, the model with a lower σ2 value is preferred in this case.

The simulations, perhaps unsurprisingly, shows how using just a structure-blind constraint,

with a very low σ2 value for the structure-sensitive constraint, accurately models the input data

in an across-the-board language. Somewhat counterintuitively, however, the learner actually

requires that σ2 be low in order for it to model the training data in a way that conforms to

what we expect human learners to do, in particular it predicts a weakening of the stem-internal

phonotactic constraint as the σ2 value increases.

5.3 Toy Korean

In this section we present a simulation of Toy Korean. In this toy language (Table 5.3), there

is a frequency difference between stem-internal [ti] and [ci] sequences in the training data.

This aims to capture the fact that Korean has an under-representation of [ti] sequences in the
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lexicon as we found in Chapter 4. We will assume the same constraints as in §2 although in

this language *TI is initialized with a µ of 1.916, which was the weight learnt in Chapter 4 for

Korean. All other constraints were initialized with a µ value of 0.

Input Ouput Freq. FAITHLexC1 *TI *T+I FAITH

/t+i/ [t+i] 0 1 1

[c+i] 1 1

/ti/LexC1 [ti] 0.1 1

[ci] 0 1 1

/c+i/ [t+i] 0 1 1 1

[c+i] 1

/ci/ [ti] 0 1 1

[ci] 0.9

Table 5.3: Input for Toy Korean
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Figures 5.3 and 5.4 shows the outcome of learning with different σ2 values, with the

predicted probabilities of palatalization for inputs /ti/LexC1, /ti/novel and /t+i/novel . Overall,

the learner is accurate on the alternation, regardless of the σ2 value. Interestingly, the learner

overpredicts palatalization of /ti/LexC1, suggesting a constant pressure to palatalize, even for

existing exceptional words. The model does best when σ2 is around 100. Here the learner is

able to learn a more or less categorical phonological alternation (98%), while maintaining a

strong preference for [ci] (91%) for an input /ti/novel . Thus, when σ2 is at 100, the language

is able to maintain, on the one hand, an essentially categorial alternation, but at the same a

gradient phonotactic constraint in stems.
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5.4 A "true" derived-environment effect

Having modeled Toy Korean, we now present a simulation of what is required to learn a

“true” derived-environment language. By “true” derived-environment language, I mean here

a language in which stem-internal [ti] sequences are completely well-formed, but there is
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nonetheless a categorical phonological alternation. The learner was trained on the input in

Table 5.4, with an equal frequency of /ci/ and /ti/ In this language, the goal is to learn to

accept [ti] sequences when they are stem-internal, so the learner should predict that for a novel

input /ti/novel , the preferred output is faithful [ti] and not [ci]. The µ value for all constraints

was set at 0 for this simulation

Input Ouput Freq. FAITHLexC1 *TI *T+I FAITH

/t+i/ [t+i] 0 1 1

[c+i] 1 1

/ti/LexC1 [ti] 0.5 1

[ci] 0 1 1

/c+i/ [t+i] 0 1 1 1

[c+i] 1

/ci/ [ti] 0 1 1

[ci] 0.5

Table 5.4: Input for a “true” derived-environment language

The results of the simulations are shown in Figures 5.5 and 5.6. Even when the σ2 value

is equal across all the constraints (at 500), the learner nonetheless never quite predicts a

preference for [ti] over [ci] as an output for /ti/novel . That is, even without a bias against placing

weight on the structure-sensitive constraint, the learner still shows a persistent preference for

[ci] over [ti], in accords with the alternation. The issue is that in order to get a categorical

alternation while preserving stem-internal [ti] sequences, the learner must weight *T+I �

FAITH and FAITH � *TI. Even when the σ2 values are uniform across all the constraints, the

learner still cannot achieve the correct dominance relationship between the relevant constraints.

Only when the σ2 value for the structure-sensitive constraint is higher (σ2 = 1000; Figures 5.5

and 5.6) - that is, when the complex structure-sensitive constraint is treated as preferable to the

general structure-blind constraint - does the learner then show a preference for the faithful [ti]
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output. This suggests that a perfect derived environment language, in which tautomorphemic

sequences are completely phonotactically well-formed but at the same time heteromorphemic

143



sequences are ill-formed and have to be repaired, is likely to be much more difficult to learn. This

further suggests that learning in “true” derived-environment patterns might never be entirely

accurate due to “grammatical leakage” (Martin 2011), since responsibility for the alternation

will always be assigned to both constraints, and it is unlikely that the general *TI constraint will

ever reach 0, with constant pressure for novel /ti/ sequences to palatalize.

5.5 No phonotactic generalization and free variation

So far, in each of the toy simulations, we have kept the rate of alternations constant at 1, with

alternations always occurring. What I have manipulated is the evidence for the phonotactic

generalization in three ways: (1) exceptionless constraint against [ti] (§2), (2) small preference

for constraint against [ti] (§3)and (3) no constraint against [ti] (§4). In this section, I examine

what occurs when there is no constraint against [ti] stem-internally and the alternation is in free

variation (i.e. each candidate is equally probable). This is like the language modeled in §3 but

with a much lower rate of alternation. This is a language that is inspired by the Turkish velar

deletion pattern that was discussed in Chapter 4 in which the alternation is morphologically

conditioned. Thus this might represent an earlier stage of learning Turkish in which a learner

might not have differentiated the contexts in which deletion applies or not, represented here

with the alternation rate at 50%. The learner was trained on the input shown in Table 5.5 using

the same series of σ2 values as was done previously. The µ value for each of the constraints

was set at 0 for this simulation.

144



Input Ouput Freq. FAITHLexC1 *TI *T+I FAITH

/t+i/ [t+i] 0.5 1 1

[c+i] 0.5 1

/ti/LexC1 [ti] 0.5 1

[ci] 0 1 1

/c+i/ [t+i] 0 1 1 1

[c+i] 1

/ci/ [ti] 0 1 1

[ci] 0.5

Table 5.5: Input for a free variation language
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Figure 5.7: Model outputs: Predicted probability of palatalization

The results of the simulations are shown in Figures 5.7 and 5.8. The learner matches, more

or less, the rate of alternations when σ2 is very low at 0.1, and remains constant even as the

σ2 value for *T+I increases. When σ2 is at 0.1, the learner accurately models the alternation,
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but at the cost of only showing a small tendency to be faithful to /ti/LexC1, since *TI is still

weighted very high. As the σ2 value increases, more weight is placed on the structure-sensitive

constraint, and eventually, the structure-sensitive constraint takes up more of the burden in

explaining the alternation (when σ2 = 300). What we note here is that the learner shows a

consistent preference for surface [ti] forms, although this is note quite categorical. Overall, the

learner manages to learn a preference for faithful [ti] stems (lower rate of palatalization for

/ti/novel) while maintaining the free variation with the alternation.
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Figure 5.8: Model outputs: Constraint weights

5.6 Summary

In this chapter, I presented some simulations of how learning of mismatched generalizations

across phonotactics and alternations might occur, depending on the mismatch profiles. In our

simulations, I implemented a bias for alternations to reflect general structure-blind constraints

by constraining how much weight could be assigned onto the structure-sensitive constraints.

Table 5.6 shows a summary of the subjectively “best” σ2 value for modeling each language. The

146



across-the-board language needed just the structure-blind constraint to accurately model the

learning data, although the learner actually got worse in approximating human behavior as σ2

increased. Toy Korean with a gradient phonotactic and categorical alternation along was also

not too difficult to learn although it only achieved an approximation of the data at a higher σ2

value than the across-the-board language. Yet, the learner suffered from the same issue as in the

across-the-board language, where as the σ2 value increased, the learner predicted lower rates

of palatalization for /ti/novel . A “true” derived-environment pattern was not learnt very well. In

particular, the learner never learnt to loosen the stem-internal phonotactic constraint against

[ti] sequences, and only did so when the σ2 value was higher than every other constraint (Table

5.6). That is, only when it was preferred over the structure-blind constraint. Finally, the learner

quite easily approximates the learning data in which there is no phonotactic constraint and the

alternation is in free variation.

σ2 for *T+I σ2 for other constraints

Across-the-board 0.1 500

Toy Korean 100 500

Derived-environment effect 1000 500

Free variation 500 500

Table 5.6: Summary: “Best” σ2 values for *T+I for each language.

I have attempted to show how constraining the weight of the structure-sensitive constraint

might allows us to implement a generality bias. The proposal sketched out here is far from

complete and, of course, needs to be tested against a larger, more realistic data set in which

we have clear evidence from native speaker judgments as to how the generalizations in both

domains differ. In fact, the models here actually produce rather counter-intuitive results. Across

all four simulations, since the learner was trained on alternations, it was always accurate at

predicting the rate of palatalization for the alternation, but the generalization about stem-

internal [ti] sequences was not always predicted, even in the across-the-board language. Here

as σ2 increases, the learner overpredicts unattested [ti] sequences to surface. Thus it seems

147



that the learner is overfitting the alternations, at the expense of accurately modeling the stem-

internal phonotactic generalization. The issue is possibly due to the way in which the learning

data is specified, in particular how the frequencies of the stem-internal /ti/LexC1 are specified.

Alternatively this might be due to the constraint set that we have used. How to remedy this will

the examined in future extensions of the current sketch proposal. One possibility might be that

the learner entertains rich-base type mappings like /ti/ −→ [ci] as well as identity mapping

/ti/ −→ [ti]. If this is the case, the learner must match the rates of these mappings in the

learning data in order to be accurate, so an increase in σ2 will mean a closer match to that

rate. However, even in such a scheme, the derived-environment effect language will still likely

require a counterintuitive σ2 value in order to accurately model the pattern, since the lack of a

phonotactic skew in stems means that, as far as the learner is concerned, there is no reason to

assume any unfaithful mappings for /ti/.

Regardless, the basic proposal is in the spirit of other proposals that use of the free parameters

in the MaxEnt model to encode biases in learning has previously been proposed in Wilson

(2006) and J. White (2017). Both were primarily concerned with implementing a substantive

bias for alternations to occur between sounds which are more perceptually similar or the P-

map (Steriade 2001/2008). Using *MAP constraints (Zuraw 2007, n.d.) which penalize the

correspondence between a given pair of sounds, J. White (2017) implemented this bias by setting

the µ (preferred weight) values for each *MAP constraint based on perceptual confusion data.

Thus, in his implementation of the substantive bias, there was an a priori ranking of constraints,

with constraints penalizing alternations between more distant sounds having a higher weight,

thus requiring more evidence to overturn. Wilson (2006) encodes a similar bias in his model, but

makes use of the σ2 values instead. Under his implementation, markedness constraints (such

as *[ki], *[ka]) have different σ2 values with constraints against less phonetically motivated

constraints having a smaller σ2 value. Because of this they are under more pressure to remain

close to their preferred weights.

The proposal also has some similarities to the model presented in Martin (2011). Martin

(2011) was primarily interested in modeling the fact that geminates (e.g. [pp]) do not exist
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within a morpheme in English, but nonetheless appear heteromorphemically though at a rate

significantly lower than chance. He argued, much like I did in Chapter 4, that this indicates

a gradient dispreference for such forms. In addition to a structure-blind constraint *[p(+)p]

which penalizes all geminate sequences anywhere in a morphologically complex word, Martin’s

model also contained two kinds of structure-sensitive constraints: *[pp] and *[p+p]. The former

only penalizes tautomorphemic geminates, whereas the latter penalizes heteromorphemic ones.

Having both kinds of constraints in his model allowed for weight to be assigned to both the

structure-sensitive *[pp] as well as the structure-blind *[p(+)p] to capture the fact that geminate

sequences within words were categorically banned. And because weight was assigned to the

more general constraint, this then predicted an increased penalty for heteromorphemic [p+p].

The grammatical leakage here is allowed to occur precisely because the algorithm chooses

to uniformly distribute weights across multiple constraints if those constraints are equally

able to explain particular patterns in the data, here *[pp] and *[p(+)p]. Martin initialized

his model by enforcing a uniform prior across his constraints, thereby allowing leakage from

tautomorphemic domain to a heteromorphemic one, and it’s crucially the presence of the

structure-blind constraint that allows for this.

The learner that I have sketched out above differs in a number of ways from Martin’s

simulations. For one, we have adopted the use of faithfulness constraints as well as markedness

constraints, where Martin only used markedness constraints. This is motivated by the fact that

we are modeling an alternation, and not just a purely static phonotactic generalization. Martin

was primarily concerned with phonotactic learning and specifically in whether phonotactic

learning in one morphological domain extends to another one. In the current set of simulations,

however, we are concerned with modeling a categorical alternation with a gradient phonotactic

generalization. In Martin’s case there is a categorical morpheme internal generalization that

spreads in a gradient manner to the heteromorphemic case. Thus, at least in the Korean

palatalization case, the ‘grammatical leakage’ here is also in a different direction. In Martin’s

simulations, the prior on constraint weights, σ2, was set at a uniform value across all constraints,

in fact, leakage across the different phonological domains relied precisely on the fact that weight
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was shared uniformly across constraints whenever two constraints were able to account for the

same pattern. In my own simulations, however, I have attempted to show how adjusting the

prior on the more complex structure-specific constraint gives us different quantitative predictions

for the well-formedness of novel stem-internal sequences that are not protected by the lexically-

specific faithfulness constraints. Thus, unlike Martin, where the weight is shared uniformly

across multiple constraints, I have attempted to show how favoring the assignment of weight to

the more general structure-blind constraint allows for simultaneous gradient well-formedness,

with lexically-specific faithfulness constraints, as well as categorical alternations.

All in all, what is presented here is a first step to trying to model mismatches across

phonotactics and alternations. A future step would be to utilize models with an implementation

that incorporates both phonotactic and alternation learning, such as the model elaborated in

Jarosz (2006, 2011). Examining the learning behavior in such a model would be particularly

enlightening on how these mismatches are learnt.
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CHAPTER 6

General Discussion & Conclusion

6.1 Summary of dissertation

The goal of this dissertation was to examine a central assumption in the literature on phono-

logical learning: that phonotactics facilitates alternation learning. I examined this question

by comparing alternation learning in a language with matching phonotactics to one in which

the stem-internal phonotactic generalization mismatches the alternation. These latter types of

patterns are known as derived-environment effects. In particular, I was interested in shedding

light on the following questions:

1. How does phonotactic learning interact with alternation learning - does phonotactic

learning facilitate alternation learning?

2. How might a learning perspective on phonological mismatches shed light on how to

theoretically account for these kinds of phonological patterns?

I began, in Chapter 2, by describing cases in the literature that show mismatches between

alternations and stem phonotactic generalizations. In particular, I concentrated on derived-

environment effects, a well-known class of phonological patterns that have proven thorny

to account for in our theoretical models. Although these mismatch patterns exist, when

compared to patterns which show a match in phonotactic generalizations and alternations,

they seem to be more difficult to learn. I illustrated how phonotactic learning in two of these

mismatch patterns, derived-environment blocking and derived-environment effects, might

proceed in two different computational models of learning: a Biased Constraint Demotion
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(BCD) Model and a MaxEnt model. Without morphological information in the training data,

neither model distinguished phonotactic learning in a derived-environment effect language and

a derived-environment blocking language, resulting in a difficulty in either learning the right

root phonotactic generalization or alternation. The BCD learner failed to learn the appropriate

constraint that would motivate the alternation (e.g. *TI) in a derived-environment effect

language, and failed to learn the appropriate root phonotactic constraint that would penalize

stem-internal sequences in a derived-environment blocking language. The MaxEnt learner

shows an overall preference for alternation in both types of languages, although this was at a

lower rate than when trained on a language that showed an across-the-board generalization.

This predicted a lower rate of alternations for a derived-environment effect pattern, but in

so doing, wrongly predicted alternations for a derived-environment blocking pattern. It also

predicted that both languages should show a gradient root phonotactic constraint which does

not accurately fit either language. Thus preliminary learning simulations in this chapter showed

how phonotactic learning in these mismatch patterns makes it difficult to then arrive at the

correct generalization about alternations.

Using an artificial grammar learning paradigm, in Chapter 3, I compared the learning of

alternations in languages with a phonotactic match and mismatch. Learners trained on the

mismatch language (Non-harmonic) language were unable to learn the alternation despite

being trained on the alternation. Contrastively, those trained on the match (Harmonic) language

successfully learnt the alternation. We also saw the intermediate learning of the alternation

when the phonotactic generalization of stems only partially accorded with the alternation (Semi-

harmonic language). When trained only on phonotactic generalizations without any exposure

to alternations, however, learners do not spontaneously extend the learnt phonotactic general-

ization to novel alternations. I also conjectured that our results suggest that languages with a

phonotactic mismatch, i.e. derived-environment effects, should be typologically dispreferred.

In Chapter 4, I examined in greater detail what the empirical patterns, in terms of the lexicon,

are in two well-known cases of derived-environment effects: Korean palatalizaion and Turkish

velar deletion. Pairing corpus analysis with computational learning of phonotactic generaliza-
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tions using a MaxEnt learner, I showed that in Korean, contrary to previous assumptions about

the data, there is a gradient phonotactic penalty against sequences which are repaired across

a morpheme boundary. Thus there is phonotactic support for the alternation. Contrastively,

in Turkish, we found no evidence for a phonotactic constraint penalizing intervocalic velar

sequences in the lexicon, indicating that the alternation is not phonotactically supported. This

accords with the fact that the alternation in Turkish is morphologically circumscribed (Inkelas

2011, 2014, Sezer 1981). I also showed briefly how Finnish assibilation showed a similar statis-

tical pattern as Turkish velar deletion. I then presented an analysis of the Korean alternation

pattern using lexical faithfulness constraints to capture the fact that the sequences in the lexicon

which show the phonotactic mismatch are rare enough to be encoded as lexical exceptions to a

more general phonological generalization.

Finally, in Chapter 5, I sketched a proposal of how a bias for a general constraint might

be implemented using differing σ2 values for a general structure-blind constraint and a more

specific structure-sensitive constraint. I proposed that this preference could be encoded by

having a smaller σ2 value for the more complex structure-sensitive constraint, thus preferring

weight to be assigned to the more general structure-blind constraint. I showed that in order

to learn a toy derived environment language successfully (novel stems with the sequence /ti/

treated faithfully more often than not), it was necessarily to give a larger σ2 to the complex,

structure-sensitive constraint, treating it as easier to learn than than the simple, structure-blind

constraint. This would be an unrealistic assumption, which supports the decreased learnability

of derived-environment patterns.

Overall our results suggest that (a) learners preferentially learn alternations that accord with

static phonotactic patterns, and that (b) derived-environment effects as a class of patterns are

potentially suspect, likely due to the fact that they are much more difficult to learn relative to

patterns which are across-the-board. Here I conclude by considering the potential implications

of this work for theoretical descriptions of derived-environment effects and for a model of

phonological learning.
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6.2 Implications for derived-environment effects

The converging results from our studies indicate that derived-environment effect alternations

are more difficult to learn relative to those in an across-the-board pattern. Moreover, upon

closer inspection, canonical cases of derived-environment effects in the literature are revealed

to be less than perfect examples of these patterns. Neither Turkish velar deletion nor Korean

palatalization, the patterns investigated in detail here, hold up to the assumptions that the

alternation is productive and that stem-internal sequences are phonotactically well-formed.

In fact, in Korean, there is a productive alternation, but there is also a gradient phonotactic

constraint in the lexicon. In Turkish, conversely, there is no phonotactic constraint in the lexicon,

but the alternation is not productive, and is confined to certain morphological contexts.

Why might derived-environment mismatches arise in some languages? In at least some

cases, the answer lies in foreign loanwords or the interaction of independent sound changes.

In fact, Łubowicz (2002) has suggested this for Polish palatalization, and Y.-M. Y. Cho (2009)

has also suggested this was the case for Korean palatalization. But in both cases, they present

analyses which predict stem-internal sequences to be phonotactically well-formed. Our current

study offers the first quantitative investigation of the lexicon to provide evidence that this is

not always the case. Similarly, others have also pointed out previously that some cases of

derived-environment effects are confined to certain morphological contexts. In fact, the most

famous case of derived-environment effects, Finnish assibilation (Kiparsky 1973), is really only

true of three suffixes (Anttila 2009), and as I showed briefly in Chapter 4, the sequence that is

repaired heteromorphemically is not underattested in the lexicon. In the same vein, Turkish

velar deletion only applies to polysyllabic nouns (Sezer 1981, Inkelas 2011), and even here is

not a completely categorical process (Becker et al. 2011). Further, Malagasy vowel dissimilation

(Zymet 2014), which I suggested was an interesting case in which the the alternation enforces

a generalization that is the opposite of the mild statistical tendency of harmony in the lexicon,

only occurs with one suffix (J. Zymet, p.c.). Thus no case so far exhibits the qualities of a ‘true’
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derived-environment effect pattern in which there is a productive alternation that eliminates a

structure (such as /ti/) that is nonetheless phonotactically well-formed within stems.

What does this mean for the very notion of a “derived-environment effect”? The fact that no

case examined so far conforms to the general conception of what a derived-environment effect

pattern should look like suggests that this very notion is suspect. I argue that these patterns

have only been described in this way due to the lack of a proper consideration of the complexity

of the actual patterns in the data. Once we consider the quantitative patterns in both the lexicon

and alternations, it clearly emerges that patterns which have been previously described as

instances of derived-environment effects are not the same beast, despite the surface structural

similarity.

Can the notion of a derived-environment effect be salvaged? The strongest answer that

one might make based on our current results is: no. A less rigid answer might be that derived-

environment effects might only be useful as a broad class of patterns which show an alternation

of some sort but with some kind of mismatch in phonotactics. But in this case, this notion is

purely a descriptive label for a diverse set of patterns. What I think might be more insightful,

perhaps, is to construct a typology of derived-environment effects that pays close attention

to the quantitative patterns and relative productivity of both the phonotactic generalizations

and alternations. So far, we have at least two types of cases: Korean palatalization is a case of

gradient phonotactics and categorical alternations, while Turkish velar deletion is a case where

there is no phonotactic constraint with a morphologically conditioned alternation. Further

examination of other cases will shed light on the extent to which other cases conform to these

two patterns or, as it likely, that these patterns exist on a continuum of increasing alternation

productivity and decreasing phonotactic acceptability.

A piece of the puzzle that is missing from the current study is what native speakers’ internal-

ized knowledge of these patterns are. Thus our modeling results await confirmation from wug

testing with native speakers of Korean and Turkish. The predictions are that Korean speakers

should show categorical behavior with alternations but gradient phonotactic dispreference

for wug words that contain [ti]. Turkish speakers on the other hand should not show any
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dispreference for intervocalic velar sequences in stems and should show limited generalization

of the alternation beyond the contexts in which it occurs in the language (e.g. novel suffixes

that could in principle trigger alternations).

6.3 Implications for phonological learning: phonotactics and alterna-

tions

The results of the artificial language experiments in Chapter 3 provide evidence that phonotactic

learning and alternation learning are not completely separate processes. The design of our

experiments ensured that the evidence for alternations was consistent across the different

language groups, while manipulating the amount of static phonotactic evidence in the training

data. Thus participants’ failure to learn the alternation in the derived-environment language is

particularly striking since there was ample evidence for it. Thus by showing that phonotactic

mismatches impede the learning of a phonological alternation, I have shown that phonotactic

knowledge does have an impact on alternation knowledge. Moreover, I have shown that gradient

learning of a phonotactic generalization (as in the Semi-Harmonic language in Experiment 1 of

Chapter 3) leads to gradient learning of the alternation.

That said, the phonotactic learning simulation in Chapter 3 of three artificial languages

revealed that the alternation was in principle learnable in all three languages despite the

differences in stem phonotactics. Interestingly, the learner achieves this in different ways. In the

Harmonic language, the learner learns two bigram constraint that penalize [+back][-back] and

[-back][+back] vowel sequences. This is the equivalent of learning a single constraint that would

be formalized as *[-αback][αback]. In both the Semi- and Non-harmonic languages, however,

the learner had to resort to utilizing two trigram constraints that ban the last two vowels of a

three vowel sequence from disagreeing in backness features: *[+syllabic][-back][+back] and

*[+syllabic][+back][-back]. Two things should be of note here. The first is the fact that in all

three languages the learner can actually arrive at the correct generalization about plurals in

the learning data and therefore we might expect that they learn all the patterns equally well.
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This was not the case for adult learners as we have shown in Experiments 1 and 2 in Chapter 3.

The second is that even though the learners are both able to learn the alternation pattern from

a purely phonotactic generalization, the Harmonic learners are able to do this with a much

simpler bigram constraint than both the Semi- and Non-harmonic language learners. The latter

groups have to resort to a more complex trigram constraint to get the correct generalization.

Thus, although there was in fact a trigram phonotactic solution to learning the alternation in the

Non-harmonic language, learners failed to discover this generalization, potentially providing

another piece of support for the idea that learners are biased towards simpler constraints.

So far, we have only investigated what happens with alternation learning if it is not supported

by phonotactics. But what about cases when there are no alternations yet there seems to be

an phonotactic generalization in the lexicon - derived-environment blocking? In Chapter 2,

our initial modeling of phonotactic learning of this type of language showed a similar result to

learning in a derived-environment effect language. In a stochastic MaxEnt model, the learner

predicts the encoding of a gradient phonotactic constraint due to the overall preponderance for

one type of sequence (e.g. [ci]) over another (e.g. [ti]). In our simulations the overall statistical

distribution of these sequences was the same in both the derived-environment effect and

derived-environment blocking languages, thus a learner that is not sensitive to morphological

structure infers the same generalizations in either case. The mismatch here between alternations

and phonotactics, however, does not seem too impede the ability for speakers to infer the

root phonotactic constraints which do not engender alternations. Using a repetition task,

Gallagher (2013) for example showed that Cochabamba Quecha speakers encode the laryngeal

cooccurence restrictions regarding ejectives and plain stops in a root; this phonotactic constraint,

however, does not engender alternations. Thus Cochabamba Quechua speakers internalize root

phonotactic knowledge but do not extend this to alternations.

Unlike a derived-environment effect pattern, a derived-environment blocking pattern might

perhaps be less difficult to learn. This would suggest that while an alternation is easier to

learn if it is supported by phonotactics, just having a phonotactic generalization does not

necessarily lead to the learning of an alternation, nor the failure to internalize that phonotactic
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generalization about the lexicon. So there might be an asymmetric effect on learning depending

on the locus of the mismatch. Note that this is from the perspective of a human learner, since

a computational model treats these equivalently as we saw in Chapter 2. In fact, we saw

that learners in the experiments presented in Chapter 3 failed to extend a learnt phonotactic

generalization to novel alternations that they were not trained on. If learners are already biased

against positing alternations, as we might infer from the results of the Experiments 3 and 4 in

Chapter 3, it might the case that derived-environment blocking cases are actually the default.

While our results are suggestive of an effect of phonotactic knowledge on alternation

knowledge in learning, whether they are encoded by a shared mechanism as is suggested by

the constraint architecture of OT remains unclear. Learners are not inherently biased to extend

a phonotactic generalization to unseen alternations as we have shown in Experiments 3 and

4 in Chapter 3. This is also consistent with Pizzo’s findings. In Pizzo’s (2015) case it was

from alternations to phonotactics, and in Chapter 3, from phonotactics to alternations. An

eventual model must therefore be able to account for the fact that phonotactic matches aid

alternation learning, but that learners do not spontaneously expect alternation knowledge to

reflect phonotactic knowledge or vice versa.

Finally, our understanding of the relative trajectory of phonotactic and alternation learning

in infancy is still unclear. Infants show a precocious ability to learn phonotactics solely from

distributional data by 8.5-9 months (Saffran & Thiessen 2003, Friederici & Wessels 1993, Jusczyk

et al. 1993, K. S. White et al. 2008), but only show knowledge of alternations a little later at 12

months (K. S. White et al. 2008, J. White & Sundara 2014). Yet we do not actually have any

evidence that alternations which are phonotactically motivated are learnt earlier than those

which are not, a prediction of phonological models and the artificial grammar learning studies

from this dissertation. Thus examining specific cases that would bear on this question would

provide a fruitful avenue for future research.
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