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ABSTRACT OF THE DISSERTATION

Essays in Flexible and Nonlinear Time Series Econometrics

By

Robert MacDonald

Doctor of Philosophy in Economics

University of California, Irvine, 2024

Associate Professor Ivan Jeliazkov, Chair

Time series econometrics is essential to empirical studies in macroeconomics, finance, and

many other areas. While the canonical models in this literature are small, parametric, and

linear, there is growing interest in models in which the data generating process is either

nonlinear or of a flexible, adaptive form. This dissertation proposes several new models and

techniques in the area of flexible and nonlinear time series econometrics.

Chapter 1 proposes a novel methodology for determining the specification of factor-augmented

vector autoregression (FAVAR) models. Without strong a priori beliefs about the set of pos-

sible models, the complexity of the problem renders traditional model selection techniques

infeasible. By contrast, my proposed solution only requires the estimation of a single model.

This makes the process easy to scale in both the cross-sectional and time series dimensions.

An efficient optimization algorithm for model estimation is developed. Monte Carlo studies

show the technique to be highly effective in small samples, even in the presence of a low

signal-to-noise ratio and missing data. Applications to large datasets of monthly and quar-

terly U.S. macroeconomic variables identify observed factors not normally considered in the

FAVAR literature. The methodology is then used to analyze the asset-pricing model of Fama

and French (1993). I find that their constructed factors for firm size and book-to-market

equity ratio are likely observed components, but excess market return is not.

x



Chapter 2 proposes a regime-switching linear model with time-varying transition probabil-

ities, endogenous switching, and a nonparametric error distribution. The last two qualities

are achieved by letting the conditional mean of the normalized observation errors be a po-

tentially nonlinear function of the errors in the state equation. We demonstrate that this

specification permits a very flexible marginal distribution for the observation error. A Markov

Chain Monte Carlo algorithm for sampling from the posterior distribution of parameters is

developed. A simulation study demonstrates that existing parametric switching models yield

biased parameter estimates when the data is generated by a model with nonlinear endoge-

nous switching. We apply the model to US quarterly output growth. The proposed model

is shown to fit the data better than parametric switching models.

Count data models are at the core of a large and diverse empirical literature in the social

and natural sciences. A key component in this class of models is the mean function, which

defines the relationship between the covariates and the conditional expectation of the count

process. Chapter 3 considers a general approach for representing the mean function that is

adaptable, tractable, and dispenses with problematic facets of count data models such as

explosive covariate effects and restrictive time series properties. The methodology is broadly

applicable in cross-sectional, longitudinal, and time-series settings, with likelihood-based,

generalized linear, copula and other models. We provide theoretical results that distinguish

our methodology from existing work and implement it in two examples that demonstrate its

relevance and practical appeal.

xi



Chapter 1

Specification of FAVAR Models

Factor-augmented vector autoregressions (FAVARs) are a popular tool in high-dimensional

series analysis. The central assumption of any factor model is that much of the variation in a

large panel of dependent variables can be explained by a relatively small number of common

components. A standard FAVAR with an intercept is written as

Xt = µX + Λfft + Λyyt + εt, εt ∼ N(0,Σ), (1.1)

[
ft

yt − µy

]
= Φ(L)

[
ft−1

yt−1 − µy

]
+ ηt, ηt ∼ N(0,Ω). (1.2)

Xt is an N × 1 vector of dependent variables with unit variance, ft is an rf × 1 vector of

latent factors, yt is an ry × 1 vector of observed factors, Λf and Λy are matrices of loading

parameters, µX is the intercepts, and εt is an N × 1 vector of error terms. The variables

are observed in each time period t = 1, . . . , T . The common factors ft and yt are assumed

to explain all of the covariance in Xt. The idiosyncratic errors εt are thus assumed to have

diagonal covariance matrix Σ = diag(σ2
1, . . . , σ

2
N). The FAVAR reduces to a multivariate

regression when rf = 0 and a dynamic factor model (DFM) when ry = 0. This specification

1



allows for parsimonious modeling of high-dimensional data when r = rf + ry << N , thus

offering an alternative to highly-parameterized vector autoregressions (VARs).

The FAVAR was originally developed for structural macroeconomic analysis by Bernanke,

Boivin, and Eliasz (2005).1 The authors assumed the Federal Funds Rate was the only

observed factor and did not perform any model comparison with alternative observed factors.

Models with observed factors, though not typically cast in terms of an FAVAR, are also

common in the asset-pricing literature2. The number of possible observed factors to consider

has grown quite large. Choosing the best subset from the available “factor zoo” (Cochrane,

2011) is of interest to researchers and investors alike.

There is no existing feasible method for comparing all of the possible FAVAR specifications.

Model selection requires knowing the observed factors, the number of latent factors, and the

lag order. Exhaustive model comparison would require estimating millions of models, even

with modestly sized datasets. I propose a solution that only requires the estimation of a single

model. The procedure exploits the fact that any FAVAR has an equivalent representation

as a DFM. I first determine the total number of factors r and the lag order p using existing

information criterion methods. The main contribution of this chapter is the identification

of observed factors. If an observed factor is modeled as a dependent variable in a DFM,

then the associated idiosyncratic error term εit will have true variance σ2
i = 0. I estimate a

DFM with all observed variables and place a Bayesian variable selection prior on each σ2
i .

The prior is designed to shrink small variances towards 0 while exercising little influence on

larger variances.

Model selection is achieved through maximum a posteriori (MAP) estimation. To facilitate

fast model selection, I develop several extensions to the Expectation-Maximization (EM)

algorithm for DFMs. The proposed algorithm leverages the rotation and scale invariance of

1. See Belviso and Milani (2006); Boivin, Giannoni, and Stevanović (2013); Fernald, Spiegel, and Swanson
(2014); Paccagnini (2017) among others for further detail as well as interesting extensions and applications.

2. Among many others, see Chen, Roll, and Ross, 1986; Fama and French, 1993; Fama and French, 2015.

2



the likelihood to obtain a solution significantly faster than the basic EM algorithm.

The identification of observed factors has been addressed solely by the frequentist litera-

ture until this point. The two papers most closely related to this project are Bai and Ng

(2006) and Parker and Sul (2016). Bai and Ng (2006) observe that if we can consistently

estimate the factor space, then any observed factors will be linear combinations of the esti-

mated factors. Their procedure relies on statistical tests in which some candidate variable

is an observed factor under the null hypothesis. This approach is reasonable when the set

of possible observed factors is small, but will encounter problems when the set is large. To

systematically find the correct observed factors in a dataset with many variables, this re-

quires running dozens or hundreds of independent tests and then performing a correction

for multiple hypothesis testing. This method is unlikely to select the true model and may

produce incoherent results, such as concluding there are more observed factors than total

possible factors. Parker and Sul (2016) build upon the work of Bai and Ng (2006) to develop

a criterion for finding a set of candidate observed factors. When combined with a clustering

algorithm, the criterion is effective at finding the set of all possible observed factors. How-

ever, this approach is agnostic about choosing between highly correlated candidates. If Xi

is an observed factor and Xj = Xi + εj, where εj has a small variance, the criterion may

conclude that either variable could be an observed factor. Both papers assume a balanced

panel dataset and do not address the case of missing data. My model selection process does

not encounter the same problems.

I apply the procedure to large datasets of monthly and quarterly macroeconomic data, as

well as the asset-pricing data of Fama and French (1993). The analysis of quarterly macroe-

conomic data yields surprising results. Rather than selecting the Federal Funds Rate as an

observed factor, the default assumption in the monetary FAVAR literature, the procedure

selects the Total Capacity Utilization index. A model of monthly macroeconomic data se-

lects the spread between the 10-Year Treasury Rate and the Federal Funds Rate as the only

3



observed factor. Models restricted to the period following the 2007 Financial Crisis find that

employment measures are more likely to be observed factors. I also estimate a model with

the same variables as Fama and French (1993). Variables that measure the excess returns

attributable to firm size and book-to-market equity ratio are classified as observed factors,

while the excess return from a market portfolio is not.

The remainder of the chapter proceeds as follows. Section 1.1 recasts the model selection

process as an optimization problem. Section 1.2 develops an efficient EM algorithm for MAP

estimation. Section 1.3 investigates the performance of the proposed procedure through

Monte Carlo studies. Section 1.4 applies the new approach to large macroeconomic and

financial datasets, and section 1.5 concludes. Mathematical proofs and technical details can

be found in the appendix.

1.1 The Model Selection Procedure

1.1.1 Rotation Invariant Likelihood

A perennial issue in factor analysis is that the likelihood is invariant under rotations of the

factor basis. Consider the case of a DFM with likelihood f(X|θ). For any square invertible

matrix A, Λft = ΛA−1Aft. Let F = (f1, . . . , fT ), Λ
∗ = ΛA−1, F ∗ = AF , Φ∗

l = AΦlA
−1,

and Ω∗ = AΩA′. Assuming the first p instances of the factors come from the stationary

distribution, where p is the VAR lag order in (2), we obtain the equality

f(X|θ) =
∫
f(X|F,Λ,Σ)π(F |Φ,Ω)dF

=

∫
f(X|F ∗,Λ∗,Σ)π(F ∗|Φ∗,Ω∗)dF ∗

= f(X|θ∗).

(1.3)

4



This means that parameter restrictions are required to identify the likelihood. Unfortunately,

a priori restrictions can lead to model misspecification. Identification is usually achieved

through restrictions on an r × r submatrix of Λ. However, the restrictions are only valid if

the true submatrix is invertible.

1.1.2 Rewriting the FAVAR as a DFM

If we stack Xt and yt in a single vector, we can then rewrite the FAVAR as a special case of

a DFM:

[
Xt

yt

]
=

[
µX + Λyµy

µy

]
+

[
Λf Λy

0ry×rf Iry

] [
ft

yt − µy

]
+ ε†

t , ε†
t ∼ N

(
0,

[
Σ 0
0 0

])
. (1.4)

Now consider rotating the factors by an arbitrary invertible matrix A: f ∗
t = A[f ′

t y′t − µ′
y]

′.

The FAVAR can then be written as:

X∗
t = µX∗ + Λ∗f ∗

t + ε∗t , ε∗t ∼ N

(
0,

[
Σ 0
0 0

])
, (1.5)

f ∗
t = Φ∗(L)f ∗

t−1 + η∗t , η∗t ∼ N(0,Ω∗), (1.6)

where X∗
t = [X ′

t y′t]
′, µX∗ is the intercept from (1.4), and the remaining parameters with

asterisks are defined as in section 2.1. We can thus conclude that any DFM in which some

idiosyncratic variances are 0 is equivalent to an FAVAR where the corresponding variables

are observed factors.

Rather than comparing estimates from different FAVAR specifications. I will estimate a DFM

that nests all possible FAVARs with total number of factors r and lag order p. Identification

is not an issue if your only aim is to determine the observed factors, r, and p. The elements

of Σ do not change when the factor basis is rotated. Since the procedure I propose makes

5



use of a MAP estimate from a Gaussian state-space model, the posterior can be optimized

using an EM algorithm, which does not require an identified likelihood to converge to a

maximum. This helps us avoid any model misspecification problems that can arise from a

priori restrictions. The only normalization I assume is Ω = Ir. This helps to scale identify

the factors and facilitates jumping between points of equal probability to accelerate the EM

algorithm. Once MAP estimates are obtained, the researcher is free to choose his or her

preferred identifying restrictions and rotate the factor basis accordingly.

1.1.3 Determining the Observed Factors

Let us consider the problem of identifying the observed factors when r and p are known.

The theoretically ideal method would be exhaustive Bayes factor comparisons. However,

the combinatorial complexity of such a procedure requires prohibitively large computing re-

sources even when r is small. One would have to estimate marginal likelihoods for
∑r

ry=0

(
N
ry

)
models. This amounts to over 4 million marginal likelihood estimations in the modest case

of N = 100 and r = 4. Even if one used the Bayesian information criterion (BIC) to approx-

imate the marginal likelihood, the model selection process would take months on a standard

personal computer.

Since any variables with idiosyncratic variances of 0 must be observed factors, a closely

related approach would be to place spike-and-slab priors on the variances. This would take

the form

π(σ2
i ) = (1− ρi)δ0(σ

2
i ) + ρiψ1(σ

2
i ). (1.7)

While the spike-and-slab prior recasts the problem in the context of a single model, it does

not alleviate the problem of combinatorial complexity. To produce a posterior that is easier

6



to traverse, let us consider a continuous approximation of the point-mass mixture prior. After

adding a hierarchical prior on the mixing weight and a latent indicator for the components

of the mixture, the prior for σ2
i is expressed as

π(σ2
i |γi) = ψ0(σ

2
i )

1−γiψ1(σ
2
i )

γi , (1.8)

ψq(σ
2
i ) = αqe

−αqσ2
i , (1.9)

γi ∼ Bernoulli(ρi), (1.10)

ρi ∼ B(a, a). (1.11)

The spike-and-slab densities are exponential distributions. By setting α0 >> α1 and α1 close

to 0, we can place virtually all of the probability mass of the spike distribution (ψ0) near 0

while placing nearly all of the mass of the slab distribution (ψ1) away from 0. Figure 1.1

shows the mixture density for increasingly large α0’s and ρ = 0.5. This is equivalent to the

marginal prior after γi and ρi have been integrated out. We can see that this continuous

prior approaches the point-mass mixture prior as α0 → ∞. I employ parameter expansion by

augmenting the prior with the latent indicator variable γi. The latent variable formulation

is amenable to closed-form updates of variance estimates within an EM algorithm.

Parameter estimates are obtained by solving the optimization problem

θ̂MAP = argmaxθπ(θ|X)

= argmaxθf(X|θ)π(θ)
= argmaxθlnf(X|θ) + lnπ(θ).

(1.12)

Care must be taken when optimizing a model for which some σ̂2
i,MAP = 0. The EM algo-

rithm requires the output from a Kalman smoother, which gives imprecise estimates when

idiosyncratic variances are sufficiently small. I avoid this problem by first estimating a con-

strained model in which σ2
i ≥ 10−15. We can maintain numerical stability with variances

of this size by using a square root Kalman smoother that leverages the QR decomposition
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Figure 1.1: Spike-and-Slab Priors for σ2
i , α1 = 0.01, ρ = 0.5

(Tracy, 2022). After termination of the EM algorithm, I check to see if the posterior density

can be increased further by setting any σ̂2
i,MAP < 10−8 to 0. The model with exacts 0’s was

preferred in all estimations.

1.1.4 Selecting the Number of Factors

Before applying the model selection process, we must first know the number of factors. There

has been a great deal of work done with regard to estimating r. Many approaches in the

frequentist literature develop information criteria (Bai and Ng, 2002; Hallin and Lǐska, 2007;

Ahn and Horenstein, 2013). Another approach to estimating r is using an overidentified

model, with more factors than is likely true, and then forcing factor loadings towards 0.

Frequentist methods accomplish this by applying regularization techniques like the LASSO to
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factors estimated using Principle Components Analysis (PCA) (Zou, Hastie and Tibshirani,

2006; Witten, Tibshirani and Hastie, 2009). Bayesian solutions typically place hierarchical

shrinkage priors on the loading parameters (Carvalho et al., 2008; Frühwirth-Schnatter and

Lopes, 2009; Knowles and Ghahramani, 2011; Ročková and George, 2016). These methods

pertain to models in which the factors are assumed to be uncorrelated across time. There has

been some recent work that extends the approach to restricted DFMs (McAlinn, Ročková,

and Saha 2018; Luo and Yu, 2021).

Many Bayesian approaches for selecting r are unfortunately ill-suited to the problem at hand.

Methods based on variable selection priors are less effective when the idiosyncratic variances

are very small, which will occur for any observed factors as well as any other variables that

are particularly well-explained by the common components. When continuous shrinkage

priors are used, such as in Ročková and George (2016), very small variances reduce the

variable selection penalty to effectively 0. Another issue arises when the factors are highly

correlated, a situation that is not precluded by the model under consideration. In fact, highly

correlated factors are likely to result when the model is overidentified. Overidentification

does not create the same issue in static factor models because the factors are independent a

priori. Point mass-density priors may be less susceptible to the problem of small variances,

but they are still likely to encounter difficulties with highly correlated factors. Likelihood-

based criteria such as Bayes factors and the Deviance Information Criterion unfortunately

have a tendency to overfit the number of factors (Beyeler and Kaufmann, 2021). While BIC

performed well in simulation studies, it exhibited the same overfitting property in empirical

applications, continuing to decrease as the number of factors increased. It is for this reason

I instead use the ICp2 criterion of Bai and Ng (2002). It can be computed quickly, has

very good finite sample properties and tends to give reasonable factor estimates for models

calibrated to macroeconomic applications (Stock and Watson, 2016).
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1.1.5 Lag Length Selection

Conditional on the number of factors, I use BIC to select p. Calculation of the BIC is not

obvious in this case because I have chosen to maximize the unidentified likelihood, which

attains a maximum not at a single point but at a ridge. The derivation of the BIC requires

the maximum to be unique for the Laplace approximation to be valid, meaning BIC can

only be calculated for an identified model. However, the maximum likelihood value found

for the unidentified likelihood will correspond to the maximum likelihood of any model with

correct identifying restrictions (assuming there is at least one nonsingular r × r submatrix

in Λ̂MLE). We can thus use the maximum likelihood from the unidentified model and the

penalty from the identified model to compute

BIC = −2lnf(X|θ̂MLE) + lnT (N(r + 2) + pr2 − r(r − 1)/2). (1.13)

1.2 Estimation Algorithm

Our goal is to maximize π(θ|X) ∝
∫
f(X|F, θ)π(F |θ)π(θ)dF . Maximization of the posterior

is achieved using a variant of the EM algorithm. While the posterior can be maximized with

a conventional EM algorithm, convergence is considerably slower. I instead use a combina-

tion of two EM variants with faster convergence properties: the Expectation/Conditional

Maximization (ECME) algorithm (Liu and Rubin, 1994) and the Parameter-Expanded

Expectation-Maximization (PX-EM) algorithm (Liu, Rubin, and Wu, 1998). The basic EM

algorithm is an iterative process in which one can find parameter updates that monotoni-

cally increase the value of an integrated density, such as π(θ|X), by maximizing the posterior

expectation of the full data density (Dempster, Laird, and Rubin, 1977). The parameter

updates take the form
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θn = argmaxθE[lnf(X|F, θ) + lnπ(F |θ)|X, θn−1] + lnπ(θ) = argmaxθQ(θ|θn−1). (1.14)

1.2.1 The PX-EM Algorithm for a DFM

The PX-EM algorithm exploits the rotational invariance of the likelihood. The proposed

algorithm proceeds by first maximizing Q(θ|θn−1) with respect to θ∗ = {Λ∗,Φ∗,Ω∗,Σ}. We

then take AL
n to be the lower triangular Cholesky factor of Ω∗

n and set Λn = Λ∗
nA

L
n and

Φl,n = AL
n
−1
Φ∗

l,nA
L
n for each lag l. By adopting improper priors for Λ and Φ, we obtain

a posterior that is also rotation invariant. The priors for Λ and Φ are π(Λ) ∝ 1, and

π(Φ) ∝ 1{Φ ∈ A}, where A is the region of the parameter space for which the roots of the

VAR polynomial lie outside the unit circle. The main advantage of improper priors is that

they are rotation invariant, which will make the posterior easier to traverse. Improper priors

can create convergence issues in Markov Chain Monte Carlo (MCMC) estimation, but they

are not a problem in MAP estimation. The sequence of density ordinates generated by the

EM updates will still converge to a stationary point (Wu, 1983). Any solution found by

optimization is also a solution under an appropriately diffuse, Uniform prior. Diffuse proper

priors are unlikely to impact posterior inference for Σ, but they do create difficulties for

optimization. One may be inclined to choose diffuse semiconjugate priors such as π(Λi) =

fN(Λi|0, νΛIr) and π(Φ) ∝ 1{Φ ∈ A}
∏

i,l fN(Φil|0, νΦIr). Such priors do little to identify

the posterior because they are invariant under orthonormal rotations as well as sign and

order permutations. However, they are not invariant under oblique rotations such as AL, so

we can no longer use the PX-EM algorithm. Proper priors merely restrict the modes of the

posterior to a smaller ridge while making the parameter space more difficult to explore.

The original EM algorithm for maximum likelihood estimation of a DFM can be found in
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Watson and Engle (1983). I adapt their algorithm to account for the variable selection prior

on Σ and the estimation of Ω∗. Details of the PX-EM algorithm are given in Algorithm

1. Define f̂t ≡ E[ft|X, θn], F̂ ≡ (f̂1, . . . , f̂T )
′, P̂ ≡

∑
t E[(ft − f̂t)(ft − f̂t)

′|X, θn], and γ̂i ≡

Pr(γi = 1|X, θn). All conditional moments related to the factors are available directly from

the output of a Kalman smoother in which the state vector has been augmented to include

an additional lag of ft. The calculation of γ̂i follows from a straightforward application of

Bayes’ formula.

Algorithm 1 PX-EM Algorithm

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
Run a Kalman smoother to obtain F̂ , Ĝ P̂ , Ĉ, and P̂g.
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

α1

α0
exp((α0 − α1)σ

2
i,n−1))

−1.

end for

M Step:
Λ∗

n = X ′F̂ (F̂ ′F̂ + P̂ )−1

for 1 ≤ i ≤ N do
SSi =

∑
t(Xit − Λ∗

i,nf̂t)
2 + Λ∗

i,nP̂Λ
∗′
i,n

α∗
i = (1− γ̂i)α0 + γ̂iα1

σ2
i,n = SSi

1
2
(T+

√
T 2+2α∗

i SSi)

ρi,n = γ̂i+1−a
2a−1

end for
{Φ∗

n,Ω
∗
n} = argmaxΦ∗

n,Ω
∗
n
Q(θ|θn−1)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while
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1.2.2 The PX-ECME Algorithm for a DFM

The algorithm described in the previous section has faster convergence properties than the

standard EM algorithm, but still encounters some difficulties maximizing the posterior, espe-

cially with respect to Σ, the parameters of greatest interest. To overcome this issue, I occa-

sionally supplement the iterations of the PX-EM algorithm with an iteration from an ECME

algorithm. The ECME algorithm works by iteratively maximizing functions of parameter

blocks that are conditioned on the values of the remaining parameters from the last iteration.

Better convergence properties are obtained by allowing the functions to be either conditional

Q functions, such as E[lnπ(θ1|X,F, θ2,n−1)|X, θn−1] or conditional log integrated densities,

such as lnπ(θ1|X, θ2,n−1). For the problem at hand, I choose to update ρ using a conditional

Q function and update the remaining parameters with conditional posterior densities. All

of the conditional maximizations must be unique in order for the sequence of posterior ordi-

nates generated by the ECME algorithm to converge (Liu and Rubin, 1994). The posterior

distribution obviously does not have a unique maximum, but the conditional distributions do

when the parameters are grouped by observation equation (1) and state equation (2). One

option for an ECME iteration would be to first maximize lnπ(Λ,Σ|X,Φn−1,Ω = Ir) with

respect to Λn and Σn, then maximize lnπ(Φ|X,Λn,Σn,Ω = Ir) with respect to Φn. I instead

modify this step with parameter expansion by first maximizing lnπ(Λ∗,Σ|X,Φn−1,Ω = Ir)

with respect to Λ∗
n and Σn, then maximizing lnπ(Φ∗,Ω∗|X,Λ∗

n,Σn) with respect to Φ∗
n and

Ω∗
n. The solutions are then rotated back to the scale identified model, as in the PX-EM

algorithm. Details are given in Algorithm 2. Except for ρ, all maximizations are done nu-

merically using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Computation

time is decreased by using the closed form solution for the gradient that results from the

identity ∇lnπ(θn|X) = ∇Q(θn|θn) (Ruud, 1991).
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Algorithm 2 PX-ECME Algorithm

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

α1

α0
exp((α0 − α1)σ

2
i,n−1))

−1.

end for

M Step:
for 1 ≤ i ≤ N do

ρi,n = γ̂i+1−a
2a−1

end for
{Λ∗

n,Σ} = argmaxΛ∗,Σlnπ(Λ,Σ|X, ρn,Φn−1,Ω = Ir)
{Φ∗

n,Ω
∗
n} = argmaxΦ∗

n,Ω
∗
n
lnπ(Φ∗,Ω∗|X, ρn,Λ∗

n,Σn)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while

1.2.3 Approximations to the Stationary Likelihood

Working with the stationary likelihood is theoretically ideal, but presents several challenges.

Maximization of Q(θ|θn) with respect to the VAR parameters must be done numerically, as

no closed form solutions exist. Let us consider the state equation when it is rewritten from

a V AR(p) equation to a V AR(1) equation. Let gt = (f ′
t , f

′
t−1, . . . , f

′
t−p+1)

′.

gt = Bgt−1 +

[
ηt

0r(p−1)×1

]
(1.15)

Rather than work with the stationary variance of the factor process, I will instead approx-

imate the stationary likelihood by assuming the first p presample instances of the factors

follow the distribution
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g0 ∼ N(0, νg0Ipr). (1.16)

Integration over these presample instances of ft yields a distribution for the first p instances

of ft of the form

gp ∼ N(0,Ωg + νg0B
pBp′ +

p−1∑
j=1

BjΩgB
j ′), Ωg =

[
Ω

0r(p−1)

]
. (1.17)

This functions as an approximation to the stationary distribution. The approximation could

be made arbitrarily accurate by making the number of presample factors τ sufficiently large.

As τ → ∞, the marginal covariance matrix of gp will converge to the stationary covariance

matrix P0. However, such an approach will drastically reduce the efficiency of the EM

algorithm. As τ increases, the curvature of Q(θ|θn) increases, leading to smaller steps being

taken in each parameter update. There is likely a more optimal choice of τ . A researcher may

run a preliminary algorithm with a small number of iterations, then select his or her preferred

τ by choosing a number such that ||P0,τ −P0|| < m, where m is a positive tuning parameter,

|| · || is a matrix norm, and P0,τ is the covariance matrix of gp for a given τ . Alternatively, one

could increase τ until the convergence time of the algorithm begins to suffer. While these

approximations greatly increase the efficiency of the algorithm, the likelihood is no longer

rotation invariant. The parameter-expanded algorithms I have developed are thus no longer

guaranteed to produce updates that monotonically increase the likelihood. One way to make

the algorithm monotonic is to only perform rotations if they increase the posterior density,

and just perform regular EM updates otherwise. Another option is to only do parameter-

expanded steps for a set number of iterations, then switch to a basic EM algorithm. Despite

the loss of monotonicity, any fixed points of the parameter-expanded algorithms will also

be fixed points of the basic EM algorithm. Non-monotonic updates were not an issue in
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applications to simulated or real data, while convergence was markedly faster. The PX-

EM algorithm with the likelihood approximation is given in Algorithm 3. In addition to

the posterior moments defined previously, let ĝt ≡ E[gt|X, θn], Ĝ ≡ (ĝ0, . . . , ĝT−1)
′, P̂g ≡∑

t E[(gt−1 − ĝt−1)(gt−1 − ĝt−1)
′|X, θn], and Ĉ ≡

∑
t E[(ft − f̂t)(gt−1 − ĝt−1)

′|X, θn]. The

reader will note that all parameters updates are now available in closed-form.

Another option, should one wish to work with the exact stationary likelihood, is to only use

ECME steps for updating the parameters of the state equation. Gradient-based methods for

this problem require care. Calculation of the numerical gradient requires many runs of either

a Kalman filter or a precision-based method for obtaining the integrated likelihood, as well

as many high-dimensional matrix inversions to calculate the stationary variance. A precise

approximation of the gradient can be computed in significantly less time by augmenting the

state vector with many presample factors and using the fact that ∇lnπ(θn|X) = ∇Q(θn|θn)

(Ruud, 1991). Justification for this approach is given by Proposition 1.1.

Proposition 1.1

Let Qτ−p(θ|θn) ≡ E[lnπ(X,F, f0, f−1, . . . , f−τ+p+1, θ|f−τ+p, . . . , f−τ+1)|X, θn] and assume θn

is an interior point of the parameter space.

lim
τ→∞

∇Qτ−p(θn|θn) = ∇lnπ(θn|X).

A proof of this proposition can be found in Appendix A.

The benefit of this approach is that it only requires one matrix inversion and one Kalman

smoother run, as opposed to many matrix inversions and Kalman filter runs. One only has

to work with the conditional elements of the likelihood, so the gradient is available in closed
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Algorithm 3 PX-EM Algorithm with Approximate Likelihood

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
Run a Kalman smoother to obtain F̂ , Ĝ P̂ , Ĉ, and P̂g.
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

α1

α0
exp((α0 − α1)σ

2
i,n−1))

−1.

end for

M Step:
Λ∗

n = X ′F̂ (F̂ ′F̂ + P̂ )−1

for 1 ≤ i ≤ N do
SSi =

∑
t(Xit − Λ∗

i,nf̂t)
2 + Λ∗

i,nP̂Λ
∗′
i,n

α∗
i = (1− γ̂i)α0 + γ̂iα1

σ2
i,n = SSi

1
2
(T+

√
T 2+2α∗

i SSi)

ρi,n = γ̂i+1−a
2a−1

end for
Φ∗

n = (Φ∗
1,n, . . . ,Φ

∗
p,n) = (F̂ ′Ĝ+ Ĉ)(Ĝ′Ĝ+ P̂g)

−1

Ω∗
n = T−1(

∑
t(f̂t − Φ∗ĝt)(f̂t − Φ∗ĝt)

′ + Φ∗P̂gΦ
∗′ − Φ∗Ĉ ′ − ĈΦ∗′)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while
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form. This result is also applicable to stationary VARs and vector autoregressive moving

average (VARMA) models. It could be used for maximizing the likelihoods of these models

or for efficient simulation from the posterior distribution using Hamiltonian Monte Carlo,

which is an area of active research (Heaps, 2023; Binks et al., 2023).

1.2.4 Specification of αq

α1 should be set so as to have minimal influence on variance estimates. I adopt the conven-

tion of α1 = 0.01 in all estimations. Optimal specification of α0 is not obvious. Values that

are too small will not impose sufficient shrinkage on small variances. However, setting α0

too high means that the EM algorithm is unlikely to assign significant weight to the spike

component of the prior, and the resulting estimates will be close to the maximum likeli-

hood estimates. Rather than try to find a single optimal α0, I adopt the dynamic posterior

exploration approach developed by Ročková and George (2016). The authors, drawing on

concepts from deterministic annealing, estimate a series of models with increasingly pro-

nounced spike distributions. This is done by using a ladder of increasing spike parameters

α0 ∈ I = {α1
0, α

2
0, . . . , α

L
0 }. α1 is held constant. Small values of α0 produce a flatter poste-

rior density that is easier to traverse. As α0 increases, the posterior becomes spikier. Each

estimation is initialized with the MAP estimates from the previous estimation. This “warm

start” approach makes the global mode easier to find. The intersection point of the spike

and slab densities is given by δ(α1, α0, ρ) = 1
α0−α1

ln
(

α0

α1

1−ρ
ρ

)
. The sequence I is defined

implicitly by the sequence δ(α1, α0, ρ = .5) ∈ Iδ = {δ1, δ2, . . . , δL}. I use the sequence

Iδ = {.5, .25, .1, .05, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7} for all estimations.
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1.2.5 Missing data

It is rare for a researcher to be blessed with a balanced panel of data. Very often variables

are not available for the entire sample period. It may be that they were only recorded after

a certain date or were eventually discontinued. It could also be the case that certain entries

are intentionally trimmed by the researcher to control for outliers. Missing data represent

a major issue in the frequentist literature when factors are estimated with PCA. Missing

values must be imputed with a consistent estimator (Stock and Watson, 2002; Jin, Miao,

and Su, 2021). Likelihood-based method do not have the same problem. One only has to

restrict the vector of dependent variables in each period to those with non-missing values.

I adjust the variance selection prior to account for differing sample sizes in the presence

of missing data. Using the same α0 and α1 for every time series would disproportionately

penalize the variances of variables with many missing values. Let Ti be the number of time

periods for which Xit is observed. The variable-specific hyperparameters are then defined as

αiq ≡ Ti

T
αq. The correction term Ti

T
ensures that, conditional on γi, the prior has the same

influence on each σ2
i .

Optimization can proceed with only minor modifications to the algorithms. Posterior mo-

ments are obtained using a Kalman smoother adjusted for missing data. Let the set of time

periods Oi be defined as Oi ≡ {t : Xit is observed}. Let τim be the mth entry in Oi. We now

define F̂i ≡ (f̂τi1 , . . . , f̂τiTi )
′, P̂i ≡

∑
t∈Oi

E[(ft − f̂t)(ft − f̂t)
′|X, θn]. Algorithm 4 gives the

details for a modified PX-EM algorithm.
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Algorithm 4 PX-EM Algorithm with Approximate Likelihood and Missing Data

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
Run a Kalman smoother to obtain {F̂i}, Ĝ, {P̂i}, Ĉ, and P̂g.
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

αi1

αi0
exp((αi0 − αi1)σ

2
i,n−1))

−1.

end for

M Step:
for 1 ≤ i ≤ N do

Λ∗
i,n = X ′

iF̂i(F̂
′
i F̂i + P̂i)

−1

SSi =
∑

t∈Oi
(Xit − Λ∗

i,nf̂t)
2 + Λ∗

i,nP̂iΛ
∗′
i,n

α∗
i = (1− γ̂i)αi0 + γ̂iαi1

σ2
i,n = SSi

1
2
(Ti+

√
T 2
i +2α∗

i SSi)

ρi,n = γ̂i+1−a
2a−1

end for
Φ∗

n = (Φ∗
1,n, . . . ,Φ

∗
p,n) = (F̂ ′Ĝ+ Ĉ)(Ĝ′Ĝ+ P̂g)

−1

Ω∗
n = T−1(

∑
t(f̂t − Φ∗ĝt)(f̂t − Φ∗ĝt)

′ + Φ∗P̂gΦ
∗′ − Φ∗Ĉ ′ − ĈΦ∗′)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while

1.3 Monte Carlo Studies

This section presents the results of various Monte Carlo studies. In each simulation, the

loadings are randomly generated according to Λij ∼ N(0, 1). I consider the case of p = 1

lags. Φ is randomly generated using its eigendecomposition Φ = V DV −1. The elements of

the eigenvector matrix are distributed Vjj′ ∼ U(−1, 1) and the eigenvalues are distributed

Djj ∼ U(.4, .6). Ω = ωIr. ω is chosen such that Var(Λift) = r.3I first examine datasets

with every possible combination of N , T , and r for which N ∈ {40, 60, 100, 200}, T ∈

3. This is done by first calculating the stationary covariance matrix P0 of a process with transition pa-
rameters Φ and covariance matrix Ω = Ir. Let C be the lower Cholesky factor of P0 such that P0 = CC ′.
The covariance matrix of innovations is then rescaled to Ω = r

||vech(C)||22
Ir.
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{50, 100, 150, 200, 250}, and r ∈ {2, 4, 6}. In each case, the number of observed and latent

factors are equal: rf = ry = r/2. The factors are simulated by drawing the first p instances

from the stationary distribution and then iterating the data generating process forward

through time. Each study analyzes 100 simulated datasets.

The first simulation study assumes a balanced panel and σ2
i = r. The results can be seen

in Figure 1.2. The plots give the proportion of datasets for which the procedure correctly

identified the true observed factors. The proposed approach is quite good at identifying the

observed factors in most cases. The one noticeable limitation is that results suffer when N

and T are small and r is large. This is hardly surprising, as we are asking a lot of the model

and not providing sufficient data. Thankfully, the success rate is quite high for combinations

of N and T that we are likely to encounter in practice.
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Figure 1.2: Proportion of Models Correctly Identified, σ2
i = r

Figure 1.3 gives the results of a simulation study that uses the exact same parameters and

factors as Table Figure 1.2, only the idiosyncratic variance is now set to σ2
i = 2r. We observe

a slight decrease in accuracy for small values of N and T . This is to be expected because
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Figure 1.3: Proportion of Models Correctly Identified, σ2
i = 2r

the signal-to-noise ratio has decreased and the factors will not be estimated as precisely.

However, we see no noticeable drop in accuracy for N ≥ 60 and T ≥ 100.
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Figure 1.4: Proportion of Models Correctly Identified, σ2
i = r, pmiss = 0.05
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Figure 1.5: Proportion of Models Correctly Identified, σ2
i = r, pmiss = 0.1

Figures 1.4 and 1.5 give the results of Monte Carlo studies in which σ2
i = r and a proportion

pmiss of the data is missing. The values considered are pmiss = 0.05, 0.1. There appears to

be no substantive difference between the results with missing data and the results with a

balanced panel for N ≥ 60 and T ≥ 100.

1.4 Applications

1.4.1 Quarterly Macroeconomic Data

This section applies the model selection procedure developed above to the FRED-QD dataset

(McCracken and Ng, 2020). For the first application, the dataset consists ofN = 246 macroe-

conomic variables observed at quarterly intervals. Observations begin in 1959:Q3 and end

in 2023:Q1. 38 of the variables were not recorded until midway through the sample period.

Variables were transformed to be approximately stationary using the recommended trans-
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formation codes of the authors, and then standardized to have unit variance. I performed

outlier detection using the same criterion as McCracken and Ng (2020). Any observations

that deviated from the sample median by more than ten interquartile ranges were classified

as outliers and treated as missing. Initial factor estimates were obtained by replacing missing

values with 0 and then using PCA. Jin, Miao, and Su (2021) show that this is a consistent

estimator of the true factor space. I analyzed the full sample period as well as the subsam-

ples 1959:Q3 - 2007:Q3 and 2007:Q4 - 2023:Q1. The sample was partitioned to examine

any structural changes that may have occurred after the 2007 financial crisis. The outlier

classification criterion detected 90 outliers in the full sample, 5 outliers in the pre-financial

crisis subsample, and 109 outliers in the post-financial crisis subsample. The ICp2 criterion

selected 8 factors for the full sample period and 6 factors for each of the subsamples.

As can be seen from Table 1.1, Capacity Utilization: Total Industry (TCU) is selected as

an observed factor for both the full sample and pre-2007 estimations. TCU is an index

that measures the percentage of potential feasible output that is being produced. This is a

surprising but not unreasonable finding. Capacity utilization has long been recognized as a

leading indicator for inflation and business cycles (Corrado and Mattey, 1997). That TCU

was selected demonstrates the necessity of being able to incorporate missing data. TCU

was not recorded until 1967:Q1. The existing frequentist methods require a balanced panel

dataset, and thus would not have been able to detect this relationship over the periods con-

sidered. Another advantage of the Bayesian approach is that unobserved values of observed

factors can be imputed naturally using the output from the Kalman smoother.

Figure 1.6 shows the precise estimates that are obtained for the period 1959:Q3 - 1968:Q4

using this method. TCU is not selected in the post-2007 estimation. With this in mind, the

behavior of TCU does seem to be different before and after the financial crisis. Capacity

utilization tends to peak in the middle of expansions prior to 2007. The index is already

declining prior to the onset of recessions during this period. The inter-recession shape of
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Period N T r y
1959:Q3-2023:Q1 246 255 8 Capacity Utilization: Total Industry
1959:Q3-2007:Q3 246 193 6 Capacity Utilization: Total Industry
2007:Q4-2023:Q1 246 62 6 Business Sector: Real Output

All Employees: Service-Providing Industries
All Employees: Goods-Producing Industries

Table 1.1: Likely Observed Factors in the U.S. Economy, Quarterly Data

TCU appears different after 2007. It is approximately level during 2007 and only starts to

decline after the 2008 recession has already begun. Estimates of all 8 factors from the full

sample estimation are plotted in Figure 1.7. One can see that estimates of factor 5 are nearly

identical to a one period lag of TCU. This suggests that the true Ω might be of reduced

rank (Bai and Ng, 2007). It also indicates that TCU is not only an important driver of the

economy, but its impact is also persistent.

1.4.2 Monthly Macroeconomic Data

This sections analyzes the FRED-MD dataset (McCracken and Ng, 2016). It consists of

N = 127 monthly macroeconomic variables over the period 1959:3-2023:6. The variables are

transformed using the authors’ recommended transformations and standardized to have unit

variance. Outliers are identified and removed using the criterion previously discussed. As

with the quarterly data, I analyze the full sample, as well as pre- and post-financial crisis

subsamples. Results are given in Table 1.2.

The only variable identified as an observed factor in the full sample estimation is 10-Year

Treasury Constant Maturity Minus Federal Funds Rate (T10YFFM). This is very similar to

measures of the slope of the yield curve, which has been studied for its relationship to busi-

ness cycles. Figure 1.8 plots T10YFFM along with NBER recession dates. We can see that

T10YFFM often turns negative near the peak of an expansion and then sharply increases
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Figure 1.6: Total Capacity Utilization (Observed and Imputed)

Notes: The shaded region around the imputed values of TCUt is a 95% credible interval. The variance

of TCUt is available directly from the Kalman smoother.

during recessions. The pre-financial crisis estimation selects a related variable: Moody’s Sea-

soned Baa Corporate Bond Minus Federal Funds Rate (BAAFFM). The correlation between

T10YFFM and BAAFFM during this period is 0.94, so the relationship between BAAFFM

and business cycles is nearly identical. The correlation between the two variables drops to

0.89 in the post-2007 subsample. One possible reason that T10YFFM is selected in the full

sample estimation is that the Federal Reserve began targeting the yield curve directly after

the financial crisis.

While estimations using monthly and quarterly data produce differing results in the pre-

financial crisis subsamples, there is some overlap in the selected observed factors for the post-

financial crisis subsamples. They both select All Employees: Service-Providing Industries,

along with one other employment measure. The importance of service sector employment

may stem from its correlation with the impacts of the COVID-19 pandemic.
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Figure 1.7: Factor Estimates from FRED-QD

Notes: The shaded region around the estimated values of fjt is a 95% credible interval. The variance of

fjt is available directly from the Kalman smoother.

1.4.3 Fama-French Portfolio Data

I will now use the model selection process to investigate the asset-pricing model of Fama

and French (1993). The authors extend the capital asset pricing model to include factors

that measure the excess returns attributable to firm size and book-to-market equity ratio

(BE/ME). The Fama-French three-factor model is given by

Xit = Rit −Rf
t = β0 + β1i(R

m
t −Rf

t ) + β2iSMBt + β3iHMLt + εit, (1.18)

where Rit is the return on portfolio i, Rm
t is the return on a market portfolio, Rf

t is the

risk-free return, SMBt is the firm size factor, and HMLt is the BE/ME factor. I estimate

models for a dataset that includes the three Fama-French factors, their measure of the risk-

free rate, and the excess returns from 100 portfolios. The portfolios are the intersection of 10

portfolios organized by deciles of firm size and 10 portfolios organized by deciles of BE/ME.
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Period N T r y
1959:3-2023:6 127 772 7 10-Year Treasury Constant Maturity

Minus Federal Funds Rate
1959:3-2007:9 127 583 7 Moody’s Seasoned Baa Corporate Bond

Minus Federal Funds Rate
2007:10-2023:3 127 189 7 All Employees, Total Nonfarm

All Employees: Service-Providing Industries
Consumer Price Index for All Urban Consumers:

All Items in U.S. City Average
S&P 500

Table 1.2: Likely Observed Factors in the U.S. Economy, Monthly Data

The data was collected from Kenneth French’s website 4. Estimating such a model allows us

to test whether the 3 factor specification is supported by the data. Factor observations and

incomplete portfolio data are available for the period 1926:7-2023:6. I estimated a model

for the full sample period as well as a number of subsamples. The subsamples include the

time periods considered by Bai and Ng (2006) as well several others. The time periods not

previously examined are the interwar period of 1926:7-1945:8, the Bretton Woods period of

1945:9-1972:12, the pre-financial crisis period of 1997:1-2007:9, and the post-financial crisis

period of 2007:10-2023:6. Previous studies only examined the validity of the three-factor

model after 1960 and did not include all 100 portfolios. Researchers had to delete several

portfolios as well as many time periods because their methods required a balanced panel.

Results are given in Table 1.3.

The importance of BE/ME is quite stable. It is selected as an observed factor in the full

sample estimation as well as every subsample estimation except for 1973:1-1987:12. Firm

size is selected in the full sample estimation, but not in the subsamples for 1973:1-1987:12,

1988:1-1996:12, 1997:1-2007:9, and 1960:1-1996:12. A surprising result is the selection of the

portfolio of firms in the tenth deciles of size and BE/ME in 2 subsamples. However, this

4. See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html for further
information.
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Figure 1.8: 10-Year Treasury Constant Maturity Minus Federal Funds Rate

result should be treated skeptically because there are very few observations of the variable

in these subperiods, so there is a good chance of overfitting. The most glaring result is

that market excess return is not selected in any estimation. Although the market variable

is not selected, we should not interpret this as evidence that market return plays no role in

portfolio returns. The estimated variance of the idiosyncratic error for the market variable

is less than 0.01 in all but two of the estimations. This suggests that excess market return or

some closely related variable is a fundamental factor, but it is not perfectly observed. Figure

1.9 plots the market variable over the entire sample period along with its fitted values. We

can see that there is very little difference between the two. A more surprising result is the

occasional selection of the risk-free return as an observed factor. This suggests that excess

returns depend on Rf
t in a way that is not simply a function of their dependence on excess

market return. It is important to note that the two time periods in which Rf
t is selected

include the period in the 1970s and early 1980s when interests rates were extremely volatile.
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Period N T r y
1926:7-2023:6 104 1,164 4 Firm Size

Book-to-Market Equity Ratio
1926:7-1945:8 104 230 4 Firm Size

Book-to-Market Equity Ratio
Portfolio of firms in the

tenth deciles of size and BE/ME
1945:9-1972:12 104 328 3 Firm Size

Book-to-Market Equity Ratio
1973:1-1987:12 104 170 4 Risk-Free Return
1988:1-1996:12 104 108 3 Book-to-Market Equity Ratio
1997:1-2007:9 104 109 5 Book-to-Market Equity Ratio

Portfolio of firms in the
tenth deciles of size and BE/ME

2007:10-2023:6 104 189 4 Firm Size
Book-to-Market Equity Ratio

1960:1-1996:12 104 444 4 Book-to-Market Equity Ratio
1960:1-1982:12 104 276 4 Firm Size

Book-to-Market Equity Ratio
Risk-Free Return

1982:1-1996:12 104 168 3 Firm Size
Book-to-Market Equity Ratio

Table 1.3: Likely Observed Factors in Monthly Fama-French Portfolios
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Figure 1.9: Actual and Fitted Values of Rm
t −Rf

t

Notes: The shaded region around the fitted values of Rm
t −Rf

t is a 95% credible interval. The variances

of the fitted values are available directly from the Kalman smoother.
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1.5 Conclusion

I proposed a model selection procedure for FAVARs. Estimation of the total number of

factors and the lag length is done using existing methods, although the use of BIC for

lag length selection is modified to avoid model misspecification problems. The selection

of observed factors is achieved using a Bayesian shrinkage prior. The prior allows us to

recast a high-dimensional model selection process as an optimization problem. This enables

researchers to differentiate between millions of potential models by estimating just a single

model. The procedure has very good small sample properties. Model selection accuracy was

virtually 100% in simulated datasets of realistic size.

Several extensions to the EM algorithm for estimating DFMs were proposed. The resulting

PX-ECME algorithm exhibited faster convergence properties than the basic EM algorithm.

I also developed an efficient and precise method for calculating the gradient of the log-

likelihood of stationary VARMA processes, of which the FAVAR is a special case.

The model selection procedure yielded interesting results when applied to macroeconomic

and financial data. The Total Capacity Utilization index was the only observed factor

detected in a large dataset of quarterly U.S. macroeconomic variables. The spread between

the 10-Year Treasury Constant Maturity Rate and the Federal Funds Rate was the only

observed factor detected for monthly data. A specification in which the Federal Funds Rate

is the only observed factor, the default assumption in the FAVAR literature, was never

selected. Finally, I used the model selection procedure to test the assumptions of the Fama

and French (1993) asset-pricing model. The variables constructed for firm size and book-to-

market equity ratio were often selected as observed factors, but excess market return was

not. That excess market return was not selected is more likely the result of mismeasurement

of the variable rather than lack of importance.

There are many avenues for further research. While the approach of this chapter seeks to
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find the most likely model, it may be the case that there are multiple competing models with

significant posterior probabilities. MCMC would be the appropriate means of estimation for

this end. This model assumes homoskedastic Normal errors, which is unlikely to be realistic

in macroeconomic and financial data. One could incorporate errors with stochastic volatility

into the state equation as well as the observation equations. Allowing for stochastic volatility

in the observation equations permits the possibility of the observed factors changing over

time, which is a perfectly reasonable hypothesis.
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Chapter 2

A Nonparametric Endogenous

Switching Model with an Application

to Macroeconomics

Until the past decade, time series econometrics has focused primarily on parametric models.

This was true of both linear vector autoregressions (VARs) (Sims, 1980; Litterman, 1986;

Primiceri, 2005; Koop and Korobilis, 2013) and mixture models (Beaudry and Koop, 1993;

Sims and Zha, 2006; Uribe and Lopes, 2020). Early work in nonparametric time series

models focused on approximating nonlinear conditional mean functions in either univariate

or small multivariate processes (Auestad and Tjøstheim, 1990; Härdle, Tsybakov, and Yang,

1998; Hamilton, 2001). A good deal of the more recent work has focused on Dirichlet

process mixture models (DPMs). DPMs have been used to model the error distribution of

asset returns in stochastic volatility models (Jensen and Maheu, 2010; Delatola and Griffin,

2011). Babak (2009) used the DPM to identify regimes in U.S. real GDP growth, allowing the

number of regimes to be selected by the model. Kalli and Griffin (2018) use a DPM to flexibly

model VAR processes. Nonparametric VARs are an active area of research. Jeliazkov (2013)
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modeled the conditional mean of each dependent variable as a sum of nonlinear univariate

functions of explanatory variables. Huber and Rossini (2021) model the conditional mean

of a VAR process using Bayesian additive regression trees. A consistent finding in the

nonparametric VAR chapters is that relaxing the assumption of linearity leads to better

forecasting performance.

One of the primary methodologies for introducing nonlinearity to time series economet-

rics has been the class of models known as Markov-switching models (MSMs). MSMs are an

extension of the hidden Markov model (Baum and Petrie, 1966) to the case of a continuously-

distributed dependent variable. They allow model parameters to switch between different

regimes. MSMs were introduced by Goldfeld and Quandt (1973) and popularized by Hamil-

ton (1989), who used a model of US Gross National Product growth as an alternative method

for dating business cycle turning points. Since then, models with Markov-switching have been

applied extensively to business cycles (Albert and Chib, 1993; Boldin, 1996; Ghysels, Mc-

Culloch, and Tsay, 1998; Chauvet and Hamilton, 2006) as well as financial data (Vigfusson,

1997; Haas, Mittnik, and Paolella. 2004; Guidolin and Timmermann, 2005). MSMs have

expanded to include models with time-varying transition probabilities (TVTP) (Diebold,

Lee, and Weinbach. 1993; Filardo, 1994; Filardo and Gordon, 1998) as well as state space

models (Kim, 1994; Chauvet, 1998; Kim and Nelson, 1999). A more recent class of models

allows for endogenous switching (Chib and Dueker, 2004; Kim, Piger, and Startz, 2008; Hwu,

Kim, and Piger, 2021; Kim and Kang, 2022). These models allows the innovations in the

equations governing regime transitions to be correlated with innovations in the observation

equation. Flexible error distributions are almost entirely missing in the MSM literature. A

Normal error distribution for the observation equation is assumed in virtually all models.

Two notable exceptions are Dueker (1997) and Hwu and Kim (2023). The former modeled

stock returns using a student’s t-distribution where the degrees of freedom switch between

different regimes. Hwu and Kim (2023) is the only MSM we have found where the observa-

tion errors have a nonparametric distribution. He develops a switching mean model where
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the error distribution is generated by a Dirichlet process. Hwu and Kim (2023) assumes that

switching is exogenous and transition probabilities are constant.

This chapter proposes a regime-switching linear model with TVTP, endogenous switching,

and a nonparametric error distribution. Both of these qualities are achieved by letting the

conditional mean of the normalized observation errors be a potentially nonlinear function of

the errors in the state equation. Our model differs from Hwu and Kim (2023) both in the

formulation of the error distribution and robustness to endogeneity and TVTP.

The rest of the chapter is organized as follows. Section 2.1 outlines the proposed model.

Section 2.2 describes how samples from the posterior distribution of model parameters are

simulated using Markov Chain Monte Carlo (MCMC) methods. Section 2.3 reports the

results of a simulation study. Section 2.4 describes model comparison using Bayes factors.

Section 2.5 applies the model to US output growth data. Section 2.6 concludes.

2.1 The Proposed Model

2.1.1 Model Setup

Consider the model

yt = x′tβst + σstεt, (2.1)

st = 1{s∗t > 0}, (2.2)

s∗t = z′tδst−1 + ηt, (2.3)

εt ∼ N(g(ηt), 1), ηt ∼ N(0, 1). (2.4)

When g(ηt) is linear, g(ηt) = ρηt, this model is observationally equivalent to the endogenous
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switching model of Kim, Piger, and Startz (2008). This can be seen by rewriting the model

as

yt = x′tβst + σ̃st ε̃t, (2.5)

σ̃st = σst
√

1 + ρ2, (2.6)

ε̃t =
εt√
1 + ρ2

, (2.7)

[
ε̃t
ηt

]
∼ N(02,Ω), (2.8)

Ω =

[
1 ρ̃
ρ̃ 1

]
, (2.9)

ρ̃ =
ρ√

1 + ρ2
. (2.10)

The formula for ρ̃ guarantees that Ω is positive definite.

To estimate the model, g(ηt) is approximated nonparametrically. Let g(ηt) ≈ ĝ(ηt) =∑p
n=1 ρnbn(ηt) = ρ′bt, where {bn(ηt)} are basis functions. The basis functions are normalized

to equal 0 at the origin. Without this normalization, the intercept would not be jointly iden-

tified with ĝ(ηt). This was a natural choice of normalization because it means there is no

impact from endogeneity when ηt = 0, just as in a parametric enodogenous switching model.

The two types of approximations that we considered were polynomial series and regression

splines. We only report results for regression splines because they consistently performed

comparably to or better than series regression. The polynomial series specification worked

well when g(ηt) was also polynomial, as would be expected, but less so for other types of

functions. Note that when a linear spline is used to approximate g(ηt), the joint distribution

of εt and ηt becomes a mixture of disjoint truncated Normal distributions. For any other

approximation, the joint distribution is nonstandard.
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2.1.2 The Implications of g(ηt) for the Marginal Distribution of εt

The general form of g(ηt) allows for great flexibility in the marginal distribution of εt. Fig-

ure 2.1 contains plots of f(εt) under various conditional mean functions. It demonstrates

that we can induce skewness (1.a and 1.b), excess kurtosis (1.c), and bimodality (1.d) using

simple functional forms for g(ηt). The reader will observe that neither the unconditional

mean nor the unconditional variance are constant with respect to g(ηt). This is in con-

trast to the various types of parametric endogenous switching models (Chib and Dueker,

2004;Kim, Piger, and Startz, 2008; Hwu, Kim, and Piger, 2021). The existing literature

models (εt, ηt) as a multivariate Normal random variable. This gives the marginal distri-

bution of εt the same mean and variance regardless of the correlation structure. In our

specification, a greater correlation between εt and ηt implies a greater marginal variance of

εt. We considered marginal moment restrictions on f(εt), namely E[εt] = 0 and V ar[εt] = 1.

However, accommodating these restrictions is difficult when using any approximation other

than a local polynomial; numerical integration is required to find the mean and variance

of ĝ(ηt). In addition, direct sampling from the full conditional posterior distribution of ρ

would no longer be possible. Let Θ ≡ {β = {βj}, σ = {σj}, δ = {δj}, ρ}. The dependence

between the degree of endogeneity and the marginal variance does not restrict the model

overall because V ar[yt|xt, st,Θ] = σ2
stV ar[εt]. g(ηt) determines the degree and nature of the

endogeneity, while σ controls the variance of the error term. A possible way to weaken this

relationship between endogeneity and unconditional variance is to use the alternative model

yt = x′tβst + εt, (2.11)

εt ∼ N(g(ηt), σ
2
st), ηt ∼ N(0, 1). (2.12)

However, this model offers less flexibility with regard to within-regime variance. Under the

alternative model, V ar[yt|xt, st,Θ] = V ar[g(ηt)] + σ2
st , as opposed to σ2

st(V ar[g(ηt)] + 1) in
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the proposed model.

(a) g(ηt) = η2t , (b) g(ηt) = −η2t , (c) g(ηt) = 10η3t , (d) g(ηt) = 10η
1/3
t (the real root).

Figure 2.1: Marginal Distributions of εt

2.2 Posterior Sampling

2.2.1 Sampling ST and S∗
T

Let Yt ≡ (y1, . . . , yt)
′, St ≡ (s1, . . . , st)

′, S∗
t ≡ (s∗1, . . . , s

∗
t )

′. Regardless of the functional form

of g(ηt), the filtered regime probability can be calculated using
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P (yt, st|st−1) =

∫
Bst|st−1

f(yt|st, ηt)f(ηt)dηt, (2.13)

P (st|Yt) ∝
∑
st−1

P (yt, st|st−1)P (st−1|Yt−1). (2.14)

Bst|st−1 is the region of integration where the values of ηt are consistent with st and st−1.

The constant of proportionality can be obtained by summation over st. This enables a

straightforward implementation of the algorithm of Chib (1996) for sampling the entire

history of regimes as a single block. Numerical integration is performed using the trapezoid

method and a fine grid of 500 points. Gauss Legendre quadrature would typically be a

superior choice to the trapezoid method as it allows for exact integration of finite order

polynomials and requires fewer function evaluations. The trapezoid method was chosen

because function evaluations can be saved and reused in sampling S∗
T .

ST and S∗
T are sampled as a single block by first sampling ST marginally of S∗

T and then

drawing from π(S∗
T |ST ,Θ, YT ). Conditional on st, s

∗
t can be drawn independently from the

posterior π(S∗
t |St,Θ, YT ) using a Metropolis Hastings step. We obtain near iid samples from

the full conditional posterior using a Griddy Gibbs proposal density (Tierney, 1994). The

posterior is first discretized by evaluating f(yt, S
∗
t |st,Θ) over an evenly-spaced grid. The

discrete probability measure is calculated as

P (xi) =
f(yt, xi|st,Θ)∑
k f(yt, xk|st,Θ)

. (2.15)

A candidate s∗t
′ is obtained by drawing xi from the discrete distribution and then adding a

continuous random variable:

s∗t
′ = xi + u, u ∼ N(0, σ2

u). (2.16)
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The proposal density for s∗t
′ is then obtained by summation of (s∗t

′, xi) over the discrete

component:

q(s∗t
′) =

∑
i

P (xi)fN(s
∗
t
′ − xi, 0, σ

2
u). (2.17)

Proposed draws are then accepted with the usual MH acceptance probability.

We follow the common practice in Bayesian MSMs of rejecting samples where st is constant

over all periods. Accepting such draws can cause the sampler to get stuck in a particular

region of the parameter space and mix very slowly. Chib (1996) pointed out that this

restriction is not necessary if all priors are proper. Another quirk of Bayesian MSMs of

which we must be mindful is label switching (Fruhwirth-Schnatter, 2001). This problem

arises in parameter simulation because an unconstrained model with N regimes produces

a likelihood with N ! modes. Failing to account for label switching can lead to nonsensical

parameter estimates if one simply uses the sample mean. One solution is to use identifying

restrictions, such as order restrictions on the intercepts or variances.

As η1 depends on s0, it must either be sampled or the dependence of η1 on s0 must be

integrated out. We elect to sample s0. Since there is no corresponding y0 for s0, it can be

sampled analytically from its full conditional distribution. Let η(s0) ≡ s∗1 − z′1δs0 . The full

conditional distribution of s0 can then be written as

P (s0|YT , S−0) ∝ f(y1|s1, η(s0))f(s∗1|s0)π(s0) (2.18)

The constant of proportionality is obtained by summing over all values of s0. π(s0), the

unconditional probability of s0, can be estimated in several ways. One common approach

is to use the stationary distribution of the Markov chain (Albert and Chib, 1993; Chib,
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1996). This becomes more complicated when transition probabilities are non-constant. If

the variables in zt are stationary, stationary transition probabilities can approximated by

plugging the sample mean of zt into the equation for s∗t (Hwu, Kim, and Piger, 2021).

However, the approximation is invalid when nonstationary variables like time trends are

included. Another solution is to let π(s0 = 1) be a parameter with prior distribution π(s0 =

1) ∼ B(p1, p2). One can then sample from the full conditional distribution

π(s0 = 1)|YT , ST ∼ B(p1 + 1− s0, p2 + s0). (2.19)

We use this specification in all estimations that follow.

2.2.2 Sampling β and ρ

Once we condition on ST , S
∗
T , and δ, the model for YT becomes linear. We assume the

conjugate priors

β ∼ N(b0, B0), (2.20)

ρ ∼ N(r0, R0). (2.21)

We use the hierarchical prior

R0 = τ 2ρdiag(ν1, . . . , νp), (2.22)

τ 2ρ ∼ IG(αρ/2, γρ/2). (2.23)

τρ thus acts as a global smoothness parameter. It can be sampled from the full conditional

posterior
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τ 2ρ ∼ IG

(
αρ + p

2
,
γρ + ρ′(diag(ν1, . . . , νp))

−1ρ

2

)
. (2.24)

We set ν1, ν2, νp = 1. For other entries, we set νi = ki − ki−1. ki is the i
th knot. Knots are

set such that they are evenly spaced across standard Normal quantiles for linear splines and

multiples of quantiles for higher order splines.

An equivalent way of writing 2.1 is

yt =
[
x′t stx

′
t σstb

′
t

]  β0
β1 − β0

ρ

+ σstε
†
t = x′stβ

∗ + σstε
†
t , (2.25)

ε†t ∼ N(0, 1). (2.26)

Let XST
≡ (xs1 , . . . , xsT )

′ and ΣST
≡ diag(σ2

s1
, . . . , σ2

sT
). The likelihood can then be written

as

f(YT |Θ, ST , S
∗
T ) = fN(YT |XST

β∗,ΣST
). (2.27)

We then arrive at the full conditional posterior for a classical linear model with heteroskedas-

ticity.

β∗|YT ,Θ−β∗ , ST , S
∗
T ∼ N(b̂∗, B̂∗), (2.28)

B̂∗ = (B∗
0
−1 +X ′

ST
Σ−1

ST
XST

)−1, (2.29)

b̂∗ = B̂∗(B∗
0
−1b∗0 +X ′

ST
Σ−1

ST
y), (2.30)

43



b∗0 ≡ (b′0, r
′
0)

′, (2.31)

B∗
0 ≡

[
B0 02k×p

0p×2k R0

]
. (2.32)

When β is unrestricted, the entire vector β∗ can be sampled at once. When an identifying

restriction is placed on the intercepts, we will use the normalization β11 > β01, where βj1 is

the intercept for st = j. This leads to the full conditional posterior

β∗|YT ,Θ−β∗ , ST , S
∗
T ∼ TNβ∗

k+1>0
(b̂∗, B̂∗). (2.33)

Since only one dimension of β∗ is truncated, the marginal distribution of β∗
k+1 is

β∗
k+1|YT ,Θ−β∗ , ST , S

∗
T ∼ TN(0,∞)(β

∗
k+1|b̂∗k+1, B̂

∗
k+1,k+1). (2.34)

A well known result is that is the conditional distributions from a multivariate truncated

Normal distribution are also truncated Normal distributions. This fact, combined with the

lack of truncation for β∗
−k+1, tells us that f(β∗

−k+1|β∗
k+1, YT ,Θ−β∗ , ST , S

∗
T ) is a multivariate

Normal density. We can then sample from f(β∗|YT ,Θ−β∗ , ST , S
∗
T ) by first sampling from

f(β∗
k+1|YT ,Θ−β∗ , ST , S

∗
T ) and then from f(β∗

−k+1|β∗
k+1, YT ,Θ−β∗ , ST , S

∗
T ).

2.2.3 Sampling σ

Sampling σj is complicated by the nonstandard manner in which it enters the likelihood.

The full conditional distribution takes the form

f(σj|YT ,Θ−σj
, ST , S

∗
T ) ∝ π(σj)

∏
st=j

fN(yt|x′tβj + σjρ
′bt, σ

2
j ). (2.35)

If just σj entered the conditional mean parameter of the likelihood, we could use a Normal
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prior for σj and sample it from a Normal full conditional posterior distribution. If just σ2
j

entered the conditional variance parameter of the likelihood, we could use an Inverse-Gamma

prior for σ2
j and sample it from an Inverse-Gamma full conditional posterior distribution.

However, the appearance of both σj in the conditional mean and σ2
j in the conditional

variance makes iid sampling from the full conditional posterior infeasible. Luckily, MH

sampling with a tailored proposal density is a simple task. The mode of the full conditional

distribution of σj has an analytical solution for several choices of prior distribution, including

Gamma, Inverse-Gamma, and Generalized inverse Gaussian distributions. One first samples

from q(σ′
j) = ftν (σ

′
j|σ̂j, cV̂j). σ̂j is the mode of the full conditional posterior. V̂j is the

negative inverse of the second derivative of the log posterior distribution evaluated at σ̂j. ν

and c are positive tuning parameters. σ′
j is then accepted with probability

α = min

{
1,
q(σj)π(σ

′
j)
∏

st=j fN(yt|x′tβj + σ′
jρ

′bt, σ
′2
j )

q(σ′
j)π(σj)

∏
st=j fN(yt|x′tβj + σjρ′bt, σ2

j )

}
. (2.36)

2.2.4 Sampling δ

δj enters the likelihood in a highly nonlinear fashion via the vector of basis functions. This

removes the option of analytical sampling that is present in exogenous and parametric en-

dogenous models. As well, there is no general closed form solution for the mode of the

full conditional posterior density. This leaves one with MH sampling and either a tailored

proposal distribution that is found numerically or a random walk proposal distribution. A

random walk proposal distribution is used in all estimations that follow. Let the prior dis-

tribution for π(δj) = fN(d0j, D0j). A candidate δ′j is draw from q(δ′j|δj) = fN(δ
′
j|δj, τ 2δj). Let

η̃t ≡ s∗t − z′tδ
′
j. δ

′
j is then accepted with probability
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α = min

{
1,
π(δ′j)

∏
st−1=j

f(yt|st, η̃t)f(η̃t)
π(δj)

∏
st−1=j

f(yt|st, ηt)f(ηt)

}
. (2.37)

Bayesian MSMs sometimes require a strong prior for the transition probabilities for the

model to be well-identified. In a model with 2 regimes and fixed transition probabilities, we

can select priors to match our expectations about the average duration of a regime (Chib,

1996; Filardo and Gordon, 1998).

2.3 Simulation Study

This section presents the results of a simulation study. We generated 500 datasets with

T = 500 observations and k = 3 variables: an intercept and two variables each drawn from

N(0T , IT ) distributions. A sample of 13,000 draws from the posterior distribution of param-

eters was obtained for each dataset. Given the earlier discussion of mixing, this may seem

like an insufficiently small sample size. However, we observed much faster mixing of the

posterior distribution for the simulated datasets than with the output growth dataset used

later. We used the identifying restriction β01 < β11. In each instance, the first 3,000 draws

were discarded as burn-in. For comparison, we also estimated models with parametric en-

dogenous switching and exogenous switching. All datasets were simulated using the function

g(ηt) = η2t . Table 2.1 reports the parameter estimation errors for all three models. The esti-

mation error of a parameter is taken to be the parameter estimate minus the true parameter

value. The results demonstrate that the existing models can produce biased estimates when

g(ηt) is nonlinear. A surprising result is that the exogenous model outperforms the para-

metric endogenous model. The large estimation errors of the parametric endogenous model

are partly due to bimodality in the empirical error distribution. A natural cubic spline with
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Nonparametric Parametric
Endogenous Model Endogenous Model Exogenous Model

β01 0.0316 -1.3478 0.2404
(0.0512) (1.4932) (0.0267)

β11 0.1071 2.0731 0.5028
(0.3088) (1.5123) (0.0634)

β02 0.0033 1.3325 -0.0035
(0.0869) (1.2015) (0.0281)

β12 -0.0035 -1.3373 -0.0185
(0.0975) (1.1851) (0.0570)

β03 -0.0076 -1.3320 -0.0007
(0.0867) (1.1978) (0.0271)

β13 0.0066 1.3262 0.0225
(0.0969) (1.1751) (0.0552)

σ0 0.0194 0.7062 0.3222
(0.0373) (0.5127) (0.0673)

σ1 0.0089 0.9562 0.1888
(0.0359) (0.5127) (0.0397)

δ01 0.0142 0.7404 0.0211
(0.1075) (0.6413) (0.1239)

δ11 -0.0094 -0.6912 -0.0128
(0.1074) (0.6643) (0.1252)

The values presented are the estimation errors (parameter estimate - true value) for all parameters in θ.
Standard deviations are listed below estimation errors in parentheses.

Table 2.1: Average Estimation Errors

9 knots was used to approximate g(ηt). Figure 2.2 shows that g(ηt) is well-approximated by

posterior estimates.
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Figure 2.2: The Distribution of ĝ(ηt), Simulation Study

2.4 Model Comparison

The different models considered in this chapter are compared using Bayes factors (Kass and

Raftery, 1995). Since the sampler uses a mix of Gibbs and MH steps, marginal likelihood

calculation is done using methods form Chib (1995), Chib (1998), and Chib and Jeliazkov

(2001). Bayes factors have also been employed to select the number of regimes in both

classical MSMs (Koop and Potter, 1999) and in models with endogenous switching (Kang,

2014). As in Chib (1995), the formula for the marginal likelihood is obtained from a simple

application of Bayes’ Formula:
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f(YT |Mi) =
f(YT |Θ∗,Mi)π(Θ

∗|Mi)

f(Θ∗|YT ,Mi)
. (2.38)

Θ∗ is taken to be the posterior mean of Θ. The likelihood f(YT |Θ∗,Mi) is calculated using

a modified version of the forward filtering algorithm of Hamilton (1989). π(s0 = 1) can

be integrated out of the likelihood by replacing it with its prior mean. f(Θ∗|YT ,Mi) is

rewritten as f(β∗|σ∗, δ∗, YT ,Mi)f(σ
∗|δ∗, YT ,Mi)f(δ

∗|YT ,Mi). All ordinates are estimated

via simulation as in Chib and Jeliazkov (2001).

2.5 Application to GDP Data

We applied the model of (2.1) - (2.4) to data on quarterly real GDP growth. The dataset runs

from 1947:Q2 to 2019:Q4. The most recent recession was omitted because the magnitudes

of the shifts are much greater than in the rest of the sample. Estimations that included

this period did not perform well at identifying previous recessions. They tended to classify

every period prior to 2020:Q1 as an expansion. Let the dependent variable be defined as

yt ≡ ln(GDPt)− ln(GDPt−1). We estimated a 2-state switching means model with constant

scaling factor σ:

yt = βst + σεt. (2.39)

We experimented with different autoregressive specifications, allowing for up to 4 lags of yt

and switching scaling factors. However, the simple switching means model with constant

scaling factor performed the best in identifying latent states that correspond to business

cycles. g(ηt) is approximated using a natural cubic spline with 9 knots. Identification is

achieved through the restriction β0 < β1. We also estimated a parametric endogenous model
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and an exogenous model. We used the prior π(σ) = fTN(0,∞)
(σ|0, 1) and the hyperpriors

b0 = (−.1815, .4196, 0′p)′, B0 = .25I2, αρ = 1, γρ = .1, d0 = (−.6, 1.66)′, D0 = I2, p1, p2 = 0.

We set p = 1 and p = 0 for the parametric endogenous and exogenous models, respectively. b0

was chosen to match the average growth rates during recessions and expansions as classified

by the National Bureau of Economic Research (NBER). d0 was chosen to match the average

durations of recessions and expansions. Each sample of parameters consisted of 300,000

draws after burn-in samples were discarded.

As can be seen in Figure 2.3, the posterior estimate of ĝ(ηt) is rather nonlinear. To better

understand how nonlinearity in the conditional mean of εt affects its marginal distribution,

we estimated the densities f(ετ |YT ) and {f(ετ |YT , sτ , sτ−1)}. The subscript τ is used instead

of t to stress that these distributions are not conditioned on any time period in the sample.

We would ideally remove the dependence of ετ on ρ and δ through direct integration:

f(ετ |YT ) =
∫
f(ετ |ητ , YT , ρ)f(ητ )f(ρ|YT )dητdρ, (2.40)

f(ετ |YT , sτ , sτ−1) =

∫
f(ετ |ητ , YT , ρ)f(ητ |YT , sτ , sτ−1, δ)f(ρ, δ|YT )dητdρdδ. (2.41)

The intractability of these integrals forces us to instead use a mixture of numerical and monte

carlo integration. At each iteration m of the MCMC sampler, we evaluate the integrals∫
f(ετ |ητ , YT , ρ(m))f(ητ )dητ and

∫
f(ετ |ητ , YT , ρ(m))f(ητ |YT , sτ , sτ−1, δ

(m))dητ using numeri-

cal methods. The reader should note that f(ητ ) = fN(ητ |0, 1) and f(ητ |YT , sτ , sτ−1, δ
(m))

is a truncated standard Normal density with region of truncation B(m)
st|st−1

. The rest of the

integration is done by averaging over MCMC draws. We use the approximations

f(ετ |YT ) ≈M−1

M∑
m=1

∫
f(ετ |ητ , YT , ρ(m))f(ητ )dητ , (2.42)
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f(ετ |YT , sτ , sτ−1) ≈M−1

M∑
m=1

∫
f(ετ |ητ , YT , ρ(m))f(ητ |YT , sτ , sτ−1, δ

(m))dητ . (2.43)

M is the number of remaining MCMC draws after burn-in samples are discarded. Approx-

imations f̂(ετ |YT ) and f̂(ετ |YT , sτ , sτ−1) are plotted in Figures 2.4 and 2.5, respectively.

f̂(ετ |YT ) is skewed to the right, making extreme positive values more likely than in a Gaus-

sian distribution. We observe interesting deviations from f̂(ετ |YT ) when we condition on past

and current regimes. f̂(ετ |YT , sτ = 0, sτ−1 = 0) is positively skewed and centered around

a positive number, meaning we are more likely to see positive deviations from the average

growth rate during a recession. The distribution of errors in f̂(ετ |YT , sτ = 0, sτ−1 = 1)

is more Gaussian, but there is more mass in the positive region of ετ . This implies that

average growth is higher in the first period of a recession. We can interpret this as a tran-

sitional period between high and low growth. We also see a large amount of probability

mass in the positive region of ετ for f̂(ετ |YT , sτ = 0, sτ−1 = 1). This corresponds to a high

growth recovery in which average growth is higher in the first quarter following a recession.

f̂(ετ |YT , sτ = 1, sτ−1 = 1) is the density that most closely resembles a Gaussian distribution

centered at 0. This results from the quasilinear shape of Ê[ĝ(ηt)|YT ] in the region [-1,.5].

Parameter estimates are displayed in Table 2.2. Estimates for β are lower for the nonpara-

metric model than the other two. This is likely caused by the positive skew in f(ετ |YT ). The

posterior estimate for σ is also lowest in the nonparametric model, indicating that there is

less residual variation in the data when we allow εt to have a nonlinear conditional mean

function. The estimate for δ0 is highest in the nonparametric model, corresponding to less

persistent recessions. There does not appear to be a large variation in the persistence of

expansions predicted by the three models.

Figure 2.6 shows smoothed recession probabilities from the nonparametric model along with

NBER recession dates. We observe a spike in recession probabilities during every recession.
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Figure 2.3: The Distribution of ĝ(ηt), GDP Model
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Figure 2.4: f̂(ετ |YT )
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Figure 2.5: f̂(ετ |YT , sτ , sτ−1)
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Nonparametric Parametric
Endogenous Model Endogenous Model Exogenous Model

β0 -0.4089 -0.2368 -0.0049
(0.1298) (0.2593) (0.2080)

β1 0.3702 0.4500 0.5357
(0.0642) (0.1317) (0.1624)

σ 0.2430 0.3475 0.3497
(0.0362) (0.0186) (0.0178)

δ0 -0.3880 -0.5434 -0.90901
(0.2429) (0.5533) (0.5449)

δ1 1.3523 1.6845 1.2814
(0.2625) (0.4062) (0.4811)

ln(f(YT |Θ∗,Mi)) -123.4621 -137.8244 -140.4360
ln(f(YT |Mi)) -139.3520 -143.3834 -144.9914

Standard deviations are listed below parameter estimates in parentheses.

Table 2.2: Posterior Estimates for Output data

The one false positive occurs in the first quarter of the sample. This is a reasonable error

for the model to produce because real output growth was negative in this period.

The natural logarithm of the Bayes factors for choosing the Nonparametric model over the

exogenous model and the parametric endogenous model are 5.64 and 4.03, respectively. Using

an uninformative uniform prior for model probabilities, this makes the posterior probability

of the nonparametric model 281.46 times that of the exogenous model and 56.26 times that

of the parametric endogenous model.
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Figure 2.6: Smoothed Recession Probabilities

2.6 Conclusion

We developed a MSM with nonparametric endogenous switching. The nonparametric model

offers substantial flexibility with regard to the marginal distribution of observation errors. A

simulation study demonstrated that existing parametric models can produce biased results

when the true data generating process entails nonlinear endogenous switching. The model

was applied to data on US real GDP growth. The estimated model had a significantly

higher Bayes factor than estimates for parametric endogenous and exogenous models. The

nonparametric model is also able to identify all recessions, as calculated by the NBER.

Estimated marginal error distributions indicated the innovations in the observation equation

are non-Gaussian and generally skewed to the right.

There are many areas in which this chapter could be extended. One obvious application is

to financial data. A flexible error distribution is called for in a landscape where fat tails and

skewness are expected. Other directions for further research are extensions to multivariate

data and more than 2 regimes.
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Chapter 3

A Flexible Conditional Mean

Function for Count Data Analysis

This paper proposes a new flexible conditional mean function for use in count data modelling.

Count data, primarily modelled with Poisson regression or compound distributions like the

Negative Binomial and Poisson-Log Normal, arise in many areas of economic analysis (Blun-

dell, Griffith, and Reenen, 1995; Schoenmaker, 1996; Cameron et al., 1988) as well as other

disciplines such as epidemiology (Zeger, 1988; Davis, Dunsmuir, and Wang, 2000; Böhning

et al., 1999). Count data models with exogenous covariates have relied almost exclusively on

the exponential conditional mean function. Despite several glaring issues with the exponen-

tial function - explosive covariate effects, sensitivity to model misspecification, and inability

to incorporate lagged dependent variables - it has remained the conditional mean function

of choice primarily due to its simplicity. The proposed conditional mean function attempts

to solve these problems.

The other strand of the literature to which this paper contributes is models of autocorrelated

count data. An early model for time series count data was the Integer-Valued ARMA
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(INARMA) model (Al-Osh and Alzaid, 1987; Brännäs and Hall, 2001). In the most basic

INAR(1) model, the dependent variable is the sum of a binomial thinning operator applied to

last period’s dependent variable and a Poisson-distributed error term. The main advantage

of using the proposed conditional mean function in a time series model is that it allows

all covariates, be they exogenous, or lagged dependent variables and conditional means, to

impact the conditional mean in the same manner. Other models tend to specify one process

for the autoregressive component of the conditional mean and then multiply that term by

an exponential function of exogenous covariates. Zeger (1988) modeled autocorrelation in

count data with a stochastic autoregressive mean (SAM), µt in a Poisson regression model.

He incorporated exogenous covariates by letting E[yt|xt] = ex
′
tβµt. While this model is

intuitive, estimation requires either inversion of a high-dimensional covariance matrix or

calculation of high-dimensional integrals (Jung, Kukuk, and Liesenfeld, 2006). Heinen (2003)

introduced the Autoregressive Conditional Poisson (ACP) model. This model lets µt be a

linear function of lagged dependent variables and conditional means. Exogenous covariates

are introduced in the same way as Zeger (1988). While this model provides a simple method

for forecasting, it does not permit negative autocorrelation. The GLARMA model of Davis,

Dunsmuir, and Streett (2003) offers another observational approach. They model lnµt ≡ ωt

as a linear function of past ωts and error terms that are standardized by µρ
t , ρ ∈ (0, 1].

Cameron and Trivedi (1998) propose a model in which the observed outcome is the result

of an autoregressive conditional ordered probit model (ACOP). The latent variable that

determines the outcome is a linear function of lagged dependent variables, lagged values

of another latent variable, exogenous covariates, and an error term that follows a standard

Normal distribution. This model offers greater flexibility in some respects, but it cannot

accommodate a wide range of outcomes.

The rest of this paper is organized as follows. Section 3.1 explains the problems with the

exponential conditional mean function. It then proposes a new conditional mean function

that solves these problems. Section 3.2 proposes a new model for autocorrelated count data
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that incorporates the new conditional mean function. Section 3.3 presents our first empirical

application of the new conditional mean function to data examining how daylight savings

time impacts the number of fatal car accidents. Section 3.4 presents our second empirical

application that evaluates if regulatory policy limiting the number of flights was effective at

reducing flight delays at Newark International Airport. Finally, Section 3.5 concludes.

3.1 A New Conditional Mean Function

3.1.1 The Exponential Conditional Mean Function

The traditional conditional mean function used for cross-sectional count data models is the

exponential. The conditional mean is thus given by

E[yi|x′iβ] = ex
′
iβ (3.1)

The main advantage of the exponential conditional mean function is the simplicity with

which it maps R → R+. This mapping is a necessary quality for a conditional mean func-

tion, as any count model requires that the conditional mean be nonnegative. However, there

are several disadvantages. The first drawback of the exponential conditional mean function

is the covariate effects it produces. This is seen by taking the partial derivative with respect

to xij.

∂

∂xij
ex

′
iβ = ex

′
iββj (3.2)

59



This leads to covariate effects that become larger and larger in magnitude as the conditional

mean increases, creating unrealistic predictions in applications to economic data. Many

foundational economic models assume diminishing marginal effects. On the contrary, the

exponential conditional mean function produces increasing marginal effects. Demand for

aggregate consumption can at most be an increasing linear function of wealth while still

satisfying a consumer’s budget constraint. The increasing covariate effects in standard count

models thus lead to infeasible predictions.

Another drawback of the exponential conditional mean function is its lack of robustness to

model misspecification. Under this assumption, the likelihood of the data given the model

will be very steep. This leads to precise estimates when the specification is correct, but

makes the model ill-suited to analyze data where the assumption is not satisfied. This will

be illustrated in the simulation study below.

The final disadvantage of the exponential conditional mean function that we will discuss is

its inability to accept lagged values of the dependent variable as covariates. This problem is

apparent when one looks at the expected growth rate of the conditional mean.

E[yt|x′tβ] = µt = ex
′
tβ+ϕyt−1 , xt

iid∼ F (x). (3.3)

lnµt − lnµt−1 = x′tβ + ϕyt−1 − x′t−1β − ϕyt−2,

E[lnµt − lnµt−1] = E[x′tβ − x′t−1β] + E[ϕyt−1 − ϕyt−2],

E[lnµt − lnµt−1] = ϕE[yt−1 − yt−2].

(3.4)

Since the expected growth rate of the conditional mean is constant, the conditional mean is

either explosive or implosive.
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3.1.2 The Proposed Conditional Mean Function

The new conditional mean function proposed here attempts to remedy all of the problems

outlined above. Our function is obtained through a two-step mapping, λ(x′iβ) = g(f(x′iβ)),

where f(·) is a logistic cumulative density function (CDF) and g(·) is the inverse CDF of the

Weibull distribution with scale parameter c and shape parameter k. This mapping yields

the function

λ(x′iβ) = c ln(1 + ex
′
iβ)

1
k , c > 0, k > 1. (3.5)

We refer to this function as the Logistic-Weibull (LW) function. If k = 1, we obtain a

scaled version of the softplus activation function used in neural networks (Dugas et al.,

2001). However, we restrict k to be greater than 1 to ensure that the function is eventually

concave. Figure 3.2 demonstrates the flexibility of the LW function. k controls how quickly

the function moves from the quasilinear region to the concave region. c controls the scale of

the function as well as the range of λ(·) for which the function is approximately exponential.

The LW function converges to ce
x′iβ
k when x′iβ is small and c(x′iβ)

1
k when x′iβ is large. To

demonstrate convergence to cex
′
iβ, recall that ln(1+ x) ≈ x for x sufficiently close to 0. This

means that when x′iβ is sufficiently negative, making ex
′
iβ sufficiently close to 0,

c ln(1 + ex
′
iβ)

1
k ≈ c(ex

′
iβ)

1
k = ce

x′iβ
k .

Convergence to c(x′iβ)
1
k for x′iβ sufficiently large can be seen from the fact that ln(1 + x) ∼

ln(x) as x→ ∞. This means that when x′iβ is sufficiently large,

c ln(1 + ex
′
iβ)

1
k ≈ c ln(ex

′
iβ)

1
k = c(x′iβ)

1
k .
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While the arguments made here are asymptotic, Figure 3.1 illustrates that this convergence

occurs relatively quickly.

Figure 3.1: Convergence of the LW Function

Figure 3.2: The LW Function Under Different Values of k

Covariate Effects

Under this conditional mean function, the marginal effect of a unit change in the covariate

xij is

∂

∂xij
λ(x′iβ) =

c

k

ex
′
iβ

1 + ex
′
iβ
λ(x′iβ)

1−k
k βj. (3.6)

63



While this formulation is not immediately intuitive, the term that multiplies βj has a bell

shape that initially increases with x′iβ but eventually dies off to 0. In practice, researchers

can choose tolerance levels for convergence to the exponential and kth root functions and then

identify critical values of x′iβ beyond which the conditional mean function can be treated as

if it is one of those two. In the kth root region this leads to an approximate covariate effect of

c
k
(x′iβ)

1−k
k βj. The marginal effect for the exponential region would be c

k
e

x′iβ
k βj. As illustrated

in Figure 3.1, the nonconvergent region is roughly linear. If we let α be the inflection point

for λ(x) (λ′′(α) = 0), then we can let the covariate effect be λ′(α)βj for values of x
′
iβ around

α. It is likely only when x′iβ is close to one of the critical values but still in the nonconvergent

zone that it would be prudent to use the exact marginal effect.

Model Misspecification

We will now investigate how robust the proposed conditional mean function is to model

misspecification. Model misspecification will be assessed through the lens of information

theory. We also explore the precision of maximum likelihood estimates when the function is

used in Poisson and Negative Binomial regression models.

The units by which we measure the information contained in a single event are given by

the negative of the logarithm, with respect to a specific base number, of the probability of

the event. Two common choices for the base number of the logarithm are 2 and e. When

the base-2 logarithm is used, the units of information are called bits. The quantity of bits

associated with a specific event tells us how many times the volume of the probability space

of a random variable is divided by 2 when we know the variable takes a specific value. The

lower the probability of an event, the greater the information gained by knowing it occurs.

For our analysis, we will use the natural logarithm, making the units of information nats.

A common method for evaluating the difference between two probability distributions is
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the expected information gain. When data is generated by one of the two distributions, the

information gain is the difference in the information an observation gives when we assume the

true model and the information from assuming the incorrect model. For a correct distribution

A and an incorrect distribution B, it is calculated as

I =
∑
i

p(yi|A)(ln p(yi|A)− ln p(yi|B)). (3.7)

This is also known as the Kullback-Leibler Divergence. Computing information gain is com-

plicated in our case because we are not conditioning on a single distribution, but rather the

functional form of the distribution. In principle, we could calculate the expected informa-

tion gain from choosing the true conditional mean function over the false conditional mean

function by specifying prior distributions for all model parameters. Let T and F denote the

true conditional mean function and the false conditional mean function respectively. We can

then compute

I =

∫
X

∫
θ

∑
i

p(yi|θ, T,X)[ln p(yi|θ, T,X)p(θ|T )− ln p(yi|θ, F,X)p(θ|F )]p(X)dθdX. (3.8)

We chose not to pursue this approach because it would be computationally infeasible. In

particular, the general lack of identification of the scale and shape parameters in the LW

function makes it difficult to define appropriate priors. We instead estimated the expected

information gain from a given conditional mean function after conditioning on the maximum

likelihood estimates. This quantity was estimated via simulation.

We considered four cases for the true Data Generating Process (DGP): a Conditional Poisson

Model with an exponential conditional mean function, a Conditional Poisson Model with an

LW conditional mean function, a Conditional Negative Binomial Model with an exponen-

tial conditional mean function, and a Conditional Negative Binomial Model with an LW
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conditional mean function. c = 10, k = 5 were chosen when the true model used an LW

conditional mean function. B = 1, 000 datasets of size n = 300 were simulated from each

DGP. We fit models with LW and exponential conditional mean functions for each simulated

dataset and saved the log-likelihoods evaluated at the maximum likelihood estimates. Hold-

ing beliefs about the DGP for X constant, the simulation estimate of I can be expressed

as

Î =
1

B

B∑
b=1

ln p(y(b)|X(b), θ̂MLE, T )− ln p(y(b)|X(b), θ̂MLE, F ). (3.9)

Table 3.1 reports the estimates of I that arise from the two modelling assumptions. It is

interesting to note that the expected information gain is large when the true conditional mean

function is LW and slightly negative when the true conditional mean function is exponential.

The exponential function is thus ill-suited to problems with concavity in the conditional

mean function. On the other hand, the flexibility of the LW function allows it to fit the data

generated by an exponential conditional mean function as well as or better than the true

model.

True Conditional Mean Poisson Negative Binomial
LW 292.280 315.434
Exponential -0.202 -0.251

Table 3.1: Expected Information Gain

Table 3.2 gives the results of a Monte Carlo study. The values are the sample means and

standard deviations (displayed below means in parentheses) of maximum likelihood estimates

across B = 1, 000 datasets of size n = 300. Both the DGPs and the estimators hold c and k

constant at 10 and 3, respectively. γ is the dispersion parameter in the Negative Binomial

model. From simulation results, we see that the maximum likelihood estimator is fairly

precise for the Poisson model. The precision of all parameters decreases a bit in the Negative
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Binomial model, as would be expected when the conditional distribution of the data has a

higher variance.

True Parameters Poisson Negative Binomial
γ 12 12.633

(2.496)
β0 1 1.000 1.029

(0.200) (0.403)
β1 2 2.005 2.021

(0.097) (0.165)
β2 3 3.011 3.036

(0.127) (0.227)
β3 4 4.014 4.041

(0.155) (0.297)

Table 3.2: Estimation Results for Simulated Data

3.2 A New Time Series Process for Count Data

Let yt have nonnegative integer values with conditional expectation

E[yt|Ft−1] = λt = λ(z′tδ) = λ(x′tβ +

p∑
i=1

ϕiyt−i +

q∑
j=1

ψjλt−j), (3.10)

where Ft−1 is the information set up to time t−1, which includes x′tβ. The following sections

will consider processes for which yt|Ft−1 ∼ Poisson(λt) and yt|Ft−1 ∼ NB(λt, γ). We will

refer to these processes as Poisson ARMA(p,q) and Negative Binomial ARMA(p,q).

3.2.1 Dynamics

Due to the relatively more complicated formulation of λ(x) than ex, direct evaluation of the

expected growth rate of the conditional mean is not feasible. However, we can get an idea
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of the dynamics in the AR(1) case by writing

E[yt − yt−1|yt−1] = λ(k + ϕyt−1)− yt−1.

Since λ(k + ϕyt−1) > 0 and is either bounded (in the case of ϕ < 0) or eventually concave,

there exists two points, y∗l and y∗h (both > 0), such that λ(β0 + ϕyt−1) > yt−1 for yt−1 <

y∗l and λ(k + ϕyt−1) < yt−1 for yt−1 > y∗h. We can then conclude E[yt − yt−1|yt−1] is
< 0 if yt−1 > y∗h

> 0 if yt−1 < y∗l

.

For the general case of an ARMA(p,q) specification with exogenous covariates, we can write

E[yt − yt−1|Ft−1] = λ(z′tδ)− yt−1.

λ(z′tδ) > 0 and is either bounded (in the case of ϕ1 < 0) or eventually concave with respect

to yt−1 (conditional on all other variables in the information set). Therefore, when all other

covariates are held constant, there exists two points, y∗t−1,l and y
∗
t−1,h (both > 0), such that

λ(z′tδ) > yt−1 for yt−1 < y∗t−1,l and λ(z
′
tδ) < yt−1 for yt−1 > y∗t−1,h. We can then conclude

E[yt − yt−1|Ft−1] is 
< 0 if yt−1 > y∗t−1,h

> 0 if yt−1 < y∗t−1,l

.

The AR(1) and ARMA(p,q) processes are thus neither explosive nor implosive. For many

combinations of parameters, y∗l = y∗h and y∗t−1,l = y∗t−1,h. This suggests the existence of

mean-reverting dynamics. To conclude that this is indeed mean reversion, we must first

demonstrate that an autoregressive process of this sort has an unconditional mean. We
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demonstrate this in the next section.

3.2.2 Stationarity Results

This section presents results for the strict stationarity of yt. While the exact values for the

unconditional moments are elusive, we demonstrate their existence by proving that they are

bounded. It is common in the literature for time series count models to prove covariance

stationarity without respect to the distribution of exogenous covariates (Heinen, 2003; Davis,

Dunsmuir, and Streett, 2003). As such, we first present stationarity results for xt = 1. We

then show that these results extend easily to moments conditional only on xt. Finally, we

will present unconditional moments, assuming xt
iid∼ F (xt), E[|x′tβ|n] <∞, n ∈ N.

The Conditional Poisson Distribution

Proposition 3.1 For xt = 1:

0 < E[yt] <
b1 +m1|β0|

1−m1(
∑p

i=1 |ϕi|+
∑q

j=1 |ψj|)
. (3.11)

For xt ∈ Rdx :

0 < E[yt|xt] <
b1 +m1|x′tβ|

1−m1(
∑p

i=1 |ϕi|+
∑q

j=1 |ψj|)
. (3.12)

For xt
iid∼ F (xt):

0 < E[yt] <
b1 +m1E[|x′tβ|]

1−m1(
∑p

i=1 |ϕi|+
∑q

j=1 |ψj|)
. (3.13)
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Proof in Appendix. As can be seen in the appendix, the parameters b and m are chosen to

ensure the right side of all inequalities are positive and finite and b+m|x| > λ(x). Under the

conditions xt = 1, β0 > 0 and sufficiently large, {ϕi} > 0, {ψj} > 0,
∑p

i=1 ϕi +
∑q

j=1 ψj < 1,

we can set b1 = 0, m1 = 1, and the bound becomes the stationary mean of a linear ARMA

process with the same parameters.

Proposition 3.2

For xt = 1:

0 ≤ E[ynt ] <
bn +mn|β0|n(p+ q + 1)n−1 +

∑n−1
l=1

{
n
l

}
E[ylt]

1−mn(p+ q + 1)n−1(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (3.14)

For xt ∈ Rdx :

0 ≤ E[ynt |xt] <
bn +mn|x′tβ|n(p+ q + 1)n−1 +

∑n−1
l=1

{
n
l

}
E[ylt]

1−mn(p+ q + 1)n−1(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (3.15)

For xt
iid∼ F (xt):

0 ≤ E[ynt ] <
bn +mnE[|x′tβ|n](p+ q + 1)n−1 +

∑n−1
l=1

{
n
l

}
E[ylt]

1−mn(p+ q + 1)n−1(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (3.16)

Proof in Appendix. As in Proposition 3.1, the parameters bn and mn are chosen to ensure

the right side of all inequalities are positive and finite and bn + mn|x|n > λ(x)n.
{
n
l

}
are

Stirling numbers of the second kind.
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Proposition 3.3

For xt = 1 or xt
iid∼ F (xt):

−(E[yt])2 < Cov[yt, yt−s] < V ar[yt] < E[y2t ]. (3.17)

For xt ∈ Rdx :

−(E[yt|xt])2 < Cov[yt, yt−s|xt] < V ar[yt|xt] < E[y2t |xt]. (3.18)

Proof in Appendix.

The Conditional Negative Binomial Distribution

Proposition 3.4 is identical to Proposition 3.1, as is its proof.

Proposition 3.4

For xt = 1:

0 ≤ E[ynt ] <
γ−nγ(n−1)(bn +mn|β0|n(p+ q + 1)n−1) +

∑n−1
l=1

{
n
l

}
γ−lγ(l−1)E[ylt]

1−mn(p+ q + 1)n−1γ−nγ(n−1)(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (3.19)

For xt ∈ Rdx :

0 ≤ E[ynt |xt] <
γ−nγ(n−1)(bn +mn|x′tβ|n(p+ q + 1)n−1) +

∑n−1
l=1

{
n
l

}
γ−lγ(l−1)E[ylt]

1−mn(p+ q + 1)n−1γ−nγ(n−1)(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (3.20)
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For xt
iid∼ F (xt):

0 ≤ E[ynt ] <
γ−nγ(n−1)(bn +mnE[|x′tβ|]n(p+ q + 1)n−1) +

∑n−1
l=1

{
n
l

}
γ−lγ(l−1)E[ylt]

1−mn(p+ q + 1)n−1γ−nγ(n−1)(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (3.21)

Proof in Appendix. γ(n) is an ascending factorial.

Proposition 3.6 is identical to Proposition 3.3, as is its proof.

Strict Stationarity and Ergodicity

The existence of a stationary value for every raw moment implies the existence of a stationary

moment generating function and thus a unique stationary distribution f(yt). Since E[λnt ] <

E[ynt ], there also exists a stationary distribution f(λt). Let Yt:t+h = {yt, . . . , yt+h}, Λt:t+h =

{λt, . . . , λt+h}, Xt:t+h = {xt, . . . , xt+h}. The same approach used in Propositions 1-6 can

be used to show the existence of E[ynt |Yt−1:t−i,Λt−1:t−j], and thus f [yt|Yt−i:t−1,Λt−j:t−1], i =

1, . . . , p, j = 1, . . . , q. There must then exist a density f(Yt−p:t,Λt−q:t). Since

f(Yt:t+h,Λt:t+h|Yt−p:t−1,Λt−q:t−1) is just a product of known densities, we can then conclude

that f(Yt:t+h) depends only on the value h.

A Markov chain for a random variable Wt is said to be ergodic if

1

T

T∑
t=1

f(Wt)
a.s.−−→

∫
f(W )π(W )dW, (3.22)

where π(W ) is the stationary distribution of Wt. Using the strict stationarity of yt, we can
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now show that Poisson and Negative Binomial AR(p) models are ergodic. The autoregressive

processes described 3.2.1 and 3.2.2 are Markov chains on a countably infinite state space. For

an AR(1) model, the Markov random variable is simply Wt = yt. For an AR(p) process, the

Markov random variable is a vector, Wt = Yt:t+p. The Markov transition kernel P (Wt,Wt+1)

is the probability of moving from Wt to Wt+1. An invariant measure π is a solution to the

integral equation
∫
P (Wt,Wt+1)π(Wt)dWt = π(Wt+1). The existence of a finite-summable

invariant measure is guaranteed by the strict stationarity of yt. P (Wt,Wt+1) is either a

Poisson or Negative Binomial Distribution in the AR(1) case or a product of these distribu-

tions when p > 1. Since these distributions assign positive probability to every nonnegative

integer, P is π-irreducible and aperiodic. We can thus conclude that the Markov Chain is

ergodic (Tierney, 1994).

Likelihood Computation

The likelihood for an AR(p) model of data Y1:T can be written as

f(Y1:T |θ,X) = f(Y1:p|X1:p)
T∏

t=p+1

f(yt|θ, xt, Yt−1:t−p). (3.23)

The absence of a closed form expression for the stationary distribution of yt leaves us

with two options: use the conditional likelihood f(Yp+1:T |X, Yp) or estimate the probability

f(Y1:p|θ,X1:p). The conditional likelihood is a reasonable choice in models where one is pri-

marily interested in the effects of the covariates xt. One may simply include a single lag of yt

to control for any possible autocorrelation. This becomes less attractive when analyzing data

that one suspects is mostly or entirely driven by autoregressive dynamics. In this situation,

objective selection of the number of lags is crucial. Common methods for lag selection include

Bayes factors and information criteria. Both of these approaches require the calculation of

f(Y1:T |θ,X). The conditional likelihood can now only be used if we condition each estima-
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tion on the first p̄ observations, the maximum number of lags considered. When the sample

size is small, this can cost precious degrees of freedom. One of our empirical applications

will compare results obtained from using either conditional or stationary likelihoods.

The likelihood component f(Y1:p|θ,X1:p) can be estimated via Markov Chain Monte Carlo

(MCMC) integration as in Jeliazkov and Lee (2010). The invariance property of the Markov

chain tells us that
∫
f(Y1:p|Y−p:0, θ)f(Y1:p|θ)dY−p:0 = f(Y1:p|θ). Using B MCMC samples from

f(Y1:p|θ), we can estimate the stationary probability as

f̂(Y1:p|θ) =
1

B

B∑
b=1

f(Y1:p|Y (b)
−p:0). (3.24)

3.3 Empirical Application 1: Daylight Savings Time

and Fatal Car Crashes

A recent strand of empirical literature has focused on the social costs that Daylight Savings

Time (DST) places on Americans. In particular, the one-hour shift of daylight during the

spring transition has been shown to have both beneficial and detrimental consequences.

For example, Barnes and Wagner (2009) find that Americans sleep 40 minutes less on the

night of the spring transition, while Doleac and Sanders (2015) find that increased ambient

light in the evening following the shift to DST decreases robberies by 7%. Moreover, Smith

(2016) finds that the spring transition into DST increases fatal car crash risk by 5.0%-6.5%

(translating to an annual increase of over 30 deaths from 2002-2011).

To demonstrate how our new conditional mean function may be applied to count data, our

first empirical application replicates the results from Table 5 of Smith (2016). However, our

model differs from Smith (2016) in a few respects. While Smith (2016) chooses to model
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the natural logarithm of traffic fatalities as the dependent variable in a linear fixed effects

model, we instead model traffic fatalities directly as the outcome of a conditional Poisson

model. Our approach allows for direct estimation of the marginal effect of DST, as well as

the inclusion of lags of the dependent variable. Lagged dependent variables help partially

capture the effects of aperiodic, sustained events like weather.

The shape and scale parameters are not sufficiently identified such that they can be estimated

accurately. k is poorly identified if the data is generated primarily from the convex or concave

regions of the conditional mean function. c and the regression constant (β0) are not jointly

identified when x′iβ is mostly negative, making the conditional mean function approximately

exponential. We instead estimate a set of 35 models over a grid of five c values and seven

k values via maximum likelihood. We then choose the values of c and k that yield the

highest likelihood. Maximum likelihood estimates are obtained using the Berndt et al.

(1974) (BHHH) algorithm. This algorithm is the natural choice because the inclusion of

year, day-of-week, and day-of-year fixed effects creates a very high dimensional parameter

vector.

Parameter estimates are provided in Table 3.3. We see complete agreement in terms of sign

and significance of covariate effects with the results of Smith (2016). In addition, lagged

values of the dependent variable are highly significant in all but one of the specifications.

Figure 3.3 shows the shape of the conditional mean function for all four dependent variables

using the results from columns (4)-(7) of Table 3.3. We see that the conditional mean function

has a convex, slightly exponential shape when the outcome variable is fatalities in all hours

or in the least light impacted times. It becomes linear when we examine fatal car crashes

in the morning or evening hours. That the conditional mean functions are neither strongly

exponential nor strongly concave demonstrates that both a conditional Poisson model with

an exponential conditional mean function and a log-linear model are ill-suited to the data.
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All Hours Least Light Morning Evening
Impacted

(1) (2) (3) (4) (5) (6) (7)

yt−1 0.0021∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.0025∗∗∗ 0.0074 0.0109∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0004) (0.0053) (0.0026)
Spring DST 0.0384∗∗ 0.037∗∗

(0.0168) (0.0168)
First six 0.0642∗∗∗ 0.0634∗∗∗ 0.083∗∗ 0.5756∗∗∗ -0.0249
days of DST (0.0208) (0.0209) (0.0336) (0.1881) (0.1076)

Next eight 0.0286 0.027 0.0373 0.4187∗∗∗ -0.1169
days of DST (0.0228) (0.0228) (0.0349) (0.1551) (0.103)

Remainder of 0.0204 0.0181 0.0152 0.3602∗∗ -0.0668
Spring DST (0.0208) (0.0208) (0.0323) (0.1519) (0.0993)

Fall DST 0.0176 0.0178 0.0176 0.0177 0.0622 0.8015∗∗∗ -0.4476∗∗∗

(0.0269) (0.027) (0.0269) (0.027) (0.041) (0.2114) (0.16)
ln(gas price) -0.0362∗ -0.0378∗ -0.0444 -0.2455 -0.0512

(0.0216) (0.0215) (0.035) (0.1852) (0.1148)
Observations 3,341 3,341 3,341 3,341 3,341 3,341 3,341
c 500 500 500 500 100 5 10
k 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Table 3.3: Parameter Estimates for Daylight Savings Models

Notes: The dependent variable (yt) is the daily number of fatal car crashes. Maximum likelihood estimates are reported with asymptotic standard

errors in parentheses. All specifications include year, day-of-year, and day-of-week fixed effects. *** Significant at the 1 percent level. ** Significant

at the 5 percent level. * Significant at the 10 percent level.
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Figure 3.3: Daylight Savings Conditional Mean Functions

Notes: The solid line is the conditional mean function. The dots are the observed outcomes plotted

against x′β̂MLE . The dotted line is the empirical density of x′β̂MLE .

3.4 Empirical Application 2: Slot Controls and Flight

Delays

Our second empirical application examines how regulatory policy restricting the number of

flights at capacity constrained airports (i.e., slot controls) affects flight delays. Slot controls

are currently implemented at over 200 capacity constrained airports worldwide to mitigate

persistent congestion and delays. However, evidence is limited on the effectiveness of these

policies. Although it is expected that the decline in flight traffic resulting from slot controls

should decrease delays, the findings in Ater (2012) suggest that policies aimed at reducing

congestion at highly concentrated airports will only have a limited impact because dominant

airlines already internalize congestion when scheduling flights.
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In the United States, slot controls are currently in place at Washington National, LaGuardia,

and John F. Kennedy airports. Slot controls have previously been implemented at Chicago

O’Hare and Newark (EWR) airports. In our empirical application, we evaluate how the

introduction of slot controls at EWR on June 20th, 2008 and the removal of these controls

on October 30th, 2016 affected the daily number of delayed flights.

EWR provides an interesting case study for two reasons. Foremost, EWR is a heavily

concentrated airport. At the time slot controls were implemented, Continental (now United)

accounted for 72% of flight traffic at EWR. Second, EWR is consistently one of the most

delay-prone airports in the United States. Prior to the implementation of slot controls, the

percentage of on-time gate arrivals decreased from 70.66% in 2000, to 63.97% in 2006 and

61.71% in 2007. Over the same period, the average daily count of flights with arrival delays

greater than one hour were 54 in 2000, 79 in 2006, and 93 in 2007 (Transportation (DOT),

2008).

3.4.1 Data

The data we use to evaluate the effectiveness of slot controls at EWR are derived from the

Bureau of Transportation Statistics (BTS). Since 1987, airlines with at least one percent of

total domestic traffic have been required to report on-time performance (OTP) data to the

BTS. For each domestic flight, the OTP data includes the scheduled arrival and departure

time, the actual arrival and departure time, whether the flight was canceled or diverted, and

indicators specifying whether the flight departed or arrived fifteen or more minutes past the

scheduled departure or arrival time. Notably, the Department of Transportation defines a

late arrival (departure) as any flight that arrives (departs) fifteen or more minutes past the

scheduled arrival (departure) time. In other words, a flight that arrives (departs) fourteen

minutes past the scheduled arrival (departure) is considered “on-time.”
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From the OTP data, we construct a fifteen-year panel of daily observations encompassing

the period from January 1st, 2005 to December 31st, 2019. For each day, we compute four

delay measures: the count of flights arriving late, the count of flights departing late, the

count of flights arriving sixty or more minutes late, and the count of flights departing sixty

or more minutes late. During our sample period, slot controls were in effect at EWR from

June 20th, 2008 to October 30th, 2016. Our sample period provides us with approximately

3.5 years of data prior to the implementation of slot controls, 8.3 years of data when the slot

controls are in effect, and 3.2 years of data after the slot controls were removed.

Recognizing that adverse weather contributes to flight delays, we supplemented the OTP

data with daily weather measures derived from the National Oceanographic and Atmospheric

Administration. In our empirical application, we control for adverse weather by including a

series of indicator variables that account for the presence of heavy rain, snowfall, high winds,

thunder, and fog.

3.4.2 Results

Consistent with our DST estimations in Section 3.3, we estimated a set of models over a

grid of five c values and seven k values. The maximum likelihood estimates for these models

are provided in Tables 3.4-3.7. All models were estimated with year, month, and day-of-

week fixed effects to account for seasonality in flight traffic. Table 3.4 presents estimates

when the count of late arrivals is the dependent variable, Table 3.5 when the count of flights

arriving 60 or more minutes late is the dependent variable, Table 3.6 when the count of late

departures is the dependent variable, and Table 3.7 when the count of flights departing 60

or more minutes late is the dependent variable. In each table, our preferred specification is

provided in column 4. This specification includes weather controls, a quadratic time trend,

and a variable controlling for the daily number of flights at EWR (i.e., the total number
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of arrivals and departures). Accordingly, the coefficient on Slot Control Period in column 4

of each table indicates the effect of slot controls on the daily number of delayed flights at

EWR, after conditioning on total flight traffic.

Slot Control Period -0.2023∗∗∗ -0.4831∗∗∗ -0.5233∗∗∗ -0.2535∗∗∗

(June 20th, 2008 - October 29th, 2016) (0.0017) (0.0038) (0.0041) (0.0040)
Flights 0.0057∗∗∗

(0.0000)
Observations 5,475 5,475 5,475 5,475
c 500 50 50 50
k 1.1 1.1 1.1 1.1
Quadratic Time Trend No Yes Yes Yes
Weather Controls No No Yes Yes

Table 3.4: The Impact of Slot Controls on Late Arrivals

Notes: The dependent variable is the daily number of flights arriving 15 or more minutes late at Newark

airport. Maximum likelihood estimates are reported with asymptotic standard errors in parentheses. All

specifications include year, month-of-year, and day-of-week fixed effects. The sample period is January

1st, 2005 through December 31st, 2019. *** Significant at the 1 percent level. ** Significant at the 5

percent level. * Significant at the 10 percent level.

Across all four flight delay measures, the coefficient on Slot Control Period in column 4 of

Tables 3.4-3.7 is negative and statistically significant, indicating that slot controls were effec-

tive at reducing the daily number of delayed arriving and departing flights at EWR. Using

the estimates from column 4 of each table, conditional mean functions for each dependent

variable are shown in Figure 3.4. To illustrate the importance of a flexible conditional mean

function, we also estimated the specifications displayed in Figure 3.4 using an exponential

conditional mean function. The conditional mean functions using an exponential conditional

mean are plotted in Figure 3.5. Compared to our new flexible conditional mean function

in Figure 3.4, the exponential conditional mean function in Figure 3.5 offers a substantially

worse fit to the data. The variables arrivals, arrivals-60, departures, and departures-60 refer

to the number of late arrivals, the number of arrivals late by more than 60 minutes, the

number of late departures, and the number of departures late by more than 60 minutes,

respectively.

80



Slot Control Period -0.5371∗∗∗ -1.0191∗∗∗ -1.1654∗∗∗ -1.3224∗∗∗

(June 20th, 2008 - October 29th, 2016) (0.0062) (0.0105) (0.0122) (0.0126)
Flights -0.0033∗∗∗

(0.0000)
Observations 5,475 5,475 5,475 5,475
c 100 10 10 50
k 3 1.1 1.1 1.1
Quadratic Time Trend No Yes Yes Yes
Weather Controls No No Yes Yes

Table 3.5: The Impact of Slot Controls on Late Arrivals (60 Minutes or More)

Notes: The dependent variable is the daily number of flights arriving 60 or more minutes late at Newark

airport. Maximum likelihood estimates are reported with asymptotic standard errors in parentheses. All

specifications include year, month-of-year, and day-of-week fixed effects. The sample period is January

1st, 2005 through December 31st, 2019. *** Significant at the 1 percent level. ** Significant at the 5

percent level. * Significant at the 10 percent level.

Figure 3.4: Slot Control Conditional Mean Functions (LW Conditional Mean Function)

Notes: The solid line is the conditional mean function. The dots are the observed outcomes plotted

against x′β̂MLE . The dotted line is the empirical density of x′β̂MLE .
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Slot Control Period -0.3129∗∗∗ -2.3886∗∗∗ -0.5368∗∗∗ -1.9463∗∗∗

(June 20th, 2008 - October 29th, 2016) (0.0035) (0.0259) (0.0055) (0.0280)
Flights 0.0127∗∗∗

(0.0000)
Observations 5,475 5,475 5,475 5,475
c 100 10 50 10
k 1.1 1.1 1.1 1.1
Quadratic Trend No Yes Yes Yes
Weather Controls No No Yes Yes

Table 3.6: The Impact of Slot Controls on Late Departures

Notes: The dependent variable is the daily number of flights departing 15 or more minutes late from

Newark airport. Maximum likelihood estimates are reported with asymptotic standard errors in paren-

theses. All specifications include year, month-of-year, and day-of-week fixed effects. The sample period

is January 1st, 2005 through December 31st, 2019. *** Significant at the 1 percent level. ** Significant

at the 5 percent level. * Significant at the 10 percent level.

Figure 3.5: Slot Control Conditional Mean Functions (Exponential Conditional Mean Func-
tion)

Notes: The solid line is the conditional mean function. The dots are the observed outcomes plotted

against x′β̂MLE . The dotted line is the empirical density of x′β̂MLE .
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Slot Control Period -0.3599∗∗∗ -2.4580∗∗∗ -2.7461∗∗∗ -2.6489∗∗∗

(June 20th, 2008 - October 29th, 2016) (0.0045) (0.0256) (0.0314) (0.0310)
Flights -0.0005∗∗∗

(0.0001)
Observations 5,475 5,475 5,475 5,475
c 50 5 1000 5
k 1.1 1.1 10 1.1
Quadratic Trend No Yes Yes Yes
Weather Controls No No Yes Yes

Table 3.7: The Impact of Slot Controls on Late Departures (60 Minutes or More)

Notes: The dependent variable is the daily number of flights departing 60 or more minutes late from

Newark airport. Maximum likelihood estimates are reported with asymptotic standard errors in paren-

theses. All specifications include year, month-of-year, and day-of-week fixed effects. The sample period

is January 1st, 2005 through December 31st, 2019. *** Significant at the 1 percent level. ** Significant

at the 5 percent level. * Significant at the 10 percent level.

Since the conditional Poisson model is nonlinear, parameter estimates are not directly in-

terpretable as marginal effects. To aid our understanding of how slot controls affect the

count of delayed flights at EWR, we examined the distribution of covariate effects using

the procedure described in Jeliazkov and Vossmeyer (2018). Histograms of the impact of

slot controls on the four dependent variables are presented in Figure 3.6. The distributions

account for both variation in the data and parameter uncertainty. Due to the relatively high

computational cost of evaluating the likelihood, parameters are sampled from their asymp-

totic distributions. Because the sample size is rather large, this procedure should produce a

reasonable approximation of the posterior parameter distribution.

The distributions presented in Figure 3.6 indicate that slot controls were very effective at

reducing the daily number of delayed flights at EWR. For example, the mode of the distribu-

tion of late arrivals in the top left panel of Figure 3.6 indicates that slot controls reduced the

daily number of flights that arrived late by an average of 10 during the slot control period.

Similarly, the mode of the distribution of late departures in the bottom left panel of Figure

3.6 indicates that slot controls reduced the daily number of flights that departed late by an
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average of 15 during the slot control period.

Figure 3.6: The Distributions of Marginal Effects

3.5 Conclusion

This paper proposed a new conditional mean function for count data modelling. The pro-

posed function avoids the problems of explosive covariate effects, model misspecification,

and nonstationarity that occur with the exponential conditional mean function. The LW

function was used to construct time series count processes from conditional Poisson and

Negative Binomial distributions. The processes were shown to be strictly stationary and

ergodic under any parameter values. The LW function was used in three applications. We

showed that the Spring Daylight Savings Time change increases traffic fatalities and slot

controls positively impacted airline efficiency.

There are several avenues for further research. While we have focused on count data, trans-
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formations involving the exponential function appear broadly in econometrics. The expo-

nential function could be replaced by our proposed function in conditional heteroskedasticity

models, gravity models of trade, and any other model with nonnegative data or parameters.

85



Bibliography

Ahn, Seung C., and Alex R. Horenstein. 2013. “Eigenvalue Ratio Test for the Number of

Factors.” Econometrica 81 (3): 1203–1227.

Albert, James H., and Siddhartha Chib. 1993. “Bayes Inference via Gibbs Sampling of Au-

toregressive Time Series Subject to Markov Mean and Variance Shifts.” Journal of

Business Economic Statistics 11 (1): 1–15.

Ater, Itai. 2012. “Internalization of Congestion at US Hub Airports.” Journal of Urban

Economics 72 (2-3): 196–209.

Auestad, Bjørn, and Dag Tjøstheim. 1990. “Identification of Nonlinear Time Series: First

Order Characterization and Order Determination.” Biometrika 77 (4): 669–687.

Babak, Shahbaba. 2009. “Discovering Hidden Structures Using Mixture Models: Application

to Nonlinear Time Series Processes.” Studies in Nonlinear Dynamics Econometrics 13

(2): 1–21.

Bai, Jushan, and Serena Ng. 2002. “Determining the Number of Factors in Approximate

Factor Models.” Econometrica 70 (1): 191–221.

. 2006. “Evaluating Latent and Observed Factors in Macroeconomics and Finance.”

Journal of Econometrics 131 (1): 507–537.

86



Bai, Jushan, and Serena Ng. 2007. “Determining the Number of Primitive Shocks in Factor

Models.” Journal of Business & Economic Statistics 25 (1): 52–60.

Barnes, Christopher M., and David T. Wagner. 2009. “Changing to Daylight Saving Time

Cuts into Sleep and Increases Workplace Injuries.” Journal of Applied Psychology 94

(5): 1305.

Baum, Leonard E., and Ted Petrie. 1966. “Statistical Inference for Probabilistic Functions of

Finite State Markov Chains.” The Annals of Mathematical Statistics 37 (6): 1554–1563.

Beaudry, Paul, and Gary Koop. 1993. “Do Recessions Permanently Change Output?” Jour-

nal of Monetary Economics 31 (2): 149–163.

Belviso, Francesco, and Fabio Milani. 2006. “Structural Factor-Augmented VARs (SFAVARs)

and the Effects of Monetary Policy.” Topics in Macroeconomics 6 (3).

Bernanke, Ben S., Jean Boivin, and Piotr Eliasz. 2005. “Measuring the Effects of Monetary

Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach.” The Quarterly

Journal of Economics 120, no. 1 (February): 387–422.

Berndt, Ernst R., Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman. 1974. “Esti-

mation and Inference in Nonlinear Structural Models.” Annals of Economic and Social

Measurement 3:653–665.

Beyeler, Simon, and Sylvia Kaufmann. 2021. “Reduced-Form Factor Augmented VAR -

Exploiting Sparsity to Include Meaningful Factors.” Journal of Applied Econometrics

36 (7): 989–1012.

Binks, Rachel L., Sarah E. Heaps, Mariella Panagiotopoulou, Yujiang Wang, and Darren J.

Wilkinson. 2023. Bayesian Inference on the Order of Stationary Vector Autoregressions.

arXiv: 2307.05708.

87

https://arxiv.org/abs/2307.05708


Blundell, Richard, Rachel Griffith, and John Van Reenen. 1995. “Dynamic Count Data

Models of Technological Innovation.” The Economic Journal 105 (42): 333–344.
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Appendix A

Chapter 1

A.1 Proof of Proposition 1.1

A different route to efficient evaluation of the gradient can be seen by noting that the

integrated likelihood for a DFM is equivalent to that of a DFM that also includes presample

instances of the state variable. If we let F † = (f0, f−1, . . . , f−τ+1), the likelihood can then be

expressed as

f(X|θ) =
∫
f(X|F, θ)π(F |θ)dF =

∫ ∫
f(X|F, θ)π(F |F †, θ)π(F †|θ)dFdF †. (A.1)

Since the model with presample factors is also valid, it is also amenable to the construction

of an EM algorithm. Define Qτ (θ|θn) ≡ E[lnf(X,F, F †|θ)]. Using the same result from Ruud

(1991), we know that

∇lnf(X|θn) = ∇Qτ (θn|θn). (A.2)
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I will now show that for τ sufficiently large, we can calculate the gradient using only the

conditional terms in Qτ (θn|θn) and omit any terms that involve the stationary distribution

of the factors.

Proposition 1.1

Let F † = (f0, f−1, . . . , f−τ+1), Qτ−p(θ|θn) ≡ E[lnf(X,F, f0, f−1, . . . , f−τ+p+1|

f−τ+p, . . . , f−τ+1, θ)|X, θn] and assume θn is an interior point of the parameter space.

lim
τ→∞

∇Qτ−p(θn|θn) = ∇lnf(X|θn).

Proof. As τ → ∞, ∇Qτ (θn|θn) becomes an infinite sum. Since ∇lnf(X|θn) = ∇Qτ (θn|θn),

we know that this sum must converge to the desired gradient. All that remains is to show

that the terms involving the stationary distribution go to 0. As the Kalman smoother is

iterated backwards, the smoothed moments of the factors will converge to the stationary

moments: E[gt|X, θn] → E[gt|θn] = 0, E[(gt− ĝt)(gt− ĝt)
′|X, θn] → P0. By Gibb’s Inequality,

E[∇lnπ(gt|θn)|θn] = 0 for any θn in the interior of the parameter space. We can thus conclude

that

lim
τ→∞

∇Qτ (θn|θn)−∇Qτ−p(θn|θn) = lim
τ→∞

E[∇lnπ(g−τ+p|θn)|X, θn]

= E[∇lnπ(gt|θn)|θn]

= 0.

For an accurate calculation of the gradient, τ should be chosen so that the smoothed moments

99



converge to the stationary moments. This will obviously depend on the persistence of shocks

in the model. For highly persistent models, simulation results suggest that τ = 5, 000 is

sufficiently large.
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Appendix B

Chapter 3

B.1 Proof of Proposition 3.1

We will prove stationarity in the case of xt = 1. Results can then be extended by replacing

xt with any exogenous covariates. We show that E[yt] is bounded from below by using the

law of iterated expectations. Since λt > 0,

E[yt] = E[λt] > 0. (B.1)

We will continue by showing that E[yt] is bounded from above by a function of constant

parameters. We can choose b1 and m1 to satisfy

1. b1 +m1|x| > λ(|x|)

2. 0 < m1 < (

p∑
i=1

|ϕi|+
q∑

j=1

|ψj|)−1
(B.2)
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One way of finding such a pair, which is by no means optimal, is to pick a value for m1

that satisfies condition 2 and then setting b1 = m1max{g0}, where g0 are the roots of

g(|x|) = m1|x| − λ(|x|). This then allows us to state

E[yt] = E[λ(z′tδ)]
≤ E[λ(|z′tδ)|)]

≤ b1 +m1E[|β0 +
p∑

i=1

ϕiyt−i +

q∑
j=1

ψjλt−j|]

≤ b1 +m1E[|β0|+
p∑

i=1

|ϕiyt−i|+
q∑

j=1

|ψjλt−j|]

= b1 +m1E[|β0|+
p∑

i=1

|ϕi|yt−i +

q∑
j=1

|ψj|λt−j]

= b1 +m1|β0|+m1(

p∑
i=1

|ϕi|E[yt] +
q∑

j=1

|ψj|E[λt])

= b1 +m1|β0|+m1(

p∑
i=1

|ϕi|+
q∑

j=1

|ψj|)E[yt].

(B.3)

Rearranging terms yields

0 < E[yt] <
b1 +m1|β0|

1−m1(
∑p

i=1 |ϕi|+
∑q

j=1 |ψj|)
. (B.4)

□

B.2 Proof of Proposition 3.2

We will prove stationarity in the case of xt = 1. Results can then be extended by replacing

xt with any exogenous covariates. We show that E[ynt ] is bounded from below by using the
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law of iterated expectations and the formula for raw moments of a Poisson random variable.

Since λt > 0,

E[ynt ] = E[
n∑

l=1

{
n

l

}
λlt] > 0. (B.5)

We will continue by showing that E[ynt ] is bounded from above by a function of constant

parameters. We can choose bn and mn to satisfy

1. bn +mn|x|n > λ(|x|)n

2. 0 < mn < ((p+ q + 1)n−1(

p∑
i=1

|ϕi|n +
q∑

j=1

|ψj|n)−1
(B.6)

As in the first proof, we can pick a value for mn that satisfies condition 2 and then setting

bn = m1max{g0}n, where g0 are the roots of g(|x|) = mn|x|n − λ(|x|)n. We will first find a

bound for E[λnt ]:
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E[λnt ] ≤ E[λ(|z′tδ)|)n]

≤ bn +mnE[|β0 +
p∑

i=1

ϕiyt−i +

q∑
j=1

ψjλt−j|n]

≤ bn +mn(p+ q + 1)n−1E[|β0|n +
p∑

i=1

|ϕiyt−i|n +
q∑

j=1

|ψjλt−j|n]

= bn +mn(p+ q + 1)n−1E[|β0|n +mn(p+ q + 1)n−1

p∑
i=1

|ϕi|nynt−i

+mn(p+ q + 1)n−1

q∑
j=1

|ψj|nλnt−j]

= bn +mn(p+ q + 1)n−1|β0|n +mn(p+ q + 1)n−1

p∑
i=1

|ϕi|nE[ynt ]

+mn(p+ q + 1)n−1

q∑
j=1

|ψj|nE[λnt ]

≤ bn +mn(p+ q + 1)n−1|β0|n +mn(p+ q + 1)n−1(

p∑
i=1

|ϕi|n +
q∑

j=1

|ψj|n)E[ynt ].

(B.7)

The second inequality is given by condition 1. The third inequality results from the convexity

of |x|n. The final inequality can be seen by writing

E[λnt ] = E[ynt ]−
n−1∑
l=1

{
n

l

}
E[λlt]

< E[ynt ].

(B.8)

Using the bounds in B.7, B.8, and the Poisson moment formula, we arrive at the inequality

E[ynt ] < bn+mn(p+q+1)n−1|β0|n+mn(p+q+1)n−1(

p∑
i=1

|ϕi|n+
q∑

j=1

|ψj|n)E[ynt ]+
n−1∑
l=1

{
n

l

}
E[ylt].

(B.9)
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Rearranging terms give the result

E[ynt ] <
bn +mn|β0|n(p+ q + 1)n−1 +

∑n−1
l=1

{
n
l

}
E[ylt]

1−mn(p+ q + 1)n−1(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (B.10)

□

B.3 Proof of Proposition 3.3

By the nonnegativity of yt, E[ytyt−s] ≥ 0. By the Cauchy-Schwarz Inequality,

Cov[yt, yt−s] = E[ytyt−s]− µ2 ≤ V ar[yt] < E[y2t ]. (B.11)

Using these two facts, we can determine

−µ2 < Cov[yt, yt−s] ≤ V ar[yt] < E[y2t ]. (B.12)

□

B.4 Proof of Proposition 3.5

The proof outlined above extends to the case of a conditional Negative Binomial distribution

with only minor modifications. The only difference is that we use the moment formula for the
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Negative Binomial distribution. After taking expectations with respect to λt, the formula

becomes

E[ynt ] =
n∑

l=1

{
n

l

}
γ−lγ(l)E[λlt]. (B.13)

Inequality B.7 is unchanged and inequality B.8 becomes

E[λnt ] = (γ−nγ(n))−1(E[ynt ]−
n−1∑
l=1

{
n

l

}
γ−lγ(l)E[λlt])

< E[ynt ].

(B.14)

Simple substitution and gathering of terms leads to

0 ≤ E[ynt ] <
γ−nγ(n−1)(bn +mn|β0|n(p+ q + 1)n−1) +

∑n−1
l=1

{
n
l

}
γ−lγ(l−1)E[ylt]

1−mn(p+ q + 1)n−1γ−nγ(n−1)(
∑p

i=1 |ϕi|n +
∑q

j=1 |ψj|n)
. (B.15)

□
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