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Abstract

Essays in Dynamic Games and Information Economics

by

Dong Wei

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Chris Shannon, Co-chair

Professor Philipp Strack, Co-chair

This dissertation consists of three chapters, studying questions in dynamic games and information
economics. These chapters represent a selection of my research conducted during the period of my
PhD studies.

Chapter 1 is motivated by the “starting small” phenomena which are prevalent in long-term re-
lationships. For example, in credit relationships, it is often observed that the credit limit granted
to a borrower by a lender tends to increase over time conditional on satisfactory repayment histo-
ries. Why does this happen? To provide a novel explanation, we study a repeated lender-borrower
game with anonymous re-matching; that is, once an ongoing relationship is terminated, players are
rematched with new partners and prior histories are unobservable. We propose an equilibrium re-
finement based on two assumptions: (a) default implies termination of the current relationship; (b)
in a given relationship, a better loan-repayment history implies weakly higher continuation values
for both parties. This refinement captures the idea of “justifiable punishments” in repeated games.
We show that if players are patient enough and re-matching is sufficiently likely, then the loan size
is strictly increasing over time along the equilibrium path of all non-trivial equilibria. As such, this
chapter helps explain gradualism in long-term relationships, especially credit relationships.

Chapter 2, based on the joint work with Elliot Lipnowski and Laurent Mathevet, concerns the
optimal design of information transmission protocols when the information recipient is rationally
inattentive. We develop a model of a well-intentioned principal who provides information to a
rationally inattentive agent. Processing information is costly to the agent, but the principal does
not internalize this cost. In a world with two states, it is shown that providing full information is
universally optimal for the principal, even though the agent will typically not pay full attention.
We then introduce a tractable specification with quadratic payoffs and study optimal information
provision when full disclosure is not optimal. We characterize incentive compatible information
policies, that is, those to which the agent willingly pays full attention. In a leading example with
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three states, optimal disclosure involves information distortion at intermediate costs of attention.
As the cost increases, optimal information abruptly changes from downplaying the state to exag-
gerating the state.

Chapter 3 naturally extends the theoretical framework introduced in Chapter 2 to a different but
relevant setting where the decision interests between the sender and the receiver of information
are misaligned. In our model, a Sender (seller) tries to persuade a rationally inattentive Receiver
(buyer) to take a particular action (e.g., buying). Learning is costly for the Receiver who can choose
to process strictly less information than what the sender provides. In a binary-action binary-state
model, we show that optimal disclosure involves information distortion, but to a lesser extent than
the case without learning costs; meanwhile, the Receiver processes less information than what he
would under full disclosure. While the Sender is always worse off when facing a less attentive
Receiver, the amount of information processed in equilibrium varies with learning costs in a non-
monotone fashion. As such, this chapter sheds light on how to persuade a rationally inattentive
decision maker.
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Introduction

Information frictions are at the heart of many economic problems. For example, when there is
moral hazard, repeated interactions are supposed to provide incentives for people to behave coop-
eratively, but a lack of information about a person’s past records may undermine such incentives.
In addition, learning or information processing is often costly, and as a result, individuals tend not
to process every piece of information that is available to them. In this dissertation, we study several
economic issues related to information frictions, and propose solutions to those situations where
such frictions are present.

Chapter 1 is devoted to examining the cases where information frictions arise exogenously
due to institutional constraints. In many developing countries, institutions such as credit bureaus
are nonexistent. Consequently, it is very hard for creditors to acquire information about the past
payment behavior of an individual borrower. How can trust be built in such scenarios? Motivated
by the prevalent “starting small” phenomenon, we study a repeated lender-borrower game with
anonymous re-matching; that is, once an ongoing relationship is terminated, players are rematched
with new partners and prior histories are unobservable. The anonymity in re-matching captures the
exogenous information frictions brought about by the lack of credit bureaus and the like. To deliver
a sharp prediction, we propose an equilibrium refinement based on two assumptions: (a) default
implies termination of the current relationship; (b) in a given relationship, a better loan-repayment
history implies weakly higher continuation values for both parties. We show that if players are
sufficiently patient and re-matching is highly likely, then the loan size is strictly increasing over
time along the equilibrium path of all non-trivial equilibria. As such, this chapter illustrates how
gradualism can facilitate trust over time in a society without access to credit histories and thus help
people partially overcome such extreme information frictions. It also provides an novel explanation
to the “starting small” phenomenon in long-term relationships, especially in credit relationships.

Chapters 2 and 3 turn to the scenarios where information frictions arise endogenously due to
people’s limited information processing capacity. Information is a gift that may not always be
accepted and, hence, useful. Speaking to a toddler about grammar may not improve his linguistic
abilities, just as an adult may learn less from a book, an email, or a contract that contains too
much detail. Simon[41] foreshadows the potential hazards of detailed communication: “What
information consumes is rather obvious: it consumes the attention of its recipients.” Failures to
recognize this fact can have counterproductive effects: consumers are frequently confused by nu-
tritional labels; patients can be overwhelmed in parsing side effects of medications; and so on (see
Ben-Shahar and Schneider[11]). How do such information frictions that arise from inattention
affect people’s communication? What are the effective ways to persuade an individual who has
difficulties in processing too much or too complicated information? To shed light on these ques-
tions, we develop a model in Chapter 2 where a well-intentioned principal provides information to
an agent for whom information is costly to process, but the principal does not internalize this cost.
We show that full information is universally optimal if and only if the environment comprises one
issue. With multiple issues, attention management becomes optimal: the principal restricts some
information to induce the agent to pay attention to other aspects. In Chapter 3, we extend this
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theoretical framework to a different setting where the interests of the sender and the receiver of in-
formation are misaligned. In that model, a Sender (seller) tries to persuade a rationally inattentive
Receiver (buyer) to take a particular action (e.g., buying). Learning is costly for the Receiver who
can choose to process strictly less information than what the sender provides. In a binary-action
binary-state model, we characterize optimal disclosure and provide a number of interesting results
about the comparative statics with respect to learning costs.
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Chapter 1

A Model of Trust Building with Anonymous
Re-Matching

This chapter was published in the Journal of Economic Behavior and Organization.

1.1 Introduction
Gradualism, or “starting small,” is often observed in long-term relationships. It is reflected in the
increasing level of interactions over time between parties in a relationship. For example, the credit
line granted by a credit card company to a specific customer normally increases over time as more
and more on-time repayments are made; Antràs and Foley[5] document the pattern of financing
terms of a U.S.-based exporter in the poultry industry, and find that the amount of trade credit
granted by the exporter to its trading partners increases with the length of their relationships. More
broadly, in large societies or informal credit markets of developing economies where personal his-
tory records are hard to obtain, people are usually cautious at the beginning of a new relationship,
and put more at stake after satisfactory interactions.

This paper focuses on one specific driving force of gradualism: the re-matching opportunity.
We study a repeated lender-borrower game with anonymous re-matching, in which a lender and
a borrower interact in a society with a group of lenders and a group of borrowers. In addition to
lending and repayment decisions, the lender and borrower can choose whether or not to continue
their relationship at the end of each period. If a relationship is terminated, each party becomes un-
matched; in the next period, an unmatched player will be anonymously matched with a new partner
with some exogenous probability. The re-matching is anonymous in the sense that the players’ ac-
tions in previous relationships are unobservable in the current relationship. This captures the idea
that it is costly to acquire past history information of the other party in a new relationship. To
highlight the importance of re-matching, the model abstracts away from incomplete information
about players’ type, and commitment power.

For this game, we focus on equilibria in which the same strategies are used in every relation-
ship; that is, every new relationship is just a restart of the first relationship. We call such a strategy
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profile a social equilibrium. Such equilibria are studied by Datta[18] with a focus on the efficient
ones, and by Ghosh and Ray[22, 23] in a setting with a simultaneous stage game and incomplete in-
formation about players’ types. We propose a refinement called orthodox social equilibria, which
are social equilibria such that: (i) an ongoing relationship is terminated by the lender on default;
(ii) a better loan-repayment history is followed by weakly higher continuation values for the lender
and the borrower. Our main result is that, if the discount factor and the re-matching probability are
above certain thresholds, the size of loans along the equilibrium path of any (non-trivial) orthodox
social equilibrium is strictly increasing over time.

In the definition of an orthodox social equilibrium, the first restriction that the relationship
is terminated on default is standard in the literature (for example, see Datta[18], Kranton[28],
Ghosh and Ray[22, 23]). The second restriction is motivated by the following idea. In credit
relationships, repayment is viewed as a better action than default because default directly hurts
the lender. In addition, a larger loan is better than a smaller one, in the sense that conditional
on repayment, a larger loan leads to higher per-period payoffs for both parties. At the beginning
of a given date t, if there are two histories of actions such that neither entails default and they
differ only in the loan size in the last period, we may then view the history with a higher last-
period loan as a result of the lender’s deviation to offering an (unexpected) higher loan followed
by the borrower’s repayment. The lender’s (and potentially the borrower’s) deviation benefits both
parties in this scenario, so the history with a higher last-period loan is arguably better. The second
restriction in defining orthodox equilibrium says that, at any given t, the continuation values of
the relationship following a better loan-repayment history should be weakly higher. Otherwise,
if they are strictly lower, players can be viewed as punishing each other by using strictly lower
continuation values, even though both of them have benefited from the deviation. But punishing
the deviating player for taking better actions is not “morally justified” because she did not hurt
anyone; moreover, it is not even “economically justified” if the punishment is costly to the non-
deviating player (who is the “carrier” of the punishment).1 The idea behind this refinement is
related to the notion of “justifiable punishments” in normal-form repeated games (Aramendia and
Wen[6]) which also puts a monotone restriction on continuation values following deviations that
benefit the other party.

One important implication of our refinement is that, in any orthodox social equilibrium, the
lender will make the borrower’s no-deviation (i.e., no-default) constraint bind at all dates. This is
because if it is not binding at some date, i.e., if the borrower strictly prefers repaying the loan, then

1To be more concrete, consider the following situation. Suppose that on an equilibrium path the lender should
offer a loan of $1,000 in the current period, but she deviates to lending $2,000 and the borrower later repays. This leads
them to an off-equilibrium history. At the end of that period, should the deviating player(s) be punished (for example,
via terminating the relationship) just for the sake of the fact that some deviation has happened? More generally,
should the value of a person’s relationship with a bank be strictly reduced after the bank (unexpectedly) lends more
and the person repays? Although subgame perfection does not offer an answer, the standard analysis of repeated
games, which imposes the worst punishment to any deviation (Abreu[1]), answers “yes.” However, in the context
such as credit relationships where certain actions are arguably better, when deviations to better actions/histories occur,
reducing the continuation value of the deviating or non-deviating player is hardly justified, morally or economically,
as argued in the main text.
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the lender can increase the loan size at that date by a little without inducing default. The reason why
the borrower will not default on the slightly higher loan is as follows. If the borrower repays, she
will enjoy a weakly higher continuation value than before because repaying a higher loan results in
a better history than the one on path;2 since her no-deviation constraint is not binding on path, the
same constraint is still satisfied at a slightly higher loan followed by a weakly higher continuation
value. But if a slightly higher loan does not induce default, by offering it the lender will also enjoy
a weakly higher continuation value (together with a strictly higher current payoff) because a better
loan-repayment history will be achieved. So in any orthodox social equilibrium, the lender has an
incentive to increase the loan size as long as the borrower’s no-deviation constraint is not binding,
which implies that those constraints must be binding at all dates on path.

Given the above implication, we can explain the intuition for our main result, which shows
that the loan sequence in any orthodox social equilibrium is strictly increasing. On the one hand,
when past histories are unobservable, the high re-matching probability undermines the punishment
power of the threat of terminating a relationship; so in order to induce repayment, there has to be
some additional cost of starting a new relationship. This additional cost is reflected in the fact that
the value of a relationship is increasing in its length, so that restarting a new relationship is worse
than staying in the current relationship. On the other hand, the lender knows that the longer the
borrower has stayed in a given relationship, the higher the value of this relationship to the borrower
will be. Since the value of becoming unmatched is constant, the cost inflicted upon the borrower by
terminating the current relationship becomes larger as time goes on; that is, the cost of defaulting
increases over time. Then, since the lender has an incentive to exploit the borrower’s no-deviation
constraints, the loan size she offers also increases over time.

The remainder of this chapter is organized as follows. Section 1.2 sets up the model and states
the main results. Section 1.3 discusses the intuition for our results, multiplicity of equilibria, and
extension to mixed strategies. Section 1.4 concludes. All proofs for the results in this chapter are
in Appendix A.

Related Literature
This paper contributes to the literature on trust building by showing that, in a repeated lender-
borrower model, high likelihood of anonymous re-matching and sufficiently patient players—
without assuming efficiency, multiple types and/or contractual commitment—are enough to deliver
a unique prediction of strictly increasing loans over time in non-trivial equilibria.

The paper closest to ours is Datta[18]. He considers a special case of our model with linear
payoffs and immediate re-matching, and shows that the value of the relationship—defined as the
discounted sum of current and future loans—is nondecreasing in efficient social equilibria. This
paper offers a sharper and more testable prediction in a more general setup where we allow for
probabilistic re-matching and richer payoff structures. Compared to the result in Datta[18], our
prediction of strictly increasing loans is sharper because nondecreasing values still permit non-
monotone loans over time; it is also much easier to test because the value of a relationship is much

2Note that these two histories only differ in the last period and the new history has a larger loan in that period.
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harder to observe than the level of interaction in each period.3 Moreover, we propose an equilib-
rium refinement to address what should happen after an unexpected higher loan is repaid. It rules
out unreasonable equilibria supported by “unjustifiable punishments.” Unlike Datta[18], since this
refinement does not impose efficiency, our result is robust to inefficiency, whereas Datta’s weaker
characterization hinges on the efficiency assumption. Kranton[28] studies a repeated game with
re-matching where the stage game is of simultaneous moves with incentives similar to a prisoners’
dilemma. She characterizes the cooperation levels in efficient equilibria to be “starting small” in
the first period and reaching the efficient level from the second period on. Social equilibria of this
type are ruled out by our refinement, and are arguably unreasonable in credit relationships where
the stage game is of sequential moves (see Section 1.3 for a detailed discussion).

Two other explanations for gradualism can be found in the literature. One strand of explana-
tions combines moral hazard with incomplete information by introducing multiple types (usually
reflected in patience levels) to one side or both sides of a relationship. The reason for starting small
in such environments is that, when the history of cooperation is longer, Bayes’ rule implies that the
probability of the other party being the “good” type is higher, so the optimal level of interaction
increases over time. Ghosh and Ray[22] study a repeated game with both incomplete information
(two types) and re-matching, where the stage game is of simultaneous moves with incentives simi-
lar to a prisoners’ dilemma. Their characterization of the evolution of cooperation levels is similar
to Kranton[28]: “starting small” only in the very first period. Watson[48, 49] studies a general
model of long-term relationships with incomplete information, and characterizes the level of inter-
actions to be increasing over time under certain refinements. Kartal et al.[27] studies a repeated
trust game with two types of “receivers” (without re-matching), and finds a similar increasing pat-
tern of trust levels. Applications of this idea, among others, include Rauch and Watson[39] in the
context of trading between a supplier and a less informed buyer, as well as Araujo et al.[7] and
Antràs and Foley[5] in the context of trade credit. The driving force of gradualism in these settings
is the gradual learning of the other party’s type.

Another strand of explanations shows up in the literature on self-enforcing contracts. Ray[40]
studies a general repeated moral hazard problem without re-matching or incomplete information,
and proves a similar result of “starting small” for efficient self-enforcing contracts. That is, in
all efficient self-enforcing contracts, the continuation payoffs move over time in the direction of
the agent who has an incentive to renege in the stage game. The main idea there is to apply
the backloading argument up to a point: postponing higher rewards to the agent can keep the
agent’s current value the same while relaxing the agent’s current incentive constraint (because
future becomes more valuable), so that the agent can be incentivized to work harder or repay more
today, which increases the principal’s value and improves efficiency. Applications of this insight
include, among others, Lazear[29] and Thomas and Worrall[47] in the context of wage contracts,
Thomas and Worrall[46] in the context of foreign direct investment with threat of expropriation,
and Albuquerque and Hopenhayn[2] in the context of credit relationships. The driving force of
gradualism in these settings is the interaction between efficiency and self-enforcing constraints.

3For example, our result can be falsified if the observed history of loans is not monotone. However, this simple
test does not work for Datta’s result because non-monotone loans could still be consistent with monotone values.
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1.2 The Model

Model Setup
Consider a lender and a borrower in a society with a group of lenders and a group of borrowers.
Both are infinitely lived. Time is discrete and starts from 0. The lender’s and the borrower’s
utility functions are the discounted sums of their expected period payoffs. Specifically, let δ be the
common discount factor and let yL = {yL0 , yL1 , ...} be the sequence of expected period payoffs to
the lender. The utility function of the lender at time t is:

V L
t (yL) = Σ∞i=0δ

iyLt+i. (1.1)

Similarly, let yB = {yB0 , yB1 , ...} be the sequence of expected period payoffs to the borrower, and
define

V B
t (yB) = Σ∞i=0δ

iyBt+i. (1.2)

The stage game takes the following form. Each period t is divided into three subperiods. At t0,
the lender chooses the size of the loan, Lt ∈ [0, L∗], granted to the borrower. At t1, the borrower
chooses whether to repay or default. At t2, the lender and the borrower simultaneously choose
whether or not to continue their relationship. The relationship continues if and only if both of them
choose to do so. We assume away exogenous separation only for expository purposes.4

If the relationship continues, in the next period the players repeat the stage game as described;
if it is terminated, each party enters the next period as an unmatched lender/borrower. In each
period, an unmatched player will be anonymously matched with a new partner with an exogenous
probability λ ∈ [0, 1]. If matched, she starts the stage game with the new partner in this period;5

otherwise, she earns a payoff of 0 in this period and enters the next period as an unmatched player.
The history of players’ actions in the current relationship is common knowledge to the bor-

rower and the lender forming this relationship; histories of all past relationships of any party are
unobservable,6 so newly matched partners effectively restart from the very beginning of the game.

The payoffs in each period are determined by the loan size offered by the lender and the repay-
4As is standard in repeated games, all results still hold if Nature terminates the relationship with probability β in

each period, with the only change being that the discount factor used in defining the thresholds in our main propositions
should be δ(1 − β), instead of δ. In that case, we refer to δ(1 − β) as the “effective discount factor.” The detailed
analysis of the case with exogenous separations can be found in the Supplementary Material of the published version
in the Journal of Economic Behavior and Organization.

5Once matched, a previously unmatched lender (borrower) still plays the role of a lender (borrower).
6This is equivalent to assuming that the histories of all past relationships of the other party are unobservable, and

that the players also do not base their decisions on their own history of actions in past relationships which in principle
are observable to themselves.
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ment decision of the borrower. Specifically, for a relationship in its period t,

yLt =

{
R(Lt), if repayment happens;
−Lt, if default happens;

(1.3)

yBt =

{
C(Lt), if repayment happens;
D(Lt), if default happens.

(1.4)

To summarize, a lender-borrower game with anonymous re-matching depends on the following
elements: the discount factor δ, the re-matching probability λ, the loan upper bound L∗, function
R for the lender, and functions C and D for the borrower. For the sake of exposition, when no
confusion arises we denote the game by G(δ, λ), omitting the dependence with respect to the R,
C, D functions and the loan upper bound L∗.7

Assumption 1.

• R(·), C(·), D(·) are continuous and strictly increasing, and R(0) = C(0) = D(0) = 0;

• ∆(L) ≡ D(L)− C(L) > 0 for all L ∈ (0, L∗], and is strictly increasing;

• There exist α, ᾱ, such that 0 < α ≤ ᾱ < 1, and αD(L) < C(L) < ᾱD(L) for all
L ∈ (0, L∗].

Assumption 1 requires that the borrower’s payoffs from both default and repayment increase
with loan size; in addition, the gains from default, ∆(L), are positive and also increase with loan
size, capturing the borrower’s myopic incentive to default. For the lender, if repayment occurs, a
larger loan generates a higher period payoff; meanwhile, if default occurs, the lender bears a cost
that increases with loan size. The last part of Assumption 1 ensures that C(L)

D(L)
is always bounded

away from 0 and 1.8 Note that Lt in general can be viewed as the level of trust offered by the
lender. The higher the level of trust, the higher the payoffs for both parties conditional on coop-
eration (repayment); however, a higher Lt also leads to a higher temptation to defect (default), as
captured by the assumption that ∆(L) ≡ D(L)− C(L) is strictly increasing.

Example. Borrowing Capital for Production
Suppose that the borrower needs capital for production. Their payoffs can be modeled as follows:

yLt =

{
rLt, if repayment happens;
−Lt, if default happens;

yBt =

{
F (Lt)− (1 + r)Lt, if repayment happens;
F (Lt), if default happens.

7The results of this paper, Propositions 1 and 2, still hold even when there is no upper bound on loans.
8If C and D are differentiable at 0, the last part of Assumption 1 is equivalent to 0 < C ′(0) < D′(0) <∞.
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where F is a production function of capital, and r is the fixed interest rate. Assumption 1 is satis-
fied if F (L)− (1 + r)L is strictly increasing in L and 1 + r < F ′(0) <∞.

Notice that in the unique subgame perfect Nash equilibrium of the stage game (without ter-
mination decision), the lender chooses a loan size of 0 and the borrower always defaults on any
positive loan. In the repeated-game setting, we would like to focus on the equilibria in which
the strategies depend only on the history of the current relationship, and the same strategy profile
is played by all players in all relationships. That is, what players do in a new relationship is an
exact repetition of any prior relationship. Given our focus, it is without loss to look at the game
of a lender and a borrower in a single relationship while taking as given the continuation game
(payoffs) on terminating the current relationship, which itself is determined in equilibrium.

Orthodox Social Equilibrium
We now define an equilibrium concept for our game. Let Lt ∈ [0, L∗] be the loan size chosen at t0;
let dt ∈ {0, 1} denote the borrower’s defaulting decision at t1, such that dt = 1 if and only if default
happens at t; let ft ∈ {0, 1} and gt ∈ {0, 1} denote the lender’s and the borrower’s decisions on
continuing the relationship at t2, such that their relationship is terminated at t if and only if ftgt = 0.
Denote by at the outcome of these decisions at period t; that is, at = (Lt, dt, ft, gt). The history at
each node is denoted by:

h(t0) = {a0, a1, ...at−1}, where h(00) = ∅;
h(t1) = h(t0) ∪ {Lt};
h(t2) = h(t1) ∪ {dt}.

Let H(ti) be the collection of all possible histories at ti, for i = 0, 1, 2.
A (pure) strategy of the lender l = {l0, l1, ...} consists of a sequence of decision rules that maps

each information set to her decision at that node. Specifically, lt = (L̃t0 , f̃t2), where L̃t0 : H(t0)→
[0, L∗] and f̃t2 : H(t2) → {0, 1}. Similarly, a (pure) strategy of the borrower b = {b0, b1, ...} is
defined as bt = (d̃t1 , g̃t2), where d̃t1 : H(t1)→ {0, 1} and g̃t2 : H(t2)→ {0, 1}. Notice that given a
strategy profile {l, b}, we are not yet able to compute the payoff of each player, if according to {l, b}
a relationship is terminated at some date. This is because the continuation values after termination
of a relationship depend on equilibrium payoffs, but we have not solved for them; therefore, the
equilibrium concept involves a fixed point between re-matching values and equilibrium payoffs.

Let V̄ L and V̄ B be the re-matching values (i.e., values of a newly-matched relationship) for the
lender and the borrower, respectively. Note that the continuation values of an unmatched lender and
borrower are given by λ′V̄ L and λ′V̄ B, where λ′ = λ

1−(1−λ)δ
.9 Given a strategy profile (l, b), we are

able to trace out a sequence of decisions on the equilibrium path, {at}t, where at = (Lt, dt, ft, gt).
9To see this, let V̂ B be the continuation payoff of an unmatched borrower. We have V̂ B = λV̄ B + (1− λ)δV̂ B ,

so that V̂ B = λ
1−(1−λ)δ V̄

B .
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Let T (l, b) be the date at which the relationship is terminated according to (l, b), i.e., fT (l,b)gT (l,b) =
0, and ftgt = 1 for all t < T (l, b). From (1.1) and (1.2), we can write:

V L
t (l, b, V̄ L, V̄ B) =

T (l,b)−t∑
i=0

δi[(1− dt+i)R(Lt+i)− dt+iLt+i] + δT (l,b)−t+1λ′V̄ L, (1.5)

V B
t (l, b, V̄ L, V̄ B) =

T (l,b)−t∑
i=0

δi[(1− dt+i)C(Lt+i) + dt+iD(Lt+i)] + δT (l,b)−t+1λ′V̄ B. (1.6)

In (1.5), a lender’s payoff is the discounted sum of her current and future period payoffs. At
t + i, her period payoff is R(Lt+i) if repayment happens and −Lt+i otherwise; in addition, at
T (l, b) when the relationship is terminated, she will also get the discounted continuation value of
an unmatched borrower. In (1.6), a borrower’s payoff has the same structure as that of a lender,
where at t + i the borrower gets C(Lt+i) if repayment happens and D(Lt+i) otherwise, plus the
present value of her continuation payoff when the relationship is terminated.

Definition 1. A social equilibrium consists of a strategy profile (l, b) and re-matching values
(V̄ L, V̄ B), such that

(i) Gvien equilibrium payoffs V̄ L and V̄ B, l and b are sequentially rational to each other;

(ii) V̄ L = V L
0 (l, b, V̄ L, V̄ B), V̄ B = V B

0 (l, b, V̄ L, V̄ B).

Part (i) of Definition 1 is just the standard requirement of subgame perfection, while part (ii)
captures our fixed point requirement for re-matching values. We call it social equilibrium because
part (ii) implicitly assumes that every pair in the society plays such a strategy profile in every
relationship. We focus on pure-strategy equilibria in most of this paper, and discuss the extension
to mixed strategies in Section 1.3.

We further restrict our attention to orthodox social equilibria, which are social equilibria such
that: (i) an ongoing relationship is terminated on default; (ii) a better loan-repayment history is
followed by weakly higher continuation values for the lender and the borrower. Formally, given
a strategy profile (l, b), let V L

t : H(t0) → R and V B
t : H(t0) → R be the induced continuation

value functions for the lender and the borrower at the beginning of each period. They specify the
remaining values of the current relationship to the lender and the borrower following any history.

Definition 2. A social equilibrium strategy profile (l, b) is orthodox, if

(i) For any t and any h(t2) ∈ H(t2) such that dτ = 1 for some τ ≤ t, we have f̃t2 [h(t2)] = 0;

(ii) For any t and any h(t0), h′(t0) ∈ H(t0) such that for all τ < t, L′τ ≥ Lτ (with equality for
all τ < t − 1), d′τ = dτ = 0 and f ′τg

′
τ = fτgτ = 1, we have V L

t [h′(t0)] ≥ V L
t [h(t0)] and

V B
t [h′(t0)] ≥ V B

t [h(t0)].10

10A weaker requirement that a better loan-repayment history leads to weakly higher continuation values to both
players in the rest of the game (including both the remaining values from the current relationship, and the values from
re-matching if the current relationship is terminated later) would deliver exactly the same results.
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Part (i) of Definition 2 requires that the lender terminates the relationship if the borrower has
defaulted before. This requirement is standard in the literature (see also Datta[18], Kranton[28],
Ghosh and Ray[22, 23], etc.); it simplifies the analysis by imposing a fixed, in fact worst,11 pun-
ishment on the borrower’s default.

Part (ii) of Definition 2 needs more justifications. It says that at the beginning of any period
t, if we consider two histories such that the borrower has made repayments at all dates in both of
them, and the loan sizes only differ in the last period (i.e., t − 1), then the continuation values for
both players following the history with a higher last-period loan should be weakly higher.12 This
restriction is motivated by the following idea. One can view an equilibrium in a repeated game as
an implicit contract between the players. Such a contract specifies each player’s continuation value
at every history. Let us fix a period t and look at two different histories at the beginning of period
t—h(t0) and h′(t0)—among which h(t0) is on the equilibrium path. To sustain h(t0) as part of
the equilibrium path, any deviation that benefits the deviating player in the current period has to be
prevented by sufficiently reducing her continuation value, which is achieved by changing the future
course of play. But such a punishment imposed on the deviating player is not “morally justified”
if the deviation unambiguously improved the other player’s payoff. In the end, on what ground
should a person be “punished” if her actual behavior—compared to what she was expected to do—
strictly benefits another party? Moreover, it is not even “economically justified” if the punishment
is costly to the non-deviating player (who is the “carrier” of the punishment). In the context of
credit relationships, if the only difference between h(t0) and h′(t0) is that h′(t0) has a higher last-
period loan (with all repayments made), it is fair to claim that both the lender and the borrower
have unambiguously benefited from the deviation to h′(t0).13 The previous argument then implies
that neither player should receive a strictly lower continuation value after history h′(t0) than after
h(t0), for otherwise it would be either morally unjustified or economically unjustified (or both).

The idea behind Part (ii) is related to the notion of “justifiable punishments” (Aramendia and
Wen[6]), which is a refinement defined for normal-form repeated games with perfect monitoring.
Using a reasoning similar to above, they also put a monotone restriction on the continuation values
following deviations that benefit the other party.14

11The borrower cannot be made worse than being unmatched, as she can unilaterally terminate the relationship.
12To be sure, we only make comparisons at subperiod t0, where a history h(t0) consists of a full set of actions

(loan size, defaulting decision, continuation decisions) for each period from 0 to t− 1. We do not make comparisons
or impose such restriction at other subperiods. Moreover, it is allowed if one of the two histories has a strictly higher
last-period loan but the continuation values following the two histories are the same. For example, this will be the case
if the players simply ignore deviations to higher but repaid loans and keep the future course of play unchanged.

13The history h′(t0) may require deviations from both players, in which case both are deviating players.
14Our refinement is different from Aramendia and Wen[6] in several aspects. First, the monotonicity restriction in

Aramendia and Wen[6] is only imposed on the non-deviating player’s continuation value, while we require that the
deviating player is also not punished if the deviation benefits the other player. Second, their refinement is only defined
for normal-form repeated games with perfect monitoring, whereas in our context the stage game is of sequential
moves. (Even though we can transform an extensive-form stage game into a normal-form one, the assumption of
perfect monitoring would then become problematic because the strategy of the borrower in the stage game—a function
mapping each loan size to a repayment decision—is not fully observed.) Moreover, we apply the logic of “justifiable
punishments” only at the beginning of each period (i.e., only at t0, not t1 or t2).
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Finally, note that the definition of an orthodox social equilibrium does not require efficiency. So
the main result of this paper, which establishes strictly increasing loans in all non-trivial orthodox
social equilibria, holds for inefficient equilibria as well.

The Structure of Orthodox Social Equilibrium
Note first that a trivial (orthodox) social equilibrium always exists, in which the lender always
offers a loan size of 0 and the borrower defaults on any positive loan. Note also that in any
non-trivial social equilibrium, the relationship is never terminated on path by any player. This is
because if a relationship is terminated at date t, then at that last period the borrower will default on
any positive loan; as a result, the loan size at date t must be 0. But then, at the end of the second-
to-last period t − 1, each player has an incentive to terminate the relationship because both of
them would prefer getting the values of an unmatched player right away (which is positive because
the equilibrium is non-trivial), rather than waiting for another period with a payoff of 0 and then
getting such values. But this is a contradiction to the optimality of continuing the relationship at the
end of t− 1. One immediate implication is that in any non-trivial orthodox social equilibrium, the
borrower never defaults on path because the definition of such equilibria requires that any default
is followed by termination.15

Now we state the main results of this paper.

Proposition 1. Suppose that Assumption 1 holds. There exists a δ∗ < 1 such that the following
holds: for all δ ∈ (δ∗, 1), there exists a λ∗δ < 1 such that whenever λ ∈ (λ∗δ , 1], the loan sequence
{Lt}t is strictly increasing on the equilibrium path of any non-trivial orthodox social equilibrium
of the game G(δ, λ).

Proposition 2. Suppose that Assumption 1 holds. Whenever δ ∈ (δ∗, 1) and λ ∈ (λ∗δ , 1], a non-
trivial orthodox social equilibrium exists in the game G(δ, λ).

Remark 1. Small Re-Matching Probability/Discount Factor
One may wonder about the structure of orthodox social equilibria when the re-matching probability
or the discount factor is smaller than their thresholds. It turns out that if we assume linear payoff
functions (i.e., C(L)

D(L)
≡ α ∈ (0, 1) for all L), we can characterize such equilibria for all parameter

values.
As illustrated in Figure 1.1, when δ < 1 − α, only the trivial equilibrium (Lt = 0 for all t)

exists. This feature often shows up in repeated games even without re-matching: when players do
not care enough about the future, they can only play the unique SPE of the stage game. On the
other hand, when the players are patient and the re-matching probability is low (i.e., the bottom
right region of Figure 1.1), the threat of terminating a relationship is strong enough to sustain the
maximum loan level from the beginning. This is because re-matching in this case is so unlikely

15Note that we impose the condition that default implies termination only in the definition of an orthodox social
equilibrium. For a social equilibrium in general, although the relationship is never terminated by any player (as argued
in the text), defaults may occur on the equilibrium path.
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that losing the current relationship is nearly as bad as being thrown out of the market completely.
Finally, notice that the threshold λ∗δ increases with δ. This is intuitive: when players become more
patient, it is easier to sustain Lt ≡ L∗ because the future cost of terminating a relationship is higher
for a more patient borrower.

0 1

1

δ

λ

1− α

trivial equilibrium

Lt ≡ L∗

can be sustained

orthodox (Lt ↑↑)

δ∗ = 1− α
λ∗δ = δ+α−1

δ

Figure 1.1: Equilibrium Characterization for Linear Payoff Functions

Therefore, an increasing sequence of loans will arise when the players are patient and the re-
matching probability is high; the former ensures that the players are able to sustain some positive
level interactions instead of only playing the trivial equilibrium, while the latter creates the need
for “starting small” because a constant loan size over time will directly result in “hit and run.”

Remark 2. “Monotone Values” Restriction v.s. “Monotone Loans” Result
One important requirement in the definition of an orthodox social equilibrium is that a better loan-
repayment history does not strictly decrease the continuation value of the relationship to either
party. We motivated this requirement using an argument of “justifiable punishments.” But it is still
fair to ask: does this monotone restriction on continuation values select equilibria with strictly in-
creasing loan sizes by assuming it? The answer is “no” because the monotonicity in the restriction
and in the result are across different dimensions. The “monotone values” restriction is a condition
that compares continuation values across different histories at fixed t; in contrast, the “monotone
loans” result is about the evolution of loan sizes over time. In addition, trivial equilibria in which
loan size is always 0 are not ruled out by such a refinement. In fact, if the re-matching probability
is too low (i.e., if the condition in Proposition 1 is violated), there are orthodox social equilibria
in which the loan sizes are strictly decreasing over time.16 These equibria are not ruled out by our

16For example, when “δ = 0.8, α = 0.5,λ = 0.2, L∗ = 100,” {Lt}t = {93.8, 77.4, 67.1, 60.7, ...} is sustained
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refinement per se; however, they are impossible when the re-matching probability is high, because
the borrower would want to “hit and run” if loans were decreasing and re-matching is easy.

As we will illustrate in Section 1.3: technically, what the “monotone values” restriction buys
us is a sequence of binding no-default constraints; economically, the real driving forces of the
gradualism result in this paper is the high re-matching probability and justifiable punishments.

1.3 Discussion

An Intuition for Proposition 1 with Linear Payoff Functions
To understand the intuition behind Proposition 1, consider the following case where payoff func-
tions are linear in loan size:

yLt =

{
(1− α)Lt, if repayment happens;
−Lt, if default happens;

yBt =

{
αLt, if repayment happens;
Lt, if default happens.

Let L = {Lt}t be the sequence of loans on the equilibrium path of some non-trivial orthodox
social equilibrium. As we observed earlier, a relationship is never terminated in any non-trivial
social equilibrium. Therefore, we can write the lender’s and the borrower’s values at each date as:

V L
t [(1− α)L] = Σ∞i=0δ

i(1− α)Lt+i,

V B
t (αL) = Σ∞i=0δ

iαLt+i.

Note that the borrower’s no-deviation (no-default) constraints are: for all t,

(1− α)Lt ≤ δ[V B
t+1(αL)− λ′V B

0 (αL)], (1.7)

where the LHS is the current-period gains from default, and the RHS is the future cost of default
which is the difference between the value of continuing the relationship and the value of terminat-
ing the relationship. (Recall that λ′ is derived in footnote 9.)

One implication of part (ii) of Definition 2 is that in any orthodox social equilibrium, (1.7)
must hold at equality for all t such that Lt < L∗. That is, the lender has an incentive to increase the

by an orthodox social equilibrium. In contrast to Proposition 1, our refinement cannot give a unique prediction on loan
monotonicity when players are patient (high δ) and re-matching is unlikely (low λ). Such an equilibrium may not be
very reasonable though, because under these parameters Lt ≡ L∗ can also be sustained as an orthodox equilibrium,
and offering L∗ in each period is the first best scenario that generates the highest possible payoffs to both parties in
this model. Nonetheless, this example shows that the “monotone values” restriction itself does not select equilibria
with increasing loans.
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loan size as much as possible so that in each period, either the borrower’s no-deviation constraint is
binding, or the loan size reaches its maximum L∗. To see this, suppose that in some period t, (1.7)
holds at strict inequality and Lt < L∗. Then in subperiod t0 on the equilibrium path, the lender can
consider deviating to L′t = Lt + ε < L∗ such that

(1− α)L′t < δ[V B
t+1(αL)− λ′V B

0 (αL)]. (1.8)

Is this deviation profitable? Note first that such a deviation will not induce default in period t.
This is because in subperiod t1 when the borrower decides whether or not to repay, she will find:

(1− α)L′t < δ[V ′Bt+1 − λ′V B
0 (αL)], (1.9)

where V ′Bt+1 is the borrower’s continuation value at (t + 1)0 (i.e., the beginning of date t + 1)
following the new history with her repayment of a larger loan L′t. (1.9) holds because of (1.8) and
V ′Bt+1 ≥ V B

t+1(αL), where the latter condition follows from the fact that the loan-repayment history
with loans {L0, L1, ...Lt−1, L

′
t} and no default is better than that with {L0, L1, ...Lt−1, Lt} and no

default. As a result of (1.9), deviating to L′t would not induce default.
Knowing this, the lender’s total payoff from time t by offering L′t will be (1 − α)L′t + V ′Lt+1,

which is strictly larger than (1 − α)Lt + V L
t+1[(1 − α)L] because L′t > Lt and V ′Lt+1 ≥ V L

t+1[(1 −
α)L], where the second inequality is due to the fact that the lender’s value following a better loan-
repayment history is also weakly higher. But this just implies that deviating to L′t is profitable for
the lender, a contradiction to {Lt}t being on the equilibrium path of some (non-trivial) orthodox
social equilibrium.

Therefore, when the deviation to a better loan-repayment history is not punished, the lender
will have an incentive to increase the loan size as much as possible, so that in each period either
the borrower’s no-deviation constraint is binding, or Lt reaches its maximum L∗. It turns out that
the latter case can be ruled out when λ (the re-matching probability) is high, so the borrower’s
no-deviation constraint is binding at each date.

Now we can explain the intuition for our main result, which says that when the discount factor
and the re-matching probability are high, the equilibrium loan sequence in any orthodox social
equilibrium is strictly increasing. On one hand, when past histories are unobservable, the high re-
matching probability undermines the punishment power of the threat of terminating a relationship;
so in order to induce repayment, there has to be some additional cost of starting a new relationship,
which here is reflected in the fact that V B

t is strictly increasing over time. On the other hand,
because the value of becoming unmatched is constant while V B

t grows, the cost inflicted upon
the borrower by terminating the current relationship is increasing over time. This means that the
cost of defaulting increases over time. Since the lender has an incentive to make the borrower’s
no-deviation constraint bind in each period, she will offer a strictly increasing sequence of loans.

Another way to understand the result, though more technical, is to directly inspect the loan
sequence. First, high re-matching probability implies that a non-trivial equilibrium loan sequence
cannot be constant (or decreasing) over time, for otherwise the borrower would simply default in
the first period, run away, get rematched, and default again. As before, this calls for the value,



CHAPTER 1. A MODEL OF TRUST BUILDING WITH ANONYMOUS RE-MATCHING 14

as well as the loan size, to start small. But can it be that the loan size increases for a while and
then stays constant starting from certain period t̃? This is the type of equilibrium showing up
in Kranton[28] and Ghosh and Ray[22]. It is ruled out by our refinement because for any loan
sequence of this type, the future interactions after period t̃ − 1 and after period t̃ are exactly the
same (i.e., both consist of a constant loan size forever). That is to say, the borrower’s costs of
defaulting at t̃ − 1 and t̃, RHS of (1.7), are the same. But then, since by construction the loan
size at t̃ − 1 is smaller than that at t̃, this implies that Lt̃−1 < L∗ and the borrower’s no-deviation
constraint is not binding at t̃ − 1, a contradiction to what we have explained before (i.e., no-
deviation constraint should be binding as long as Lt < L∗).17 These arguments, together with the
fact that we can rule out other possibilities (e.g., the sequence decreases once in a while, or it stays
constant for a while and then increases, etc. See Lemma 6 in the Appendix), establishes that any
non-trivial equilibrium loan sequence must be strictly increasing over time when the re-matching
probability is high.

Equilibrium Non-Uniqueness
Though our refinement yields a unique prediction regarding loan monotonicity for interesting pa-
rameter values, it is unsurprising that equilibrium is not unique in this repeated game. We use the
special case of linear payoff functions (as in the previous subsection) to illustrate one force that
leads to the multiplicity of orthodox social equilibria. We then discuss the same multiplicity issue
in Datta[18].

Consider the following parametrization:

δ = 0.8, α = 0.5, λ = 1, L∗ = 100.

Under these parameters, the following two loan sequences can both be sustained by some
orthodox social equilibria:

{Lt}t = {37.5, 60.9, 75.6, 84.7, 90.5, ...};
{L′t}t = {18.8, 30.5, 37.8, 42.4, 45.2, ...}.

In our construction, L′t = 1
2
Lt for all t (before rounding up). In fact, with linear payoff func-

tions, if {Lt}t is an equilibrium loan sequence, so is {βLt}t for any 0 < β < 1. This is because,
moving from {Lt}t to {βLt}t, both sides of the borrower’s no-default constraint (1.7) will be scaled

17We reiterate the reason why this type of social equilibria is unreasonable in the context of credit relationships. The
reason lies in the strategy profile that supports such a loan sequence. We have seen that the borrower’s no-deviation
constraint is slack at t̃−1 on path. But the fact that it is an equilibrium implies that the lender does not want to increase
the loan size at t̃ − 1 even by just a little. This means that either an increase in loan size causes default, or even after
the repayment the lender is still worse off. In the former case, the future value of the relationship to the borrower
must be lowered after she repays a higher loan; in the latter case, the future value of the relationship to the lender
must be lowered after she offers a higher loan followed by repayment. In either case, had a better (off-equilibrium)
loan-repayment history been reached, at least one player is “punished.” This is the unreasonable feature suffered by
any strategy profile that supports such a loan sequence which increases first and then stays constant.
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by β; so it holds for the new sequence if and only if it holds for the original one.18 Nevertheless,
as Proposition 1 states, all these sequences are strictly increasing.

Datta[18] studies the linear payoff environment where the re-matching probability is 1. He
focuses on the efficient equilibria within the class of social equilibria that entail no default on path,
which he called maximal social equilibria. His main result is that the value sequences (of both
parties) in any maximal social equilibrium are nondecreasing. While his prediction is weaker than
ours, his refinement does not guarantee equilibrium uniqueness either. Under the same parameter
values, both {Lt}t defined above and {L′′t }t defined below can be sustained by some maximal
social equilibria:19

{L′′t }t = {35, 25, 100, 100, 100, ...}.

Note that this loan sequence is non-monotone; in fact, Proposition 1 implies that most of the
maximal social equilibria (except the orthodox ones) entail “unjustifiable punishments.”

In the linear environment considered here, the sequence {37.5, 60.9, 75.6, 84.7, 90.5, ...} is the
unique equilibrium loan sequence that is both orthodox and maximal.20 In nonlinear environments,
even if we focus on maximal orthodox social equilibria, uniqueness is still not guaranteed. The
main contribution of this paper is to find reasonable conditions that deliver a unique prediction of
strictly increasing loans, despite multiplicity of equilibria.

Finally, it is worth pointing out that the key technical condition which drives our result is
the binding no-default constraints. As discussed in the previous subsection, this condition is im-
plied by the requirement of “justifiable punishments.” This paper shows that such a requirement
is enough to generate a unique prediction of strictly increasing loans, even without imposing effi-
ciency. Datta[18] is unable to make a prediction regarding loan monotonicity because his analysis
allows for “unjustifiable punishments” (and thus non-binding no-default constraints); and even
after efficiency is imposed, only a weaker prediction regarding values can be made.

18With nonlinear payoff functions, this construction by scaling each loan size by β is no longer valid for creating
another equilibrium loan sequence. But depending on the exact functional forms of C and D, reducing all loans by
some (carefully chosen) amounts can still generate a new equilibrium loan sequence.

19To see that {L′′t }t = {35, 25, 100, 100, 100, ...} is maximal (i.e., efficient among the class of social equilibria that
entail no default on path), note first that for any social equilibrium without default on path, V B0 ≤ V ∗B0 , where V ∗B0

solves (1−α)L∗ = δ(αL
∗

1−δ −λ
′V ∗B0 ). This is because if there is a social equilibrium without default such that its loan

sequence on path is {L̃t}t and Ṽ B0 > V ∗B0 , without loss we have lim sup L̃t = L∗ due to linearity of payoff functions.
But then, for L̃t close enough to L∗, we have (1 − α)L̃t > δ(αL̃t1−δ − λ

′Ṽ B0 ), a contradiction to the requirement that
the borrower does not default on path. It can be checked that {L′′t }t = {35, 25, 100, 100, 100, ...} achieves V ∗B0 and
satisfies the borrower’s incentive constraints under our parametrization, so it is maximal.

20{Lt}t = {37.5, 60.9, 75.6, 84.7, 90.5, ...} is constructed using the algorithm proposed in the proof of Proposition
2 by setting the limit L = L∗. To see that {Lt}t is the unique loan sequence that is both orthodox and maximal, note
first that by construction it can be supported by an orthodox social equilibrium using the strategy profile proposed in
the proof of Proposition 2. Note also that by construction, (1 − α)Lt = δ(αLt1−δ − λV

B
0 ), for all t. Since Lt → L∗,

we have (1− α)L∗ = δ(αL
∗

1−δ − λV
B
0 ); therefore V B0 = V ∗B0 , where V ∗B0 is defined in footnote 19. This implies that

such an orthodox social equilibrium is also maximal. Finally, the uniqueness of {Lt}t follows from the fact that it is
the unique loan sequence that satisfies (A.1) and converges to L∗ (see the proof of Proposition 2), and any other such
sequence converging to L < L∗ generates a lower V B0 .



CHAPTER 1. A MODEL OF TRUST BUILDING WITH ANONYMOUS RE-MATCHING 16

Extension to Mixed Strategies
The preceding analysis has focused on pure-strategy equilibria, in which the loan amount, default-
ing and termination decisions are deterministic in each period. In this subsection, we will first argue
that in equilibria where the relationship is never terminated and default never occurs, randomizing
over loan amounts is not compatible with the notion of orthodox social equilibrium. Next, we will
show that if payoffs are linear in loan and if the borrower’s defaulting decision breaks even in favor
of the lender, then in any orthodox social equilibrium, indeed the relationship is never terminated
and default never occurs, even if mixed strategies (in termination decisions) are allowed.

Note first that the definition of an orthodox social equilibrium can be readily extended to ac-
commodate mixed strategies by interpreting the future values after a particular history as the ex-
pected future values. Then, let us take any orthodox social equilibrium that has no default and
no termination on the equilibrium path. Suppose that at the beginning of period t with on-path
history h(t0), equilibrium behavior involves mixing between two loan amounts, Lt and L′t, such
that Lt < L′t. Since the lender is indifferent between Lt and L′t, it means that

R(Lt) + V L
t+1[h((t+ 1)0)] = R(L′t) + V L

t+1[h′((t+ 1)0)],

where the two histories at the beginning of t + 1, h((t + 1)0) and h′((t + 1)0), only differ in
their last-period (period t) loans. Since Lt < L′t, our refinement requires that V L

t+1[h((t + 1)0)] ≤
V L
t+1[h′((t+1)0)], but this is a contradiction to the indifference condition, asR is strictly increasing.

This means that if default and termination never occur, randomizing over loan amounts is not
compatible with the notion of orthodox social equilibrium.

Now suppose that:

• payoffs are linear in loan (as in the previous subsection);

• the borrower’s defaulting decision breaks even in favor of the lender; i.e., she does not default
when indifferent.21

In any mixed-strategy non-trivial orthodox social equilibrium, let us first show that default
never happens on the equilibrium path. To see this, suppose (by contradiction) that default happens
on path. Let t be the first period in which the borrower defaults on a positive loan. Since the
relationship is terminated at the end of that period after default (as required by Definition 2), the
lender can do strictly better by offering 0 loan in that period and then terminate the relationship.
So a profitable deviation exists for the lender.

Next, we argue that the relationship is never terminated on path. Note that linearity and no
default on path imply that the borrower’s value is a fixed proportion α

1−α of the lender’s value. On
the equilibrium path, let t be the first period in which the relationship is terminated with a positive
probability. This implies that the borrower’s value (on path) at the beginning of the next period

21This essentially assumes that the borrower’s defaulting decision is deterministic, while allowing for mixing in
loan sizes and termination decisions.



CHAPTER 1. A MODEL OF TRUST BUILDING WITH ANONYMOUS RE-MATCHING 17

t+1 must be weakly lower than λ′V B
0 .22 As a result, the borrower will default on any positive loan

that leads to termination with a positive probability. So in this equilibrium, the history h(t2) on
path after which termination is possible must have 0 loan in period t. But then, the lender should
terminate the relationship one period earlier at the end of t − 1, as she prefers getting the value
of an unmatched lender right away (which is positive because the equilibrium is non-trivial) to
waiting for another period with a payoff of 0 and then getting such a value. This is a contradiction
to t being the first period in which the relationship is terminated with a positive probability.23

To summarize, we have argued that: (i) for any orthodox social equilibrium in mixed strate-
gies where termination and default never occur on path, loan amounts must be deterministic; (ii)
if payoffs are linear in loan and the borrower repays when indifferent, then all orthodox social
equilibria in mixed strategies involve no termination and no default on path, and thus deterministic
loan amounts. So Propositions 1 and 2 apply to these cases.

1.4 Conclusion
This paper studies a lender-borrower game in a pure moral hazard environment with anonymous re-
matching. The main result states that as long as the discount factor and the re-matching probability
are above certain thresholds, the size of loans along the equilibrium path of any orthodox social
equilibrium is strictly increasing over time. This characterization gives a formal argument that
qualifies the possibility of anonymous re-matching as a driving force of gradualism in long-term
relationships. Certainly, re-matching is not the only reason for gradualism; gradual learning of
another party’s type, among other things, is also a reasonable and important driving force for such
phenomena. However, given that in reality it is indeed costly to acquire the past history information
of the other party in a new relationship, this paper provides insights from one specific aspect into
understanding gradualism in long-term relationships, especially credit relationships.

This chapter is focused on the implications and remedies of anonymous re-matching which ex-
ogenously creates an extreme type of information frictions. Very often, however, information is left
out not because it is not available, but because people choose not to process it due to their limited
capacity/willingness to learn. In those cases, information frictions arise endogenously. The next
two chapters turn to such scenarios where information frictions are caused by people’s inatten-
tion. In particular, we will study optimal information transmission protocols when the information
recipient is rationally inattentive.

22To see this, note that if the relationship is terminated (with a positive probability) because of the borrower’s
termination, we must have V Bt+1 ≤ λ′V B0 ; if it is because of the lender’s termination, we must have V Lt+1 ≤ λ′V L0 . In
the latter case, since linearity implies that V Bt+1 = α

1−αV
L
t+1 and V B0 = α

1−αV
L
0 , we again have V Bt+1 ≤ λ′V B0 .

23More precisely, this is a contradiction unless t = 0; but if the relationship is terminated with a positive probability
at t = 0, then the lender’s initial value satisfies V L0 = 0 + δλ′V L0 , so that V L0 = 0. But this can happen only in a
trivial equilibrium.
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Chapter 2

Attention Management

This chapter is joint work with Elliot Lipnowski and Laurent Mathevet. Part of this chapter was
published in American Economic Review: Insights.

2.1 Introduction
Information is a gift that may not always be accepted and, hence, useful. Speaking to a toddler
about grammar may not improve his linguistic abilities, just as an adult may learn less from a book,
an email, or a contract that contains too much detail. Simon[41] offers an explanation for why
less detailed communication may convey more: “What information consumes is rather obvious: it
consumes the attention of its recipients.” Failures to recognize this fact can have counterproductive
effects: consumers are frequently confused by nutritional labels; patients can be overwhelmed in
parsing side effects of medications; and so on (see Ben-shahar and Schneider[11]). As Simon[42,
p.144] puts it: “The real design problem is not to provide more information to people . . . but [to
design] intelligent information-filtering systems.”

This paper studies an information-filtering problem aimed at managing a receiver’s attention.
We study this problem in the context of a strong preference alignment: the sender and the receiver
have the same material motives, but the receiver incurs an attention cost that the sender does
not internalize. This is an instance of paternalistic, benevolent design, of the same nature as the
teacher-student and doctor-patient interaction, as well as many others.

Consider a teacher preparing her students for an external evaluation. Each question in the test
will have a correct answer θ ∈ {0, 1}, where 0 means false and 1 means true, the two being
correct in equal proportion. A student wants to answer questions correctly, and the teacher wants
the same. For each question, the student must choose a number a ∈ [0, 1], and his score on that
question will be 1 − (a − θ)2 (the teacher has the same objective). Depending on the course,
the student will be more or less confident, and rightfully so, about the answers. For example, a
completely ignorant student believes that both answers are equally likely for every question. Think
of a course as an intended distribution p ∈ ∆[0, 1] of student belief ν = P(θ = 1) in the test. For
example, for a fraction p(ν = 0.1) of questions, the student will be 10% sure the answer is true.
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The teacher could cover all possible questions and their correct answers, so that a sufficiently
attentive student will get a perfect grade. This corresponds to p(1) = p(0) = 0.5, because such a
student would be sure that the answer is true when it is, and sure that it is false when it is, each
occurring half of the time. Of course, a student may not be willing, or able, to process so much
information. Instead of belief distribution p, he may experience a less well-informed distribution
q. Suppose, for instance, a student incurs a cost κE(µ − ν)2 of information processing to move
his belief from prior µ to posterior ν. If κ > 1, any information the teacher provides is ignored,
as the student deems it too costly.24 In particular, then, a fully informative course is optimal (as is
any other course). If κ < 1, a student wants as much information as possible, and so will be fully
attentive. Full information is again optimal for the teacher.

Consider the same teacher, but now the test questions will have correct answers θ ∈ {0, 1
2
, 1},

where 1
2

means uncertain. Suppose that the exam has an equal fraction of all three answers;
the scoring rule is the same as before; and a student’s information cost is 1

4
E||ν − µ||2 where the

distance is Euclidean. If the teacher covered everything, then a student would rationally pay partial
attention, only learning to distinguish between true and false. That is, he would divide possible
questions into two groups: those that are “probably true” (consisting of all true questions and
some uncertain), and those that are “probably false” (consisting of all false questions and some
uncertain).

This attention choice avoids large mistakes, such as answering true when the correct answer is
false or vice versa, but it entails many small mistakes, as the student never gives a perfect answer.
Given that the teacher and the students have aligned testing motives, it may seem surprising that
withholding information could improve test scores. But, indeed, the teacher can strictly increase
the average score by teaching students to answer−1 if and only if the correct answer is false. With
this lesson plan, to which one can show the student will be fully attentive, the teacher eliminates all
mistakes, both large and small, concerning false questions, and only leaves fine mistakes involved
in discerning true from uncertain questions.

Justifying inattention is almost a matter of introspection: people and organizations have limited
information processing capacity (Sims[43, 44]). So, it seems natural to ask how much informa-
tion one should give such agents. In our model, a principal provides information to a rationally
inattentive agent. The agent cares about his material benefit, but also about the cost of processing
information. The principal, however, is only motivated by the agent’s material benefit, such as
the student’s score or the fitness of the patient’s medical decision. From a subjective cost-benefit
analysis, the agent chooses how much of the principal’s provided information to process. In other
words, the agent decides how informed he wants to be, taking whatever information the principal
makes available as an upper bound. Choosing that upper bound in an optimal way is our design
problem.

Attention management gives a special role to information that is incomparable to what the
agent would acquire given full information. Although more information is sufficient for better

24In this example, the student’s indirect utilityUA(ν, κ) = −ν(1−ν)−κ(µ−ν)2, whose expectation he maximizes,
is concave when κ > 1 and convex if κ < 1.
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decision-making (Blackwell[12]), it is not necessary. A person with a different kind of informa-
tion from that of another person, neither more nor less, can also make better decisions. In the
teacher example, a course that focuses on false answers and keeps some uncertainty about true
and uncertain is neither more nor less informative than one that focuses on true answers and
keeps some uncertainty about false and uncertain. These two courses simply emphasize dif-
ferent angles of the same topic. Yet one course could result in higher average test scores than the
other. Standard revealed preference reasoning tells us that our agent cannot be made better in-
formed than what he pays attention to under full information (call that q). Therefore, any hope for
improvement upon full disclosure must come from providing incomparable information, neither
better nor worse (than q), but targeting the most pertinent dimensions for the task at hand. This
manipulation prevents the agent from choosing q, while preserving some other policies that result
in better decision-making.

When the state can take on only two values, as in the true/false teacher example, full infor-
mation is always principal-optimal for all material motives and convex attention costs. This is our
second theorem (our first theorem proves that a solution to the principal’s problem exists, under
general conditions, and can be found within a specific tractable class). Despite the binary charac-
teristic of the state, there are still many incomparable information policies; however, if the agent
willingly paid full attention to incomparable policies, then it can be shown that he would pay full
attention to a third that is more informative than both. Hence, the principal would prefer to choose
that one instead. In general, the principal sees no benefit from withholding information.

Following the above theorem, we study the simplest specification that departs from binary
uncertainty: the Quadratic Model, defined by a motive to match the state, quadratic attention costs,
and three evenly-spaced states. The second version of the teacher example is an instance of this.
In contrast to the binary-state world, wherein the agent may also not pay full attention to full
information, the principal may strictly prefer to withhold information—though her sole objective
is to help the agent make good decisions. The Quadratic Model is the simplest available model
with more than two states, because the agent’s preferences over information are constant in a given
“direction.” For this reason, the model can isolate the new issues that come with additional states.
In particular, it suggests two lessons on the nature of attention management. First, the principal
should give as much information as possible, given its direction. This simplifying feature mutes
the problem of choosing the amount of information, and isolates that of choosing which aspects of
the world to emphasize. Second, an optimal policy should be as easy to pay attention to as possible,
given its instrumental value. In practice, this efficiency concern garners a lot of structure. Based
on these principles, an optimal policy can be derived explicitly (Proposition 5), taking a friendly
form: the principal either downplays or exaggerates the state.

The remainder of this chapter is organized as follows. Below, we discuss related literature.
Section 2.2 sets up a general model of attention management and describes a specialization with
quadratic payoffs and three states. Section 2.3 presents our main results for the general model.
Section 2.4 characterizes incentive compatibility and gives the full solution in the Quadratic Model.
Section 2.5 discusses generalizations of our results, and 2.6 concludes. All proofs for the results in
this chapter are in Appendix B.
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Related Literature
Our paper lies at the interface of two literatures: persuasion of decision makers through flexi-
ble information (Kamenica and Gentzkow[26]; Aumann and Maschler[8]) and rational inattention
(Sims[43, 44]).

Among other generalizations, the Bayesian persuasion framework has been extended to in-
clude costly information provision by the principal (Gentzkow and Kamenica[21]) and parallel
costly information acquisition by the agent (Matysková[35]). Other works study persuasion games
with departures from “classical” preferences, such as psychological preferences (Lipnowski and
Mathevet[33]), ambiguity aversion (Beauchêne et al.[10]), and heterogenous beliefs (Alonso and
Câmara[4]; Galperti[20]). A key feature of all aforementioned papers is that the receiver is a pas-
sive learner of provided information: he automatically processes whatever information is revealed
by the sender. In our paper, the receiver will actively filter his own information to limit informa-
tion processing costs. Our analysis illustrates that the belief-based approach commonly adopted to
study persuasion games is still applicable in the face of this complication.

The rational inattention literature (Sims[43, 44]; Caplin and Dean[14]; Caplin and Martin[15];
Matějka and McKay[34], etc.) studies optimal decision making by agents who incur an attention
cost (or face an attention constraint), and so decide which of the available information to process
before acting. These models are the building blocks of our agent’s problem, given the principal’s
disclosure choice.

One lesson from our paper is that attention management is fundamentally about choosing which
aspects of the state to reveal: this is apparent from comparing Theorem 2 to Proposition 5. The
literature on multidimensional cheap talk (Battaglini[9]; Levy and Razin[31]; Chakraborty and
Harbaugh[16]) also focuses on revealing lower dimensional aspects of a state. While that litera-
ture focuses on trading off dimensions as a way to relax a sender’s incentive constraints, lower-
dimensional information is provided in our paper to restrict the receiver’s latitude to pay partial
attention.

Our paper also contributes to costly information acquisition under moral hazard through its
main strategic tension. Previous work (e.g., Dewatripont and Tirole[19] and Li[32]) has identified
various ways to provide better incentives for information acquisition. More directly pertinent, in a
setting of delegated decision-making, Szalay[45] illustrates that eliminating “safe” actions from the
agent’s choice set can help align incentives to seek useful information, and that this may be valuable
even if the principal never benefits from restricting the agent’s behavior ex-post. Proposition 5
illustrates how limiting the information available to the agent endogenously eliminates such safe
behavior.

The most related works, featuring information transmission under some form of inattention,
are those of Bloedel and Segal[13] and Lester et al.[30].25 Bloedel and Segal[13] study a problem

25Less related are Persson[37] and Hirshleifer et al.[24]. The former studies a model in which competing firms
exploit consumers’ limited attention through deliberate information overload. The latter shows, in a verifiable disclo-
sure setting, how a simple form of inattention (specifically, some fraction of receivers being exogenously perfectly
inattentive) can break standard equilibrium unraveling results.
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with very similar motivation to ours, but with substantively different modeling assumptions. While
there are other differences (they restrict attention to a binary-action world, with a possibly infinite
state space), the most substantive is a qualitatively different cost specification. In information
theory, the cost of information processing is often modeled as a cost of reducing uncertainty. But
what is that uncertainty about? When information is provided by an intermediary (the principal),
the receiver’s uncertainty could be about the principal’s realized message or about the underlying
state of the world. Think, for example, about inviting a friend who has the bad habit of being late to
social functions. The uncertainty will not be about what he says (“7pm”, “8pm”, “after dinner”, or
something else), but rather about his actual arrival time. In more complex communications, such
as those by a technical expert who may employ jargon, the messages themselves can be difficult
to parse. In Bloedel and Segal[13], a principal commits to an experiment, and the agent bears a
(reduction of entropy) cost to learn what message the principal has sent; their cost is not directly
related to reducing uncertainty about the state. In our model, the agent bears a (e.g., quadratic)
cost to learn the state, the cost being unrelated to reducing uncertainty about which message the
principal sent. Lester et al.[30] analyze a model of evidence exclusion in courts of law. In their
model, a judge chooses which of finitely many pieces of evidence should be considered by the jury,
who then choose a subset of those to examine at a cost. The authors provide examples in which
evidence exclusion leads to fewer sentencing errors. Our paper studies this same basic tradeoff in
a flexible information-choice framework, with a view toward giving general prescriptions about
optimal attention management.

2.2 The Model

The General Model
Let Θ be a finite set of states and A be a compact metrizable space of actions. An agent must make
a decision a ∈ A in a world with uncertain state θ ∈ Θ distributed according to (full-support)
µ ∈ ∆Θ. When the agent chooses a in state θ, his material payoff is given by u(a, θ), where
u : A×Θ→ R is continuous. The principal’s payoff is equal to the agent’s material utility, u.

In addition to his material utility, the agent also incurs an attention cost. As in the rational
inattention literature, this cost is interpreted as the utility loss from processing information. To
define it, first let

R (µ) :=

{
p ∈ ∆∆Θ :

∫
∆Θ

ν dp(ν) = µ

}
be the set of (information) policies, which are the distributions over the agent’s beliefs such
that the mean equals the prior. It is well-known, for example from the work of Kamenica and
Gentzkow[26], that signal structures and information policies are equivalent formalisms. For the
purpose of this paper, an attention cost function is a mapping C : ∆∆Θ→ R+ such that for every
policy p,

C(p) =

∫
∆Θ

c dp (2.1)
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for some convex continuous c : ∆Θ → R+.26 Jensen’s inequality tells us that an agent who
increases his attention, in the sense of obtaining a policy p that is more (Blackwell) informative
than q, denoted p �Bµ q,27 incurs a higher cost for p than for q.

The timing of the game is as follows:

– The principal first commits to an information policy p ∈ R(µ).

– The agent then decides to what extent he should pay attention to p: he chooses a policy
q ∈ R(µ) such that q �Bµ p. Such a policy q is called an (attention) outcome.

– Finally, the agent’s belief is drawn from q, at which point he takes an action a ∈ A. The
agent’s belief is his updated belief following reception of a message sent from the principal’s
signal structure.

We study principal-preferred subgame perfect equilibria.
It is convenient to work with the principal’s indirect utility at ν ∈ ∆Θ

UP (ν) = U(ν) := max
a∈A

∫
Θ

u(a, ·) dν,

and the agent’s indirect utility
UA(ν) = U(ν)− c(ν).

Note that the attention cost does not affect the agent’s optimal choice of a conditional on a given
belief. The principal’s problem can therefore be formalized as follows:

sup
p,q

∫
∆Θ

UP dq

s.t. p ∈ R (µ) and q ∈ G∗(p)
(2.2)

where

G∗(p) := argmax
q∈R(µ): q�Bp

{∫
∆Θ

U dq − C(q)

}
= argmax

q∈R(µ): q�Bp

∫
∆Θ

UA dq

is the agent’s optimal garbling correspondence. An information policy p∗ ∈ R(µ) is (principal-)
optimal if (p∗, q∗) solves (2.2) for some outcome q∗ ∈ ∆∆Θ. The corresponding q∗ is an optimal
(attention) outcome.

As formalized, it is clear that the principal’s problem is one of delegation. The policy p chosen
by the principal only appears in the constraint and does not directly affect any party’s payoff. In
effect, the principal makes available a menu of information policies, from which the agent picks
his preferred one.

26One well-known example has c(ν) ∝ H(µ)−H(ν), where H is Shannon entropy.
27For any p, q ∈ R(µ), p �Bµ q (or simply p �B q) if p is a mean-preserving spread of q, that is, there is

r : ∆Θ→ ∆∆Θ such that (i) p(S) =
∫

∆Θ
r(S|·) dq,∀ Borel S ⊆ ∆Θ and (ii) r(·|ν) ∈ R(ν),∀ν ∈ ∆Θ.
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The Quadratic Model
Consider the following specification of our model:

1. Three (evenly spaced) states: Θ = {−1, 0, 1};

2. “Match the state” material preferences: A = co (Θ) ⊆ R and u(a, θ) = −(a− θ)2;

3. Quadratic information costs: c(ν) = κ||ν−µ||2, where || · || is the Euclidean norm and κ > 0
is a cost parameter.

We denote the common prior by µ = (µ−1, µ0, µ1) ∈ int(∆Θ).
Under assumptions (2) and (3), the agent’s attention preference is both translation- and scale-

invariant. That is, his willingness to pay attention to binary information is unchanged if one
translates both beliefs equally, or moves one belief toward or away from the other. By making
information preferences especially simple “within a dimension” of the space of beliefs, this model
isolates the richness imparted by multidimensional information. This three-state model is arguably
the simplest model that escapes our full disclosure result in Section 2.3.

2.3 Optimal Disclosure

Simplifying Disclosure
Given the sequential nature of our game and the infinite number of alternatives in the agent’s menu
of attention policies, it is not immediate that a solution to the principal’s problem exists. Our first
result shows that it does indeed exist, and additionally shows that some optimum takes a special
and convenient form. Say that an information policy p ∈ R(µ) is incentive compatible (IC) if the
agent finds it optimal to pay full attention to it, i.e., if p ∈ G∗(p). Say that an information policy is
nonredundant if supp(p) is affinely independent.

Theorem 1. There exists a solution p∗ to

sup
p

∫
∆Θ

UP dp

s.t. (i) p ∈ R(µ)

(ii) p is IC
(iii) p is nonredundant.

(2.3)

Moreover, any solution p∗ to (2.3) is such that (p∗, p∗) is a solution to (2.2).

The theorem establishes existence of a solution to the general model and establishes that lim-
iting attention to nonredundant, incentive compatible information policies is without loss. The
existence result follows from a continuity argument, relying on the observation that the “garbling
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correspondence” is continuous. That IC policies are without loss, analogous to the revelation prin-
ciple, relies on a revealed preference reasoning: if q is an optimal attention outcome, then it must
be an optimal garbling of itself, q ∈ G∗(q).

Finally, an important simplification is the sufficiency of nonredundant policies. A useful anal-
ogy is the optimality of posted price mechanisms in the sale of a good to a buyer with privately
known valuation. There, revenue equivalence reduces the set of IC mechanisms to the set of in-
creasing allocation rules; the principal’s objective is a linear functional of this allocation rule; and
the extreme points (of the set of increasing allocation rules) are simply the step functions, which
correspond to posted price mechanisms. In the present setting, nonredundant policies are extreme
in the set of all information policies.28 Since Θ is finite, nonredundancy implies the need for fewer
messages than there are states. Thus, just as the celebrated posted price result does, Theorem 1
reduces an infinite-dimensional optimization problem to a finite-dimensional one.

In addition to having a small support, a nonredundant information policy enjoys another tech-
nical convenience: its set of garblings is straightforward to characterize, which simplifies the task
of checking whether it is IC. As proved in Lemma 8 in Appendix B, for all p, q ∈ R(µ) with p
nonredundant,

p �B q ⇐⇒ supp(q) ⊆ co [supp(p)] . (2.4)

Full Disclosure in Binary-State Environments
Let the full disclosure policy, pF ∈ R(µ), be defined as pF (δθ) = µ(θ) for all θ ∈ Θ, where
δθ ∈ ∆Θ is the belief that puts probability 1 on state θ.

Theorem 2. If the state is binary, then full disclosure is a principal-optimal attention policy. That
is, (pF , q∗) is a solution to (2.2) for some q∗ ∈ ∆∆Θ.

The principal never has a reason to provide more or less information in the Blackwell sense
than what the agent would acquire given full information.29 More information would be ignored,
and less would harm the principal. The only way to have the agent bear a greater cost of attention
and make a better decision, is to provide a policy that is incomparable to the attention outcome
from full information (represented by q∗ (in red) in Figure 2.1). However, no such nonredundant
policy is IC when the state is binary. For example, if the principal offered the policy q̃ (in blue)
in Figure 2.1, which is incomparable to q∗ by condition (2.4), then the agent would not pay full
attention to q̃. Indeed, q∗∗ (in purple) is a garbling of q̃ by (2.4), and it clearly gives the agent a
strictly higher payoff than q̃ (since ũ∗A > ũA). Therefore, q̃ is not IC. As the principal can only
induce the agent to pay attention to q∗ or to less informative policies than q∗, she finds it optimal
to provide full information.

28Some care is required, as the set of IC information policies is not convex; but it is an extreme set, which enables
an analogous argument.

29In knife-edge cases, the agent might have many best responses to full information; in that case, we take q∗ to be
the most informative one (which exists in the binary-state setting).
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Figure 2.1: Blackwell-Incomparable Policies When |Θ| = 2

With three or more states, the above reasoning breaks down, because there exist policies that are
both IC and incomparable to the full-information outcome (q∗). The possibility of informing the
agent along many distinct dimensions can enable attention outcomes that are not less informative
than q∗. This type of partial information leaves room for attention management.

2.4 The Quadratic Model
We now study a parametric model with a richer state space, in which the agent’s material payoff
is the standard quadratic loss between the state and his action, and his attention cost is based on
the Euclidean distance between the prior and his updated beliefs. In this model, as in the general
model, the principal’s problem can be seen as choosing the directional aspect and the scale aspect
of an information policy, where the direction changes the agent’s differential uncertainty between
states—in much the same way as different textbooks can lead to different relative knowledge of
the same topic—and scale refers to the “quantity” of information. Notice that information had no
directional feature in the binary environment of the previous section: any (nonredundant) policy
had a leftmost and a rightmost posterior, with information fully described by their distance from the
prior. Therefore, Theorem 2 could be interpreted as the statement that, absent directional concerns,
there is never any reason for the principal to restrict the scale of information. In the Quadratic
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Model, while direction and scale are both relevant levers, the principal will never have any reason
to restrict the scale of information once its direction is chosen. In this sense, the Quadratic Model is
the simplest departure from binary uncertainty, because only the direction of optimal information
matters, which is arguably the central aspect of information disclosure in a richer state space.

In this section, we characterize incentive compatibility, present principles of optimal attention
management, and compute the resulting optimal policy for the Quadratic Model.

Payoffs and Incentives
Below we index statistical measures, such as expectation E and variance V, by the distribution of
the underlying random variable. For example, EpVνθ refers to Eν∼p [Vθ∼ν(θ)].

Principal’s Payoff. The marginal distribution of actions is sufficient to compute the principal’s
expected payoffs in the Quadratic Model, due to the “match the state” motive.

The agent’s optimal action at any posterior belief ν ∈ ∆Θ is

a∗(ν) := argmax
a∈A

u(a, ν) = Eνθ.

The principal’s value is then

UP (ν) := −Eν [(θ − a∗(ν))2] = −Vνθ, (2.5)

which is strictly convex in ν.
Take any incentive compatible information policy p ∈ R(µ) and note that∫

∆Θ

UP dp = −EpVνθ = VpEνθ − Vµ(θ) = Vp[a
∗(ν)]− Vµ(θ), (2.6)

by the law of total variance. Therefore:

Observation 1. In the Quadratic Model, for any IC policies p and p′, the principal strictly prefers
p to p′ if and only if Vp[a

∗(ν)] > Vp′ [a
∗(ν)].

Psychological vs. Material Incentives. Another advantage of the Quadratic Model, this one
pertaining to the agent, is the simple characterization of IC by a sequence of comparisons between
psychological cost and material benefit.

The agent’s attention cost at ν is

c(ν) = κ||ν − µ||2 = κ
∑
θ

(νθ − µθ)2,

so that his net indirect utility is

UA(ν) := UP (ν)− c(ν) =

(∑
θ

νθθ

)2

− κ
∑
θ

ν2
θ

+ h(ν) (2.7)
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where νθ := P(θ|ν) and h(ν) is affine in ν.
To understand the driving force behind IC in this model, consider first a binary-support policy.

Fix some ν, ν ′, and let xθ := νθ − ν ′θ for all θ ∈ Θ. For ε ∈ [0, 1],

1

2

d2

dε2
UA(ν + ε(ν ′ − ν)) =

(∑
θ

xθθ

)2

− κ
∑
θ

x2
θ (2.8)

= |Eνθ − Eν′θ|2 − κ||ν − ν ′||2.

This derivative measures the curvature of UA between ν and ν ′ and brings out two notions of
distance between beliefs:

– The choice distance, |Eνθ−Eν′θ|, which describes the change in action caused by a change
in beliefs.

– The psychological distance,
√
κ||ν − ν ′||, which is a standard distance between beliefs (the

scaled Euclidean metric, to be precise).

The psychological distance measures the marginal cost of extra attention in a given direction,
while the choice distance measures the marginal benefit. A policy with binary support {ν, ν ′} is
IC if and only if UA is convex between ν and ν ′ (hence, if and only if the choice distance exceeds
the psychological one).30 The next proposition generalizes this fact to all nonredundant policies.

Proposition 3. A nonredundant policy p ∈ R(µ) is IC if and only if

|an+1 − an| ≥
√
κ||νn+1 − νn|| ∀n, (2.9)

where supp(p) = {ν1, . . . , νN} such that an := Eνn(θ) and a1 ≤ · · · ≤ aN .

Condition (2.9) is much weaker than IC, only requiring incentive compatibility between any
two messages that induce consecutive actions—that is, their choice distances should be weakly
larger than their psychological distances. We refer to this property as order-IC.

In the Quadratic Model, the characterization of IC in Proposition 3 greatly simplifies the prin-
cipal’s problem. The first step for the principal is to understand the agent’s (constrained) problem,
but it typically depends on the shape of UA over (the convex hull of) a policy’s whole support.
In general, it can be made difficult by boundary issues in the agent’s problem. In the Quadratic
Model, however, the agent’s behavior can be understood only based on what happens on the edges
of the policy’s support, as formalized in (2.9).

30This follows from Jensen’s inequality, together with the observation that ε 7→ UA(ν + ε(ν′ − ν)) is (being
quadratic) either globally weakly convex or globally strictly concave.
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Optimal Attention Management
Attention management is a form of damage control aimed at minimizing expected losses. Unless
attention is so cheap that the agent willingly pays full attention to perfect information, the lack of
attention will be the source of inevitable mistakes whose impact should be contained. Two main
principles of good attention management emerge from our model and lay the foundations for the
optimization that follows. The first one governs the quantity of information, and the second the
directional aspect of information.

µ

a

z

−1 1

(a) Information Saturation

µ

a

z

−1 1

(b) Information Saturation

µ

a

z

−1 1

(c) Cost Efficiency

Figure 2.2: Principles of Attention Management

Information saturation says that information should be maximal once its (consecutive) direc-
tion is chosen. Given a policy with support {νn}n, let

direction :=

(
νn+1 − νn

||νn+1 − νn||

)
n

. (2.10)

Direction is the vector of normalized changes in uncertainty from one belief to the next. In the
(a, z) space of Figure 2.2, let z be the agent’s belief that θ is zero and a his optimal action.31 By
(2.10), direction is unaffected by any affine transformation of beliefs (as in Figure 2.2a) or changes
in non-consecutive slopes (as in Figure 2.2b). Such transformations leave the comparisons in (2.9)
(hence, IC) unchanged. Since IC is unchanged by making a policy more informative while holding
its direction fixed, and since the principal wants the agent to pay more attention, information should
be maximal once its direction is chosen.

Cost efficiency says that an optimal policy should be as easy to pay attention to as possible,
given its instrumental value. Said differently, an optimal policy should induce an action distribution
in a way that preserves IC for the largest set of cost parameters. A violation of cost efficiency
means that the same behavior could be obtained from a less attentive agent. But then, intuitively,
the principal should be able to induce even better-informed decisions from the more attentive agent.
Rearranging (2.9), a policy p with supported beliefs νn = ν(an,zn) is IC, if and only if κ ≤ 2 and∣∣∣∣zn+1 − zn

an+1 − an

∣∣∣∣ ≤ s∗(κ) :=

√
2− κ

3κ
∀n. (2.11)

31The associated belief is ν(a,z) = zδ0 + 1−z+a
2 δ1 + 1−z−a

2 δ−1, for z ∈ [0, 1] and a ∈ [z − 1, 1− z].
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Thus, a policy is ruled out by cost efficiency if the same action distribution can be implemented by
another policy with smaller absolute slopes, for example the solid triangle in Figure 2.2c.

Now, we can combine Theorem 1 with the information saturation and cost efficiency principles
to pare down the search for optimal information in the Quadratic Model. From here, we solve the
residual (brute force) optimization problem over a simplified policy space.

Before stating the result, we introduce a language to speak about some special policies.
Say the principal downplays the state if she sends message:

m =


0 : with probability 1, if θ = 0

θ : with probability 1− πθ, if θ 6= 0

0 : with probability πθ, if θ 6= 0.

The principal downplays the state if she misreports the truth only by occasionally saying 0 instead
of an extreme state. Complete downplaying (π−1 = π1 = 1) conveys no information; no down-
playing (π−1 = π1 = 0) fully discloses the state; other forms convey partial information. Let{
pD(π−1,π1) : (π−1, π1) ∈ [0, 1]2

}
denote the policies induced by downplaying the state. Say that

the principal exaggerates the state if she sends message:

m =


θ : with probability 1, if θ 6= 0

1 : with probability 1− π, if θ = 0

−1 : with probability π, if θ = 0.

The principal exaggerates the state if she misreports the truth only by reporting extreme states
instead of 0. Increasing π makes the agent more (less) certain that θ = m upon receiving m = 1
(m = −1). Let maximal exaggeration refer to π ∈ {0, 1}. Policies induced by exaggerating the
state are denoted

{
pEπ : π ∈ [0, 1]

}
.

Let aµ = µ1 − µ−1 be the agent’s optimal action at the prior, and define

κ1 := 1
2

κ2 := 2
3
4

(
1−|aµ|+µ0

1−|aµ|

)2
+1

κ3 := 2

3
(

µ0
1−|aµ|

)2
+1

κ4 := 2. (2.12)

Proposition 4. In the Quadratic Model, an optimal attention outcome:

1. fully reveals the state when κ ∈ (0, κ1];

2. downplays the state until (2.9) holds with equality when κ ∈ (κ1, κ2];

3. maximally exaggerates the state when κ ∈ [κ2, κ3];32

32In particular, π = 1 (π = 0) is optimal if and only if aµ ≥ 0 (aµ ≤ 0).



CHAPTER 2. ATTENTION MANAGEMENT 31

4. exaggerates the state until (2.9) holds with equality when κ ∈ (κ3, κ4];

5. reveals no information when κ ∈ (κ4,∞).

Moreover, for generic κ, every optimal attention outcome is of the above form.

µ
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z

κ ≤ κ1
(Full revelation)

µ
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κ1 < κ ≤ κ2
(Downplaying)

frequency of mistakes
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κ2 ≤ κ ≤ κ3
(Maximal exaggeration)

µ

a

z

κ3 ≤ κ ≤ κ4
(Exaggeration)

µ

a

z

κ > κ4

(No disclosure)

Figure 2.3: Optimal Attention Outcomes

Our result tells the story of a principal who optimally downplays the state when attention is
cheap and, as it becomes costlier, reverses her strategy and exaggerates the state. Unless attention
is nearly costless, a menu of mistakes becomes available to the principal: infrequent but (equally)
large mistakes, a mix of very large and smaller mistakes, small but frequent mistakes, etc. As
convex cost tend to discard the second kind, the main tradeoff is between size and frequency.

When attention comes at low cost, the principal keeps quiet (i.e., reports 0) on some extreme
occasions and is truthful the rest of the time. That is, she downplays the state. As shown in Figure
2.3, this invites either inaction from the agent, who chooses 0, or an extreme reaction {−1, 1}. The
latter are never mistaken, because they happen in precisely the principal’s reported extreme state.
However, inaction is harmful in extreme situations, so the agent makes all his mistakes through
action 0. The frequency of mistakes, shown in Figure 2.3, is chosen so that the agent is barely
willing to pay full attention. Under this type of information disclosure, mistakes are large, always
of size 1, but they are kept rare as long as κ ≤ κ2.

As inattention grows more severe, the principal increasingly downplays the state to keep the
agent’s attention. In the process, mistakes become increasingly frequent. Eventually, the principal
switches to extreme revelations that cause strong reactions: she exaggerates the state. This gets the
agent’s attention because of his desire to avoid the potentially harmful consequences of extreme
behaviors. Although this results in smaller mistakes (than under downplaying, because their size
is strictly less than 1), they occur more often. In our teacher example of the introduction, this
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corresponds to teaching students to answer −1 if and only if the correct answer is false, while
pooling all uncertain questions with true ones. This eliminates all mistakes concerning false
questions, and only leaves fine mistakes involved in discerning true from uncertain questions.

Finally, the following corollary follows naturally from the proposition. In the Quadratic Model,
attention management is profitable whenever the agent strictly prefers to pay partial attention.

Corollary 1. In the Quadratic Model, full disclosure is optimal if and only if κ ≤ κ1 or κ ≥ κ4.

The exclusion of perverse garblings is the principal’s main tool for managing attention. In Fig-
ure 2.4, the agent’s attention response to full information (the flat line in green) is excluded from
the menu defined by the (red) triangle policy. As a result, the agent pays full attention to that policy
and enjoys greater material welfare. Restricting information limits the agent’s latitude to respond
to it, which, in turn, affects his incentives to listen to the information in the first place. This obser-
vation recalls principles from the delegation literature. Szalay[45] shows that restricting an agent’s
choices can incentivize him to seek useful information, and that this may be valuable even if inter-
ests are perfectly aligned conditional on said information. The intuition that eliminating moderate
choices will provide greater information acquisition shows up here too: by downplaying the state,
the principal makes it more difficult for the agent to hedge. Corollary 1 mirrors Szalay[45, Propo-
sition 4] who shows that choice restrictions are profitable at intermediate costs of information. In
our example, with such restrictions arising indirectly through information degradation, the same
holds whenever an unrestricted agent would uniquely opt for partial information.

µ

a

z

κ1 < κ ≤ κ2

Figure 2.4: Excluding “Safe” Garblings

2.5 Generalizations
While we have focused on aligned interests, our model can also be formulated under conflicting
interests. Given any continuous agent and principal objectives uA, uP : A × Θ × ∆Θ → R, we
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can define the agent and principal indirect utilities via

UA(ν) := max
a∈A

∫
∆Θ

uA(a, ·, ν) dν (2.13)

UP (ν) := max
a∈a∗(ν)

∫
∆Θ

uP (a, ·, ν) dν, (2.14)

where
a∗(ν) := arg max

a∈A

∫
∆Θ

uA(a, ·, ν) dν.

As UA is continuous and UP upper semicontinuous, the proof of Theorem 1 then applies verbatim
to this generalization.

Theorem 2 holds more generally: the proof applies if either UP or UP − UA is weakly convex.
Within our story of paternalistic, benevolent design, a relevant extension here is one for which
the principal cares about the agent’s material welfare and partially internalizes the agent’s cost of
attention, placing a lower weight on it than does the agent.

The Quadratic Model plainly enjoys a lot of specific structure, but the most important sim-
plification comes in the form of reducing the agent’s willingness to pay attention to the study of
binary policies. This particular simplification will hold for any model in which UA is a quadratic
function. Indeed, a weaker form of Proposition 3 holds in that case: a nonredundant information
policy is incentive compatible if and only if the agent does not have a strict incentive to pool any
two supported messages. This observation should facilitate a richer analysis of applied models of
attention management.

2.6 Conclusion
We study the design problem of a well-intentioned principal who paternalistically seeks to help
an inattentive agent make informed decisions. Even though the principal unequivocally wants the
agent to be better informed, we find that withholding information can be optimal, helping guide
the agent to make better decisions. A key takeaway from our analysis is that attention management
is fundamentally about choosing the right “aspects” of the underlying state on which the agent
should focus. We convey this point by showing that unidimensional information should never be
withheld and by fully characterizing how to inform an inattentive agent in a simple multidimen-
sional framework.



34

Chapter 3

Persuasion Under Costly Learning

3.1 Introduction
Learning or information processing can be costly. Due to such costs, a decision maker may not
want to take in all available information. This motivated Simon[41, 42] to call for the design of
“intelligent information-filtering systems.”

The burgeoning literature on persuasion games following Kamenica and Gentzkow[26] studies
the question of how to design optimal information-filtering systems. However, existing models
almost always assume the information receiver to be a passive learner: he automatically processes
whatever information revealed by the sender. Consequently, the design is not driven by learning
costs or inattention, but by preference misalignments between the sender and the receiver.

How does inattention affect information disclosure and learning? To address this question, we
study the information-filtering problem of a seller aimed at maximizing the purchase probability
of a rationally inattentive buyer who finds it costly to learn. In our model, a Sender (seller) reveals
information about an uncertain state of world (quality of the good) to persuade a Receiver (buyer)
to take a particular action (buying). Processing information is costly for the Receiver, and he can
learn strictly less information, in the sense of Blackwell, than what the Sender provides. Taking
the Receiver’s optimal learning into account, the Sender designs an information disclosure policy
aiming to maximize the probability of the Receiver taking such an action. Other applications of the
model include a biased advisor persuading a rationally inattentive politician to vote for a reform,
a prosecutor persuading a jury to convict a defendant, or a pharmaceutical company convincing
FDA to approve a new drug.

We study this problem in a binary-action binary-state environment, where we can explicitly
characterize incentive compatible information policies, that is, those to which the buyer willingly
pays full attention. To get a flavor of optimal disclosure, suppose that the buyer’s optimal action
absent any information is not buying. If information is costless, optimal disclosure is a recommen-
dation rule that recommends the “buy” action whenever the quality is high and sometimes when
the quality is low. The “buy” recommendation is obfuscated in such a way that the buyer finds it
indifferent between buying and not buying upon receiving it. If learning is costly, however, such
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a disclosure rule becomes one of the worst because it fails to induce any attention from the buyer.
Indeed, utility-wise the buyer does not benefit from paying any attention to such information, and
thus he will ignore all of it without buying the good. To attract some attention, the seller now has
to obfuscate the “buy” recommendation less often to increase the instrumental value of the avail-
able information. The seller does so by recommending the “buy” action less frequently when the
quality is low, and as a result, the buyer will strictly prefer to buy when such a recommendation
is made. Nevertheless, full disclosure (i.e., no obfuscation at all) is also suboptimal. Intuitively,
starting from the buyer’s best response to full disclosure, obfuscating the “buy” recommendation
a little more has a first-order positive effect on the selling probability, while its (negative) effect
through incentive compatibility is negligible due to an envelope-theorem argument. Indeed, opti-
mal disclosure still involves information distortion, and in equilibrium the buyer will learn strictly
less than what he would under full disclosure.

We also provide a set of comparative statics results with respect to learning costs. While the
seller is always worse off when learning costs become higher, the amount of information processed
by the buyer in equilibrium varies in a non-monotone fashion. Intuitively, when learning is more
costly, in order to attract the buyer’s attention, the seller has to increase the instrumental value of
information locally by making the “buy” recommendation more informative about high quality.
This effect tends to reduce her selling probability (as “buy” is recommended less frequently when
quality is low) and increase the informativeness of the buyer’s learning. On the other hand, a higher
learning cost worsens the buyer’s incentive to pay attention globally, which tends to shrink the set
of incentive compatible policies and decrease the amount of information processed by the buyer.
Both effects negatively impact the seller’s payoff while generating opposing forces on the buyer’s
equilibrium learning, yielding our results.

The remainder of this chapter is organized as follows. Section 3.2 sets up the model. Section
3.3 presents the main results on optimal disclosure and comparative statics. Section 3.4 provides
closed-form solution to an example with quadratic costs and illustrates explicitly the non-monotone
variation of the buyer’s equilibrium learning. Section 3.5 discusses some extensions beyond the
binary-action binary-state case. Section 3.6 concludes. All proofs for the results in this chapter are
in Appendix C. Ample discussion of the related literature has been provided in Chapter 2.

3.2 The Model
We build upon the general setting introduced in Chapter 2. Consider a persuasion game between a
Sender (seller / prosecutor / pharmaceutical company; she) and a Receiver (buyer / jury / FDA; he).
The Receiver must make a decision a ∈ A = {0, 1} in a world with uncertain state θ ∈ Θ = {0, 1}
distributed according to µ ∈ ∆Θ. To fix idea, we think of the Receiver as a buyer and the Sender
as a seller. If a = 1 (a = 0), the buyer does (not) purchase the good. If θ = 1 (θ = 0), the quality
of the good is high (low).

The seller always wants to sell the good regardless of its quality, and her state-independent
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payoff is given by
uS(a, θ) = a.

On the other hand, if the buyer chooses a in the state θ, his material payoff will be

uR(a, θ) = a(θ − λ)

where λ is the fixed price paid by the buyer when he purchases the good. To make the problem
nontrivial, we assume 0 < µ < λ < 1.39 The fixed price may come from a company’s resale price
maintenance, and it is also a relevant assumption in other applications (e.g., prosecutor vs. jury,
pharmaceutical company vs. FDA) where monetary transfer is not feasible.40 In these applications,
one can view 1− λ > 0 and −λ < 0 as the Receiver’s state-dependent payoffs when taking action
1, while the payoff of taking action 0 is a normalized to 0.

In addition to his material utility, the buyer incurs a learning cost. As in the rational inattention
literature, this cost is interpreted as the utility loss from processing information. To define it, let

R (µ) :=

{
p ∈ ∆∆Θ :

∫
∆Θ

ν dp(ν) = µ

}
be the set of (information) policies, which are the distributions over the buyer’s beliefs such that
the mean equals the prior. We define a learning cost function as a mapping C : R(µ) → R+ such
that for every policy p,

C(p) = κ

∫
∆Θ

c dp

for some strictly convex and differentiable c : ∆Θ → R+ and some cost parameter κ ∈ R+. The
strict convexity of c ensures that processing more information, in the sense of obtaining a policy p
that is more (Blackwell) informative than q, denoted p �Bµ q, incurs a higher cost.

The timing of the game is as follows:

– The seller first commits to an information policy p ∈ R(µ).

– The buyer then decides to what extent he should pay attention to p: he chooses a policy
q ∈ R(µ) such that q �Bµ p. Such a policy q is called an (attention) outcome.

– Finally, the buyer’s belief is drawn from q, at which point he takes an action a ∈ A.

The second stage above captures the buyer’s freedom to choose how to learn from the seller. Absent
learning cost, the buyer will always pay full attention to the information provided by the seller even
if he can learn strictly less, because more information always leads to (weakly) better decision-
making. When learning is costly, the second stage becomes nontrivial because now the buyer must

39If µ ≥ λ, then the buyer is willing to buy absent any information. Since the seller always wants to sell the good,
it is optimal to disclose no information to let the sale happen with probability 1.

40If the seller can set the price, she should set it to µ and reveal no information, in which way she will sell the good
with probability 1 and extract the entire surplus µ.
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make a choice on learning that best balances its cost and benefit. We study principal-preferred
subgame perfect equilibria of this game.

Since |Θ| = 2, we let the belief space ∆Θ = [0, 1], where ν ∈ ∆Θ represents the probability
of state 1 at that belief. We define a∗ : ∆Θ→ A by

a∗(ν) = 1{ν≥λ}

as the buyer’s optimal action at belief ν, and define the players’ indirect utility at ν by

US(ν) = a∗(ν) = 1{ν≥λ},

UR(ν) =

∫
Θ

uR(a∗(ν), ·) dν − κc(ν) = max{0, ν − λ} − κc(ν).

The seller’s problem can therefore be formalized as follows:

sup
p,q

∫
∆Θ

US dq

s.t. p ∈ R (µ) and q ∈ G∗(p)
(3.1)

where

G∗(p) := argmax
q∈R(µ): q�Bp

∫
∆Θ

UR dq

is the buyer’s optimal garbling correspondence. An information policy p∗ ∈ R(µ) is (sender-)
optimal if (p∗, q∗) solves (3.1) for some outcome q∗ ∈ R(µ). Such a q∗ is an optimal atten-
tion outcome. In choosing what information to make available, the seller proposes a menu of
information policies from which the buyer chooses his most preferred one.

Simplifying Disclosure
Say that an information policy p ∈ R(µ) is incentive compatible (IC) if the buyer finds it optimal
to pay full attention to it, i.e., if p ∈ G∗(p). Analogous to the revelation principle, we can restrict
attention to incentive compatible policies when searching for an optimal attention outcome.

With convex costs, the buyer will never pay full attention to any policy whose support contains
two distinct posterior beliefs that induce the same optimal action. This is because if the buyer
garbles these two messages into one, the same action is still optimal at the new belief, and thus
this garbling generates the same material payoff as the original policy while reducing the cost of
learning. Since the buyer is choosing between only two actions, the support of any IC policy will
contain at most two beliefs. We call such policies with two supported beliefs binary policies.41

The following lemma, which follows directly from Theorem 1 of Chapter 2, formalizes the
above reasoning.

41δµ (the Dirac measure of the prior belief, i.e., no information) is the unique information policy whose support is
a singleton. To conserve language, we include it to the set of binary policies.
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Lemma 1. There exists a solution p∗ to

sup
p

∫
∆Θ

US dp

s.t. (i) p ∈ R(µ)

(ii) p is IC
(iii) p is binary.

(3.2)

Moreover, p∗ is a solution to (3.2) if and only if (r∗, p∗) is a solution to (3.1) for some r∗ ∈ R(µ).

A binary policy is uniquely pinned down by its support because there is a unique probability
distribution over the support that satisfies Bayesian plausibility. For any binary policy, its set of
garblings is straightforward to characterize. In fact, for p, q ∈ R(µ), supp(p) = {νp1 , ν

p
2} and

supp(q) = {νq1 , ν
q
2} with νp1 < νp2 and νq1 < νq2 ,

p �B q ⇐⇒ νp1 ≤ νq1 < µ < νq2 ≤ νp2 . (3.3)

3.3 Optimal Disclosure
When learning is costless (κ = 0), every information policy is IC because the buyer always wants
to learn as much as he can for best decision-making. In this case, the following recommendation
rule is optimal for the seller:

Pr (recommend “buy”|θ = 1) = 1,

Pr (recommend “not buy”|θ = 1) = 0,

Pr (recommend “buy”|θ = 0) =
µ

1− µ
1− λ
λ

,

Pr (recommend “not buy”|θ = 0) =
µ− λ
λ(1− µ)

.

To maximize her selling probability, the seller adds as much noise as possible to the “buy” recom-
mendation so long as the buyer still wants to follow it. Under this recommendation rule, conditional
on full attention, the buyer knows for sure that the quality is low on hearing “not buy,” while he
is indifferent between buying and not on hearing “buy.” It is easy to see that this recommendation
rule induces an information policy with support {0, λ}.

When learning is costly (κ > 0), the above information policy supported on {0, λ} is no longer
IC. This is because the buyer’s decision utility max{0, ν − λ} does not change across the convex
hull of the two supported beliefs, i.e., [0, λ], as he always weakly prefers not to buy. This implies
that whatever the buyer learns from the seller, his decision utility does not change, and thus he finds
it optimal not to pay any attention. This is also reflected in UR being strictly concave on [0, λ], as
shown in Figure 3.1. Hence, if the seller disclosed information as if the buyer had no learning cost,
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she would never sell the good because the buyer would optimally ignore all information without
buying. To attract some attention, the seller has to be less aggressive in sending the “buy” signal,
so that the buyer can get some strictly positive utility gain from paying attention. In particular, the
buyer should strictly prefer to buy when such a recommendation is made.

Figure 3.1: Buyer’s Indirect Utility Function (With Entropy Learning Costs and κ = 1)

In what follows, we first analyze the buyer’s best information choice q∗ when the seller fully
discloses the quality, and show that any optimal attention outcome must be less informative than
q∗. We then present our characterization of optimal disclosure and its implementation. In the end,
we provide some comparative statics results with respect to learning costs.

Full-Information Best Response
The buyer is best off when all information policies are available, that is, when the seller fully
discloses the state. Let the full-disclosure policy, pF ∈ R(µ), be such that supp(pF ) = {0, 1}. We
denote by q∗ a best response to pF .

Lemma 2. The buyer has a unique best response to pF and it is a binary policy.

The above lemma, proved in Appendix C, is a direct implication of the strict convexity of c.
Given this lemma, we let q∗ be the buyer’s unique best response to pF and its support be {ν∗1 , ν∗2}.
If |supp(q∗)| = 1 (for example, when learning is very costly), the buyer finds it optimal to learn
nothing even when all policies are available. Then, no matter what the seller chooses, the buyer will
not learn anything, so the unique optimal attention outcome is no information and every policy is
seller-optimal. The rest of the analysis focuses on the interesting case where q∗ has binary support.
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Assumption 2. κ is small enough such that |supp(q∗)| = 2.

If q∗ has binary support, it is immediate that the recommendation rule described in the bench-
mark case without learning cost is no longer seller-optimal, because the full-disclosure policy pF

induces the buyer to choose q∗ which leads to a strictly positive purchase probability. To find an
optimal attention outcome, note first that any policy more informative than q∗ will induce q∗, as
the latter is the buyer’s most preferred policy among all information policies and will be chosen
whenever available. In Chapter 2, we have explained using Figure 2.1 that, with binary state, any
policy Blackwell-incomparable to q∗ is not IC. While in the aligned-interests case we can conclude
from there that full disclosure is optimal, now with misaligned interests between the two players,
we can only rule out those incomparable policies from optimal attention outcomes. The following
lemma summarizes this observation.

Lemma 3. If q̃ is Blackwell-incomparable to q∗, then q̃ is not incentive compatible. Hence, any
optimal attention outcome is weakly less informative than q∗.

Optimal Attention Outcome and Its Implementation
Given a policy p supported on {ν1, ν2} such that ν1 < µ < λ < ν2,42 the seller’s payoff is∫

∆Θ

US dp = p(ν2) =
µ− ν1

ν2 − ν1

.

Note that the seller’s payoff is decreasing in both ν1 and ν2. The following proposition character-
izes optimal attention outcomes.

Proposition 5. Suppose that Assumption 2 holds. There exists a solution {νO1 , νO2 } to

sup
ν1,ν2

µ− ν1

ν2 − ν1

s.t. (i)
UR(ν2)− UR(ν1)

ν2 − ν1

= U ′R(ν1)

(ii) ν∗1 ≤ ν1 < µ < ν2 ≤ ν∗2

. (3.4)

Moreover, a binary policy p∗ is an optimal attention outcome if and only if supp(p∗) solves (3.4).

To understand program (3.4) in Proposition 5, recall that Lemma 3 reduces the search to poli-
cies less informative than q∗, so that constraint (ii) follows from condition (3.3). Moreover, after
the seller chooses a binary policy with support {ν1, ν2}, condition (3.3) implies that the buyer is
restricted to choose from distributions over beliefs in [ν1, ν2]. As a result, a binary policy is IC if
and only if the affine function connecting the points (ν1, UR(ν1)) and (ν2, UR(ν2)) lies above the
values of UR restricted to [ν1, ν2]. For a fixed ν1, the smallest ν2 such that this property holds is the

42If ν1 < ν2 ≤ λ, then p is not IC. See Figure 3.1.
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one that makes said affine function tangent to UR at ν1 (see Figure 3.2). If ν2 is lowered further,
the buyer no longer wants to pay full attention. Intuitively, ν2 cannot be too low, for otherwise the
policy has too little instrumental value to attract the buyer’s full attention. Finally, for any fixed ν1

we can without loss focus on such lowest ν2 because the seller’s payoff is decreasing in ν2, leading
to constraint (i).

Figure 3.2: Lowest ν2 Such That {ν1, ν2} Is IC

Recall from Lemma 3 that any optimal attention outcome must be weakly less informative than
the full-information best response, q∗. The next proposition shows that it is actually strictly less
informative, so that full disclosure is not seller-optimal.

Proposition 6. Suppose that Assumption 2 holds such that ν∗1 > 0 and ν∗2 < 1. Then, any optimal
attention outcome p∗ is strictly less informative than q∗, i.e., p∗ ≺B q∗.

Remember that, to maximize her selling probability, the seller wants to lower both supported
beliefs as much as possible. Nevertheless, to ensure incentive compatibility (captured by constraint
(i) in (3.4)), a decrease in the higher supported belief must be associated with an increase in the
lower one. Intuitively, when ν2 is lowered while ν1 is kept the same, the instrumental value of
information can be outweighed by its cost. Consequently, to restore incentive compatibility, ν1 has
be to increased to reduce the cost (by making the policy even less informative).

Starting from q∗, decreasing the higher belief creates two effects on the seller’s payoff: a direct
positive effect, and an indirect negative effect through the IC constraint. Since q∗ is the buyer’s
unconstrained optimal policy, the first order condition implies that the indirect effect is negligible,
leaving only the positive effect present. Thus, the seller always wants to move away from q∗ to
some policy strictly less informative.
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Implementation

When learning is costless, we have seen that the optimal policy can be implemented by a particular
type of recommendation rule. Indeed, the seller always recommends “buy” whenever the quality
is high, and she does so with some positive probability t when the quality is low. That is,

Pr (recommend “buy”|θ = 1) = 1,

Pr (recommend “not buy”|θ = 1) = 0,

Pr (recommend “buy”|θ = 0) = t,

Pr (recommend “not buy”|θ = 0) = 1− t.

We denote by rt the information policy implied by such a recommendation rule. By Bayes’ rule,
supp(rt) =

{
0, µ

µ+(1−µ)t

}
. When learning is costly, any optimal attention outcome can also be

induced by some recommendation rule in this class, with partial attention paid to it by the buyer.43

Proposition 7. Let p∗ be an optimal attention outcome such that supp(p∗) = {νO1 , νO2 }. Then p∗

can be induced by rt∗ where t∗ =
(1−νO2 )µ

νO2 (1−µ)
, i.e., p∗ ∈ G∗(rt∗). In other words, rt∗ is seller-optimal.

Figure 3.3: Inducing p∗ With rt∗

When learning is costly, disclosing information as if there were no learning cost attracts zero
attention (thus zero purchase probability), because the available costly information does not help
the buyer enough with his decision-making. Thus, the seller has to put more information content

43By saying “some policy/recommendation rule p induces an attention outcome q,” we mean q ∈ G∗(p).
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into the “buy” signal, making the buyer strictly prefer to buy after seeing it (i.e., vO2 > λ). The
seller does so by sending the “buy” signal less frequently when the quality is low. This adjustment
increases the (ex ante) instrumental value of the available information, making it worthwhile for
the buyer to pay some attention. As illustrated in Figure 3.3, when rt∗ (supported on {0, νO2 }) is
provided, the buyer’s unique best response is supported on {νO1 , νO2 }. In other words, rt∗ induces
an optimal attention outcome p∗, and hence it is seller-optimal.

Comparative Statics
For general cost functions, we offer a comparative static result about the effect of learning costs
(more specifically, κ) on the seller’s payoff. We then argue that its effect on the buyer’s equilibrium
learning is non-monotone. In the next section, we solve an example with quadratic learning costs
where we can see these effects explicitly.

Learning costs and seller’s payoff

Proposition 8. The seller is worse off when faced with a less attentive buyer (i.e., with a higher κ).

With a less attentive buyer, full disclosure will induce less attention (i.e., q∗(κ̄) �B q∗(κ),
if κ̄ > κ). Since only policies less informative than q∗ can be IC, this effectively narrows the
constraint set of the seller. Moreover, if attention becomes more costly, the instrumental value
of a “marginally” IC policy has to be increased for it to remain IC. To achieve so, the seller has
to obfuscate the “buy” recommendation less frequently, which necessarily decreases the purchase
probability. Both effects (reduction of constraint set, and decrease in purchase probability) lower
the seller’s payoff.

Learning costs and optimal attention outcome

Proposition 9. The informativeness of optimal attention outcome p∗(κ) is not monotone in κ.

To see this, note first that when κ is equal (close) to 0, the support of the optimal attention
outcome is (close to) {0, λ}. When κ is large enough such that ν∗1(κ) > 0, we denoted by {νO1 , νO2 }
the support of optimal attention outcome p∗(κ). By Proposition 6, we know that νO1 ≥ ν∗1(κ) > 0.
Moreover, since UR is strictly concave on [0, λ], we must have νO2 > λ. That is, we have 0 <
vO1 < λ < vO2 , when κ is sufficiently large. Condition (3.3) then implies that p∗(κ) is Blackwell-
incomparable to p∗(0), and consequently, p∗(·) cannot be monotone (under the Blackwell order).

In the next section, we show in an example with quadratic costs that, as κ increases, p∗ first
becomes more informative for small κ and then less informative for large κ, and we identify the
driving forces of these variations.
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3.4 An Example with Quadratic Learning Costs
In this section, we apply the general characterizations in Section 3.3 to a model with quadratic
learning costs. Specifically, we assume that c(ν) = (ν − µ)2. Also, for simplicity we assume
λ = 1/2. Under quadratic costs, the farther away a posterior belief is from the prior, the more
costly it is to reach that belief. The buyer’s indirect utility function becomes

UR(ν;κ) = max{ν − 1/2, 0} − κ(ν − µ)2.

We first analyze the buyer’s best response q∗(κ) to full disclosure. Let {ν∗1(κ), ν∗2(κ)} be set
of points that supports convUR(ν;κ). If ν∗1(κ) > 0 and ν∗2(κ) < 1, the tangency condition of
concavification requires that

−2κ(ν∗1(κ)− µ) =
ν∗2(κ)− 1/2− κ[(ν∗2(κ)− µ)2 − (ν∗1(κ)− µ)2]

ν∗2(κ)− ν∗1(κ)
= 1− 2κ(ν∗2(κ)− µ),

which gives us

ν∗1(κ) =
1

2
− 1

4κ
,

ν∗2(κ) =
1

2
+

1

4κ
.

Therefore, when κ ≥ 1
2(1−2µ)

(so that 1
2
− 1

4κ
> µ), full disclosure induces no attention. When

1/2 ≤ κ < 1
2(1−2µ)

, q∗(κ) is supported on {ν∗1(κ), ν∗2(κ)} defined above. When 0 ≤ κ ≤ 1/2, full
disclosure is IC (but not necessarily optimal).

Now we apply Proposition 5 to derive optimal attention outcomes for arbitrary cost parameters.

Proposition 10. In this example with quadratic costs,

• When 0 ≤ κ < 1−2µ
2(1−µ)2

, the unique optimal attention outcome p∗(κ) is supported on the set{
0, 1−

√
1−2κ

2κ

}
, and the informativeness of p∗(κ) increases in κ.

• When 1−2µ
2(1−µ)2

≤ κ < 1
2(1−2µ)

, the unique optimal attention outcome p∗(κ) is supported on

the set
{

1− µ−
√

1−2µ
2κ

, 1− µ
}

, and the informativeness of p∗(κ) decreases in κ.

• When κ ≥ 1
2(1−2µ)

, the unique optimal attention outcome p∗(κ) contains no information.

Non-monotone variation of the optimal attention outcome with κ

In this example, we can see explicitly that the amount of information processed in equilibrium
varies with κ in a non-monotone fashion. For κ < (>) 1−2µ

(1−µ)2
, the optimal attention outcome

becomes more (less) informative as κ increases. To understand the mechanisms at work, let us
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start with the optimal attention outcome for some κ, supported on {νO1 , νO2 }. As attention becomes
more costly, it creates two effects. First, fixing νO1 , in order to attract the buyer’s attention, the
seller has to increase the instrumental value of information locally by making the “buy” signal
more informative about high quality, leading to a higher ν2 in the support. This effect tends to
increase the informativeness of the optimal attention outcome, and it is dominant when κ is small.
On the other hand, a higher attention cost reduces the buyer’s incentive to pay attention globally,
making it harder for any policy to attract attention. This effect tends to decrease the informativeness
of IC policies, and it is dominant when κ is large.

3.5 Discussion
In this section, we discuss whether our results extend beyond the binary-action binary-state case
and the potential difficulties for solving a more general model.

The binary-action assumption simplifies the seller’s objective into maximizing the probability
of one action. Nevertheless, given the binary-state assumption, a number of our characterizations
still hold even with three or more actions. First, by Theorem 1 in Chapter 2, the restriction to binary
policies (Lemma 1) is still without loss. Though the buyer’s best response to full disclosure may
no long be unique, there exists a most informative one (analogous to Lemma 2), and any optimal
attention outcome will still be less informative than it (Lemma 3 and Proposition 6).

The binary-state assumption buys us a lot of technical convenience. In particular, since the
belief space is unidimensional, there is no multi-issue concern in the design of information. In
Chapter 2, we explore the design problem with richer uncertainty under aligned decision prefer-
ences, and illustrate that optimal disclosure can be hard to find. When decision preferences are
misaligned, the multi-issue concern of information disclosure is combined with the sender’s incen-
tives to manipulate the receiver’s action, which arguably makes the problem even harder. We leave
it as an interesting direction for future research.

Nevertheless, given the binary-action assumption, the binary-state assumption is not as restric-
tive as it looks. Specifically, for an arbitrary state space Θ, let Θ0 = {θ ∈ Θ : uR(1, θ) < uR(0, θ)}
and Θ1 = {θ ∈ Θ : uR(1, θ) ≥ uR(0, θ)}. The binary-state model in this paper is equivalent to the
situation where the seller can only convey information about whether the true state is such that the
seller should buy the good (θ ∈ Θ1) or not (θ ∈ Θ0).

3.6 Conclusion
This paper studies the information design problem of a Sender who tries to persuade a rationally
inattentive Receiver to take a particular action. Due to learning costs, the Receiver may have
an incentive to learn strictly less information than what the Sender provides. In a binary-action
binary-state model, we show that the Receiver processes strictly less information than what he
would under full disclosure. Moreover, optimal disclosure takes the same form as in the case
without learning cost, but in order to attract attention, it has to bring more information content into
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the positive signal. While the Sender is always worse off when facing a less attentive Receiver, the
Receiver’s equilibrium learning varies with attention costs in a non-monotone way. As such, this
paper sheds light on how to persuade a rationally inattentive decision maker.
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Chapter 4

Concluding Remarks

Information frictions are central to many economic problems and phenomena. This dissertation
studies various implications of and solutions to such frictions that can arise either exogenously
due to institutional constraints or endogenously due to people’s limited information processing
capacity.

In Chapter 1, we analyze how trust can be built in a society where information about people’s
credit histories are not available to creditors, most likely due to the lack of credit agencies. Mo-
tivated by the prevalent “starting small” phenomenon, we study a repeated lender-borrower game
with anonymous re-matching. The anonymity in re-matching captures the exogenous information
frictions brought about by the lack of credit bureaus and the like. Under a reasonable equilibrium
refinement, we show that if players are sufficiently patient and re-matching is highly likely, then
the loan size is strictly increasing over time along the equilibrium path of all non-trivial equilibria.
As such, our analysis illustrates how gradualism can facilitate trust over time in a society with-
out access to credit histories and thus help people partially overcome such extreme information
frictions. It also provides an novel explanation to the “starting small” phenomenon in long-term
relationships, especially in credit relationships.

In Chapter 2, we turn to scenarios where information frictions arise from people’s limited
information processing capacity. In particular, we are interested in finding optimal information
transmission protocols when the receiver of information is rationally inattentive. To this end, we
develop a model where a well-intentioned principal provides information to an agent for whom
information is costly to process, but the principal does not internalize this cost. We show that
full information is universally optimal if and only if the environment comprises one issue. With
multiple issues, attention management becomes optimal: the principal restricts some information
to induce the agent to pay attention to other aspects.

In Chapter 3, we naturally extend the above theoretical framework to a different setting where
the interests of the sender and the receiver of information are misaligned. In that model, a Sender
(seller) tries to persuade a rationally inattentive Receiver (buyer) to take a particular action (e.g.,
buying). Learning is costly for the Receiver who can choose to process strictly less information
than what the sender provides. In a binary-action binary-state model, we characterize optimal
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disclosure and provide a number of interesting results about the comparative statics with respect
to learning costs. As such, this chapter sheds light on how to persuade a rationally inattentive
decision maker.

Altogether, these three chapters present a holistic view of my doctoral studies on the implica-
tions of and solutions to information frictions in both static and dynamic settings. It is the author’s
sincere wish to continue investigating similar topics during the professional career and to further
advance our knowledge and understanding of these economic issues.
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Appendix A

Proofs for Chapter 1

We present the proofs of Propositions 1 and 2 in this Appendix. Throughout Appendix A, we
assume that Assumption 1 holds.

Lemma 4. In any non-trivial social equilibrium, a relationship is never terminated by any player;
in addition, in any non-trivial orthodox social equilibrium, there is no default on the equilibrium
path.

Proof. The proof follows the lines of the paragraph preceding Proposition 1.

Lemma 5. Let (l, b) be an orthodox social equilibrium, and L = {Lt}t be the sequence of loan
sizes on its equilibrium path. We have that for all t:

Lt = maxL

s.t. L ≤ L∗,

∆(L) ≤ δ[V B
t+1(L)− λ′V B

0 (L)].

(A.1)

where V B
t (L) = Σ∞i=0δ

iC(Lt+i).

Proof. By Lemma 4, in any orthodox social equilibrium, a relationship is never terminated by any
player and there is no default on path; therefore, we can write the borrower’s continuation value
on path at the beginning of each period as V B

t (L) = Σ∞i=0δ
iC(Lt+i).

Note also that the borrower’s no-default constraint at t can be written as

∆(Lt) ≤ δ
[
V B
t+1(L)− λ′V B

0 (L)
]
.

where the LHS is the borrower’s current gains from defaulting onLt at t, and the RHS is the present
value of her future cost from defaulting, i.e., the difference between the value of continuing the
relationship by repaying and the value of terminating the relationship by defaulting.

Now we prove (A.1) by contradiction. Let (l, b) be an orthodox social equilibrium such that
(A.1) does not hold. Let t be the first period that (A.1) fails. Since ∆(·) is strictly increasing, either
∆(Lt) > δ[V B

t+1(L)− λ′V B
0 (L)], or Lt < L∗ and ∆(Lt) < δ[V B

t+1(L)− λ′V B
0 (L)].
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If ∆(Lt) > δ[V B
t+1(L) − λ′V B

0 (L)], since there is no default on the equilibrium path and the
no-default constraint is violated, the borrower will be better off by a one-shot deviation to default
at time t. This is a contradiction to (l, b) being mutual perfect best responses.

If Lt < L∗ and ∆(Lt) < δ[V B
t+1(L) − λ′V B

0 (L)], choose L′t such that Lt < L′t ≤ L∗ and
∆(L′t) < δ[V B

t+1(L) − λ′V B
0 (L)]. Denote by V ′Bt+1 and V ′Lt+1 of the continuation values for the

borrower and the lender at (t + 1)0 following history {L1, L2, ..., Lt−1, L
′
t} (without default). By

the fact that (l, b) is a social equilibrium, at time t with history {L1, L2, ..., Lt−1} (without default),
the lender should not find it profitable to offer L′t. This implies that either L′t does not induce
default and the lender gets weakly worse off, i.e.,

R(L′t) + δV ′Lt+1 ≤ R(Lt) + δV L
t+1(L), (A.2)

or L′t induces default, which means that from the borrower’s viewpoint,

∆(L′t) ≥ δ[V ′Bt+1 − λ′V B
0 (L)]. (A.3)

Since L′t > Lt andR is strictly increasing, we know that (A.2) implies V ′Lt+1 < V L
t+1(L). Also, since

by construction ∆(L′t) < δ[V B
t+1(L) − λ′V B

0 (L)], we know that (A.3) implies V ′Bt+1 < V B
t+1(L).

Therefore, either V ′Lt+1 < V L
t+1(L) or V ′Bt+1 < V B

t+1(L). However, note that the loan sizes in history
{L1, L2, ..., Lt−1, L

′
t} (without default) and in {L1, L2, ..., Lt−1, Lt} (without default) only differ

in the last period with L′t > Lt, thus we have reached a contradiction to part (ii) of Definition 2 of
orthodox social equilibrium.44

Lemma 6. Let (l, b) be an orthodox social equilibrium, and L = {Lt}t be the sequence of loan
sizes on its equilibrium path. If {Lt}t satisfies:

∆(Lt) = δ[V B
t+1(L)− λ′V B

0 (L)], for all t ≥ 0, (A.4)

where V B
t (L) = Σ∞i=0δ

iC(Lt+i), then {Lt}t is strictly monotonic or constant.

Proof. We first show that {Lt}t is either weakly increasing or strictly decreasing. Take any {Lt}t
satisfying (A.4). From (A.4), we have:

∆(Lt)−∆(Lt−1) = δΣ∞τ=tδ
τ−t[C(Lτ+1)− C(Lτ )], for all t ≥ 1. (A.5)

Suppose {Lt}t is not weakly increasing. Then there exists a t such that Lt+1 < Lt. Since ∆ and
C are strictly increasing, (A.5) implies there must be infinitely many t, such that Lt+1 < Lt. We
consider the following 2 cases.

Case 1: There exists a T , such that Lt+1 < Lt for all t ≥ T . That is, eventually {Lt}t becomes
strictly decreasing. We claim that in this case, {Lt}t must be a strictly decreasing sequence (from

44In fact, the contradiction is reached because the values from the rest of the game for both parties following
any history (in particular, {L1, L2, ..., Lt−1, L

′
t} (without default)) are weakly higher than the remaining values of

the current relationship following the same history (since the former includes both the latter and the values from the
possibility of re-matching if the relationship is terminated at some date later).
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time 0). To see this, notice that since Lt+1 < Lt for all t ≥ T , we know from (A.5) that LT −
LT−1 < 0, i.e., LT < LT−1, because ∆ and C are strictly increasing. Apply this step all the way
back to t = 1 to obtain Lt < Lt−1 for all t ≥ 1. So {Lt}t is a strictly decreasing sequence.

Case 2: There does not exist a T , such that Lt+1 < Lt for all t ≥ T . That is, {Lt}t never
becomes strictly decreasing after any T . Now let t1 ≥ 1 be the smallest time index, such that
Lt1 < Lt1−1. By the assumption in Case 2, there is a t2 ≥ t1, such that Lt2 < Lt2−1 but Lt2+1 ≥
Lt2 . Now consider Lt2 . By (A.5), we have:

0 >∆(Lt2)−∆(Lt2−1) = δ{[C(Lt2+1)− C(Lt2)] + δ[C(Lt2+2)− C(Lt2+1)] + ...}, (A.6)
0 ≤∆(Lt2+1)−∆(Lt2) = δ{[C(Lt2+2)− C(Lt2+1)] + δ[C(Lt2+3)− C(Lt2+2)] + ...}. (A.7)

Let:

K = (1− δ){[C(Lt2+1)− C(Lt2)] + δ[C(Lt2+2)− C(Lt2+1)] + ...}
= (1− δ)Σ∞τ=t2

δτ−t2 [C(Lτ+1)− C(Lτ )] (A.8)
< 0,

where the inequality follows directly from (A.6). We claim that (1− δ){[C(Lt2+2)−C(Lt2+1)] +
δ[C(Lt2+3) − C(Lt2+2)] + ...} < K < 0, which is a contradiction to (A.7). To see this, assume
that (1− δ){[C(Lt2+2)− C(Lt2+1)] + δ[C(Lt2+3)− C(Lt2+2)] + ...} ≥ K. Then:

K = (1− δ){[C(Lt2+1)− C(Lt2)] + δ[C(Lt2+2)− C(Lt2+1)] + ...}

≥ (1− δ)
{

[C(Lt2+1)− C(Lt2)] +
δK

1− δ

}
> (1− δ)

(
K +

δK

1− δ

)
= K,

where the second line follows from the assumption we just made and the third line follows from
C(Lt2+1)− C(Lt2) ≥ 0 > K. So Case 2 is not possible.

Combining Case 1 and 2, we conclude that any {Lt}t satisfying (A.4) must be either weakly
increasing or strictly decreasing.

Now we show that in the case that {Lt}t is weakly increasing, it must be either strictly in-
creasing or constant. Take any {Lt}t satisfying (A.4) and weakly increasing. If it is not strictly
increasing, then there exists a smallest t, call it t3, such that Lt3 = Lt3−1. According to (A.5), since
{Lt}t is weakly increasing, RHS of (A.5) at t = t3 is 0 only if Lt+1 = Lt for all t ≥ t3. Therefore.
{Lt}t is constant from t3 − 1. Now we show that t3 = 1. Assume not, i.e., t3 ≥ 2. Since {Lt}t is
weakly increasing and t3 is the smallest t, such that Lt = Lt−1, we have Lt3−1 > Lt3−2. According
to (A.5), we should have:

∆(Lt3−1)−∆(Lt3−2) = δΣ∞τ=t3−1δ
τ−(t3−1)[C(Lτ+1)− C(Lτ )]. (A.9)
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Notice that RHS of (A.9) is 0 because we have already proved that {Lt}t is constant from t3 − 1,
whereas LHS of (A.9) is positive. So (A.9) cannot hold, a contradiction. Therefore, t3 = 1,
which implies that {Lt}t has to be a constant sequence, if it is weakly increasing but not strictly
increasing.

Therefore, we conclude that for any {Lt}t satisfying (A.4), it is strictly monotonic or constant.

Lemma 7. Let (l, b) be an orthodox social equilibrium, and L = {Lt}t be the sequence of loan
sizes on its equilibrium path. Then {Lt}t must satisfy one and only one of the following four
properties:
(i) it is strictly increasing;
(ii) it is constant;
(iii) it is strictly decreasing;
(iv) it is constant at L∗ until some T and then becomes strictly decreasing.

Proof. By Lemma 5, we already know that {Lt}t satisfies (A.1). Consider the following 2 cases:
Case 1: Lt < L∗, for all t ≥ 0, i.e., the 1st constraint in (A.1) never binds, which implies that

{Lt}t satisfies (A.4). By Lemma 6, {Lt}t satiesfies (i), (ii) or (iii) in Lemma 7.
Case 2: Lt = L∗, for some t ≥ 0. Note first that if LT = L∗, then LT−1 = L∗, which implies

Lt = L∗ for all t ≤ T . To see this, consider time T − 1. The RHS of the 2nd constraint in (A.1) at
time T − 1 is: δ[V B

T (L)− λ′V B
0 (L)]. Notice that:

V B
T (L) = Σ∞i=0δ

iC(LT+i)

= C(LT ) + δV B
T+1(L)

= C(L∗) + δV B
T+1(L)

≥ V B
T+1(L),

where the last line follows from V B
T+1(L) ≤ C(L∗)

1−δ because C is strictly increasing. Then we have:

δ[V B
T (L)− λ′V B

0 (L)] ≥ δ[V B
T+1(L)− λ′V B

0 (L)] ≥ ∆(L∗). (A.10)

(A.10) implies that at time T − 1, L∗ is the solution to (A.1). Apply this argument all the way back
to t = 0 to obtain that Lt = L∗ for all t ≤ T .

Now let t4 be the period such that Lt = L∗ for all t ≤ t4, and Lt < L∗ for all t ≥ t4 + 1. If
such a t4 does not exist, then {Lt}t is a constant sequence at L∗, which satisfies (ii) in Lemma 7,
so we’re done. If t4 exists, we claim that Lt+1 > Lt, for all t ≥ t4.

To see this, notice first that the 2nd constraint in (A.1) is binding for all t ≥ t4 + 1 because
Lt < L∗ for all these t’s. Then by Lemma 6, {Lt}t from t = t4 + 1 has to be strictly increasing,
or strictly decreasing or constant. We now show that it must be strictly decreasing. Assume not,
then it must be strictly increasing or constant from t4 + 1. By definition of V B

t (L), we have
V B
t4+2(L) ≥ V B

t4+1(L), which implies:

δ[V B
t4+2(L)− λ′V B

0 (L)] ≥ δ[V B
t4+1(L)− λ′V B

0 (L)] ≥ ∆(L∗), (A.11)
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where the last inequality follows from Lt4 = L∗. But this implies that at time t4 + 1, L∗ is the
solution to (A.1), a contradiction to {Lt}t being on equilibrium path and Lt4+1 < L∗. Therefore,
{Lt}t has to be strictly decreasing from t4 + 1, meaning that it satisfies (iv) in Lemma 7.

Proof of Proposition 1. Let ᾱ = supL∈(0,L∗]
C(L)
D(L)

and α = infL∈(0,L∗]
C(L)
D(L)

. Under Assumption 1,
we have 0 < α ≤ ᾱ < 1. Now define δ∗ ≡ 1− α and λ∗δ ≡ ᾱ+δ−1

δ
. We will show that such δ∗ and

λ∗δ work.
As we already defined, λ′ = λ

1−(1−λ)δ
. It can be checked that λ′ > ᾱ+δ−1

δᾱ
, iff λ > ᾱ+δ−1

δ
.

Call a sequence {Lt}t an equilibrium loan sequence if it satisfies (A.1) for all t. We first that
show any non-trivial equilibrium loan sequence {Lt}t cannot be a constant sequence. Assume it
were, i.e., 0 < Lt = L̃ ≤ L∗ for all t ≥ 0. Then we directly know that V B

t (L) = C(L̃)
1−δ for all t.

Now we check the 2nd constraint in (A.1):

δ[V B
t (L)− λ′V B

0 (L)] = δ

[
C(L̃)

1− δ
− λ′C(L̃)

1− δ

]

< δ

(
1− ᾱ + δ − 1

δᾱ

)
C(L̃)

1− δ

= δ
(1− ᾱ)(1− δ)

δᾱ

C(L̃)

1− δ

=
(1− ᾱ)

ᾱ
C(L̃)

≤ D(L̃)− C(L̃),

where the second line (strictly inequality) follows from the condition λ′ > ᾱ+δ−1
δᾱ

, and the last line

follows from ᾱ = supL∈[0,L∗]
C(L)
D(L)

≥ C(L̃)

D(L̃)
. This implies that (A.1) is not satisfied (at any t), a

contradiction to {Lt}t being an equilibrium loan sequence. Therefore {Lt}t cannot be a constant
sequence when λ′ > ᾱ+δ−1

δᾱ
.

By Lemma 7 and the result above, we know that {Lt}t is convergent, and (A.4) is eventually
satisfied by {Lt}t after some T ; that is, there exists a T , such that (A.4) is satisfied for all t ≥ T .45

Let L̄ be the limit of {Lt}t. By definition of V B
t (L), it converges to C(L̄)

1−δ . As (A.4) is eventually
satisfied, we must have:

D(L̄)− C(L̄) = δ[
C(L̄)

1− δ
− λ′V B

0 (L)], (A.12)

45This is because, the only case where (A.4) is not necessarily eventually satisfied (i.e., the 2nd constraint of (A.1)
is not eventually binding) is that {Lt}t is constant at L∗, which has just been ruled out.
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which gives us:

V B
0 (L) =

δC(L̄)− (1− δ)[D(L̄)− C(L̄)]

(1− δ)δλ′

≤
δ − (1− δ)( 1

ᾱ
− 1)

(1− δ)δλ′
C(L̄)

<
C(L̄)

1− δ
,

(A.13)

where the second line follows from D(L̄)

C(L̄)
≥ 1

ᾱ
, and the third line is obtained by using λ′ > ᾱ+δ−1

δᾱ
.

Among the four possible properties in Lemma 7 one of which {Lt}t has to satisfy, only if {Lt}t
is strictly increasing will (A.13) hold. Therefore we conclude that when λ′ > ᾱ+δ−1

δᾱ
, the loan sizes

along the equilibrium path of any non-trivial orthodox social equilibrium must be strictly increas-
ing.

Proof of Proposition 2. We keep the definition of δ∗ and λ∗δ , i.e., δ∗ ≡ 1 − α and λ∗δ ≡ ᾱ+δ−1
δ

,
where ᾱ = supL∈(0,L∗]

C(L)
D(L)

and α = infL∈(0,L∗]
C(L)
D(L)

.
We first establish the existence of an equilibrium loan sequence, i.e., the sequence that satisfies

(A.1). Define:

D̂(L) =

{
D(L), if L ∈ [0, L∗];

D(L∗) + (L− L∗), if L > L∗;

Ĉ(L) =

{
C(L), if L ∈ [0, L∗];

C(L∗) + C(L∗)
D(L∗)

(L− L∗), if L > L∗.

Notice that by construction, D̂ and Ĉ are continuous extensions of D and C, respectively; both
are strictly increasing and unbounded above, satisfying infL>0

Ĉ(L)

D̂(L)
= infL∈[0,L∗]

C(L)
D(L)

= α and

supL>0
Ĉ(L)

D̂(L)
= supL∈[0,L∗]

C(L)
D(L)

= ᾱ.

As implied by Lemma 7, any equilibrium loan sequence converges. Given this property, pick
any L̄ ∈ [0, L∗], we can construct as follows a unique equilibrium loan sequence {Lt}t converging
to L̄:

V B
0 =

C(L̄)
1−δ −D(L̄)

δλ′
, (A.14)

Lt = D̂−1(V B
t − δλ′V B

0 ), (A.15)

V B
t+1 =

V B
t − Ĉ(Lt)

δ
. (A.16)

We first show that {Lt, V B
t }t constructed above is well-defined. It is enough to show that

V B
t − δλ′V B

0 > 0 for all t because then by the fact that D̂ is continuous, strictly increasing and
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unbounded we know Lt is well-defined. To see V B
t − δλ′V B

0 > 0, note that (A.15) implies that
{V B

t }t satisfies:
D̂(Lt) + δλ′V B

0 = V B
t .

Combining with (A.16) we have:

D̂(Lt)

Ĉ(Lt)
(V B

t − δV B
t+1) + δλ′V B

0 = V B
t .

Rearranging, we get:

V B
t+1 =

1− Ĉ(Lt)

D̂(Lt)

δ
V B
t +

Ĉ(Lt)

D̂(Lt)
λ′V B

0 . (A.17)

By (A.14) and the assumption that δ ≥ 1−inf C(L)
D(L)

, we first have V B
0 > 0, so that V B

0 −λ′δV B
0 > 0.

Then by induction on (A.17), we have V B
t > δλ′V B

0 for all t. Therefore {Lt, V B
t }t constructed in

(A.14) through (A.16) is well-defined.
Now we show that {V B

t }t is bounded. Consider another sequence {V̂t}t such that V̂0 = V B
0

and
V̂t+1 =

1− α
δ

V̂t + V̂0. (A.18)

Since for all t, 1 > Ĉ(Lt)

D̂(Lt)
≥ α ≡ inf Ĉ(L)

D̂(L)
, we know from (A.17) and (A.18) that V B

t ≤ V̂t for all t.

Note also that the solution to {V̂t}t is:

V̂t = V̂0

(
δ

α + δ − 1
− 1− α
α + δ − 1

(
1− α
δ

)t
)
, (A.19)

which is bounded because 1−α
δ
< 1 as assumed. Then we know that {V B

t }t is bounded above, and
because V B

t − δλ′V B
0 > 0 for all t and V B

0 > 0 as we have shown, it is also bounded below. Thus
{V B

t }t is bounded.
Now we claim that {Lt, V B

t }t satisfies: for all t ≥ 0,

D̂(Lt)− Ĉ(Lt) = δ[V B
t+1 − λ′V B

0 ], (A.20)

V B
t = Σ∞i=0δ

iĈ(Lt+i). (A.21)

It can be checked that (A.20) is obtained by substituting (A.16) into (A.15), and (A.21) is obtained
by expanding (A.16) recursively and using the boundedness of {V B

t }t.
By applying Lemma 6 to (A.20) and (A.21),46 we know that {Lt}t is monotonic. Since Ĉ

are strictly increasing, V B
t by (A.21) is monotonic. Because {V B

t }t is also bounded, as we have
just shown, {V B

t }t is convergent. Then by (A.20) again, {Lt}t is also convergent. But then, by
construction of V B

0 in (A.14), we have Lt → L̄.
46Note that the proof of Lemma 6 only use the conditions that D, C and D−C are strictly increasing, which hold

for D̂, Ĉ and D̂ − Ĉ here.
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Because {Lt}t can only be strictly increasing, strictly decreasing or constant (by Lemma 6),
then using the condition λ > λ∗δ ≡ ᾱ+δ−1

δ
and by the same deduction as in (A.13), we know that

Lt strictly increases to L̄ ≤ L∗. This in turn implies that Lt ∈ [0, L∗] for all t, and by definition of
D̂ and Ĉ as well as (A.20) and (A.21), we have:

∆(Lt) = δ[V B
t+1 − λ′V B

0 ], (A.22)

V B
t = Σ∞i=0δ

iC(Lt+i). (A.23)

Therefore, {Lt}t satisfies (A.1), meaning that it is an equilibrium loan sequence converging to L̄.

Finally we show the existence of an orthodox social equilibrium by construction. Let L∗ =
{L∗t}t be the (unique) equilibrium loan sequence converging to L̄ = L∗. We construct (l, b) as
follows: l = {l0, l1, ...}, b = {b0, b1, ...}, where for all t, lt = (L̃t0 , f̃t2), bt = (d̃t1 , g̃t2), in which:

L̃t0 [h(t0)] =

{
L∗t , if dτ = 0, for all τ < t;

0, otherwise;
(A.24)

d̃t1 [h(t1)] =

{
0, if ∆(Lt) ≤ δ[V B

t+1(L∗)− λ′V B
0 (L∗)]; and for all τ < t, dτ = 0;

1, otherwise;
(A.25)

f̃t2 [h(t2)] =

{
1, if for all τ ≤ t, dτ = 0;

0, otherwise;
(A.26)

g̃t2 [h(t2)] =

{
1, if for all τ ≤ t, dτ = 0;

0, otherwise.
(A.27)

Recall that L̃t0 is the loan offered in period t, d̃t1 is the defaulting decision in period t, and
f̃t2 and g̃t2 are continuation decisions in period t. Equations (A.24) through (A.27) describe the
following strategy profile.

• For the lender, in period t, as long as default has never happened, she offers L∗t and continues
the relationship, regardless of whether or not they are on the equilibrium path (i.e., regardless
of previous loan sizes);47 if default has happened before, she offers 0 loan and terminates the
relationship.

• For the borrower, in period t, she will repay as long as the current benefit from defaulting
is less than its future cost and default has never happened; otherwise, she will default. The
borrower continues the relationship if and only if she never defaulted before.

One particular feature of this construction is that, no matter Lt is on or off equilibrium path, the
borrower’s perception of her future value is always the one on path, i.e., V B

t+1(L∗), as long as
default never happened. This is a correct perception given the lender’s strategy.

47In other words, as long as default never occurred, the lender always offers the on-path loan size L∗t even if the
previous loans were off equilibrium path.
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Now we show that the constructed (l, b) is an orthodox social equilibrium. By construction
of L̃t0 in (A.24), part (ii) of Definition 2 is satisfied because at the beginning of a given date the
continuation values are always the same as long as there is no default. By construction of f̃t2 in
(A.26), part (i) of Definition 2 are satisfied. It remains to be shown that (l, b) is a social equilibrium,
i.e., given that the re-match values being V L

0 and V B
0 , (l, b) are sequentially rational with respect

to each other. Since this is a game with complete information, it is sufficient to check for one-shot
deviation at all possible histories.

First consider h(t0). At history h(t0) such that dτ = 0 for all τ < t, i.e., there is no default
before t, if the lender sets Lt > L∗t , we know from (A.25) that this will induce default. But then
by (A.26), this will result in the termination of the current relationship. So by setting Lt > L∗t , the
lender’s payoff changes from V L

t (L∗) to δλ′V L
0 (L∗), where V L

t (L∗) = Σ∞i=0δ
iR(Lt+i). As {L∗t}t

is strictly increasing, V L
t (L∗) > V L

0 (L∗) > δλ′V L
0 (L∗), so this deviation is not profitable. If the

lender sets Lt < L∗t , based on (l, b) the borrower will not default and the loan sequence {L∗t}t will
be restored from next period; so this deviation just lowers the lender’s current payoff from R(L∗t )
to R(Lt) while keeping future payoff constant, which is not profitable.

At history h(t0) such that dτ = 1 for some τ < t, i.e., there exists default before t but the
relationship is not yet terminated, we know from (A.25) and (A.26) that no matter what the lender
offers, the borrower will default and the relationship will be terminated at the end of this period.
Then offering anything larger than 0 will not be a profitable deviation for the lender.

Now consider h(t1). At history h(t1) such that ∆(Lt) ≤ δ[V B
t+1(L∗)− λ′V B

0 (L∗)] and dτ = 0,
for all τ < t, a one-shot deviation to default will result in the termination of the current relationship,
which is not profitable for the borrower exactly because ∆(Lt) ≤ δ[V B

t+1(L∗)− λ′V B
0 (L∗)].

At history h(t1) such that ∆(Lt) > δ[V B
t+1(L∗) − λ′V B

0 (L∗)] or dτ = 1 for some τ < t, i.e.,
either the extra payoff from default is higher than its cost, or there exists default record before
t (or both) so that the current relationship will be terminated at the end of this period no matter
whether she defaults. In both cases the borrower is better off by defaulting. So there is no profitable
deviation.

Finally consider h(t2). At history h(t2) such that dτ = 0 for all τ ≤ t, i.e., there is no
default at or before t, if the lender one-shot deviates to terminating the relationship, she will get
R(L∗t ) + δλ′V L

0 (L∗) instead of R(L∗t ) + δV L
t+1(L∗), which is not profitable because {V L

t (L∗)}t is
increasing in t. Similarly, if the borrower one-shot deviates to terminating the relationship, she will
get C(L∗t )+ δλ′V B

0 (L∗) instead of C(L∗t )+ δV B
t+1(L∗), which is not profitable because {V B

t (L∗)}t
is increasing in t.

At history h(t2) such that dτ = 1 for some τ < t, i.e., default happens at or before t but the
relationship is not yet terminated, if the lender or the borrower one-shot deviates to continuing the
relationship, the relationship will still be terminated because the other party will do so according
to her equilibrium strategy. So such a one-shot deviation will not change anything, which is not
profitable.

Therefore, at no history can we find a profitable one-shot deviation for any player, so (l, b) are
sequentially rational with respect to each other.
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Appendix B

Proofs for Chapter 2

Toward the proof of Theorem 1
We first introduce some additional notation

For any f : X → ∆Y, x ∈ X and Borel B ⊆ Y , let f(B|x) := (f(x)) (B).
Define the barycentre map βX : ∆∆X → ∆X by βX(X̂|m) :=

∫
∆X

γ(X̂)dm(γ), ∀m ∈
∆∆X, Borel X̂ ⊆ X . In other words, βX(m) = Eν∼m(ν) for all m ∈ ∆∆X . Note that R(µ) =
β−1

Θ (µ), by definition.
Define Φ : ∆∆∆Θ → (∆∆Θ)2 by Φ (P) =

(
β∆Θ(P),P ◦ β−1

Θ

)
. While we offer no specific

interpretation to this map, it will be of use in deriving required properties of the Blackwell order.
Define the garbling correspondence G : ∆∆Θ ⇒ ∆∆Θ by

G(p) :=
{
q ∈ ∆∆Θ : p �B q

}
.

We can view the principal’s problem as a delegation problem in which she offers the agent a
delegation set Ĝ ∈ {G(p)}p∈R(µ), and the agent makes a selection q ∈ Ĝ. Recall, the agent’s
optimal garbling correspondence G∗ : ∆∆Θ ⇒ ∆∆Θ is given by

G∗(p) := argmax
q∈G(p)

∫
∆Θ

UA dq.

Claim 1. βX is continuous for every compact metrizable space X .

Proof. This follows from Phelps[38, Proposition 1.1].

Claim 2. Φ is continuous.

Proof. Suppose {Pn}n ⊆ ∆∆∆Θ converges to P. Since ∆Θ is compact metrizable, β∆Θ(Pn) →
β∆Θ(P), by Claim 1. To show Pn ◦ β−1

Θ → P ◦ β−1
Θ , take any continuous and bounded function
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f : ∆→ R. Continuity of βΘ implies that f ◦ βΘ is continuous. Then,∫
∆Θ

f d
(
Pn ◦ β−1

Θ

)
=

∫
∆∆Θ

f ◦ βΘ dPn

→
∫

∆∆Θ

f ◦ βΘ dP

=

∫
∆Θ

f d
(
P ◦ β−1

Θ

)
where the second line follows from the weak convergence of Pn to P.

Claim 3. The partial order �B is given by �B= Φ(∆∆∆Θ).

Proof. First, take any p �B q witnessed by mean-preserving spread r : ∆Θ → ∆∆Θ as in
footnote 27. Define P := q ◦ r−1 ∈ ∆∆∆Θ. We now show that Φ(P) = (p, q). Notice that
R(ν) ∩ R(ν ′) = ∅ for ν 6= ν ′. Therefore, any ν ∈ ∆Θ satisfies β−1

Θ (ν) ∩ r(∆Θ) = r(ν). As a
result, for any Borel S ⊆ ∆Θ,

P ◦ β−1
Θ (S) = q ◦ r−1

(
β−1

Θ (S)
)

= q ◦ r−1(r(S)) = q(S),

and

β∆Θ(S|P) =

∫
∆∆Θ

p̃(S) dP(p̃) =

∫
∆∆Θ

p̃(S) d
[
q ◦ r−1

]
(p̃) =

∫
∆Θ

r(S|p̃) dq(p̃) = p(S).

Therefore, (p, q) = Φ(P).
Next, take any P ∈ ∆∆∆Θ and let (p̄, q̄) := Φ(P). We want to show that p̄ �B q̄. Notice that

we can view βΘ as a (∆Θ)-valued random variable on the probability space (∆∆Θ,B (∆∆Θ) ,P).
Let γ : ∆∆Θ → ∆∆Θ be a conditional expectation γ = Eq∼P [q|βΘ(q)], which exists by Chat-
terji[17, Theorem 1]. So γ is βΘ-measurable, and ∀ Borel S ⊆ ∆Θ, we have∫

∆∆Θ

q(S) dP(q) =

∫
∆∆Θ

γ(S|·) dP.

By Doob’s theorem[25, Lemma 1.13], there exists a measurable r : ∆Θ → ∆∆Θ such that
γ = r ◦ βΘ. Then, ∀ Borel S ⊆ ∆Θ,∫

∆Θ

r(S|·) dq̄ =

∫
∆∆Θ

(r ◦ βΘ) (S|·) dP =

∫
∆∆Θ

γ(S|·) dP

=

∫
∆∆Θ

q(S) dP(q) = β∆Θ(S|P) = p̄(S).

Now, that βΘ is affine and continuous implies

βΘ ◦ γ = E [βΘ ◦ id∆∆Θ|βΘ] ,
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which is P-a.s. equal to βΘ. That is, βΘ ◦ r ◦ βΘ = id∆Θ ◦ βΘ, a.s.-P. Equivalently, βΘ ◦ r = id∆Θ,
a.s.-q̄. Then the measurable function

r̄ : ∆Θ → ∆∆Θ

ν 7→

{
r(ν) : r(ν) ∈ R(ν)

δν : r(ν) /∈ R(ν)

is q̄-a.s. equal to r with βΘ ◦ r̄ = id∆Θ, so r̄ is a mean-preserving spread witnessing p̄ �B q̄.

Claim 4. �B is a continuous partial order, i.e., �B⊆ (∆∆Θ)2 is closed.

Proof. This follows from Claims 2 and 3, as the continuous image of a compact set is compact.

Claim 5. The garbling correspondence G is continuous and nonempty-compact-valued.

Proof. It is nonempty-valued because �B is reflexive, and upper hemicontinuous and compact-
valued by Claim 4. To show that G is lower hemicontinuous, fix some open D ⊆ ∆∆Θ. Then,

{p ∈ ∆∆Θ : G(p) ∩D 6= ∅} =
{
p ∈ ∆∆Θ : p �B q, q ∈ D

}
= {p : (p, q) ∈ Φ(∆∆∆Θ), q ∈ D}
= Φ1 ◦ Φ−1

2 (D)

= β∆Θ

(
Φ−1

2 (D)
)

where the second line follows from Claim 3, and the last line follows from the definition of Φ1. By
Claim 2, sinceD is open, so is Φ−1

2 (D). In addition, β∆Θ is an open map by O’Brien[36, Corollary
1]. So β∆Θ

(
Φ−1

2 (D)
)

is open, implying that G is lower hemicontinuous.

Claim 6. The optimal garbling correspondenceG∗ is upper hemicontinuous and nonempty-compact-
valued.

Proof. As the indirect utility functionUA is (by Berge’s theorem) continuous, so is q 7→
∫

∆Θ
UA dq.

The result then follows from Claim 5 and Berge’s theorem.

Claim 7. If q∗ ∈ R(µ) is such that (q∗, q∗) solves the principal’s problem (3.1), then there is a set
P ⊆ ext [R(µ)] such that q∗ ∈ coP and (p∗, p∗) solves the principal’s problem for every p∗ ∈ P .

Proof. By Choquet’s theorem, ∃Q ∈ ∆ [R(µ)] such that:

Q [extR(µ)] = 1,

β∆Θ(Q) = q∗.
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By Claim 6 and the Kuratowski-Ryll-Nardzewski Selection Theorem [3, Theorem 18.13, which
applies here by Theorem 18.10], there is some measurable selector g of G∗. The random posterior
qg := β∆Θ(Q ◦ g−1) is then a garbling of q∗. Moreover, that q∗ ∈ G∗(q∗) implies

0 ≤
∫

∆Θ

UA dq∗ −
∫

∆Θ

UA dqg

=

∫
extR(µ)

[∫
∆Θ

UA dq − max
q̃∈G(q)

∫
∆Θ

UA dq̃
]

dQ(q).

Since the latter integrand is everywhere nonpositive and the integral is nonnegative, it must be that
the integrand is almost everywhere zero. That is, q ∈ G∗(q) for Q-almost every q. Then, by Claim
6, q ∈ G∗(q) for every q ∈ supp(Q). Therefore, P := supp(Q) ∩ extR(µ) is as desired.

Claim 8. There is some p∗ ∈ ext [R(µ)] such that (p∗, p∗) solves the principal’s problem in (2.2).

Proof. The principal’s objective can be formulated as a mapping Graph(G∗) → R with (p, q) 7→∫
∆Θ

UP dq. It is upper semicontinuous and, by Claim 6, has compact domain. Therefore, there is
some solution (p̂, q∗) to (2.2). As G(q∗) ⊆ G(p̂), it is immediate that q∗ ∈ G∗(q∗); that is, q∗ is IC.
Letting P be as delivered by Claim 7, and taking any p∗ ∈ P completes the claim.

Claim 9. Given |Θ| <∞: p ∈ ext [R(µ)] if and only if supp(p) is affinely independent.48

Proof. First, we prove the “only if” direction. Take any p ∈ R(µ). Then µ ∈ co[supp(p)] =
co[supp(p)], where the equality follows from Θ being finite. By Carathéodory’s theorem, there
exists an affinely independent S ⊆ supp(p) such that µ ∈ co(S); without loss, let S be a smallest
such set. Since Θ is finite, S ⊂ R|Θ|, so affine independence implies that S is finite. Therefore,
∃N : S ⇒ ∆Θ such that, ∀ν ∈ S, the set N(ν) is a closed convex neighborhood of ν with
S ∩N(ν) = {ν}. Making {N(ν)}ν∈S smaller, we may assume for all selectors η of N , {η(ν)}ν∈S
is affinely independent.

Now define a specific selector η : S → ∆Θ by:

η(ν) = βΘ

(
p (N(ν) ∩ ·)
p (N(ν))

)
.49

Since µ ∈ co(S), ∃w ∈ ∆S such that
∑

ν∈S w(ν)η(ν) = µ, and (S being minimal) w(ν) > 0 for
all ν ∈ S. Let

q :=
∑
ν∈S

w(ν)
p (N(ν) ∩ ·)
p (N(ν))

ε := min
ν∈S

w(ν)

p(N(ν))

48Other than this claim, every step in the proof of Theorem 1 works verbatim for the case of a (possibly infinite)
compact metrizable state space. Thus, the theorem holds in that more general setting if we replace nonredundancy of
p with the condition that p ∈ extR(µ).

49Note that p(N(ν)) > 0 for every ν ∈ S ⊆ supp(p), so that η(ν) is well-defined. That N(ν) is closed and convex
for every ν ∈ S implies η is a selector of N .
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Note that q ∈ R(µ). Therefore, p−εq
1−ε ∈ R(µ) and p ∈ co

{
q, p−εq

1−ε

}
.

Now, if p ∈ ext [R(µ)], then it must be that q = p, even if we make each neighborhood
in {N(ν)}ν∈S smaller, for otherwise p ∈ co

{
q, p−εq

1−ε

}
contradicts p ∈ ext [R(µ)]. But then,

supp(p) = S, and since S is affinely independent, so is supp(p).
Now, we prove the “if” direction. Suppose p ∈ R(µ) has affinely independent support S.

Suppose q, q′ ∈ R(µ) have p = (1− λ)q + λq′ for some λ ∈ (0, 1). Then the support of q must be
contained in S. However, q is Bayes-plausible:∑

ν∈S

q(ν)ν = µ =
∑
ν∈S

p(ν)ν.

But S is affinely independent, implying that q(ν) = p(ν) for all ν ∈ S. That is, q = p. As q, q′, λ
were arbitrary, it must be that p is an extreme point.

Proof of Theorem 1. By Claim 8, a solution to (2.2) exists. By Claims 8 and 9, (2.2) admits some
optimal solution, (p∗, p∗), where supp(p∗) is affinely independent. This implies that p∗ ∈ G∗(p∗).
Finally, notice that the optimal value of the problem in (2.3) is no larger than that of (2.2). So
(p∗, p∗) is also a solution to (2.3).

Toward the proof of Theorem 2
We first prove a result that equivalently characterizes the Blackwell order, specialized to the case
where the more informative information policy has affinely independent support. This characteri-
zation is important in proving both the binary-state result, and later results.

Lemma 8. Suppose |Θ| <∞. ∀p, q ∈ R(µ) with p nonredundant,

p �B q ⇐⇒ supp(q) ⊆ co [supp(p)] .

The special case of this lemma with both information policies being finite support is the same
as Wu[50, Theorem 5]. We include this slightly more general, nearly identical proof for the sake
of completeness.

Proof. Take any p, q ∈ R(µ) with p nonredundant. Since Θ is finite, affine independence implies
that supp(p) is finite.

“If” part: Suppose supp(q) ⊆ co [supp(p)]. Since supp(p) is affinely independent, we can find
a unique r : supp(q)→ ∆ (supp(p)) such that r(·|νq) ∈ R(νq) for all νq ∈ supp(q); that is,

νq =
∑

νp∈supp(p)

νpr(νp|νq),∀νq ∈ supp(q). (B.1)
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Moreover, we have ∑
νp∈supp(p)

p(νp)νp = µ

=

∫
∆Θ

νq dq(νq)

=

∫
∆Θ

 ∑
νp∈supp(p)

r(νp|νq)νp

 dq(νq)

=
∑

νp∈supp(p)

[∫
∆Θ

r(νp|·) dq
]
νp,

where the first two equalities follow from p, q ∈ R(µ), the third equality follows from (B.1),
and the last equality comes from changing the order of summation. Since supp(p) is affinely
independent, the weights under which the average of the supported beliefs is µ is unique. So

p(νp) =

∫
∆Θ

r(νp|·) dq, ∀νp ∈ supp(p). (B.2)

From (B.1) and (B.2), we know that p is a mean-preserving spread of q (witnessed by r), thus
p �B q.

“Only if” part: Suppose p �B q is witnessed by r : supp(q) → ∆ (supp(p)) such that (B.1)
and (B.2) hold. By (B.1), we directly know that νq ∈ co [supp(p)] ,∀νq ∈ supp(q), thus supp(q) ⊆
co [supp(p)], as desired.

We now consider binary environments.

Proof of Theorem 2. Let pF := µ ◦ (δ(·))
−1 ∈ R(µ), the full disclosure policy. Theorem 1 delivers

an optimal IC policy p∗ ∈ R(µ) supported on at most two beliefs. The theorem is proved if we
find some q∗ ∈ G∗(pF ) with q∗ �B p∗. Indeed, convexity of UP would imply that

∫
∆Θ

UP dq∗ ≥∫
∆Θ

UP dp∗; and optimality of (pF , q∗) would then follow from optimality of (p∗, p∗). 50

If |supp(p∗)| = 1, then any q∗ ∈ G∗(p∗) has q∗ �B p∗. Now, focus on the complementary case,
|supp(p∗)| = 2. Identifying ∆Θ with [0, 1], say supp(p∗) = {ν0, ν1}, where 0 ≤ ν0 < µ < ν1 ≤ 1.

For any λ ∈ (0, 1), there is some ε ∈ (0, 1) such that ε(1−λ, λ) ≤ (p∗(ν0), p∗(ν1)). Therefore,
pλ := p∗ − ε [(1− λ)δν0 + λδν1 ] + εδ(1−λ)ν0+λν1 ∈ R(µ). As p∗ ∈ G∗(p∗) and pλ �B p∗, we have

0 ≤
∫

∆Θ

UA dp∗ −
∫

∆Θ

UA dpλ = ε [(1− λ)UA(ν0) + λUA(ν1)− UA ((1− λ)ν0 + λν1)] .

50Under a different preference specification with UP not convex, the same conclusion would obtain if UP − UA
were convex. Then we could deduce that∫

∆Θ

UP d(q∗ − p∗) ≥
∫

∆Θ

UA d(q∗ − p∗) ≥ 0,

the first inequality following from Jensen’s inequality, and the second following from G(p∗) ⊆ G(pF ).
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So, defining

r : ∆Θ → ∆∆Θ

ν 7→

{
(1− λ)δν0 + λδν1 : ν = (1− λ)ν0 + λν1 for some λ ∈ (0, 1),

δν : otherwise,

r is a mean-preserving spread with
∫

∆Θ
UA dr(·|ν) ≥ UA(ν) ∀ν ∈ ∆Θ.

Now, take any qF ∈ G∗(pF ), and define q∗ :=
∫

∆Θ
r dqF ∈ R(µ). As∫

∆Θ

UA dq∗ −
∫

∆Θ

UA dqF =

∫
∆Θ

[∫
∆Θ

UA dr(·|ν)− UA(ν)

]
dqF (ν) ≥ 0

and qF ∈ G∗(pF ), it follows that q∗ ∈ G∗(pF ) too. Also, by construction, q∗ ([0, ν0] ∪ [ν1, 1]) = 1,
so that q∗ �B p∗. The theorem follows.

Claim 10. For any p ∈ R(µ), the set G∗(p) admits a �B-maximal element.

Proof. Fix any p ∈ R(µ). By Claim 6, G∗(p) is nonempty and compact. By Claim 4, �B is a
continuous partial order. Therefore MAX(G∗(p),�B) 6= ∅.

Proofs of results for the Quadratic Model

Lemma 9. For any ν, ν ′ ∈ ∆Θ, UA|co{ν,ν′} is convex (concave) if and only if |Eθ∼ν(θ)−Eθ∼ν′(θ)| ≥
(≤)
√
κ||ν− ν ′||. Also, for any ν, ν ′, ν̃, ν̃ ′ ∈ ∆Θ such that ν− ν ′ = k(ν̃− ν̃ ′) for some k 6= 0, then

UA|co{ν,ν′} is convex (concave) if and only if UA|co{ν̃,ν̃′} is convex (concave).

Proof. This follows directly from the computation in equation (2.8).

Proof of Proposition 3. For the Quadratic Model, fixing any nonredundant p ∈ R(µ), we will
show that the following are equivalent:

1. p is IC.

2. UA|co{ν′,ν′′} is weakly convex, ∀ν ′, ν ′′ ∈ supp(p).

3. p is order-IC.

(1)⇒ (2): Suppose condition (2) does not hold. As UA is quadratic, there then exist ν ′, ν ′′ ∈
supp(p) such that UA|co{ν′,ν′′} is strictly concave. Define the finite-support random posterior q ∈
G(p) by

q(ν) =


0 : ν ∈ {ν ′, ν ′′}
p(ν ′) + p(ν ′′) : ν = p(ν′)

p(ν′)+p(ν′′)
ν ′ + p(ν′′)

p(ν′)+p(ν′′)
ν ′′

p(ν) : otherwise.
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In words, q is a random posterior that replaces ν ′, ν ′′ in supp(p) with their conditional mean. By
construction, p �B q, so that q ∈ G(p). Also, since UA|co{ν′,ν′′} is strictly concave, by Jensen’s
inequality, ∫

∆Θ

UA dq >
∫

∆Θ

UA dp.

This implies that p /∈ G∗(p), i.e., (1) does not hold.

(2) ⇒ (1): Suppose (2) holds. By Claim 10, there exists some Blackwell-maximal element
q∗ ∈ G∗(p). Since Θ is finite and supp(p) is affinely independent, we know that S := supp(p) is
finite, and that the map β : ∆S → co(S), defined by p 7→

∑
ν∈S p(ν)ν, is bijective.

Assume (toward a contradiction) that ∃ν∗ ∈ supp(q∗) \ S. As β is bijective and ν∗ /∈ S, we
know that β−1(ν∗) is not a point mass. So ∃ν ′, ν ′′ ∈ S and ε > 0 such that β−1(ν ′|ν∗), β−1(ν ′′|ν∗) >
2ε. By continuity, there exists a neighborhood N ⊆ co(S) of ν∗ such that:

β−1(ν ′|ν), β−1(ν ′′|ν) > ε,∀ν ∈ N.

Note that q∗(N) > 0 as ν∗ ∈ supp(q∗).
Define f+, f− : ∆Θ → ∆Θ by ν 7→ ν + ε(ν ′ − ν ′′)1ν∈N and ν 7→ ν − ε(ν ′ − ν ′′)1ν∈N ,

respectively.51 Also, define

q′ := 1
2
q∗ ◦ f−1

+ + 1
2
q∗ ◦ f−1

− ∈ ∆∆Θ.

By construction, q′ �B q∗. Also, sinceUA|co{ν′,ν′′} is convex, Lemma 9 tells us thatUA|co{ν±ε(ν′−ν′′)}
is also convex, ∀ν ∈ N . This implies∫

∆Θ

UA dq′ ≥
∫

∆Θ

UA dq∗,

so that q′ ∈ G∗(p), contradicting maximality of q∗. Therefore, supp(q∗) ⊆ S, i.e., q∗ ∈ ∆S. But β
is bijective and β(q∗) = µ = β(p), so that q∗ = p. Hence, p ∈ G∗(p), i.e., (1) holds.

(2) ⇒ (3): This follows directly from the application of Lemma 9 to any consecutive pair of
supported posteriors.

(3)⇒ (2): Suppose (3) holds. By order-IC, we then have a1 < · · · < am. Direct computation
then shows that, for any i, j ∈ {1, . . . ,m} with i < j:

νj − νi

aj − ai
= 1∑j−1

˜̀=i
(a˜̀+1−a˜̀)

j−1∑
`=i

(
ν`+1 − ν`

)
=

j−1∑
`=i

[
a`+1−a`∑j−1

˜̀=i
(a˜̀+1−a˜̀)

(
ν`+1 − ν`

a`+1 − a`

)]

∈ co

{
ν`+1 − ν`

a`+1 − a`

}j−1

`=i

.

51Since ν∗ /∈ S, one can choose ε and N small enough to ensure f+ and f− are well-defined ∆Θ-valued maps.
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As a norm is convex, and therefore quasiconvex, it follows that∥∥∥∥νj − νiaj − ai

∥∥∥∥ ≤ max
`∈{i,...,j−1}

∥∥∥∥ν`+1 − ν`

a`+1 − a`

∥∥∥∥ ≤ 1√
κ
.

The result then follows from Lemma 9.

Toward the proof of Proposition 5
Information policies with two supported messages are called binary policies, and those with three
supported messages are called ternary policies. With three states, any nonredundant policy (except
“no information”) is either binary or ternary.

In what follows, we represent the belief space ∆Θ parametrically. Let

B =
{

(a, z) ∈ R2 : z ∈ [0, 1], a ∈ [z − 1, 1− z]
}
.

For any (a, z) ∈ B, let

ν(a,z) = zδ0 +
1− z + a

2
δ1 +

1− z − a
2

δ−1.

So ν(a,z) ∈ ∆Θ has a = Eθ∼ν(a,z)(θ) and z = ν(a,z)(0). By construction, the map (a, z) 7→ ν(a,z) is
an affine bijection between B and ∆Θ.

Under this representation, the Dirac measures in ∆Θ are the extreme points of B: δ−1 = ν(−1,0),
δ0 = ν(0,1), and δ1 = ν(1,0). Also, the prior satisfies µ = ν(aµ,µ0), where aµ = µ1 − µ−1 and
(aµ, µ0) ∈ int(B). Without loss of generality, we focus hereafter on the case that aµ ≥ 0. Figure
B.1 depicts the (a, z) representation of the belief space.

(aµ, µ0)

a

z

(−1, 0)

(0, 1)

(1, 0)

RL

D

Figure B.1: (a, z)-Representation of ∆Θ

For any distinct beliefs ν = ν(a,z) and ν ′ = ν(a′,z′), let (∆a,∆z) = (a − a′, z − z′). The
derivation in the main text leading to (2.11) shows that

|a− a′| ≥
√
κ||ν − ν ′||

⇐⇒ κ ≤ 2, ∆a 6= 0, and
∣∣∣∣∆z∆a

∣∣∣∣ ≤
√

2− κ
3κ

=: s∗(κ) (B.3)
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By Proposition 3, a nonredundant p ∈ R(µ) is IC, if and only if (B.3) holds for any two consecutive
messages in supp(p).

Finally, we give the analytical expressions for the line segments L := co ({(0, 1), (−1, 0)}),
R := co ({(0, 1), (1, 0)}) and D := co ({(−1, 0), (1, 0)}).

L = {(a, z) : a ∈ [−1, 0], z = 1 + a} (B.4)
R = {(a, z) : a ∈ [0, 1], z = 1− a} (B.5)
D = {(a, z) : a ∈ [−1, 1], z = 0} (B.6)

Claim 11. Suppose p ∈ R(µ) \ {δµ} is nonredundant and IC, with support {ν(an,zn)}mn=1 such that
a1 < · · · < am.52 If p is principal-optimal, then neither (a1, z1) nor (am, zm) lies in int(B).

Proof. Suppose that (a1, z1) ∈ int(B). For sufficiently small ε > 0, interiority of (a1, z1) implies
that

(ã, z̃) := (a2, z2) + (1 + ε)(a1 − a2, z1 − z2) ∈ B,

and {ν(ã,z̃), ν(a2,z2), . . . , ν(am,zm)} is still affinely independent. There is then a mean-preserving
spread p̃ of p which is supported on {ν(ã,z̃), ν(a2,z2), . . . , ν(am,zm)}.53 As z2−z̃

a2−ã = z2−z1
a2−a1 by con-

struction, Proposition 3 tells us that p̃ is still IC. But the action distribution induced by p̃ is a strict
mean-preserving spread of that induced by p. By Observation 1, p cannot be principal-optimal.

A symmetric argument proves that p is suboptimal if (am, zm) ∈ int(B)

Below, we rule out ternary policies such that (when parametrized in B) the middle message lies
below the line segment between the two other messages.

Claim 12. Take any nonredundant ternary policy p ∈ R(µ) with support
{
ν(a1,z1), ν(a2,z2), ν(a3,z3)

}
such that a1 < a2 < a3. If p is IC and

z2 ≤ a3−a2
a3−a1 z1 + a2−a1

a3−a1 z3,

then p is not principal-optimal.

Proof. First, let us assume that z1 ≤ z3. Nonredundancy of p rules out the possibility that z2 =
a3−a2
a3−a1 z1 + a2−a1

a3−a1 z3; therefore,

z2 <
a3−a2
a3−a1 z1 + a2−a1

a3−a1 z3 ≤ z3.

Let s` := z2−z1
a2−a1 and sr := z3−z2

a3−a2 . Observe that

sr−s` = 1
a3−a2 z3 + 1

a2−a1 z1−
(

1
a2−a1 + 1

a3−a2

)
z2 = a3−a1

(a2−a1)(a3−a2)

[
a3−a2
a3−a1 z1 + a2−a1

a3−a1 z3 − z2

]
> 0.

52Nonredundancy implies that m ∈ {2, 3}.
53To construct it, take a dilation on ∆Θ which fixes each of ν(a2,z2), ..., ν(am,zm) and splits ν(a1,z1) to a measure

with support {ν(ã,z̃), ν(a2,z2)}.
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This implies sr > 0, because

(a2 − a1)s` + (a3 − a2)sr = z3 − z1 ≥ 0.

Letting pi := p
(
ν(ai,zi)

)
∈ (0, 1) for i = 1, 2, 3, consider a small ε > 0, and define the three

vectors,

(ã1, z̃1) = (a1, z1)

(ã2, z̃2) = (a2, z2 + p3ε)

(ã3, z̃3) = (a3, z3 − p2ε) .

All statements in what follows are taken to mean, when ε > 0 is sufficiently small.
Applying Jensen’s inequality to the concave function 1− | · | ,

z2 <
a3−a2
a3−a1 z1 + a2−a1

a3−a1 z3 ≤ a3−a2
a3−a1 (1− |a1|) + a2−a1

a3−a1 (1− |a3|) ≤ 1− |a2|.

Combining this with z3 > z2 ≥ 0 tells us that (ã2, z̃2) , (ã3, z̃3) ∈ int (B). Next, define p̃ ∈ ∆∆Θ
to be the measure which puts mass pi on ν(ãi,z̃i) for i = 1, 2, 3. Direct computation shows that
p̃ ∈ R(µ) and that p̃ generates the same action distribution as p. Observation 1 then tells us that p̃
yields the same principal payoff as does p. Now, to show that p̃ is IC, observe that z̃3−z̃2

ã3−ã2 = z̃3−z̃2
a3−a2 ∈

[0, sr] and z̃2−z̃1
ã2−ã1 = z̃2−z̃1

a2−a1 ∈ [s`, sr]. So p̃ is order-IC if p is. By Proposition 3, p̃ is IC because p is.
Since the principal is indifferent between p and p̃, p̃ is principal-optimal if p is. But Claim 11

tells us that (since (ã3, z̃3) ∈ int (B)) p̃ is not principal-optimal, and so p is not principal-optimal.
A symmetric argument proves the same result in the case z1 ≥ z3.

Claim 13. Suppose a nonredundant p ∈ R(µ) is IC. If there exists ν(a,z) ∈ supp(p) such that
(a, z) ∈ int (D), then p is not principal-optimal.

Proof. Say p has support {ν(a1,z1), . . . , ν(am,zm)} such that a1 < · · · < am and m = 1, 2, 3. First,
let us assume z1 ≤ zm.

If m = 1, the result follows from µ0 > 0, so assume otherwise.
If m = 3 and z2 ≤ a3−a2

a3−a1 z1 + a2−a1
a3−a1 z3, the result follows from Claim 12, so assume otherwise.

So we focus on the case that m ∈ {2, 3}; z1 = 0; and if m = 3, then z2 >
a2−a1
a3−a1 z3.

Letting pi := p
(
ν(ai,zi)

)
∈ (0, 1) for i ∈ {1, . . . ,m}, consider a small ε > 0 and, define,

(ãi, z̃i) =


(a1, z1 + p2ε) i = 1

(a2, z2 − p1ε) i = 2

(ai, zi) otherwise.

All statements in what follows are taken to mean, when ε > 0 is sufficiently small.
That z2 > 0 and (a1, z1) ∈ int (D) imply (ã1, z̃1) , (ã2, z̃2) ∈ int (B). Defining p̃ ∈ ∆∆Θ to

be the measure which puts mass pi on ν(ãi,z̃i) for i = 1, . . . ,m, observe that p̃ ∈ R(µ) and that p̃
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generates exactly the same action distribution as p. Just as in the proof of Claim 12, an appeal to
Claim 11 and Proposition 3 means we need only show that p̃ is order-IC.

But see that z̃2−z̃1
ã2−ã1 = z2−z1−(p1+p2)ε

a2−a1 ∈
[
0, z2−z1

a2−a1

]
. Moreover, in the ternary case, z2−z1

a2−a1 <
z3−z2
a3−a2

because z2 >
a2−a1
a3−a1 z3, so that z̃3−z̃2

ã3−ã2 = z3−z2+p2ε
a3−a2 ∈

[
z2−z1
a2−a1 ,

z3−z2
a3−a2

]
. The result follows.

A symmetric argument proves the same result in the case z1 ≥ z3.

Lemma 10. Take any nonredundant binary policy p ∈ R(µ) with supp(p) =
{
ν(a1,z1), ν(a2,z2)

}
such that a1 < a2. Suppose (p, p) is a solution to (2.2) (i.e., p is an optimal attention outcome).
Then,

1. (a1, z1) ∈ L, (a2, z2) ∈ R;

2.
∣∣∣ z2−z1a2−a1

∣∣∣ ≤ s∗(κ)

Proof. Claims 11 and 13 imply that (a1, z1), (a2, z2) ∈ L ∪R; that p ∈ R(ν(aµ,µ0)) and (aµ, µ0) ∈
int(B) then imply part (1). Part (2) follows from Proposition 3 and equation (B.3).

Lemma 11. Suppose 1
2
< κ < 2. Take any nonredundant ternary policy p ∈ R(µ) with supp(p) ={

ν(a1,z1), ν(a2,z2), ν(a3,z3)

}
such that a1 < a2 < a3. Suppose (p, p) is a solution to (2.2) (i.e., p is an

optimal attention outcome). Then,

1. (a2, z2) ∈ int (B), (a1, z1) ∈ L, (a3, z3) ∈ R;

2. z2−z1
a2−a1 = s∗(κ), z3−z2

a3−a2 = −s∗(κ).

Proof. Since p is nonredundant and IC, Claims 11 and 13 imply that (a1, z1), (a3, z3) ∈ L∪R. As
s∗(κ) < 1 when κ > 1

2
, it cannot be (given Proposition 3) that L contains two distinct beliefs in

the support of p; and similarly for R. This implies that (a1, z1) ∈ L, (a3, z3) ∈ R, and (a2, z2) ∈
B \ (L ∪R). But Claim 13 then rules out (a2, z2) ∈ D as well. This delivers part (1).

Now we prove part (2). To start, it follows from Proposition 3 and equation (B.3) that we have∣∣∣ z2−z1a2−a1

∣∣∣ , ∣∣∣ z3−z2a3−a2

∣∣∣ ≤ s∗(κ).

We now establish that
∣∣∣ z2−z1a2−a1

∣∣∣ =
∣∣∣ z3−z2a3−a2

∣∣∣ = s∗(κ). Assume (toward a contradiction) that this

does not hold. Let us first assume
∣∣∣ z2−z1a2−a1

∣∣∣ < s∗(κ). Consider a small ε > 0, and define

(ã1, z̃1) = (a1, z1)

(ã2, z̃2) = (1 + ε) (a2, z2)− ε (a3, z3)

(ã3, z̃3) = (a3, z3) .

Taking ε > 0 to be sufficiently small, {(ãi, z̃i)}3
i=1 will be three affinely independent vectors, all in

B, whose convex hull contains (0, µ0); and
∣∣∣ z̃2−z̃1ã2−ã1

∣∣∣ < s∗(κ). There is therefore a unique p̃ ∈ R(µ)
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whose support is {(ãi, z̃i)}3
i=1, and p̃ is order-IC, since

∣∣∣ z̃3−z̃2ã3−ã2

∣∣∣ =
∣∣∣ z3−z2a3−a2

∣∣∣ ≤ s∗(κ). Proposition
3 guarantees that p̃ is IC. But, by construction, the action distribution induced by p̃ is a strict
mean-preserving spread of that induced by p. Therefore, by Observation 1, p is not optimal, a
contradiction.

A symmetric argument derives the same contradiction in the case
∣∣∣ z3−z2a3−a2

∣∣∣ < s∗(κ). Therefore,

we have
∣∣∣ z2−z1a2−a1

∣∣∣ =
∣∣∣ z3−z2a3−a2

∣∣∣ = s∗(κ).

Finally, nonredundancy implies that z2−z1
a2−a1 6=

z3−z2
a3−a2 , and Claim 12 rules out the possibility that

z2−z1
a2−a1 < 0 < z3−z2

a3−a2 . Part (2) then follows.

We define three special information policies that will be used in the coming proofs.

• The “full disclosure” policy pF is such that supp(pF ) = {ν(−1,0), ν(0,1), ν(1,0)}

• The “no information” policy pN is such that supp(pN) = {µ}

• The orthogonal policy pO is such that supp(pO) = {ν(µ0−1,µ0), ν(1−µ0,µ0)}

The above lemmas can be combined into the following claim, which reduces our search for
optimal attention outcomes to a single two-dimensional problem.

Claim 14. Suppose 1
2
< κ < 2, and suppose the nonredundant policy p ∈ R(µ) is an optimal

attention outcome. Then there exist (a1, z1), (a2, z2), (a3, z3) ∈ B such that:

• (a1, z1) ∈ L, (a3, z3) ∈ R, and a1 ≤ a2 ≤ a3;

• z2 − z1 = s∗(κ)(a2 − a1), z3 − z2 = −s∗(κ)(a3 − a2);

• p{ν(a1,z1), ν(a2,z2), ν(a3,z3)} = 1.

Proof. As κ ≤ 2, the policy pO is IC, generating strictly higher principal payoffs than no informa-
tion. Therefore, p must be informative. Being nonredundant, it is either ternary or binary.

In the case that p is ternary, Lemma 11 delivers the result.
In the remaining case, p has binary support

{
ν(a1,z1), ν(a3,z3)

}
, where (a1, z1), (a3, z3) ∈ B

with a1 < a3. Lemma 10 then tells us that (a1, z1) ∈ L, (a3, z3) ∈ R, and
∣∣∣ z3−z1a3−a1

∣∣∣ ≤ s, where

s := s∗(κ). Moreover, s ∈ (0, 1) because 1
2
< κ < 2.

Now, the line of slope s through (a1, z1) and the line of slope−s through (a3, z3) have different
slopes (since s > 0), so that there they have a unique intersection point (a2, z2) ∈ R2. To prove the
claim, then, all that remains is to show is that a1 ≤ a2 ≤ a3 and (a2, z2) ∈ B.

Define, for ã2 ∈ R, the gap g(ã2) = [z3 − s(ã2 − a3)] − [z1 + s(ã2 − a1)], which strictly
decreases in ã2, so that g−1(0) = {a2}. Since

∣∣∣ z3−z1a3−a1

∣∣∣ ≤ s, g(a3) ≤ 0 ≤ g(a1). The intermediate
value theorem then says that a2 ∈ [a1, a3].
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As s ≤ 1, a2 ≥ a1, and (a1, z1) lies (weakly) below the line containing L, it follows that
(a2, z2) lies below that line as well. As s ≤ 1, a2 ≤ a3, and (a3, z3) lies (weakly) below the
line containing R, it follows that (a2, z2) lies below that line as well. As s ≥ 0, a2 ≥ a1, and
(a1, z1) lies (weakly) above the line containing D, it follows that (a2, z2) lies above that line as
well. Therefore (a2, z2) ∈ B.

Lemma 12. If 1
2
< κ < 2, then there exists an optimal attention outcome p such that one of the

following holds

• p is binary: supp(p) = {ν(a1,z1), ν(a2,z2)} for some (a1, z1) ∈ L, (a2, z2) ∈ R.

• p is ternary with critical slopes and support containing ν(1,0):54

supp(p) = {ν(a1,z1), ν(a2,z2), ν(1,0)} for some (a1, z1) ∈ L, (a2, z2) ∈ int(B) with z2−z1
a2−a1 =

s = z2
1−a2 .

Moreover, policies of the second form exist if and only if s∗(κ) > µ0
1−aµ .

Proof. Here, s := s∗(κ) ∈ (0, 1) because 1
2
< κ < 2.

Define the set T ⊆ R6 of tuples ((ai, zi))
3
i=1 ⊆ B3 such that:

• (a1, z1) ∈ L, (a3, z3) ∈ R, and a1 ≤ a2 ≤ a3;

• z2 − z1 = s(a2 − a1), z3 − z2 = −s(a3 − a2);

• (aµ, µ0) ∈ co{(a1, z1), (a2, z2), (a3, z3)}.

As s > 0, it follows that every element t ∈ T has {t1, t2, t3} an affinely independent subset of B.55

Given that (aµ, µ0) ∈ co{t1, t2, t3}, it follows that there is a unique pTt ∈ R(µ) ∩∆{νt1 , νt2 , νt3}.
The policy pTt is IC by Proposition 3. Moreover, Claim 14 tells us that any nonredundant optimal
attention outcome is of this form. Accordingly, we can reformulate the principal’s problem as
maxt∈T

∫
∆Θ

UP dpTt .
Toward a parametrization of T , let A := {(a1, a2) : t = (a1, z1, a2, z2, a3, z3) ∈ T }.
Given t = (a1, z1, a2, z2, a3, z3) ∈ T , we can infer the following:

• That (a1, z1) ∈ L implies z1 = 1 + a1.

• Then, z2 = z1 + s(a2 − a1) = 1 + (1− s)a1 + sa2.

• Finally, (a3, z3) belongs both to R (so that z3 = 1− a3) and to the line of slope −s through
(a2, z2)—uniquely pinning it down as these two lines have different slopes. Direct computa-
tion then shows that (a3, z3) = (−a1 − 2s

1−sa2, 1 + a1 + 2s
1−sa2).

54Recall our normalization that aµ ≥ 0.
55In the extreme case where a2 = a1 (or a2 = a3), (a2, z2) and (a1, z1) (or (a2, z2) and (a3, z3)) collapse to one

point, so that {t1, t3} is still an affinely independent subset of B.
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So, for any (a1, a2) ∈ R2, let

t(a1, a2) := (a1, 1 + a1, a2, 1 + (1− s)a1 + sa2, −a1 − 2s
1−sa2, 1 + a1 + 2s

1−sa2) ∈ R6.

Consistent with the previous notation, let

t1(a1, a2) = (a1, 1 + a1),

t2(a1, a2) = (a2, 1 + (1− s)a1 + sa2),

t3(a1, a2) = (−a1 − 2s
1−sa2, 1 + a1 + 2s

1−sa2).

The above derivations show that T = {t(a1, a2)}(a1,a2)∈A. Hence, we can view the principal’s
problem as max(a1,a2)∈A

∫
∆Θ

UP dpTt(a1,a2).
Now we consider two cases separately.

• If (a1, a2) ∈ A and t2(a1, a2) 6= t3(a1, a2) (i.e., a2 6= −1−s
1+s

a1), then

a1 (1− s) + a2 (1 + s) 6= 0.

Moreover, a1 < a2.56 Therefore, given (a1, a2) ∈ A, the following three numbers are all
well-defined:

p2(a1, a2) :=
a1(a1 + 1− µ0)(1− s) + a2(2a1 + 1− µ0 − aµ)s

−s(a2 − a1) [a1 (1− s) + a2 (1 + s)]
,

p3(a1, a2) :=
(1− s) [saµ + (1− s) a1 + (1− µ0)]

−2s [a1 (1− s) + a2 (1 + s)]
,

p1(a1, a2) := 1− p2(a)− p3(a).

Observe that p1(a) + p2(a) + p3(a) = 1 and
∑3

i=1 pi(a)(ai, zi) = (aµ, µ0). The affine
independence property of {ti(a)}3

i=1 then tells us that pTt(a) =
∑3

i=1 pi(a)δνti(a) .

Now, the principal objective can be expressed (by direct, tedious computation) as:57∫
∆Θ

UP dpTt(a1,a2) + Vθ∼µ(θ) + a2
µ = Eν∼pT

t(a1,a2)
[a∗(ν)2]

= p1(a)a2
1 + p2(a)a2

2 + p3(a)
(
−a1 − 2s

1−sa2

)2

= a2
1 −

a21+(1−µ0)a1
s

−
(
2a1 + 1−µ0

1−s + 2s−1
1−s aµ

)
a2. (B.7)

56This is because, if a1 = a2, then (a1, z1) = (a2, z2) = (0, 1). But then, the fact that (a3, z3) ∈ R implies that
(aµ, µ0) ∈ R, contradicting (aµ, µ0) ∈ int(B).

57The “Vθ∼µ(θ) + a2
µ” term is an irrelevant constant, which we add for convenience. The first equality follows

directly from Observation 1.
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• If (a1, a2) ∈ A and t2(a1, a2) = t3(a1, a2) (i.e., a2 = −1−s
1+s

a1), that (aµ, µ0) ∈ co{t1(a), t2(a)},
t1(a) ∈ L and t2(a) ∈ R imply that

(a1, a2) =

(
−1− µ0 + saµ

1− s
,
1− µ0 + saµ

1 + s

)
,

pTt(a1,a2)(νt1) =
1− s

2

1− µ0 − aµ
1− µ0 + saµ

,

pTt(a1,a2)(νt2) =
1 + s

2

1− µ0 + aµ
1− µ0 + saµ

.

The value of the principal’s objective is now∫
∆Θ

UP dpT
t(− 1−µ0+saµ

1−s ,
1−µ0+saµ

1+s )
+ Vθ∼µ(θ) + a2

µ = p1

(
−1−µ0+saµ

1−s

)2

+ p2

(
1−µ0+saµ

1+s

)2

=
(1− µ0)2 − s2a2

µ

1− s2
,

which one can directly verify is consistent with the value of equation (B.7) at (a1, a2) =(
−1−µ0+saµ

1−s , 1−µ0+saµ
1+s

)
.

Therefore, equation (B.7) summarizes the principal’s payoff for all (a1, a2) ∈ A. Observe
that this objective is affine in a2. But, t(·) being continuous and T being compact, the set of a2

such that (a1, a2) ∈ A is (for fixed a1) a compact set of real numbers. We may therefore find
a principal-optimal attention outcome by restricting attention to the case that a2 is the largest or
smallest possible number for which (a1, a2) ∈ A. Letting A∗ ⊆ A be the set of pairs with this
property, we can view the principal’s problem as

max
(a1,a2)∈A∗

∫
∆Θ

UP dpTt(a1,a2).

What does pTt(a) look like if (a1, a2) ∈ A∗? As t(·) is continuous, any (a1, z1, a2, z2, a3, z3) ∈ T
with (a3, z3) ∈ int(R), (a2, z2) ∈ int (B) and µ0 ∈ int (co{(ai, zi)}3

i=1) cannot have (a1, a2) ∈ A∗.
The reason is that, from the definition of T , it would then contain t(a1, a2 ± ε) for sufficiently
small ε. So, if (a1, a2) ∈ A∗, then (a3, z3) = (1, 0),58 or (a2, z2) belongs to the boundary of B, or
µ0 belongs to the boundary of co{(ai, zi)}3

i=1.
If (a3, z3) = (1, 0), then we have established part (ii) of this lemma.
If µ0 belongs to the boundary of co{(ai, zi)}3

i=1, it must be that pi(a1, a2) = 0 for some i, then
pTt(a) has binary support.

If (a2, z2) belongs to the boundary of B, since a1 < a2 and 0 < s < 1, it cannot be that
a2 ∈ L ∪D. Since −s 6= −1, it can only be that (a2, z2) ∈ R if a2 = a3 = −a1 − 2s

1−sa2, i.e., if
a2 = −1−s

1+s
a1. But then pTt(a) also has binary support.

58It cannot be that (a3, z3) = (0, 1) because aµ ≥ 0 and (aµ, µ0) ∈ int(B).
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So any (a1, a2) ∈ A∗ has pTt(a) either binary, or ternary with ν(1,0) in the support (and critical
slopes), and the result follows.

Finally, for any t ∈ R6 such that (a3, z3) = (1, 0), (a1, z1) ∈ L and z2−z1
a2−a1 = s = z2

1−a2 , we
have (aµ, µ0) ∈ int [co{(a1, z1), (a2, z2), (a3, z3)}] if and only if s > µ0

1−aµ . So if s ≤ µ0
1−aµ , either

t /∈ T or pTt is binary; while if s > µ0
1−aµ , pTt is of the second form in this lemma. (See Figures B.2

and B.3 for illustration.) The last part of Lemma 12 follows.

Graphically, when s > µ0
1−aµ , for any given a1, varying a2 leads to policies depicted in Figure

B.2 (following the notation of Lemma 12’s proof). On the other hand, when s ≤ µ0
1−aµ , any

(a1, a2) ∈ A∗ leads to a binary policy, as depicted in Figure B.3.

µ

a

z

(a1, a2) ∈ A∗

µ

a

z

(a1, a2) /∈ A∗

µ

a

z

(a1, a2) ∈ A∗

Figure B.2: When s > µ0
1−aµ , for a Fixed a1, Varying a2 Such That (a1, a2) ∈ A

µ

a

z

(a1, a2) ∈ A∗
µ

a

z

(a1, a2) /∈ A∗
µ

a

z

(a1, a2) ∈ A∗

Figure B.3: When s ≤ µ0
1−aµ , for a Fixed a1, Varying a2 Such That (a1, a2) ∈ A

Proof of Proposition 5. We will find a nonredundant optimal attention outcome, which exists by
Theorem 1. Note that a nonredundant p is an optimal attention outcome, if and only if it is IC and
principal-optimal, if and only if (p, p) is a solution to (2.2).

If κ ≤ κ1 = 1
2
, then s∗(κ) ≥ 1. Note that the support supp(pF ) of the full disclosure policy

is {ν(−1,0), ν(0,1), ν(1,0)}. So by Proposition 3 and equations (2.11), (B.4), (B.5), pF is IC. Since
pF �B q for all q ∈ R(µ) and UP (ν) is convex, by Jensen’s inequality

(
pF , pF

)
is a solution to

(2.2), so pF is an optimal attention outcome, and part (1) of Proposition 5 follows.
If κ > κ4 = 2, by equation (2.11) any nonredundant information policy with more than one

messages is not IC. Therefore, the “no information” policy pN is the only nonredundant IC policy,
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and so is the solution to (2.3). Then by Theorem 1,
(
pN , pN

)
is a solution to (2.2), so pN is an

optimal attention outcome, and part (5) of Proposition 5 follows.
If κ = κ4 = 2, then s∗(κ) = 0. Given equation (2.11), then, any nonredundant p ∈ R(µ) must

have p{ν(a,z) : (a, z) ∈ B, z = µ0}. But pO is IC too, and pO �B p for such p. As UP is convex,
it follows that pO is an optimal attention outcome. For this value of κ, the content of part (4) of
Proposition 5 follows.

Henceforth, we consider the remaining case that κ ∈ (κ1, κ4) =
(

1
2
, 2
)
, collectively covering

parts (2), (3), and (4)—excluding the special case of κ = κ4—of the proposition. Here, s :=
s∗(κ) ∈ (0, 1). In this case, Lemma 12 applies, telling us that there is an optimal attention outcome
p∗ that has one supported belief on each of L and R, and is either ternary with support containing
ν(1,0) (with slopes between adjacent beliefs equal to s) or binary.

• If p∗ is binary, then p∗ has support {ν(a1,z1), ν(a2,z2)} for some distinct (a1, z1) ∈ L and
(a2, z2) ∈ R. Let s̃ := z2−z1

a2−a1 . The fact that (a1, z1) ∈ L and (a2, z2) ∈ R implies that

s̃ ∈
[
− µ0

1−aµ ,
µ0

1+aµ

]
. We also know that s̃ ∈ [−s, s] by Lemma 10.

Given such s̃,

(a1, z1) =

(
−1− µ0 + s̃aµ

1− s̃
,
µ0 − s̃(1 + aµ)

1− s̃

)
and

(a2, z2) =

(
1− µ0 + s̃aµ

1 + s̃
,
µ0 + s̃(1− aµ)

1 + s̃

)
are the unique intersections ofL andR, respectively, with the line of slope s̃ through (aµ, µ0).
Next, Bayes-plausibility tells us that

p∗{ν(a1,z1)} =
1− s̃

2

1− µ0 − aµ
1− µ0 + s̃aµ

p∗{ν(a2,z2)} =
1 + s̃

2

1− µ0 + aµ
1− µ0 + s̃aµ

Therefore, the principal’s objective can be written as (appealing to Observation 1)∫
∆Θ

UP dp∗ = Vµ∼p∗ [a∗(ν)]− Vθ∼µ(θ)

=

∫
∆Θ

(a∗(ν)− aµ)2 dp∗(ν)− Vθ∼µ(θ)

= 1−s̃
2

1−µ0−aµ
1−µ0+s̃aµ

(
−1−µ0+aµ

1−s̃

)2

+ 1+s̃
2

1−µ0+aµ
1−µ0+s̃aµ

(
1−µ0−aµ

1+s̃

)2

− Vθ∼µ(θ)

= (1−µ0+aµ)(1−µ0+aµ)

2(1−µ0+s̃aµ)

(
1−µ0+aµ

1−s̃ + 1−µ0−aµ
1+s̃

)
− Vθ∼µ(θ)

=
(1− µ0)2 − a2

µ

1− s̃2
− Vθ∼µ(θ). (B.8)
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As 0 ≤ aµ < 1−µ0 (because (aµ, µ0) ∈ int(B)), the above objective is strictly increasing in
|s̃|, so p∗ being an optimal attention outcome implies that |s̃| = min{s, µ0

1−aµ}.

• If there is no binary optimal attention outcome, then p∗ is ternary and is supported on the set
{ν(a1,z1), ν(a2,z2), ν(1,0)} such that (a1, z1) ∈ L and z2−z1

a2−a1 = s = z2
1−a2 . By the last part of

Lemma 12, this is only possible when s > µ0
1−aµ . Recall that

p2(a1, a2) =
a1(a1 + 1− µ0)(1− s) + a2(2a1 + 1− µ0 − aµ)s

−s(a2 − a1) [a1 (1− s) + a2 (1 + s)]
,

t3(a1, a2) = (−a1 − 2s
1−sa2, 1 + a1 + 2s

1−sa2).

Hence, that t3 = (1, 0) and p2(a1, a2) ≥ 0 imply that a2 = −1−s
2s

(1 + a1) and a1 ∈[
−1,−1−µ0−aµ

1−µ0+aµ

]
; and moreover, any such pair has (a1, a2) ∈ A. Substituting into (B.7)

yields∫
∆Θ

UP dp∗ + Vθ∼µ(θ) = −a2
µ + a2

1 −
a21+(1−µ0)a1

s
+
(
2a1 + 1−µ0

1−s + 2s−1
1−s aµ

) 1− s
2s

(1 + a1)

= −a2
µ + 1

2s
[a1(1− aµ + µ0 − 2s(1− aµ)) + 1− µ0 − aµ + 2saµ] .

(B.9)

Note that the above objective function is affine in a1. Note also that when a1 = −1−µ0−aµ
1−µ0+aµ

,
p2(a1, a2) = 0, so that the binary policy with slope − µ0

1−aµ is obtained. Since, by hypothesis,
no binary policy is an optimal attention outcome, a1 must be optimally set to −1, i.e., s >
1−aµ+µ0
2(1−aµ)

.

Now, we consider various subcases for the value of κ, and find an optimal policy using payoffs
computed in (B.8) and (B.9).

• First, suppose κ ∈ (κ1, κ2] so that 1−aµ+µ0
2(1−aµ)

≤ s < 1. In (B.9), it is optimal to set a1 = −1

because s ≥ 1−aµ+µ0
2(1−aµ)

. But since setting a1 = −1−µ0−aµ
1−µ0+aµ

results in an optimal binary policy
(i.e., a binary policy that maximizes the principal’s utility among all IC binary policies),59

Lemma 12 then implies that the resulting ternary policy by setting a1 = −1 is an optimal
attention outcome. This proves part (2) of the proposition.

• Next, suppose κ ∈ [κ2, κ3], so that µ0
1−aµ ≤ s ≤ 1−aµ+µ0

2(1−aµ)
. In (B.9), it is optimal to set

a1 = −1−µ0−aµ
1−µ0+aµ

because s ≤ 1−aµ+µ0
2(1−aµ)

, which, as noted before, results in a binary policy. This
means that any ternary policy with ν(1,0) in the support (and critical slopes) is dominated by
a binary policy. Then, by Lemma 12, we know that an optimal binary policy is optimal. That
is, the binary policy with slope |s̃| = min{s, µ0

1−aµ} = µ0
1−aµ is an optimal attention outcome.

This proves the part (3) of the proposition.
59Note that now min{s, µ0

1−aµ } = µ0

1−aµ , and the resulting binary policy by setting a1 = − 1−µ0−aµ
1−µ0+aµ

has slope
− µ0

1−aµ .
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• Finally, suppose κ ∈ (κ3, κ4) so that 0 < s < µ0
1−aµ . Then by Lemma 12, we know that an op-

timal binary policy is optimal.60 That is, the binary policy with slope |s̃| = min{s, µ0
1−aµ} = s

is an optimal attention outcome. This proves the remainder of part (4) of the proposition.

All that remains is the uniqueness result. Let us show that there is a unique (up to reflection)
optimal attention outcome whenever κ 6= κ2.

If κ ≤ 1
2
, then full information is IC, and it is the unique minimizer of p 7→

∫
∆Θ

UP dp over
R(µ), and so is the unique optimal attention outcome. If κ > 2, then no information is uniquely
IC, and so is the unique optimal attention outcome. If κ = 2, then every IC information policy is
supported on {ν(a,z) : (a, z) ∈ B, z = µ0 }, a convex set over which UP is strictly convex; pO

is therefore (being a unique �B-maximum over all such information policies) the unique optimal
attention outcome.

Now, we focus on the remaining case of 1
2
< κ < 2, and let p∗ be an arbitrary optimal attention

outcome.
Letting P∗ be the set of nonredundant optimal attention outcome, Claims 7 and 9 tell us that

p∗ ∈ co(P∗). As UA is strictly concave on L (since s < 1) and p∗ is IC, it must be that the positive
measures p∗(· ∩ L) and p∗(· ∩ R) both have support of size at most one. But, by Lemma 12, any
element of co(P∗) \ P∗ would violate this property. Therefore p∗ ∈ P∗, i.e., it is nonredundant.

We now show that p∗ is unique (up to reflection) unless κ = κ2. To this end, we need to rule out
both multiplicity within the class of policies of the form guaranteed by Lemma 12, and existence
of an optimal nonredundant policy outside of that class. The first part of the current proof already
shows that within that class, the optimal attention outcome is unique unless κ = κ2. We now argue
that, as long as κ 6= κ2, no nonredundant policy outside that class can be an optimal attention
outcome. Following the notation of Lemma 12’s proof, take any (a1, a2) ∈ A\A∗, and assume, for
a contradiction, that pTt(a) is an optimal attention outcome. As ã2 7→

∫
∆Θ

UP dpTt(a1,ã2) was shown
to be affine, this can only be true if the affine function is constant, so that pTt(a) generates the same
payoff to the principal as pTt(a1,a2) and pTt(a1,ā2) do, where (a1, a2), (a1, ā2) ∈ A∗ with a2 < a2 < ā2.
In particular, both pTt(a1,a2) and pTt(a1,ā2) are also optimal attention outcomes. Consider alternative
cases of κ ∈ (1

2
, 2) \ {κ2} = (κ1, κ2) ∪ (κ2, κ3) ∪ [κ3, κ4).

• If κ ∈ (κ1, κ2) ∪ (κ2, κ3), then pTt(a1,a2) is ternary and pTt(a1,ā2) is binary. But, as we argued
above, the optimal ternary attention outcome and the optimal binary attention outcome are
strictly payoff ranked for κ 6= κ2. This is a contradiction to pTt(a1,a2) and pTt(a1,ā2) both being
optimal attention outcomes.

• If κ ∈ [κ3, κ4), then both pTt(a1,a2) and pTt(a1,ā2) are binary, while one element in supp(pTt(a1,a2))

is in int(B) (see the left panel of Figure B.3 for illustration). By Claim 11, pTt(a1,a2) is not
principal-optimal, a contradiction to pTt(a1,a2) being an optimal attention outcome.

60Note that the last part of Lemma 12 says that policies of the second form (ternary policies with ν(1,0) in the
support and critical slopes) do not exist when s < µ0

1−aµ , so we can only focus on binary policies.
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Proof of Corollary 1. First, by Proposition 5, when κ ≤ κ1, full disclosure policy pF is a principal-
optimal attention outcome. Next, by Proposition 5, when κ > κ4, the policy pN (i.e., no disclosure)
is a principal-optimal attention outcome; as (pF , q) has a weakly higher principal objective for any
q ∈ R(µ), it follows that full disclosure is a principal-optimal disclosure policy.

Now, suppose κ ∈ (κ1, κ4] = (1
2
, 2]. For convenience, we work in the space RB = {p ∈ ∆B :∫

B
(a, z) dp(a, z) = (aµ, µ0)}. Consider any p1 ∈ RB. The map η : B → ∆(L ∪R) given by

η(·|a, z) :=

{
1−z+a
2(1−z)δ(1−z,z) + 1−z−a

2(1−z)δ(z−1,z) : z 6= 1,

(a, z) : z = 1,

is a mean-preserving spread. Therefore, p2 ∈ RB, where p2(B̂) =
∫
B η(B̂|·) dp1 for all Borel

B̂ ⊆ B. Notice now that, for (a, z) ∈ B:

UA(ν(a,z)) = −
[
Eθ∼ν(a,z)(θ

2)− a2
]
− κ||ν(a,z) − µ||2

= a2 − (1− z)− κ
2

[
(a− aµ)2 + 3(z − µ0)2

]
=

(
1− κ

2

)
a2 + κaµa− κ

2
a2
µ − 3κ

2
(z − µ0)2 − (1− z).

First, UA(ν(a,z)) is convex in a, strictly so if κ 6= κ4. Thus,
∫

∆Θ
UA(ν(·)) dp1 ≤

∫
∆Θ

UA(ν(·)) dp2,
strictly so if κ 6= κ4 and p1 6= p2. This implies if κ ∈ (κ1, κ4), the agent best response to full
disclosure q∗ must have its support contained in L ∪R. Next, for z ∈ [0, 1],

d2
dz2UA(ν(1−z,z)) = d2

dz2
[(

1− κ
2

)
(1− z)2 + κaµ(1− z)− κ

2
a2
µ − 3κ

2
(z − µ0)2 − (1− z)

]
= (2− κ)− 3κ− 0 < 2− 4κ1 = 0.

Therefore, UA(ν(·)) is strictly concave alongR; the same is true along L. As (aµ, µ0) ∈ int(B), this
implies that |supp(q∗) ∩ L| = |supp(q∗) ∩ R| = 1; that is, if κ ∈ (κ1, κ4), the agent best response
to full disclosure is a binary policy with one supported belief on L and the other on R.61

Now we consider the agent’s optimization problem within this class of binary policies. Con-
sider such a policy qs̃ ∈ RB with support {(a1, z1), (a2, z2)} such that a1 < a2 and z2 − z1 =

s̃(a2 − a1). As derived before, given an s̃ ∈
[
− µ0

1−aµ ,
µ0

1+aµ

]
, the line of slope s̃ intersects L and R,

respectively, at

(a1, z1) =

(
−1− µ0 + s̃aµ

1− s̃
,
µ0 − s̃(1 + aµ)

1− s̃

)
and

(a2, z2) =

(
1− µ0 + s̃aµ

1 + s̃
,
µ0 + s̃(1− aµ)

1 + s̃

)
61When κ = κ4, there exists an agent best response to full disclosure with the same features, though some non-

binary policy may also be optimal.
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Next, Bayes-plausibility tells us that

qs̃{(a1, z1)} =
1− s̃

2

1− µ0 − aµ
1− µ0 + s̃aµ

qs̃{(a2, z2)} =
1 + s̃

2

1− µ0 + aµ
1− µ0 + s̃aµ

The agent’s attention cost from this binary policy qs̃ is

κ

∫
∆Θ

c(ν(·)) dps̃ = κ

∫
∆Θ

||ν(·) − µ||2 dps̃

=
2∑
i=1

κ

2

[
(ai − aµ)2 + 3(zi − µ0)2

]
qs̃{(ai, zi)}

=
κ(1 + 3s̃2)

2(1− s̃2)

[
(1− µ0)2 − a2

µ

]
(B.10)

The agent’s utility from this binary policy qs̃ is∫
∆Θ

UA(ν(·)) dps̃ =

∫
∆Θ

UP (ν(·)) dps̃ − κ
∫

∆Θ

c(ν(·)) dps̃

=
(1− µ0)2 − a2

µ

1− s̃2
− κ(1 + 3s̃2)

2

(1− µ0)2 − a2
µ

1− s̃2
− Vθ∼µ(θ)

=

(
3κ

2
− 2κ− 1

1− s̃2

)[
(1− µ0)2 − a2

µ

]
− Vθ∼µ(θ) (B.11)

where the second line follows from equations (B.8) and (B.10). Since κ > κ1 = 1
2
, the agent’s

objective is decreasing in |s̃|, so that the agent’s unique optimal policy in this class is q0 = pO.
Therefore, pO is the unique agent best response to full disclosure if κ ∈ (κ1, κ4).

In the case that κ = κ4, same argument as above shows that pO is an agent best response to full
disclosure, while Proposition 5 shows pO to be a principal-optimal attention outcome. Therefore,(
pF , pO

)
is also a solution to program (2.2), and pF is principal-optimal.

Finally, in the case that κ ∈ (κ1, κ4), we showed above that pO is a unique agent best response
to pF . Direct computation then shows that the optimal attention outcome named in Proposition 5
yields a strictly higher principal value. Thus, providing full information is strictly suboptimal.
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Appendix C

Proofs for Chapter 3

Proofs for Section 3.3

Proof of Lemma 2. Since UR is continuous, a best response q∗ to full disclosure exists, and can be
found by concavifying UR. Moreover, since q∗ is IC, we have |supp(q∗)| ≤ 2 by the argument in
the paragraph preceding Lemma 1. Take such a q∗. If |supp(q∗)| = 1, then “no information” is
the unique best response to full disclosure.62 If |supp(q∗)| = 2, let supp(q∗) = {ν∗1 , ν∗2}. Since
UR is strictly concave on [0, λ] and on [λ, 1], we have ν∗1 < λ < ν∗2 . But then, by piecewise strict
concavity of UR again, we have UR(ν) < φ(ν; ν∗1 , ν

∗
2) for all ν 6= ν∗1 , ν

∗
2 , where

φ(ν; ν∗1 , ν
∗
2) ≡ UR(ν∗1) +

UR(ν∗2)− UR(ν∗1)

ν2 − ν1

(ν − ν∗1). (C.1)

Hence, any policy other than q∗ gives the buyer a strictly lower payoff than q∗ does, and so his best
response to full disclosure is unique.

Proof of Lemma 3. This follows directly from the argument above Figure 2.1 in Chapter 2.

To establish Proposition 5, we need the following lemma.

Lemma 13. For any ν1 ∈ [ν∗1 , µ], there is a unique ν2 ∈ (λ, ν∗2 ] such that

UR(ν2)− UR(ν1)

ν2 − ν1

= U ′R(ν1). (C.2)

Proof of Lemma 13. By definition of q∗ and {ν∗1 , ν∗2}, the concavification condition implies that

U ′R(ν∗1) ≤ UR(ν∗2)− UR(ν∗1)

ν∗2 − ν∗1
≤ U ′R(ν∗2). (C.3)

62If there is another different policy q that generates the same payoff to the buyer as q∗, then a convex combina-
tion of q and q∗ is also a best response (as the buyer’s payoff is linear in information policies). But such a convex
combination has at least three supported beliefs, thus can be strictly improved upon, a contradiction.
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The first (second) weak inequality holds with equality whenever ν∗1 > 0 (ν∗2 < 1). This implies
that ν∗1 < µ < λ < ν∗2 , for otherwise UR would be strictly concave on [ν∗1 , ν

∗
2 ] in which case the

buyer has an incentive to garble information further.
Consider the function η(ν) ≡ UR(ν1) + U ′R(ν1)(ν − ν1). By strict concavity of UR on [0, λ],

we have η(λ) > UR(λ). In addition,

η(ν∗2) = UR(ν1) + U ′R(ν1)(ν∗2 − ν1)

≤ UR(ν1) + U ′R(ν∗1)(ν∗2 − ν1)

≤ [UR(ν∗1) + U ′R(ν∗1)(ν1 − ν∗1)] + U ′R(ν∗1)(ν∗2 − ν1)

= UR(ν∗1) + U ′R(ν∗1)(ν∗2 − ν∗1)

≤ UR(ν∗1) +
UR(ν∗2)− UR(ν∗1)

ν∗2 − ν∗1
(ν∗2 − ν∗1)

= UR(ν∗2)

where the second and third lines follow from the strict concavity of UR on [0, λ] and ν∗1 ≤ ν1 ≤
µ(< λ), holding with strictly inequality whenever ν1 > ν∗1 , and the fifth line follows from (C.3).
Intermediate value theorem implies that there exists a ν2 ∈ (λ, ν∗2 ] such that (C.2) holds. Moreover,
for all ν ∈ (λ, ν∗2), piecewise strict concavity of UR and condition (C.3) imply that U ′R(ν) >

U ′R(ν∗2) ≥ UR(ν∗2 )−UR(ν∗1 )

ν∗2−ν∗1
≥ U ′R(ν∗1) ≥ U ′R(ν1). So, η(ν) − UR(ν) is strictly monotonic on (λ, ν∗2 ].

Thus, for any given ν1 ∈ [ν∗1 , µ], there is a unique ν2 ∈ (λ, ν∗2 ] which satisfies (C.2).

Lemma 13 allows us to define a mapping νT2 : [ν∗1 , µ]→ (λ, ν∗2 ] such that {ν1, ν
T
2 (ν1)} satisfies

(C.2). It is easy to see that νT2 is strictly decreasing in ν1. We then define νT1 : [νT2 (µ), ν∗2 ]→ [ν∗1 , µ]
as its inverse function, that is, νT1 = (νT2 )−1. Note that νT2 (ν∗1) = ν∗2 and νT1 (ν∗2) = ν∗1 , whenever
ν∗1 > 0.

Proof of Proposition 5. We first show that any {ν1, ν2} that satisfies the constraints of program
(3.4) renders an information policy that is IC and binary, i.e., such a policy satisfies the constraints
in program (3.2). This will imply that the value of program (3.4) is weakly lower than the value of
the seller’s program. We then argue that these two values are equal.

Take any {ν1, ν2} that satisfies constraints (i) and (ii) of program (3.4) and let p be the informa-
tion policy supported on {ν1, ν2}. By Lemma 13, ν2 = νT2 (ν1), and so ν1 < λ < ν2. Apparently,
p is binary, so we now show that p is IC. If the seller chooses p, condition (3.3) implies that the
buyer is restricted to choose from distributions over posterior beliefs in [ν1, ν2]. For ν ∈ [0, 1], let

φ(ν; ν1, ν2) ≡ UR(ν1) +
UR(ν2)− UR(ν1)

ν2 − ν1

(ν − ν1) (C.4)

= UR(ν1) + U ′R(ν1)(ν − ν1)

be the expression for the affine function connecting (ν1, UR(ν1)) and (ν2, UR(ν2)), where the sec-
ond line follows from constraint (i) in program (3.4). To establish that p is IC, it suffices to show

UR(ν) ≤ φ(ν; ν1, ν2),∀ν ∈ [ν1, ν2]
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which will imply conv
(
UR|[ν1,ν2]

)
= φ(·; ν1, ν2). We now show that the above inequality indeed

holds. First, equation (C.4) and strict concavity of UR on [ν1, λ] imply that, for all ν ∈ (ν1, λ],
UR(ν) < φ(ν; ν1, ν2). Moreover, piecewise strict concavity of UR and condition (C.3) imply that63

φ′(·; ν1, ν2) = U ′R(v1) ≤ U ′R(ν2). (C.5)

But then, strict concavity of UR on [λ, ν2] imply that, for all ν ∈ [λ, ν2), UR(ν) < φ(ν; ν1, ν2).
Hence, for all ν ∈ [ν1, ν2], UR(ν) ≤ φ(ν; ν1, ν2), and so p is IC.

Since any {ν1, ν2} satisfying constraints (i) and (ii) in program (3.4) delivers an IC and binary
policy, the value of program (3.4) is weakly lower than the value of program (3.2). We now
argue that the values of these two programs are actually equal. To this end, note first that by
Lemma 3 and condition (3.3), constraint (ii) in program (3.4) is without loss. Note also that for a
fixed ν1 ∈ [ν∗1 , µ), the smallest ν2 such that φ(.; ν1, ν2) majorizes UR|[ν1,ν2] is νT2 (ν1).64 Since the
objective is decreasing in ν2, constraint (i) in program (3.4) is also without loss. Therefore, the
values of programs (3.2) and (3.4) are equal, and the existence of solution to program (3.4) follows
directly from Lemma 1.

Finally, it is easy to see that the support of any optimal attention outcome must solve (3.4).

Proof of Proposition 6. By Lemma 3, we only need to show that q∗ is not an optimal outcome.
Since ν∗1 > 0 and ν∗2 < 0, we now have

U ′R(ν∗1) =
UR(ν∗2)− UR(ν∗1)

ν∗2 − ν∗1
= U ′R(ν∗2). (C.6)

By Lemma 13, program (3.4) is equivalent to

max
ν1∈[ν∗1 ,µ)

µ− ν1

νT2 (ν1)− ν1

, (C.7)

which (by Lemma 13 again) is equivalent to

max
ν2∈(νT1 (µ),ν∗2 ]

µ− νT1 (ν2)

ν2 − νT1 (ν2)
. (C.8)

Let π(ν2) ≡ µ−νT1 (ν2)

ν2−νT1 (ν2)
. We have

dπ

dν2

= − µ− νT1 (ν2)

(ν2 − νT1 (ν2))
2 −

ν2 − µ
(ν2 − νT1 (ν2))

2

dνT1
dν2

.

By (C.2), dν
T
1

dν2
=

U ′R(ν2)−U ′R(νT1 (ν2))

U ′′R(νT1 (ν2))(ν2−νT1 (ν2))
. By (C.6), dνT1

dν2

∣∣∣
ν2=ν∗2

= 0, and so dπ
dν2

∣∣∣
ν2=ν∗2

= − µ−ν∗1
(ν∗2−ν∗1)

2 < 0.

Therefore, q∗ is not an optimal attention outcome. Since the Blackwell order is a partial order (i.e.,
no indifference), any optimal attention outcome p∗ is strictly less informative than q∗.

63Specifically, U ′R(v1) ≤ U ′R(v∗1) ≤ UR(ν∗
2 )−UR(ν∗

1 )
ν∗
2−ν∗

1
≤ U ′R(ν∗2 ) ≤ U ′R(ν2).

64For any ν̃2 < νT2 (ν1), we have φ(ν; ν1, ν̃2) < UR(ν) for ν slightly greater than ν1 (see Figure 3.2). Hence, any
policy supported on {ν1, ν̃2} with ν̃2 < νT2 (ν1) is not IC, while the one supported on {ν1, ν

T
2 (ν1)} is IC (as shown).
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Proof of Proposition 7. Since supp(rt∗) = {0, νO2 }, condition (3.3) implies that when rt is chosen
by the seller, the buyer is restricted to choose from distribution over beliefs in [0, νO2 ]. It is sufficient
to show that φ(·; νO1 , νO2 ) (defined in (C.4)) majorizes UR on [0, νO2 ].

Since p∗ is an optimal attention outcome (thus IC), we have φ(ν; νO1 , ν
O
2 ) ≥ UR(ν), for all ν ∈

[νO1 , ν
O
2 ]. Moreover, since {νO1 , νO2 } solves program (3.4) and UR is strictly concave on [0, νO1 ], we

know that dφ
dν

= U ′R(νO1 ) > UR(ν) for all ν ∈ [0, νO1 ), and so, φ(ν; νO1 , ν
O
2 ) ≥ UR(ν), for all ν ∈

[0, νO1 ]. Hence, φ(ν; νO1 , ν
O
2 ) ≥ UR(ν) for all ν ∈ [0, νO2 ], as desired.

Proofs for the Results on Comparative Statics
Let q∗(κ) be the buyer’s best response to full information when the cost parameter is κ, and let
supp(q∗(κ)) = {ν∗1(κ), ν∗2(κ)}. For any κ and any ν1 ∈ [ν∗1(κ), µ], let νT2 (ν1;κ) be the unique
ν2 ∈ (λ, ν∗2(κ)] such that (C.2) holds.

Lemma 14. For all ν1 ∈ (ν∗1(κ), µ), ∂ν
T
2

∂κ
> 0. Moreover, for all ν2 ∈ (λ, ν∗2(κ)), ∂ν

T
1

∂κ
> 0.

Proof of Lemma 14. Recall that UR(ν) = max{0, ν − λ} − κc(ν). If condition (C.2) holds, we
have

ν2 − λ− κ(c(ν2)− c(ν1)) = −(ν2 − ν1)κc′(ν1).

Totally differentiating both sides with respect to (ν1, ν2, κ), we have

(ν2 − ν1)κc′′(ν1)dν1 + [1− κ(c′(ν2)− c′(ν1))] dν2 + [(ν2 − ν1)c′(ν1)− (c(ν2)− c(ν1))] dκ = 0.

Therefore,

∂νT2
∂κ

=
c(ν2)− c(ν1)− c′(ν1)(ν2 − ν1)

1− κ(c′(ν2)− c′(ν1))
> 0,

where the numerator is greater than 0 because of the strict convexity of c, and the denominator is
greater than 0 because U ′R(ν1) < U ′R(ν2).65 Similarly,

∂νT1
∂κ

=
c(ν2)− c(ν1)− c′(ν1)(ν2 − ν1)

(ν2 − ν1)κc′′(ν1)
> 0.

Lemma 15. Take any κ and κ̄ with κ̄ > κ. Then ν∗1(κ̄) ≥ ν∗1(κ), strictly so if ν∗1(κ) > 0.
65See condition (C.5) and note that here ν1 > ν∗1 (κ) and ν2 < ν∗2 (κ).
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Proof of Lemma 15. If ν∗1(κ) = 0, the (weak) inequality automatically holds. Suppose ν∗1(κ) > 0.
We then have

UR(ν∗2(κ);κ)− UR(ν∗1(κ);κ)

ν∗2(κ)− ν∗1(κ)
= U ′R(ν∗1(κ);κ)

⇐⇒ ν∗2(κ)− λ− κ[c(ν∗2(κ))− c(ν∗2(κ))]

ν∗2(κ)− ν∗1(κ)
= −κc′(ν∗1(κ))

⇐⇒ ν∗2(κ)− λ
ν∗2(κ)− ν∗1(κ)

= κ

[
c(ν∗2(κ))− c(ν∗2(κ))

ν∗2(κ)− ν∗1(κ)
− c′(ν∗1(κ))

]
⇒ ν∗2(κ)− λ
ν∗2(κ)− ν∗1(κ)

< κ̄

[
c(ν∗2(κ))− c(ν∗2(κ))

ν∗2(κ)− ν∗1(κ)
− c′(ν∗1(κ))

]
⇐⇒ UR(ν∗2(κ); κ̄) < UR(ν∗1(κ); κ̄) + U ′R(ν∗1(κ); κ̄)(ν∗2(κ)− ν∗1(κ)) (C.9)

where the fourth line follows from the strict convexity of c and that κ̄ > κ. Conditions (C.9) and
piecewise concavity of UR imply that the affine function η of ν, defined by

η(ν; ν∗1(κ), κ̄) := UR(ν∗1(κ); κ̄) + U ′R(ν∗1(κ); κ̄)(ν − ν∗1(κ)),

is greater than UR(·; κ̄) on [0, λ] and [ν∗2(κ), 1]. Now consider two cases:

• η(ν; ν∗1(κ), κ̄) > UR(ν; κ̄) for all ν ∈ (λ, ν∗2(κ)).

In this case, since UR is strictly concave on [0, λ], the following holds for all ν1 ∈ [0, ν∗1(κ)]:

η(ν; ν1, κ̄) > UR(ν; κ̄) for all ν 6= ν1.

Hence, the concavification of UR(·; κ̄) cannot have any ν1 ≤ ν∗1(κ) in the support, i.e.,
ν∗1(κ̄) > ν∗1(κ).

• η(ν; ν∗1(κ), κ̄) ≤ UR(ν; κ̄) for some ν ∈ (λ, ν∗2(κ)).

In this case, by piecewise strict concavity of UR, we know that v∗2(κ̄) < ν∗2(κ). But then,

ν∗1(κ) = νT1 (ν∗2(κ);κ)

< νT1 (ν∗2(κ̄);κ)

< νT1 (ν∗2(κ̄); κ̄)

= ν∗1(κ̄)

where the second line follows from v∗2(κ̄) < ν∗2(κ) and νT1 being strictly decreasing in ν2 for
fixed κ, and the third line follows from Lemma 14 (i.e., ∂v

T
1

∂κ
> 0).

Proof of Proposition 8. Recall that for a fixed κ, the seller’s program is equivalent to (C.7):

max
ν1∈[ν∗1 (κ),µ)

µ− ν1

νT2 (ν1;κ)− ν1

.

By Lemma 15, [ν∗1(κ̄), µ) ⊆ [ν∗1(κ), µ). By Lemma 14, for any fixed ν1 ∈ [ν∗1(κ̄), µ), we have
νT2 (ν1;κ) < νT2 (ν1; κ̄). Since the objective is strictly decreasing in νT2 , we conclude that the value
of the seller’s program when κ = κ̄ is strictly lower than when κ = κ
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Solution to the Example with Quadratic Cost

Proof of Proposition 10. If κ ≥ 1
2(1−2µ)

, “no information” is the buyer’s unique best response to
full information, and thus the unique optimal attention outcome.

We now consider the case where κ < 1
2(1−2µ)

. Recall that the seller’s program is equivalent to
(C.8). To characterize νT1 (ν2;κ), notice that condition (C.2) becomes:

−2κ(ν1 − µ) =
ν2 − 1/2− κ[(ν2 − µ)2 − (ν1 − µ)2]

ν2 − ν1

,

which leads to

νT1 (ν2;κ) = ν2 −
√

2ν2 − 1

2κ
.

It can be checked that νT1 (ν2;κ) is strictly decreasing in ν2 whenever ν2 < ν∗2(κ). Let ν2(κ) ∈
(λ, ν∗2(κ)) be the unique solution to νT1 (ν2;κ) = µ. Such a ν2 exists whenever κ < 1

2(1−2µ)
.

By Proposition 5 and the deduction leading to (C.8), the seller’s value is equal to

max
ν2∈(ν2(κ),ν∗2 (κ)]

1− ν2 − µ√
2ν2−1

2κ

s.t. ν2 −
√

2ν2 − 1

2κ
≥ 0

.

It is uniquely maximized at νO2 = 1−µ if κ ≥ 1−2µ
2(1−µ)2

, while uniquely maximized at νO2 = 1−
√

1−2κ
2κ

if κ < 1−2µ
2(1−µ)2

. Therefore, the policies proposed in the proposition is the unique optimal attention
outcome for each range of κ. The monotonicity of the informativeness of p∗(κ) in each range
follows directly from condition (3.3) and Lemma 14.
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