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ABSTRACT OF THE DISSERTATION 

 

Hydrological Underpinnings 

of Mountain Snowpack Responses 

to Warming Storms 

 

by 

 

Kayden Haleakala 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2022 

Professor Mekonnen Gebremichael, Chair 

 

Midlatitude mountain snowpacks are a critical freshwater resource. However, climate warming is 

endangering its natural water tower function by decreasing the fraction of winter precipitation 

falling as snow in an intensifying precipitation regime. In a warmer future, snowpacks may 

therefore shift from seasonal reservoirs to posing more flood hazards, stressing current 

ecosystems and water resource management practices. Successful adaptation and hazard 

preparation to snowpack shifts is predicated on a first-principles understanding of its driving 

processes. However, most long-term observations and model-projections are incapable of 

resolving process-level snowpack behaviors, leaving an incomplete toolkit for assessing and 

interpreting environmental threat levels in snow-fed watersheds. This dissertation addresses this 

problem by investigating process-level snowpack behaviors during warm storms in California’s 
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Sierra Nevada through sub-daily snow, soil and hydrometeorological measurements, and with 

supporting observations from atmospheric reanalyses and satellite remote sensing in three 

studies. The first study delineates an hourly relationship between air temperature, atmospheric 

moisture, and changes to snow water equivalent (SWE) spanning the Sierra during water years 

2010-2019. Conditions balancing precipitable water (humidity) and snowfall requirements 

(temperature) favor SWE accumulation. SWE increases are observed above 1.0˚C when moisture 

supplies are modest or snowpacks sufficiently deep, and are otherwise immediately followed by 

SWE loss. The second study focuses on this SWE “oscillation” in the Northern Sierra during 

rain-on-snow (ROS) events in January and February 2017. Snowmelt was a weaker driver in 

ROS flooding than previously documented. Snowpacks may rather “passively” route rainwater 

through snow, where the saturation and liquid drainage of snow causes observed SWE to rise and 

immediately fall. The final study elaborates on this case study to other ROS events in water years 

2017-2019. Results describe both the limitations common to standard daily observations, and the 

importance of storm sequencing on augmenting ROS impact. Sierra Nevada watersheds 

remember large prior storm inputs to soils and streams that imminent storms stand on top of. 

These observations present a nuanced and integrated perspective to understanding how 

snowpacks respond to warm storms, which may be beneficial to future water resource and flood 

risk forecasting interpretations and discussions. 
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Chapter 1  Introduction 

1.1 Background and motivation 

Mountain snowpacks provide freshwater to approximately 2 billion people worldwide 

(Viviroli et al. 2007; Immerzeel et al. 2020). In the Western United States, snowmelt from snow-

dominated watersheds provide over 70 percent of runoff (Li et al. 2017). This is a pillar of water 

resources in California – west-facing watersheds in the Sierra Nevada (the focus region of this 

dissertation) drain snowmelt to the Central Valley, which produces over half of the nation’s 

fruits, nuts, and vegetables. Snowpack, along with the precipitation systems that accumulate 

them, vary strongly from year to year. Low-snowpack years can exacerbate drought and 

negatively impact hydropower production (Bartos and Chester 2015), crop production (Pathak et 

al. 2018), and wildfire risk (Westerling et al. 2006). Large snowpacks can exacerbate flood risk 

(Kattelmann 1997a; Berghuijs et al. 2016). These benefits and hazards to natural and social 

systems make snowpack behaviors crucial to understand and forecast successfully.  

Anthropogenic impacts on aerosol production resulting in enhanced radiative forcing and 

warming temperatures alters snowpacks’ natural water tower function by reducing both the 

fraction of winter precipitation falling as snow (Dettinger et al. 2004a; Knowles et al. 2006; Feng 

and Hu 2007; Kunkel et al. 2009; McCabe et al. 2018) and its albedo, accelerating snowmelt 

(Skiles et al. 2018). As a result, peak snowpacks and streamflow volumes have decreased and 

shifted earlier in the year (Kapnick and Hall 2010, 2012; Stewart et al. 2005; Fritze et al. 2011; 

Westerling 2016; Dudley et al. 2017; Mote et al. 2018; Wasko et al. 2020). These trends are 

expected to persist in a warmer future as shown by statistical extrapolation (Bales et al. 2015; 

Howat and Tulaczyk 2005; Huning and AghaKouchak 2018) and model scenarios from global 

climate model projections (Maurer 2007; Pierce and Cayan 2013; Sun et al. 2016, 2019; Rhoades 
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et al. 2018; Huang et al. 2018; Fyfe et al. 2017). Moreover, the winter precipitation regimes that 

favor snowpack accumulation (e.g., atmospheric rivers, or ARs; (Serreze et al. 2001; Guan et al. 

2010) are projected to intensify (Gershunov et al. 2019; Rhoades et al. 2020). Snowpacks may 

therefore shift from seasonal reservoirs to posing more social and environmental hazards, 

stressing current ecosystems and water resource management practices.  

Successful adaptation and hazard and water resource preparation to these shifts is predicated 

on a first-principles understanding of the processes driving snowpack behaviors. However, most 

long-term observations and model projections are incapable of resolving process-level snowpack 

behaviors, leaving an incomplete toolkit for assessing and interpreting environmental threat 

levels in snow-fed watersheds.  

1.2 Snowpack accumulation with regard to warming temperatures 

In the Sierra Nevada, snowpack accumulates from a few orographically enhanced storms 

each year (Dettinger et al. 2004b; Huning and Margulis 2017; Lute and Abatzoglou 2014). Many 

of these are driven by ARs (Guan et al. 2010, 2013; Goldenson et al. 2018; Eldardiry et al. 

2019). Snowpacks tend to accumulate les in warmer, lower-elevation regions, and more in 

colder, high-elevation regions (Mote 2006; Pierce et al. 2008; Zeng et al. 2018). Studies 

characterizing the controls on mountain range-scale snow accumulation often do so indirectly by 

considering the seasonal maximum snow water equivalent (SWE), or the 01 April SWE, in 

relation to cold season precipitation and temperature (Mote 2006; Huning and AghaKouchak 

2018; Zeng et al. 2018). This approach focuses on the overall end-of-winter SWE and the 

preceding meteorological conditions. While shedding some light on conditions responsible for 

accumulated SWE, the accumulation process itself remains unresolved by such gross 
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characterizations. Conversely, research focused entirely on process-level snowpack evolution 

(Jennings et al. 2018) are limited to narrow spatial domains.  

This tradeoff leaves a knowledge gap regarding snow accumulation drivers that few 

studies have addressed at spatiotemporal scales representing both storms and mountain ranges. In 

the Sierra Nevada’s American River basin, Lundquist et al. (2008) quantified a strong (90%) 

likelihood of snow accumulation at temperatures below 0˚C that reduces to a near-equal 

likelihood of snow accumulation or melt at temperatures around 1.5˚C. Across the Sierra 

Nevada, Guan et al. (2010) found ARs to contribute up to 40% of snow accumulation, 

correlating strongly with below-0˚C temperatures. Seligman et al. (2014) quantified the 

snowpack energy deficits imparted by spring storm events in western Montana, noting the 

importance of snowfall over re-freeze events in delaying snowmelt. Hu & Nolin (2019) 

evaluated the frequency of snow accumulation days occurring at warmer minimum temperatures 

during AR conditions, vs. colder temperatures during storms not involving ARs, over the 

Western United States.  

Non-linear warming-related shifts from snowfall to rainfall add to this gap regarding 

snow accumulation mechanics in mountain ranges. The rain-snow transition (along with rain-on-

snow events, discussed in detail in Section 1.3) are expected to recede uphill (Klos et al. 2014). 

At the event-scale, the melting of falling snow is tempered by latent cooling from a humidity 

gradient (Harpold et al. 2017b), latent heat loss from melting, and adiabatic cooling from vertical 

motion (Minder et al. 2011). This demonstrates that the precip phase transition from snow to rain 

depends on atmospheric structure beyond temperature alone, as does the snowpack itself 

(Harpold and Brooks 2018). Few studies investigate the boundary governing whether SWE 

accumulates or ablates when temperatures are near or above the triple point (Lundquist et al. 
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2008; Guan et al. 2010). None consider jointly the role of atmospheric moisture in controlling 

mountain snowpack changes at a sub-daily timescale across an entire mountain range.  

1.3 Snowpack responses to rain-on-snow 

Mountain rain-on-snow (ROS) produces some of the largest and most damaging floods in 

the Western United States (Li et al. 2019; Tarouilly et al. 2021; Welty and Zeng 2021). In the 

Sierra Nevada, ROS flooding commonly occurs due to landfalling ARs, which contribute warm, 

humid, and windy conditions and prolonged precipitation with anomalously high snow levels 

over vast, typically snowfall-dominated landscapes (Corringham et al. 2019; Guan et al. 2016; 

Hatchett et al. 2017; Ingram 2013; Kattelmann 1997a). Climate warming will likely elevate flood 

risk throughout the 21st century, driven both by increasing precipitation extremes (Gershunov et 

al. 2019; Rhoades et al. 2020) and shifts in precipitation phase from snow to rain over a snow 

cover receding upslope (Musselman et al. 2018). These changes make ROS a transient but 

immediate flood hazard to forecast successfully. Accurate modeling and forecasting of ROS in 

turn depends on accurate physical interpretations of flood generation, both on a storm-by-storm 

basis and in the broader context of how the wet season shapes snowpack and watershed 

responses altogether. Improving societal ROS flood preparedness therefore requires two 

connected components of predictive understanding.  

First, the degree to which snowmelt amplifies runoff during ROS is crucial yet highly-

variable (Brandt et al. 2022). It is often quantified by comparing the snowmelt volume to the sum 

of rainfall and snowmelt, or terrestrial water input (TWI), and can range from 0% (Juras et al. 

2017; Rücker et al. 2019) to 60% (Garvelmann et al. 2015) of TWI. Snowmelt is the product of 

the energy balance, and can only begin once energy inputs exceed the snowpack’s heat capacity 

(i.e., its cold content) (DeWalle and Rango 2008). Once the cold content has been satisfied, 
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meteorological conditions can drive a positive energy balance through favorably high humidity, 

air temperatures, and wind speeds inducing snowmelt (DeWalle and Rango 2008). Case studies 

historically indicate turbulent and (longwave) radiative fluxes during extreme ROS dominate 

ROS induced snowmelt. Several examples of these “active” contributions to TWI range between 

21-56% in the United States Pacific Northwest (Marks et al. 1998), 13-26% in the Swiss Alps 

(Rössler et al. 2014), 37% in the Sierra Nevada (Henn et al. 2020), and 2-60% in Black Forest, 

Germany (Garvelmann and Weiler 2014; Garvelmann et al. 2015). Other energy balance 

components can also be important, including the ground heat flux (Pomeroy et al. 2016) and the 

heat advection from rainfall (McGowan et al. 2021) – two typically neglected terms (DeWalle 

and Rango 2008). When studied in aggregate, however, net radiation dominates snowmelt, (Li et 

al. 2019; Mazurkiewicz et al. 2008), which tends to contribute no more than 30% to TWI 

(Trubilowicz and Moore 2017; Wayand et al. 2015; Würzer et al. 2016). Importantly, the degree 

to which snowmelt “actively” drives ROS flooding is also modified by basin properties (e.g., 

topography, tributary area, vegetation, and the preceding snow-covered area), storm 

characteristics (e.g., rainfall duration, intensity, and temperature), and antecedent snowpack 

conditions (e.g., cold content, liquid water content, and the presence of ice lenses or crusts) 

(Berris and Harr 1987; Garvelmann et al. 2015; Juras et al. 2017; Kattelmann 1997a,b; Marks et 

al. 1998; Rössler et al. 2014; Singh et al. 1997; Würzer et al. 2016). Finally, if cold content is not 

satisfied over large parts of a watershed, snowpacks can play a more “passive” role in ROS. In 

the Sierra Nevada, rainfall contributions to TWI can be as high as ~77-95% (Bergman 1983; 

Kattelmann 1997a).  

The second component to predictive understanding of ROS involves how liquid travels 

through snow, which impacts both runoff timing and volume. Two flow regimes broadly 
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characterize this. First, rain and/or snowmelt may flow as a uniform wetting front (or “matrix 

flow”), propagating vertically and evenly through the snowpack. While matrix flow is observed 

in shallow, mature or melting snow (Hirashima et al. 2019; Webb et al. 2018b; Würzer et al. 

2017), and is a key assumption of flow in most physically-based models to date (Andreadis et al. 

2009; Bartelt and Lehning 2002; Colbeck 1975a; Jordan 1991), it is far from ubiquitous. Second, 

a preferential flow regime consists of pathways that instead collect and preferentially route liquid 

through the snowpack laterally – across melt-freeze crusts or capillary barriers – or vertically 

through “macropores” or “flow fingers” (Kattelmann 1985; Kattelmann and Dozier 1999; Marsh 

and Woo 1984). Rainfall (Singh et al. 1997) or a near-melting (i.e., low cold content) snowpack 

(Kattelmann and Dozier 1999; Wankiewicz 1978) can “prime” a snowpack to develop a high-

conductivity flow-path network by “connecting the plumbing.” Preferential flow enables the 

“passive” character of snow during ROS, quickly routing rainfall vertically or laterally into 

streams (Juras et al. 2017; Webb et al. 2021; Würzer et al. 2017), and advancing TWI timing 

from days to weeks (Kattelmann and Dozier 1999) – sometimes as fast as 6-7 m hr-1 (Eiriksson 

et al. 2013; Singh et al. 1997). On the other hand, crusts within a snowpack’s stratigraphy can 

suspend liquid and delay snowpack outflow by hours (Conway and Benedict 1994; Kattelmann 

1997b; Marsh and Woo 1984). The flow regime itself and its effect on runoff timing and volume 

is also modulated by the intensity of rainfall and preexisting snowpack liquid water content 

(LWC) (Brandt et al. 2022; Juras et al. 2017; Singh et al. 1997; Würzer et al. 2016).  

Given these nuances, physically-grounded interpretations of ROS are crucial to 

classifying hazards to human and environmental systems. However, this is challenged by a lack 

of observations capable of detailing the above-mentioned mechanisms in space and time at scale. 

Matrix and preferential flow regimes co-exist and evolve (Hirashima et al. 2019; Webb et al. 
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2018b; Yamaguchi et al. 2018); and few locations host the instrumentation necessary to model 

the energy balance explicitly (Bair et al. 2018; Bales et al. 2006). Standard observations from 

long-standing networks (Schaefer and Johnson 1992; Serreze et al. 1999) (e.g., daily telemetered 

precipitation, temperature, and snow depth and/or water equivalent) may mischaracterize 

precipitation phase (Marks et al. 2013) and only provide a bulk snowpack representation. In turn, 

the use and validation of hydrologic models necessary for ROS flood forecasting in snow-

dominated basins may leave important processes unresolved or misrepresented through 

calibration.  

1.4 Research objectives and dissertation overview 

Given the above-mentioned knowledge gaps and challenges this dissertation investigates 

process-level snowpack behaviors during warm storms in California’s Sierra Nevada using sub-

daily snow, soil, stream, and hydrometeorological measurements, and with supporting 

observations from atmospheric reanalyses and satellite remote sensing. The research objectives 

of this dissertation are as follows: (1) Assess the physiographic underpinnings of snow 

accumulation dependence on air temperature and storm characteristics; (2) delineate the 

governing snowpack conditions and underlying processes of snowpack response to storms with 

temperatures near the triple point; (3) identify the likely flood-driving mechanism(s) during ROS 

at the basin scale.  

The remainder of this dissertation is divided into three chapters. Chapter 2 delineates an 

hourly relationship between air temperature, atmospheric moisture, and changes to SWE 

spanning the Sierra during water years 2010-2019. Chapter 3 focuses on a peculiar SWE 

“oscillation” in the Northern Sierra during rain-on-snow (ROS) events in January and February 
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2017. Chapter 4 elaborates on this case study to other ROS events in water years 2017-2019 to 

distinguish relatively benign from hazardous ROS.  
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Chapter 2 Factors governing winter snow accumulation and ablation 

susceptibility 

 

Kayden Haleakala, Mekonnen Gebremichael, Jeff Dozier, and Dennis P. Lettenmaier 

 

2.1  Data and methods 

We obtained raw hourly snow pillow data for a set of stations operated by the California 

Department of Water Resources (DWR, available from the California Data Exchange Center at 

https://cdec.water.ca.gov/) that span an elevational and latitudinal transect along the Sierra 

Nevada (Figure 2.1a, 2.1b). After screening the data for spurious measurements (Appendix B), 

we used the processed hourly SWE and air temperature to construct distributions of SWE 

accumulation across temperatures during storms. We screened collocated hourly snow depth 

measurements, where and when available. We used atmospheric reanalysis data to diagnose 

synoptic storm characteristics.   

2.1.1  Snow and surface meteorology data 

DWR manages a network of 139 automated monitoring stations in the Sierra Nevada that 

measure hourly temperature and SWE. Most of these sites also measure hourly snow depth and 

precipitation. Temperature sensors are typically mounted on a pole or mast and their height can 

vary between 5 and 10 meters, depending on the maximum depth at a site. Snow pillows record 

the weight of snow, which is converted to SWE. Sites measuring snow depth include ultrasonic 

depth sensors that measure the travel time of an acoustic pulse reflected from the snow surface.  
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Figure 2.1 (a) Twenty-eight snow pillow sites used in this study. Snow pillows and watersheds 

are grouped into northern, central, and southern subregions. (b) Elevation distribution of land 

area above 1500 m encompassing the study sites. (c) Elevation profiles extending downwind 

from NOAA Hydrometeorology Testbed radar profilers shown in (a). 

 

The exposure of the snow pillow sites varies, but sites are typically located in flat 

clearings surrounded by trees that shelter them from wind redistribution of snow. Relative to the 
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neighboring forest, however, snowfall at a pillow can be greater from lack of intercepted 

snowfall and local wind effects (e.g., reduced wind leeward of the forest resulting in enhanced 

snow deposition). Compared to the forests, the clearings experience more downwelling solar 

radiation (Marks and Dozier 1992), less downward longwave radiation, and greater wind speeds 

that enhance turbulent heat flux (Marks et al. 1998). Solar radiation differences are likely small 

given low sun elevations and shorter day lengths during most of the snow accumulation season, 

although longwave radiation during overcast contributes to snowmelt (Mazurkiewicz et al. 

2008). Snow bridging can occur at snow pillows, causing recorded SWE to decrease or remain 

unchanged during storms until the bridge breaks, causing a spike in the pillow data. We have 

attempted to identify and flag such events (Appendix B). Depth sensors risk reporting false 

observations during storms from reflecting the signal of a falling hydrometeor rather than the 

static snow surface. Wind scouring or horizontal drift of fallen snow can also bias the recorded 

depth during the snow season. Furthermore, hourly snow pillow measurements can exhibit 

considerable noise due to battery voltage dependence on temperature (Appendix C; Figure C1, 

C2), which can result in large, erroneous fluctuations with diurnal temperature cycles. These 

artifacts risk noise being mistaken for a signal during snow accumulation or ablation periods 

(defined in Section 2.1.3), although this characteristic was primarily observed during stationary 

periods insignificant to our analyses and did not considerably impact our results.  

Notwithstanding these sources of error, the DWR snow pillow network provides arguably 

the most comprehensive set of high-elevation measurements available at an hourly timescale in 

the Sierra Nevada. Figure 2.1a shows the locations of the 28 stations we used, most of which 

have hourly observations of temperature and SWE over the period water years (WY) 2010 

through 2019. Several sites do not have snow depth measurements available, and several 
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individual site-years were screened from analysis after quality control (Appendix B). We 

selected these stations from the network of DWR snow pillows based on data availability, 

quality, and their representation of elevational and latitudinal gradients over the entire Sierra 

Nevada. We describe the selection process in detail in Appendix A. We disregarded some 

individual site-years due to missing or poor-quality temperature and/or SWE data (Table A1).  

Snowpack telemetry sites cooperatively managed by the Natural Resources Conservation 

Service (NRCS) have demonstrated temperature sensor biases resulting in artificial warming 

trends (Oyler et al. 2015; Rangwala et al. 2015). While no related issues are reported for the 

DWR network (Lundquist & Huggett, 2008 compared DWR- and NRCS-deployed temperature 

sensors in the Tuolumne basin), we investigated temperature biases for the selected sites to be 

conservative, because they could compromise relationships derived as a function of air 

temperature. No inconsistencies were found for any site within the analyzed time period 

(Appendix D; Figures D1 and D2).  

2.1.2  Synoptic-scale storm characteristics 

Mountain precipitation gauges are handicapped during snowstorms by wind-driven 

undercatch (Meyer et al. 2012), timing issues during snow accumulation (Bair et al. 2018), and 

inability to capture spatial heterogeneity. Moreover, heating in tipping bucket gauges can 

enhance evaporation. While a quality control routine might avoid some of these issues, we 

deemed collocated gauges untrustworthy as a stand-alone measurement of hourly winter 

precipitation, which is better approximated by incremental SWE.  

We therefore considered synoptic atmospheric (column) conditions during SWE 

accumulation or ablation events (defined in Section 2.1.3). We derived integrated vapor transport 

(IVT) from the ERA5 global reanalysis, chosen for its fine horizontal (31 km), vertical (37 
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pressure levels), and temporal (hourly) resolutions (Hersbach et al. 2020). IVT was taken over 27 

pressure levels from the surface (Psfc) to 100 hPa. IVT magnitude (kg m-1 s-1) is given by Lavers 

et al. (2012)  

IVT=√(
1

𝑔
∫𝑃𝑠𝑓𝑐

10,000 𝑃𝑎
𝑞𝑢𝑑𝑝)

2

+ (
1

𝑔
∫𝑃𝑠𝑓𝑐

10,000 𝑃𝑎
𝑞𝜐𝑑𝑝)

2

,      𝐸𝑞 (2.1) 

where g is the gravitational acceleration (m s-2), q is the specific humidity (kg kg-1), u and υ are 

zonal and meridional wind components (m s-1), and p is the pressure (Pa).  

Nearest-grid values were assigned to each site to characterize overlying precipitable 

water and wind fields. ERA5 pressure levels were truncated at the surface air pressure at each 

site, which was calculated as a function of elevation using the barometric formula for a standard 

atmosphere following the moist adiabatic lapse rate (NASA et al. 1976). We screened for outliers 

in IVT (due to known wind field errors in early WY 2010) by filtering values outside of 150 

percent of the inter-decile range. 

From IVT we derive two additional measures of synoptic properties during SWE change 

events. The first uses ΔSWE, which we define as the back-looking difference in hourly SWE. 

The synoptic measure is the unitless ratio of ΔSWE to IVT, given by 

𝑅 =
𝛥𝑆𝑊𝐸

3600 (𝐼𝑉𝑇
𝜌𝑑

⁄  𝑥)
,      𝐸𝑞 (2.2) 

where ΔSWE and IVT are hourly values, x is the path length of IVT, which is the 31-km ERA5 

grid size, and ρd is the density of dry air. Dry air density was calculated as a function of site 

elevation and temperature (NASA et al. 1976). The denominator in Eq. (1.2) effectively converts 

IVT from a horizontal moisture flux to the resulting moisture depth accumulated over the hour at 

a particular location. The value R compares roughly to the “drying ratio,” defined by Smith et al. 

(2003) and Kirshbaum & Smith (2008) as the ratio of horizontally-integrated precipitation 
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(perpendicular to a mountain) to the IVT incident to the upwind foothills. Whereas R expresses 

moisture loss from orographic precipitation along its entire horizontal travel path, we define R 

here at a point to roughly express precipitation efficiency. We therefore consider this measure 

only during periods of SWE accumulation. It should be noted that modeled wind fields and grid 

cell average (31-km) elevations are often smoothed and muted in complex terrain, especially 

when representing a point observation. This smoothing may result in physically impossible 

values (i.e., R above 1), although no such case occurred in this study.  

The second measure estimates the advected energy from this moisture flux and is 

considered both during periods of SWE accumulation and ablation. We define the term A (W m-

2) as 

𝐴 = 𝑐𝑝 (
3600 𝐼𝑉𝑇

𝑥
) 𝑇,     𝐸𝑞 (2.3) 

where cp is the specific heat capacity of dry air and T is the site air temperature. This advection 

term corresponds to the energy imparted by the moisture flux integrated over the atmospheric 

column, and therefore takes on values much greater than those exchanged between the land 

surface and lower boundary layer.  

2.1.3  Snowpack change events and corresponding distributions 

We consider the distribution of SWE changes across a range of air temperatures during 

the accumulation season and the roles of storm characteristics in that relationship. We defined 

the accumulation season from the later of 1 November and the hour at which SWE first exceeded 

2.5 cm, to the hour of peak SWE.  

Within each season, we diagnosed SWE accumulation (ablation) events by considering 

days in which the 24-hour average SWE change is consecutively positive (negative) with 

absolute values above the 0.254-cm (0.1-inch) snow pillow resolution (Lundquist et al. 2015; 
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Serreze et al. 2001). SWE can oscillate at an hourly timescale, likely from wind redistribution, 

variations in overlying air mass (Brandt et al. 2020), or temperature-calibration issues with the 

snow pillow (Appendix C) that are not associated with storm conditions. We therefore use daily 

values to automate the detection of most SWE change events, as done in Serreze et al., (2001) 

which detected a total of 1,669 accumulation events and 544 ablation events. Other, short-

duration (i.e., less than 3 days) or subtle, events (e.g., with longer, gradual SWE change) were 

detected manually, resulting in a total of 2,393 accumulation and 809 ablation events.  

We computed hourly ΔSWE with the set of SWE change events. Increments were placed 

into 0.5˚C temperature bins centered at 0.0˚C, where a given temperature corresponded to the 

time step preceding a ΔSWE increment or decrement. For a batch of accumulation (or ablation) 

events, the net sum of ΔSWE values in each bin produced a distribution of net SWE 

accumulation (or ablation). We also constructed joint distributions by simultaneously binning 

ΔSWE increments into temperature and ΔSWE bins (at 0.254-cm widths) or IVT bins (at 25-kg 

m-1 s-1 widths).  

We calculated net distributions for each site and calculated composite distributions by 

grouping sites into northern, central, and southern regions. The groupings were performed by 

watershed (Figure 2.1a), following DWR classifications for snow survey regions 

(https://cdec.water.ca.gov/snowapp/sweq.action). Figure 2.2a shows the average temperature 

during accumulation events for each site, demonstrating that this grouping also represents a 

decreasing storm-temperature gradient southward, which follows the general increasing elevation 

gradient of the Sierra Nevada. This grouping yielded 71, 112, and 82 site-years of SWE and 

temperature data in the north, central, and south regions, respectively (Table A1).  
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Figure 2.2 (a). Mean snow accumulation event air temperature for WY 2010 through 2019 

plotted against snow pillow elevation. (b) Distribution of peak SWE across snow pillows for each 

season, demonstrating the assignment of wet and dry years. 

 

We assessed the interannual variability of events by partitioning the WY 2010 through 

2019 record into wet and dry years. We defined wet (dry) years by considering the 4 seasons 

having the highest (lowest) median peak SWE across all sites (Figure 2.2b). While this brief 
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record fails to sample the historical snowpack climatology, the selected wet and dry years are 

among the wettest and driest on record (Huning and Margulis 2017), thus appropriately 

bracketing interseasonal snowpack variability.  

We detail the extent to which SWE accumulates or ablates under certain conditions by 

calculating the probability distribution of SWE accumulation and ablation conditioned on 

various snowpack and atmospheric characteristics. For a given variable X, we calculated the 

conditional likelihood of SWE accumulation, 

𝑃𝑟𝑜𝑏(𝛥𝑆𝑊𝐸 > 0 | 𝑋 > 𝑥), 𝑥 ∈ [𝑚𝑖𝑛(𝑋), 𝑄98(𝑋)],     𝐸𝑞 (2.4) 

where Q98(X) is the 98th quantile of X, for the sample of all SWE change events in each 

subregion and overall. Incrementing X across its range of observed values up to Q98 produces a 

distribution of conditional probabilities of a SWE change event accumulating SWE. To analyze 

antecedent event conditions, we considered conditional distributions across initial SWE, snow 

depth, bulk snow density, and the average 12-hour temperature preceding an event. For 

prevailing event conditions, we considered temperature, IVT, A, and event duration. We classify 

events by applying a threshold of 1.0˚C to the median air temperature during an event, above 

(below) which we consider "warm" ("cold"). We compared warm and cold events in each 

distribution.  

2.2  Results 

2.2.1  Topographic and synoptic characteristics 

Temperature distributions of net SWE accumulation for individual sites (defined in 

Section 2.1.3) are shown in Figure 2.3, sorted by elevation (left) and region (right). Note the 

elevation distribution changes by region. The role of elevation in SWE accumulation 

temperatures manifests in a general cooling and broadening of distributions with altitude, where 
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interquartile ranges (IQRs) vary from -2.0 to 0.5˚C at 1722 m up to -8.0 to -1.5˚C at 3018 m and 

bound median temperatures of -0.5 and -4.5˚C, respectively. The decreasing temperature 

gradient is most pronounced at southern sites, which span the broadest elevation range (Figure 

2.3, upper-right panel). All sites have median temperatures at or below 0.0˚C, but upper quartiles 

warm from 0.0˚C at southern sites, to 1.0-1.5˚C at central and northern (lower-elevation) sites. 

 

Figure 2.3 Elevation profiles of the temperature distribution of persistent SWE accumulation for 

(left) all sites and (right) those within each Sierra Nevada subregion. Grey shading indicates the 

interquartile range of 0.5˚C temperature bins between which half of the persistent SWE 

accumulates. The solid line indicates the distribution median. Open circles show the 

accumulation event average temperature, while red crosses indicate the seasonal average SWE 

accumulation (upper y-axis). 
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While temperature IQRs grow at higher sites, and while lower sites tend to accumulate 

the least SWE (e.g., 23 cm/site-year at 2149 m and 1962 m), total accumulated SWE depends 

less on altitude and more on orographic effects when temperature is no longer a limiting factor 

(Mote 2006), as accumulation is not necessarily greatest at the highest or coldest sites. For 

instance, two high-elevation sites (2927 m and 2926 m) have overlapping IQRs and considerably 

different seasonal SWE. Of the seven sites accumulating below the lower quartile of seasonal 

SWE (37 cm), four are relatively further east than neighboring sites, spanning all three 

subregions between 1962 and 2926 m. Seven sites accumulate above the upper quartile of 

seasonal SWE (62 cm), five of which are near the Sierra Nevada crest and span each subregion 

between 2010 and 2927 m. We discuss site variability further in Section 2.3.1. 

The elevational and latitudinal transects of sites demonstrate a northward gradient of 

storm intensity. Joint distributions of temperature with hourly ΔSWE and IVT are shown for 

each subregion in the top and bottom rows of Figure 2.4, colored by the contribution of each bin 

to seasonal SWE accumulation. At southern sites, SWE accumulation covers a broad temperature 

range and modest ΔSWE values (1 percent of increments are above 0.95 cm hr-1, top row of 

Figure 2.4). Central and northern SWE accumulations gradually display the opposite behavior, 

covering narrower temperature ranges and more intense ΔSWE (with 1 percent of increments 

above 1.11 cm hr-1). However, this greater concentration of SWE accumulation is accompanied 

by ablation (negative ΔSWE) at similar magnitudes. While ablation reduces some seasonal SWE 

accumulation, it does not make a region unproductive, but rather reflects the efficiency at which 

SWE accumulates. For instance, integrating the distributions for all and positive-only ΔSWE 

shows the difference between net and gross SWE accumulation, respectively. Differences 
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increase from 8 percent at Southern sites up to 11 and 14 percent at northern and central sites, 

but they accumulate net amounts of 54, 58, and 70 cm per site-year, respectively.  

 

Figure 2.4 Joint distributions of air temperature (using 1˚C bins) with hourly ΔSWE (top, using 

0.254-cm bins) and hourly IVT (bottom, using 25 kg m -1 s-1) for (left to right) north, central, 

and south regions. Distributions are colored and contoured by the average seasonal 

accumulated SWE during defined accumulation events. Contour lines are spaced by (top row) 12 

and (bottom row) 4 mm per site-year intervals. Dashed lines indicate the 99th quantile of the 

marginal distributions across positive ΔSWE and IVT. 

 

Regional differences in net SWE accumulation are in part explained by less available 

moisture at high elevations (bottom row of Figure 2.4). Temperature-IVT distributions 

demonstrate a gradual increase in IVT with temperature up to about 1.5˚C, but the IVT under 

which 99 percent of SWE accumulates decreases from 355 to 273 kg m-1 s-1 southward. At 

warmer temperatures, IVT magnitudes drop to below 225 kg m-1 s-1 during most hours of SWE 

accumulation. The greatest concentrations of SWE accumulation in temperature-IVT space 
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behave in modest accord with the Clausius-Clapeyron relation, which appears to impose an 

upper limit of SWE accumulation at a given temperature and is also apparent in temperature-

integrated water vapor space (not shown). These windows demonstrate that SWE accumulation 

favors synoptic conditions able to balance snow formulation (requiring colder temperatures) 

while holding optimal moisture (at warmer temperatures).  

2.2.2  Interannual variability 

Figure 2.5 shows the marginal distributions of ΔSWE increments during accumulation 

events in wet and dry years for each region, demonstrating that SWE accumulates more 

efficiently (i.e., with relatively less negative ΔSWE) in wet-year storms than in dry-year storms. 

The ratio of the net total of all ΔSWE increments to the gross total of all positive ΔSWE 

increments ranges from 0.83 to 0.88 (0.87 to 0.93) in dry (wet) years. Northern sites demonstrate 

the greatest change in this ratio from dry to wet years (0.83 to 0.92), while southern sites’ ratios 

remain high and change the least (0.88 to 0.93).  

 

Figure 2.5 Histograms of ΔSWE increments (with 0.254-cm bins) during accumulation events in 

wet versus dry years for (left to right) north, central, and south regions. Net-to-Gross values 

indicate the ratio of the sum of all ΔSWE increments to the sum of all positive increments. 

 

Figure 2.6a and 2.6b show that wet years have both more storms per season and more 

SWE accumulation per storm compared to dry years. Each bar shows the median and IQR for 
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each metric. The number of events per season varies similarly in wet and dry years with nearly 

identical IQRs, while the upper quartile of event SWE (Figure 2.6b) is considerably higher in 

wet years, demonstrating a heavier supply in leading SWE accumulation events. This follows 

from enhanced IVT (Figure 2.6e) and colder temperatures (Figure 2.6c). For all regions, wet and 

dry year differences in these metrics (and in the ΔSWE distributions in Figure 2.5) were deemed 

statistically significant (α=0.01) by an unpaired Mann-Whitney U test. 

 

Figure 2.6 Medians (bars) and IQRs (error bars) of (a) SWE accumulation events per site-year, 

(b) net SWE accumulation per event, (c) average event air temperature, (d) event snowfall 

fraction, (e) average event IVT, (f) the ratio of gross SWE change to event total IVT, and (g) 

average event energy advection from the integrated moisture flux. Results are partitioned into 

(blue) wet years and (red) dry years. 

 

While wet years are characterized by colder temperatures and greater SWE per storm, the 

likely form of precipitation shows no significant difference. We inferred precipitation phase from 

the upwind NOAA snow level radar (Johnston et al. 2017) nearest each snow pillow (Figure 

2.1a), where a radar melting level height above the snow pillow elevation indicated possible rain, 

whereas lower melting levels indicated highly probable snow (we describe the radars and their 
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snow pillow assignments in Appendix E). The snowfall fraction, estimated by the proportion of 

time the radar melting level resided below site elevation, was persistently above 0.85 (Figure 

6d). The lowest snowfall fractions were observed at northern sites, where storms most often go 

above melting temperatures. 

Wet years also carry significantly (α = 0.05) greater ΔSWE to IVT ratios (R, Figure 2.6f) 

and greater advected energy in the atmospheric column (A, Figure 2.6g) compared to dry years. 

Dry-year R values are similar across the range while increasing southward in wet years, 

corresponding to a southward gradient of decreasing SWE accumulation (Figure 2.6b) and IVT 

(Figure 2.6e) in dry-year storms. Values of A in both wet and dry years decrease southward 

(Figure 2.6g), following lower temperatures and IVT. 

2.2.3  Snow accumulation versus midwinter ablation – antecedent conditions 

The extent to which SWE increases or decreases during a storm is governed by 

antecedent snowpack and prevailing storm conditions. We detail these by considering the 

likelihood of an event resulting in SWE accumulation or ablation given certain preceding and 

prevailing snowpack and atmospheric measurements (Section 2.1.3). Controlling antecedent 

conditions are described in Figure 2.7, which shows the probability of SWE accumulation and 

ablation given measurements above certain values for the prior 12-hour average temperature and 

initial SWE, snow depth, and bulk snow density. These metrics are plotted for all sites and for 

each subregion. We distinguished warm (dashed lines) from cold (solid lines) events with a 

median temperature threshold of 1.0˚C during events.  
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Figure 2.7 Antecedent event conditions governing SWE accumulation or ablation. Panels show 

the conditional probabilities of SWE accumulation (blue) and ablation (red) given values above 

(left to right) the 12-hour average air temperature before an event, initial SWE, initial D, and 

initial bulk snow density. The top row of subplots includes all sites; the lower three subset sites 

by north, central, and south subregions. Solid (dashed) lines indicate cold (warm) events, 

defined by a 1.0˚C event median temperature threshold. 

 

Preceding temperature generally does not influence accumulation/ablation likelihood. 

Cold accumulation events occur more frequently than ablation events irrespective of temperature 
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everywhere. The opposite occurs for warm events, in which ablation outnumbers accumulation, 

resulting in higher ablation likelihoods. However, warm events at central sites show a nearly 

equal likelihood of accumulation as ablation if the preceding 12 hours are below the melting 

temperature.  

Initial snowpack states play more decisive roles in the fate of SWE during warm events. 

While cold accumulation events outnumber cold ablation events, warm events tend to result in 

accumulation when the snowpack is deep and ablation when it is shallow. This behavior 

predominates at northern and central sites. Overall accumulation likelihood surpasses ablation 

when depths exceed 250 cm. Snowpacks with densities below ~300 kg m-3 demonstrate the 

strongest accumulation likelihood in a warm event, although this does not exceed ablation 

likelihood except in the central Sierra Nevada. Ablation likelihood increases rapidly with denser 

snowpacks. The southern region demonstrates opposite behavior for initial snowpack conditions 

due in part to warm events being dominated by a relatively low-elevation site where warm 

ablation events outnumber warm accumulation events. 

2.2.3  Snow accumulation versus midwinter ablation – prevailing event conditions 

Figure 2.8 shows event conditions outlining the likelihoods of SWE accumulation and 

ablation for cold and warm event temperature, IVT, duration, and advected energy from moisture 

flux in the atmospheric column (Section 2.1.2). Median temperatures distinguished warm events, 

dominated by ablation, from cold events, which are dominated by accumulation. The likelihood 

of either tends toward the other when temperatures approach 0.0˚C.  
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Figure 2.8 Same as Figure 2.7, but for prevailing event conditions (left to right) median event 

temperature, median event IVT, event duration, and the event energy advection from the 

integrated moisture flux. Solid (dashed) lines show relationships for cold (warm) events. 

 

Across the range, the accumulation likelihood is unaffected by cold event IVT, duration, 

or advection. The same is true for warm events at northern sites, as consistently warmer 

temperatures at lower elevations predisposes the region to more ablation events irrespective of 

synoptic conditions. Central and southern sites demonstrate some sensitivity to IVT and 
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corresponding advection during warm events, as increased transports result in decreased 

accumulation in the central Sierra and increased accumulation in the southern Sierra. At central 

sites, high ablation likelihoods given large IVT is driven by atmospheric river events in WY 

2017 and 2019 that melted snow at multiple sites. High ablation likelihood given low IVT at 

southern sites is attributed largely to one high-elevation site (CHP, 3139 m) demonstrating 

frequent SWE oscillations likely caused by wind redistribution.  

Warm event durations weakly affect ablation likelihood (Figure 2.8), except for brief 

events at central sites, which demonstrate a greater accumulation likelihood for events lasting 

less than 5 days. Generally, warm SWE accumulation becomes more likely in short storms, 

although ablation is the most probable outcome.  

2.3  Discussion 

2.3.1  Orographic signatures and interannual variability in snow accumulation 

We constructed distributions of hourly SWE changes across air temperature to assess its 

role in snow accumulation across the Sierra Nevada. We also investigated the joint influence of 

synoptic characteristics. Temperature distributions of net SWE accumulation cool and broaden 

with increasing elevation and decreasing latitude, indicating warmer, low-elevation SWE 

accumulation to be governed by temperature. Higher, colder sites are more limited by 

precipitation (Mote 2006; Scalzitti et al. 2016) and therefore governed by synoptic-scale 

circulation (Lundquist et al. 2010).  

Seasonal SWE magnitude is thus tied strongly to orographic effects. Generally, the 

"wettest" sites occupy windward basins or are near the crest in leeward basins. "Dry" sites reside 

further east in the lee or at low elevations to the north. This relationship likely indicates a 

tendency for snow accumulation to be greatest on windward slopes of high-elevation ranges and 
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near the crest or on leeward slopes of low-elevation ranges (Barros and Lettenmaier 1994; Roe 

2005), demonstrating favorable positions during southwesterly atmospheric rivers (Huning and 

Margulis 2018; Lundquist et al. 2015). Southern sites are relatively dry despite their high 

elevation, consistent with suggestions that higher, flatter terrain (Figure 2.1c) reduces orographic 

uplift and exhausts precipitable water (Kirchner et al. 2014; Huning and Margulis 2018). 

Exceptional SWE accumulation at sites far north (HIG) and downwind (GNL) may signify 

preferential deposition from south-southeasterly barrier jets (Huning and Margulis 2018; 

Lundquist et al. 2010, 2015) rather than atmospheric rivers (Brandt et al. 2020), although this 

suggestion would require more spatially explicit SWE change information.  

We demarcate interannual variability in SWE accumulation with colder temperatures, 

higher storm frequency, and greater SWE and IVT per storm during wet years compared to dry 

years. Wet years carry more moisture in their leading storms (Figure 2.6e), resulting in a longer 

tail in event-accumulated SWE (Figure 2.6b). This is consistent with other work demonstrating 

wet-year atmospheric rivers bringing greater precipitation and SWE accumulation (Eldardiry et 

al. 2019) due to enhanced IVT (Huning and Margulis 2018). Huning & Margulis (2017) 

observed about 12-16 (7-11) snowstorms and more (fewer) storm-days during wet (dry) seasons, 

which agree with our results (where site sampling accounts for minor differences). We 

complement these prior research efforts by delineating SWE accumulation drivers at an hourly 

timescale that may be muffled by gross characterizations at longer timescales across a mountain 

transect.  

2.3.2 Beneath the temperature dependence of snow accumulation 

The control temperature imparts on SWE accumulation is strongly moderated by the 

moisture available to condense into solid precipitation. The joint distributions of net ΔSWE with 
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temperature and IVT with temperature (Figure 2.4) show that SWE accumulation favors 

conditions maximizing atmospheric moisture subject to the constraint of snow formation. In 

other words, the most productive SWE accumulation represents a tradeoff between moisture 

supply (limited by colder temperatures) and ice nucleation (limited by melting at 0˚C). 

Sufficiently cold conditions permit snow to form via vapor deposition and rimming of 

supercooled droplets, which shift to raindrop coalescence at the melting point. Colder 

temperatures are accompanied by enhanced condensation rates which promote efficient 

orographic precipitation relative to IVT (Albano et al. 2020; Kirshbaum and Smith 2008).  

While southern sites are often cold and efficient in this manner (Figure 2.6f), this 

principle may limit their capacity to hold moisture, resulting in less seasonal SWE accumulation 

compared to the warmer, lower sites further north. Seasonal SWE accumulation differences are 

also emphasized by the fact that relatively fewer storms land in the southern Sierra Nevada 

(Bales et al. 2006). Northern and central sites accumulate SWE less efficiently, perhaps from 

evaporation of falling precipitation (Kirshbaum and Smith 2008) or experiencing both rain and 

snow during storms. Nonetheless, these less favorable conditions are outpaced by moisture 

supply when conditions are favorable during SWE accumulation events. Our results are 

consistent with Guan et al. (2010), who observed a similar tradeoff between snowfall fraction, 

temperature, and precipitable water, and with O’Hara et al. (2009), who found precipitable water 

and moisture stream orientation to be the leading drivers of heavy snowfall in the Sierra Nevada.  

Results also show modest SWE accumulation above 0˚C, likely resulting from one (or a 

combination of) two mechanisms. The first is the tendency for latent cooling to attenuate the 

melting of snowfall. Increased hydrometeor mass may further reduce melting due to increased 

fall velocity and time required to melt (Minder et al. 2011). Warm SWE accumulation may 
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therefore result from mixed-phase precipitation avoiding melt before reaching the surface, which 

is likely the case in conditions still near 0˚C as the cooling effect lowers temperature as a result 

(Kain et al. 2000). The second mechanism (discussed in Section 2.3.3) is the refreezing of 

infiltrated rainfall within a snowpack, which is more likely at higher air temperatures. 

2.3.3 Snow accumulation versus midwinter ablation 

We calculated the likelihood of SWE accumulation or ablation conditioned on various 

snow and meteorological characteristics to delineate the factors governing snowpack response to 

warm storms. Across the Sierra Nevada at an hourly timescale, we reaffirm the capability of 

snow accumulating at temperatures above 0˚C (Lundquist et al. 2008; Guan et al. 2010). This is 

unsurprising given that most storms last longer than 24 hours and reflect diurnal behavior, 

meaning that events near but predominantly below 0°C would still reflect warm SWE 

accumulation. However, results also show nontrivial SWE accumulation likelihoods when the 

median event temperature is above 0˚C.  

At northern and central (southern) sites, 16-17 (6) percent of SWE accumulation events 

were classified as warm (i.e., with a median temperature above 1.0˚C, Table 1), which coincided 

with deep, low-density snowpacks (indicating cold, unsaturated conditions) and brief, weak 

storm conditions. This is in agreement with Lundquist et al. (2008), who illustrated the 

importance of preexisting snow properties to the fate of precipitation. Shallower antecedent snow 

or intense, warm storms with strong IVT primarily resulted in ablation, shown by warm events 

having greater ablation likelihood for large advection rates accompanying IVT. This is likely 

more correlational than causal, as precipitation advection contributes little to snowmelt (Li et al. 

2019; Marks and Dozier 1992). Conditions favoring ablation may instead point to unmeasured 

drivers, such as warmer temperatures indicating the role of enhanced longwave radiation in 
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cloudy conditions (Mazurkiewicz et al. 2008), or enhanced IVT indicating the role of strong 

winds driving turbulent exchange (Marks et al. 1998).  

While we demonstrate that not all warm events result in ablation, they do not necessarily 

preserve seasonal snow storage despite appearing to do so at an hourly timescale. Between 22 

and 39 percent of warm SWE accumulation events were immediately followed by midwinter 

ablation or seasonal snowmelt (Table 2.1), with southern (northern) sites demonstrating this 

behavior least (most) often. Results show that accumulation and ablation become equally likely 

around 0.6˚C, about 1 degree colder than reported by Lundquist et al. (2008) likely due to our 

data sample covering a higher elevation range (up to 3277 m) and temporal frequency (hourly). It 

should be noted that our observations do not evenly sample the Sierra Nevada hypsometry, as 

much of it occupies the 1500-2000-m elevation band (Figure 2.1b). This suggests that the 

likelihood of ablation following warm accumulation events may be greater than reported here, as 

relatively lower-elevation areas currently occupy more of the transient snow zone. Snow pillows 

were installed to support forecasts of seasonal runoff, so most are well above the transient snow 

zone.  

Nonetheless, the tendency for some warm events to contribute to SWE accumulation 

without subsequent ablation indicates a positive surface energy balance competing (and losing) 

against the snowpack's developed cold content and liquid water retention (Jennings et al. 2018; 

Seligman et al. 2014). During rainfall in these cases, the latent heat released from refreezing after 

infiltration would not overcome the internal energy deficit of the snowpack, and the snowpack 

column itself would be deep and porous enough so as not to release more liquid than it captures.  
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Table 2.1 SWE accumulation and ablation event statistics by region and time period. 
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This was likely the case more often at southern sites, which are higher and colder and 

accumulate SWE most efficiently, thereby developing and maintaining conservative energy 

deficits.  

2.3.4 Climate warming implications 

We delineate SWE accumulation controls and their relationship to air temperature at an 

hourly timescale here in an effort to understand the implications of climate warming on winter 

snowpack processes across the Sierra Nevada. Our results demonstrate available moisture to 

regulate the dependence of snow accumulation on temperature and that the higher, southern 

Sierra Nevada conservatively accumulates snowpack with colder, drier air and undergoes little 

midwinter ablation compared to lower sites further north. Taken together with future climate 

projections of enhanced IVT (Lavers et al. 2015), a sharpened distribution of more frequent and 

intense atmospheric river-related extreme precipitation (Gershunov et al. 2019; Huang et al. 

2020), and decreasing (increasing) SWE at low (very high) elevations (Sun et al. 2019), our 

results suggest that snowpack accumulations at high elevations will come from a less 

conservative (i.e., less efficient) precipitation regime in a warmer climate. Consequently, as the 

transient snow zone recedes to higher elevations, snowpacks may diminish as a storage buffer 

against warm winter storms, making midwinter ablation more commonplace.  

This implication assumes that low-elevation snowpack behavior serves as an analog for 

future high-elevation behavior. However, it is nuanced by the regional gradient of precipitation 

across the Sierra Nevada, which is wetter in the northern part of the range (Bales et al. 2006). 

Higher, southern sites therefore may not entirely adopt lower, northern behavior due to the 

potential for climate warming to affect midlatitude storm tracks. Poleward shifts in the 

Subtropical High (Choi et al. 2016) and in the travel of extratropical storms (Tamarin-Brodsky 
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and Kaspi 2017) could relax this gradient in the Sierra Nevada and exacerbate snow drought 

conditions by limiting the number of potential snow accumulation events. Competing 

mechanisms such as an extension of the Aleutian Low (Polade et al. 2017) and an eastward 

extension of the Pacific jet stream (Neelin et al. 2013) could bolster the regional gradient, 

making northern basins increasingly flood prone and southern snowpacks shaped by fewer 

favorable storms. Though, it should be noted that projected warming effects on the storm tracks 

and synoptic-scale dynamics germane to California precipitation may be within the envelope of 

natural climate variability (Zappa 2019; Maher et al. 2020) and are often climate model-

dependent (Langenbrunner et al. 2015; Chang et al. 2015), making this a feebler perceived 

consequence of anthropogenic warming. 

2.3.5 Instrumental and analytical limitations 

Several inherent uncertainties and limitations accompany the use of point-scale snow 

pillow measurements to characterize snow accumulation across a mountain range. We used 

hourly measurements to assess behavioral SWE accumulation at a finer, process-resolving 

timescale than previously researched, which required a rigorous and partly manual quality 

control procedure. A risk in failing to screen erroneous measurements may still be present 

despite its reduction by supervision. SWE accumulation events having spuriously accepted 

voltage-based noise, for instance, may falsely inflate negative ΔSWE increments' contribution to 

accumulation efficiency (Figures 2.4 and 2.5).  

Our supervised quality control approach constrained our analyses to a relatively small 

subset of sites (28) and brief period of record (up to 10 years), enough to provide insight about 

the conditions in which snow accumulates or ablates. This constriction is not ideal for 

developing a climatological characterization, as a few particular seasons or events may dominate 
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our results at some sites. While we refrain from per-basin analyses to limit exacerbating this 

issue, narrow sampling can still push results in an uncharacteristic direction (e.g., wet- versus 

dry-year analyses may not be entirely representative, as they use ~ 40 percent of an already 

constrained sample). Furthermore, point observations naturally fail to represent their 

surroundings, which may challenge our interpretations of antecedent SWE (Molotch and Bales 

2005, 2006) and snow depth (Meromy et al. 2013). This representativeness issue also presents 

uncertainties pertaining to SWE change events, as the spatial distribution of precipitation is 

ignored by accumulation events defined at a single point. During snowmelt, research has shown 

that flow paths within a snowpack can divert meltwater and result in a downslope increase in 

SWE (Webb et al. 2018a). This implies that an accumulation event defined at a snow pillow may 

be a result of undetected snowmelt nearby, or from lateral flow paths in deeper, neighboring 

snow (Webb et al. 2018b).  

We also used upwind snow level radars to infer the likely phase of precipitation (Figure 

2.6d; Appendix E), notwithstanding the tendency for the atmospheric melting layer to bend 

toward windward mountain slopes during orographic precipitation (Medina et al. 2005; Minder 

et al. 2011) and result in offsets on the order of hundreds of meters below the free-air 

measurements upwind (Lundquist et al. 2008; Minder and Kingsmill 2013; Brandt et al. 2020). 

Although, our analysis is generally consistent with other research demonstrating a regional 

gradient in the snowfall fraction along the Sierra Nevada (Knowles et al. 2006; Safeeq et al. 

2016).  

2.4 Conclusions 

Using 10 years of hourly snow pillow measurements, we characterize snow water 

equivalent (SWE) accumulation controls and their relationship to air temperature across an 
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elevational and latitudinal gradient along the California Sierra Nevada. SWE accumulation varies 

with orographic signatures and is shown to have a temperature dependence that is moderated by 

atmospheric moisture supply. We show that temperature conditions balancing precipitable water 

and snow formation requirements produce the most seasonal SWE, which was observed in the 

(low-) northern and (middle-elevation) central Sierra Nevada. The higher southern Sierra Nevada 

conservatively accumulates SWE with colder, drier air, and undergoes relatively less midwinter 

ablation as a result. These differences serve to explain a tendency for some deep, low-density 

snowpacks to accumulate rather than ablate during warm storms. This is most likely to occur for 

storm events that are modest in their duration and transported moisture or are immediately 

followed by ablation. Our results suggest that, in a warmer climate characterized by sharpened 

precipitation extremes and less snowfall, any accumulated snowpack may cease to store warm 

winter rain, increasing midwinter ablation responses. Snowpack liquid storage deficits and cold 

content lie at the core of our findings; this future implication could therefore support predictions 

of ablation susceptibility. Explicit measurements of these quantities at the requisite timescale 

(hourly) and spatial extent (range-wide) are unfortunately intensive. However, the probabilistic 

characterization of snowpack responses to warm storms we performed may provide an inroad to 

predicting snowpack responses at such an extent and timescale using related, more accessible 

quantities. 
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Chapter 3 Snowmelt during rain-on-snow was not a major contributor to the 

Oroville Dam flood of February 2017 

 

Kayden Haleakala, W. Tyler Brandt, Benjamin J. Hatchett, Dennis P. Lettenmaier, and 

Mekonnen Gebremichael 

 

3.1 Data and methods 

This study aims to identify the likely flood-driving mechanism(s) during two large rain-

on-snow (ROS) events in the northern Sierra Nevada in the winter of 2017. Sub-daily 

measurements in the Feather, Yuba, and American River basins (hereafter “study basins”, Figure 

3.1a) focus on (1) the two events themselves – one beginning on 7 January and the other on 6 

February – and (2) the context of the “shoulder” seasons in explaining the roles of snowpack and 

basin conditions in ROS flooding.  

3.1.1 In situ snow, soil, and meteorological measurements 

Point measurements for snow water equivalent (SWE), soil moisture, air temperature, 

wind speed, relatively humidity, and precipitation were obtained at an hourly timescale (or sub-

hourly, if available) from multiple networks in the Northern Sierra Nevada (Figure 3.1a). All 

data were converted to UTC and metric units. 

3.1.1.1 Snow water equivalent  

The California Department of Water Resources (DWR) manages a network of ~130 

automated monitoring stations across the Sierra Nevada that measure SWE from snow pillows. 

In the northern Sierra Nevada, some of these stations are run by the Natural Resources 

Conservation Service (NRCS) as part of the SNOTEL network—but regardless all data are 
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posted to the DWR California Data Exchange Center (CDEC, 

http://cdec.water.ca.gov/snow/current/snow/index.html). We obtained hourly SWE from 22 snow 

pillows in the Feather, Yuba, and American River basins from CDEC. SWE values were quality-

controlled manually. Metadata for snow pillows used in this study are provided in Table F1.  

3.1.1.2 Soil moisture 

Soil volumetric water content (VWC) is measured at few NRCS and DWR stations in our 

study basins (n=1). To raise the number of samples, we obtained VWC measurements from 

networks independent from CDEC and NRCS. These include the Western Regional Climate 

Center (WRCC, https://wrcc.dri.edu/), the National Oceanic and Atmospheric Administration 

Physical Sciences Laboratory (NOAA PSL, https://psl.noaa.gov/data/obs/datadisplay/), and the 

American River Hydrologic Observatory (ARHO; Bales et al. 2020). The ARHO is a distributed 

sensor network with each station comprising a cluster of sensor nodes. We report the cluster 

median for ARHO stations. VWC values from NOAA PSL were converted from raw 

reflectometry measurements using the standard coefficients in the corresponding data logger 

manual (Table 4 in https://psl.noaa.gov/data/obs/instruments/SoilWaterContent.pdf). Our 

expanded sample (n=6) occupies an elevation range from ~1,600 to ~2,700 m, and is described 

in (Table F2). The depth and timestep of data vary by station and network. We aggregated sub-

hourly measurements to hourly timesteps.  

VWC served two purposes in this study. First, we used the shallowest available sensors 

with collocated SWE to infer “passive” snowpack behavior as SWE increasing simultaneously 

with VWC during rainfall. The shallowest nodes (5-10 cm) were used to represent the snow-soil 

interface, and minimize the effect of differences in hydraulic conductivity across different soils. 

Second, we use the elevation gradient in soil moisture to show a widespread increase in 
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antecedent conditions resulting from winter storm events. No quality control was carried out for 

soil moisture measurements, as they were used qualitatively, did not display spurious behavior, 

and soil temperatures remained at or above 0˚C.  

3.1.1.3 Surface meteorology 

Measurements of precipitation, air temperature, relative humidity, and wind speed were 

obtained from CDEC, WRCC, and MesoWest. Similar to our VWC collection, we obtained data 

from WRCC and MesoWest for stations/variables that were absent from CDEC. The MesoWest 

portal (https://mesowest.utah.edu/), provided data from the National Weather Service and other 

Remove Automatic Weather Stations. We screened available measurements for each variable 

and applied quality control prior to analysis (described in detail in Appendix G). We used a total 

of 31 precipitation gauges to bound the range of precipitation during each storm over the study 

basins (Table F3). We used a total of 41 stations reporting temperature, humidity, and wind 

speed, though not all measurements were suitable for both storms of interest (Table F3; 

Appendix G). Temperatures and winds were summarized for each storm at 4 elevation bands.  

3.1.2 Streamflow 

Stream discharge measurements were obtained from the U.S. Geological Survey (USGS) 

National Water Information System (https://waterdata.usgs.gov/nwis). We used a total of 9 gages 

in this study (Table F4), but only four report measurements at a 15-minute timescale. These 

higher-frequency measurements were used in analyses with other sub-daily data. Daily 

measurements were used to illustrate how streamflow evolved over the winter season. Spatial 

boundaries for the upstream tributary areas were obtained from the Geospatial Attributes for 

Gages for Evaluating Streamflow (GAGES-II) data set 

(https://water.usgs.gov/lookup/getspatial?gagesII_Sept2011). Baseflow separation was done 
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using the sepBaseflow function in the Hydrograph-py Python library (https://hydrograph-

py.readthedocs.io/en/latest/functions.html).   

3.1.3 Snow level radars 

Several Frequency Modulated-Continuous Wave snow level radars managed by NOAA 

PSL occupy the Central Valley and foothills of the Sierra Nevada. The brightband height (BBH) 

from these upward-looking S-band (2.8 to 3.0 GHz) radars estimate the melting level aloft, 

derived from an algorithm that inspects range gates for the maximum reflectivity and increasing 

Doppler fall velocity associated with melting snowfall (White et al. 2002; Appendix E). We used 

10-minute BBH measurements from the Oroville and Colfax radars in this study (Table F5) as a 

measure of the likely phase of precipitation. We note that because these sensors are located in the 

Central Valley, they may not always truly reflect mountain based melting levels (Minder et al. 

2011). 

3.1.4 Remote sensing 

True-color images from NASA Worldview (https://worldview.earthdata.nasa.gov/) were 

used for qualitative assessment of cloud and snow coverage. We obtained estimates of snow-

covered area (SCA) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Snow-

Covered Area and Grain Size (MODSCAG) algorithm (Painter et al. 2009), which retrieves these 

properties daily at 500 m. Scenes over the study basins were used for near-cloudless (below 

20%) days that had no apparent cloud coverage in Worldview. We then used SCA to calculate 

the regional snow line elevation over the aggregated study basins (Krajčí et al. 2014).  

3.1.5 Atmospheric reanalysis 

The 5th generation of atmospheric reanalysis from the European Centre for Medium-

Range Weather Forecasts (ERA5) provides hourly atmospheric variables on a 0.25˚ grid 
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(Hersbach et al. 2020). We obtained ERA5 geopotential, air temperature, specific humidity, and 

zonal and meridional winds at 27 pressure levels (from 1,000 to 100 hPa) from the Copernicus 

Climate Change Service’s Climate Data Store (https://cds.climate.copernicus.eu/). We also 

obtained hourly 0.1˚ surface wind and 0˚C altitude variables from ERA5-Land (Muñoz Sabater 

2019) to test the argument of precipitation undercatch affecting the amount of snowmelt 

contributing to runoff during ROS (Appendix I).  

3.1.6 Synoptic analysis 

To assess synoptic differences between the January and February storm events over the 

study basins, we calculated the moist static energy (MSE) at each pressure level and the 

integrated vapor and heat transports (IVT, IHT). Equations are presented in Appendix H. In 

essence, IVT and IHT are wind-weighted quantities of moisture and heat, respectively, which are 

the key ingredients to turbulent fluxes (latent and sensible heat fluxes, respectively) at the 

surface, depending on the moisture and heat contents of the snowpack surface. We took the 

difference in MSE between 500 and 850 hPa as a relative measure of static instability (Dettinger 

et al. 2004b), where smaller gradients indicate less static stability and thereby a greater uplift 

tendency and conductance for turbulent fluxes. Taken together, these metrics lend some insight 

to the relative strength of atmospheric river-related melt drivers (Marks et al. 1998) between the 

January and February events. We also report supporting air temperature and wind speed 

comparisons from available surface stations (Table F3; see sub-section 3.1.1.3 “Surface 

Meteorology” above).  

We report the surface air temperature, wind speed, IVT, IHT, and MSE gradient from 

each storm during hours when BBH (at either Oroville or Colfax) exceeded 1,600 m. These high-

BBH hours were isolated in an effort to capture the prevailing conditions during rainfall over the 
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study basins. The 1,600 m threshold was selected to nominally represent the lower regions of the 

snow pillow network (Table F1) to suggest that rainfall is likely occurring over low-lying snow 

cover, at the very least. Given that this value resided on average a few hundred meters above the 

regional snow line elevation, this threshold inherently accounts for the regional lowering of 

upwind melting levels (Minder et al. 2011) that can positively bias BBH values applied 

downwind for precipitation phase partitioning. Both IVT and IHT were expressed as 

accumulations (kg m-1 and J m-1) over the high-BBH timesteps. Values for the MSE gradients 

were averaged over high-BBH timesteps. 

3.1.7 Cumulative discharge and rainfall comparisons 

To assess both runoff efficiency and the notion of snowmelt augmenting TWI above 

rainfall alone, we compared rainfall estimates to observed discharge at each subdaily USGS gage 

over 4 intervals in the snow season. We hypothesized that runoff efficiency would grow over the 

course of the winter as liquid inputs accumulated to raise antecedent soil moisture, and that the 

presence of snowmelt and rainfall together would bring discharge above rainfall totals.  

We partitioned gridded (4-km), 6-hourly precipitation from the California Nevada River Forecast 

Center (CNRFC, https://www.cnrfc.noaa.gov/arc_search.php) over the drainage areas of each 

subdaily USGS gage using BBHs from the nearest snow level radar. We first aggregated the 10-

minute BBHs to hourly values. We filled the remaining gaps in the hourly time series using 

ordinary least squares regression of hourly BBH against the 0˚C altitude from the nearest ERA5-

Land pixel from November 2016 through early May 2017. Regression results at the Oroville 

(n=664) and Colfax radar (n=671) yielded R2 values of 0.93 and 0.95, respectively, with a 

standard error of 0.01 m. This gap-filled time series was then aggregated to 6-hourly values to 

match CNRFC, then lowered by 200, 400, and 600 m to test different degrees of snow level 
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bending (Minder et al. 2011). Using this to partition rainfall from CNRFC precipitation, we 

compared these accumulated rainfall estimates and accumulated observed discharge separately 

for the following periods: (1) the early winter season, from 15 November (the first large rainfall 

event) through December (2) January, encompassing the first storm of interest, (3) February, 

encompassing the second storm, and (4) early spring, from 16 March (the first rainfall event) 

through early May. These time frames were chosen such that rainfall began early in the period 

and ceased before the end of the period, but allowing several days of concentration time before 

the next rainfall event.  

3.2 Results and discussion  

3.2.1 Winter 2017 and its rain-on-snow events 

Beginning in 2011, the Sierra Nevada experienced one of the most severe (Hatchett et al. 

2015) droughts in recorded history prior to water year (WY) 2017 — a record precipitation year 

that broke the meteorological drought. The northern Sierra Nevada accumulated over 2,200 mm 

of precipitation from 49 landfalling ARs between 1 October and 12 April (Vano et al. 2019). A 

water resource tradeoff ensued – some major reservoirs filled to quell the hydrological drought 

(Boxall 2017), while others flooded (Sterle et al. 2019; White et al. 2019). In January and 

February 2017, eight “families” of ARs made landfall in Northern California (Fish et al. 2019), 

bringing several distinct, prolonged spells of precipitation  (Sterle et al. 2019; White et al. 2019) 

(Figure 3.1b). Two storm sequences in particular – one from 7-12 January (hereafter 7J) and the 

other from 6-12 February (Michaelis et al. 2022) (6F) – were accompanied by high snow levels 

(Figure 3.1b) and prominent peaks in river discharge (Figure 3.1c).  

The 7J sequence accumulated 329 mm of precipitation (median across precipitation 

gauges in the three study basins), and 224 mm of coincident discharge (median across stream 
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gauges; Fig. 3.1d). Snow levels (and discharge) rose rapidly beginning 7 Jan 0730Z, peaking at 

3,059 m (above the highest point in all three basins) at 8 Jan 1350Z, then fell. A colder pulse of 

precipitation brought snow levels up to 2,364 m (above 98% of the study area) on 11 Jan 0420Z 

before declining, accompanied by a secondary peak in streamflow. Baseflow at the 4 sub-daily 

stream gauges (Table F4) rose between 170-210% (Figure 3.1c shows the Northern Yuba River 

gauge, USGS station 11413000). The event was followed by a relatively cold and modest storm 

from 13-23 Jan, which brought 103 mm of median precipitation, with snow levels averaging 

1,319 m (above 35% of the study area). This colder, smaller storm minimally impacted 

streamflow, but effectively lowered the regional snowline to 960 m (Figure 3.1c, 3.3e).  

The 6F event began with a rapid rise in snow levels from 1,915 to 3,169 m between 7 Feb 

0200Z-1400Z (Figure 3.1b), lowering gradually. Three waves of precipitation occurred in 

succession, each with snow levels persistently above 1,500 m and distinctive streamflow 

signatures (Figure 3.1b, 3.1c). In total, the 6F event accumulated 322 mm of median 

precipitation and 241 mm of median coincident discharge. Importantly, the stream responses 

(and concurrent soil moisture signatures; Figure 3.6b-g) for both the 7J and 6F sequences, taken 

together with snow levels above the regional snow line, suggest that ROS was prevalent.  

Both ROS events have similar synoptic characteristics during rainfall (Table 3.1, Figure 

3.2). We assessed these during periods when snow levels exceeded 1,600 m. 7J and 6F total 

integrated vapor and heat transport, and average moist static energy gradients between 500- and 

850-hPa are within ±4% of each other (Table 3.1).  
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Figure 3.1 (A) Snow, river, and hydrometeorological monitoring stations in the Feather (North 

Fork, East Branch of North Fork, and Middle Fork), Yuba, and American River basins. Shaded 

areas drain to each USGS gage, which report either daily or 15-minute measurements. (B) 

Median hourly incremental rainfall from the gauge network in (A), and 10-minute brightband 

height from snow level radars in January through February 2017. The 7 January and 6 

February storm sequences are shaded in grey. (C) Daily regional snow line elevation (calculated 

using MODIS fractional snow-covered area), and 15-minute stream discharge at USGS gauge 

11413000 (North Yuba River Below Goodyears Bar; outlined in A), with baseflow separated. 

Cumulative discharge and precipitation medians and ranges are shown for the (D) 7J and (E) 

6F storm events. 
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Table 3.1 Comparisons of synoptic and surface conditions over the study basins during the 7 

January and 6 February storms when snow levels resided above 1,600 m. 
 

Synoptic Metrics 7 Jan AR 6 Feb AR Δ% (Feb – Jan) 

High-BBH hours 58 62 + 6.90% 

Total Integrated Vapor Transport (106 kg m-1) 82.59 85.03 + 2.95% 

Total Integrated Heat Transport (1012 J m-1) 14,721 14,126 – 4.04% 

Mean Moist Static Energy Gradient (kJ kg-1) 51.74 50.02 – 3.31% 

Station Metrics 7 Jan AR 6 Feb AR Δ (Feb – Jan) 

Median Air Temperature (˚C) 

Z < 1,200 m 

1,200 m < Z < 1,600 m 

1,600 m < Z < 2,000 m 

Z > 2,000 m 

 

6.23 (n=8) 

3.89 (n=8) 

1.67 (n=10) 

– 0.35 (n=10) 

 

8.89 (n=8) 

5.56 (n=12) 

3.46 (n=11) 

1.13 (n=9) 

 

+ 2.66 

+ 1.67 

+ 1.79 

+ 1.48 

Median Wind Speed (m s-1) 

Z < 1,200 m 

1,200 m < Z < 1,600 m 

1,600 m < Z < 2,000 m 

Z > 2,000 m 

 

3.13 (n=6) 

4.47 (n=6) 

3.58 (n=4) 

4.92 (n=2) 

 

2.24 (n=6) 

3.13 (n=9) 

2.23 (n=7) 

4.02 (n=1) 

 

– 0.89 

– 1.34 

– 1.34 

– 0.90 
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Figure 3.2 ERA5 500-hPa geopotential height, and column-integrated water vapor and heat at 

mid-storm timesteps in the (top row) January and (middle row) February storm events. 

Timesteps resemble moments in each storm when rain-on-snow elicited snow pillow responses. 

Wind vectors above 20 m s-1 are shown at 500, 700, and 850 hPa, which demonstrate stronger 

winds during the January event. In-storm air temperature differences at these pressure levels 

(bottom row) showcase the oncoming cold front at the end of the January event. 

 

This suggests the atmospheric conditions in each ROS event sustained similar degrees of 

heat and moisture advection and static stability (Dettinger et al. 2004b) over the study basins. 

Surface stations indicate the 6F event, however, was generally warmer, particularly below 1,200 

m, while the 7J event was relatively more wind-driven (Table 3.1; corroborated by reanalysis-

derived wind fields in Figure 3.2). One notable difference was cold frontal passage during 7J that 

yielded a ~1,250 m decline in snow levels (Figure 3.2c, 3.1b). Conceivably, given a greater 

runoff-to-precipitation ratio and a slower decline in snow levels in the 6F event (Figure 3.1b, 
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3.1d, 3.1e), snowmelt may have augmented the 6F hydrograph which preceded the spillway 

incident at Lake Oroville (Henn et al. 2020; White et al. 2019).  

3.2.2 Snow can be a passive conduit for rainfall 

A previous case study of the 6F event noted that while precipitation ranked 9th-highest on 

record in the Feather River basin, runoff ranked 2nd (Henn et al. 2020), and reasoned that this 

extreme discharge was only possible with supplemental snowmelt. They estimated that snowmelt 

augmented TWI by approximately 37% relative to rainfall alone, which was supported by 

observations of daily snow water equivalent (SWE) decreases at snow pillows, an upslope 

migrating snow cover, and changes in a spatially-distributed SWE estimate between 24 January 

and 12 February (Henn et al. 2020). While high runoff ratios (Fig. 3.1d, 3.1e) and warm (above 

0˚C) temperatures (Table 3.1) indeed suggest snowmelt amplified TWI, we provide two lines of 

evidence suggesting a different interpretation of the snowpack’s role in these two events.  

The first line of evidence considers ephemeral snow ablation unrelated to the 6F storm. 

SWE estimates derived from cloud-free satellite images of fractional snow-covered area (SCA) 

on 24 Jan and 12 Feb – bracketing the event – were used previously to calculate ROS snowmelt 

(Henn et al. 2020). We believe this was a reasonable approach, given cloud cover and/or large 

zenith angles (Dozier et al. 2008) on days closer to the event. However, a visual inspection of all 

available images reveals a substantial snowline withdrawal between 24 Jan and the 6F storm 

(Figure 3.3e-g). Neither soil moisture nor streamflow across study basins increased in response 

to this snow loss (Figure 3.6, 3.1c), which implies this ephemeral snowmelt volume and its 

contribution (McGuire et al. 2006) to antecedent conditions to the 6F flood event was small, or 

instead sublimation. The extensive SCA on 24 Jan therefore may have inflated snowmelt 
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contributions to the 6F ROS event (Henn et al. 2020), the size of which would depend on the 

difference between the true and SCA-derived SWE volumes in the watershed that day.  

 

Figure 3.3 True-color evolution of the snow cover spans several noteworthy events in January 

and February 2017. Images bracket both ARs, the smaller storms directly preceding them, and 

the snowfall and snow withdrawal between AR events. Orange contours in (C), (D-F), and (I) 

show the regional snow line elevation over study basins as in Fig. 3.1C. 

 

The second line of evidence involves subdaily variations in SWE during ROS that are 

commonly masked at a daily timestep or sometimes misclassified as measurement errors. 

“Standard” daily measurements (including temperature, snow depth, SWE, and precipitation) 

have been used previously to identify and interpret ROS events (McCabe et al. 2007; Wayand et 

al. 2015; Musselman et al. 2018; López-Moreno et al. 2021). While this avoids the instrument 



50 

 

error- and noise-related problems with subdaily measurements, daily timesteps mask or 

misrepresent the mechanism(s) generating runoff during ROS. For instance, the 6F event showed 

widespread declines in daily SWE from 7 Feb (Figure 3 in Henn et al. 2020). This measurement 

corresponds roughly to 1200Z that day, since daily values are obtained from a single hourly 

value around 0300-0400 local time 

(https://www.cnrfc.noaa.gov/awipsProducts/RNOFSTSWE.php; DWR, personal 

communication). However, heavy precipitation began as early as 6 Feb 0200Z, and snow levels 

began rising above the snow pillows 24 hours later (Figure 3.4b). This suggests that many of the 

snow pillows within the basin were likely experiencing rainfall. As a result, the “pulses” 

observed in the hourly SWE likely indicate rainfall saturating the snowpack (between 1300-

2100Z) and then draining — rather than snowmelt. Similar SWE behavior occurred in the Yuba 

and American River basins in the 6F event (Figure 3.4e) and in the 7J event (Figure 3.4a, 3.4d).  

This type of SWE pattern (rising-then-falling) has also been observed at an hourly 

timescale across the Sierra Nevada during warm storms (Haleakala et al. 2021), reported as 

ablation immediately following SWE accumulation events. However, shallow (10 cm or less) 

collocated soil moisture, where available, further supports the notion that “pulses” in SWE are 

due to liquid water movement through snow rather than ablation (insets in Figure 3.4c, 3.4f). 

Near-surface soil moisture co-varies with SWE oscillations, rather than inversely following the 

SWE loss during snowmelt (Harpold 2016). These behaviors strongly suggest a “passive” ROS 

response in which SWE pulses reflect transient rainfall storage then passage through snow. This 

runs contrary to conclusions drawn from daily observations that can misinterpret the SWE 

drainage post-saturation as snowmelt (Henn et al. 2020), potentially overestimating TWI.  
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Figure 3.4 Hourly SWE in the Feather River basin for the (A) 7J and (B) 6F atmospheric river 

events, and in the Yuba and American River basins (D, E) for the same events show the 

snowpack filling and draining to or above pre-storm levels at high elevations while ablating at 

lower elevations. SWE values at snow pillows (described in Table F1) are expressed as 

departures from a date (vertical line) prior to event precipitation. Markers depict the position of 

upwind snowfall melting levels relative to each snow pillow, which can indicate the likely phase 

of precipitation. Hypsometric curves are plotted with corresponding snow pillow and post-AR 

snow line elevations for the (C) Feather and (F) Yuba and American. Corresponding maps show 

elevation ranges that bound the snow pillow networks (grey), and the “unmonitored” range 

between the lowest snow pillow elevation and the 13-January (post-7J storm) snowline elevation.  

Insets in (C) and (F) show collocated SWE and near-surface soil moisture time series during 

each storm at Blue Canyon (BLC, 1609 m) and the Central Sierra Snow Lab (CSL, 2103 m), 

respectively. 

 

It is possible that rainfall underestimation makes up for inflated snowmelt contributions 

to ROS generating extreme runoff. Estimating mountain precipitation is a pervasive 

hydrometeorological challenge (Lundquist et al. 2019) tied directly to estimating relative 

snowmelt contributions to TWI. Applying a simple wind-correction factor (Masuda et al. 2019; 

Appendix I) from hourly reanalyses to gridded precipitation raises 7J and 6F precipitation by 6-

12% (Figure 3.5). However, this assumes precision in the precipitation field and accuracy in the 
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wind field, which tends to be “dulled” over mountain environments (Minola et al. 2020). This, 

and unaccounted orographic enhancement of precipitation (White et al. 2019), appear to make 

this correction a lower bound (thereby “deflating” the melt contribution to TWI).  

 

Figure 3.5 The ratio of wind-corrected to raw CNRFC precipitation over the Feather River 

basin during the 7 January and 6 February storm events at various roughness lengths. Wind 

correction raises event-total approximately 6 to 12 percent, depending on the land cover. 

 

However, these lines of evidence are partial to exposed, flat terrain. Vegetation tends to 

collect less snowpack in-stand compared to exposed areas (Musselman et al. 2008), yet it shelters 

snow from wind-driven turbulent heat exchange, resulting in less-dramatic swings in TWI during 

ROS (Harr 1986; Marks et al. 1998). Beneath-canopy SWE and its in-storm changes are invisible 

to both satellite SCA retrievals and snow pillows (which are typically located in flat clearings). 

Therefore, in a heavily-forested watershed, these uncertainties can affect (1) the location of the 

regional snowline (as calculated using SCA here) and (2) ROS runoff generation inferred from 

snow pillows which have limited basin representation (Meromy et al. 2013).  
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3.2.3 Soils connect and amplify consecutive storms 

If snowmelt did not drive extreme ROS runoff, what other process(es) may explain the 

runoff? A 1:1 ratio of runoff to rainfall requires a saturated basin without losses to deep 

groundwater stores. During WY 2017, winter precipitation events unfolded successively, such 

that streamflow across the study basins recessed less with the onset of each storm event (Figure 

3.6a). This indicates an increasingly saturated landscape up until the 6F storm cycle, when log-

transformed streamflow levels off. Soil moisture, even in snow-covered areas, echoed the 

streamflow trajectory. Each spell of TWI allowed less drainage to occur (Figure 3.6b-g), 

bringing soil moisture conditions closer to saturation as winter progressed.  

 

Figure 3.6 Winter (A) daily streamflow at nine gauges and (B-G) hourly soil moisture in the 

study basins show a growth in baseflow and antecedent soil moisture in response to large 

consecutive storms. Note that the distribution of soil probe depths varies by location. 
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These antecedent soil moisture conditions are corroborated by steady increases in 

groundwater levels, as observed from wells in the Yuba and Feather River basins (cf. Fig. 22 and 

23 in Yuba Water Agency 2018). It seems plausible the degree of discharge achieved during the 

6F storm sequence was facilitated by the 7J sequence, and in turn, earlier runoff-generating 

storm events starting as early as mid-October (Sterle et al. 2019).  

Increases in runoff efficiency throughout the season underpin observed streamflow. We 

compared accumulations of discharge to rainfall to test the notion of snowmelt augmenting 

runoff over rainfall alone. Relative accumulations inherently provide a measure of runoff 

efficiency, where large snowmelt contributions would be expected to drive runoff in excess of 

rainfall. Early-season (November-December) rainfall registered relatively small amounts of 

discharge at each stream gauge (Figure 3.7ai-di; cf. Figure. 2d, 2f in Sterle et al. 2019). 

Discharge ranged from 32-35% of rainfall in the central Feather and south Yuba gauges (Figure 

3.7ai, 3.7ci) to 59% in the Yuba headwaters (Figure 3.7bi). Differences between cumulative 

discharge and rainfall narrowed after the 7J event (Figure 3.7aii-dii) and narrowed further after 

the 6F event (Figure 3.7aiii-diii), exceeding rainfall by 8-9% by the end of February. While this 

exceedance indicates active melt contributions consistent with low-elevation (~1,600 m) snow 

pillow SWE losses (Fig 3.4), it is considerably weaker than what prior research has indicated 

(Henn et al. 2020). At the catchment scale, both the 7J and 6F events rather fall into a “passive” 

classification of ROS in which rainfall is augmented by less than 10% (Brandt et al. 2022).  
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Figure 3.7 Discharge and estimated rainfall accumulations at subdaily USGS gauges during 

water year 2017 in the (A) central Feather, (B) Yuba headwaters, (C) southern Yuba, and (D) 

American. Accumulations are separated by (i) early-season, (ii) January – isolating the 7J event, 

(iii) February – isolating the 6F event, and (iv) spring periods. End-of-period ratios of total 

discharge to rainfall (ΣQ/ΣR) reflect rising runoff efficiencies through the snow season, 

highlighting instances of “active” snowmelt (or subsurface) contributions augmenting rainfall. 

 

We also examined a period of spring rainfall as a control case for comparison of winter 

runoff efficiencies. Spring discharge amounts strongly exceeded rainfall totals (by 39-96%) 

across most basins at the start of May (Figure 3.7aiv, biv, div), indicating more “active” 

snowpack contributions to runoff (Brandt et al. 2022). This is unsurprising, as seasonal snowmelt 

began at most snow pillows by late-March through April (Figure 3.8). Importantly, the near-

linear spring discharge accumulation (Figure 3.7aiv-div) is distinct from the relatively abrupt 

accumulations that followed rainfall in the winter months (Fig 3.7ai-diii).  
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Figure 3.8 Hourly snow water equivalent for the 2017 snow season at snow pillows in the (top) 

Feather and (bottom) Yuba and American River basins, with January and February storms 

shaded in grey. Peak snowpack (signaling the start of the season’s snowmelt) occurs in March-

April at most snow pillows. 

 

South Yuba River streamflow was most “active” in February (Fig 3.7ciii) and recessed in 

the spring (Fig 3.7civ) – an indication of earlier, modest snowmelt due to its narrow drainage 

area and minimal snow cover (Fig 3.1a; Fig 3.9). Its runoff efficiency nonetheless increased from 

the season start. We partitioned rainfall using upwind snow level radars in the Sierra Nevada 

foothills. While dynamical and thermodynamical processes cause snow levels to bend 

downwards with increasing elevation along the windward slopes (Minder et al. 2011) (biasing 
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the local rainfall fraction Lundquist et al. 2008), systematic lowering of the snow levels (Fig. 

3.10) minimally affects our interpretation.  

 

Figure 3.9 Antecedent snow cover of basin areas on clear days preceding the time periods shown 

in Fig 3.7 and Fig 3.10 below. Drainage areas pertain to USGS gauges in the (A) central 

Feather, (B) Yuba headwaters, (C) southern Yuba, and (D) American for (i) early-season, (ii) 

January – preceding the 7J event, (iii) February – preceding the 6F event, and (iv) spring 

periods. Maps show MODIS fractional snow-covered area (SCA, blue), masking snow-free 

regions (SCA < 10%, brown). Annotated snow cover percentages reflect the proportion of 

catchment area that is snow covered (SCA ≥ 10%). 
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Figure 3.10 Discharge and estimated rainfall accumulations at subdaily USGS gauges in the (A) 

central Feather, (B) Yuba headwaters, (C) southern Yuba, and (D) American. Accumulations are 

separated by (i) early-season, (ii) January – isolating the 7J event, (iii) February – isolating the 

6F event, and (iv) spring periods. Inset maps in each subplot show the drainage area on a clear 

day prior to the accumulation period to infer antecedent snow cover. Rainfall was partitioned 

using upwind snow levels, which are systematically lowered here to explore how snow level 

“bending” affects the rainfall-discharge relationship. 

 

These results suggest that amplifying discharge beyond rainfall totals requires both 

saturated soils and additional mass inputs (from either subsurface or snowmelt contributions). 

We show increasingly efficient winter runoff volumes that modestly exceed rainfall totals despite 

several large, warm ARs. We suspect this was due to “passive” snowpack conditions, as there is 

a clear distinction from spring, snowmelt-dominated runoff strongly exceeding rainfall totals.  

Cases of large, high-efficiency streamflow have been observed in other small, snow-dominated 

basins in the Western United States – caused by wet soils and winter rainfall occurring during 

periods of low potential evapotranspiration (Hammond and Kampf 2020; Harrison et al. 2021; 

Robles et al. 2021). However, disentangling snowmelt and subsurface contributions from rainfall 
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inputs in driving streamflow generation (Hammond and Kampf 2020), and closing the water 

balance around these terms remains extraordinarily challenging in snow-dominated headwaters 

(Safeeq et al. 2021), requiring fully coupled atmosphere-through-bedrock observation and 

modeling frameworks (Mejia et al. 2012; Siirila-Woodburn et al. 2021). Nonetheless, we found 

evidence the streamflow associated with ROS can be linked to the subsurface as well as to the 

role of snowmelt, which we argue was smaller than prior research indicated. This link is crucial 

because it compels us to acknowledge that the record-setting “Oroville event,” hydrologically, 

was born from a chain of consecutive events that increasingly “primed” the system (McNamara 

et al. 2005) to respond to a single, high-impact event. Indeed, had a more widespread, “active” 

snowmelt response transpired during the 6F storm sequence, the risk of dam failure and 

catastrophic flooding would have arguably been much greater.  

3.3 Conclusions  

Winter 2017 in California’s Sierra Nevada brought numerous landfalling warm ARs and 

multiple widespread flooding events. Two major storm sequences – beginning on 7 January and 

6 February – had high snow levels and yielded extreme streamflow volumes in the Feather, 

Yuba, and American River basins (Fig 3.1). Both storms shared several synoptic characteristics 

(Table 3.1), with the February event yielding less rainfall but more runoff than the January event. 

To explain this difference, we present evidence that snowmelt was not necessarily a primary 

flood driver, at least to the extent previously suspected. We showed that (1) much of the snow 

cover on 24 January underlying previous melt contribution estimates (Henn et al. 2020) had 

vanished prior to the event itself (Fig. 3.3, 3.1c), and that (2) hourly snow pillow responses to 

ROS revealed a potential for daily data to misinterpret liquid water drainage for snowmelt (Fig. 

3.4). As a “passive” response to ROS, snow liquid water content rose to saturation before 
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draining to pre-storm levels, resulting in snow pillows recording SWE gains and losses as 

rainfall passed through snow. We posit that snowmelt during ROS was a relatively small part of 

a broader cause of the extreme runoff in the February event. Rather, the cascade of prior storm 

inputs gradually increased baseflow and antecedent soil moisture (Fig. 3.6) and, in turn, led to 

increasingly efficient runoff (Fig. 3.7). This subsurface response links successive storm events 

together and leads to a hypersensitive response to a single, high-impact storm.  

To be clear, the “active” role snowmelt plays in mid-winter ROS flooding ought not to be 

dismissed. Understanding whether a snowpack will be “active” or “passive” during an event, and 

landscape saturation levels are critical to physically-grounded assessments of flood risk. Society 

naturally remembers past “extreme” events – our perceptions of which affect how we prepare 

and respond to future events (Haasnoot et al. 2011). Thus, an accurate, transferrable 

understanding and representation of the physical mechanisms of ROS will enable past events to 

better guide management responses in the future. Our alternative explanation of the chain of 

events leading up to the February 2017 “Oroville incident” reveals an important ambiguity in the 

perception of a past event. This demands elevated observational and modeling capacities to 

identify the correct physical processes and their coupling to interpret such events. We therefore 

recommend future efforts focus on the following fronts:  

(1) Precipitation phase and intensity. This is a foundational yet elusive forcing in 

mountain environments, and a first-order control on deciphering the relative importance of 

precipitation versus snowmelt during ROS. Despite improvements in humidity-aware proxies 

(Marks et al. 2013) and the utility in upward-looking radars (as used here), the optimal approach 

in estimating precipitation phase is direct observation (Harpold et al. 2017a; Arienzo et al. 2021). 

This may be partial to daylight hours and ambiguous during mixed-phase precipitation. 
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However, combining such citizen science with denser, robust observation networks will bolster 

on-the-ground representation, and may help to better constrain weather model physics 

(Lundquist et al. 2019) and satellite retrievals of mountain precipitation.  

(2) Snowpack structure and energy balance. This largely dictates the volume and timing 

of the flood response to ROS. Snow pit observations provide snowpack stratigraphy, cold 

content and liquid water content, helping to identify likely flow regimes and melt response to 

meteorological inputs. However, bracketing snow pit observations around ROS events requires 

intensive (and potentially hazardous) field campaigns and an element of luck. Dye tracer 

experiments carry a similar benefit, but the post hoc nature of these approaches is impractical for 

hazard risk and water supply monitoring. We recommend cost-effective automated or 

semiautomated efforts to map (Bonnell et al. 2021; Donahue et al. 2022) and to continuously and 

noninvasively monitor (Koch et al. 2019; Priestley et al. 2021) these quantities across a range of 

elevations (Capelli et al. 2022) and land cover types. Process-scale monitoring of “basic” snow 

properties – which must be coupled with accurate surface and boundary layer characteristics – 

can be exploited to develop more representative modeling frameworks. Such measurements, for 

instance, can improve process-aware constraints on the simplifying parameterizations that 

accompany models. They may also support developing more effective discretization schemes 

that respect the physical differences between matrix and preferential flow (Wever et al. 2016; 

Würzer et al. 2017).  

(3) Graduation to scale. How the above-mentioned processes translate from the point and 

hillslope to basin scale is crucial to guide management decisions. Our analyses rely on snow 

pillow observations located in flat clearings (and satellite estimates of SCA, which are partial to 

clearings and sparse vegetation). The network extends down to approximately 1,600 m in the 
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Sierra Nevada yet is above the regional snow line prior to each storm event we investigated (Fig. 

3.4c, 3.4f). Lower-elevation ephemeral snow cover, while unmonitored, is likely a more “active” 

contributor to snowmelt during ROS. While thinner, the areal extent and low cold content of 

such snowpacks become arguably important in favorable storm sequences (e.g., warm, intense 

precipitation immediately following snowfall). In-storm shifts in this boundary and its SWE 

affect the tributary area and volume of ROS response (Kattelmann 1997a) and therefore should 

be tracked to understand its relationship to basin flood response. Moreover, being able to monitor 

exchanges between ground and surface water stores would help to evaluate the interrelationship 

between ROS, ephemeral snow cover, and runoff response as an integrated system. This may 

benefit from synthesized critical zone observations (Kirchner et al. 2020; Wlostowski et al. 

2021) and isotopic analyses (Rücker et al. 2019) across landscapes.  

Facing a climate more prone to high-impact ROS (Li et al. 2019; Musselman et al. 2018), 

even as ROS events themselves become less frequent with snowpack declines (Huang et al. 

2022; Li et al. 2019; Musselman et al. 2018), transdisciplinary efforts aimed toward 

understanding hydrologic connectivity across scales are paramount to overcoming these barriers. 

In addition to better understanding the governing processes of snowpack flow routing and 

snowmelt, we emphasize it is also worth looking up, down, and backward – “up” to understand 

in-storm changes to precipitation phase and boundary layer dynamics; “down” to understand the 

subsurface role in surface-groundwater exchange and basin-scale runoff generation; and 

“backward” to consider how soil and snow’s “memory” of preceding hydrometeorological 

events may affect subsequent ones. Such efforts will improve managing water availability and 

hazard risks posed by ROS in a society dependent on warming winter season precipitation.   
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Chapter 4 High-impact versus benign watershed responses to rain-on-snow 

 

Kayden Haleakala, W. Tyler Brandt, Benjamin J. Hatchett, and Mekonnen Gebremichael 

 

4.1 Data and methods 

This study extends Chapter 3 to (1) illustrate observational limitations during rain-on-

snow (ROS) and (2) determine the mechanism(s) that separate benign from extreme ROS events.  

We use sub-daily measurements in six watersheds spanning an elevation gradient in the Sierra 

Nevada. All sub-daily values were converted to metric units and UTC.  

4.1.1 Extension of in situ measurements 

4.1.1.1 Streamflow 

Instantaneous (15-minute) stream discharge measurements for WYs 2017 through 2019 

at six gauges across the northern and central Sierra Nevada (Figure 4.1a) were obtained from the 

USGS National Water Information System (https://waterdata.usgs.gov/nwis). Gauges were 

selected to span an elevation gradient across the Sierra in which the drainage area (obtained from 

the GAGES-II data set, https://water.usgs.gov/lookup/getspatial?gagesII_Sept2011) either 

contained or was nearby (within 10 km) snow pillows and/or soil probes (Figure 4.1a). Only six 

gauges reporting instantaneous measurements were available that satisfied this criteria. Stream 

gauge and drainage area attributes are listed in Table J1, along with nearby snow pillow 

assignments. Baseflow was separated from discharge per WY using the Python library 

Hydrograph-py (https://hydrograph-py.readthedocs.io/en/latest/functions.html).  

4.1.1.2 Snow and soil moisture 



64 

 

Hourly snow water equivalent (SWE) from snow pillows were obtained from DWR at 

stations within ~10 km of the areas draining to the selected stream gauges for WYs 2017 through 

2019 (Figure 4.1a). Several DWR stations, including those part of the NRCS snowpack telemetry 

(SNOTEL) network, monitor soil moisture (i.e., volumetric water content, VWC) and soil 

temperature. Soil measurements were obtained from their respective network, as not all NRCS 

soil measurements are available from DWR. We also obtained soil moisture measurements from 

NOAA PSL and WRCC. VWC values from NOAA PSL were converted from raw reflectometry 

measurements using the standard coefficients in the corresponding data logger manual (Table 4 

in https://psl.noaa.gov/data/obs/instruments/SoilWaterContent.pdf). The probe depth and 

timestep for soil measurements vary by network (Table J2); all values were aggregated to hourly 

timesteps. VWC values were screened from analysis if soil temperatures (if available) at the 

corresponding probe depth dropped below 0˚C. We use a total of 37 stations – 12 of which 

measure VWC and 9 of which are co-located with snow pillows (Table J2). These data were 

used (1) qualitatively as corroborating evidence of ROS at a given point in or near the stations’ 

assigned watershed (section 4.1.4) and (2) quantitatively to consider differences between ROS 

event characteristics (section 4.1.5).  

4.1.2 Remote sensing 

4.1.2.1 Snow level radars 

Brightband heights (BBH) from three upward-looking S-band radars were obtained from 

NOAA PSL (Figure 4.1a) for WYs 2017-2019. These report the melting level aloft at 10-miute 

intervals through an algorithm that exploits the reflectivity and Doppler fall velocity associated 

with melting snowfall (White et al. 2002). Each watershed was assigned to a snow level radar (of 

the larger network of NOAA PSL radars) by locating the radar nearest to the watershed centroid. 
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We use the Oroville, Colfax, and New Exchequer Dam radars (Table J3) in this study to partition 

precipitation into rain and snow (section 4.1.3) and to aid identifying ROS events (section 4.1.4).  

4.1.2.2 Snow cover and the regional snowline 

Daily 500-m arrays of fractional snow-covered area (SCA) were obtained from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Snow-Covered Area and Grain Size 

(MODSCAG) algorithm (Painter et al. 2009) for WYs 2017-2019. We used SCA scenes over 

each basin for near-cloudless (below 10%) days. We also manually scanned true-color images 

from NASA Worldview (https://worldview.earthdata.nasa.gov/) to qualitatively screen cloud 

cover, as several days yielded erroneously high SCA. Images were additionally screened if 

sensor zenith angles exceeded 40˚ to minimize the effect of off-nadir pixels stretching near 

satellite swath edges – potentially obscuring SCA estimates (Dozier et al. 2008). The 40˚ 

threshold was chosen to compromise the need to minimize the zenith angle with the need for an 

appreciable sample size. SCA arrays were used to calculate the regional snowline elevation 

(hereafter “snowline”) each day. The snowline is calculated through a search for the elevation 

value that simultaneously minimizes the number of snow-free pixels above and the number of 

snow-covered (10% SCA) pixels below a given elevation within a watershed (Krajčí et al. 2014).  

4.1.3 Precipitation phase partitioning 

Gridded (4-km) 6-hourly precipitation estimates were obtained from the National Centers 

for Environmental Prediction Stage IV analysis (Du 2011), which mosaics and cleans the 

quantitative precipitation estimates from each River Forecast Center in the United States. Over 

each stream gauge’s drainage area, precipitation was partitioned into snowfall and rainfall for 

each WY using the nearest snow level radar. For each WY, we first aggregated the 10-minute 

BBHs to hourly values and gap-filled the hourly time series using ordinary least squares 
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regression of hourly BBH against the 0˚C altitude from the nearest hourly ERA5 (Hersbach et 

al., 2020) pixel. Regression results range from R2 and standard error values of 0.75-0.94 and 15-

23 mm, respectively. Sample sizes range from 292 to 484 (Table K1). Gap-filled BBH time 

series were then aggregated to 6-hourly values to match the Stage IV precipitation.  

Precipitation occurring below (above) the gap-filled BBH was classified as rainfall 

(snowfall). The tendency for the upwind BBH to bend downward toward windward slopes is a 

climatological feature in large storm events that averages approximately 170 m in the Sierra 

Nevada (Minder and Kingsmill 2013). While this presents an uncertainty in discriminating 

precipitation phase using BBHs (Lundquist et al. 2008), applying a conservative 200-m lowering 

of BBH minimally affects this study’s cataloguing of ROS events (section 4.1.4) and conclusions 

(Appendix N; Table N1; Figures N1-N5).  

4.1.4 Watershed-scale rain-on-snow events 

ROS events are often “observed” at monitoring stations that can verify existing snow cover 

and infer the presence of liquid precipitation (e.g., McCabe et al. 2007; Würzer et al. 2016), 

which is most reliably done in-person (Harpold et al. 2017a). However, snowpacks can 

accumulate beneath monitoring networks, making an appeal for using distributed estimates of 

snow cover and rainfall to detect ROS. While this has been previously done with hydrological 

model output (Musselman et al. 2018; Li et al. 2019; Huang et al. 2022), such cataloguing of 

ROS is predicated on the accuracy of (1) partitioning between rain and snow (historically done 

with an air temperature threshold) and (2) simulating low-lying snow cover dynamics. Both 

factors may confound ROS detection, as measuring mountain precipitation and simulating 

ephemeral snow cover remain challenging (Petersky and Harpold 2018; Lundquist et al. 2019).  
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To avoid these issues, we compare observed BBH with the snowline prior to a given rainfall 

event to aid in identifying ROS. Rainfall events were first identified per basin if more than 5 mm 

of partitioned rainfall fell within 30 hours (5 Stage IV timesteps). Additional rainfall occurring 

within a 30-hour window after previous rainfall was incorporated into the same event. This 30-

hour threshold was informed by the NRCS National Engineering Handbook watershed lag 

method for determining a watershed’s time of concentration (NRCS 2004; Appendix L). We 

chose a conservative value of 30 hours, given the tendency for montane forest environments to 

have longer concentration times than what may be reliably calculated by this method (Loukas 

and Quick 1996).  

ROS events were identified from rainfall events in two ways. Primarily, events in which 

BBHs strongly exceeded the pre-event snowline elevation at any point during rainfall were 

classified as ROS. However, clear-sky SCA scenes are often unavailable immediately before 

rainfall, and the snowline will recede upslope if there is sufficient energy available to melt snow 

cover at the edges. This recession occurred frequently between storm events (not during 

precipitation), when meteorological conditions typically do not favor the development or 

maintenance of snowpack cold content (Jennings et al. 2018). We account for this snowline 

withdrawal by extrapolating pre-event snowline estimates with the average withdrawal rate for a 

given basin, if the pre-event snowline estimate leads the storm event by 7 days or less. 

Withdrawal rates were calculated by considering the changes in clear-sky snowline changes 

between storm events in water years 2017-2019 when (1) snowline estimates were less than 4 

days apart and (2) when the snowline was at least beneath the 90th percentile of the watershed’s 

elevation. The distributions of withdrawal rates vary by watershed between averages of 33-56 m 

d-1 (Figure 4.2d). Events in which BBHs exceeded this extrapolated pre-event snowline estimate 
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by ~500 m were classified as ROS. These measures (the BBH offset and the snowline 

withdrawal estimate) are intended to conservatively infer the presence of ROS within a 

watershed by mitigating the potential for either (1) the downward bending of snow levels 

(Minder et al. 2011) to cause one to mis-classify downwind precipitation phase, and/or (2) the 

uphill withdrawal of snow cover before a storm causing one to mis-interpret rainfall on snow-

free areas for ROS. As a secondary measure for inferring the presence of ROS, or in lieu of 

absent snowline estimates, we inspected hourly SWE during rainfall for “pulse” signatures akin 

to ROS at snow pillows. We also inspected co-located, shallow (≤ 10 cm) hourly soil moisture 

for coincident increases, if available (i.e., Figure 3.4). For WYs 2017-2019 across six 

watersheds, this supervised routine identified a total of 138 ROS events from 310 rainfall events 

(Table 4.1).  

Table 4.1 Rainfall and ROS events identified in each basin and WY. 

USGS ID Station Name Abbr # Rain (ROS) events 

    WY 2017 WY 2018 WY 2019 

11381500 Mill C 24 (15) 20 (9) 23 (8) 

11402000 Spanish C 19 (8) 15 (5) 25 (9) 

11413000 N Yuba 24 (9) 16 (6) 24 (9) 

11427000 NF American 24 (13) 18 (6) 26 (17) 

11274790 Tuolumne 13 (6) 5 (2) 6 (1) 

11266500 Merced 16 (8) 7 (4) 5 (1) 

 

4.1.5 Distinguishing controls on rain-on-snow severity  

This chapter aims to identify the mechanism(s) that separate benign from extreme ROS flood 

events. Conceptually, flood-generating drivers of rainfall intensity and antecedent soil conditions 
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are well-established (Berghuijs et al. 2016), as is the importance of initial snowpack conditions 

in generating ROS runoff (Colbeck 1975b; Würzer et al. 2016). Qualitative analyses revealed (1) 

a potential importance of storm sequencing in driving large ROS floods (section 4.2.2) and (2) 

that the watershed responses to ROS in which streamflow exceeded rainfall were not necessarily 

synonymous with large ROS floods (section 4.2.3). To this end, we considered several related 

covariates in addition to storm, snow, and soil properties in separating large from minor ROS 

events in terms of their flood volume. Covariates are described in sections 4.1.5.1 and 4.1.5.2 

below. For each covariate, we separated the distribution of values for the highest 30% of all ROS 

events (“large”) from those for the remaining 70% of ROS events (“minor”). This partitioning 

aimed to isolate extreme events without diminishing sample size, but we also tested separating 

events by 20-80%, and 10-90% (Appendix M). We compared these distributions using an 

unpaired Mann-Whitney U test.  

4.1.5.1 Antecedent conditions 

We consider pre-ROS event SWE, soil moisture, and snowline elevations. Since availability 

of snow pillows vary across watersheds (i.e., Figure 4.1a shows the northern-most watershed to 

contain 1 snow pillow near its peak), antecedent SWE was taken from the highest-elevation 

snow pillow associated with a given basin (Table J1). Antecedent SWE for a given event was 

discarded from analysis if no SWE values were reported within 12 hours of the event. Otherwise, 

the SWE value most-immediately preceding the event was used. We consider antecedent soil 

moisture from shallow (the shallowest of all available probe depths) and deep (the deepest of all 

available probe depths; Table J2) soil layers in watersheds that contain soil measurements (i.e., 

the southern 4 basins in Figure 4.1a). Antecedent soil moisture values in a basin were calculated 

as the average quantile of all station quantiles associated with a given basin. Quantiles were 
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determined from a station’s distribution of soil moisture values across WYs 2017-2019. Pre-

event snowline elevations were considered if the clear-sky snowline estimate preceded a given 

event by less than 5 days. Snowlines were considered here as percentiles of watershed elevation.  

We also consider the WY accumulated rainfall to date before a given event, and the number 

days since a prior rainfall event of at least 10, 50, and 100 mm. These variables represent the 

degree to which a watershed is “primed” from prior TWI that may not be readily evident from in 

situ soil measurements.  

4.1.5.2 Storm event conditions 

We consider several ROS event characteristics pertaining to the defined rainfall event 

time frame (section 4.1.4). These include the intensity, duration, and total accumulated depth of 

rainfall, as well as the BBH gradient. Rainfall intensity was taken as the quotient of total event 

rainfall and duration. Event gradients in BBH were calculated as the ordinary least squares 

regression slope of the hourly BBH. We hypothesize that increasing BBHs are significant drivers 

of large ROS floods, as these in-storm variations in the rain-snow transition can create an 

ephemeral snow cover that receives immediate rainfall.  

Lastly, as a measure of runoff efficiency and an indirect measure of additional snowmelt 

or subsurface contributions to runoff during ROS, we consider the ratio of event-total streamflow 

(Q) to event-total rainfall (R). Streamflow totals include the 30-hour concentration time in this 

ratio (hereafter referred to as QR). Conceivably, strongly “active” snowmelt or subsurface 

contributions to ROS, coupled with a saturated landscape and minimal losses to groundwater 

stores, will drive QR values to exceed 1.0. It is possible, however, for actively melting 

snowpacks during ROS to produce QR values less than 1.0 if transmission losses are 

considerable. While it is difficult to partition snowmelt from subsurface contributions to 
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streamflow at the basin scale (Safeeq et al. 2021), their joint effect is nonetheless crucial in 

producing greater peak flows than what rainfall may produce alone. We consider basin responses 

to ROS with QR ≥ 1.0 as “hyperactive,” and hypothesize that they significantly separate extreme 

from benign ROS events.  

4.2 Results and discussion 

Results here begin with two examples that illustrate observational “hazards” when 

interpreting ROS and the potential importance of storm sequencing on ROS flood severity. This 

is followed by a formal analysis of all ROS events across study basins and WYs across the 

metrics described in section 4.1.5.  

4.2.1 Ambiguity in available observations 

Independent of issues in discriminating rainfall from snowfall (Harpold et al. 2017a; 

Lundquist et al. 2019), the definition of ROS depend on the measurements available and a given 

study’s purpose (Brandt et al. 2022). Some definitions impose requirements of minimum snow 

depth or SWE, their negative change (indicating snowmelt), a seasonal window of occurrence, or 

an upper limit on the snowpack’s cold content if utilizing output from a hydrological model 

(McCabe et al. 2007; Wayand et al. 2015; Musselman et al. 2018; Li et al. 2019; Huang et al. 

2022). However, ROS can technically occur and produce TWI without considerable snowmelt or 

in unsaturated snow (Singh et al. 1997; Wayand et al. 2015; Würzer et al. 2016; Heggli et al. 

2022). Daily timesteps are commonly used, conceivably because they are typically quality-

controlled (e.g., daily NRCS SNOTEL measurements are checked manually) and are 

communicated effectively for most purposes. Finer-timescale measurements on the other hand 

can often be noisy and require rigorous cleaning and/or smoothing before use (Lundquist et al. 

2008; Avanzi et al. 2014). However, daily timesteps and particular snowpack requirements can 
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affect both (1) the cataloguing of ROS events themselves and (2) how the process-level impact 

of those events are assessed.  

Here we show an example that contrasts daily and hourly SWE changes during ROS events 

near/along the North Fork American River basin in WY 2018. Three separate rainfall events, 

each yielding streamflow responses (Figure 4.1b), span the snow accumulation and ablation 

periods in early spring (Figure 4.1c). The first event was snowfall-dominated – hourly and daily 

SWE both rose unanimously (Figure 4.1di, 4.1ei) – but began with rainfall, as indicated by early, 

modest increases in shallow soil moisture (Figure 4.1fi). The second event led to the season’s 

peak flow and generated “pulse”-like snowpack responses in which hourly SWE quickly rose 

and fell (Figure 4.1eii). While some oscillations are more dramatic than others, most are in sync 

with co-located soil moisture responses (Figure 4.1fii) indicating TWI. Higher-elevation 

locations (~2,000 m), with SWE either oscillating mildly or accumulating, still generated TWI. 

This response to rainfall strongly suggests a “passive” routing of rainfall through snow in which 

snowpack saturates and drains with the transmission of rainfall, rather than active snowmelt. 

Even after the ablation period began, hourly SWE and soil moisture traced a similar relationship 

in response to rainfall (Figure 4.1eiii, 4.1fiii).  

Daily SWE measurements of the same events tell a different story. While the overall trends 

in daily and hourly SWE are in agreement across events, snowpack responses to ROS go broadly 

undetected at a daily timestep (Figure 4.1d). Taking the second event, for instance (Figure 

4.1dii), at face value may falsely suggest that ROS was not prevalent at elevations above 1,600 

m. This runs contrary to evidence of snow levels nearly peaking above the watershed (Figure 

4.2a) to produce widespread TWI (Figure 4.1fiii) and the annual peak flow (Figure 4.1b). The 

early April event in this case may be correctly identified as ROS by daily changes in SWE, as 



73 

 

snowpack declines coincide with event rainfall (Figure 4.1diii). However, hourly SWE 

oscillations suggest that the passage of water through snow are again smoothed over.  

Figure 4.1 (a) Six watersheds spanning California’s northern and central Sierra Nevada contain 

or neighbor hourly or sub-hourly snowpack and soil measurements, with downstream/upwind 

snow level radars. A series of rainfall events occurred in the spring of 2018 over the North Fork 

American River Basin, with corresponding streamflow responses (b) and SWE from in-basin or 

neighboring snow pillows (c). For three events with the largest streamflow response (i, ii, and 

iii), daily changes in SWE (d) leads one to detect and interpret ROS differently than from hourly 

SWE (e) and hourly shallow (≤ 10 cm) soil moisture (f). 

 

Daily SWE values from the DWR network of snow pillows are sampled from a single hourly 

timestep ~ 0300-0400 local time (~1100-1200Z). Conceivably, sampling snapshots at various 

snowpack saturation stages 24 hours apart make the snowpack water balance of ROS ambiguous. 

For instance, increases may appear as the retention and/or re-freezing of rainfall within the 

snowpack as opposed to its temporary saturation, while decreases may appear as snowmelt as 

opposed to the drainage from temporary saturation. This very feature of increased SWE followed 
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by immediate decreased SWE during warm storms was a main conclusion of Chapter 2 in this 

dissertation (Haleakala et al. 2021). Importantly, this ambiguity can affect the interpretation of 

ROS at a daily timestep (via the contribution of snowmelt to TWI), as TWI may be dulled or 

double-counted, depending on the stages of snowpack saturation that are sampled. Therefore, 

sub-daily snow measurements should be supported with other variables (to the extent available) 

(Hatchett et al. 2020) to appropriately classify and interpret ROS.  

4.2.2 Uncertainty in unavailable observations 

Diverse and detailed measurements, however, are sparse and must be placed strategically – 

they must consider jointly snowpack representativeness, line power, and accessibility (Molotch 

and Bales 2005; Bales et al. 2006). Little to no long-standing snowpack measurements exist 

below 1,500 m in the Sierra Nevada, as the original intention of snow pillow measurements were 

to characterize the mountain water supply. As a result, this perspective of the “passive” 

snowpack response to ROS is likely relatively “cold” because it applies to deeper snowpacks 

than what may be present beneath the extent of the observation network. SCA, however, can 

temporarily reach beneath 1,000 m in the Sierra, where snowpacks are arguably more readily 

“active” contributors to TWI. While lower-elevation, ephemeral snowpacks can accumulate and 

store less SWE (Hatchett 2021), they can still elevate ROS flood risk (Kattelmann 1997b; Brandt 

et al. 2022). Depending on the hypsometry and vegetation distribution in a watershed (White et 

al. 2002; Wayand et al. 2015), rainfall alone over a tributary area can elicit a large flood 

response. This makes the coincident timing of warm storms potentially important after 

anomalously-low snowfall.  

Extending the example case in the North Fork American, the peak flood events for both WYs 

2018 and 2019 coincided with a low snowline elevation just prior to intense rainfall inducing 
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widespread ROS (Figure 4.2a, 4.2b). Each peak event deposited low-lying snow cover at the 

storm conclusion and was followed by more rainfall events approximately 1.5 to 2 weeks later. 

Between these rainfall events, the snowline receded uphill by 248 m in 9 days in late March 2018 

(Figure 4.2a), and 247 m in 4 days in February 2019 (Figure 4.2b). These are lower-bounded 

estimates of snowline withdrawal given that cloud cover obscured SCA images on days closer to 

the later storm events.  

 

Figure 4.2 Atmospheric snow level and terrestrial snow line elevations in the North Fork 

American River Basin during storm sequences in (a) spring 2018 and (b) winter 2019. Inset 

maps illustrate the antecedent snow cover and the snow cover withdrawal before and after heavy 

ROS events. (c) The snow lines extend far below the distribution of monitoring stations over an 

expansive “unmonitored” area along the basin hypsometry. (d) The distribution of rates at 

which the snow line recedes uphill after storms during the snow season (with red markers 

showing averages in each basin) is generally slow and right-skewed, presenting an elevated ROS 

flood risk in consecutive storm events.  

 

The ephemeral snow loss associated with these snowline withdrawals do not yield a 

streamflow response or a considerable response from a lower-elevation (1,048 m) soil sensor as 
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much as rainfall inputs do (Figure 4.3), suggesting a likely negligible snowmelt volume. A 

similar sequence of events was observed surrounding the Oroville ROS event in the Feather 

River basin in mid-late January 2017 (Figures 3.1 and 3.6). Provided these events occur in late 

winter when potential evapotranspiration is characteristically low (Hammond and Kampf 2020), 

it is plausible that this ephemeral snow is lost to the antecedent conditions of oncoming storm 

events. However, the extent to which this snow loss contributes to landscape wetting is unclear, 

as this temporary “unmonitored” region can account for up to 39% of basin area (Figure 4.2c). 

Moreover, the information content in SCA images is limited in heavily-forested areas. Beneath-

canopy SWE – which is commonly shallower but protected from turbulent heat exchange 

compared to clearings (Musselman et al. 2008) – is invisible to satellite SCA retrievals, which 

can conceivably lead to underestimating ground-SCA in dense forest regions.   

 

Figure 4.3 (a) Snowline elevations and 6-hourly precipitation, and (b) streamflow and in situ soil 

moisture (at Alta) in the North Fork American River basin in February 2019. The shaded region 

shows a period between large storm events in which the snowline recedes uphill from 900 m, but 

does not yield a strong streamflow response at the watershed outlet or a strong soil moisture 

response at a 1,048 m sensor.  
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The uphill withdrawal of the snowline nonetheless has strong implications for ROS flood 

risk. The distribution of withdrawal rates after storm events in the snow season is strongly right-

skewed and generally slow. In the North Fork American, rates average approximately 34 m d-1 

(Figure 4.2d).  Depending on the union of the area between isothermal snowpack and rainfall 

along a watershed’s hypsometry, “active” ROS responses may occur in favorable circumstances 

that go undetected by the current real-time observation network. A warm storm immediately 

following a cold event may generate high-impact ROS flooding (Kattelmann 1997b), as the risk 

of coupling ephemeral low-lying snowmelt with imminent rainfall requires time to subside. 

Several documented ROS events shared, to some extent, a withdrawn snow cover before rainfall 

occurred (Hatchett 2018; White et al. 2019; Henn et al. 2020; Brandt et al. 2022). Arguably, the 

peak flows from such events would have been greater had the sequence of prior storm events 

been grouped more closely.  

4.2.3 Hydrologic connectivity across storm events 

The above examples set a precedent for considering the importance of storm sequencing 

in ROS flooding at the watershed scale. This notion also extends to storm events that generate 

TWI that are not necessarily associated with ROS but nonetheless induce flooding. The effect of 

consecutive storm sequencing on flooding is readily evident in streamflow trajectories (Figure 

4.4a). Particularly for the wet WYs 2017 and 2019, the local minima of streamflow increase log-

linearly over the winter and spring seasons. On the other hand, WY 2018 (a relatively dry year), 

does not see the same gradual increase over the winter, but does so in the spring as a result of 

several storm events and snowmelt. This suggests that there is an extent to which runoff volume 

(and runoff efficiency) is “built” by prior storm events (producing TWI) that are large enough to 

irreducibly raise landscape saturation levels within a year. The sustained, “stepwise” increases in 
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streamflow and soil moisture after large storms (e.g., Figure 3.6, Figure 4.5, and Figure 2 in 

Sterle et al. 2019) point to a well-connected watershed, where imminent inputs stand on top of its 

memory of the season’s prior inputs.  

 

Figure 4.4 (a) Natural log of 6-hourly streamflow for WYs 2017-2019 at each stream gauge in 

Figure 4.1a. For select gauges in the (b) northernmost (Mill Creek), (c) central (North Fork 

American River), and (d) southernmost (Merced River) regions in this study, ratios of total event 

streamflow to rainfall are plotted for each ROS event.  

 

Streamflow and soil moisture behaviors indicate that this concept also applies to shorter 

timescales. When rainfall events are clustered within days of each other, peak flows generate that 

are unable to completely recess before a following event occurs. These sequences produce 

responses to rainfall in which QR ratios increase progressively (Figure 4.4b-d). In WYs 2017 and 

2019, QR values in some large ROS sequences exceed 1.0 in the latter event(s) of a given group 
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of storms. Such “hyperactive” watershed responses to rainfall are most commonly observed after 

April, as seasonal snowmelt begins to predominate streamflow volumes.  

 

Figure 4.5 (a) Shallow (≤ 10 cm) and (b) deep (≥ 10 cm) changes in soil moisture since the start 

of the WY at sensors within or near the North Fork American River basin in WYs 2017-2019. 

Start dates were chosen to precede the WY’s first storm event. Hourly values are expressed as a 

5-day rolling minimum to illustrate increases in landscape wetting over the season.  

 

However, particularly large winter ROS events can elicit a hyperactive watershed response 

(e.g., in January 2017; Figure 4.4c). It is also important to note that not all ROS event clusters 

that produce a hyperactive basin response yield extreme runoff (e.g., in late March 2019 in the 

North Fork American; Figure 4.4c). Conversely, not all ROS cases where QR values are less 

than 1.0 yield benign runoff volumes (e.g., in December 2016 and in March-April 2018; Figure 

4.4b-d). Nonetheless, the increase in runoff efficiency (whether through snowmelt, increases in 

baseflow, or both) resulting from immediately prior events supports the notion that smaller, but 

timely storm groups are an important flood forecasting consideration (Fish et al. 2019).  

 



80 

 

4.2.4 Key differences of high-impact rain-on-snow 

What drives large ROS floods if they are not always synonymous with “active” snowpacks or 

“hyperactive” watershed responses? The role of rainfall in ROS flooding, at least in the Sierra 

Nevada, is well-known (Kattelmann 1997b; Wayand et al. 2015; Li et al. 2019; Brandt et al. 

2022). It is therefore unsurprising that the intensity, duration, and volume of rainfall in large 

ROS events are significantly greater than those in minor ROS events (Figure 4.6a-c), irrespective 

of the threshold separating large from minor events (Figure M1a-c, M2a-c).  

Differences in SWE prior to large versus minor ROS events are limited (Figure 4.6d). This is 

likely an artifact of selecting the highest elevation snow pillow in each watershed such that all 

basin “peaks” are represented, since the northernmost watershed contains one snow pillow at its 

peak (Figure 4.1a). It is uncommon for storm melting altitudes to exceed peaks of 3,000-4,000 m 

in the Sierra Nevada (Hatchett et al. 2017). High-elevation SWE may therefore not drive a large 

difference in ROS flood severity, even if rainfall is widespread across majority of a watershed.  

The extent of the snow cover, on the other hand, yields a larger difference across large versus 

minor ROS events (Figure 4.6e), with larger events having lower pre-event snowlines. This 

illustrates the importance of low-lying snow in contributing to large ROS flooding. While there 

are many minor ROS events associated with a nearly completely snow-covered landscape, 

majority of those events take place in the southernmost Tuolumne and Merced River basins 

where stream gauges reside at elevations that may exceed the snowline in some cases (gauge 

elevations are ~1,170 m). Pre-event snowlines are arguably important if considering regions 

beneath these gauges. Indeed, excluding these two basins from this analysis results in a greater 

(and statistically significant) difference in the pre-event snowline distributions between large and 

minor ROS events (Figure M3a, e, h). 
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Figure 4.6 Density histograms comparing attributes of ROS events that generate the 30% highest 

and 70% lowest runoff volumes of all ROS events in all six study basins in WYs 2017-2019. 

Vertical dashed lines indicate distribution averages. Sample sizes are annotated beneath 

indicators of statistically significant differences between distributions using the Mann-Whitney U 

test (“*” and “**” indicate significance at α=0.05 and α=0.01 levels, respectively). ROS event 

attributes are (a) total event rainfall, (b) event duration, (c) rainfall intensity, (d) initial SWE at 

the highest-elevation snow pillow within the watershed, (e) initial snowline elevation as a 

quantile of basin elevation, (f) average initial shallow soil moisture as a quantile of WY 2017-

2019 soil moisture, (g) the ratio of event runoff to rainfall, (h) the WY rainfall accumulation 

prior to the given ROS event, (i, k, k) the number of days since a rainfall event accumulating at 

least 10, 50, and 100 mm of rainfall, and (l) the regression slope of the in-storm BBH.  

 

As expected, relatively drier soils (particularly at depths shallower than 10 cm; Figure 4.6f) 

precede minor ROS events compared to large ROS events, which follow wetter soil conditions. 

However, several minor ROS events were preceded by saturated soil conditions, indicating it is 

not the only salient ingredient in generating large ROS responses. Similarly, deep antecedent soil 

moisture indicates little difference across large versus minor ROS events (Figure M3b, f, i).  
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Event ratios of streamflow to rainfall confirm the hypothesis that large ROS floods have 

watershed QR values significantly greater than in minor ROS events (Figure 4.6g, M1g, M2g). 

However, neither large nor minor events’ QR values are exclusively below or above 1.0. The 

distribution of large-event QRs tend to group more closely to 1.0, and its mean straddles 1.0, 

indicating the importance of runoff efficiency in generating a large ROS response.  

The rainfall to date (Figure 4.6h) and the time since a prior rainfall event of differing 

magnitudes (Figure 4.6i-k) clearly illustrate the notion that large ROS events are somewhat 

“built” by prior events. Large ROS responses follow wetter periods (Figure 4.6h) compared to 

minor ROS responses. On a similar note, while the average number of days since prior rainfall is 

lower for large ROS events (indicating the importance of storm sequencing), they differ 

insignificantly from minor ROS events if the prior rainfall event is small (≤ 50 mm total; Figure 

4.6i-j). The difference between large versus minor ROS events is significant, however, when 

considering the days since large (100 mm) rainfall events (Figure 4.6k). This result is robust 

across definitions separating large from minor ROS events (Figure M1i-k, M2i-k), and 

demonstrates the ability for watersheds to become “primed” from prior inputs (McNamara et al. 

2005) to produce high-impact responses to ROS. Similar observations of montane watershed 

memory affecting runoff responses to heavy rainfall have been made in the southern 

Appalachian mountains (Nippgen et al. 2016; Miller et al. 2021) and the Swiss Alps (Khanal et 

al. 2019).  

Lastly, in-storm variations in BBH mark a significant difference between large and minor 

ROS events (Figure 4.6l). Generally, large ROS events tend toward an increasing BBH. 

However, the distribution is clustered around a BBH gradient of zero, while many of the minor 

ROS events occupy both tails. Considering only cases in which the BBH increases during the 
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event yields a mostly insignificant difference across large versus minor ROS events in which the 

BBH slope is suppressed in larger events (Figure M3c, g, j). While the hypothesis regarding the 

importance of in-storm increases in BBH is not supported in this case, it is crucial to note that the 

mechanism underlying its importance can span across multiple events. The concept of an 

“upside-down storm” (Hatchett et al. 2016) involves the deposition of snow immediately before 

rainfall occurs. While an in-storm increase in BBH creates this situation in one continuous 

motion, this circumstance may take place across different storm events (i.e., beyond a brief 

threshold used to separate storm events, as done here). This again underscores the importance of 

considering storm sequencing in high-impact ROS, particularly when a prior event deposits a 

low-lying ephemeral snowpack (Figure 4.6e, M3a).  

4.3 Conclusions 

Mountain ROS can generate historic flooding and may become more severe in a warmer 

future, following more volatile precipitation regimes (Gershunov et al. 2019; Rhoades et al. 

2020). Delineating what separates the benign from the most hazardous ROS events, however, is 

difficult to parse at the watershed scale due to limited observational capacity. This study (1) 

illustrates several examples of such observational limitations in identifying and interpreting 

ROS, and (2) describes likely mechanisms that distinguish large from minor watershed ROS 

responses during WYs 2017-2019 in California’s northern and central Sierra Nevada.   

Snow pillow measurements of SWE take snapshots of the above-ground snowpack mass. At 

an hourly timescale, rainfall may infiltrate, saturate, and drain from the snowpack, creating a 

“pulse”-like SWE signal in accordance with increases in soil moisture. We show that this can be 

the case in both the accumulation and melt season (Figure 4.1e, f), and can go undetected at a 

daily timescale (Figure 4.1d), whose sampling can occur haphazardly at various snowpack 
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saturation stages. Cataloguing and interpreting ROS should therefore be done with care, utilizing 

fine-scale ancillary measurements to the extent available. However, SCA (and by extension the 

risk of ROS) extends beyond the reach of observational networks. Snowfall in the Sierra can 

drive snowlines as low as 900 m (Figure 4.2b, 4.3a), which withdraws at rates between 

approximately 33-56 m d-1 in the snow season. This suggests that the sequencing of storm events 

plays a crucial role in enhancing ROS flood risk, which is supported by a SCA-aware assessment 

of 138 ROS events.  

Results show a tendency for clusters of ROS events to produce “hyperactive” watershed 

responses in which runoff volumes exceed rainfall (Figure 4.4). Low-lying snow cover, wet 

soils, and prolonged, high-intensity rainfall are all significant contributors to high-runoff ROS 

(Figure 4.6). Importantly, the largest watershed responses to ROS often connect to prior water 

inputs. The most dangerous scenarios occur when prior storms produce large volumes of TWI 

with “stepwise” increases in streamflow and soil moisture (Figure 4.4a, 4.5), priming the 

landscape for a highly-efficient response (Fish et al. 2019; Miller et al. 2021). This mechanism 

makes a significant difference between large and minor ROS runoff responses, where high-

impact responses occur soon after large (100 mm) storm events rather than relatively smaller (≤ 

50 mm) events (Figure 4.6i-k). These results begin to show constraints on catchment memory in 

response to high-impact events, which may offer predictive power in future flood forecasting 

efforts in the face of more frequent extreme precipitation events.   
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APPENDICES 

Appendix A – Snow pillow selection process (Chapter 2) 

We obtained hourly SWE, temperature, and snow depth from the California Data 

Exchange Center for the full network of 122 sites above 1500 m claiming to have hourly 

measurements for WY 2010 through 2019. Individual seasons for SWE and temperature were 

visually screened for obvious errors (e.g., extensive gaps or "flatlined" time series). Seasons with 

below-7.5 cm peak SWE were then discarded, followed by sites having less than 5 seasons of 

jointly available SWE and temperature measurements.  

We reduced this sample (due to extensive quality control requirements, Appendix B) to 

represent a latitudinal and elevational transect across the Sierra Nevada while keeping at least 

one site per basin. Sites having a greater number of seasons with simultaneous SWE, temperature 

and depth measurements were given preference over other sites in the same basin. Twenty-eight 

sites remained after this step (Table A1). 
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Table A1 DWR snow pillow metadata for accumulation seasons (water years) 2010 to 2019. 

Columns ‘10 to ’19 indicate which site-years are considered in this study. A value of 1 indicates 

use of SWE and temperature data. Asterisks indicate coincident use of snow depth. 
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Appendix B – Snow pillow data quality control measures (Chapter 2) 

Remaining sites were cleaned to remove erroneous measurements, which can be unique 

to each instrument and result in physically unrealistic states/changes. After converting the raw 

data for each variable to metric units (˚C for temperature and cm for SWE and snow depth), we 

supervised the following routine to flag observation errors, followed by manual corrections of 

remaining errors. 

Air temperature:  

• Flag (and treat as missing) raw temperatures with absolute values exceeding 40˚C.  

• Flag hourly changes exceeding 20˚C.  

• Flag consecutive repeated observations lasting over 3 hours.  

Snow Water Equivalent:  

• Flag raw SWE below (above) 0 (380) cm.  

• Set summer (July-September) values to zero. This step helped to automate identifying the 

accumulation season, as particular site-years contained out-of-season measurements 

above the true peak SWE and below the 380-cm threshold.  

• Flag “spiked” SWE, i.e., instances where the absolute value of an hourly increment 

matched that of a preceding of succeeding increment of opposite sign. We set a 0.2-cm 

detection threshold for these occurrences and replaced flagged values with those 

bounding them.  

• Flag hourly changes exceeding 60 cm.  

Snow Depth:  

• Flag raw depths below (above) 0 (750) cm.  
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• Similar to SWE, set summer depths to zero and flag spikes and hourly changes exceeding 

60 cm.   

• Smooth depths using a robust discretized spline (Garcia 2010).   

• Flag gaps exceeding 12 h to avoid the spline misrepresenting the data.  

This routine removed most obvious errors, which enabled automatically defining the 

accumulation season. We define the accumulation season as beginning on the later date between 

1 November and when SWE first exceeds 2.5 cm, and ending at peak SWE. Subtle errors and 

outliers remained despite the above-mentioned routine, particularly in SWE and snow depth. For 

example, “spikes” can interrupt trending and stationary observations. They can also occur over 

periods longer than 1 hour, reflected by measurements “jumping” to consecutive values before 

returning to the previous neighborhood. This can occur over trending or stationary periods as 

well, leaving undetected outliers in the automatically processed data. We manually flagged these 

sorts of post-routine occurrences during the accumulation season.  

During snowfall, a bridging effect may result from a frozen snow layer preventing added 

snow to be recorded by the pillow until the bridge breaks. This is characterized by stationary 

SWE accompanied by increasing depth, following by an abrupt increase in SWE. While the 60-

cm change filter can flag the bridge breaking, the above-described routine does not detect its 

development. We visually inspected each site-year with available SWE and depth for these 

instances.  

Lastly, we only considered relatively complete site-years of SWE and temperature. We 

disregarded a site-year if its union of SWE and temperature for the accumulation season was less 

than 75 percent complete. Similarly, we retained snow depth observations at least 75 percent 
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complete during the accumulation season. The resulting data set includes a total of 252 site-years 

of SWE and temperature for 28 sites (Table A1). 175 include depth measurements. 
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Appendix C – Snow pillow voltage coherence (Chapter 2) 

Hourly SWE measurements can be problematic due to battery voltage dependence on air 

temperature which can be manifested as oscillating SWE measurements. Figure C1 demonstrates 

one case of a strong correspondence between SWE and voltage. We applied a multi-taper 

spectrum estimate (Thomson 1982; Riedel and Sidorenko 1995) to the hourly time series of 

SWE, temperature, and voltage for one winter (December through March). The concurrent peaks 

in the spectra at several of the same frequencies denote a coherence between SWE and voltage, 

shown by the large variations in the SWE time series. Figure C2 shows another case without this 

spectral coherence, which has consequently smoother SWE measurements. Of the sites used in 

our study with available voltage measurements, the majority of the instances of strong coherence 

between SWE and voltage occurred during periods insignificant to the analyses (i.e., outside of 

defined accumulation or ablation events) and did not considerably impact our results. 

 

Figure C1 Strong coherence between SWE, voltage and air temperature. The upper left panel 

shows multi-taper spectral estimates for SWE, temperature, and voltage peaking at similar 

frequencies. Other panels show the winter (December through March) hourly time series of each 

variable used in the spectral estimate. 
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Figure C2 Same as Figure C1, but for weak coherence.  
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Appendix D – Temperature sensor examination (Chapter 2) 

Artificial warming trends were observed due to snowpack telemetry temperature sensor 

upgrades (Oyler et al. 2015; Rangwala et al. 2015), which present a risk of compromising any 

temperature-derived indices. To be conservative, using DWR sites with available daily 

maximum and minimum temperature measurements, we compare monthly temperatures (Nov-

Apr) with the nearest grid of the extended Hamlet and Lettenmaier (2005) (HL05) data set 

(Figures D1 and D2). The double-mass curves (in cumulative K) demonstrate no significant 

breaks for the water year 2010-2014 overlapping time period. 

 

Figure D1 Double-mass curves of monthly mean maximum temperature comparing each snow 

pillow (x-axis) to the nearest grid in (HL05). Units are in cumulative K. 
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Figure D2 Same as Figure D1, but for monthly mean minimum temperature.  
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Appendix E – Snow level radars (Chapter 2) 

The NOAA Hydrometeorology Testbed (HMT) provides a comprehensive set of radar 

and surface meteorological measurements in the Western U.S., including wind and precipitation 

profiles, atmospheric snow levels, and surface water vapor metrics. Several fixed, vertically 

pointing S-band (2.8 to 3.0 GHz) HMT radars began operation along the western slopes of the 

Sierra Nevada in the late 2000s and early 2010s.  They are designed to observe a minimum 

effective reflectivity of 10 dBZ at 5 km above the ground. These snow level radars (SLRs) 

operate at a vertical resolution (i.e., range gate spacing) of 40 m and a nominal temporal 

resolution of 36 s. While subject to ground clutter contamination at the lowest gates, their 

upward view prevents contamination from complex terrain, and their operating frequency 

enables sensitive detection of melting levels during intense storms (Johnston et al. 2017; Ecklund 

et al. 1999). The height at which falling snow melts is estimated by the radar brightband height 

(BBH), which is derived from an automated algorithm that inspects range gates for the maximum 

reflectivity and increasing Doppler fall velocity associated with melting snowfall (White et al. 

2002). The BBH, estimated at 10-min intervals, approximates the height at which half the 

hydrometeor mass in the atmospheric column has melted, though it should be noted that the 

melting and brightband layers themselves can be up to hundreds of meters thick (Stewart et al. 

1984; Braun and Houze 1995).  

BBH measurements from SLRs provide precipitation phase inferences at a high temporal 

resolution, as orographic precipitation events having a low BBH relative to the ground surface 

likely indicate snowfall rather than rain. However, applying measurements directly to downwind 

terrain is complicated by a tendency of the melting layer to bend toward the windward slopes 

(Medina et al. 2005; Minder et al. 2011). This effect results in melting layer offsets on the order 
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of hundreds of meters lower than the free-air measurements upwind (Minder et al. 2011; Minder 

and Kingsmill 2013; Medina et al. 2005; Lundquist et al. 2008; Brandt et al. 2020). Lundquist et 

al. (2008) observed errors between 325 to 450 m when BBHs were used directly as melting level 

quantities over the North Fork of the American River basin, and Mizukami et al. (2013) 

demonstrated a marginal (but not universal) improvement over temperature-based precipitation 

phase classification when SLR-based BBH was used to simulate streamflow. Similar simulation 

results were reported by Maurer and Mass (2006).  

We reduced this SLR-related uncertainty to the extent possible by using the SLR nearest 

to each snow pillow site. As indicated in Table E1, we assigned each pillow to an SLR based on 

its location along the primary storm track perpendicular to the Sierra Nevada crest (Figure 2.1a). 

Sub-hourly BBHs were aggregated to an hourly time step to match the surface snow and 

meteorological observations. We compared snow pillow elevations to BBHs during periods of 

SWE change. Accounting for downward bending of the BBH near the mountain range, BBHs 

higher than the snow pillow elevation indicated possible rain, whereas lower BBHs indicated 

highly probable snow.  
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Table E1 HMT snow level radars and accompanying snow pillows. Snow pillow IDs correspond 

to the 3-character DWR code (mapping to snow pillows in Figure 2.1a). 

Profiler (ID) LON LAT Z (m) Assigned DWR Sites 

Shasta Dam (std) -122.429 40.716 202 HIG, MUM, BLA, STM 

Oroville (ovl) -121.488 39.532 114 GRZ, HRK 

Colfax (cff) -120.938 39.080 644 SQV, INN, CXS, SIL, CSL, 

BLK, EP5, TCC 

New Exchequer 

Dam (ner) 

-120.278 37.597 259 GNL, STR, TUM, EBB, LVT, 

VRG, GEM 

Pine Flat Dam (pfd) -119.332 36.830 184 SLK, MHP, KSP, MTM, GNF, 

QUA, CHP 
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Appendix F – Station metadata (Chapter 3) 

Table F1 Snow pillows used in Chapter 3 obtained from the California Department of Water 

Resources’ California Data Exchange Center. Stations are organized by river basin group and 

elevation (as in Figure 3.4).  

Station Name ID 

River 

Basin Longitude Latitude 

Elevation 

(m) Operator 

Four Trees FOR Feather -121.32 39.81 1,586  CA DWR 

Bucks Lake BKL Feather -121.25 39.85 1,790  CA DWR 

Harkness Flat HRK Feather -121.28 40.42 1,890  CA DWR 

Rattlesnake RTL Feather -121.04 40.13 1,893  CA DWR 

Humbug HMB Feather -121.37 40.12 1,981  CA DWR 

Gold Lake GOL Feather -120.62 39.67 2,057  CA DWR 

Pilot Peak PLP Feather -120.88 39.79 2,073  CA DWR 

Grizzle Ridge GRZ Feather -120.65 39.92 2,103  CA DWR 

Kettle Rock KTL Feather -120.72 40.14 2,225  CA DWR 

Robbs Powerhouse RBP American -120.38 38.90 1,570  SMUD 

Blue Canyon BLC American -120.71 39.28 1,609  USBR 

Greek Store GKS American -120.56 39.07 1,707  USBR 

Robbs Saddle RBB American -120.38 38.91 1,798  SMUD 

Robinson Cow Camp RCC Yuba -120.68 39.62 1,975  CA DWR 

Huysink HYS American -120.53 39.28 2,012  USBR 

Van Vleck VVL American -120.31 38.94 2,042  SMUD 

Central Sierra Snow 

Lab CSL Yuba -120.37 39.33 2,103  NRCS 

Silver Lake SIL American -120.12 38.68 2,164  USBR 

Forni Ridge FRN American -120.22 38.80 2,282  USBR 

Alpha ALP American -120.22 38.80 2,316  SMUD 

Caples Lake CAP American -120.04 38.71 2,438  USBR 
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Schneiders SCN American -120.07 38.75 2,667  SMUD 

 

Table F2 Soil moisture measurements were obtained from a variety of sources, which place 

sensors at different depths beneath the ground surface. 

Station Name ID 

River 

Basin Longitude Latitude 

Elevation 

(m) Source 

Sensor 

Depths (cm) 

Blue Canyon blu American -120.71 39.28 1,604 NOAA 10 

Big Bend bbd Yuba -120.52 39.31 1,754 NOAA 10 

Chickering 

American River 

Reserve  UCCA American -120.36 39.25 1,841 WRCC 5 

Central Sierra 

Snow Lab CSL Yuba -120.37 39.33 2,103 NRCS 5, 20, 50 

Alpha  ALP American -120.22 38.80 2,316 ARHO 30, 60 

Schneiders  SCN American -120.07 38.75 2,675 ARHO 30, 60 

 

Table F3 Surface meteorological stations, organized by river basin and elevation. Note that 

while some stations are identical to those in Tables F1 and/or F2, the data sources and native 

timestep (T, minutes) may differ. Binary flags indicate whether PPT (precipitation), TAIR (air 

temperature), QAIR (humidity), and WV (wind speed) were used in Chapter 3. Flags marked 

with “*” and “**” indicate a variable was screened from analysis during the 7 January and 6 

February storms, respectively. 
 

Station 

Name ID 

River 

Basin 

Longitud

e 

Latitud

e 

Elevatio

n (m) 

Sourc

e 

PP

T 

TAI

R 

QAI

R 

W

V T 

Mineral MIN Sacramento -121.61 40.35 1511 CDEC 1 0 0 0 30 

Rice 

Canyon RNYC1 Feather -120.33 39.53 2,116 

RAW

S 0 1** 1** 1** 60 

Grizzle 

Ridge GRZ Feather -120.65 39.92 2,103 CDEC 1 0 0 0 60 

Jordan Peak JDP Feather -120.29 40.04 2,076 CDEC 0 1 1 1* 60 
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Harkness 

Flat HRK Feather -121.28 40.42 1,890 CDEC 0 1 1 0 60 

Swain 

Mountain SWNC1 Feather -121.10 40.45 1,859 

RAW

S 1 1 1 1 60 

Lake David DAV Feather -120.47 39.88 1,758 CDEC 0 0 0 0 60 

Doyle 

Crossing DOY Feather -120.48 40.12 1,728 CDEC 0 1 0 1 60 

Coyote CYVC1 Feather -120.48 39.99 1,698 

RAW

S 0 1 1 1 60 

Thompson 

Valley TVL Feather -120.48 39.98 1,647 CDEC 0 1 1 1* 60 

Westwood WWD Feather -120.90 40.31 1,570 CDEC 0 1 1 1 60 

Mohawk / 

Denten 

Creek 

MWKC

1 Feather -120.59 39.78 1,561 

RAW

S 0 1* 1* 1* 60 

Plumas 

Eureka St 

Park 

Weather 

Station EWS Feather -120.70 39.76 1,557 CDEC 1 0 0 0 60 

La Porte LAP Feather -120.98 39.68 1,518 CDEC 1 0 0 0 60 

Sierraville SVL Feather -120.37 39.58 1,516 CDEC 0 0 0 0 60 

Hamilton 

Branch HAM Feather -121.09 40.27 1,390 CDEC 1 0 0 0 15 

Cashman CSH Feather -120.92 40.00 1,378 CDEC 1 1 1 1 60 

Pratville 

(PG&E) PVL Feather -121.16 40.21 1,378 CDEC 0 1* 1* 0 60 

Strawberry 

Valley SBY Feather -121.11 39.56 1,161 CDEC 1 0 0 0 30 

Greenville GRE Feather -120.94 40.14 1,085 CDEC 1 0 0 0 15 
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Brush Creek BRS Feather -121.34 39.69 1,085 CDEC 1 0 0 0 60 

Tay Nelson 

St 

Taylorsville TAY Feather -120.84 40.08 1,079 CDEC 0 1 1 1 60 

Stirling City SRL Feather -121.53 39.90 1,073 CDEC 1 0 0 0 30 

Quincy 

Ranger 

District QYR Feather -120.94 39.98 1,067 CDEC 1 1 1 1 60 

Quincy QCY Feather -120.95 39.94 1,039 CDEC 1 0 0 0 60 

Jarbo Gap JAR Feather -121.49 39.74 823 CDEC 1 1 1 1 60 

Central 

Sierra Snow 

Lab CSL Yuba -120.37 39.33 2,103 

WRC

C 0 1 1 0 10 

Big Bend bbd Yuba -120.52 39.31 1,754 

NOA

A 0 1 1 1* 2 

Bowman 

Lake BOL Yuba -120.65 39.45 1,643 CDEC 1 0 0 0 15 

Lake 

Spaulding 

(PG&E) LSP Yuba -120.63 39.32 1,571 CDEC 1 1* 1* 0 15 

Sierra City SRC Yuba -120.65 39.57 1,432 CDEC 1 0 0 0 15 

Deer Creek 

Forebay DRC Yuba -120.83 39.30 1,358 CDEC 0 1 1 0 15 

White 

Cloud WTC Yuba -120.84 39.32 1,317 CDEC 1 1 1 1 60 

Pike County PKC Yuba -121.20 39.48 1,132 CDEC 1 1 1 1 60 

Downieville DNV Yuba -120.83 39.56 890 CDEC 1 0 0 0 15 

Grass 

Valley GVY Yuba -121.07 39.21 731 CDEC 1 0 0 0 15 

Bullards Bar BUD Yuba -121.14 39.40 640 CDEC 1 0 0 0 15 
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Schneiders  SCN American -120.07 38.75 2,675 ARHO 0 1 1 0 15 

Mt Lincoln MTL American -120.33 39.29 2,544 ARHO 0 1 1 0 15 

Caples Lake CAP American -120.04 38.71 2,439 ARHO 0 1 1 1** 60 

Alpha ALP American -120.22 38.80 2,316 ARHO 0 1 1 0 15 

Duncan 

Peak DPK American -120.51 39.15 2,126 ARHO 0 1 1 0 15 

Van Vleck VVL American -120.31 38.94 2,042 ARHO 0 1 1 0 15 

Dolly Rice DOR American -120.37 39.15 2,006 ARHO 0 1 1 0 15 

Chickering 

American 

River 

Reserve  UCCA American -120.36 39.25 1,841 

WRC

C 0 1 1 1* 10 

Robbs 

Saddle RBB American -120.38 38.91 1,816 ARHO 0 1 1 0 15 

Talbot 

Camp TLC American -120.38 39.19 1,741 ARHO 0 1 1 0 15 

Sugarloaf SKBC1 American -120.31 38.78 1,723 

RAW

S 0 1* 1* 0 60 

Blue 

Canyon blu American -120.71 39.28 1,604 

NOA

A 1 1 1 1 2 

Bear Trap BTP American -120.58 39.09 1,590 CDEC 0 1 1 1* 60 

Bald 

Mountain BMT American -120.68 38.90 1,426 CDEC 1 1 1 1 60 

Hell Hole HLH American -120.42 39.07 1,396 CDEC 1 1 1 1 60 

Owens 

Camp OWC American -120.25 38.73 1,372 CDEC 0 1* 1* 1* 60 

Seed 

Orchard 

RAWS Near SOM American -120.73 39.09 1,311 CDEC 1 1 1 1 60 
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Michigan 

Bluff 

Fresh Pond FPD American -120.54 38.76 1,149 CDEC 1 0 0 0 15 

Alta ata American -120.82 39.20 1,048 

NOA

A 1 1 1 0 2 

Placerville 

Airport KPVF American -120.75 38.72 788 NWS 1 1 1 1 20 

Drum 

Power 

House DPH Bear -120.77 39.26 1,036 CDEC 0 1 1 0 15 

Secret Town SRT Bear -120.88 39.18 829 CDEC 1 1 1 1 60 

Bear River 

at Rollins 

Reservoir BRE Bear -120.95 39.13 593 CDEC 1 0 0 0 15 

 

Table F4 USGS streamflow gauges used in Chapter 3. “*” indicates available 15-minute data. 

Station Name USGS ID River Basin Longitude Latitude 

Drainage Area 

(km2) 

Spanish Creek above Blackhawk 

Creek at Keddie 11402000* Feather -120.95 40.00 475 

Butt Creek below Almanor-Butt 

Creek Tunnel near Pratville 11400500 Feather -121.19 40.19 168 

Deer Creek near Smartville 11418500* Yuba -121.27 39.22 219 

North Yuba River below 

Goodyears Bar 11413000* Yuba -120.94 39.52 648 

South Yuba River at Jones Bar 

near Grass Valley 11417500 Yuba -121.10 39.29 820 
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North Fork American River at 

North Fork Dam 11427000* American -121.02 38.94 883 

Middle Fork American River 

above Middle Fork Powerhouse 

near Foresthill 11427760 American -120.60 39.03 227 

South Fork American River near 

Kyburz (river only) 11439500 American -120.33 38.76 500 

Rock Creek near Placerville 11444201 American -120.78 38.79 189 

 

Table F5 NOAA FMCW snow level radars used in Chapter 3. Data are recorded at 10-minute 

intervals. 

Station Name ID Longitude Latitude 

Elevation 

(m) 

Oroville ovl -121.49 39.53 114 

Colfax cff -120.94 39.08 644 
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Appendix G – Meteorological data collection and quality control (Chapter 3) 

Hourly (or sub-hourly, if available) measurements of precipitation, air temperature, 

relative humidity, and wind speed were obtained from a variety of observation networks. These 

include the California Data Exchange Center (CDEC, 

http://cdec.water.ca.gov/snow/current/snow/index.html), the Western Regional Climate Center 

(WRCC, https://wrcc.dri.edu/), MesoWest (https://mesowest.utah.edu/), and the American River 

Hydrologic Observatory (Bales et al. 2020). We employed the following screening and quality 

control routine for each variable.  

Accumulated precipitation data were collected at native sampling intervals (ranging from 

2 minutes to 1 hour). Missing values were imputed for 1-hour gaps or shorter by interpolating 

across bounding values. Longer gaps were ignored. Incremental precipitation was then calculated 

via first difference. High-elevation (above ~2,000 m) stations were commonly removed from 

analysis after visual inspection showed obvious wind effects and/or sticking (i.e., sparse 

precipitation increments during periods of heavy continuous precipitation at neighboring 

stations). Negative increments were set to zero, and increments above 25 mm were flagged as 

missing. Stations missing more than 10% of values during the storms of interest were removed 

from analysis. The remaining stations were compared to the nearest snow pillow and screened 

from analysis if total accumulation season (November through March) precipitation fell below 1 

April 2017 snow water equivalent. This resulted in a total of 31 suitable gauges (Table F3).  

Wind speed, air temperature, and relative humidity data were collected in a similar 

manner as described above. At temperatures near 0˚C, propeller anemometers can melt and re-

freeze the snow that falls on them, stopping the sensor’s motion and resulting in an artificially 

“calm” period. We used a threshold of 6 hours beyond which winds speeds of 0 m s-1 winds were 
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flagged as missing. Wind speeds above 20 m s-1 were flagged as missing. Air temperature 

measurements above 40˚C in absolute value were flagged as missing, while relative humidity 

values below (above) 0% (100%) were flagged. We interpolated across single-timestep gaps for 

both variables. We used the cluster medians for ARHO temperature and humidity measurements. 

Variables with more than 10% values missing during the storms of interest were excluded from 

analyses on the respective storm, resulting in a total of 41 stations (Table F3). 
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Appendix H – Synoptic analysis supporting calculations (Chapter 3)  

We obtained hourly, 0.25˚ geopotential (Φ, m2 s-2 or J kg-1), air temperature (Tair, K), 

specific humidity (qair, kg kg-1), and zonal (u, m s-1) and meridional (v, m s-1) winds at 27 

pressure levels (from P1=1,000 to P2=100 hPa) from the 5th generation of atmospheric reanalysis 

from the European Centre for Medium-Range Weather Forecasts (ERA5) (Hersbach et al. 2020). 

Geopotential heights were obtained by dividing Φ by gravitation acceleration, g (9.81 m s-2). We 

used metrics derived from ERA5 variables to assess synoptic differences between the January 

and February storm events of interest. Over the study basins, we consider the following metrics:   

First, the integrated vapor transport (IVT, kg m-1 s-1) was calculated as: 

𝐼𝑉𝑇 = √(
1

𝑔
∫ 𝑞𝑎𝑖𝑟𝑢 𝑑𝑃

𝑃2

𝑃1

)

2

+ (
1

𝑔
∫ 𝑞𝑎𝑖𝑟𝑣 𝑑𝑃

𝑃2

𝑃1

)

2

,    𝐸𝑞 (𝐻1) 

Second, integrated heat transport (IHT, J m-1 s-1) was calculated as: 

𝐼𝐻𝑇 = √(
𝑐𝑃

𝑔
∫ 𝑇𝑎𝑖𝑟𝑢 𝑑𝑃

𝑃2

𝑃1

)

2

+ (
𝑐𝑃

𝑔
∫ 𝑇𝑎𝑖𝑟𝑣 𝑑𝑃

𝑃2

𝑃1

)

2

,    𝐸𝑞 (𝐻2), 

where cP is the specific heat of dry air at constant pressure (1,005 J kg-1 K-1). 

Lastly, moist static energy (MSE, J kg-1) was calculated at discrete pressure levels, 

𝑀𝑆𝐸 = 𝑐𝑃𝜃 + 𝐿𝑣𝑞𝑎𝑖𝑟 + Φ,      𝐸𝑞 (𝐻3), 

where Lv is the latent heat of vaporization (assumed to be constant at 2.5x106 J kg-1). The 

potential temperature, θ (K), was calculated as: 

𝜃 = 𝑇𝑎𝑖𝑟 (
𝑃

𝑃0

)
−

𝑅𝑑
𝑐𝑃

,    𝐸𝑞 (𝐻4),  

where P0 is 1,000 hPa and Rd is the dry air gas constant (287 J kg-1 K-1).  
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Appendix I – Wind correction to test precipitation undercatch (Chapter 3) 

We argue that the degree of snowmelt contributing to the exceptional runoff from the 

February storm event was lower than previously reported. A prior study quantified the relative 

increase in terrestrial water input (TWI) during rain-on-snow from snowmelt as the ratio of 

snowmelt to rainfall (Henn et al. 2020). They used 4-km, 6-hourly precipitation from the 

California Nevada River Forecast Center (CNRFC), which is a topographically-corrected mosaic 

of gauge observations. While gauge undercatch can occur in exposed, windy areas, the CNRFC 

product does not apply a wind correction. Any wind-induced biases in the product would be 

baked into this estimate of snowmelt augmenting TWI and can conceivably inflate it. We 

considered this possibility as part of our argument by using hourly ERA5-Land (Muñoz Sabater 

2019) wind vectors to correct CNRFC precipitation. We resampled CNRFC to hourly values 

with uniform scaling and mapped the 0.1˚ ERA5-Land wind vectors to the CNRFC grid via 

nearest neighbor. We applied a simple correction scheme from Masuda et al. (2019) assuming a 

gauge height of 2 m, anemometer height of 10 m, and the correction coefficient for a heated 

tipping bucket gauge experiencing rainfall (their Table 2 and Equations 1 and 2). For both the 

January and February events over the Feather River basin, we report the ratio of corrected- to 

accumulated precipitation totals for various roughness lengths. It should be noted that increases 

to wind-corrected precipitation is likely low because (1) reanalyzed winds can underestimate true 

wind patterns in mountainous areas from smoothing over complex terrain, and (2) the highest 

elevations in the basins may have experienced snowfall, which would require a more aggressive 

correction (Masuda et al. 2019).  
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Appendix J – Station metadata (Chapter 4) 

Table J1 USGS stream gauges used in Chapter 4. Snow pillows were assigned by proximity to 

the drainage boundary (within ~10 km).  

USGS ID Station Name HUC 8 Latitude Longitude 

Drainage 

Area (km2) 

Nearby snow 

pillows 

11381500 

Mill Creek near 

Los Molinos 18020156 40.05 -122.02 338 LLP, HRK, HMB 

11402000 

Spanish Creek 

near Blackhawk 

Creek At Keddie 18020122 40.00 -120.95 475 

GRZ, PLP, BKL, 

FOR, KTL, RTL 

11413000 

North Yuba R 

below 

Goodyears Bar 18020125 39.52 -120.94 648 

RCC, GOL, 

MDW, INN, IDP, 

IDC 

11427000 

North Fork 

American R at 

North Fork Dam 18020128 38.94 -121.02 883 

BLC/blu, HYS, 

CSL, SQV, GKS, 

TK2, TCC, WC3 

11274790 

Tuolumne R at 

Grand Canyon 

of Tuolumne 

above Hetch 

Hetchy 18040009 37.92 -119.66 776 

SLI, TUM, DAN, 

WHW, PDS, 

VRG 

11266500 

Merced Creek 

near Pohono 

Bridge near 

Yosemite 18040008 37.72 -119.67 833 

STR, TNY, GIN, 

GEM, AGP 

 



109 

 

Table J2 Snow pillows and co-located soil sensors used in Chapter 4. Note that station ID varies 

by source, and some locations have multiple. Multiple IDs signify the source of soil moisture 

measurements, if available. Snow variables were all obtained from CDEC. Also note that soil 

sensor depths vary by station.   

Name 

ID  

(CDEC / NRCS / NOAA / 

WRCC) Longitude Latitude 

Elevation 

(m) 

Soil Probe 

Depth(s) 

(cm) 

Alta  - / - /ata / - -120.82 39.20 

          

1,048  10, 15 

Agnew Pass AGP/ - / - / - -119.14 37.72 

          

2,880    

Big Bend  - / - /bbd/ -  -120.52 39.31 

          

1,754  10, 15 

Blue Canyon BLC/ - / blu / -  -120.71 39.28 

          

1,609  10, 15 

Bucks Lake BKL/ - / - / -  -121.25 39.85 

          

1,753    

Central Sierra 

Snow Lab CSL/428/ - / -  -120.37 39.33 

          

2,103  5, 20, 50 

Chickering 

American R. 

Reserve  - / - / - /UCCA -120.36 39.25 

          

1,841  5 

Dana 

Meadows DAN/ - / - / -  -119.26 37.90 

          

2,987    

Four Trees FOR/ - / - / -  -121.32 39.81 

          

1,570    
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Gem Pass GEM/ - / - / -  -119.17 37.78 

          

3,276    

Gin Flat GIN/ - / - / -  -119.77 37.77 

          

2,149    

Gold Lake GOL/ - / - / -  -120.62 39.67 

          

2,057    

Greek Store GKS/ - / - / -  -120.56 39.07 

          

1,707    

Grizzly Ridge GRZ/ - / - / -  -120.64 39.92 

          

2,103    

Harkness Flat HRK/ - / - / -  -121.28 40.42 

          

1,890    

Humbug HMB/ - / - / -  -121.38 40.12 

          

1,981    

Huysink HYS/ - / - / -  -120.53 39.28 

          

2,012    

Independence 

Camp IDC/539/ - / -  -120.30 39.45 

          

2,133  5, 20, 50 

Independence 

Creek INN/540/ - / -  -120.29 39.49 

          

1,981  5, 20, 50 

Independence 

Lake IDP/541/ - / -  -120.32 39.44 

          

2,575  5, 20, 50 

Kettle Rock KTL/ - / - / -  -120.72 40.14 

          

2,225    
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Lower Lassen 

Peak LLP/ - / - / -  -121.51 40.47 

          

2,514    

Meadow Lake MDW/ - / - / -  -120.51 39.41 

          

2,194    

Ostrander 

Lake STR/ - / - / -  -119.55 37.64 

          

2,499    

Paradise 

Meadow PDS/ - / - / -  -119.67 38.05 

          

2,332    

Pilot Peak PLP/ - / - / -  -120.88 39.79 

          

2,073    

Rattlesnake RTL/ - / - / -  -121.04 40.13 

          

1,859    

Robinson 

Cow Camp RCC/ - / - / -  -120.68 39.62 

          

1,975    

Slide Canyon SLI/ - / - / -  -119.43 38.09 

          

2,804    

Palisades 

Tahoe SQV/784/ - / -  -120.28 39.19 

          

2,499  5, 20, 50 

Tahoe City 

Cross TCC/809/ - / -  -120.15 39.17 

          

2,057  5, 20, 50 

Tenaya Lake TNY/ - / - / -  -119.45 37.84 

          

2,484  5, 10, 25 

Truckee #2 TK2/834/ - / -  -120.18 39.30 

          

1,951  5, 20, 50 
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Tuolumne 

Meadows TUM/ - / - / -  -119.35 37.88 

          

2,621  5, 10, 25 

Virginia 

Lakes Ridge VRG/846/ - / -  -119.23 38.08 

          

2,835  5, 20, 50 

Ward Creek 

#3 WC3/848/ - / -  -120.22 39.14 

          

2,057  5, 20, 50 

White Wolf WHW/ - / - / -  -119.65 37.86 

          

2,408    

 

Table J3 NOAA FMCW snow level radars used in Chapter 4. Data are recorded at 10-minute 

intervals. 

Station Name ID Longitude Latitude 

Elevation 

(m) 

Oroville ovl -121.49 39.53 114 

Colfax cff -120.94 39.08 644 

New Exchequer Dam ner -120.28 37.60 25 
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Appendix K – Regression results for brightband and melt altitude (Chapter 4) 

Table K1 Ordinary least squares regression results for gap-filling hourly brightband heights 

with ERA5-Land 0˚C altitude for water years 2017-2019. Listed are sample size (n), adjusted R2, 

and standard error (SE) in meters.  
Radar WY 2017 WY 2018 WY 2019 

Oroville 

n=388 

R2=0.87 

SE=0.017 

n=372 

R2=0.84 

SE=0.019 

n=460 

R2=0.88 

SE=0.015 

Colfax 

n=417 

R2=0.90 

SE=0.016 

n=390 

R2=0.91 

SE=0.016 

n=484 

R2=0.87 

SE=0.017 

New Exchequer Dam 

n=303 

R2=0.94 

SE=0.014 

n=292 

R2=0.91 

0.016 

n=297 

R2=0.75 

SE=0.023 
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Appendix L – Time of concentration calculation (Chapter 4) 

To inform a timescale on which to consider rainfall events as separate, we use the NRCS 

National Engineering Handbook’s watershed lag method to estimate watershed concentration 

times (NRCS 2004). We use equations 15-4b and 15-5 to estimate concentration time as a 

function of watershed average slope and area at various potential retention values (i.e., curve 

number). Concentration times for high-retention (low curve number) landscapes are on the order 

of one day (Figure L1). This informed our value of 30 hours (5 Stage IV timesteps) to consider 

the tendency for montane forest environments to have longer concentration times than what may 

be reliably calculated by this method (Loukas and Quick 1996).  

 

Figure L1 Watershed concentration time estimates for study basins in Figure 4.1a, calculated 

using the NRCS National Engineering Handbook watershed lag method.  
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Appendix M – Sensitivity in defining large versus minor rain-on-snow (Chapter 4) 

 

Figure M1 Same as Figure 4.6, but for ROS events that generate the 20% highest and 80% 

lowest runoff volumes.  
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Figure M2 Same as Figure 4.6, but for ROS events that generate the 10% highest and 90% 

lowest runoff volumes.  
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Figure M3 Density histograms comparing attributes of large versus minor ROS events in terms 

of generated runoff in WYs 2017-2019. Sample sizes are annotated beneath indicators of 

statistically significant differences between distributions using the Mann-Whitney U test (“*” 

and “**” indicate significance at α=0.05 and α=0.01 levels, respectively). Rows represent 

different thresholds separating distributions: (top row) highest 30% of runoff from ROS events 

versus the lowest 70%; (center row) 20%-80%; and (bottom row) 10%-90%. Pre-event snowline 

elevations (a, e, h; expressed as quantiles of watershed elevation) are shown for the four 

northernmost watersheds in Figure 4.1a to remove the effect of complete snow cover in the 

Tuolumne and Merced River headwater basins on the distributions of pre-event snowlines. Initial 

deep (below 10 cm) soil moisture (b, f, i; expressed as quantiles of WY 2017-2019 deep soil 

moisture) show insignificant differences across large and minor events. Non-negative regression 

slopes of in-storm BBH (c, g, j) are mostly insignificant.  
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Appendix N – Sensitivity in snow level bending in partitioning precipitation (Chapter 4) 

A sensitivity analysis of Chapter 4 is presented here. The tendency of upwind snow levels to bend 

downward toward the mountain side is a climatological feature (Minder and Kingsmill 2013) and presents 

an uncertainty in our approach to partitioning precipitation into rain and snow using BBHs (Lundquist et 

al. 2008). Results presented here pertain to Chapter 4 Table 1, Figure 4.4, Figure 4.6, and Figures M1-

M3, but for a systematic BBH lowering of 200 m (based conservatively on the 170-m average of Minder 

and Kingsmill 2013) when cataloguing rainfall and ROS events and their resulting statistics.   

The number of rainfall and ROS events are reduced by 37 and 7, respectively (Table N1), 

yielding 273 and 131 ROS events for a 200-m lower BBH.  

Table N1 Number of rainfall and ROS events (as in Table 4.1) when partitioning precipitation 

based on BBH lowering of 200 m.  
USGS ID Station Name Abbr # rain (ROS) events 

    WY 2017 WY 2018 WY 2019 

11381500 Mill C 23 (13) 20 (9) 21 (7) 

11402000 Spanish C 17 (8) 13 (5) 23 (7) 

11413000 N Yuba 21 (11) 13 (5) 24 (10) 

11427000 NF American 22 (13) 15 (8) 26 (16) 

11274790 Tuolumne 9 (6) 5 (2) 3 (1) 

11266500 Merced 11 (6) 4 (3) 3 (1) 

 

This lowering by construct resulted in inflated ratios of streamflow to rainfall (QR), creating 

more “hyperactive” watershed responses to ROS (Figure N1 versus Chapter 4 Figure 4.4). This does not 

change the notion that storm event clusters augment runoff efficiency.  
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Figure N1 (a) Natural log of 6-hourly streamflow for WYs 2017-2019 at each stream gauge in 

Figure 4.1a. For select gauges in the (b) northernmost (Mill Creek), (c) central (North Fork 

American River), and (d) southernmost (Merced River) regions in this study, ratios of total event 

streamflow to rainfall are plotted for each ROS event. Events are shown based on a BBH 

lowering of 200 m.  
 

The distribution of large versus small ROS events and tests for statistical significance between 

them remain largely unchanged with systematic BBH lowering. The volume, duration, and intensity of 

rainfall, QR, BBH slope, rainfall to date, and the number of days since a large (100 mm) rainfall event all 

produce a significant difference between large versus minor ROS events (Figure N2 versus Figure 4.6). 

These are mostly robust against the threshold separating large from minor ROS events (Figures N3, N4). 

Similarly, initial SWE, shallow soil moisture, and snowline elevations show minor differences across 

large versus minor ROS events, as does the number of days since small (≤ 50 mm) rainfall events (Figure 

N2-N4). Removing the initial snowlines from the Tuolumne and Merced River basins produces the same 
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result for a lowered BBH (Figure N5 versus Figure M3). Conclusions do not change for deep initial soil 

moisture and for non-negative BBH slopes (Figure N5).  

 

Figure N2 Same as Figure 4.6, but for a systematic 200-m lowering of BBH to partition 

precipitation.  
 

 

Figure N3 Same as Figure N2, but for ROS events that generate the 20% highest and 80% lowest 

runoff volumes. 



121 

 

 

Figure N4 Same as Figure N2, but for ROS events that generate the 10% highest and 90% lowest 

runoff volumes. 
 

 

Figure N5 Same as Figure M3, but for a systematic 200-m lowering of BBH to partition 

precipitation. 
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