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Learning Simple Arithmetic Procedures

Garrison W, Cottrell and Fu-Sheng Tsung
Department of Computer Science and Engineering
Institute for Cognitive Science
University of California, San Diego.

Abstract

Two types of simple recurrent networks (Jordan, 1986; Elman, 1988) were trained and compared on the
task of adding two multi-digit numbers. Results showed that: (1) A manipulation of the training environ-
ment, called Combined Subset Training (CST), was found to be necessary to learn the large set of patterns
used; (2) if the networks are viewed as leamning simple programming constructs such as conditional
branches, while-loops and sequences, then there is a clear way to demonstrate a capacity difference
between the two types of networks studied. In particular, we found that there are programs that one type
of network can perform that the other cannot. Finally, an analysis of the dynamics of one of the networks
is described.

Introduction

One major criticism of artificial neural networks is that there is no obvious method for doing
sequential, symbolic processing. Rumelhart, Smolensky, McClelland & Hinton (1986) proposed that
symbolic processing may be achieved by (1) creating physical representations of the problem, (2)
processing the representations via pattern association, and (3) recording the result of the processing in the
physical representation. The example they use is the problem of adding two three digit numbers. First
the two numbers are written down in a standard format as on the left:

327 327
865 865
2

This is now a pattern recognition problem, with the result being recorded by an action, i.e., writing down
the sum of the rightmost column as on the right above. This presents a new pattern, which triggers the
writing of a carry and the process repeats. Similarly, they claim that a complex logical problem is solved
by breaking it down into simpler problems and applying the above procedure repeatedly. We were
interested in just what was involved in implementing the above description, especially when a memory
load is added by not explicitly recording the carry.

In order to have a PDP network do sequences of actions, it has to have some way of knowing
"where" it is in the sequence. One way of accomplishing this is by explicitly having discrete states in the
unit functions which change over time (Feldman & Ballard, 1982). An altemnative is to have recurrence
in the network, so that the state of the network is reflected in the activation levels of the units. We adopt
the latter approach, following the work of Jordan (1986) and Elman (1988). Both of these approaches are
restricted extensions of the basic feed-forward network used in most back propagation experiments
(Rumelhart, Hinton, & Williams, 1986) that nevertheless still allow the use of back propagation leaming.
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Figure 1. (a) Jordan’s recurrent network. The outputs are linearly summed over time in the state vector,
lower right. (b) Elman’s network. The context vector (lower right) is a copy of the hidden units from the
previous time step.

In Jordan’s approach (see Figure 1(a)), the output vector of the network is linearly averaged into a
state vector (the same length as the output), which is given to the network as part of the input. We will
call these networks “state” networks. The state vector at time t becomes some proportion (mu) of its
value at time t-1, plus the output vector at time t-1. Thus the network has an exponentially decaying
representation of its output history. The other input is called the plan vector, that is, an arbitrary
representation of the sequence to be produced. This remains constant throughout the processing. State
networks can be trained to produce nearly arbitrary sequences.

In Elman’s approach (see Figure 1(b)), the hidden unit activations at time t-1 are copied into a
context vector, which is given as input to the network at time t. This is equivalent to having the hidden
units be completely recurrently connected, and back propagating one step in time along the recurrent
links. We will call these networks "context" networks. Context networks are typically used to predict
their next input, which causes them to represent structural regularities in their environment.

Thus these architectures have typically been applied to very different tasks: The state networks have
been used to leam to produce sequences, using a fixed-input plan; the context networks have been used to
recognize structural regularities in their input. Hence no comparison of their power has been done. In the
following, we apply them both to the same problem: Leaming a simple arithmetic procedure. This allows
comparison of the two network types. We find that there are procedures that one can perform that the
other cannot.

We chose multi-column addition as our symbolic processing task because although it is a simple
problem, it is nontrivial for parallel distributed processing (PDP) networks because it involves control
processes such as sequential processing and looping that are not traditional PDP tasks. Furthermore, it is
an interesting paradigm for generalization, since we can only train the network on a finite set of examples,
while there are an infinite number of possible cases. Hence the network must leamn the implicit,
underlying rule of addition.
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Architecture of the models

For both the state and context networks, we assume that the external input to the network at any
moment consists of the two digits of the current column. The network has two output ficlds: an action
and a result. The action field is a localist encoding of four possible actions: WRITE the sum of the two
digits, note that there is a CARRY, shift the input window to the NEXT column of digits, and DONE.
The result field only has meaning when the action is WRITE, when it holds the low order digit of the
sum of the two inputs. During other actions, the result field is not meaningful and no teaching signal is
given to it. One interesting aspect is the NEXT action: The network has control of its inputs and signals
when it is ready to move on to the next column of digits.

The program the network must leam is given in Figure 2(A). The CARRY action is conditionally
performed, depending on the size of the inputs. Otherwise, it is skipped. Notice that the fact of there
being a carry is not represented in the input. That is, the network must Ieamn to "remember” the carry, and
must respond differently to identical pairs of digits depending on this. If there was a carry on the
previous input, the network should add 1 to the sum, otherwise not. For the state network, a recent
CARRY is reflected in its state vector, which averages outputs. The context network, on the other hand,
has to leamn to recognize the form that its intemal state takes when it has output a CARRY on a recent
time step.

To reduce the number of basic additions to be learned, we used base 4 instead of decimal. There are
thus 16 basic associations for additions, plus the other program elements. The carry complicates the
situation, since the net has to respond to each pair differently in the presence of a carry. Worse yet, since
the state or context vectors record processing history, the network has essentially an infinite set of unique
inputs. Since most of this is irrelevant, one thing the network must leamn is to ignore its distant history.

Simulations
Training Strategy

The goal is to get the network to leamn the addition process for an arbitrary number of digits.
Immediate questions are: How to pick a training set? What makes a good one? How many examples are
enough for the net to generalize? We somewhat arbitrarily decided to train the network on additions with
addends of up to three digits. This set contains all the canonical situations, and therefore should be
enough. However, there are 4096 additions (including all 1-digit, 2-digit, 3-digit combinations), and when
translated to the network output sequences, there are more than 30,000 individual patterns. Learning is

while not done do while not done do
begin begin
output(WRITE, low_order_digit); output(WRITE, low_order_digit);
if sum>radix then output(NEXT, ?77);
output(CARRY, 777); if sum(previous_input)>radix then
output(NEXT, 777); output(CARRY, 77?);
end end
if carry_on_previous_input then if carry_on_previous_input then
output(WRITE, '01’); output(WRITE, '01');
output(DONE, 777); output(DONE, 77?);
(A) (B)

Figure 2. (A) The "program" the network learns. There are two output fields, and action field and a result
field. For most outputs, the result field is not trained ("?7?" in the figure). (B) Modified program.
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very difficult with such a large training set. To keep the net small (16 hidden units), and the training
fairly fast, we tried two training environments. One was a random subset consisting of 1% of the 4096
additions. This was leamed within 3 to 5 thousand epochs. However, generalization was poor. We
found that if we tried a bigger subset, 8% of the additions, the network would hit a local minima (total
sum squared error (tss) of 346 after 5000 epochs). Thus we have the following dilemma: If the training
set is small enough to be learned in reasonable time, the network generalizes poorly. If the training set is
large enough to insure good generalization, it does not learn in the time we are willing to wait. It seemed
that another method of training was needed.

We developed a method we call combined subset training (CST)! to solve these problems. Initially,
a manageable, randomly selected subset is used to train the network with a relatively loose error criterion
(stopping condition). Then the training set size is doubled by retaining the current set and adding an
equal number of other training examples, chosen randomly from the entire set. The error criterion is
tightened on the new set by a small fixed amount. Once this is learned successfully, the training set is
doubled again in the same fashion. This procedure is repeated until the whole set is included, or until the
net is able to generalize to the rest of the original training set. Intuitively, this method should work for
the following reason: When the net is only seeing a small subset of the the total training set, many partial
solutions adequate for that subset may be possible. Over-training on this set will force the net to choose
one of these local solutions, which may not generalize to the global solution desired. Stopping at a higher
error criterion leaves the options open by preventing the network from diving too deeply into local
minima.

For this experiment, we picked 1% (of the 4096 additions) as our initial set. The networks (both
types) are trained to a tss of 1.0, and the training set is doubled to 2% of the total. The total sum squared
error (tss) jumps up initially at the introduction of the new examples, but not as high as with the starting
weights (see Figure 3a). This shows that the network is already generalizing to some extent. The same
behavior was observed when we doubled to 4% and 8%, except that each time, the peak of the error jump
is less than the peak before it. At 8% of the training set (close to 3000 individual patterns), we found that

tss 50
1%
2% CST curve
tss 18.6
4% 8%
5000 5000
3.8 1.9
eps tss<l1l.0 eps

Figure 3. (a) Error curve from combined subset training on the context net. Each jump in tss is where
training sets are doubled. Beginning tss: 348.5; final tss: 0.399. (b) Comparison of CST to fixed set train-
ing for 2%, 4% and 8% subsets (the y axis is much higher than in (a)).

'"We report on this method at more length in Tsung & Cottrell (1989).
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the net generalizes very well 1o the rest of the 4096 additions.

In Figure 3(b), we compare the CST procedure outlined above with training on fixed subsets of size
2%, 4% and 8%. Notice that the CST curve falls under all of the others. More to the point, the 8% curve
appears to have reached a local minima at tss 346, while the networks trained on fixed subsets of 2% and
4% do not generalize well to the rest of the patterns (data not shown). This illustrates the dilemma stated
above: When training on fixed subsets, if the training set is small enough for the network to reach
criterion, then it doesn’t generalize well. With larger training sets, the network does not learn.

We then tested the CST-trained network on longer additions. Even though the network was only
trained on additions of up to 3 digits, on tests of 100 longer additions, the miss rate is only 10%. We then
trained the net on a part of the test set of longer additions. In general, we found that (see Tsung &
Cottrell 1989):

(A) Training on a small part of the test set corrects performance on the rest. This suggests
that there only one, or few, classes of errors the net is prone to make.

(B) The network learned to correct the mistakes quickly (within tens of epochs of further
training). Furthermore, the extra training does not upset the performance on the 3-digit ad-
ditions.

(C) Further generalization tests showed very little error, with a miss rate of less than 1%.

From the patterns of error behavior and the observations listed above, it is clear that the network has
learned the task, needing only small refinements.

Differences between state and context nets

Both state and context networks behaved similarly on this task. We may ask the question: Is there
some task that one can do, and not the other? The answer is yes, and a simple example is found by
interchanging two lines in the program the network must learn. Instead of the original sequence of "write
result-carry-next”, the net is trained to output "write result-next-carry”, as in Figure 2 (B). A stale
network should not be able to solve this problem. This is because the state network has access to only the
current input and the output history; it keeps no record of previous inputs or the internal states of the
system. Thus, a state network cannot "remember” things about its input that are not reflected in its
output. Following the program in Figure 2 (B), after writing the result, the NEXT action shifts the input
to the next column of digits. Now, after losing access to the previous input, the state network has 1o
determine whether the previous sum was greater than the radix. The only history the network has reflects
only the low order digit of the previous sum. Thus it cannot possibly determine whether the next step
should be CARRY or not. The context network, on the other hand, has a transformed version of the input
at the hidden layer which is recycled at each time step, thus it should be able to "remember” input that is
not reflected in its output.

Simulation results bear this out. The state network does not learn this task, as shown in Figure 4. It
achieved a low tss for each subset, but the error curve is not smooth and it does not generalize to the
doubled subset. That is, it is memorizing the sequences rather than leaming the task. Results with the
context network show that this is a harder problem than the original problem, but it did learn it. The
context network takes about twice as long to leam this procedure (710,000 epochs) compared to the
previous version.

Initial analysis of the internal representation

To look at the dynamics of the network as it moves through the problem, we found the principal
components of the 16 hidden unit activations over time, as the context network (using the program in
Figure 2 (A)) processed 10 additions from one of the generalization test sets. This analysis gives the
directions of highest variance of the hidden unit activations over time. Basically, we can think of this as

finding a new coordinate space for the hidden unit vectors, where the coordinate vectors are ordered in
terms of how much "action" occurs along each one.
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tss 800
2% 4% 8%
15000
'\'h""J'X' eps
S—— —

Figure 4. Leaming program from Figure 2 (B) with the state network. CST doubling is indicated. The
net is learning local solutions, and is unable to generalize.

In Figure 5, we show the projection of the hidden unit vectors onto the plane of the first two
principal components as the network is doing a 30 step addition. Each point is labeled by the action that is
produced on the output and the step in the entire computation. This shows how the network moves
through its internal states as it processes the input. There are several things to notice here. Basically,
WRITE result actions (labeled R#) are generally in the right half of the space, NEXTs and CARRYSs are

7

Figure 5. Projections of the hidden Iunits activation vector onto the first two principal components. The
number in the point labels corresponds to the step in this addition. R: RESULT, C: CARRY, N: NEXT,
D: DONE.
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Figure 6. Projection of the hidden unit activation vector onto principal component 1 plotted against itself
one time step later.

in the left. Second, in general, the second component is correlated with overall time within this problem.
It is interesting that the network represents absolute time even though it is unnecessary for solving the
problem. The most striking result that emerges from this analysis is that on the first principal component
(the x axis), the network is distinguishing between a NEXT that follows a CARRY, versus one that
follows a WRITE. All of the NEXTs following a CARRY are greater than O on this axis, all of those
following a WRITE are less than 0. The significance of this is that following a NEXT that follows a
CARRY, the network must output a result that is one more than the sum of the two inputs. We can thus
see the internal state that represents the memory of a carry in this graph.

A second way of viewing the dynamics of the network is to plot the first principal component at
time t vs. t+1. This gives the map from the context vector to the next hidden unit vector, since the context
vector at time t is the hidden unit vector at time t-1. Figure 6 shows this plot for the same problem as in
Figure 5. Here points are labeled by the transition being made. Here the separation of the NEXT’s
following a CARRY is particularly clear, forming a distinct cluster above the main diagonal of the graph.

Conclusions

In this paper we presented a simple model of symbolic manipulation using a connectionist network
that learned a procedure for adding two multi-digit numbers. The model served as a catalyst for several
other results. The most important one is a method for training networks to learn large training environ-
ments via Combined Subset Training. We found that without CST, the networks we studied could not
learn the task. Further investigation is necessary to determine if this technique is suitable for other net-
work architectures (such as standard feed-forward networks) and other problem types.

The second result is a clear demonstration of the capacity differences between the type of networks
studied by Jordan and those studied by Elman by giving a simple program that onc can learn that the
other cannot. The basic notion may be stated as follows: Networks with only output histories cannot
remember things about their input that are not reflected in their output. This is perfectly clear now; it was
not when we started this research.

The third result is a demonstration that networks of this type can leam simple programming
constructs that are not nested. In particular, these nets can do simple sequencing, looping, and branching.
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Also, values necessary for future processing can be stored over short periods by the context network.
Other recurrent network models are more powerful in this regard (Williams & Zipser, 1988), but require a
prohibitively large amount of computer time to train. Since remembering a bit takes a long time to learn,
this suggests that memory for "variables" requires initial structures subserving this function that are easily
refined by leaming. We thus have simple versions of all of the mechanisms for a universal computer--
except the ability to nest these constructs. We conjecture that nesting will not be able to be carried very
deeply (cf. Servan-Schreiber, Cleeremans, & McClelland, 1988).

Fourth, even though the network was not designed to be a psychological model of human leamning,
it may provide some insight into methods for optimizing human leaming in terms of structuring the
problem sets of addition facts. Also, this model is fertile ground for exploring other aspects of human
procedural learning and symbolic processing.

Finally we have begun an analysis of the network by looking at its state space graph. This type of
analysis is necessary when we are using recurrent networks to observe the dynamics of the system. We
expect that the use of this kind of analysis will become more commonplace as more researchers study
recurrent networks.
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