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Estimating human priors on causal strength
Saiwing Yeung (saiwing@berkeley.edu)

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Department of Psychology, University of California, Berkeley

Berkeley, CA. 94720-1650 USA

Abstract

Bayesian models of human causal induction rely on assump-
tions about people’s priors that have not been extensively
tested. We empirically estimated human priors on the strength
of causal relationships using iterated learning, an experimen-
tal method where people make inferences from data generated
based on their own responses in previous trials. This method
produced a prior on causal strength that was quite different
from priors previously proposed in the literature on causal
induction. The predictions of Bayesian models using differ-
ent priors were then compared against human judgments of
strength of causal relationships. The empirical priors estimated
via iterated learning resulted in the best predictions.
Keywords: Causal learning; Bayesian inference; Probabilistic
judgment; Iterated learning

Introduction
Causal induction involves inferring the relationship between
causes and effects. This problem has attracted the attention of
cognitive scientists because it is an important skill that peo-
ple rely on every day in order to understand the causal rela-
tionships in their environment. Traditionally, psychological
models of human causal induction have focused on various
schemes for comparing the probability of an effect occurring
in the presence and absence of a cause (e.g., Ward & Jenk-
ins, 1965; Cheng, 1997). However, recent work has explored
connections between ideas from Bayesian statistics and hu-
man cognition, using causal graphical models to precisely
define the problem of causal induction (Griffiths & Tenen-
baum, 2005; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008)
and to formalize the effects of prior knowledge (Griffiths &
Tenenbaum, 2009). A key part of these Bayesian models is to
precisely specify the prior knowledge that people have about
the strength of causal relationships. In previous models of
human causal induction, priors on the strength of causal re-
lationships were specified in two ways — either as uniform
priors by appealing to the principle of indifference (Griffiths
& Tenenbaum, 2005), or as generic priors based on assump-
tions about the abstract properties of the causal system (Lu et
al., 2008). In this paper, we present a new approach to esti-
mating human priors on causal strength, using the method of
iterated learning (Kalish, Griffiths, & Lewandowsky, 2007;
Griffiths, Christian, & Kalish, 2008).

Iterated learning was originally proposed as a simple
model of the cultural transmission of languages (Kirby,
2001). In this case, we imagine a chain of agents, where each
agent observes data generated by the previous agent (such as
a set of utterances), forms a hypothesis about the process that
generated those data (such as a language), and then gener-
ates new data to pass to the next agent. If the agents select
hypotheses using Bayesian inference, then as the chain gets

longer the probability that an agent selects a particular hy-
pothesis converges to the prior probability of that hypothesis
(Griffiths & Kalish, 2007). Simulating this process of iterated
learning in the laboratory thus provides a way to estimate peo-
ple’s priors (Kalish et al., 2007). In fact, there is no need for
data to be passed between people — we can just generate the
data that people see on one trial based on their responses in a
previous trial (Griffiths et al., 2008).

The plan for the rest of the paper is as follows. The
next section summarizes previous work on modeling human
causal induction, focusing on analyses based on causal graph-
ical models. We then introduce the basic ideas behind iterated
learning and present our experimental investigation of human
priors on causal strength. Next we compare the predictions
produced by a model using the empirical priors with previous
models. Finally we conclude the paper by discussing the im-
plications of these results for understanding causal induction.

Models of human causal induction
The British philosopher David Hume pointed out that people
are not “able to comprehend any force or power by which the
cause operates, or any connexion between it and its supposed
effect” (Hume, 1739/2004, p. 47), suggesting that causal rela-
tionships need to be inferred from the observed contingencies
of cause and effect. A number of models have been proposed
to account for how this inference might be made, with the
goal of predicting human judgments about causal relation-
ships from contingency data.

Models based on cause-effect probabilities
The ∆P model (Ward & Jenkins, 1965) proposed that human
make inferences about causal strength based on the contrast
between P(e+|c+) and P(e+|c−), where e and c represent the
effect (or outcome) and cause, and superscripts of + and −

represent their presence or absence. ∆P is formally expressed
as ∆P = P(e+|c+) - P(e+|c−). It captures the intuition that a
cause is strong if it significantly increases the probability of
the outcome occurring relative to its base rate.

Cheng (1997) argued that ∆P was just a measure of co-
variation and not one of causality. She further proposed the
theory of causal power, in which human judgments of causal
strength equals the probability of the cause in question pro-
duces the effect in the absence of all other causes. For exam-
ple, the power model for a generative cause can be expressed
as power= ∆P

1−P(e+|c−) . The causal power model provided bet-
ter fit than ∆P for some human data. However, there have
been debates about the lack of fit to human data for both mod-
els (see Buehner & Cheng, 1997; Lober & Shanks, 2000).
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Models based on Bayesian statistics
Griffiths and Tenenbaum (2005) proposed a Bayesian frame-
work for studying causal induction. This framework uses
causal graphical models to distinguish between causal struc-
ture – whether or not a link between two variables exists – and
causal strength – the strength of that relationship. Griffiths
and Tenenbaum gave a Bayesian account of learning causal
structure. Lu et al. (2008) recently showed how this approach
could be extended to infer causal strength.

Causal graphical models are probabilistic models in which
a graph is used to denote the causal relationships between
variables (Pearl, 2000; Spirtes, Glymour, & Scheines, 2001).
In the graph, nodes represent variables and edges represent
the causal connection between those variables. Following
Griffiths and Tenenbaum (2005) and Lu et al. (2008), we fo-
cus on causal systems in which there are three variables: the
background cause B, the potential cause C, and the effect E.
Assuming both B and C can cause E, this relationship can
be expressed in a graph in which there are edges going from
both B and C to E. We assume B is always present and is
generative, increasing the probability of the outcome, while
C can be present or absent, and generative or preventive. We
further assume that E cannot occur unless B or C caused it.
Inferences are based on contingency data, which can be sum-
marized in a 2× 2 contingency table indicating the frequen-
cies with which all combinations of the presence and absence
of C and E co-occur.

Although the graph structure specifies the causal relation-
ships among variables, the exact nature of those relation-
ships is not clear without specifying their functional form.
Noisy-OR (for generative causes) and noisy-AND-NOT (for
preventive causes) parameterizations have been used to char-
acterize the functional forms of causal relationships in pre-
vious models of causal induction (Cheng, 1997; Griffiths
& Tenenbaum, 2005). Each cause is assumed to have the
power to cause (or prevent) the effect independently, doing
so with a probability that reflects its strength. We denote
the strength of B and C as w0 and w1 respectively. The
noisy-OR gives the probability of observing the effect E as
P(e+|c;w0,w1) = 1− (1−w0)(1−w1)

c where c is a binary
value representing the presence or absence of C, while the
noisy-AND-NOT gives P(e+|c;w0,w1) = w0(1−w1)

c.
Having specified the full causal model, we can use this

model to infer the strength of B and C from the observed con-
tingency data.1 These data indicate the frequency with which
cause and effect co-occur. We will use N(e,c) to denote the
number of cases falling into each cell of the contingency ta-
ble, with e ranging over e+ and e−, and c ranging over c+ or
c−. For any particular value of w0 and w1, the probability of
the observed contingency data D is

P(D|w0,w1) = ∏
e,c

P(e|c;w0,w1)
N(e,c) (1)

1We focus on the problem of estimating causal strength, but the
prior we estimate on causal strengths can also be used to infer causal
structure (as in Griffiths & Tenenbaum, 2005; Lu et al., 2008).

where P(e|c;w0,w1) is given by the noisy-OR or noisy-AND-
NOT as above. We can thus compute a posterior distribution
over w0 and w1 given D by applying Bayes’ rule, with

P(w0,w1|D) ∝ P(D|w0,w1)P(w0,w1) (2)

where P(w0,w1) is the prior on w0 and w1. Estimates of w0
and w1 can then be obtained by taking the posterior expecta-
tion, with w̄i =

∫ 1
0 wiP(w0,w1|D)dwi for i ∈ 0,1.

Priors on causal strength
In order to evaluate the posterior distribution in Equation 2,
or to integrate over causal strength to evaluate causal struc-
tures as in Griffiths and Tenenbaum (2005), the prior on the
causal strengths w0 and w1 needs to be specified. Griffiths
and Tenenbaum assumed a uniform prior on both variables
in their Bayesian structure learning model. However, Lu et
al. (2008) argued that human reasoning are better approxi-
mated using a model that incorporated generic priors — a
theoretically driven prior that makes systematic assumptions
about the abstract properties of a system. They argued that
people have preference for causal models with fewer causes
(Lombrozo, 2007), and for causes that minimize complex
interactions (Novick & Cheng, 2004). Based on these ar-
guments, they specified the sparse and strong (SS) prior as
P(w0,w1) ∝ e−α(1+w0−w1) + e−α(1−w0+w1) in the generative
case and P(w0,w1) ∝ e−α(1−w0+1−w1) + e−α(1−w0+w1) in the
preventive case (Lu et al., 2008). α in the formulae is a free
parameter and is fixed at 5 in their analysis. In the gen-
erative case, this formulation gives higher prior probability
when one of the causes (B or C) is very strong and the other
is very weak; in the preventive case, this formulation gives
higher prior probability when B is very strong and C is either
very strong or very weak. Although Lu et al.’s model based
on generic priors provided a good fit to human judgments in
their experiments, there are infinitely many possible priors on
causal strength, of which this is just a single possibility.

Using iterated learning to estimate human
priors on causal strength

Previous work such as Lu et al.’s evaluated different propos-
als about priors on causal strength by testing predictions of
specific models implementing those priors. Here, we take a
different approach, using an experimental method based on
iterated learning to directly estimate human priors on causal
strength. When used as a model of cultural transmission, iter-
ated learning refers to a process in which a sequence of agents
each learns from data generated by the previous agent. For-
mally, the n-th agent observes data d(n) and forms a hypothe-
sis h(n) about the process that generated those data, then goes
on to generate the data d(n+1) which is given to the next agent.
This defines a Markov chain on hypothesis-data pairs. If the
agents select a hypothesis by sampling from the posterior dis-
tribution p(h|d) ∝ p(d|h)p(h) and then generate data by sam-
pling from the corresponding likelihood function p(d|h), then
this Markov chain is a Gibbs sampler for the joint distribution
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p(d,h) = p(d|h)p(h). As n becomes large, the distribution
of (dn,hn) converges to this joint distribution, and the prob-
ability that the nth learner selects a particular hypothesis h
converges to p(h) (for details, see Griffiths & Kalish, 2007).

Convergence of iterated learning to the prior suggests that
it might be used as a method for empirically estimating hu-
man priors. Laboratory simulations of iterated learning, with
data being passed between people, support this idea: Func-
tions (Kalish et al., 2007) and concepts (Griffiths et al.,
2008) transmitted through iterated learning quickly converge
to forms that are consistent with priors established in previous
research. However, there is no need for data to be transmit-
ted between people for this to occur: A feedback process can
be established for a single individual that has the appropriate
statistical structure, where people form hypotheses about data
that are generated based on their responses on previous tri-
als. This kind of within-subjects design has previously been
used to explore people’s inductive biases in concept learn-
ing, producing equivalent results to a between-subjects design
(Griffiths et al., 2008). We now explore whether a similar ap-
proach can identify people’s prior on causal strength.

Methods
Participants. Participants were recruited from the Univer-
sity of California, Berkeley, subject pool, and online (Ama-
zon Mechanical Turk). Participants from the subject pool
received course credit, while online participants received a
small payment. Only data from participants who completed at
least 95% of the trials are included in the analysis. In the gen-
erative condition, there were 20 and 52 participants from the
university subject pool and online respectively. In the preven-
tive condition, there were 33 and 51 participants from these
groups.

Stimuli and Procedure. Following Lu et al. (2008), we
presented the experiment using a cover story of a bio-genetics
company testing the influence of proteins on the expression
of genes. The experiment was run in a web browser. In the
generative condition, participants were told:

In this experiment, please imagine that you are a researcher
working for a bio-technology company and you are studying
the relationship between genes and proteins concerning gene
expression.

Gene expression is the process by which information from a
gene is used in synthesizing RNA or other proteins; it controls
the structure and functions of cells or other genes. This process
may or may not be modulated by the presence of proteins. You
are given a number of gene/protein pairs and your job is to
make assessments concerning the effect of these proteins on
the expression of the genes.

There are a number of trials in this experiment. Each trial in-
volves a different gene and a different protein. In each trial,
DNA strands extracted from hair samples would be exposed to
the protein and the expression of the gene would be assessed.
You will see the results from two samples of DNA strands. One
sample consists of DNA strands that had not been exposed to
the protein while the other sample consists of DNA strands that
had been exposed to that protein. In both samples, you will see
the number of gene expression resulted but no other informa-
tion will be provided.

Figure 1: Screenshot of the generative condition of the exper-
iment. The participant is assessing the strength of the cause
C, w1.

Participants then received instructions familiarizing them
with the controls that they would use in the experiment. Each
trial (50 total) was presented on a separate screen (see Fig-
ure 1). In each trial participants saw data in the form of two
samples, one that was not exposed to the protein (c−) and
one that was (c+). The data were presented graphically us-
ing pictures that showed the total number of DNA strands in
each sample as well as the number that expressed the gene,
providing complete contingency data N(e,c).

After observing these contingencies, participants were
asked to make two judgments involving hypothetical samples.
The instructions were:

Suppose that there is a sample of 100 DNA strands and these
strands were not exposed to the protein, in how many of them
would the gene be turned on?
Suppose that there is a sample of 100 DNA strands and that
the gene is currently off in all those DNA strands. If these
100 strands were exposed to the protein, in how many of them
would the gene be turned on?

These questions were phrased to elicit judgments of w0 and
w1, based on stimuli from previous research (e.g., Lu et al.,
2008). Participants responded using a slider. Live feedback
showing the proportion of expressed genes was shown as the
slider was moved. Participants could adjust the slider until
they were satisfied with their response, before clicking the
submit button to record their response and go to the next trial.
The instructions for the preventive condition were similar, ex-
cept that the protein was characterized as having preventive
power, and the hypothetical sample used in the second ques-
tion was assumed to have the gene currently expressed in all
100 DNA strands.

A within-subjects iterated learning design was used. There
were four transmission chains with ten iterations each. The
data that initiated each chain were generated by sampling a
contingency table from predetermined initial values of w0 and
w1. These initial values were chosen to be distinct so that the
differences between responses from different chains could be
used to diagnose convergence. The initial data for the four de-
pendent chains were drawn from distributions with (w0,w1)
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parameters of (0.2,0.2), (0.2,0.8), (0.8,0.2), and (0.8,0.8).
Each contingency table had a total of 16 cases where the
cause was present, and 16 where the cause was absent, with
the number of times the effect occurred being generated via a
binomial draw with parameter P(e+|c;w0,w1). In all subse-
quent trials, data were generated based on the w0 and w1 val-
ues the participant produced in the previous trial in the same
chain. These values were taken directly from the estimates
that the participants produced in response to the two ques-
tions about hypothetical samples. For example, if on iteration
n of a particular chain the participant’s responses were f0 and
f1 (out of 100) for the two questions, then the data presented
at iteration n+1 of chain would be drawn using w0 = f0/100
and w1 = f1/100.

To evaluate the performance of different Bayesian models,
we added a fifth chain in which the contingencies that were
presented did not depend on participants’ previous responses.
This is not really a “chain” as all of these trials were in fact
independent, but we retain the name for convenience in expo-
sition and in contrast to the dependent chains. This chain pro-
vided the additional benefit of preventing participants from
being able to easily guess or approximate the stimulus gener-
ation algorithm (Griffiths et al., 2008). For the independent
chain both w0 and w1 were sampled from a uniform distribu-
tion on (0,1) on each trial, and were then used to generate
contingencies as in the dependent chains. There were thus a
total of five chains and 50 trials per participant. The order of
trials between chains was randomized within each iteration.

Results
The results from the university and online subject pools were
similar to each other. We ran a Mann-Whitney U test on the
162 and 179 contingencies where we have data from both
pools. Only 4 and 2 contingencies (respectively for genera-
tive and preventive conditions) resulted in significant differ-
ences (with p < .05). None of these differences were sig-
nificant if Bonferroni correction is applied. Therefore results
from these two sources were combined.

Analyses of the dependent chains focused on the final iter-
ation of all chains, as this iteration was most likely to reflect
the prior distribution. To test for convergence, we compared
the distribution of both ratings as a function of the values used
to initiate each chain. ANOVA tests with the initial values of
w0 and w1 as factors was run for strength estimates of both
w0 and w1 in each condition. The result showed a statistically
significant effect of initial values in the human ratings in the
final iteration of both conditions for w0 but not w1.

Means and standard deviations from the final iteration of
all chains are shown in Table 1. In the generative condi-
tion, the w0 ratings from chains of higher initial w0 values
remains higher than those from chains of lower initial w0 val-
ues (F(1,286) = 79.568,MSE = 97314, p < 0.001). On the
other hand, there were no significant differences in w1 ratings
between chains of different initial w1 values (F(1,286) =
1.000,MSE = 882.0, p = 0.318). There were no interac-
tions in either chain (in w0 chain, F(1,284) = 0.028,MSE =

24.50, p < 0.868; in w1 chain, F(1,284) = 0.8742,MSE =
1073, p = 0.351). The results were similar in the preven-
tive condition. The w0 ratings retained influences from ini-
tial values (F(1,334) = 83.474,MSE = 98949, p < 0.001),
but the w1 ratings are not significantly different (F(1,334) =
1.831,MSE = 2480.9, p= 0.177). Again, there were no inter-
actions (w0 chain: F(1,332) = 0.557,MSE = 663, p= 0.456;
w1 chain: F(1,332) = 1.136,MSE = 1530.0, p = 0.287).

This pattern of results suggests that the w1 values had con-
verged while the w0 values still retained some influence of
initialization. Inspection of the data showed that the empirical
priors for w0 has most of its density residing on regions close
to 0 or 1 and that individual chains were attracted to these
modes, only rarely moving between them, and thus might re-
quire longer chain in order to guarantee convergence. How-
ever, the final iteration of each chain still gives a reasonably
clear picture of the prior. Additionally, since this study fo-
cuses on the human judgment of the potential cause C, whose
inference is based on w1, the non-convergence of w0 does not
prevent us from continuing our analysis using this data.

Figure 2 shows the density of the empirical priors based on
the responses from the final iteration of all chains, smoothed
via kernel density estimation with a bivariate normal kernel
(Venables & Ripley, 2002). The generative SS priors gives
high probability to regions where only one of w0 or w1 is high,
while the empirical priors generally prefers w1 to be high,
with the distribution on w0 being more uniform but has peaks
near both 0 and 1. A similar pattern appears in the empirical
priors for the preventive case, which is quite different from
the prediction under the SS priors in which either w0 and w1
are both high or w0 is high and w1 is low. Moreover, the prior
density is generally lower away from the corners. This char-
acteristic of the empirical prior points to some degree of pref-
erence for deterministic causal systems, consistent with pre-
vious research on human causal induction (Griffiths & Tenen-
baum, 2009; Schulz & Sommerville, 2006).

Comparing models to human judgments
We can now compare Bayesian models based on the three dif-
ferent priors – uniform (Griffiths & Tenenbaum, 2005), sparse
and strong (Lu et al., 2008), and the empirical priors esti-
mated by iterated learning – with human judgments of causal
strength. Since all three Bayesian models use the same like-
lihood function and differ only in the priors, the predictions
are not radically different. However, the models do differ in

Table 1: Mean and s.d. of the human ratings in the final iter-
ation, separated by initial parameterization.

Chain Causal Small Large
direction initial condition initial condition

w0 Gen. 30.708 (35.498) 67.472 (34.438)
w0 Gen. 29.577 (34.475) 63.899 (34.384)

w1 Prev. 81.979 (30.729) 85.479 (28.641)
w1 Prev. 72.065 (38.289) 77.500 (35.271)
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Figure 2: Empirical priors estimated by iterated learning, for
both generative and preventive cases.

how they treat cases with middling causal strength, as can be
seen by comparing the plots in Figure 3.

The stimuli and, therefore, human data used in most prior
studies (e.g. Lu et al., 2008) are not randomly selected and
were chosen by researchers in order to compare model perfor-
mance under specific scenarios. For example, if a researcher
is interested in comparing the ∆P model versus the causal
power model, often only contingencies that produce radically
different predictions under the two models will be selected
as stimuli. Although this approach is useful in differentiating
models in specific scenarios, it does not necessarily reflect
causal induction more generally. We opted for a more general
approach and used the responses produced in the indepen-
dent chains from our experiment, where trials were generated
using uniformly distributed w0 and w1 values and therefore
covered a wide range of contingencies.

The performance of the models was evaluated using Pear-
son’s correlation coefficient (r) and an adjusted root-mean-
square deviations (RMSD) score. The correlation r compares
the mean human judgment with model predictions. All three
models performed quite well based on the Pearson’s correla-
tion coefficient (r) with the empirical model having the high-
est correlation. The results are shown in Table 2. Overall, the
r metrics in this experiment are lower compared to those in
prior studies (e.g. Lu et al., 2008) where values of r over 0.95
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Figure 3: Comparison of human responses with predictions
from Bayesian models using uniform, SS, and empirical pri-
ors. The grids represent the contingencies with N(e+,c+) and
N(e+,c−) on the horizontal and vertical axes respectively.
Cells with gray stripes show contingencies that did not ap-
pear in the experiment. Some contingencies are more likely
because of sampling.

Table 2: Comparison of model performance on independent
chain trials of our experiment.

Causal
direction Metric Uniform SS Empirical

Generative Correlation (r) 0.7414 0.5620 0.7876
Generative Adj. RMSD 22.4774 29.6693 15.5900

Preventive Correlation (r) 0.6544 0.6415 0.6679
Preventive Adj. RMSD 22.0802 23.3648 19.0560

are not uncommon. This is expected because of our more
comprehensive data set, with many different contingencies,
and as a result, higher variability in mean human judgments.
For example, there were eight contingencies (in each causal
direction) in Experiment 1 of Lu et al. (2008) whereas there
were 184 and 191 contingencies in our experiment, in the
generative and preventive case respectively.

In order to take into account the differences in the sam-
ple size of the human responses, we also evaluated the
models using adjusted RMSD. We calculated this score

as Adjusted RMSD =

√
∑i

(x̂i−xi)2

sei
/∑ j

1
se j

where xi are the

means of the human responses, x̂i are model predictions, and
sei are the standard errors. This metric assigns higher weight
to contingencies where more human data are available (thus
lower sampling error) and where variability is smaller. Con-
tingencies where the standard error could not be computed
were omitted from the analysis. With this metric, the em-
pirical priors again made better predictions than the other
two models, particularly in the generative direction. Figure 4
compares the performance of models using the SS and empir-
ical priors in terms of adjusted RMSD at every set of contin-
gencies that appeared in the experiment.

Discussion
We have presented the first direct estimate of human priors
on the strength of causal relationships, using iterated learn-
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Figure 4: Comparison of model predictions. These two plots
compare the performance of the Bayesian model with the em-
pirical priors against that with the SS priors. The grids repre-
sent the contingencies with N(e+,c+) in x-axis and N(e+,c−)
in y-axis. The value at each grid is the difference of the error
of the models (compared to the mean human result). Pos-
itive values (lighter grids) represent better performance for
the empirical prior model; negative values represent better
performance for the SS prior model. Only data from the in-
dependent chains are plotted here.

ing. The resulting empirical priors were markedly different
from previously proposed theory-based priors. We also found
that the empirical priors predict human judgments better than
these previously proposed priors. However, there are a num-
ber of important issues that need to be explored in future
work, including giving a more comprehensive characteriza-
tion of priors across different causal scenarios, dealing with
more complex causal systems, and determining an objective
method for evaluating models of causal induction.

The gene expression cover story we used in our experi-
ment is similar to cover stories used in numerous prior ex-
periments on causal induction (Lu et al., 2008; Griffiths &
Tenenbaum, 2005; Lober & Shanks, 2000). These medical
cover stories are used because they provide plausible causal
relationships between variables, and the functional form of
these relationships is simple. However, it is possible that prior
knowledge might influence the form of the priors that people
use when reasoning about this particular scenario, such that
the empirical priors we estimated might not generalize well
to other causal domains. It is also possible that cultural dif-
ferences might influence the form of the priors. Having es-
tablished that iterated learning can be used to investigate pri-
ors on causal strength, we anticipate that this approach can be
used to explore how priors vary across scenarios and cultures.

By focusing on the simplest possible causal structure, our
study did not address how people reason about causal sys-
tems where more than one non-background cause is present.
This reflects a general phenomenon in the study of human
causal induction, where investigation of systems involving
multiple causes is rare. However, some recent studies have
examined how people estimate the strength of multiple causes
(e.g., Novick & Cheng, 2004). Adapting the methods used in
these studies to an iterated learning setting might provide a
way to investigate whether the priors that people adopt de-

pend on the complexity of the causal system.
Finally, our results also raise questions concerning how

models of causal induction should be compared. Most past
causal inference literature evaluate model fit by comparing
model predictions with human responses at specific contin-
gencies. These contingencies were usually chosen to high-
light the different predictions made by the models of interest.
The independent chains used in our experiment provided a
picture of human causal strength judgments for a remarkably
wide range of contingencies. Establishing a broad database
for objectively comparing models of human causal induction
is an important challenge for future research.
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