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POLYMORPHISMS IN CYTOKINE GENES ARE ASSOCIATED 
WITH HIGHER LEVELS OF FATIGUE AND LOWER LEVELS OF 
ENERGY IN WOMEN FOLLOWING BREAST CANCER SURGERY

Kord M. Kober, PhD1, Betty Smoot, PT, DPTSc2, Steven M. Paul, PhD1, Bruce A. Cooper, 
PhD1, Jon D. Levine, MD, PhD2, and Christine Miaskowski, RN, PhD1

1School of Nursing, University of California, San Francisco, CA

2School of Medicine, University of California, San Francisco, CA

Abstract

Context—Little is known about the phenotypic and molecular characteristics associated with 

changes over time in fatigue and lack of energy in patients with breast cancer.

Objectives—To identify subgroups (i.e., latent classes) of women with distinct fatigue and 

energy trajectories; evaluate for differences in phenotypic characteristics between the latent classes 

for fatigue and energy; and evaluate for associations between polymorphisms in genes for pro- and 

anti-inflammatory cytokines, their receptors, and their transcriptional regulators and latent class 

membership.

Methods—Patients were enrolled prior to and followed for six months after breast cancer 

surgery. Latent class analyses were done to identify subgroups of patients with distinct fatigue and 

energy trajectories. Candidate gene analyses were done to identify cytokine genes associated with 

these two symptoms.

Results—For both fatigue and lack of energy, two distinct latent classes were identified. 

Phenotypic characteristics associated with the higher fatigue class were: younger age, higher 

education, lower KPS score, higher comorbidity, higher number of lymph nodes removed, and 

receipt of chemotherapy (CTX). Polymorphisms in interleukin (IL) 1 beta and IL10 were 

associated with membership in the higher fatigue class. Phenotypic characteristics associated with 

the lower energy class included: a lower KPS score and a higher comorbidity score. A 

polymorphism in IL1R1 was associated with membership in the lower energy class.

Conclusion—Within each latent class, the severity of fatigue and decrements in energy were 

relatively stable over the first six months following breast cancer surgery. Distinct phenotypic 

characteristics and genetic polymorphisms were associated with membership in the higher fatigue 

and lower energy classes.
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INTRODUCTION

Fatigue is the most common symptom reported by patients who undergo treatment for breast 

cancer.(1) While over 90% of patients diagnosed with breast cancer will undergo surgery, 

only a limited number of longitudinal studies have evaluated for preoperative levels of 

fatigue and changes in fatigue following surgery.(2–5) Across these studies, a variety of 

demographic (e.g., younger age (3)) and clinical (e.g., partial mastectomy (6), poorer 

functional status (4, 6)) characteristics, as well as psychological factors (e.g., pre-surgical 

expectancies for fatigue (3), introversion (5)) were associated with higher levels of fatigue 

following surgery. In these studies, the length of post-surgical follow-up ranged from one 

week (3) to one year (6). Only one study was identified that used a type of growth mixture 

modeling (GMM) to identify subgroups of breast cancer patients (n=290) with distinct 

fatigue trajectories.(2) Using fatigue assessments done prior to and at 4 and 5 months after 

surgery, groups of patients with persistently high (21%) and persistently low (79%) levels of 

fatigue were identified. Patients in the high group were more likely to report lower levels of 

physical activity and higher levels of anxiety. No demographic or clinical characteristics 

were associated with membership in the higher fatigue group. While this study provides 

important information on persistent fatigue, only three assessments were done (i.e., 4 weeks 

prior to surgery and 4 and 8 months after surgery) and the confidence intervals (CI) were 

wide which suggests that a larger sample could result in more reliable estimates.

In oncology, fatigue is defined as a distressing, persistent sense of physical, emotional, 

and/or cognitive tiredness for exhaustion related to cancer or cancer treatment that is not 

proportional to recent activity and interferes with usual functioning.(7) In contrast, energy 

can be defined as an individual’s potential to perform physical and mental activity.(8) As 

noted in our previous publication,(9) an increasing body of evidence suggests that fatigue 

and energy are distinct but related constructs.(8, 10, 11) For example, instruments like the 

Profile of Mood States (POMS)(12) have separate scales for fatigue-inertia and energy-

vigor. The energy subscale of the POMS evaluates the intensity of energy using a variety of 

descriptors (e.g., energetic, full of pep). Like the POMS, the Lee Fatigue Scale (LFS) has 

two subscales (i.e., a fatigue subscale with 13 items and an energy subscale with five items). 

The LFS asks participants to rate their level of energy using a 0 to 10 numeric rating scale 

(NRS) on five descriptors (i.e., energetic, active, vigorous, efficient, lively). The original 

psychometric evaluation of the LFS identified these two distinct subscales.(13) In addition, a 

recent Rasch analysis of the LFS found that fatigue and energy represented different 

symptoms.(14) Only one study was identified that evaluated decrements in energy in 

patients prior to breast cancer surgery.(15) In this study, while 32% of the women reported 

clinically meaningful levels of fatigue, nearly 50% of the patients reported clinically 

meaningful decrements in energy levels prior to surgery. No studies were identified that 

evaluated for subgroups of patients with distinct energy trajectories from prior to through six 

months following breast cancer surgery.
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While some progress has been made in evaluating the role of inflammatory mediators in the 

development and maintenance of fatigue, recent reviews of fatigue in patients with cancer 

recommend that additional research be done to establish the underlying mechanisms for 

fatigue.(1, 16, 17) In all of these reviews, emphasis is placed on understanding the molecular 

mechanisms that underlie the development of persistent fatigue in oncology patients.

Cytokines, their receptors and transcriptional regulators are one class of polypeptides that 

mediate inflammatory processes (for reviews see (18–20)). In several studies,(21–24) 

genetic and epigenetic mechanisms involved in inflammation were associated with fatigue in 

oncology patients. Only one study was found that reported on associations between 

polymorphisms in cytokine genes and decrements in energy in oncology patients undergoing 

radiation therapy and their family caregivers.(9) This preliminary evidence provides support 

for the role of molecular mechanisms involved in inflammatory processes, particularly 

cytokines, in the etiology of fatigue and decrements in energy in oncology patients.

Given the paucity of longitudinal studies that aimed to determine distinct phenotypes for 

fatigue and energy following breast cancer surgery and the need for more molecular-based 

studies, the purposes of this study, in a sample of women (n=398) who were assessed prior 

to and monthly for six months following surgery, were to: identify subgroups (i.e., latent 

classes) of women with distinct fatigue and energy trajectories; evaluate for differences in 

phenotypic characteristics between the latent classes for fatigue and energy; and evaluate for 

associations between polymorphisms in genes for pro- and anti-inflammatory cytokines, 

their receptors, and their transcriptional regulators and latent class membership. We 

hypothesized that at least two latent classes would be identified for each symptom using 

GMM and distinct phenotypic characteristics and genetic polymorphisms would be 

associated with higher fatigue and lower energy latent class membership.

MATERIALS AND METHODS

Patients and Settings

This analysis is part of a larger, longitudinal study that evaluated neuropathic pain and 

lymphedema in women who underwent breast cancer surgery. The study methods are 

described in detail elsewhere.(25–28) In brief, patients were recruited from breast care 

centers located in a Comprehensive Cancer Center, two public hospitals, and four 

community practices.

Patients were eligible to participate if they: were adult women (≥18 years) who were 

scheduled to undergo unilateral breast cancer surgery; were able to read, write, and 

understand English; agreed to participate; and gave written informed consent. Patients were 

excluded if they were having bilateral breast cancer surgery or had distant metastasis at the 

time of diagnosis. A total of 516 patients were approached, 410 were enrolled (response rate 

79.5%), and 398 completed the enrollment assessment. The most common reasons for 

refusal were: too busy, overwhelmed with the cancer diagnosis, or insufficient time available 

to do the enrollment assessment prior to surgery.
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Instruments

The demographic questionnaire obtained information on age, marital status, education, 

ethnicity, employment status, and living situation. Patients rated their functional status using 

the Karnofsky Performance Status (KPS) scale that ranged from 30 (I feel severely disabled 

and need to be hospitalized) to 100 (I feel normal; I have no complaints or symptoms).(29) 

The Self-Administered Comorbidity Questionnaire (SCQ) was used to evaluate comorbidity.

(30) Patients were asked to indicate if they had one of 13 common medical conditions; if 

they received treatment for it (proxy for disease severity); and did it limit their activities 

(indication of functional limitations). For each condition, a patient can receive a maximum 

of 3 points. The total SCQ score can range from 0 to 39 points. The SCQ has well-

established validity and reliability.(31, 32)

The Lee Fatigue Scale (LFS) consists of 18 items designed to assess physical fatigue and 

energy.(13) Each item was rated on a 0 to 10 NRS. Total fatigue and energy scores were 

calculated as the mean of the 13 fatigue items and the 5 energy items, with higher scores 

indicating greater fatigue severity and higher levels of energy. Patients were asked to rate 

each item based on how they felt “right now”. The LFS has been used with healthy 

individuals (13, 33) and in patients with cancer and HIV.(34–37) Cutoff scores of ≥4.4 and 

≤4.8 indicate clinically meaningful levels of fatigue severity and low levels of energy, 

respectively.(38) The LFS has well established validity and reliability. (13, 33) In the current 

study, Cronbach’s alphas for the fatigue and energy scales were .96 and .93, respectively.

Study Procedures

The study was approved by the Committee on Human Research at the University of 

California, San Francisco and by the Institutional Review Boards at each of the study sites. 

During the preoperative visit, a clinician explained the study; determined the patient’s 

willingness to participate; and introduced her to the research nurse. The research nurse met 

with the woman, determined eligibility, and obtained written informed consent prior to 

surgery. After obtaining consent, patients completed the enrollment questionnaires an 

average of 4 days prior to surgery. Patients completed the LFS at enrollment and monthly for 

6 months (i.e., 7 assessments). Medical records were reviewed for disease and treatment 

information.

Genomic analyses

Gene selection—Cytokines, their receptors, and their transcriptional regulators are 

classes of polypeptides that mediate pro- and anti-inflammatory processes. Cytokine 

dysregulation is associated with fatigue (for reviews see (1, 17, 39)). Pro-inflammatory 

genes promote systemic inflammation and include: chemokine (C-C-C motif) ligand 8 

(CXCL8, previous gene symbol interleukin 8 (IL8)), interferon gamma (IFNG), IFNG 

receptor 1 (IFNGR1), IL1 receptor 1 (IL1R1), IL2, IL17A, and members of the tumor 

necrosis factor (TNF) family (i.e., lymphotoxin alpha (LTA), TNF). Anti-inflammatory 

genes suppress the activity of pro-inflammatory cytokines and include: IL1R2, IL4, IL10, 

and IL13. Of note, IFNG1, IL1B, and IL6 possess pro- and anti-inflammatory functions. 

Nuclear factor kappa beta 1 (NFKB1) and NFKB2 are transcriptional regulators of these 

cytokine genes.(40) All genes were identified according to the approved symbol stored in 
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the Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) 

database (http://www.genenames.org).

Blood collection and genotyping—Of the 398 patients who completed the enrollment 

assessment, 310 provided a blood sample from which deoxyribonucleic acid (DNA) could 

be isolated from peripheral blood mononuclear cells (PBMCs). Genomic DNA was 

extracted from PBMCs using the PUREGene DNA Isolation System (Invitrogen, Carlsbad, 

CA). DNA was quantitated with a Nanodrop Spectrophotometer (ND-1000) and normalized 

to a concentration of 50 nanograms/microliter (ng/μL). Genotyping was performed blinded 

to clinical status and positive and negative controls were included. Samples were genotyped 

using a custom array on the Golden Gate genotyping platform (Illumina, San Diego, CA) 

and processed according to the standard protocol using GenomeStudio (Illumina, San Diego, 

CA).

SNP selection—A combination of tagging single nucleotide polymorphism (SNPs) and 

literature driven SNPs were selected for analysis. Tagging SNPs were required to be 

common (i.e., a minor allele frequency ≥0.05) in public databases. SNPs with call rates of 

<95% or Hardy-Weinberg p-values of <.001 were excluded. As shown in Supplementary 

Table 1, 83 SNPs from a total of 104 SNPs among 16 candidate genes passed all of the 

quality control filters and were included in the genetic association analyses. Localization of 

SNPs on the human genome was performed using the GRCh38 human reference assembly. 

Regional annotations were identified using the University of California Santa Cruz (UCSC) 

Human Genome Browser GRCh38/hg38 (http://genome.ucsc.edu/cgi-bin/hgTracks?

db=hg38). Potential regulatory involvement of SNPs was investigated using a number of 

Encode data tracks.(41–44) Linkage disequilibrium was calculated with Plink 

v1.90_b39(45) using 1000 Genomes “phase1_release_v2.201001123” variants called from 

all populations.(46)

Statistical Analyses for the Phenotypic Data

Data were analyzed using SPSS version 23 (47) and STATA Version 13.(48) The fatigue and 

energy data were analyzed separately. Descriptive statistics and frequency distributions were 

generated for sample characteristics. Independent sample t-tests, Mann-Whitney U tests, Chi 

square analyses, and Fisher’s Exact tests were used to evaluate for differences in 

demographic and clinical characteristics between the two latent classes. A p-value of <0.05 

was considered statistically significant.

Unconditional GMM with robust maximum likelihood estimation was carried out to identify 

latent classes with distinct fatigue and energy trajectories using Mplus Version 5.21. These 

methods are described in detail elsewhere.(28) In brief, a single growth curve that 

represented the “average” change trajectory was estimated for the whole sample. Then, the 

number of latent growth classes that best fit the data was identified using guidelines 

recommended in the literature.(49–51)
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Statistical Analyses for the Genetic Data

Allele and genotype frequencies were determined by gene counting. Hardy-Weinberg 

equilibrium was assessed by Chi-square or Fisher Exact tests. Measures of linkage 

disequilibrium ((LD), i.e., D′ and r2) were computed from the patients’ genotypes with 

Haploview 4.2. The LD-based haplotype block definition was based on D′ confidence 

interval.(52)

For SNPs that were members of the same haploblock, haplotype analyses were conducted in 

order to localize the association signal within each gene and to determine if haplotypes 

improved the strength of the association with the phenotype. Haplotypes were constructed 

using the program PHASE version 2.1.(53) To improve the stability of haplotype inference, 

the haplotype construction procedure was repeated 5 times using different seed numbers 

with each cycle. Only haplotypes that were inferred with probability estimates of ≥.85, 

across the five iterations, were retained for downstream analyses. Only inferred haplotypes 

that occurred with a frequency estimate of ≥15% were included in the association analyses, 

assuming a dosage model (i.e., analogous to the additive model).

Ancestry informative markers (AIMs) were used to minimize confounding due to population 

stratification.(54–56) Homogeneity in ancestry among patients was verified by principal 

component analysis,(57) using HelixTree (GoldenHelix, Bozeman, MT). Briefly, the number 

of principal components (PCs) was sought which distinguished the major racial/ethnic 

groups in the sample by visual inspection of scatter plots of orthogonal PCs (i.e., PC 1 

versus PC2, PC2 versus PC3). This procedure was repeated until no discernable clustering 

of patients by their self-reported race/ethnicity was possible (data not shown). The first three 

PCs were selected to adjust for potential confounding due to population substructure (i.e., 

race/ethnicity) by including them in all of the logistic regression models. One hundred and 

six AIMs were included in the analysis.

For association tests, three genetic models were assessed for each SNP: additive, dominant, 

and recessive. Barring trivial improvements (i.e., delta <10%), the genetic model that best fit 

the data, by maximizing the significance of the p-value was selected for each SNP. Logistic 

regression analysis, that controlled for significant covariates, as well as genomic estimates of 

and self-reported race/ethnicity, was used to evaluate the associations between genotype and 

fatigue and energy class membership. Only those genetic associations identified as 

significant from the bivariate analyses were evaluated in the multivariate analyses. A 

backwards stepwise approach was used to create a parsimonious model. Except for genomic 

estimates of and self-reported race/ethnicity, only predictors with a p-value of <.05 were 

retained in the final model. Genetic model fit and both unadjusted and covariate-adjusted 

odds ratios were estimated using STATA version 13.(48)

As was done in our previous studies,(9, 23, 25, 27, 58–69) based on the recommendations in 

the literature,(70, 71) as well as the implementation of rigorous quality controls for genomic 

data, the non-independence of SNPs/haplotypes in LD, and the exploratory nature of the 

analyses, adjustments were not made for multiple testing. In addition, significant SNPs 

identified in the bivariate analyses were evaluated further using logistic regression analyses 

that controlled for differences in phenotypic characteristics, potential confounding due to 
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population stratification, and variations in other SNPs/haplotypes within the same gene. 

Only those SNPs that remained significant were included in the final presentation of the 

results. Therefore, the significant independent associations reported are unlikely to be due 

solely to chance. Unadjusted (bivariate) associations are reported for all of the SNPs that 

passed quality control criteria in Supplementary Table 1, to allow for subsequent 

comparisons and meta-analyses.

RESULTS

GMM Analysis for Fatigue

Two distinct latent classes of fatigue trajectories were identified using GMM (Figure 1A). A 

two class model was selected because its Bayesian Information Criterion (BIC) was smaller 

than the one-class and three-class models (Table 1). As shown in Table 2, the majority of the 

patients were classified into the Higher Fatigue class (n = 244, 61.5%). These patients had 

estimated fatigue scores that were high prior to surgery (3.90) and remained high over the 6 

months of the study. Patients in the Lower Fatigue class (n = 153, 38.5%) had estimated 

fatigue scores that were lower at enrollment (1.60) and that gradually decreased over time.

Differences in Demographic and Clinical Characteristics Between the Fatigue Classes

As summarized in Table 3, patients in the Higher Fatigue class were significantly younger, 

as well as had more education, a lower KPS score, a higher SCQ score, and a higher number 

of lymph nodes removed. In addition, a higher percentage of patients in the Higher Fatigue 

class had received neoadjuvant CTX prior to surgery and adjuvant CTX during the first 6 

months following breast cancer surgery.

Candidate Gene Analyses for Fatigue

As summarized in Supplementary Table 1, no associations with fatigue latent class 

membership were observed for SNPs in CXCL8, INFGR1, IL1R2, IL2, IL4, IL6, IL13, 
1L17A, NFKB1, NFKB2, or members of the TNF family (i.e. LTA, TNF). However, 

genotype frequencies were significantly different between the two latent classes for 8 SNPs 

spanning three genes: IFNG rs2069718, IL1B rs1143629, IL1B rs1143627, IL1B rs16944, 

IL1B rs1143623, IL10 rs3024496, IL10 rs1878672, and IL10 rs3024491.

Regression Analyses for IFNG, IL1B, and IL10 Genotypes and Lower versus Higher Fatigue 
classes

In order to better estimate the magnitude (i.e., odds ratio, OR) and precision (95% CI) of 

genotype on the odds of belonging to the Higher as compared to the Lower Fatigue class, 

multivariate logistic regression models were fit. In these regression analyses, that included 

genomic estimates of and self-reported race/ethnicity, the only phenotypic characteristics 

that remained significant in the multivariate model were age (in 5 year increments), KPS 

score (in 10 unit increments), SCQ score, and receipt of CTX in the 6 months following 

surgery.

Two SNPs spanning two different genes remained significant in the multivariate logistic 

regression analyses (Table 4, Figures 2A and 2B). For IL1B rs16944 and IL10 rs3024496, a 
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recessive model fit the data best (p=.002). In the regression analysis for IL1B rs16944, 

carrying two doses of the rare A allele (i.e., GG+GA versus AA) was associated with a 2.98-

fold higher odds of belonging to the Higher Fatigue class. In the regression analysis for IL10 
rs3024496, carrying two doses of the rare C allele (i.e., TT+TC versus CC) was associated 

with a 66% decrease in the odds of belonging to the Higher Fatigue Class.

GMM Analysis for Energy

Two distinct latent classes of energy trajectories were identified using GMM (Figure 1B). A 

two class model was selected because its BIC was smaller than the one-class and three-class 

models (Table 1). As shown in Table 2, the majority of the patients were classified into the 

Lower Energy class (n = 270, 68.0%). These patients had estimated energy scores that were 

low prior to surgery (4.35) and remained low over the 6 months of the study. Patients in the 

Higher Energy class (n = 127, 32.0%) had estimated energy scores that were higher at 

enrollment (5.82) and that gradually increased over time.

Differences in Demographic and Clinical Characteristics Between the Energy Classes

As summarized in Table 5, patients in the Lower Energy class had a lower KPS score and a 

higher SCQ score. In addition, the percentage of patients based on their stage of disease 

differed between the two energy classes. However, post hoc contrasts failed to identify the 

subgroups that differed between the classes.

Candidate Gene Analyses for Energy

As summarized in Supplementary Table 1, no associations with energy class membership 

were found for SNPs in any gene except IL1R1. The genotype frequency was significantly 

different between the two latent classes for 1 SNP: IL1R1 rs2110726.

Regression Analyses for IL1R1 Genotype and Higher versus Lower Energy Classes

In order to better estimate the magnitude (i.e., odds ratio, OR) and precision (95% 

confidence interval, CI) of genotype on the odds of belonging to the Higher as compared to 

the Lower Energy class, a multivariate logistic regression model was fit. In this regression 

analysis that included genomic estimates of and self-reported race/ethnicity, the only 

phenotypic characteristics that remained significant in the multivariate model were KPS 

score (in 10 unit increments) and receipt of CTX in the 6 months following surgery.

In the multivariate logistic regression analysis, the association between IL1R1 rs2110726 

and the energy phenotype remained significant (Table 6, Figures 3). For this SNP, a 

dominant model fit the data best (p=.021). In the regression analysis, carrying one or two 

doses of the rare T allele (i.e., CC versus CT+TT) was associated with a 50% decrease in the 

odds of belonging to the Lower Energy class.

Overlap Between the Fatigue and Energy Latent Classes

An analysis of membership in the fatigue and energy classes in this study revealed that of 

the 397 patients evaluated: 16.6% (n=66) were in both the Lower Fatigue and Lower Energy 

classes; 21.9% (n=87) were in both the Lower Fatigue and Higher Energy classes; 10.1% 
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(n=40) were in both the Higher Fatigue and Higher Energy classes; and 51.4% (n=204) were 

in both the Higher Fatigue and Lower Energy classes.

DISCUSSION

This study is the first to use GMM to identify subgroups of breast cancer patients with 

distinct trajectories of fatigue and energy, as well as evaluate for associations between a 

number of cytokine genes and these distinct phenotypes. Since less is known about 

decrements in energy following breast cancer surgery, this section begins with a discussion 

of the fatigue findings. In the section that discusses the energy findings, similarities and 

differences between the two symptoms in phenotypic characteristics and molecular markers 

are described.

Fatigue Findings

In the current study, 62% of the patients reported fatigue scores at the clinically meaningful 

cutoff score that occurred prior to surgery and persisted for six months following surgery. 

This finding contrasts with the previous study by Bodtcher and colleagues who reported that 

only 21% of their sample reported high levels of fatigue prior to surgery, and that their 

fatigue decreased at three months and then returned to pretreatment levels at 8 months after 

surgery.(2) While the demographic and clinical characteristics of the two samples were 

relatively similar, differences in the instruments used to assess fatigue as well as in the 

statistical approaches used to create the latent classes may explain the difference in 

percentages of patients in the higher fatigue class.

In terms of demographic characteristics, patients who were younger and had more years of 

education were more likely to be in the higher fatigue class. While our findings are 

consistent with those of Bodtcher et al.(2) and Montgomery et al.,(3) they contrast with 

other studies that found no association(4–6) between age and severity of fatigue in women 

following breast cancer surgery. In the study by Montgomery et al.,(3) mediational analyses 

demonstrated that preoperative expectations of postoperative levels of fatigue accounted in 

part for the effects of age on the severity of postoperative fatigue. The authors commented 

that their findings could be explained by Social Learning Theory which suggests that an 

individual’s previous experiences with fatigue might shape one’s expectancies for the 

symptom.(72, 73) They hypothesized that older patients may have had previous experiences 

with surgery and/or fatigue which lowered their expectations for fatigue. An equally 

important consideration in all of the studies cited above is that the mean age of the patients 

ranged from late 40s to late 50s. Therefore, additional studies are needed that evaluate the 

association between age and changes in fatigue severity following breast cancer surgery in 

older age groups.

While two studies found no association between education and fatigue severity in breast 

cancer survivors and women who underwent adjuvant treatment,(74, 75) our findings are 

consistent with those of Huang et al.(6) who evaluated fatigue trajectories in women who 

were followed for 12 months after breast cancer surgery. Given these inconsistent findings 

and the relatively high levels of education in the current and previous studies,(74, 75) 

additional research is warranted to determine the specific factors associated with educational 
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attainment (e.g., different levels of social responsibility, different employment opportunities) 

that may contribute to variations in fatigue severity.

Across a series of studies, the evidence is clear that a higher number of comorbidities, 

poorer performance status, and higher fatigue severity prior to the initiation of cancer 

treatment are associated with worse fatigue trajectories or membership in the higher fatigue 

class (for review see Bower and Ganz (1)). While stage of disease and type of surgery were 

not associated with membership in the Higher Fatigue class, in our study, patients who had a 

higher number of lymph nodes removed as well as those who received neoadjuvant or 

adjuvant CTX were more likely to be in the Higher Fatigue class. An examination of the 

clinical characteristics that predicted higher fatigue severity in the four studies that evaluated 

patients following breast cancer surgery (2–5) reveal a rather disparate list of risk factors. 

These inconsistent findings can be partially explained by the number and types of 

demographic, clinical, symptom, and psychological characteristics that were placed in the 

various types of multivariate analyses. Future meta-analyses and larger studies with a more 

comprehensive list of potential predictors would provide insights into the characteristics that 

clinicians need to assess to identify breast cancer patients who are at higher risk for more 

severe fatigue.

IL1B is a pro-inflammatory cytokine that is synthesized in a variety of cells including 

circulating monocytes and tissue macrophages. In our study, patients who were homozygous 

for the rare A allele in IL1B rs16944 were more likely to be classified in the higher fatigue 

class. This SNP lies upstream of the IL1B gene. It lies in a region of histone modification 

that is suggestive of regulatory activity (i.e., H3K27Ac) and to a lesser extent in a region 

associated with promoters (i.e., H3K4Me1). However, based on available data in ENCODE, 

since this region does not contain a DNase Hypersensitivity Cluster or evidence of a 

transcription binding site, the location of any nearby regulatory DNA elements remains 

inconclusive. This SNP has been evaluated in a number of studies of fatigue in oncology 

patients. In contrast to our findings, in a study of 33 fatigue and 14 non-fatigued breast 

cancer survivors,(76) patients who were heterozygous or homozygous for the rare T allele 

(A allele in our study) were more likely to be in the non-fatigued group that was assessed 

using the Multidimensional Fatigue Symptom Inventory.(77, 78) In other studies of newly 

diagnosed breast cancer patients who recently completed treatment,(22) breast cancer 

survivors,(79) and men with prostate cancer who underwent RT,(80) no associations were 

found with IL1B rs16944 and the fatigue phenotype. These inconsistent findings may be 

related to the instruments used to assess fatigue, the methods used to create the “fatigue 

phenotype” (e.g., dichotomization using a cutpoint versus latent class analysis), and/or the 

timing of the assessment of fatigue in relationship to the patient’s disease trajectory (e.g., 

active treatment versus survivorship).

IL10 is an anti-inflammatory cytokine that regulates the growth and differentiation of B 

cells, natural killer cells, and cytotoxic, helper, and regulatory T cells.(81) In our study, 

patients who were homozygous for the rare C allele in IL10 rs3024496 were less likely to be 

in the higher fatigue class. This SNP is in a 3′ untranslated (UTR) region of the fifth exon of 

IL10. It is upstream from four TargetScan miRNA that are predicted to be putative miRNA 

regulatory sites and may be involved in miRNA regulatory actions. However, based on 
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ENCODE data, little support exists for transcription factor binding in this region. Consistent 

with the findings from the current study, this polymorphism was associated with increased 

production of IL10 in cell culture.(82) In addition, in a recent study,(83) the IL10 pathway 

was found to be differentially expressed between patients with breast cancer who reported 

low as compared to high levels of evening fatigue during CTX.

Energy Findings

In the current study, 68.0% of the patients reported energy scores that were below the cutoff 

score for clinically meaningful decrements in energy levels (i.e., ≤4.8). Of note, these 

decrements in energy levels persisted in the Lower Energy class over the six months of the 

study. Comparisons of these findings with our previous study of patients and family 

caregivers(9) is difficult because diurnal variations in energy levels were not evaluated in the 

current study.

Similar to the fatigue findings, in the bivariate analyses, a lower KPS score, a higher SCQ 

score, and receipt of CTX during the six months after breast cancer surgery were associated 

with membership in the Lower Energy class. In addition, while stage of disease was 

associated with membership in the Lower Energy class (but not fatigue class membership), 

due to the relatively small sample sizes for the highest stage of disease, post hoc contrasts 

failed to identify subgroup differences. Again, while direct comparisons with our previous 

study are not possible,(9) a lower KPS score was associated with membership in the Low 

Morning and Moderate Evening energy classes. In both studies, KPS scores were 

approximately 90 which suggest that even with high functional status scores, some patients 

can experience significant decrements in energy levels.

Two additional characteristics warrant consideration. First, for both fatigue and energy, the 

receipt of adjuvant CTX was associated with membership in the class with the poorer 

outcomes. While higher levels of fatigue are associated with the receipt of CTX,(84–86) this 

study is the first to document an association between receipt of adjuvant CTX and 

decrements in energy levels. Second, for both symptoms, clinically meaningful levels of 

fatigue and decrements in energy levels, prior to surgery, were associated with membership 

in the Higher Fatigue and Lower Energy classes, respectively. Taken together these findings 

suggest that clinicians need to assess for both fatigue severity as well as decrements in 

energy levels prior to and following breast cancer surgery.

Only one SNP in the IL1R1 gene was associated with membership in the Lower Energy 

class. In this study, patients who were heterozygous or homozygous for the rare T allele in 

rs2110726 were less likely to be in the Lower Energy class. This SNP is located in the 3′ 
UTR of the IL1R1 gene. It is 35 bases upstream from a polymorphic CpG methylation site 

(i.e., rs200426703). While population data are not available for rs200426703 directly, 

rs2110726 is in high LD (R2 = 0.0232341, D′ = 1.0) with a SNP (i.e., rs3024496) that is 30 

bases downstream from the methylated site (i.e., 65 bases downstream from rs2110726 and 

flanking rs200426703; see Supplementary Figure 1). Methylated sites may be involved in 

gene regulation(87) and methylation may be allelic specific.(88) The strong LD observed 

between the SNPs flanking this region including the methylated polymorphic site suggests 

that rs2110726 may be a proxy for the genotype at the methylated site (i.e., rs200426703). 
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Therefore, polymorphisms in rs2110726 may be related to any gene regulation activity that 

may occur at the polymorphic methylated site. In a previous study with the same sample,

(25) patients who were heterozygous or homozygous for the rare T allele had a lower odds 

of reporting preoperative breast pain. Taken together, these findings are consistent with 

studies of IL1 function in mice, in which removal of IL1R function or blockade of IL1A led 

to a decrease in inflammation and pain behaviors.(89) Additional functional studies are 

needed to determine if the minor allele of rs2110726 is associated with a decrease in IL1R1 

function and therefore a decrease in the pro-inflammatory effects of IL1A.

Limitations

Several study limitations need to be acknowledged. While a growing body of evidence 

suggests that diurnal variations in both fatigue and energy warrant consideration in future 

studies,(9, 36, 38, 85, 86, 90, 91) in the current study, patients were asked to evaluate their 

levels of fatigue and energy at the time they completed the questionnaire. In addition, since 

most patients had early stage breast cancer, differences in fatigue and energy class 

memberships associated with stage of disease could not be evaluated. Third, no direct 

measurements of systemic levels of inflammatory markers were obtained to provide 

additional information on the underlying mechanisms for fatigue severity and decrements in 

energy. Finally, the genetic associations identified in this study warrant confirmation in 

future studies and functional studies are needed to confirm the impact of these 

polymorphisms on inflammatory mediators.

Conclusions

Findings from this study suggest that within each latent class, the severity of fatigue and 

decrements in energy were relatively stable from prior to through six months following 

breast cancer surgery. In addition, distinct phenotypic characteristics and genetic 

polymorphisms were associated with membership in the higher fatigue and lower energy 

classes. While these findings warrant confirmation in future studies, the phenotypic and 

genetic findings from this study support the growing body of literature that suggests that 

fatigue and energy are distinct but related symptoms.(8–11) Additional research is warranted 

to evaluate for differences in the underlying mechanisms for both symptoms. Future studies 

can focus on an evaluation of additional immune pathways as well as molecular markers of 

metabolic and neuroendocrine function.(17) A better understanding of the molecular 

mechanisms that underlie these two symptoms could lead to the earlier identification of high 

risk patients and the development and testing of novel mechanistically-based interventions.
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Figure 1. 
Observed and estimated fatigue (Figure 1A) and energy (Figure 1B) trajectories for patients 

in each of the latent classes, as well as the mean fatigue and energy scores for the total 

sample.
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Figure 2. 
A – Differences between the fatigue latent classes in the percentages of patients who were 

homozygous or heterozygous for the common allele (GG+GA) or homozygous for the rare 

allele (AA) for rs16944 in interleukin 1 beta (IL1B). Values are plotted as unadjusted 

proportions with corresponding p-value.

B – Differences between the fatigue latent classes in the percentages of patients who were 

homozygous or heterozygous for the common allele (TT+TC) or homozygous for the rare 
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allele (CC) for rs3024496 in interleukin 10 (IL10). Values are plotted as unadjusted 

proportions with corresponding p-value.
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Figure 3. 
Differences between the energy latent classes in the percentages of patients who were 

homozygous for the common allele (CC) or heterozygous or homozygous for the rare allele 

(CT+TT) for rss110726 in interleukin 1 receptor 1 (IL1R1). Values are plotted as unadjusted 

proportions with corresponding p-value.
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Table 2

Parameter Estimates for the Lee Fatigue Scale and Lee Energy Scale GMM Latent Classes

Fatigue Lower Fatigue Class
(na = 153)

Higher Fatigue Class
(na = 244)

Parameter Estimates Means (SE)

Intercept 1.60*** (0.36) 3.90*** (0.22)

Linear slope −0.09 (0.12) 0.13 (0.141

Quadratic slope 0.00 (0.02) −0.02 (0.02)

Variances

Intercept 0.26 (0.20) 2.53*** (0.36)

Linear slope 0b 0.09*** (0.02)

Quadratic slope 0b 0b

Energy Higher Energy Class

(na = 127)

Lower Energy Class

(na = 270)

Parameter Estimates Means (SE)

Intercept 5.82*** (0.76) 4.35*** (0.16)

Linear slope 0.10 (0.37) −0.11 (0.14)

Quadratic slope 0.03 (0.06) 0.01 (0.04)

Variances

Intercept 1.72 (1.60) 1.07*** (0.21)

Linear slope 0b 0b

Quadratic slope 0b 0b

***
p < .001

a
Predicted class sizes based on their most likely class membership

b
Random intercepts model only. Random slopes were fixed at zero to assist in estimation

Abbreviations: GMM = growth mixture model, SE = standard error
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Table 3

Differences in Demographic and Clinical Characteristics Between the Lower Fatigue (n= 153) and Higher 

Fatigue (n= 244) Classes

Characteristic Lower Fatigue Class
n=153

(38.4%)
Mean (SD)

Higher Fatigue Class
n=244

(61.3%)
Mean (SD)

Statistic and p-value

Age (years) 57.8 (11.9) 53.1 (11.0) t=4.09, p<.0001

Education (years) 15.3 (2.5) 15.9 (2.8) t=−2.02, p=.04

Karnofsky Performance Status score 96.6 (7.0) 91.1 (11.4) t=5.86, p<.0001

Self-administered Comorbidity Questionnaire score 3.8 (2.6) 4.6 (3.0) t=−2.64, p=.009

Fatigue severity score at enrollment 1.6 (1.6) 4.1 (2.2) t=−12.55, p<.0001

Number of breast biopsies in past year 1.5 (0.8) 1.5 (0.8) U, p=.47

Number of positive lymph nodes 0.8 (1.9) 1.0 (2.4) t=−0.88, p=.38

Number of lymph nodes removed 4.8 (5.1) 6.4 (7.5) t=−2.43, p=.016

n (%) n (%)

Ethnicity
 White
 Black
 Asian/Pacific Islander
 Hispanic/Mixed ethnic background/Other

100 (65.8)
19 (12.5)
17 (11.2)
16 (10.5)

155 (63.8)
21 (8.6)
32 (13.2)
35 (14.4)

Χ2=2.82, p=.42

Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92

Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68

Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40

Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91

Stage of disease
 0
 I
 IIA and IIB
 IIIA, IIIB, IIIC, and IV

29 (19.0)
66 (43.1)
48 (31.4)
10 (6.5)

44 (18.0)
85 (34.8)
92 (37.7)
23 (9.4)

U, p=.13

Surgical treatment
 Breast conservation
 Mastectomy

123 (80.4)
30 (19.6)

195 (79.9)
49 (20.1) FE, p=1.00

Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34

Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14

Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=1.00

Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014

Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92

Chemotherapy during the first 6 months (% yes) 36 (23.5) 97 (39.8) FE, p=.001

Abbreviations: FE = Fisher Exact test, SD = standard deviation, U = Mann Whitney U test
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Table 5

Differences in Demographic and Clinical Characteristics Between the Higher Energy (n=127) and Lower 

Energy (n=270) Classes

Characteristic Higher Energy Class
n=127

(31.9%)
Mean (SD)

Lower Energy Class
n=270

(67.8%)
Mean (SD)

Statistic and p-value

Age (years) 56.5 (10.8) 54.2 (11.8) t=1.88, p=.061

Education (years) 15.7 (2.2) 15.7 (2.8) t=0.01, p=.994

Karnofsky Performance Status score 95.4 (9.4) 92.2 (10.6) t=3.06, p=.002

Self-administered Comorbidity Questionnaire score 3.6 (2.3) 4.6 (3.0) t=−3.47, p=.001

Mean energy score at enrollment 6.1 (2.7) 4.4 (2.2) t=−6.26, p<.0001

Number of breast biopsies in past year 1.5 (0.8) 1.5 (0.8) U, p=.604

Number of positive lymph nodes 0.8 (2.0) 1.0 (2.3) t=0.76, p=.450

Number of lymph nodes removed 5.0 (6.3) 6.1 (6.9) t=−1.51, p=.132

n (%) n (%)

Ethnicity
 White
 Black
 Asian/Pacific Islander
 Hispanic/Mixed ethnic background/Other

86 (68.3)
10 (7.9)
16 (12.7)
14 (11.1)

169 (62.8)
30 (11.2)
33 (12.3)
37 (13.8)

Χ2=1.75, p=.627

Married/partnered (% yes) 50 (39.7) 114 (42.7) FE, p=.5 86

Work for pay (% yes) 66 (52.4) 123 (45.9) FE, p=.236

Lives alone (% yes) 29 (23.0) 65 (24.4) FE, p=.801

Gone through menopause (% yes) 84 (68.3) 163 (62.0) FE, p=.2 56

Stage of disease
 0
 I
 IIA and IIB
 IIIA, IIIB, IIIC, and IV

29 (22.8)
51 (40.2)
39 (30.7)
8 (6.3)

44 (16.3)
100 (37.0)
101 (37.4)
25 (9.3)

U, p=.040a

Surgical treatment
 Breast conservation
 Mastectomy

100 (78.7)
27 (21.3)

218 (80.7)
52 (19.3) FE, p=.686

Sentinel node biopsy (% yes) 103 (81.1) 224 (83.0) FE, p=.673

Axillary lymph node dissection (% yes) 40 (31.7) 108 (40.0) FE, p= .12 0

Breast reconstruction at the time of surgery (% yes) 28 (22.2) 58 (21.5) FE, p=.896

Neoadjuvant chemotherapy (% yes) 22 (17.5) 57 (21.1) FE, p=.421

Radiation therapy during the first 6 months (% yes) 75 (59.1) 149 (55.2) FE, p=.515

Chemotherapy during the first 6 months (% yes) 34 (26.8) 99 (36.7) FE, p=.054

Abbreviations: FE = Fisher Exact test, SD = standard deviation, U=Mann Whitney U test

a
Post-hoc contrasts of the difference in stage of disease between the Higher Energy and Lower Energy classes failed to identify the sub-groups who 

differed between the classes (p<.0083).
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