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Predicting Expressive Language From
Early Vocalizations in Young Children

With Autism Spectrum Disorder:
Which Vocal Measure Is Best?
Jena McDaniel,a Paul Yoder,b Annette Estes,c and Sally J. Rogersd
Purpose: This study was designed to test the incremental
validity of more expensive vocal development variables
relative to less expensive variables for predicting later
expressive language in children with autism spectrum disorder
(ASD). We devote particular attention to the added value of
coding the quality of vocalizations over the quantity of
vocalizations because coding quality adds expense to the
coding process. We are also interested in the added value
of more costly human-coded vocal variables relative to those
generated through automated analyses.
Method: Eighty-seven children with ASD aged 13–30 months
at study initiation participated. For quantity of vocalizations,
we derived one variable from human coding of brief
communication samples and one from an automated process
for daylong naturalistic audio samples. For quality of
vocalizations, we derived four human-coded variables and
one automated variable. A composite expressive language
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measure was derived at study entry, and 6 and 12 months
later. The 12 months–centered intercept of a simple linear
growth trajectory was used to quantify later expressive
language.
Results: When statistically controlling for human-coded or
automated quantity of vocalization variables, human-coded
quality of vocalization variables exhibited incremental validity
for predicting later expressive language skills. Human-coded
vocal variables also predicted later expressive language skills
when controlling for the analogous automated vocal variables.
Conclusion: In sum, these findings support devoting
resources to human coding of the quality of vocalizations
from communication samples to predict later expressive
language skills in young children with ASD despite the
greater costs of deriving these variables.
Supplemental Material: https://doi.org/10.23641/asha.
12276458
Although most individuals with autism spectrum
disorder (ASD) exhibit difficulties with language,
the nature and severity of these difficulties vary

widely (e.g., Kjelgaard & Tager-Flusberg, 2001; Lord et al.,
2004; Tager-Flusberg & Joseph, 2003; Tager-Flusberg et al.,
2005; Thurm et al., 2007). Approximately 30% of individ-
uals with ASD use few or no spoken words despite years
of spoken language intervention (Anderson et al., 2007;
Tager-Flusberg & Kasari, 2013). In contrast, other individuals
with ASD are verbally fluent with large vocabularies and
complex syntax (Kjelgaard & Tager-Flusberg, 2001; Tager-
Flusberg & Joseph, 2003). For children with ASD who
are not yet talking, strong early predictors of language
development would be useful for planning intervention.
Measures of vocalizations, which precede spoken words,
are likely candidates for such predictors. Although repli-
cated findings show a strong correlation between the quan-
tity and/or quality of vocalizations (i.e., voiced sounds
produced by the vocal folds on exhalation) and expressive
language in children with ASD (see McDaniel et al., 2018,
for a meta-analytic review), which vocal variables are
strongest predictors is unknown. Identifying vocal variables
that are especially predictive of later expressive language in
initially preverbal or low verbal children with ASD may
help identify how or for whom language intervention works
Disclosure: Sally J. Rogers has potential conflicts of interest related to publications
related to interventions used in this study for which she receives royalties. However,
all royalties from those publications were donated to autism research. Jena
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or explain associations between caregiver responses to child
vocalizations and expressive language. Optimal vocal mea-
sures balance cost and utility in a parsimonious manner.

Differences in Cost Based on Vocalization
Variable Type

Vocal variables can be very simple or quite complex.
Quantity measures are relatively simple. They count the
number of vocalizations regardless of the vocalizations’
contents or use. Measures of the quality of vocalizations
are relatively more complex because they consider features
that influence message saliency and clarity. These features
include the communicative quality (e.g., higher communi-
cative quality shown by directing a vocalization toward
another person with eye contact than by not directing such
vocalization) and phonological quality of vocalizations (e.g.,
higher phonological quality shown by including conso-
nants or canonical syllables in a vocalization than by omitting
them). Quality variables require more time to train observers
and for coders to complete the coding tasks. Thus, quality
variables are more expensive than quantity variables.

Vocal variables can be derived from human coding
of brief communication samples or automated (i.e., computer-
generated) analyses of daylong vocal samples. Human-
coded vocal variables require substantial time to train
observers, code video-recorded communication samples,
check for observer drift, and estimate interobserver reliabil-
ity. Automated analyses of daylong vocal samples are less
costly than human coding in terms of personnel time. The
automated vocal analysis process includes collecting and
processing the audio recordings using specialized tech-
nology (see Daylong Naturalistic Audio Samples for
Automated Vocal Variables section for details), which
requires limited training to operate. No person needs to
listen to any of the audio samples, and an entire partici-
pant sample’s data can be processed in only a few hours.
In contrast, it can take a few hours to hand code vocal
variables from only a couple of communication samples.
Automated analysis costs are primarily financial (e.g., equip-
ment, recording devices, specialized clothing to hold re-
cording devices, and software licenses). It should be noted
that the communicative quality of vocalizations cannot be
drawn from automated means because the available tech-
nology cannot infer communicative intent or directedness
of vocalizations. Even though automated analyses cannot
provide information on communicative quality, they can
provide information on the quantity and phonological
quality of children’s vocalizations.

Considering Variable Cost and Utility
to Maximize Resources

Given the variation in vocal variable types and analysis
methods, investigators can maximize resources for analyz-
ing vocalizations by using variables that are easy to code
(e.g., quantity) or automated variables from daylong, natural-
istic vocal samples. However, if the quality of vocalizations
1510 Journal of Speech, Language, and Hearing Research • Vol. 63 •
predicts expressive language better than quantity, then
using extra resources to derive measures of quality of vo-
calizations might be justified. Similarly, if human coding
increases the extent to which we can predict expressive
language compared with automated vocal variables, then
human-coded communication samples might be justified.
One way to assess added value is to examine whether a
more costly vocal variable predicts later expressive lan-
guage after controlling for a less costly vocal variable (i.e.,
incremental validity). We take this approach in this study
using variables with theoretical and empirical support.

Theoretical and Empirical Support for Vocal
Development Predicting Expressive Language

Current evidence supports the continuity of prelin-
guistic vocalizations (e.g., babbling) and spoken words.
This supportive evidence includes individual children pro-
ducing the same phonemes in prelinguistic vocalizations as
early words (McCune & Vihman, 2001; Oller, 2000; Vihman,
2017; Vihman et al., 1985), language-specific acoustic
characteristics of vocalizations (Oller, 2000; Rvachew et al.,
2006), and the quantity and quality of vocalizations (e.g.,
inclusion of consonants and canonical syllables) predicting
expressive language in children with typical development
(e.g., Stoel-Gammon, 1991; Watt et al., 2006).

The continuity between vocalizations and spoken
words aligns with at least three theories of language devel-
opment that emphasize bidirectional child–caregiver in-
teractions in facilitating vocal and language development,
including the social feedback theory (Goldstein et al., 2003;
Goldstein & Schwade, 2008), social feedback loop theory
(Warlaumont et al., 2014), and transactional theory of
spoken language development (Camarata & Yoder, 2002;
McLean & Snyder-McLean, 1978; Sameroff & Chandler,
1975; Woynaroski et al., 2014). Child-driven theories of spo-
ken language development also support the continuity be-
tween vocalizations and expressive language based on shared
articulators (e.g., tongue and lips) and motor movements for
producing prelinguistic vocalizations and words (Fry, 1966;
Iverson, 2010; Stoel-Gammon, 2011; Vihman, 1992, 1996).
For example, producing “Bah” in a vocalization without lex-
ical meaning and producing “Bah” as an approximation of
“ball” use the same motor movements of the articulators.

Empirically, concurrent and longitudinal correlations
have been reported between the quantity and quality of
vocalizations and expressive language in children with ASD.
The quantity of vocalizations has correlated with expres-
sive language impairment concurrently and predictively in
children with ASD for human-coded variables (Plumb &
Wetherby, 2013) and automated analyses (Dykstra et al.,
2013). For example, the quantity of total vocalizations
correlated at the same time with the Communication and
Symbolic Behavior Scales (CSBS) Speech Composite score,
a measure of spoken expressive language and speechlike
vocalizations (r = .47; Plumb & Wetherby, 2013) for 18-
to 24-month-old children with ASD. The correlation be-
tween the quantity of vocalizations during the second year of
1509–1520 • May 2020



life and verbal developmental quotient at age 3 years was
also significant for children with ASD (r = .39; Plumb &
Wetherby, 2013). Using automated analyses, the quantity
of child speech–related vocalizations correlated (r = .33)
with language skills for 3- to 5-year-old children with ASD
(Dykstra et al., 2013). In contrast, the quantity of vocaliza-
tions per hour did not correlate significantly with expres-
sive language concurrently for children with ASD with a
mean chronological age of 76.92 months (SD = 31.78 months;
Rankine, 2016).

Communicative quality of vocalizations has pre-
dicted expressive language in children with ASD (Plumb
& Wetherby, 2013) as well, but again, not universally
(Swineford, 2011). Plumb and Wetherby (2013) reported
that communicative vocalizations in the second year of life
predicted expressive language skills at age 3 years above
and beyond noncommunicative vocalizations. In contrast,
Swineford (2011) reported nonsignificant correlations be-
tween communication acts with vocalizations within home
observations and the CSBS Words subscale (r = .03) or
the CSBS Speech Composite (r = .13) concurrently for chil-
dren suspected of having ASD (mean chronological age =
19.51 months, SD = 2.34 months).

Phonological quality has correlated with current and
later expressive language skills of children with ASD
when using human-coded (Book, 2009; McCoy, 2013;
McDaniel et al., 2019; Talbott, 2014; Wetherby et al., 2007;
Woynaroski et al., 2017; Yoder et al., 2015) and automated
vocal variables (e.g., use of consonants or canonical sylla-
bles; Woynaroski et al., 2017). For human-coded phono-
logical quality, the rate of canonical babbling correlated
with concurrent expressive language (r = .65) in children
with ASD (mean chronological age = 44.67 months, SD =
8.35 months; Sheinkopf et al., 2000). Additionally, Yoder
et al. (2015) found that the inventory of consonants used in
communication acts predicted expressive language growth
in initially preverbal children with ASD over and above 10
other putative predictors. Similarly, Wetherby et al. (2007)
identified that inventory of consonants used in communica-
tion acts at ages 18–24 months was one of the “best predic-
tors of verbal skills at 3 years” (p. 971), compared with
numerous other possible predictors for children with ASD.
For automated phonological quality variables, the average
count per utterance–consonants + vowels (ACPU-C+V)
predicted expressive language 4 months later (r = .55;
Woynaroski et al., 2017).

It is unclear whether the associations between vocal
quantity and expressive language are due to the intercorre-
lation of vocal quantity and quality in children with ASD.
One way to address these issues is to examine the incre-
mental validity of each in predicting expressive language in
children with ASD.
Research Questions
Prior investigations have not compared the relative

predictive utility of more expensive vocal variables (e.g.,
human-coded quality variables) to variables that are less
costly (e.g., automated and quantity variables). We exam-
ine two research questions of the incremental validity of
vocal variables in young children with ASD.

1. After statistically controlling for quantity of vocali-
zations, does quality of vocalizations account
for unique variance in later expressive language
skills?

2. After statistically controlling for an automated mea-
sure of the same vocalization aspect (i.e., quantity or
phonological quality), do human-coded variables
account for unique variance in later expressive lan-
guage skills?
Method
Caregivers provided written informed consent prior

to participants beginning the study. Institutional review
boards at the University of California at Davis, the Univer-
sity of Washington, and Vanderbilt University approved
all study procedures.

Participants
Eighty-seven children (21 girls, 66 boys) from a

multisite randomized controlled trial participated in this
study (Rogers et al., 2013). Although the participants were
randomly assigned to two treatment styles and treatment
intensities, the results of the current analyses were not in-
fluenced by group membership. That is, Predictor × Group
interactions were nonsignificant. Therefore, treatment
styles and intensities are not discussed further.

For inclusion, participants had to be 13–30 months
of age at study entry, meet the criteria for ASD on multiple
measures (i.e., Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition [American Psychiatric Association,
2013], Autism Diagnostic Interview–Revised [Lord et al.,
1994], and Autism Diagnostic Observation Schedule for
Toddlers [Luyster et al., 2009]), achieve an overall develop-
mental quotient of at least 35 on the Mullen Scales of Early
Learning (MSEL; mental age/chronological age × 100;
Mullen, 1995), live in a home that uses spoken English at
least 60% of the time per caregiver report, walk without pri-
mary motor impairments affecting hand use, and have hear-
ing and visual acuity within normal limits. Participants were
not excluded based on the presence of genetic disorders or
other health conditions. Participants had a mean chrono-
logical age of 23.42 months at study entry (SD = 3.98) and
a mean developmental quotient of 58.83 (SD = 17.96).
On the MSEL, participants presented with a mean age
equivalent of 10.11 months (SD = 7.22) on the Receptive
Language subscale and 11.97 months (SD = 4.71) on the
Expressive Language subscale.

Forty-eight participants were reported to be White,
19 to be more than one race, nine to be Asian, seven to be
Black or African American, one to be American Indian
or Alaskan native, one to be Native Hawaiian or other
Pacific Islander, and two as unknown. Seventeen participants
McDaniel et al.: Measuring Early Vocalizations 1511



were reported to be Hispanic/Latino, 64 to be non-Hispanic,
and six as unknown. One mother had some high school edu-
cation, six had a high school diploma, 25 had some college
education, 24 had a college degree, six had some graduate
school education, 22 had a graduate degree, and one reported
“other.”

Procedure
Table 1 displays the study’s constructs, procedures,

and variables. Data are used from procedures administered
across three time periods that spanned 12 months (Time 1 =
study initiation; Time 2 = 6 months poststudy initiation;
Time 3 = 12 months poststudy initiation).

Communication Samples for Human
Coding of Vocal Variables

Each human-coded vocal variable was derived from
a 15-min Communication Sample Procedure (CSP) and
three 6-min Early Communication Indicator (ECI) sessions
(Greenwood et al., 2006; Luze et al., 2001) at Time 1. Be-
cause the ECI is brief, we averaged scores from the first
3 months to increase stability of variable scores (Yoder et al.,
2018). Averaging across the sessions permitted inclusion of
participants who were missing one (n = 14) or two ECI
samples (n = 3) for Months 1–3. The use of three ECI
samples per time point provided a total of 18 min per time
point per participant, similar to the 15-min CSP sample,
and increased the stability of the vocal variables. Both com-
munication sampling contexts are play-based interactions
in which the child engages with an examiner using a stan-
dard toy set. The examiner uses responsive interaction style
principles when engaging with the child to support engage-
ment (e.g., follow the child’s lead and join in and play at
the child’s demonstrated level of play) and communication
(e.g., talking about topics related to the child’s focus of at-
tention, monitoring examiner utterance length and com-
plexity, and avoiding directives).

Daylong Naturalistic Audio Samples
for Automated Vocal Variables

Participants’ families collected one daylong audio
recording at study initiation with the LENA digital re-
cording device (LENA Research Foundation, 2015). The
Table 1. Matrix of vocal variables by construct and derivation method.

Construct
Human-coded variables fro

communication samples

Quantity Number of total vocalizations
Communicative quality Number of communication acts with a v

Proportion of communicative vocalizatio
Phonological quality DKCC

Proportion of vocalizations with a canon

Note. Variables within the same cell are combined to form composites fo
is the number of child vocalizations); DKCC = diversity of key consonants
et al., 2017); ACPU-C+V = average count per utterance–consonants + vow

1512 Journal of Speech, Language, and Hearing Research • Vol. 63 •
LENA digital recording device was placed in a specialized
vest’s pocket for the participant to wear for 12–16 hr of
recording. No specifications were given regarding the day
of the week or setting for the recording, except to avoid
the participant being ill or going swimming. Caregivers
were instructed to remove the participant’s vest, with the
recorder still on, and place it near the participant when he
or she was sleeping or in the car. Trained research assis-
tants downloaded the digital audio files from the returned
recording devices to a designated computer for processing
and analysis.

Expressive Language Procedures
Variables derived from four procedures were used for

the expressive language composite variable: number of dif-
ferent root words said from the CSP, Expressive subscale
age-equivalency score on the MSEL, raw score for words
said on the MacArthur–Bates Communicative Develop-
ment Inventory compilation form (MB-CDI; Fenson et al.,
2006), and Expressive Language subscale age-equivalency
score on the Vineland Adaptive Behavior Scales–Second
Edition (VABS; Sparrow et al., 2005). Thus, two caregiver
reports (i.e., MB-CDI and VABS) and two direct observa-
tions (i.e., CSP and MSEL) were used. To calculate the
number of different root words said from the CSP, trained
coders transcribed all intelligible words produced by the
participants in each communication sample using ProcoderDV
software (Tapp, 2003). Then, the coder used Systematic
Analysis of Language Transcripts software (Miller &
Chapman, 2016) to calculate the number of different root
words said. The coding manual is available from the first
author. On the MB-CDI, the caregiver indicates which
words from a combined list of the Words and Gestures and
the Words and Sentences forms (total words = 720) that
the child has said in the prior 2 weeks. The MB-CDI, VABS,
and MSEL were administered at all three time points. The
CSP was only administered at Times 1 and 3 due to design
and budget constraints.

Observational Coding of Communication Samples
Trained research assistants and the first author

completed observational coding for the CSP and ECI using
ProcoderDV and Systematic Analysis of Language Transcripts
m Automated variables from daylong
naturalistic audio samples

AQV
ocalization
ns

Not applicable

ical syllable
ACPU-C+V

r each construct. AQV = automated quantity of vocalizations (which
used in communication acts (Wetherby et al., 2007; Woynaroski
els (Xu et al., 2014).

1509–1520 • May 2020



software. Coders completed four passes using timed event
behavior sampling to code behaviors used to derive the
vocal variables. The coder first identified codable and uncod-
able (i.e., the child’s face is not visible for at least 10 s)
portions of each video file. The coder identified all commu-
nication acts within the codable time on the second pass.
The coding manual, which is available from the first au-
thor, includes detailed coding rules for codable portions
of the communication sample and for communication
acts. Conceptually, communication acts were defined as a
spoken/signed word or a nonword vocalization or gesture
with coordinated attention to object and communication
partner.

On the third pass, the coder identified and classified
vocalizations within communication acts. Vocalizations
were defined as nonvegetative voiced sounds (i.e., created
by vibrating vocal folds) created during exhalation. Voiced
laughs, voiced sighs, voiced cries, whispered productions,
isolated voiceless consonants, glottal fry, ingressive phona-
tion, and reflexive, vegetative sounds (e.g., sounds from
burps, hiccups, coughs, sneezes, throat clearing, tongue
clicking, and lip popping) were not coded as vocalizations.
During this pass, the coder also indicated whether each
vocalization contained one or more codable consonants
(i.e., /m/, /n/, /b/ or /p/, /d/ or /t/, /g/ or /k/, /w/, /l/, “y,” /s/,
and “sh”) and/or a canonical syllable. Canonical syllables
had to include at least one consonant, at least one vowel,
and a quick, uninterrupted transition from the consonant
to vowel or vowel to consonant.

Because coding for the earlier passes focused on
communication acts, a fourth pass was necessary to code
presence of noncommunicative vocalizations and whether
these included codable consonants or canonical syllables.
CSP and ECI session variables from the same time period
were averaged after checking for a sufficiently high correla-
tion between them.
Vocal Variables
Human-Coded Vocal Variables
From Communication Samples

Table 1 displays all of the vocal variables. For quan-
tity, we calculated the number of total vocalizations pro-
duced by the child during the communication sampling
procedures. For communicative quality, we calculated (a) the
number of communication acts with a vocalization and
(b) proportion of communicative vocalizations (i.e., number
of communicative vocalizations divided by the number of
total vocalizations). For phonological quality, we coded
(a) the diversity of key consonants used in communication
acts (DKCC) and (b) the proportion of vocalizations with
a canonical syllable (i.e., number of vocalizations with a
canonical syllable divided by the number of total vocaliza-
tions). DKCC is the number of 10 specific consonants (i.e.,
/m/, /n/, /b/ or /p/, /d/ or /t/, /g/ or /k/, /w/, /l/, “j,” /s/, and
“sh”) used communicatively (Wetherby et al., 2007;
Woynaroski et al., 2017). Because members of voiced–
voiceless pairs (e.g., /b/ vs. /p/, /d/ vs. /t/, /g/ vs. /k/) are
difficult to distinguish reliably on recordings, children can
only receive 1 point for the pair regardless of whether they
produce one or both of each pair’s consonants.
Automated Vocal Variables From Daylong Audio Samples
For quantity of vocalizations, we used the auto-

mated quantity of vocalizations (AQV). AQV is the total
number of child vocalizations from the entire audio sample,
which is available in the standard LENA Pro software
package. Speech segments produced by the child wearing
the recorder that are preceded and followed by a pause of
at least 300 ms are counted as child vocalizations. Non-
speech sounds (e.g., vegetative sounds, cries, and other
fixed-signal sounds) are not included. See Oller et al. (2010)
and Xu et al. (2008) for a detailed description of how the
LENA system segments acoustic events and determines
the sound source for each. Regarding reliability of auto-
mated analyses, a number of investigations have com-
pared the degree to which automated analyses identify and
classify vocalizations similar to human coders (e.g.,
Rankine, 2016; VanDam & Silbert, 2016; Xu et al., 2014).
For example, automated analyses accurately identified
more than 72% of clear child utterances in a sample of
children aged 2–48 months (Xu et al., 2014). VanDam
and Silbert (2016) also reported a high agreement be-
tween automated analyses and human coding of vocali-
zations of children with typical development (Mage =
29.1 months).

For phonological quality of vocalizations, we used
ACPU-C+V scores. These scores are based on Sphinx speech
recognition software, which is modeled on adult data.
Sphinx software estimates how many times certain types of
phones occur within speech-related utterances, which are
further categorized into consonants versus vowels, and silence
within utterances and other nonspeech sounds (e.g., hesita-
tion, coughing, noise, and lip smacking; Xu et al., 2014).
The phones identified through the Sphinx speech recognition
software are broader than English phonemes. Average
count per utterance–consonants (ACPU-C) and average
count per utterance–vowels (ACPU-V) have been found
to correlate highly with human coding, r = .85 and r = .82,
respectively; however, the automated analyses were more
conservative than the human coding and underestimated
the counts of consonants and vowels (Xu et al., 2014). For
more information about the validation process and com-
parisons with human coding, see Rankine (2016), VanDam
and Silbert (2016), and Xu et al. (2008, 2014). ACPU-C
and ACPU-V scores had to be derived using computer
programs housed at the LENA Research Foundation
because the necessary software is not commercially avail-
able. The system does not reliably identify specific conso-
nant or specific vowel sounds in young children with ASD;
thus, consonant or vowel tokens, not types, are reflected
in the counts. We then created a z score composite of
these ACPU-C and ACPU-V scores to create ACPU-C+V
as a more stable estimate of the phonological quality of
vocalizations.
McDaniel et al.: Measuring Early Vocalizations 1513



Results
Preliminary Analyses
Descriptive Statistics

Supplemental Material S1 displays the means, stan-
dard deviations, and ranges for the vocal variables. Results
for human-coded vocal variables are presented by proce-
dure. Correlations between vocal variables are shown in
Supplemental Material S2.

Interobserver Reliability
For each time point for variables derived from the CSP

and ECI, a trained secondary coder independently coded a
random sample of at least 20% of coded sessions. The pri-
mary coder was blind to which sessions would be coded
for reliability. The study’s analyses use the primary coder’s
coding. Two-way mixed effects single measures intraclass
correlation coefficients (ICCs) with absolute agreement
account for differences in unitizing and classifying behaviors
between coders and for the variance among participants on
the component variables addressing the research questions.

Reliability values for each procedure and time period
all exceeded our benchmark of .70 for “very good” (Mitchell,
1979). For interobserver reliability, the human-coded vocal
variables had a mean ICC of .92 (SD = .07) across both
communication sampling procedures (i.e., CSP and ECI).
The vocal variables from the ECI showed sufficient stability
across the three Time 1 sessions (mean ICC = .79, SD =
.05). The number of different root words said in the CSP
(one component of the expressive language composite) had
an ICC of .77 for Time 1 across coders.

Creating Composite Variables
To increase stability and reduce the number of vari-

ables for the incremental validity analyses, we created com-
posites by averaging the z score–converted raw scores. We
used a threshold of r ≥ .40 for sufficient correlations be-
tween component variables for these composite variables
(Cohen & Cohen, 1984; Yoder et al., 2018).

For the expressive language composite, we used the
sample’s Time 3 (12 months after study initiation) mean
and standard deviation to permit growth across time periods.
All of the expressive language component variables corre-
lated sufficiently (rs = .52–.77 at Time 1, rs = .64–.87 at
Time 2, and rs = .69–.85 at Time 3). Thus, the number of
different root words said from the CSP, MSEL Expressive
subscale age-equivalency scores, MB-CDI compilation
form raw scores for words said, and VABS Expressive
Language subscale age-equivalency scores were converted
to z scores individually and then averaged to create the
expressive language composite.

For the human-coded vocal variables, we created
composites from component variables coded from the CSP
and ECI. Correlations between values from the CSP and
ECI were sufficiently correlated for all variables (rs =
.60–.80). Thus, the z scores for one CSP sample and three
ECI samples were averaged for the human-coded vocal
variables. We also created composites of human-coded
1514 Journal of Speech, Language, and Hearing Research • Vol. 63 •
component variables assessing the same quality feature (i.e.,
communicative quality composite and phonological quality
composite). Component variables were sufficiently corre-
lated for communicative quality (r = .79) and phonological
quality (r = .70).

For the automated vocal variables, ACPU-C and
ACPU-V correlated strongly (r = .82). Thus, we computed
average z-converted scores for ACPU-C and ACPU-V to
represent the automated measure of the phonological quality
of vocalizations (i.e., ACPU-C+V) as planned.

Modeling Growth of Expressive Language
We sought to test whether Time 1 vocal variables

predicted variation in this best available estimate of expres-
sive language at Time 3. In growth curve models in which
time is centered at the end point, the intercept is typically
a better estimate of the end point expressive language than
the observed component or composite variables because
the intercept is based on information from multiple data
points rather than a single time point (Singer & Willett, 2003).
Because time was centered at Time 3 in the current study,
the intercept of the growth model for the expressive lan-
guage composite represented the best available estimate of
expressive language at Time 3. Missing data varied from
1% to 16%, depending on the variable and measurement
period, M = 9%, SD = 5%. We used full maximum likeli-
hood estimation to address missing data (Enders, 2010).
For model selection, we used a buildup approach that pro-
gressed from the simplest (but possibly ill fitting) model
to increasingly more complex (but better fitting) models,
accepting the more complex model only if a chi-squared
test indicated improved model fit assuming the parameters
are nonredundant (r between parameters < .90). The ran-
dom intercept, fixed slope model provided evidence of a
better fit than a fixed intercept, fixed slope model, as evi-
denced by a lower −2 log likelihood value (i.e., 633 vs.
421). The correlation between the intercept and slope in
the latter model was .45. Although the −2 log likelihood
value decreased further for the random intercept, random
slope model relative to the random intercept, fixed slope
model, the correlation between slope and intercept was
very high (r = .92). The high covariance between the inter-
cept and slope means that there is limited variance in slope
remaining to be explained after controlling for intercept.
Due to this high covariance of the intercept and slope and
the desire to use a well-fitted yet parsimonious growth
model, we chose to use the random intercept, fixed slope
model. Thus, the intercept from the random intercept, fixed
slope model was used as the best estimate of end point
(Time 3) expressive language. For these and other growth
curve models, the data met the statistical assumptions of
homoscedasticity and residuals fell within the acceptable
parameters for skewness (< |.8|) and kurtosis (< |3.0|;
Tabachnick & Fidell, 2001).

Zero-Order Associations With Later Expressive Language
In separate models, we added each vocal variable

(not composite variables) to a model predicting the end
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point–centered intercept of the expressive language com-
posite. All vocal variables significantly and positively pre-
dicted expressive language. As shown in Table 2, all of
the coefficients are significant. Notably, all of the human-
coded variables except the quantity of vocalizations vari-
able (i.e., number of total vocalizations) exhibited a large
effect size (i.e., pseudo R2 ≥ .25) for predicting expressive
language skills 12 months later. In contrast, neither of
the automated measures exhibited a large effect size. The
pseudo R2 value provides an effect size that represents the
amount of explainable variance accounted for by the pre-
dictor variable (Xu, 2003).

Incremental Validity: Quantity Versus Quality
We examined whether the vocal quality composite

variables explained additional variance in expressive lan-
guage after controlling for each of the vocal quantity com-
ponent variables. The coefficients for quantity and quality
are shown in Table 3 when testing the incremental validity
of communicative quality of vocalizations and in Table 4
when testing the phonological quality of vocalizations.
Results for each model are displayed in more detail in Sup-
plemental Material S3. Each line in the table represents a
separate model. When the coefficient for the predictor vari-
able is significant, it accounts for unique variance in later
expressive language after statistically controlling the other
vocal variable in the model.

Human-Coded Communicative Quality Composite
Controlling for Vocal Quantity

The communicative quality composite from the
human-coded communication samples (i.e., number of
communication acts with a vocalization and the proportion
of communicative vocalizations) strongly predicted later
expressive language regardless of which vocal quantity vari-
able was controlled (see Table 3 and Supplemental Mate-
rial S3). The effect size of the association of communicative
quality composite predicting later expressive language was
statistically significant and quite large when controlling
for human-coded (pseudo R2 change = .61) or automated
(pseudo R2 change = .62) vocal quantity, respectively.
Table 2. Zero-order fixed effects estimates for vocal variables predicting e

Construct Vocal variable

Quantity Number of total vocalizationsHC

AQVA

Communicative quality Number of communication acts with a vocalizati
Proportion of communicative vocalizationsHC

Phonological quality DKCCHC

Proportion of vocalizations with a canonical sylla
ACPU-C+VA

Note. See Xu (2003) for pseudo R2 details. Coeff. = unstandardized coef
quantity of vocalizations (which is the number of child vocalizations); A = aut
acts (Wetherby et al., 2007; Woynaroski et al., 2017); ACPU-C+V = average
Xu et al., 2014).
Human-Coded Phonological Quality Composite Controlling
for Vocal Quantity

The phonological quality composite from human-
coded communication samples (i.e., DKCC and the pro-
portion of vocalizations with a canonical syllable) was very
strongly associated with later expressive language even
after controlling for the quantity of vocalizations, regard-
less of how vocal quantity was measured (see Table 4 and
Supplemental Material S3). The effect size of the associa-
tion between human-coded phonological quality and later
expressive language was .50 and .49, when controlling for
human-coded or automatic vocal quantity, respectively.

Automated Phonological Quality Controlling
for Vocal Quantity

ACPU-C+V predicted later expressive language after
controlling for human-coded vocal quantity with an effect
size of .10. In contrast, ACPU-C+V did not exhibit incre-
mental validity after controlling for AQV with an effect
size of .05. See Table 4 and Supplemental Material S3 for
details.

Incremental Validity: Human-Coded
Versus Automated

To evaluate the incremental validity of human-coded
measures after controlling for the analogous automated
measures, we added the measure from each of the two data
collection and variable derivation methods that purportedly
measured the same construct in the same model to predict
end point expressive language. Table 5 provides the details
of these analyses.

When the number of total vocalizations (human-
coded) and AQV were in the same model, both were sig-
nificant unique predictors of end point expressive language.
Additionally, the human-coded quantity variable accounted
for a medium amount of explainable variance in expressive
language after controlling for AQV (pseudo R2 change = .10).

When the automated phonological quality variable
(ACPU-C+V) and the human-coded phonological quality
composite were in the same model predicting later expres-
sive language, only the human-coded phonological quality
nd point expressive language.

Coeff. SE t df p Pseudo R2

0.26 0.07 3.74 89 < .001 .16
2.9 × 104 6.8 × 105 4.35 84 < .001 .19

onHC 0.86 0.10 8.64 86 < .001 .54
0.69 0.07 9.35 86 < .001 .59
0.59 0.06 9.41 86 < .001 .60

bleHC 0.38 0.05 7.26 86 < .001 .44
0.27 0.10 2.71 87 .01 .08

ficient; SE = standard error; HC = human-coded; AQV = automated
omated; DKCC = diversity of key consonants used in communication
count per utterance–consonants + vowels (Woynaroski et al., 2017;
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Table 3. Unstandardized coefficients (standard errors), significance, and effect size of the human-coded communicative quality composite
variable predicting end point expressive language after controlling each vocal quantity component variable.

Number of total vocalizationsHC AQVA Communicative quality compositeHC Pseudo R2 change

−0.01 (0.06) 0.91 (0.10)*** .61
9.7 × 105 (5.2 × 105) 0.83 (0.09)*** .62

Note. See Xu (2003) for pseudo R2 details. HC = human-coded; AQV = automated quantity of vocalizations (which is the number of child
vocalizations); A = automated.
***p < .001.
composite was a significant predictor. Adding the human-
coded phonological quality composite to the model accounted
for a large amount of the explainable variance in expressive
language after controlling for the automated phonological
quantity composite (pseudo R2 change = .54). The incremen-
tal validity of the ACPU-C+V was nonsignificant after con-
trolling for the human-coded phonological quality composite.
Discussion
When predicting later expressive language from vocal

variables, incremental validity is arguably among the most
rigorous methods to demonstrate whether it is worth the
expense to quantify the quality of vocalizations rather than
just the quantity and/or to train observers to code commu-
nication samples. In this study, we tested incremental
validity for assessing the quality of vocalizations (commu-
nicative and phonological quality), which is relatively more
expensive than coding the quantity of vocalizations. We
also tested incremental validity of the more costly human-
coded quantity and quality variables relative to less costly
analogous automated variables for the quantity and pho-
nological quality of vocalizations. Automated analyses
require a large initial financial investment, but the person-
nel and time costs in using them are lower than human
coding of communication samples. Therefore, over time,
automated analyses are less expensive than human coding
of vocalizations.

The findings support the use of human-coded vari-
ables of the quality of vocalizations for young children with
ASD in the early stages of word learning, despite the in-
creased costs, relative to less costly quantity variables or
Table 4. Unstandardized coefficients (standard errors), significance, and e
end point expressive language after controlling for each vocal quantity com

Number of total vocalizationsHC AQVA Phonolog

−0.11 (0.07)
9.5 × 105 (6.9 × 105)

0.27 (0.07)***
2.6 × 104 (6.9 × 105)***

Note. See Xu (2003) for pseudo R2 details.
A = automated; ACPU-C+V = average count per utterance–consonants + vo
AQV = automated quantity of vocalizations;
**p < .01. ***p < .001.
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automated variables. Human-coded quality variables account
for unique variance, with large effect sizes, in predicting
expressive language in young children with ASD in the
early stages of word learning, even after controlling for the
information that the less expensive vocal variables provided.

Findings are consistent with prior findings regarding
the predictive value of vocal variables. Prior studies have
also found that expressive language is correlated with or
predicted by the number of vocal communication acts
(Plumb, 2008), DKCC (Wetherby et al., 2007; Woynaroski,
2014; Woynaroski et al., 2017; Yoder et al., 2015), and
ACPU-C+V (Woynaroski et al., 2017), as well as incre-
mental validity for DKCC (Yoder et al., 2015). However,
Plumb and Wetherby (2013) reported a nonsignificant as-
sociation between the proportion of communicative vocali-
zations and expressive language. This discrepancy with the
current findings may be at least partially explained by the
larger sample size, use of growth curve modeling with an
expressive language composite (i.e., not a single measure at
one point in time), and use of a composite communicative
quality predictor in the current study.
Limitations
At least four limitations should be acknowledged.

First, because validation refers to a specific variable, use,
and population, replication is necessary to apply the find-
ings to other variables, uses, or populations (Yoder et al.,
2018). Second, the use of multiple t tests without alpha
adjustment for a given research question increases risk for
Type I errors. However, because a number of the findings
(e.g., human-coded number of total vocalizations, DKCC,
ffect size of each phonological quality composite variable predicting
ponent variable.

ical quality compositeHC ACPU-C+VA Pseudo R2 change

0.60 (0.08)*** .50
0.47 (0.06)*** .49

0.24 (0.09)** .10
0.17 (0.09) .05

wels (Woynaroski et al., 2017; Xu et al., 2014). HC = human-coded;
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Table 5. Coefficient (standard errors), significance, and effect size of the human-coded vocal variable predicting end point expressive
language after controlling for the automated vocal variable.

Automated vocal variable Human-coded vocal variable

Variable Coefficient Variable Coefficient Pseudo R2 change

AQV 2.2 × 104 (7.1 × 105)** Number of total vocalizations 0.19 (0.07)** .10
ACPU-C+V 0.07 (0.08) Phonological quality composite 0.50 (0.06)*** .54

Note. See Xu (2003) for pseudo R2 details. AQV = automated quantity of vocalizations; ACPU-C+V = average count per utterance–consonants +
vowels (Woynaroski et al., 2017; Xu et al., 2014).

**p < .01. ***p < .001.
and ACPU-C+V predicting expressive language; Plumb,
2008; Woynaroski, 2014; Woynaroski et al., 2017; Yoder
et al., 2015) are replications, the risk of findings being
solely due to Type I errors decreases. Novel findings (e.g.,
AQV, the proportion of communicative vocalizations, and
the proportion of vocalizations with a canonical syllable pre-
dicting expressive language, as well as the incremental
validity findings) require replication. Third, relative cost
as a general consideration was a motivation for the current
study. However, limited resources prevented detailed cost
analyses. Finally, because this study used a correlational de-
sign, we cannot eliminate all third variable explanations for
the association between vocal variables and later expressive
language.

Strengths
Four strengths should be acknowledged. First, this study

includes human-coded and automated vocal variables for
the same participants, which enables direct comparisons of
the predictive validity of two ways to measure vocal quantity
and quality. Second, the use of multilevel modeling provides
a better estimate of end point expressive language than relying
on the observed value (Singer & Willett, 2003). Third, the
relatively large sample size (N = 87) permitted sufficient power
for detecting incremental validity. Fourth, the relatively long
study duration (i.e., 12 months) enables prediction of ex-
pressive language from early vocal variables across this rela-
tively long period of time. Twelve months is a meaningful
interval for this type of predictive study because intervention
goals are often written for yearlong intervals.

Future Directions
Limited resources prevented detailed cost analyses

for the current study. Future studies should consider the
monetary cost of variables to inform variable selection and
planning of later investigations. Relatedly, the reliability of
live coding the communicative and phonological quality of
vocalizations and the amount of training time required to
achieve adequate reliability warrant investigation. Such
information informs which variables may be most feasible
in clinical settings where coding time may be very limited.
It was beyond the scope of this study to directly compare
the identification and classification of specific vocalizations
by automated analyses versus human coding. Reduced
accuracy for the automated analyses could at least partially
explain the reduced effect sizes and lack of incremental
validity for phonology quality.

Clinical Implications
Although automated vocal analyses are less expen-

sive than human coding of communication samples on a
per session basis, the initial cost of recording devices and
access to the analysis software may be prohibitive for many
clinicians. Additionally, the superior predictive validity of
human-coded variables from communication samples
supports the existing practice of deriving vocal variables
from human coding of relatively brief communication
samples. Analysis of the communicative and/or phonologi-
cal quality of child vocalizations could provide clinicians
with important information regarding a child’s progress
toward using spoken words. Although creating composites
(e.g., averages) across multiple samples will improve stabil-
ity of estimates and is feasible for research purposes, live
coding and relatively brief communication samples would
reduce the amount of coding time required and increase
feasibility for assessing the quality of vocalizations. Addi-
tional investigation of such live procedures and required
duration or number of sessions to produce stable estimates
is warranted, as indicated above.

Conclusion
These findings support human coding of the quality

of vocalizations from communication samples for young
children with ASD for research purposes, despite the costs
per session. These variables provided predictive value
above and beyond simply measuring quantity of vocaliza-
tions. Additionally, training observers to code communica-
tion samples to derive measures of quantity and quality
also provided value beyond their analogous automated
variables. The LENA Research Foundation and others
using their variables have not asserted that automated vari-
ables are superior to human-coded variables. However, one
might argue that automated vocal variables might have
lower per session cost, which can enable researchers to de-
rive vocal variables on more participants given limited re-
sources. Thus, our findings suggest that, if one can afford
McDaniel et al.: Measuring Early Vocalizations 1517



human coding, then do so. If the investigator cannot afford
human coding, then ACPU-C+V and AQV predict expres-
sive language in low verbal children with ASD.
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