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CHAPTER 1

Introduction

Since humans have been making tools, we have made tools to enhance our senses.

Throughout the years the fundamental mechanisms behind these sensors have in-

creased in complexity leading to more precise and accurate measurements. This

dissertation will go over the research I have done to further advance these measure-

ments.

1.1 Motivation

Sensor precision reached new heights with the invention of atomic trapping tech-

niques such as the ion trap and later the magneto-optical-trap, or MOT. One of the

major advancements to sensor precision came with the advent of the atomic clock,

carefully calibrating time based on the fundamental energy splitting of a particular

atom. Not only can atoms tell time, they are also incredible force sensors. Atom in-

terferometers are some of the most precise devices to measure gravity, electric fields,

magnetic fields, even ruling out some fifth force theories.

With this in mind, a proof-of-principle rotation sensor based on a trapped-ion

interferometer began construction [CH17]. The basic scheme is to create a wave-

function superposition of two counter-rotating states. The states will each pick up a

phase. Particularly, when the apparatus is rotated in the plane of the ion orbits the

counter-rotating superposition states will pick up opposite phases due to the rota-

tion. This phase difference, known as the Sagnac phase, can be used to deduce the

apparatus rotation rate. Although ions are not the typical choice for interferometers,

there are some benefits to using trapped ions for Sagnac phase measurements.
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1.2 Background

Rotation sensors, or gyroscopes have long been constructed for use in navigation.

Today, the most sensitive gyroscopes measure angular velocities, Ω, utilizing the

Sagnac effect with photonic wavepackets of wavelength λ. The phase difference

between the wavepackets due to the rotation can be calculated

∆ϕ =
4π

λc
A · Ω,

with c the speed of light in vacuum and A the path-length area of the interfering

wavepackets [POS67].

Motivated by the benefits of atomic interferometers discussed above, academic

groups set out to measure the Sagnac effect with atomic wavepackets. Atomic gyro-

scopes use atoms of mass M to measure angular velocities, Ω, utilizing the Sagnac

effect. Different points of view can be used to calculate the phase difference between

the atomic wavepackets due to the rotation [RKW91], but the result is the same

∆ϕ =
2M

ℏ
A · Ω,

where the interferometer area A depends on the differential momentum imparted by

the interferometer beamsplitters.

The phases can be compared using the atom’s Compton wavelength, λatom =

h
Mc

⇒ 2M/ℏ = 4π/(λatomc) or substituting in the particle energies. The photon

energy is Ephoton = hc/λ. The electronic energy of the atom is negligible, so the

atom’s energy can be expressed as Eatom = γMc2, with γ = 1/
√

1− v2atom/c
2 the

Lorentz factor and vatom the atom’s center-of-mass velocity. Realistic experiments

use non-relativistic speeds (γ = 1), so the Sagnac phase from both interferometer

schemes can be expressed as

∆ϕ =
4πE

hc2
A · Ω. (1.1)

Typical optical photons have energy E ∼ 1 eV while atoms’ rest mass energies are

typically E ∼ 1011 eV. Using fiber optics, optical interferometer areas can easily ex-

ceed 105 m2 while atom interferometer areas rarely exceed 10−3 m2. While the phase

shifts in atomic interferometers are much larger than their optical counterparts, op-

tical gyroscopes reach higher sensitivities due to the increased number of interfering

2



particles. To increase the atom interferometer area, the beamsplitter operation could

be made to impart more momentum, a larger apparatus can be constructed, or the

interferometer path made to circle back in on itself such that the atomic wavepackets

traverse around the interferometer’s physical area multiple times, leading to a mul-

tiplication of the effective interferometer area. Practically, increasing the apparatus

size is not desirable, so a scheme utilizing large-momentum beamsplitter operations

and orbiting interferometer paths will be used.

To create a wavefunction superposition of two counter-rotating states, a spin-

dependent momentum transfer scheme is used in an ion trap. To obtain a large

momentum transfer, multiple kicks should be performed. A practical limitation to

the momentum transfer is the kick timing: all the kicks need to be applied much

faster than the motion of the ion in the trap to ensure the constructive addition

of the momentum kicks. To this end, a single pulse from a mode-locked laser is

desirable to drive this spin-dependent kick. Mode-locked lasers provide ultrafast,

high-power pulses at a high repetition rate. The seminal study of spin-dependent

kicks in trapped ions used stimulated Raman transitions between hyperfine ground

states of a trapped 9Be+ ion [MMK96]. Later studies using stimulated Raman tran-

sitions in the ground-state hyperfine qubit of 171Yb+ were able to demonstrate qubit

rotations using a single-pulse from a mode-locked laser with 72% fidelity, limited by

the laser pulse’s finite bandwidth [CMQ10]. Spin-dependent kicks with a single pulse

were not possible using the 171Yb+ hyperfine qubit due to multi-photon transitions

leading to higher-order momentum states being populated [MSN13]. To remedy this

problem, stimulated Raman transitions in a Zeeman qubit can be employed. Due

to the potential for a smaller qubit splitting when using Zeeman states, the fidelity

of ultrafast single-pulse qubit rotations can be increased above 99%. Multi-photon

transitions between the ground state Zeeman qubit of an spin-zero-nucleus ion can

also be precluded by polarization selectivity of the Raman beams. The majority

of the research presented here will be investigating single-pulse operations in the

ground-state Zeeman qubit of a trapped 138Ba+ ion.

3



CHAPTER 2

Atom-Light Interactions

2.1 Rotating Atomic Schrodinger Equation (RASE)

At any time the atom’s internal state, |Ψ⟩, can be described by a superposition

|Ψ⟩ =∑n cn|ψn⟩ where cn are complex time-dependent amplitudes and |ψn⟩ are the

eigenfunctions of the atomic Hamiltonian, with corresponding eigenenergies En =

⟨ψn|Hatom|ψn⟩ = ℏωn.

Applying a laser to the atom causes an interaction, Vmn = ⟨ψm|Hint|ψn⟩. With

ℏ = 1, the schrodinger equation can be written:

i ˙|Ψ⟩ = H|Ψ⟩ = (Hatom +Hint)|Ψ⟩ (2.1)

⇒ i
∑
m

ċm|ψm⟩ =
∑
m

cm(Hatom +Hint)|ψm⟩ (2.2)

⇒ i
∑
m

ċm⟨ψn|ψm⟩ =
∑
m

cm⟨ψn|Hatom +Hint|ψm⟩ (2.3)

i
∑
m

ċmδnm =
∑
m

ωmcmδnm +
∑
m

cm⟨ψn|Hint|ψm⟩ (2.4)

⇒ iċn = ωncn +
∑
m

Vmncm (2.5)

⇒ i ˙̃cn =
∑
m

Vmnc̃me
i(ωn−ωm)t, (2.6)

in a rotating frame with c̃n = cne
iωnt, and i ˙̃cn = −ωncne

iωnt + iċne
iωnt.

2.2 Two-Level Atom

Starting with just two atomic levels with splitting ω0 interacting with a laser of

frequency ω, and therefore detuning, ∆ = ω−ω0 as shown in Fig. 2.1, the population

dynamics can be calculated starting with Eq. (2.6).

4



∆

Figure 2.1: Two-level atom with energy splitting ω0 interacting with a laser of de-

tuning ∆ = ω − ω0.

The laser field is composed of electric and magnetic fields. In general, the in-

teraction of the laser electric field and the atom’s electric dipole moment
(
d · E

)
will be much stronger than the laser magnetic field interacting with the atom’s

magnetic dipole moment
(
µ ·B

)
, so the interaction Hamiltonian can be expressed

Hint = −d·E. For a laser of frequency ω directed along x̂ with the evolving transverse

spatial profile E0(y, z, t), the electric field can be expressed:

E(x, y, z, t) = ℜ
[
E0(y, z, t)e

−i(ωt−kx+ϕ0)ϵ̂
]

(2.7)

=
1

2
E0(y, z, t)

(
e−i(ωt−kx+ϕ0)ϵ̂+ ei(ωt−kx+ϕ0)ϵ̂∗

)
. (2.8)

Assuming the atomic wavepacket is much smaller than the wavelength of the light,

known as the dipole approximation, the spatial dependence of the electric field can be

taken as a constant. The electric field interaction at the ion position r0 = (x0, y0, z0)

can be rewritten

Hint = −1

2
E(t)

(
e−i(ωt+φ)d · ϵ̂+ ei(ωt+φ)d · ϵ̂∗

)
, (2.9)
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with E(t) = E0(y0, z0, t) and φ = −kx+ ϕ0. Solving for the population dynamics of

this Hamiltonian, Eq. (2.6) expands into 2 equations:

i ˙̃c0 = V10c̃1e
−iω0t =

(
1

2
g01(t)e

−iωt +
1

2
g∗01(t)e

iωt

)
c̃1e

−iω0t

=
1

2
c̃1
(
g01(t)e

−i(ω+ω0)t + g∗01(t)e
i(ω−ω0)t

)
(2.10)

i ˙̃c1 = V01c̃0e
iω0t =

(
1

2
g01(t)e

−iωt +
1

2
g∗01(t)e

iωt

)
c̃0e

iω0t

=
1

2
c̃0
(
g01(t)e

−i(ω−ω0)t + g∗01(t)e
i(ω+ω0)t

)
, (2.11)

where gij(t) ≡ −E(t)e−iφ⟨i|d · ϵ̂|j⟩ ⇒ Vij =
1
2
gij(t)e

−iωt + 1
2
g∗ij(t)e

iωt. Integrating this

system of equations leads to terms with coefficients of 2 forms, co-rotating terms

∝ 1/(ω0 − ω) and counter-rotating terms ∝ 1/(ω + ω0). Near resonance, the laser

detuning ∆ = ω − ω0 is small such that |∆|<< ω0 and the counter-rotating terms

can be dropped to simplify the solution. This procedure is known as the Rotating

Wave Approximation. From this simplified model the effective Hamiltonian for the

co-rotating coefficients is

i

 ˙̃c0

˙̃c1

 =
1

2

c̃1g∗01(t)e−i∆t

c̃0g01(t)e
i∆t

 (2.12)

⇒ i

ċ0
ċ1

 =
1

2

 g∗01(t)c1

2ω0c1 + g01(t)c0

 =
1

2

 0 g∗01(t)

g01(t) 2ω0

c0
c1

 (2.13)

⇒ Heff =

 0 1
2
g∗01(t)

1
2
g01(t) ω0

 (2.14)

=
1

2
g01(t)σ̂x −

1

2
ω0σ̂z +

1

2
ω01, (2.15)

with σ̂x, σ̂z the x and z Pauli spin operators.

For a constant drive, g01(t) = g01 and the initial conditions c0(0) = 1, c1(0) = 0,
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and |c0|2+|c1|2 = 1 the differential equation can be simplified and integrated directly:

i ˙̃c0 =
1

2
c̃1g

∗
01e

−i∆t ⇒ i ˙̃c0(0) = 0 i ˙̃c1 =
1

2
c̃0g01e

i∆t ⇒ i ˙̃c1(0) =
1

2
g01

(2.16)

i¨̃c0 =
1

2
e−i∆t

(
˙̃c1g

∗
01 − i∆c̃1g

∗
01

)
i¨̃c1 =

1

2
ei∆t

(
˙̃c0g01 + i∆c̃0g01

)
(2.17)

¨̃c0 + i∆˙̃c0 +
1

4
|g01|2c̃0 = 0 ¨̃c1 − i∆˙̃c1 +

1

4
|g01|2c̃1 = 0 (2.18)

c0 =

(
cos

(
Wt

2

)
+
i∆

W
sin

(
Wt

2

))
e−i∆t/2 c1 =

g01
W

sin

(
Wt

2

)
ei∆t/2 (2.19)

⇒P0→1 = |c1|2 =
|g01|2
W 2

sin2 (Wt/2) . (2.20)

with W =
√
|g01|2 +∆2, the generalized Rabi frequency and using the solution

ÿ(t) + iaẏ(t) +
b2

4
y(t) = 0 (2.21)

⇒ y(t) = e−iat/2
(
C1 sin

(√
a2 + b2 t/2

)
+ C2 cos

(√
a2 + b2 t/2

))
. (2.22)

2.3 Single-Photon Rabi Frequency

The single photon Rabi frequency can be calculated as follows:

gij(t) = −E(t)e−iφ⟨i|d · ϵ̂|j⟩ = −E(t)e−iφ⟨n′, l′, j′,m′
j|d · ϵ̂|n, l, j,mj⟩ (2.23)

= −E(t)e−iφ
∑
q

βq⟨n′, l′, j′,m′
j|dq|n, l, j,mj⟩ (2.24)

= −Ed(t)e−iφ⟨n′, l′, j′||d||n, l, j⟩
∑
q

βq⟨j′,m′
j, 1, q|j,mj⟩, (2.25)

using the Wigner-Eckart theorem to go from Eq. (2.24) to Eq. (2.25) and q is

the spherical component of the electric field’s polarization vector. For a given

{j, j′,mj,m
′
j}, there will be a single value of q, q′, such that ⟨j′,m′

j, 1, q
′|j,mj⟩ ≠ 0.

The sum simplifies and defining Ed(t) = βq′E(t), the complex part of the laser field

aligned with d, the Rabi frequency becomes

gij(t) = −Ed(t)e−iφ⟨j′,m′
j, 1, q

′|j,mj⟩⟨n′, l′, j′||d||n, l, j⟩ (2.26)

= −e−iφdijEd(t)
ℏ

Cij, (2.27)

where Cij = ⟨j′,m′
j, 1, q

′|j,mj⟩, the Clebsch-Gordan coefficients, and dij = ⟨n′, l′, j′||d||n, l, j⟩,
the transition dipole moment.
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2.3.1 Selection Rules

As mentioned in the previous section, only one polarization, σ−, π, σ+, or one value

of q = −1, 0, 1, respectively, will lead to a non-zero Clebsch-Gordan coefficient,

namely q = m′
j − mj. Another requirement for the Clebsch Gordan coefficient to

be non-zero is ∆j = j′ − j = 0,±1. These selection rules can be interpreted as the

conservation of angular momentum between the laser photons and the atom. As the

atom absorbs a photon, both the photon’s momentum, ℏk, and angular momentum,

qℏ, are transferred to the atom, resulting in the state change m′
j = mj + q. If the

necessary value of m′
j is not a part of the excited state manifold the atom will not

interact with the laser and the mj state is called “dark”. For example, a resonant σ+

polarized beam incident on an atom will drive population from |2S1/2 mj = −1/2⟩ →
|2P1/2 mj = 1/2⟩, but not from |2S1/2 mj = 1/2⟩ as there is not an mj = 3/2 state in

the P1/2 manifold, and the |2S1/2 mj = 1/2⟩ is referred to as dark, this is an example

of optical pumping (section 2.6).

2.4 Spontaneous Emission

Random vacuum fluctuations cause random emission when the atom is in a state

with higher energy than the ground state. The probability density of emission from

a state |j⟩ to a lower state |i⟩ is a decaying exponential Pijspon = Γije
−Γijt, with the

state lifetime defined by τ = 1/Γ. Following Fermi’s Golden Rule [Ste], the rate of

spontaneous emission is

Γij =
d2ij

3πϵ0ℏc3
(ωj − ωi)

3. (2.28)

Measurements of Γij are used to extract the value of dij.

2.5 Doppler Cooling

Doppler laser cooling is a quintessential technique used to slow and cool trapped

ions. The Doppler effect alters the frequency of light the ion interacts with. If the

atom is moving away from the laser, the frequency will be shifted down (redder),

and the laser frequency will be shifted up (bluer) if the atom is moving toward the
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laser. This affects the probability of absorbing a photon from the laser, and so

the force on the ions is dependent on the laser detuning, ∆. In cases where the

laser frequency is lower than the resonant frequency (∆ < 0), it is referred to as

red-detuned. Conversely, when the laser frequency is set higher than the transition

resonance the laser is blue-detuned. Red-detuned lasers provide a damping force on

the ion. The ion will be more likely to scatter photons when it is moving toward

the laser than when it’s moving away since the Doppler effect causes the light to

shift closer to resonance when the atom is moving toward the red-detuned laser and

the light is shifted further from resonance when the ion is moving away from the

laser. This preferentially kicks the ion in the opposite direction to its movement,

thus reducing its temperature.

2.6 Optical Pumping

To prepare a pure quantum state, carefully tuned laser beams drive population out

of all states in a manifold except one, the dark state, by taking advantage of the

selection rules (section 2.3.1). After interacting with the laser for a sufficient time,

the atom will scatter photons until it lands in the dark state, where it will remain, as

it does not interact with the laser beams. This technique is called optical pumping.

See section 3.3.2 for more details on how this is implemented in the experiment.

2.7 Relevant Levels

Moving forward, the relevant atomic states will be referred to by the labels and

energy levels in Fig. 2.2:

|0⟩ ≡ | 2S1/2 mj = −1/2⟩ |1⟩ ≡ | 2S1/2 mj = 1/2⟩

|2⟩ ≡ | 2P1/2 mj = −1/2⟩ |3⟩ ≡ | 2P1/2 mj = 1/2⟩

|4⟩ ≡ | 2P3/2 mj = −3/2⟩ |5⟩ ≡ | 2P3/2 mj = −1/2⟩

|6⟩ ≡ | 2P3/2 mj = 1/2⟩ |7⟩ ≡ | 2P3/2 mj = 3/2⟩.
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Figure 2.2: Relevant barium ion energy levels for the stimulated Raman transition

2.8 Three-Level Atom

Using the labels in Fig. 2.2, a stimulated Raman transition uses two polarized elec-

tric fields to transfer population between two states |0⟩, |1⟩ with energies E|0⟩ =

0, and E|1⟩ = δ, through an intermediate state, |2⟩, E|2⟩ = ℏω0.
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Eq. (2.6) now expands to 3 equations for 3 levels :

i ˙̃c0 = V20c̃2e
−iω0t =

(
1

2
g02(t)e

−iωt +
1

2
g∗02(t)e

iωt

)
c̃2e

−iω0t

=
1

2
c̃2
(
g02(t)e

−i(ω+ω0)t + g∗02(t)e
i(ω−ω0)t

)
(2.29)

i ˙̃c1 = V21c̃2e
−i(ω0−δ)t =

(
1

2
g12(t)e

−iωt +
1

2
g∗12(t)e

iωt

)
c̃2e

−i(ω0−δ)t

=
1

2
c̃2
(
g12(t)e

−i(ω+ω0−δ)t + g∗12(t)e
i(ω−ω0+δ)t

)
(2.30)

i ˙̃c2 = V02c̃0e
iω0t + V12c̃1e

i(ω0−δ)t =

(
1

2
g02(t)e

iωt +
1

2
g∗02(t)e

iωt

)
c̃0e

iω0t

+

(
1

2
g12(t)e

−iωt +
1

2
g∗12(t)e

iωt

)
c̃1e

i(ω0−δ)t

=
1

2
c̃0
(
g02(t)e

−i(ω−ω0)t + g∗02(t)e
i(ω+ω0)t

)
+

1

2
c̃1
(
g12(t)e

−i(ω−ω0+δ)t + g∗12(t)e
i(ω+ω0−δ)t

)
(2.31)

Rotating Wave Approximation

i ˙̃c0 =
1

2
c̃2
(
g∗02(t)e

−i∆t
)

(2.32)

i ˙̃c1 =
1

2
c̃2
(
g∗12(t)e

−i(∆−δ)t
)

(2.33)

i ˙̃c2 =
1

2
c̃0
(
g02(t)e

i∆t
)
+

1

2
c̃1
(
g12(t)e

i(∆−δ)t
)

(2.34)

with ∆ = ω0 − ω. Assuming g01(t), g02(t), c̃0, and c̃1 vary more slowly than ei∆t,

Eq. (2.34) can be directly integrated. This simplification is known as adiabatic

elimination. With the initial condition c̃2(0) = 0:

c̃2 =
1

2∆
c̃0
(
g02(t)(1− ei∆t)

)
+

1

2(∆− δ)
c̃1
(
g12(t)(1− ei(∆−δ)t)

)
. (2.35)

Plugging this into Eq. (2.32) and Eq. (2.33):

˙̃c0 =
|g02(t)|2
4∆

(
e−i∆t − 1

)
c̃0 +

g∗02(t)g12(t)

4(∆− δ)

(
e−i∆ − e−iδt

)
c̃1 (2.36)

˙̃c1 =
g∗12(t)g02(t)

4∆

(
e−i(∆−δ)t − eiδt

)
c̃0 +

|g12(t)|2
4(∆− δ)

(
e−i(∆−δ)t − 1

)
c̃1. (2.37)

After integration, the above equations will have coefficients of 2 forms, co-rotating

terms ∼ 1/δ and counter-rotating terms ∼ 1/∆. While working in the regime δ <<

∆ ⇒ ∆−δ ≈ ∆, the counter-rotating terms will be much smaller than the co-rotating
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terms. They will be dropped now to simplify the solution.

˙̃c0 = −|g02(t)|2
4∆

c̃0 −
g∗02(t)g12(t)

4∆
e−iδtc̃1 (2.38)

˙̃c1 = −g
∗
12(t)g02(t)

4∆
eiδtc̃0 −

|g12(t)|2
4∆

c̃1. (2.39)

Transforming back to the non-rotating frame, the effective two-level Hamiltonian

ċ0 = −|g02(t)|2
4∆

c0 −
g∗02(t)g12(t)

4∆
c1 = −1

2
(2∆L0(t)c0 + Ω∗(t)c1) (2.40)

ċ1 = −g02(t)g
∗
12(t)

4∆
c0 −

( |g12(t)|2
4∆

+ δ

)
c1 = −1

2
(Ω(t)c0 + 2(∆L1(t) + δ)c1) (2.41)

⇒ Heff = −1

2

2∆L0(t) Ω∗(t)

Ω(t) 2∆L1(t) + 2δ

 (2.42)

where the two-photon Rabi frequency is defined Ω(t) =
g02(t)g∗12(t)

2∆
, and the light shifts

of the |0⟩ state and |1⟩ state, respectively, ∆L0(t) =
|g02(t)|2

4∆
, ∆L1(t) =

|g12(t)|2
4∆

2.9 Multiple Beams, Multiple Excited States

Referencing the atomic levels in Fig. 2.2, the energy of the unshifted 2S1/2 → 2P1/2

transition is ℏω0; applying an external magnetic field B = Bẑ causes the states

to split due to the Zeeman effect. To first order, the energy shift for each state is

EZeeman = µBgJBmj = ℏωBgJmj, giving characteristic frequencies ωB+ = ωB(gS1/2
+

gP1/2
) and ωB− = ωB(gS1/2

− gP1/2
). For a single beam driving the Raman transition

|0⟩ → |1⟩ the dynamics of the atomic wavefunction according to Eq. (2.6) is described

by the 4 equations:

i ˙̃c0 = e−i(ω0+ωB−)tV02c̃2 + e−i(ω0+ωB+)tV03c̃3 (2.43)

i ˙̃c1 = e−i(ω0−ωB+)tV12c̃2 + e−i(ω0−ωB−)tV13c̃3 (2.44)

i ˙̃c2 = ei(ω0+ωB−)tV20c̃0 + ei(ω0−ωB+)tV21c̃1 (2.45)

i ˙̃c3 = ei(ω0+ωB+)tV30c̃0 + ei(ω0−ωB−)tV31c̃1. (2.46)
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Following the steps from previous solutions, substituting the matrix elements and

applying the rotating wave approximation, the equations simplify:

i ˙̃c0 =
1

2
e−i(∆+ωB−)tg∗02c̃2 +

1

2
e−i(∆+ωB+)tg∗03c̃3 (2.47)

i ˙̃c1 =
1

2
e−i(∆−ωB+)tg∗12c̃2 +

1

2
e−i(∆−ωB−)tg∗13c̃3 (2.48)

i ˙̃c2 =
1

2
ei(∆+ωB−)tg20c̃0 +

1

2
ei(∆−ωB+)tg12c̃1 (2.49)

i ˙̃c3 =
1

2
ei(∆+ωB+)tg03c̃0 +

1

2
ei(∆−ωB−)tg13c̃1, (2.50)

Applying adiabatic elimination as above with c̃0, c̃1, g02, g12, g03, g13 varying much

more slowly than ei∆t, and ωB+, ωB− << ∆ ⇒ ∆ ± ωB± ≈ ∆, the solution is a

Hamiltonian analogous to Eq. (2.42):

Heff = −1

2

2∆L0(t) Ω(t)

Ω(t) 2∆L1(t) + 2δ

 , (2.51)

with

Ω(t) =
g∗02(t)g12(t)

2∆
+
g∗03(t)g13(t)

2∆
, (2.52)

∆L0 =
|g02(t)|2
4∆

+
|g03(t)|2
4∆

, (2.53)

∆L1 =
|g12(t)|2
4∆

+
|g13(t)|2
4∆

(2.54)

The total Raman Rabi frequency is the sum of the two-photon rabi frequencies for

each excited state, and the light shifts due to each excited state also add. Because of

the linearity of electric fields, interactions from addition lasers will be linearly added

to the interaction matrix elements Vij. For simplicity, the frequency of each beam is

the same, ω. With gijk(t) the single photon Rabi frequency between states |i⟩ and |j⟩
from beam k, and ωj the resonant frequency for the transition |0⟩ → |j⟩, the general
Raman Rabi frequency between nearly degenerate states |0⟩ and |1⟩ as well as the
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light shifts:

Ωtot(t) =
1

2

∑
j

1

ω − ωj

(∑
k

g∗0jk(t)

)(∑
k

g1jk(t)

)
(2.55)

∆L0 =
1

4

∑
j

1

ω − ωj

∑
k

|g0jk |2 (2.56)

∆L1 =
1

4

∑
j

1

ω − ωj

∑
k

|g1jk |2 (2.57)

⇒ δ2γ ≡ ∆L1 −∆L2 =
1

4

∑
j

1

ω − ωj

(∑
k

|g1jk |2 − |g0jk |2
)

(2.58)

2.10 Raman Rabi Frequency Calculation

Using the states in Fig. 2.2, and assuming a single beam drives the Raman transition

|0⟩ → |1⟩, the total Rabi frequency is a sum of the Raman Rabi frequency due to

both the P1/2 state and the P3/2 state,

Ωtot = Ω2γ0 + Ω2γ455 (2.59)

=
1

2∆

(
g∗02(t)g12(t) + g∗03(t)g13(t)

)
+

1

2∆455

(
g∗05(t)g15(t) + g∗06(t)g16(t)

)
(2.60)

=
d2

2∆

(
E∗

πEσ−C02C12 + E∗
σ+
EπC03C13

)
+

d2455
2∆455

(
E∗

πEσ−C05C15 + E∗
σ+
EπC06C16

)
,

(2.61)

with the Clebsch Gordan coefficients as follows:

C02 = −
√

1

3
C03 = −

√
2

3
C04 = 1 C05 =

√
2

3
C06 =

√
1

3

C12 =

√
2

3
C13 =

√
1

3
C15 =

√
1

3
C16 =

√
2

3
C17 = 1. (2.62)

A single, circularly polarized beam pointed along x̂, with the magnetic field pointed

along ẑ will have an electric field of the form:

E(x, y, z, t) = E0(t) exp

(
− z2

wz(x)2
− y2

wy(x)2

)
exp (−i(ωt− kx)) ϵ̂, (2.63)

and since the size of the atom is much smaller than the wavelength of the light,

E = E(t)e−i(ωt+φ)ϵ̂. (2.64)

An arbitrary elliptical polarization can be broken down: ϵ̂ = aẑ +
√
2bŷ, with a

real, but b can be imaginary. Using the polarization definitions from spherical basis
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on Wikipedia, ŷ could be broken down in two ways ŷ = − 1√
2
(σ̂+ − σ̂−), or ŷ =

i√
2
(σ̂+ + σ̂−). Both definitions give the same result, breaking down the polarization

using the first definition: ϵ̂ = aẑ − b (σ̂+ − σ̂−), so

E = E(t)(aẑ − b (σ̂+ − σ̂−)) = Eπẑ + Eσ+σ̂+ + Eσ−σ̂− (2.65)

E∗ = E(t)(aẑ − b∗ (−σ̂− + σ̂+)) = E∗
πẑ + E∗

σ+
σ̂+ + E∗

σ−σ̂− (2.66)

Eπ = E(t)a Eσ+ = −E(t)b Eσ− = E(t)b (2.67)

E∗
π = E(t)a E∗

σ+
= −E(t)b∗ E∗

σ− = E(t)b∗. (2.68)

Just focussing on the contribution from the P1/2 state for now,

Ω2γ0(t) =
1

2∆

d2

ℏ2
(
E∗

πEσ−C02C12 + E∗
σ+
EπC03C13

)
(2.69)

= −
√
2

6∆

d2

ℏ2
(
E∗

πEσ− + E∗
σ+
Eπ

)
(2.70)

= −
√
2

6∆

d2

ℏ2
(
aE(t)2 (b− b∗)

)
= −i

√
2

3∆

(
dE(t)
ℏ

)2

ℑ(b). (2.71)

With the other definition, the polarization is now: ϵ̂ = aẑ + ib (σ̂+ + σ̂−), so

E = E(t)(aẑ + ib (σ̂+ + σ̂−)) = Eπẑ + Eσ+σ̂+ + Eσ−σ̂− (2.72)

E∗ = E(t)∗(aẑ − ib∗ (−σ̂− − σ̂+)) = Eπẑ + E∗
σ+
σ̂+ + E∗

σ−σ̂− (2.73)

Eπ = E(t)a Eσ+ = iE(t)b Eσ− = iE(t)b (2.74)

E∗
π = E(t)a E∗

σ+
= −iE(t)b∗ E∗

σ− = −iE(t)b∗. (2.75)

The contribution to the Rabi frequency from the P1/2 state:

Ω2γ0(t) =
1

2∆

d2

ℏ2
(
E∗

πEσ−C02C12 + E∗
σ+
EπC03C13

)
(2.76)

= −
√
2

6∆

d2

ℏ2
(
E∗

πEσ− + E∗
σ+
Eπ

)
(2.77)

= −
√
2

6∆

d2

ℏ2
(aiE(t) (b− b∗)) =

√
2

3∆

(
dE(t)
ℏ

)2

ℑ(b) (2.78)

Just a 90◦ phase shift, same magnitude.

Using the second polarization convention, the P3/2 state contribution to the two

15



beam rabi frequency :

Ω2γ455(t) =
1

2∆455

d2455
ℏ2
(
E∗

πEσ−C05C15 + E∗
σ+
EπC06C16

)
(2.79)

Ω2γ455(t) =

√
2

6∆455

d2455
ℏ2
(
E∗

πEσ− + E∗
σ+
Eπ

)
(2.80)

= −
√
2

3∆455

(
d455E(t)

ℏ

)2

ℑ(b). (2.81)

The Raman Rabi frequency for any polarization and pointing, making sure the same

polarization convention was used to calculated both terms,

Ωtot(t) =

√
2

6ℏ

(
d2455
∆455

− d2

∆

)(
E∗

πEσ− + E∗
σ+
Eπ

)
(2.82)

According to the transition dipole moments from [IS08]

d455 =
√
2d (2.83)

⇒ Ωtot(t) =

√
2

6

d2

ℏ2

(
2

∆455

− 1

∆

)(
E∗

πEσ− + E∗
σ+
Eπ

)
(2.84)

=

√
2

6∆

d2

ℏ2

(
2∆

∆− ωFS

− 1

)(
E∗

πEσ− + E∗
σ+
Eπ

)
(2.85)

2.11 Differential Light-Shift

Using the transition dipole moments above, d455 =
√
2d, the differential light shift is

δ2γ(t) = ∆L1(t)−∆L0(t) =
1

4∆

(
|g12|2 + |g13|2 − |g02|2 − |g03|2

)
+

1

4∆455

(
|g15|2 + |g16|2 + |g17|2 − |g04|2 − |g05|2 − |g06|2

) (2.86)

=
1

4ℏ2

(
d2

∆

(
|C12Eσ− |2 + |C13Eπ|2 − |C02Eπ|2 − |C03Eσ+ |2

)
+
d2455
∆455

(
|C15Eσ− |2 + |C16Eπ|2 + |C17Eσ+|2

−|C04Eσ−|2 − |C05Eπ|2 − |C06Eσ+|2
)) (2.87)

=
d2

4ℏ2

(
2

3∆

(
|Eσ+|2 − |Eσ−|2

)
+

2

∆455

(
|Eσ+|2 − 1

3
|Eσ+|2 + 1

3
|Eσ−|2 − |Eσ−|2

)) (2.88)

=
d2

6ℏ2∆

(
2∆

∆− ωFS

+ 1

)(
|Eσ+|2 − |Eσ−|2

)
(2.89)
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2.11.0.1 Nulling Light Shift

For some laser frequency, ω, the differential light shift will vanish, independent of

the laser intensity:

δ2γ = 0 =
d2

6ℏ2∆

(
2∆

∆− ωFS

+ 1

)(
|Eσ+ |2 − |Eσ− |2

)
(2.90)

⇒ 0 =
2∆

∆− ωFS

+ 1 = 2∆ +∆− ωFS (2.91)

⇒ 3∆ = ωFS (2.92)

ωmagic = ω0 +
1

3
ωFS. (2.93)

2.12 Rabi Frequency with Perpendicular Beams

When using muliple beams, the optical phase of each needs to be considered when

calculating the Rabi frequency. For reference:

gijk = −e−iφk
dijEd
ℏ

Cijk . (2.94)

π-σ

B

RF

RF

DC

DC

DC

DC

y

z

Figure 2.3: SDK laser beam geometry

With the beams shown in Fig. 2.3, which are of the same frequency, but differing

k vectors, kπ = 1√
2
k (ŷ + ẑ) and kσ− = 1√

2
k (ŷ − ẑ) and just focusing on the P1/2
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state, there is no coupling between |0⟩ and |3⟩, and the Rabi frequency follows:

Ω2γ0 =
1

2∆

(
g∗02πg12σ−

)
(2.95)

= −eiφπe−iφσ−

√
2d2

6ℏ2∆
(
E∗

πEσ−

)
, (2.96)

where φπ = −kπ · r + ϕπ = − 1√
2
k (y + z) + ϕπ, and φσ− = −kσ− · r + ϕσ− =

− 1√
2
k (y − z) + ϕσ− and therefore the phase difference between the beams varies

spatially,

φπ − φσ− = − 1√
2
k (y + z) + ϕπ +

1√
2
k (y − z)− ϕσ− (2.97)

= −
√
2kz + ϕπ − ϕσ− . (2.98)

This gives a spatial variation to the Rabi frequency:

Ω2γ0 = − exp(i (φπ − φσ−))

√
2d2

6ℏ2∆
(
E∗

πEσ−

)
(2.99)

= −ei(ϕπ−ϕσ−) exp
(
−i

√
2kz
) √

2d2

6ℏ2∆
(
E∗

πEσ−

)
(2.100)

Continuing forward, the beam path lengths are assumed to be the same and the

first phase factor goes away. The second phase factor can be seen as a momen-

tum kick. This operation takes place in a harmonic oscillator where the oper-

ator z = z0
(
a† + a

)
, and the phase difference causes a momentum displacement

D (iη) ≡ exp
(
iη
(
a† + a

))
, defining the effective Lamb-Dicke parameter η ≡

√
2kz0,

and including the contribution from the P3/2 state in the same way as section 2.10,

the Rabi frequency becomes,

Ωtot = −
√
2

6∆

d2

ℏ2

(
2∆

∆− ωFS

− 1

)(
E∗

πEσ−

)
D (−iη) (2.101)

= Ω0D(−iη). (2.102)

The displacement operator acts on the motional state of the ion, leading to a coupling

between the internal (spin) state of the ion and its motion.

2.13 Including Motion

The ion trap potential adds to the Hamiltonian Htrap = ωtrap(n̂ + 1/2) (see sec-

tion 3.1). During the experiment, the ion is not prepared to a pure Fock state; the
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density matrix formulation is needed to calculate expectation values. The Glauber-

Sudarshan distribution expresses the density matrix in terms of coherent states |α⟩,

ρ =

∫
d2αPG(α)|Ψ⟩⟨Ψ|, (2.103)

with Ψ ≡ |ψ, α⟩ = |ψ⟩ ⊗ |α⟩, and |ψ⟩ the ion’s internal state wavefunction. After

Doppler cooling the ion is in a thermal state so PG(α) =
1
πn̄
e−|α|2/n̄, with n̄ the mean

occupation number, corresponding to the mean motional energy Ē = ωtrapn̄. For an

ion in a thermal state with temperature T , 1/n̄ = exp (ωtrap/kBT )− 1.

2.13.1 Coherent States

The coherent states of a particle with mass, m, in a harmonic oscillator with secular

frequency, ωtrap, are the eigenfunctions of the annihilation operator a:

a|α⟩ = α|α⟩ (2.104)

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩, (2.105)

they aren’t orthonormal

⟨α|β⟩ = e−
1
2(|α|2+|β|2−2α∗β), (2.106)

and their time evolution, with ωtrapt = ϕ:

|α(t)⟩ = exp(−iHt)|α(0)⟩ = exp

(
−iϕ

(
n̂+

1

2

))
|α(0)⟩ (2.107)

= e−iϕ(n̂+1/2)e−|α(0)|2/2
∞∑
n=0

α(0)n√
n!

|n⟩ (2.108)

= e−iϕ/2e−|α(0)|2/2
∞∑
n=0

α(0)n√
n!

e−iϕn̂|n⟩ (2.109)

= e−iϕ/2e−|α(0)|2/2
∞∑
n=0

α(0)n√
n!

e−iϕn|n⟩ (2.110)

= e−iϕ/2e−|α(0)|2/2
∞∑
n=0

(α(0)e−iϕ)n√
n!

|n⟩ (2.111)

= e−iϕ/2|α(0)e−iϕ⟩ (2.112)
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The displacement operators:

D(β) = eβâ
†−β∗â (2.113)

D(β)|α⟩ = e(α
∗β−αβ∗)/2|α + β⟩ (2.114)

D(iη)|α⟩ = e(iηα
∗+iηα)/2|α + iη⟩ = eiη(α

∗+α)/2|α + iη⟩ (2.115)

= eiηℜ(α)|α + iη⟩ = eiηαR |α + iη⟩ (2.116)

where α = αR+iαI and αR, αI are the real and imaginary components of the coherent

state, respectively and η is real.

2.13.2 SDK Ramsey Wavefunction Calcluation

The ion state distribution after a π/2, wait, π/2 Ramsey sequence given a density

matrix ρ and using Eq. (2.103), is calculated

P↑ =|⟨↑|ψ⟩|2 = ⟨↑|ψ⟩⟨ψ|↑⟩ = ⟨↑|Trα(ρ)|↑⟩ =
〈
↑
∣∣∣∣ 1π
∫
d2β⟨β|ρ|β⟩

∣∣∣∣ ↑〉 (2.117)

=

∫
d2β⟨↑|⟨β|

(
1

π

∫
d2αPG(α)|Ψ⟩⟨Ψ|

)
|β⟩|↑⟩ (2.118)

=

∫
d2αPG(α)

(
1

π

∫
d2β⟨↑, β|ψ, α⟩⟨ψ, α|↑, β⟩

)
(2.119)

=

∫
d2αPG(α)

(
1

π

∫
d2β⟨ψ, α|↑, β⟩⟨↑, β|ψ, α⟩

)
(2.120)

=

∫
d2αPG(α)

(
1

π

∫
d2β⟨ψ, α|↑⟩|β⟩⟨β|⟨↑|ψ, α⟩

)
(2.121)

=

∫
d2αPG(α)

(
⟨ψ, α|↑⟩

(
1

π

∫
d2β|β⟩⟨β|

)
⟨↑|ψ, α⟩

)
(2.122)

=

∫
d2αPG(α)⟨ψ, α|↑⟩ (1) ⟨↑ |ψ, α⟩ (2.123)

=

∫
d2αPG(α)⟨α↑|α↑⟩, (2.124)

Where |α↑⟩ is the motional part of the wavefunction entangled with the spin-up state.

After optical pumping, the ion is prepared to |↑⟩, and the density matrix is:

ρi =

∫
d2αPG(α)|↑, α⟩⟨↑, α|. (2.125)

Subsequent density matrices can be cacluated by evolving the wavefunction according

to the time evolution operator.
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2.13.2.1 Time Evolution Operator

According to the Schrodinger representation of quantum mechanics, given an initial

wavefunction |Ψ(0)⟩, the wavefunction at a later time |Ψ(t)⟩ and be found using the

time evolution operator U(t)

|Ψ(t)⟩ = U(t)|Ψ(0)⟩, (2.126)

where U(t) = exp
(
−iĤt

)
, and Ĥ is the Hamiltonian of the system. Adding in the

motion and using Eq. (2.42) and (2.102), the effective Hamiltonian becomes

Heff = −1

2

 2∆L0 Ω0D(iη)

Ω0D(−iη) 2∆L1 + 2δ

+ ωtrap

(
n̂+

1

2

)
. (2.127)

Using the identity eiθÂ = cos(θ)1 + i sin(θ)Â, for any operator Â such that Â2 = 1,

the Hamiltonian can be rewritten:

Heff = −Ω0

2
Â− ∆̂ + ωtrap

(
n̂+

1

2

)
, (2.128)

With ∆̂ =

∆L0 0

0 ∆L1 + δ

, Â =

 0 D(iη)

D(−iη) 0

 and ωtrapt = ϕ, it can be

shown Â2 = 1 leading to a time evolution operator:

U(t) = exp(−iĤt) = exp

(
i
Ω0t

2
Â

)
exp

(
i∆̂t
)
exp

(
−iϕ

(
n̂+

1

2

))
(2.129)

=

(
cos

(
Ω0t

2

)
1+ i sin

(
Ω0t

2

)
Â

)
exp

i∆L0t 0

0 i∆L1t+ iδt

 e−iϕ(n̂+ 1
2)

(2.130)

=

 cos
(
Ω0t
2

)
ei∆L0

t i sin
(
Ω0t
2

)
D(iη)ei(∆L1

+δ)t

i sin
(
Ω0t
2

)
D(−iη)ei∆L0

t cos
(
Ω0t
2

)
ei(∆L1

+δ)t

 e−iϕ(n̂+ 1
2) (2.131)

Factoring out ei∆L0
t, using the fact that overall phase factors in the time evolution

operator can be dropped as they don’t affect the population dynamics, and assuming

a vanishing differential light shift, ∆L1 − ∆L0 = 0, the time evolution operator

becomes

U(t) =

 cos
(
Ω0t
2

)
i sin

(
Ω0t
2

)
D(iη)eiδt

i sin
(
Ω0t
2

)
D(−iη) cos

(
Ω0t
2

)
eiδt,

 e−iϕn̂ (2.132)
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For Ω0t = π/2, a π/2 pulse, the internal and motional phase factors can be

dropped since δ, ω << Ω0 ⇒ eiδt, e−iωtn̂ ≈ 1,

Uπ/2 =
1√
2

 1 iD(iη)

iD(−iη) 1

 . (2.133)

The wavefunction after the first π/2 pulse is

|Ψ1⟩ = Uπ/2|↑, α⟩ =
1√
2

 1 iD(iη)

iD(−iη) 1

 0

|α⟩

 (2.134)

=
1√
2

iD(iη)|α⟩
|α⟩

 =
1√
2

ieiηαR |α + iη⟩
|α⟩

 (2.135)

=
1√
2

(
ieiηαR |↓, α+ iη⟩+ |↑, α⟩

)
(2.136)

During the wait, the Raman lasers are off, Ω0 = 0, and the time evolution operator

becomes Uwait(T ) =

e−iϕn̂ 0

0 eiδT e−iϕn̂

, with ϕ = ωT . The |↑⟩ state picks up a

phase eiθ = eiδT and the coherent state evolves according to Eq. (2.112),

|Ψ2⟩ = Uwait(T )|Ψ1⟩ =
1√
2

e−iϕn̂ 0

0 eiδT e−iϕn̂

ieiηαR |α + iη⟩
|α⟩

 (2.137)

=
1√
2

(
ieiηαR |↓, (α + iη)e−iϕ⟩+ eiθ|↑, αe−iϕ⟩

)
(2.138)

The final π/2 pulse:

|Ψf⟩ = Uπ/2|Ψ2⟩ =
1

2

 1 iD(iη)

iD(−iη) 1

i|(α + iη)e−iϕ⟩eiηαR

eiθ|αe−iϕ⟩

 (2.139)

=
i

2
|↓⟩ ⊗

(
eiηαR |(α + iη)e−iϕ⟩+ eiθeiηℜ(αe−iϕ)|αe−iϕ + iη⟩

)
+

1

2
|↑⟩ ⊗

(
eiθ|αe−iϕ⟩ − eiη(αR−ℜ(αe−iϕ)−η sinϕ)|(α + iη)e−iϕ − iη⟩

)
(2.140)

⇒ |α↑⟩ =
1

2

(
eiθ|αe−iϕ⟩ − eiη(αR−ℜ(αe−iϕ)−η sinϕ)|(α + iη)e−iϕ − iη⟩

)
(2.141)
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2.13.2.2 Motional Overlap

⟨α↑|α↑⟩ =
1

4

(
e−iθ⟨αe−iϕ| − e−iη(αR−ℜ(αe−iϕ)−η sinϕ)⟨(α + iη)e−iϕ − iη|

)
×
(
eiθ|αe−iϕ⟩ − eiη(αR−ℜ(αe−iϕ)−η sinϕ)|(α + iη)e−iϕ − iη⟩

)
(2.142)

=
1

4

(
2− e−iθeiη(αR−ℜ(αe−iϕ)−η sinϕ)⟨αe−iϕ|(α + iη)e−iϕ − iη⟩+ c.c

)
(2.143)

=
1

2
− 1

2
Re
(
e−iθe−iη2 sinϕeiη(αR−ℜ(αe−iϕ))⟨αe−iϕ|(α + iη)e−iϕ − iη⟩

)
(2.144)

Using ⟨α|β⟩ = e−
1
2(|α|2+|β|2−2α∗β), and taking B = (α+iη)e−iϕ−iη, the inner product

above simplifies

⟨αe−iϕ|(α + iη)e−iϕ − iη⟩ = ⟨A|B⟩ = exp

(
−1

2

(
|α|2 + |B|2 − 2α∗Beiϕ

))
(2.145)

|B|2 = ((α∗ − iη)eiϕ + iη)((α + iη)e−iϕ − iη) (2.146)

= (α∗ − iη)(α + iη) + iη
(
(α + iη)e−iϕ − (α∗ − iη)eiϕ

)
(2.147)

= |α|2 + 2η2 + iη
(
α∗ − α + αe−iϕ − α∗eiϕ

)
− η2

(
e−iϕ + eiϕ

)
(2.148)

= |α|2 + 2η2(1− cosϕ) + iη
(
α∗ − α + αe−iϕ − α∗eiϕ

)
(2.149)

2α∗Beiϕ = 2α∗ ((α + iη)e−iϕ − iη
)
eiϕ = 2|α|2 + 2iη(α∗ − α∗eiϕ) (2.150)

⟨A|B⟩ = exp

(
−1

2

(
|α|2+|α|2 + 2η2(1− cosϕ)

+iη
(
α∗ − α + αe−iϕ − α∗eiϕ

)
− 2|α|2 − 2iηα∗ + 2iηα∗eiϕ

))
(2.151)

= exp

(
−1

2

(
2η2(1− cosϕ)− iη

(
α∗ + α− αe−iϕ − α∗eiϕ

)))
(2.152)

= exp
(
−η2(1− cosϕ) + iη

(
αR −ℜ(αe−iϕ)

))
(2.153)

(2.154)

Plugging back into Eq. (2.144), and using ℜ(αe−iϕ) = αR cosϕ+ αI sinϕ,

⟨α↑|α↑⟩ =
1

2
− 1

2
Re
(
e−iθe−iη2 sinϕeiη(αR−ℜ(αe−iϕ))e−η2(1−cosϕ)+iη(αR−ℜ(αe−iϕ))

)
(2.155)

=
1

2
− 1

2
e−η2(1−cosϕ)Re

(
e2iη(αR(1−cosϕ)−αI sinϕ)e−iθe−iη2 sinϕ

)
(2.156)

=
1

2
− 1

2
e−η2(1−cosϕ) cos (2iη(αR(1− cosϕ)− αI sinϕ)− γ) (2.157)
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with γ = θ + η2 sinϕ

Now back to the population in |↑⟩ after the SDK Ramsey sequence, using Eq. (2.124)

and the integral: ∫ ∞

−∞
dx e−x2/a2 cos(bx+ c) = a

√
πe−b2a2/4 cos(c) (2.158)

P↑ =

∫
d2α

(
1

πn̄
e−|α|2/n̄

)(
1

2
− 1

2
e−η2(1−cosϕ) cos (2iη(αR(1− cosϕ)− αI sinϕ)− γ)

)
(2.159)

=
1

2
− 1

2
e−η2(1−cosϕ)

∫
d2α

(
1

πn̄
e−|α|2/n̄

)
cos (2iη(αR − αR cosϕ− αI sinϕ)− γ)

(2.160)

=
1

2
− e−η2(1−cosϕ)

2πn̄

∫
dαRdαIe

−(α2
R+α2

I)/n̄ cos (2iη(αR − αR cosϕ− αI sinϕ)− γ)

(2.161)

=
1

2
− e−η2(1−cosϕ)

2πn̄

∫
dαRdαIe

−(α2
R+α2

I)/n̄ cos (2iη(αR − αR cosϕ− αI sinϕ)− γ)

(2.162)

=
1

2
−

√
πn̄

2πn̄
e−η2(1−cosϕ)e−η2n̄(1−cosϕ)2

∫
dαIe

−α2
I/n̄ cos (2iηαI sinϕ+ γ) (2.163)

=
1

2
− πn̄

2πn̄
e−η2(1−cosϕ)e−η2n̄(1−cosϕ)2e−η2n̄ sin2 ϕ cos (γ) (2.164)

=
1

2
− 1

2
e−η2(1−cosϕ)(1+2n̄) cos (γ) (2.165)

=
1

2
− 1

2
e−η2(1−cosϕ)(2n̄+1) cos

(
θ + η2 sinϕ

)
(2.166)

The probability oscillates as a function of the Ramsey wait time, T , with a periodic,

exponential envelope. These oscillations are interference fringes due to the varying

phase difference between the |↑⟩ and |↓⟩ states. The amplitude, or the difference

between the highest and lowest points, of these oscillations is the fringe contrast,

C(T ) = exp
(
−η2(1− cosϕ)(2n̄+ 1)

)
(2.167)

The contrast is lowest when the Ramsey time is exactly half a trap period,

T = Ttrap/2 = π/ωtrap ⇒ ϕ = π ⇒ sinϕ = 0, cosϕ = −1
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C(Ttrap/2) = exp
(
−2η2(2n̄+ 1)

)
The contrast is highest when the Ramsey time equals a trap period,

T = Ttrap = 2π/ωtrap ⇒ ϕ = 2π ⇒ sinϕ = 0, cosϕ = 1

C(Ttrap) = 1

and the usual Ramsey equation is recovered.

P↑(Ttrap) =
1

2
− 1

2
cos (δT ) = sin2 (δT/2) (2.168)

If the timing is close to correct,

T ≈ Ttrap = 2π/ωtrap ⇒ ϕ ≈ 2π

⇒ sinϕ ≈ ϕ− 2π = ωtrapT − ωtrapTtrap = ωtrap(T − Ttrap) = ωtrapδT

cosϕ ≈ 1− (2π − ϕ)2/2 = 1− (ωtrapδT )
2/2,

using δT ≡ T − Ttrap. The contrast is now

C(T ≈ Ttrap) = exp
(
−η2((ωtrapδT )

2/2)(2n̄+ 1)
)

(2.169)

= exp
(
−δT 2(ηωtrap

√
2n̄+ 1)2/2

)
, (2.170)

a Gaussian with deviation σ = (ηωtrap

√
2n̄+ 1)−1
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CHAPTER 3

Experimental Setup

3.1 Ion Trap

3.1.1 Theory

According to Earnshaw’s theorem, an oscillating field is needed to trap charged

particles. There are a few known ways to do this. The two most prolific are the

Penning trap and the Paul trap. Both use quadrupole electric fields, but the ion

motion is much more complicated in a Penning trap and it utilizes a strong magnetic

field that will cause unwanted Zeeman shifts. The Paul trap uses oscillating electric

fields and no magnetic fields. It is typically constructed from 4 segmented, parallel,

cylindrical rods, as shown in Fig. 3.1.

Figure 3.1: CAD drawing of the ion trap

The middle segments provide the oscillating field and the end segments, or end-

caps, provide a static DC voltage to confine the ions along the axial direction. A DC

voltage, U , on the endcaps, together with an oscillating voltage V (t) = V0 cos(ΩT t)
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applied to two diagonal rods creates an approximate potential

V (x, y, z, t) ≈ 1

2
V0 cos(ΩT t)

(
1 +

x2 − y2

r20

)
+
U

z20

(
z2 − 1

2

(
x2 + y2

))
(3.1)

Now, the ion’s equations of motion will follow Newton’s 2nd law

ẍ =
F

m
= − e

m
∇V (3.2)

⇒ ẍi = −Ω2
T

4
(ai − 2qi cos (ΩT t))xi, (3.3)

with i the x, y, z components of the position vector x, and

ax = − 4eU

mz20Ω
2
T

ay = ax az = −2ax (3.4)

qx = − 2eV0
mr20Ω

2
T

qy = −qx qz = 0 (3.5)

Making the change of variables ξ = ΩT t/2, transforms this equation into the familiar

Mathieu equation [Mar97].

d2xi
dξ2

+ (ai − 2qi cos(2ξ))xi = 0 (3.6)

The solutions are a power series in ai and qi. The trap typically operates with U = 0

and eV0 << mr20Ω
2
T , so ai, qi << 1. This suggests the solution of lowest order in ai

and qi will be good approximations of the ion’s motion. Following [WMI98]:

xi = xi0 cos (ωit+ ϕS)
(
1− qi

2
cos (ΩT t+ ϕM)

)
, (3.7)

with xi0 , ϕS, and ϕM given by initial trapping conditions, and ωi ≈ ΩT

2

√
ai + q2i /2,

the trap secular frequencies.

3.1.2 Ion Trap Construction

In order to perform circular orbits during the operation of the gyroscope, the three

trap secular frequencies need to be equal. Usually the oscillating fields are much

larger than the DC voltage on the endcaps. This leads to a much larger radial

secular frequency than the axial secular frequency. In order to keep all the secular

frequencies ∼ 100 kHz, the trap was designed with rod spacing r0 = 1 cm, trap drive

frequency ΩT = 2π× 1 MHz, and trap voltage of V0 ≈ 500 V. The large rod spacing

also makes the trap easier to assemble, the ions are easier to load, and allows for
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increased optical access. In theory, one would expect ωz = 0 if U = 0, but because

of the finite length of the RF segment of the rod, the fringing field provides some

confinement in the axial direction. Experimentally, the axial secular frequency is

measured ωz ≈ 2π × 32 kHz.

3.1.3 Ablation Loading

To load the ion trap, a Continuum Surelite pulsed Nd:YAG laser is used to ablate

a BaO target, similar to [Kni81]. While the laser is firing and the ablation plume is

being created, the ion trap voltage is switched off. Once the plume enters the trapping

region of the ion trap, the voltage is switched back on. With the laser Q-switch delay

set at 285 µs and focusing to a 1/e2 waist of 100 µm, a fluence of 650 µJ/(π/2(100

µm)2) = 4 J/cm2 is achieved. This configuration yields tens to several hundred

trapped ions. To isolate a single ion, the trap voltage is rapidly lowered to a minimal

value before being raised again using a computer-controlled toggle. After repeating

this process several times, a crystal of a few ions remain. To refine this crystal

to a single ion, the low voltage threshold is decreased and the toggling process is

continued. The LabVIEW program, ImageProcessor.vi, running on the ”sagnac log”

computer has been developed to automate this distillation process.
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3.2 Vacuum Chamber

Figure 3.2: Assembled vacuum chamber with the metal bellows to the turbo pump

attached.

To ensure the stability of the trapped ions, it is important to minimize collisions

with background gases. Neutral molecules are unaffected by the ion trap and can

disturb the trapped ions. One common method to avoid these collisions is to cool

the entire assembly. This will slow down the neutral molecules so they are less likely

to knock the ion out of the trap. The method used in this experiment is to pump

out the excess gas to get the chamber down to ultra-high vacuum (UHV) pressures.
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3.2.1 Vacuum Parts

All the vacuum parts can be found on the Sagnac BOM spreadsheet in the Hamilton

Lab Google Drive, but for ease of access, some of the main parts are listed here:

• 8” octagon: MCF800-ExtOct-G2C8A16 from Kimball Physics

• AR coated viewports: from Larson

• KF and CF clamps, flanges, etc: from Lesker

• Ceramic washers and screws: from Ceramco

• Gamma Vacuum ion pump: 3SCV1V5KNN, from Edwards Vacuum

• Varian Agilent ion gauge: P104144, from Ideal Vacuum

• NEXTorr NEG-ion pump: D 200-5 is from SAES, part number NEXTorr D

200-5.

3.2.2 Chamber Preparation

In order to pump down to UHV pressures, the parts need to be cleaned and the

chamber needs to be heated while being pumped down on, also known as baking.

Baking releases gases that have been adsorbed into the metal vacuum chamber walls.

[SFS17].

3.2.2.1 Cleaning

Cleaning the vacuum parts leads to a lower vacuum pressure by reducing the number

of outgassing sources. Most of the vacuum chamber parts were machined and still

have residual cutting grease or markings from pens that need to be cleaned off [Rei99].

The procedure used to clean the vacuum parts is as follows:

Note: Gloves should be worn during all parts of the cleaning process to prevent

contamination from body oils, hair, and other sources.
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1. First, the detergent Alconox was mixed with warm water to create a bath in

a sonicator. The solution was heated to 50°C, the parts were placed in, and

the sonicator was run for 30 minutes.

2. After the first bath, the parts were rinsed with deionized (DI) water, making

sure to rinse out any residual Alconox solution from corners, slots, and espe-

cially blind holes. The DI water was wiped off with Kim Wipes and the parts

were set on a large sheet of overlapping Kim Wipes to dry overnight.

3. Another bath of pure acetone was prepared to 50°C in the sonicator, the parts

were placed in, and the sonicator was run for 30 minutes. The parts were then

rinsed and dried as in step 2.

4. A final bath of isoproyl alcohol was prepared at 50°C in the sonicator, the

parts were placed in, and the sonicator was run for 30 minutes. The parts

were then rinsed and dried as in step 2.

The parts were then carefully wrapped-up and stored in kim wipes until chamber

assembly.

3.2.2.2 Baking

Once the chamber was assembled and leak checked, it was heated in a Despatch

LAC2-12-4 laboratory heater oven, shown in Fig. 3.3. The whole assembly was

baked for about a week at 200°C while being pumped down by a PF70 HiCube

turbo pump. The pressure was analyzed with a residual gas analyzer (RGA) until

the pressure got low enough to use the ion pump and ion gauge. After the bake, the

chamber pressure reached about 3.5e-10 Torr according to the ion pump. One of the

ion gauge filaments broke and the ion gauge was not used to measure the vacuum

pressure during this bake.
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Figure 3.3: Inside of Despatch oven used to bake the vacuum chamber

After the first bake, the chamber was used for about a year, but the pressure

had increased, as evidenced by the drastic decrease in ion lifetime. It came to a

breaking point when the ion lifetime was getting to be less than a minute. The ion

fluorescence data in Fig. 3.4 show that individual ion losses were uncorrelated and

short-lived, eliminating issues arising from electrode voltages. It is likely that ion

losses were due to collisions with background gasses, so the chamber was re-baked

for about a week to lower the vacuum pressure.
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Figure 3.4: Four PMT count rate traces recording the fluorescence of two trapped

ions. Dips in the count rate indicate ion loss. It is rare for both ions to go dark

simultaneously and the ion are easily recoverable. This is indicative of a non-common

loss mechanism.

The procedural steps during the second bake, along with the RGA partial pres-

sures versus time, are depicted in Fig. 3.5.
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Figure 3.5: Procedural steps and RGA trace over the first 140 hours of the 2nd

chamber bake.

At the end of the bake, as the chamber cooled down, the ion pump was turned

on. As the pressure decreases below 10s of nTorr, the RGA becomes a less reliable

barometer, so the pressure needs to be read with the ion pump. After a few hours

the pump reads the minimum pressure of 1.5e-11 Torr, an order of magnitude better

than the first bake, but to get an accurate pressure reading the ion gauge should be

used.

During the first bake, the ion gauge was turned on towards the end of the bake,

it read a fairly high pressure and after about an hour an error appeared on the

controller indicating a filament had broken. In order to prevent another broken

filament during the second bake, the ion gauge was degassed before turning it on.

During the degassing process, the ion gauge ejects diffused gas into the chamber, so

a local rise in pressure is expected. Fig. 3.6 shows the ion pump pressure (in black)

and ion gauge pressure (in red) during the ion gauge degassing. The data starts on

a Wednesday evening, shortly after the initiation of ion gauge degassing. Initially,

the pressure in the chamber drops as the gate valve to the turbo is closed, and rises

again as the chamber is heated. The ion gauge pressure rises quickly, requiring its
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deactivation, while the ion pump pressure rises much more slowly, plateaus, and then

starts decreasing. Thursday morning, the ion gauge is fully degassed and the chamber

is cooled back down. The ion pump reads its minimum pressure that evening, but

eventually creeps back up by Friday morning. Strangely, the ion pump pressure

suddenly increased to about 7 nTorr that weekend, while the ion gauge pressure

reading was less than 5e-10 Torr. Proceeding with these readings, the ion lifetime

was verified to have increased to well over a few hours. During the COVID lockdown,

many electronics, including the ion gauge, were turned off in case the lab was to

remain vacant for many weeks. The ion gauge had broken once in the first bake,

leading to reluctance to turn it back on. Instead, the ion pump is used as a proxy

for the vacuum pressure. It consistently reads pressures of a few nTorr, so the ion

gauge stays off and the vacuum remains satisfactory.
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Figure 3.6: Ion pump pressure reading after the final bake and ion gauge degas
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3.3 Laser Setups

Pulse Picker

Delay 
Stage

λ/2 λ/4 PBS
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Cooling

SDK sigma

Deshelve

Shelving
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x6 telescope
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-125 mm
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Figure 3.7: Laser setup near the vacuum chamber, showing the beam paths for the

cooling, repump, optical pumping, shelving, deshelving, and Raman lasers.

Lasers for cooling, state preparation, state measurement, and Raman transitions

need to shine on the ion. Typical laser parameters, EOM, and AOM shifts can be

found in the experiment OneNote under the “Lasers” tab. The laser setup going into

the vacuum chamber is shown in Fig. 3.7.
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3.3.1 Doppler Cooling Lasers
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Figure 3.8: Doppler Cooling scheme: The spontaneously emitted 493 nm photons

are used for fluorescence measurements.

To Doppler cool the ion as described in Sec. 2.5, two lasers are employed: a 493

nm laser for the primary cooling process, and a 650 nm laser to repump ions from

the D3/2 state. Both lasers are Toptica DL Pro ECDLs powered by Toptica’s DLC

pro. This cooling technique follows the S1/2 ↔ P1/2 ↔ D3/2 cycle, as illustrated in

Fig. 3.8. To efficiently cool the ion over many hours, the light from both lasers is

sent through fibers to a wavemeter and a scanning cavity to measure and stabilize

the frequency, respectively. Additionally, a portion of the 493 nm light is used for

optical pumping. The setups are shown in Figs. 3.9-3.12.

λ/2 PBS

Laser

To 
wavemeter

Fiber

To lock

106 MHz
AOM

50 MHz
EOM

Cooling
light

Optical
Pumping

80 MHz
AOM

λ/4

Figure 3.9: Condensed schematic of the 493 nm laser setup.
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Figure 3.10: Picture of actual 493 nm laser setup

λ/2 PBS
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EOM  Cooling 

Light 

Figure 3.11: Condensed schematic of the 650 nm laser setup.

Figure 3.12: Picture of actual 650 nm laser setup

3.3.1.1 Laser Lock

The scanning cavity stabilizes, or locks, the frequencies of the experiment lasers, 493

nm, 650 nm, and 455 nm, the latter’s purpose is explained in Sec. 3.3.3. The lock

compares the experiment lasers’ cavity resonances with the cavity resonances of a

reference 633 nm HeNe laser (see Fig. 3.13). A piezoelectric transducer scans the

cavity length slightly more than the full 633 nm free spectral range leading to two
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transmission peaks from the HeNe laser. Using the known length of the cavity and

the number of pixels between the HeNe cavity transmission peaks, the frequency

change per pixel for the reference laser is calculated. The frequency per pixel for

the experiment lasers is then the reference frequency change per pixel scaled by the

ratio of the laser wavelengths. A LabVIEW VI constantly monitors the positions of

the cavity peaks and sends voltages to the lasers’ piezos. Given the HeNe’s passive

frequency stability, when the HeNe peaks change position, it is more likely that the

cavity length changed (e.g. because the lab temperature changed) rather than the

HeNe frequency changing. Therefore, when the HeNe peaks move, it is accounted

for by adding an offset voltage to the piezo scan.
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Dichroic Fiber couple
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Figure 3.13: Laser locking setup showing the laser light getting sent to the locking

cavity before the AOM shifts. The experiment lasers are compared to the stable

HeNe laser on a scanning Fabry-Perot cavity. Individual error signals from the

locking software control the lasers’ piezo voltage to stabilize the laser frequency.

In order to perform meaningful, repeatable experiments, techniques to prepare

and measure the state of the ion are needed.
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3.3.2 State Preparation
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Figure 3.14: Optical Pumping scheme: Using a σ+ polarized 493 nm beam and a

650 nm repump beam will pump the ion into the |↑⟩ state.

As shown in Fig. 3.14, a pure state is prepared using a σ+ polarized 493 nm beam to

optically pump the ion to |↑⟩ (see Sec. 2.6). The only transition that can be driven

with σ+ light is |↓⟩ → |P1/2,mj = 1/2⟩. It is also ∼ 50 MHz > 2Γ493 away from any

other transitions, so the optically pumped state is sensitive to both polarization and

frequency.

3.3.3 State Measurement

Detecting the ion state involves two steps, first, shelving, Fig. 3.15 then fluorescence

measurement, Fig. 3.8. During the fluorescence measurement, 493 nm and 650 nm

cooling beams are applied, fluorescent 493 nm photons are then detected with the

imaging setup described below. If fluorescence is observed, the ion state must have

been in the |↓⟩, or bright, state. After shelving, if no fluorescence is observed then

it must have been the case that the ion was in the |↑⟩, or dark, state and is now in

the D5/2 manifold, which does not interact with the cooling lasers.
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3.3.3.1 Shelving
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Figure 3.15: Shelving Scheme: 455 nm and 650 nm lasers are used to transfer the

ion to the D5/2 state.

To shelve, a σ+ polarized 455 nm shelving beam and the 650 nm repump beam are

applied until >99% of the |↑⟩ population is moved out of the S1/2 manifold. Most

of the population ends up in the D5/2 manifold, which has a lifetime of about 30

seconds, during which the |↓⟩ population can be manipulated without addressing the

|↑⟩ population which has now been moved to the shelved state.

The 455 nm light is generated by a home-built, Littrow ECDL, shown in Fig. 3.17.

The diode is an OSRAM PLT-450B and is current controlled with an SRS LDC501

Laser Diode Controller, the SRS controller also maintains the laser diode temperature

using a thermistor for temperature measurements and a TEC to cool or heat a metal

plate under the diode. A piezo is used to control the grating angle for fine wavelength

tuning. The beam path of the 455 nm laser is similar to that of the cooling lasers,

some of the light is picked off to the wavemeter and some to the scanning cavity.

The experiment light is switched using an AOM in double pass configuration, see

Fig. 3.16.
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Figure 3.16: Condensed schematic of the 455 nm laser setup.

Figure 3.17: Picture of actual 455 nm laser setup
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3.3.3.2 Fluorescence Imaging
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Figure 3.18: Rendering of the ion trap apparatus with the fluorescence collection

optics shown in relation to the vacuum chamber.
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Figure 3.19: Cross-section of the imaging setup.

While the ion is being Doppler cooled it isotropically and spontaneously emits 493

nm photons. This fluorescence is collected through the bottom window of the vac-

uum chamber, as seen in Fig. 3.18 and is used to give insight on the ion’s motional

and internal state. Fig. 3.19 shows a more detailed, cross-section view of the fluores-
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cence collection optics. Not shown is the elliptical mirror that redirects the emitted

fluorescence to enable a horizontal layout for the imaging optics. The first two as-

pheres have large NA to efficiently collect the fluorescent photons. An iris acts as a

spatial filter at the focus of the 2nd asphere. The next two lenses magnify and recol-

limate the light to be imaged on either a camera or a photomultiplier tube (PMT).

A flipper mirror in the beamline allows switching between the two photodetectors.

More details can be found in the document written by Adam West, it is linked in

the “Imaging” tab in the experiment OneNote. The PMT used in fluoresence de-

tection is the Hamamatsu H12386-210 and the current camera for imaging ions is

the Thorlabs CS2100M-USB sCMOS camera. sCMOS cameras are a relatively new

technology to be used in imaging atomic physics experiments; typically, an EM-CCD

camera is used to quickly image the low light levels of a single fluorescing ion.

At first, the Rolera EM-C2 EM-CCD camera was used to image the ions. When

deciding on a scientific camera, there is a trade-off between cost and performance,

on one end are the superb Andor EM-CCD cameras which come with a price tag

greater than $10000 and require a special PCI card. The Rolera EM-C2 was found

on eBay for $2800. It worked well for years until the power supply stopped working;

it was replaced, but the camera would turn off unprompted and wouldn’t reliably

turn back on. While a solution was being put together, a Thorlabs sCMOS camera

was borrowed from the barium lab next door. It worked well, and a similar one was

bought for the experiment. Table 3.1 compares the specifications of both cameras.

On paper, the EM-C2 seems better because of the higher SNR, but in reality, having

the extra illuminated pixels when using the Thorlabs camera seemed to make mi-

cromotion compensation more precise and the hit to SNR didn’t affect the ease of

loading.
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Single Ion Imaging

Ion Size: 1231.5 µm2 Exposure: 250 ms Photon Flux: 60 kHz

Rolera Thorlabs

Dark current/px ID 0.06 20

Dark shot noise/px σD 0.12 2.24

Read noise/px σR < 1 20

Quantum efficiency

(%)

QE 45 56

Pixel size (µm2) d2 64 25.4

Bright Dark Bright Dark

Filled pixels P 19 0 48 0

Signal/px S 351 0 173 0

Shot noise/px σs 18.7 0 13.2 0

Total noise/px σtot 18.8 < 1 13.4 2.4

Signal-to-noise ra-

tio/px

SNR 18.7 0 12.9 0

Table 3.1: Comparison of Rolera and Thorlabs camera specifications.

3.3.4 Deshelving
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Figure 3.20: 614 nm light from the doubled gain chip ECDL moves the ion population

from the D5/2 manifold to the P3/2 manifold, where it quickly decays back down to

the S1/2 manifold.
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To take multiple experiments in a row, the ion needs to quickly return to the ground

state, relying on spontaneous emission out of the D5/2 state is too slow. As shown in

Fig. 3.20, a 614 nm beam is applied to drive population from the D5/2 manifold to the

P3/2 manifold, from where it will quickly fall back to the ground state manifold. The

beam is applied until >99% of the population is moved into the S1/2 manifold. The

614 nm light is generated by doubling the ouput of a 1228 nm Littrow ECDL, shown

in Fig. 3.21. The 1228 nm ”diode” is actually a gain chip, which is quite similiar to a

diode, but is more sensitive to feedback and can usually generate higher powers. The

1228 nm light is doubled with an AdvR RSH-T0614-P98P63AL3 frequency doubler.

Figure 3.21: Setup for the doubled 1228 nm ECDL.

3.3.5 Raman Laser

Achieving fast momentum transfer to the ion requires a large Rabi frequency, neces-

sitating high laser intensities. This can be accomplished with a pulsed laser, where

the instantaneous intensity is much larger than a continuous-wave (CW) laser with

the same time-averaged power. To generate such high intensities the Paladin SCAN-

532-36000, a doubled, mode-locked, ND:YVO4 laser is used. It is specified to output

a Gaussian beam of 532 nm laser pulses at a 76 MHz repetition rate with a time-

averaged power of 36 W. Each pulse is vertically polarized with a FWHM duration

of less than 24 ps.
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3.3.5.1 Passive Mode-Locking

Mode-locked lasers use saturable absorbers in the laser cavity with the gain crystal

to generate pulsed light, the Paladin uses a saturable Bragg reflector (SBR). The

intensity-dependent transmission of the SBR preferentially allows high-intensity light

to circulate in the cavity. At first, the highest intensities will be from noise spikes,

but as the light circulates in the cavity these spikes get preferentially transmitted by

the SBR and amplified by the gain crystal. After a sufficient number of round trips,

all the power in the cavity will be concentrated in a single pulse.

The theoretical electric field envelope from a passively mode-locked laser is E1064(t) =

E0 sech(t/τ) ⇒ I(t)1064 =
E2

0

2Z0
sech2(t/τ) [Sie86]. The Paladin light is doubled, so the

output intensity shape used for the experiment is I532(t) ∝ I(t)21064 ∝ sech4(t/τ).

In order to find the pulse width, τ , an intensity autocorrelation was performed fol-

lowing slide 19 in [Lab]. The analysis assumes a sech2(1.76t/τFWHM) pulse shape,

which is also consistent for a sech4(t/τ) pulse shape since sech2(x) ≈ sech(π
2
x), and

τFWHM = 1.76τ . The corresponding pulse bandwidth is then ∆f = 0.315/τFWHM .

The autocorrelation measurement yielded a pulse width of τFWHM = 16.4(5) ps, or

a bandwidth of ∆f = 19.2 GHz.

3.3.5.2 Pulse Shape Effects

The pulse shape changes the probability of transition derived in Sec. 2.20. From

Rosen and Zener [RZ32], with a pulse of pulse area θ =
∫
dt′ Ω(t′), shape Ω(t) =

Ω0 sech(πt/τ
′) = Ω0 sech

2 (2t/τ ′) = Ω0 sech
2 (1.76t/τFWHM), driving a transition

|0⟩ → |1⟩ with splitting δ (the angular kind), the probability of transition after

the pulse now becomes

P0→1 = sin2 θ

2
sech2 δτ ′/2 = sin2 θ

2
sech2(δτFWHM/1.76) (3.8)

In order to get high population transfer, the pulse bandwidth should be much larger

than the level splitting. As described in Sec. 2.11, high-intensity pulses can introduce

a differential light shift between the levels, potentially decreasing transfer efficiency.

While taking measures to minimize these effects, complete compensation remains

as work for future endeavors. When the differential shift is negligible or sufficiently
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minimized, the dominant splitting of δ = 2π × 150 MHz arises from the magnetic

field-induced Zeeman effect. The max population transfer is near complete:

sech2 (δτFWHM/1.76) = sech2 ((2π × 150 MHz)(16.4 ps)/1.76) = 0.9999; (3.9)

3.3.5.3 Pulse Picker

The Conoptics 350-160-LA-AR@532 pulse picker is able to reliably transmit a target

single laser pulse, while attenuating the remaining pulses. This is accomplished by

placing a Pockels cell between two polarizers. Under normal circumstances no voltage

is applied to the Pockels cell such that it does not affect the beam. The polarizers

are turned perpendicular to one another so that light will be attenuated through

the device. A voltage on the Pockels cell allows for transmission of a pulse as the

Pockels cell rotates the polarization of light to allow it through the second polarizer.

This voltage is controlled with the Conoptics 25D power supply and triggered using

the LeCroy ArbStudio 1100 arbitrary function generator along with high frequency

TTL comparators. The pulse patterns can be quite complex, as shown in Fig. 3.22,

where reflections from the BNC cable can also be seen. The pulse picker used in

these experiments utilizes polarizing beam splitters as the polarizers, allowing the

“rejected” light to also be used for experiments. As shown in Fig. 3.23, the rejected

light from the pulse picker is used to drive Raman transitions with a tunable, co-

propagating beam.
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Figure 3.22: Pulse picker transmission detected on a Thorlabs DET20AFC: the

arbitary function generator allows for complex pulse picking patterns. Circled pulses

are from reflection in the BNC cable. Pulse heights only appear to be different due

to the sampling of the oscilloscope.

3.3.5.4 Raman Laser Setup

Pulse Picker

80 MHz AOM

Laser SDK 
sigma

SDK
piλ/2 PBS

Co-prop

Figure 3.23: Condensed Raman laser setup

The light from the Paladin laser is split between two functions, the co-propogating

beam and the sdk beams, as shown in Fig. 3.23.

3.3.5.5 Co-Propogating beam setup

Note: This setup is no longer in use. Exercise extreme caution when reviving

this system. The co-propagating beam is engineered to tunably drive the Raman
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transition without imparting momentum to the ion. The co-propagating setup is

shown in Fig. 3.24, with measured power losses. A single beam is split into two

paths. Each path gets its own frequency shift to tune the beatnote frequency. A

delay stage is used to ensure the pulses in each beam are temporally overlapped when

being recombined.

The co-propagating beatnote frequency can be tuned to drive the Raman tran-

sition when the qubit splitting is not an inteteger multiple of the reprate. The

beatnote frequency is tuned using two AOMs set up in a double-pass configuration.

The double-pass configuration is important to maintain the spatial overlap of the

beams while shifting the AOM drive frequency. The first AOM divides the initial

beam into two distinct paths: the diffracted portion is retroreflected for a second

pass through the AOM and redirected by the PBS towards the delay stage. The

undiffracted part is similarly processed by the second AOM, albeit with an opposite

frequency shift.

To ensure temporal overlap of the two paths, two moveable mirrors allow for

coarse path length adjustments. A delay stage in one of the paths is used for finer

control. The beams are recombined with a PBS before being directed to a focusing

lens and into the vacuum chamber.

Figure 3.24: Co-propagating Raman laser setup showing power losses as a percentage

of the input power.
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3.3.5.6 SDK Beams Setup

The second function is the SDK, which requires perpendicular σ- and π-polarized

beams, as described in Sec. 2.12. The SDK beams’ paths, labeled “SDK sigma”

and “SDK pi”, are shown in Fig. 3.7. A polarizing beam splitter divides the pri-

mary beam into two distinct paths. Within each path, a λ/4 waveplate controls the

beams’ polarizations. Each beam is directed onto the ion using its respective focusing

objective lens. Before these objective lenses, a telescope in each path expands the

beam, achieving a reduced beam waist at the focus. Both focusing objective lenses

are mounted on an xyz stage, primarily for precise longitudinal positioning due to

the tight beam focus. While the xyz stage provides some focal adjustments, finer

transverse beam pointing is achieved using a Polaris-K1S2P piezo-controlled mirror

in each beam path. These electronic controls enable quick, precise scanning across

the beam profile to pinpoint the focus.

In the current setup configuration, the sigma-beam path telescope is placed before

the piezo mirror, whereas for the pi-beam path, the telescope follows the piezo mirror.

This arrangement was primarily determined by table space constraints. Notably,

having the telescope after the piezo mirror results in a more pronounced focus shift

by the piezo compared to the configuration where the telescope precedes the piezo.

Calibration of the piezo mirrors is performed by redirecting the beam post-

objective lens and positioning an Arducam 1080P IMX219 USB Camera at the focus.

By applying a voltage to the piezo mirror and observing the beam’s displacement on

the camera, the calibration, in terms of µm of movement per volt on the piezo, is ob-

tained. The current calibration for the piezo mirrors is [Placeholder for Calibration

Data].
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CHAPTER 4

Experimental Control

4.1 OK Board

An integrated pulse sequencer and RF generator unit were developed for use in

atomic physics experiments [PK15]. The unit’s core is the XEM6010 FPGA from

Opal Kelly and a breakout board for outgoing TTL and RF signals, so the unit

is referred to as the “OK Board”. The OK Board synchronously generates TTL

pulse sequences to trigger devices, reconfigures and outputs RF signals generated

by on-board Direct Digital Synthesis (DDS) chips, and collects time-tagged photon

counts from a photomultiplier tube (PMT). An on-board 100 MHz oscillator sets the

timing resolution for operations. The PMT time-tagging takes full advantage of the

oscillator frequency and has a timing resolution of 10 ns. The FPGA counter only

increments once every four cycles of the oscillator, so the TTL triggers have a 40

ns resolution. The DDS programming takes a relatively long time, so the minimum

timestep when switching DDS amplitudes is 500 ns. Switching the frequency takes

even longer and the timestep shouldn’t be less than 1 µs.

4.2 LabVIEW

Many LabVIEW VIs were developed to control and analyze the numerous devices in

the lab. Only the main control.vi program will be touched on in this section; a more

detailed document is available in the lab files.

4.2.1 main control.vi

In order to run experiments with the necessary timing control, the LabVIEW VI,

main control.vi, was developed. It triggers and writes pulse sequences to the OK
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Board FPGA and DDSs while sending serial or ethernet commands to various de-

vices. The front panel includes buttons to start and stop scans as well as several

tabs. Most of the tabs are used to configure scans, while others offer manual con-

trols used for device testing and troubleshooting. The variables used in the scans

and variables setting device parameters get saved to .txt files in the “Experiment-

Data/LabviewVIs/Main Control” folder or corresponding subfolder and are loaded

using the INIT.vi subVI when main control.vi starts. Experimental data is also

saved in .txt format in the “ExperimentData/PMTData” folder or corresponding

subfolder and can be viewed using the VI data browser.vi.

4.3 Laser Controllers

All the lasers need controllers for their temperature and current. Additionally, the

ECDLs need piezo controllers.

The TOPTICA lasers are each controlled with a DLC Pro laser controller; the

temperature, current, and piezo setpoints can be changed in the TOPAS software.

The piezo voltage can also be varied with a NI DAQ BNC-2110, which outputs

feedback voltages according to lock with monitoring.vi when the lasers are locked. A

LabJack is also used to ramp the piezo voltages during ion loading.

The pulsed lasers have a complex heat management system using a chiller. These

laser temperatures and currents were set by the manufacturer for the current cali-

bration and should not be changed.

The two home-built lasers, 455 nm and 1228 nm, have a piezo controller built by

the Physics Electronic Shop to vary the piezo voltage. The 455 nm laser has a single

thermoelectric cooler (TEC) to stabilize the diode temperature which is controlled

by an SRS LDC501 diode controller, which also controls the diode current. The 1228

nm laser has two TECs: one to maintain the gain chip temperature and another for

the base plate. Both are controlled with the TECPak 585-04-08 Arroyo temperature

controller. The 1228 nm laser current controller was built by the Physics Electronics

shop.

To quickly switch laser beams on and off, the AOMs in Table 4.1 are used. All the
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AOM RF signals are generated by the OK Board DDSs, gated using a Mini-Circuits

ZASWA-2-50DRA+ TTL-controlled RF switch, amplified with a Mini-Circuits ZHL-

3A or similar, before finally driving the AOM.

AOM purpose Model #

493 nm cooling Isomet 1206C -833

493 nm OP and 650 nm cooling IntraAction ATM-802DA1

455 nm shelving IntraAction ATM-1002DA1

614 nm deshelving Brimrose TEM-250-50-614

All 3 Raman beam AOMs IntraAction ASM-802B47

Table 4.1: Experiment AOM list.

4.4 Additional Controllers

• A TPI-1001-B RF synthesizer is used as a 2 GHz frequency reference for the

OK Board DDSs. It just needs a USB connection to the computer for power

and communication and is controlled with TPI control.vi.

• The ion trap voltage controllers were built by the Physics Electronic shop. The

RF voltages are generated by a large unit, the “MOTion box”. Two smaller

electronic boxes sitting near the chamber supply the DC voltages. The voltages

are controlled with electrode control.vi

• Two Novatech 409B DDSs generate RF signals for applications that require less

precise timing control. Right now, one of the Novatechs provides RF to the

cooling beam EOMs to efficiently cool the additional lines created by the large

Zeeman splitting when running the experiment. The other Novatech controls

an RF signal on one of the trap rods which is used to measure the ion secular

frequency by way of “tickling” [VVE90]. The Novatech signals are controlled by

the VI Novatech 409B control.vi and get amplified by a Mini-Circuits ZHL-3A

or similar but don’t use RF switches.

• A Power-One HCC5-6/OVP-AG linear AC-DC power supply is wired up to a
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BNC breakout board outputting +5 V on the top row, and -5 V on the bottom

row. This supply provides power for a number of devices and circuits: the PMT,

laser piezo voltage adder circuit, line triggering circuit, and the Q-switch signal

inverter, schematics in the OneNote “Electronics/Schematics” tab.

• Two HP power supplies, HP 6643A and HP 6553A, are wired up to a two-row

BNC breakout board to output +15 V on the top row and +24 V on the bottom

row, respectively. These supplies are mostly used to power RF amplifiers.

• Two more power supplies, HP 6683A and Agilent 6624A, are used to drive cur-

rent in the main magnetic field coils and shim coils, respectively. The top and

side coil are no longer being used. The latest calibration suggests a differential

shift of the qubit states by 1.179 MHz/A and 1.439 MHz/A for the main and

shim coil respectively.

• The piezo mirrors for steering the SDK beams are controlled using a piezo

controller built by the Physics Electronic Shop. The voltages can be varied

using the piezo mirror control.vi VI. The main control.vi VI sends ethernet

commands to piezo mirror control.vi when running scans, so make sure the VI

is running if you want to do a piezo scan.

• As described in Sec. 3.3.5.3, the pulse picking sequence is controlled by a LeCroy

ArbStudio 1100 arbitrary function generator. The electronic setup is shown in

Fig. 4.1. The ArbStuidio is externally clocked to the laser’s repetition rate by

a fast photodiode detecting laser pulses from an auxiliary output port on the

laser. Because of the finite speed of light, the ArbStudio clock signal is delayed

relative to the laser oscillator by an amount set by the distance the light travels

to the photodiode and the red cable length shown in Fig. 4.1. In the same way,

the pulse sequence to the pulse picker will be delayed by the blue cable length.

The red and blue cable lengths can be varied to set the delay time between the

laser pulses and the pulse picker trigger voltage. The ArbStudio pulse sequence

is controlled using the arbstudio control.vi.
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Figure 4.1: The electronic schematic for clocking the ArbStudio and driving the pulse

picker.
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CHAPTER 5

Results

Basically all the raw data is PMT fluorescence measurements. By thresholding the

count rate, the population, or how frequently the ion is in the |↓⟩ or |↑⟩ state, is

deduced. The main control VI saves the variables used in the scan and the PMT

data in a .txt file. Matlab code is then used to parse and extract the data for analysis.

5.1 Trapping

5.1.1 Micromotion Compensation

To ensure efficient loading of the trap as discussed in Sec. 3.1.3, it’s crucial for the

ion’s equilibrium position to be at the null of the RF field produced by the trapping

rods. Construction imperfections and stray external electric fields can displace the

ion from this ideal position. When positioned away from the null, the ion is sub-

ject to pronounced fluctuations from the trapping RF field, leading to substantial

micromotion, increased temperature, and greater variability in ion loss during the

distillation process. To counteract these influences, DC voltages are applied to the

trap rods. Although various methods can achieve this compensation, the most ef-

fective strategy identified involved reducing the trap RF voltage from the max DDS

value of 0.7 V to 0.4 V or lower while observing the ion’s movement on the camera.

As the RF voltage is lowered, stray fields shift the ion further from the null; the

compensating DC voltages are then adjusted to realign the ion to its optimal posi-

tion. This procedure is iterated since the applied DC voltages slightly alter the high

voltage position as well. The process continues until the DDS voltage is lowered to

0.1 V and the ion position remains consistent with that seen at the higher voltage.
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5.1.2 Secular Frequency Matching

Secular frequencies are matched by measuring them through a technique known as

“tickling”, followed by adjustments to the trap voltages to make the frequencies

degenerate. “Tickling” is a method that applies an oscillating electric field to one

of the trap rods. When the frequency of this oscillating field aligns with a secular

frequency, it induces oscillation in the ion, leading to reduced fluorescence.

The standard configuration of the ion trap operates at the peak RF voltage,

corresponding to a DDS value of 0.7 V. No additional voltages are applied to the

rods, save for compensations for stray fields. This setup results in an axial secular

frequency of approximately 32 kHz and radial frequencies near 90 and 100 kHz.

Experimental adjustments to the RF voltages successfully matched all three secular

frequencies to within 1 kHz, as depicted in Fig. 5.1 and outlined in the .

Figure 5.1: Secular frequencies matched to within 1 kHz of 64 kHz

5.2 State Preperation and Measurement

To effectively shelve the S1/2, mj = 1/2 state, the 455 nm laser needs to be σ+

polarized and resonant with the S1/2, mj = 1/2mj = 1/2 → P3/2, mj = 3/2
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transition. With a magnetic field of ≈ 55 G, the eight S1/2 → P3/2 transitions are

split by about 50 MHz, only the stretched transitions are prominent in the scan, as

shown in Fig. 5.2 where the shelving beam was linearly polarized in order to see the

other transition resonances. Adding in a σ+ polarized 493 nm beam pumps the ion

to the S1/2, mj = 1/2 state, and the S1/2, mj = −1/2 → P3/2, mj = −3/2 transition

is no longer driven, as shown in Fig. 5.3.
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Figure 5.2: Four offset linescans of the shelving transition. The transition is probed

using linear polarization at differing magnetic field values. Only the stretched state

transitions are prominent. The laser frequency is scanned by varying the scanning

cavity lock setpoint.
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Figure 5.3: Two shelving linescans showing the effect of adding the optical pumping

beam. Optical pumping moves the ion to the S1/2, mj = 1/2 ground state, and only

one stretched transition is driven. The shelving power in this scan is too low to fully

shelve the ion.

5.3 Driving Between Zeeman Levels

The S1/2, mj = −1/2 → S1/2, mj = 1/2 transition, which has frequency set by the

magnetic field, 2.8 MHz/G, can be driven directly with a resonant microwave signal

or by performing a stimulated Raman transition with an optical beat note at the

transition resonance.
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5.3.1 RF wire

A wire was placed in the vacuum chamber to directly drive between the ground

state Zeeman levels. The microwave signal was amplified and controlled with one of

the pulser’s DDSs. To couple the signal into the chamber, a variable capacitor was

tuned to 4 pF to match the LC resonance of the wire with the Zeeman transition

resonance. At this capacitance, only 4% of the power was reflected from a directional

coupler, as measured with a spectrum analyzer. With a max DDS power of 0 dBm,

unknown amplification factor, the RF wire was only able to produce a Rabi frequency

of ΩRF = 2π × 5 kHz, and was not used further.

5.3.2 Raman

Since the laser is pulsed, it has a beat-note at multiples of its reprate. Instead of

trying to vary this beat-note, the magnetic field can be varied until the Zeeman

level splitting matches a multiple of the reprate. Twice the reprate is chosen so the

Zeeman states are split far enough for state detection.

5.3.2.1 Single Beam

By applying a beam at an angle to the magnetic field, its polarization can have both

π and σ components to drive the Raman transition in Fig. 2.2. A circularly polarized

beam perpendicular to the magnetic field maximizes the Rabi frequency, and with

this polarization, a single pulse of 38 nJ was able to completely drive population

between |↑⟩ and |↓⟩, as shown in Fig. 5.4.
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Figure 5.4: Power scan while sending a single pulse from the laser on the atom

5.3.2.2 Tunable Co-Propogating Beam

The beatnote frequency can be tuned using AOMs to provide additional frequency

shifts. Two beams are given separate frequency shifts and overlapped to form a

tunable, co-propogating Raman beam. By tuning the magnetic field away from twice

the laser reprate and matching the beatnote frequency using the AOM shifts, the co-

propogating beam drives Raman transitions while the other beams are off-resonant

and can be analyzed without driving transitions. This allows for more flexibility

with the type of experiments that can be performed. Fig. 5.5 shows a Ramsey

experiment with the Ramsey π/2 pulses done by the co-propogating beam and the

σ-polarized SDK beam remaining on during the Ramsey wait to provide an AC stark

shift. The ion state probability, colormap (blue corresponding to low probabilities

and yellow to high probabilities), is plotted against the Ramsey wait time, y-axis,

and phase difference between the π/2 pulses on the x-axis. The Ramsey wait time

is paramaterized in terms of the number of pulses ouput by the laser between the

two π/2 pulses, with 13 ns the time between each pulse. The phase between the π/2
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pulses was scanned using the phase of the co-propogating beam AOMs. The sigma-

polarized beam causes a time-averaged differntial light shift of a few MHz resulting

in the Ramsey fringes to be slanted.

Figure 5.5: Co-propogating Ramsey experiment showing a few MHz time-averaged

differential light shift.

5.4 Decoherence from Ion Motion

When running experiments, the ion position can fluctuate experiment to experiment.

When the fluctuations are large enough, it can significantly affect the coherence of

the Rabi flopping. The intensity at the ion can be parameterized as I = αI0. For

Gaussian beams α = e−2r2/w2
, where w is the 1/e2 waist of the beam. The probability

of transition is then

P↓ =

∫ 1

0

dα Pα

(
1

2
− 1

2
cos (αΩt)

)
, (5.1)

for Ω the two-photon Rabi frequency corresponding to intensity I0 and Pα the prob-

ability distribution function for α. Pα can be found starting from the energy proba-
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bility distribution PE: ∫
Pα dα =

∫
Pr dr =

∫
PE dE (5.2)

⇒ Pα = Pr
dr

dα
= PE

dE

dr

dr

dα
(5.3)

For a temperature T , the ion has a normalized energy distribution, PE = 1
kBT

e−E/(kBT ).

The energy of the ion in the trap is E = 1
2
mv2 + 1

2
mω2r2. Using the virial theorem,

E = mω2r2 ⇒ dE
dr

= 2mω2r. The radius in terms of α, 2r2 = w2 ln(α) ⇒ r dr
dα

= −w2

4α
.

The distribution of intensity parameters with g = mω2w2

2kBT
is

Pα = PE
dE

dr

dr

dα
=

(
mω2r

kBT
exp

(
−mω2r2/(2kBT )

)) dr

dα
(5.4)

= −
(
2mω2r

kBT
exp

(
−mω2r2/(kBT )

)) w2

4α
(5.5)

= −mω
2w2

2αkBT
exp

(
−mω2(w2 ln(α))/(2kBT )

)
(5.6)

= −mω
2w2

2αkBT
αg = gαg−1, (5.7)

Plugging back into Eq. (5.1):

P↓ = g

∫ 1

0

dα αg−1

(
1

2
− 1

2
cos (αΩt)

)
(5.8)

=
1

2
− 1

2
1F2

(
g

2
;
1

2
,
g

2
+ 1;−Ω2t2

4

)
(5.9)

where 1F2(a1, b1, b2, x) is a generalized hypergeometric function. Fig. 5.6 shows the

transition probability curves for a few values of g.
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Figure 5.6: Spin up probability curves for varying values of g.

The ion exhibits similar behaviour in the experiment. Taken with a single beam,

Fig. 5.7 shows the experimental stimulated Raman Rabi flopping decay time decrease

with Rabi frequency.
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Figure 5.7: Experimental spin up proabability vs. time, or number of laser pulses,

and power. The left plot is experimental data, the right plot shows a fit to the

function displayed in the top right of the figure.

5.5 Two-Beam

To impart momentum on the ion, two pulsed beams with pure polarization are

temporally overlapped at the ion.

Although the polarization of the beams is verified with a home-built polarimeter,

the ion gives a more faithful test of the beam polarization. Due to small imperfections

in the beam pointing and polarization, both the pi- and sigma-beam drive the Raman

transition when applied individually, albeit with relatively small Rabi frequencies.

Using the change of these individual-beam Raman Rabi frequencies compared to

waveplate angle, the optimal polarizations for both the pi- and sigma-beam are

found.

The pi-beam should be circularly polarized to maximize the two-beam Raman

Rabi frequency, this polarization minimizes the individual-beam Raman Rabi fre-

quency for the pi-beam. Using a quarter waveplate the polarization ellipticity can be

changed to circular, ϵ̂π = 1√
2
(x̂+ iẑ) = 1

2

(
−σ̂+ + σ̂− +

√
2π̂
)
. This polarization will
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maximize the individual-beam Raman Rabi frequency for the pi-beam. Thus, the

optimal waveplate angle for the fastest two-beam Raman Rabi frequency according

to the plot below is 71◦.

Figure 5.8: Rabi frequency as a function of pi-beam polarization. θ = 71◦ corre-

sponds to linear, π, polarization and the maxima near 26◦ and 116◦, circular.

The sigma-beam should be circularly polarized to maximize the two-beam Raman

Rabi frequency, this polarization also maximizes the Raman Rabi frequency when

only using the sigma-beam. Using a quarter waveplate, the polarization ellipticity

can be changed to linear, ϵ̂σ = ŷ. This polarization will minimize individual-beam

Raman Rabi frequency for the sigma-beam. Thus, the optimal waveplate angle for

the fastest two-beam Raman Rabi frequency according to the plot below is 17.4◦.
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Figure 5.9: Rabi frequency as a function of sigma-beam polarization. θ = 17◦

corresponds to circular polarization and the minimum near 53◦, linear

The pulses in the pi- and sigma-beam need to be temporally overlapped, which

can be verified by the large increase in Rabi frequency. A large Rabi frequency trans-

lates to a broad resonance when scanning the magnetic field, as shown in the data

below. First, the pi- and sigma-beam resonances are monitored individually. Then,

both beams are applied simultaneously. When the pulses are temporally overlapped

the magnetic field scan exhibits a much broader lineshape around resonance.
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Figure 5.10: Raman resonance with only the pi-beam.

Figure 5.11: Raman resonance with only the sigma-beam.
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Figure 5.12: Raman resonance with both beams. The resonance width is much

broader than both the individual-beam Raman Rabi frequencies.

More information regarding alignment procedures for both longitudinal and

transverse overlap are in the OneNote, section “Lasers/SDK Lasers/Alignment”.

5.6 Coupling to Transverse Motion

The following comes from Adam D West et al. ”Tunable transverse spin–motion

coupling for quantum information processing” Quantum Sci. Technol. 6 024003

(2021).

5.6.1 Abstract

Laser-controlled entanglement between atomic qubits (‘spins’) and collective motion

in trapped ion Coulomb crystals requires conditional momentum transfer from the

laser. Since the spin-dependent force is derived from a spatial gradient in the spin-

light interaction, this force is typically longitudinal — parallel and proportional to

the average laser k-vector (or two beams’ k-vector difference), which constrains both

the direction and relative magnitude of the accessible spin-motion coupling. Here,

we show how momentum can also be transferred perpendicular to a single laser beam

due to the gradient in its transverse profile. By controlling the transverse gradient at
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the position of the ion through beam shaping, the relative strength of the sidebands

and carrier can be tuned to optimize the desired interaction and suppress undesired,

off-resonant effects that can degrade gate fidelity. We also discuss how this effect

may already be playing an unappreciated role in recent experiments.

5.6.2 Introduction

Quantum computers based on trapped atomic ions use entanglement between the

atomic qubits and collective motion to mediate conditional quantum logic between

spatially separated qubits [BCM19]. This spin-motion entanglement is produced by

applying a spatially-varying interaction with an electromagnetic field that gives a

spin-dependent force. In laser-driven, ion-ion entangling gates, this force is derived

from the longitudinal gradient of the electric field of a laser beam (or, for Raman

processes, a pair of beams), in which case the direction of spin-motion coupling is

fixed by the laser beam propagation axes [LBM03]. This precludes direct control of

ion motion perpendicular to the beam, and also fixes the relative strengths of the

resonant spin-only and spin-motion couplings. In many experiments using surface

electrode traps, optical access is restricted to be parallel to the surface plane [RHS20];

this restriction makes it difficult to access motion perpendicular to the plane, both

for cooling and coherent operations.

Two workarounds to access out-of-plane motion are the development of traps with

tilted principal axes [SCR06,Wes08,LGA08,ASS10,SFH10,PBB19], or the introduc-

tion of time-dependent cross-coupling potentials [GSS14]. These indirect techniques

take advantage of the approximate separability of the secular motion into compo-

nents along the principal axes of the trap to provide access to part of the motion

(the secular component), but direct access to the full motional state (for instance,

to diagnose excess micromotion) remains challenging [ASS10,NDM11]. The method

presented here has the additional benefit of only requiring a single beam to couple

to motion. Alternative approaches for controlling spin-motion coupling using static

and near-field gradients are being pursued by some groups [OLA08,OWC11,HSA16,

SSB19,ZHM19,SBS19,SSB20], however these are constrained by the fixed electrode

geometry and typically have a lower associated Rabi frequency than is possible with
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the technique we describe here.

Here, we show that the transverse, as opposed to longitudinal, gradient of the

spin-light interaction can also be used to produce and control spin-motion entan-

glement, even perpendicular to the laser propagation direction. By adjusting the

spatial profile and/or position of the beam, the strength of motional sidebands can

be tuned, even to the point where the carrier transition is fully suppressed. By ex-

tinguishing the carrier during sideband operations and extinguishing the sidebands

during carrier operations, this flexibility has the potential to suppress errors from off-

resonant transitions [OIB07]. As a proof of principle, we demonstrate this transverse

spin-motion coupling using a single trapped ion. The stimulated Raman spectrum

driven in a co-propagating beam geometry shows motional sidebands driven by the

beam’s transverse intensity gradient, and we show that their strength can be tuned

by varying the ion temperature, in agreement with the model.

5.6.3 Theory

We consider a laser-driven electronic transition in a single trapped ion and show how

the finite transverse extent of the beam can change the motional state perpendic-

ular to the beam, even when the (conventional longitudinal) Lamb-Dicke factor is

essentially zero. Since the technique presented here is applicable to every type of

electronic transition used for quantum information processing (E2, E3, stimulated

Raman, etc.), we present it without reference to the details of the internal state

manipulation where possible and point out where differences may arise. We assume

that the wavevector of the laser field (or wavevector difference, for stimulated Ra-

man transitions) is aligned with +ẑ, which we also assume is a principal axis of the

trapping potential such that the longitudinal gradient cannot couple to motion in

the x-y plane. For simplicity, we consider motion along only the x direction and

neglect the other two; a full treatment that includes y and z can be constructed in

a straightforward manner. We can write the matrix element associated with this

transition as

Ωn′,n = Ω0 ⟨n′|f(x)|n⟩ (5.10)
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where n (n′) is the initial (final) motional state along x and the function f(x) is the

transverse spatial profile of the laser-ion coupling, Ω(x) ≡ Ω0f(x). We absorb all

of the electronic transition details in Ω0 and assume the atomic matrix element is

proportional to f .1

While the beam profile can in principle have a variety of functional forms we will

first assume it is Gaussian, with f(x) ≡ exp(−2x2/w2) (shortly, we also consider the

case of a TEM10 mode). In the case of a stimulated Raman transition, f(x) describes

the product of the electric fields, E1E
∗
2 . Assuming a co-propagating configuration

where the two frequency components have identical beam profiles, w = w0, the

Gaussian beam waist, defined as the 1/e2 intensity radius. In the case of a single

photon transition (e.g. E2 or E3), f(x) is the profile of the electric field and w =
√
2w0.

a)

d
z

x

b) c)

∼x
∼x

∼x2

Figure 5.13: Schematic showing the geometry considered. A laser beam directed

along z is incident on a trapped ion (red). a) and b) show the case where the

interaction strength has a Gaussian (TEM00) transverse profile (black solid line).

Depending on the beam position, the profile at the ion can be approximately linear

or quadratic (red solid line), coupling to first- or second-order sidebands, respectively.

c) shows the case where the profile is produced by a TEM10 mode, which suppresses

carrier transitions while still coupling to motion.

We will treat the spatial profile of the beam(s) by Taylor expanding about the

ion’s equilibrium position (x = 0) to second order in x. A Gaussian spatial profile

that is offset from the ion’s equilibrium position by a distance d (that is, f(x−d), as

1Recent work has examined how a transverse electric field profile can drive an electronic, rather
than motional, transition [SSK16], and how spin angular momentum, rather than linear momentum,
of photons can provide a momentum kick to trapped ions [ACM20]
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shown in figure 5.13a)) produces matrix elements of the following form (up to second

order in x0):

Ωn′,n = Ω0f(−d)
√
n>!

n<!
×


1 +

4x2
0

w2

(
4d2

w2 − 1
)
(n+ 1

2
) ∆n = 0

4dx0

w2 |∆n| = 1

2x2
0

w2

(
4d2

w2 − 1
)

|∆n| = 2

, (5.11)

where n< (n>) is the lesser (greater) of n and n′, and x0 ≡
√
ℏ/2mω is the motional

mode’s ground state wavefunction size, with m the mass and ω the secular frequency.

We note that when d = 0 the Rabi frequency of all odd-order sidebands vanishes, as

can be seen in Eq. 5.11 for |∆n| = 1. Exact expressions for Ωn′,n and are provided

in 5.6.6.

In the Lamb-Dicke regime, a simple analytic expression describes the longitudinal

spin-motion coupling, to lowest order in the Lamb-Dicke parameter η ≡ kx0 (for

wavevector k) [WMI98]. We compare this to the case of transverse spin-motion

coupling by defining an effective Lamb-Dicke parameter, η̃(s), where s is the sideband

order. As an example, if d = w/2, for the first order sidebands we have

Ωn+1,n = η̃(1) Ω0f(−w/2)
√
n+ 1 (5.12)

with

η̃(1) ≡
2x0
w

≈ 0.014

√
100 amu

m

√
2π × 1 MHz

ω

1 µm

w
. (5.13)

When d = 0, the effective Lamb-Dicke parameter associated with the second-order

sidebands has the same form (Ωn+2,n ∝ η̃2(2)/2, with η̃(2) = 2x0/w). Unlike longitu-

dinal spin-motion coupling from a plane wave, where the pth order sideband term

is approximately proportional to ηp/(p!), the expressions for the sideband strengths

from transverse coupling are a function of the beam profile and position, and should

be calculated individually for each sideband order.

The intuitive conclusion that we can draw is that transverse coupling to the ion

motion is significant once the wavefunction size,
√
nx0, becomes comparable to the

transverse profile size, w. As the spatial extent of the beam becomes smaller, the

corresponding transverse momentum spread of each photon increases, in accordance

with the uncertainty principle, and the nonzero variance of this transverse momentum

can change the transverse momentum of an ion without violating conservation of
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linear momentum. For the case of a stimulated Raman transition using a single

focussed beam centred on the ion, one can associate an effective wavevector, keff ≡
η̃/x0 = 2/w0, with this momentum spread. An equivalent value of keff can be

achieved with two infinite plane waves crossing at an angle equal to the half-cone

divergence angle of the single beam, θ ≡ λ
πw0

, i.e. the coupling strength with the

single focussed beam is half that for a pair of crossed plane waves defined by the

same angular acceptance. This is a spatial manifestation of Ramsey’s famous factor

of two [Kle13].

Having seen that transverse coupling to odd-order sidebands disappears with a

centered TEM00 beam, we now show that coupling to even-order sidebands (and

carrier) can be extinguished if f(x) is an odd function of x, such as with a TEM10

mode (cf. figure 5.13c)) driving either a single photon transition (such as E2) or

one of the arms of a stimulated Raman transition (with the other arm uniform

intensity). Here, the Rabi frequency, Ω(x) ≡ Ω0f(x), vanishes at the equilibrium

position of the ion and has odd parity. For a TEM10 beam with waist w0, this

configuration produces the same Rabi coupling for the single-photon and Raman

cases, f(x−d) ≡ H1(
√
2(x−d)/w0) exp(−(x−d)2/w2

0) = 2
√
2x−d

w0
exp(−(x−d)2/w2

0)

where H1(x) is the first Hermite polynomial. Once again expanding to second order

in x0 gives the matrix elements for the carrier and the first and second sidebands:

Ωn′,n = Ω0 2
√
2 e−d2/w2

0

√
n>!

n<!
×


− d

w0

(
1− 6x2

0

w2
0
(1− 2d2

3w2
0
)(n+ 1

2
)
)

∆n = 0

x0

w0
(1− 2d2

w2
0
) |∆n| = 1

d
w0

3x2
0

w2
0
(1− 2d2

3w2
0
) |∆n| = 2

.

(5.14)

Since f(x) is odd, when d = 0 the carrier and all even order sidebands vanish to

all orders in x0 (the exact expression for Ωn′,n and arbitrary order Hermite-Gaussian

profile can be found in 5.6.6). This suggests that by switching between transverse

spatial modes, the carrier or first sidebands can be suppressed as the application

demands, which can be used to reduce undesired off-resonant effects. For example,

using a TEM10 could allow for Mølmer-Sørensen type gates [MS99] to be used at

higher temperatures as the strengths of the carrier and second sidebands are greatly

reduced. A related effect in the longitudinal direction has been explored for optical

standing waves [CBZ92,WMI98,Jam98,RAM14,UAK20], but the motional coupling
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in that case is still constrained to be along the longitudinal direction.

The appearance of sidebands (i.e. motional coupling) from the transverse spatial

profile of a laser beam can be understood semi-classically in the time domain by

considering that the oscillatory motion of an ion into and out of a laser beam gives

an intensity modulation that produces sidebands at this oscillation frequency, which

can in turn drive motional-state-changing transitions.

Alternatively, one can consider the associated Bloch sphere. In a frame rotating

at the qubit splitting, the Bloch vector precesses azimuthally at a frequency equal to

the detuning, ∆. With negligible ion motion, no significant population transfer oc-

curs (assuming Ω ≪ ∆). With ion oscillation comparable to the beam size, the Rabi

frequency will be modulated at ω and 2ω, associated with the linear and quadratic

parts of f(x), respectively. When ∆ = ω, or 2ω, the precession and intensity mod-

ulation are synchronized. The result is a Bloch vector that ‘spirals’ up or down the

Bloch sphere even for Ω ≪ ∆ (see Supplemental Material).

5.6.4 Experiment

The analysis we have presented indicates that if motional coupling can be driven

by the transverse profile of a laser beam, sidebands should appear even for a co-

propagating stimulated Raman transition (for our setup, this gives a longitudinal

Lamb-Dicke parameter of η ≈ 10−7; note that the two frequencies required for the

Raman transition are produced by the laser’s pulsed nature, ensuring collinearity).

The experiment we perform to observe these sidebands is shown schematically in

figure 5.14. Briefly, we trap a single laser-cooled 138Ba+ ion in a linear Paul trap

made with four segmented cylindrical rods. The diagonal surface-to-surface distance

between the rods is 2r0 = 2 cm. RF voltages are applied to the central segments at

a frequency of 1 MHz to produce radial secular frequencies ωrad ≈ 2π × 100 kHz.

The axial secular frequency is ωax = 2π × 36 kHz.

We define a Zeeman qubit with the two electron spin states (|↓⟩, |↑⟩) of the 2S1/2

ground state manifold, which are split by 151.8 MHz by the application of a magnetic

field of around 5.5 mT. Preparation of the qubit states is performed via optical

pumping with circularly polarised light on the 2S1/2 ↔ 2P1/2 transition. Readout of
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Figure 5.14: a) Structure of the 138Ba+ Zeeman qubit showing the laser field applied

to drive stimulated Raman transitions b) Schematic of ion trap showing two of the

four segmented rods and the single circularly polarised beam used to drive the Raman

transitions.

the qubit state is achieved via electron shelving; circularly polarised light at 455 nm

selectively optically pumps one of the qubit states to the long lived (τ ≈ 30 s)

2D5/2 manifold via the 2P3/2 manifold. Coherent transfer between the qubit states is

driven by a far-detuned stimulated Raman transition via a mode-locked Nd:YVO4

laser2. The qubit splitting is close to twice the repetition rate of the laser such

that different frequency components of the laser light can resonantly drive the qubit

transition when the magnetic field tunes the qubit splitting into resonance. Using

the frequency comb structure of a mode-locked laser for this type of manipulation

has previously been demonstrated in work with hyperfine qubits [HMM10], but to

our knowledge this is the first application to a Zeeman qubit3.

To observe sidebands, we direct a single (i.e. ‘co-propagating’) circularly polarized

beam at 45◦ to the axis of the trap and at 90◦ degrees to the quantization axis defined

by the applied magnetic field (see figure 5.14). Even though none of the principal

axes of the trap is perpendicular to the laser beam, traditional (i.e. longitudinal)

spin-motion coupling will be effectively absent for this co-propagating geometry, and

2Coherent Paladin SCAN 532-36000.

3A mode-locked laser has been used to coherently manipulate a Zeeman qubit, but employing
acousto-optic elements to generate the necessary beat note [ICL17]
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the appearance of sidebands will be entirely due to transverse spin-motion coupling.

We perform Rabi spectroscopy on the Raman transition by measuring the spin flip

probability while varying the applied magnetic field with a shim coil.
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Figure 5.15: Appearance of transverse spin-motion coupling from a misaligned beam.

a) Calculated and b) measured single-beam stimulated Raman spectra of the qubit

as a function of beam position show sidebands for axial ion motion when the beam is

off center. Horizontal lines indicate the slices shown in c). The only free parameter

used to generate the theory plots is the ion’s motional temperature, which is 3 mK.

Figure 5.15 shows the probability of a stimulated Raman transition (with state

preparation and measurement errors included) as a function of the detuning and

beam offset. When the beam is misaligned, sidebands associated with motion along

the trap axis are clearly visible at detunings of ±36 kHz, equal to the axial secular

frequency. These sidebands vanish when the beam is centered on the ion as the

gradient of the beam profile disappears, cf. Fig. 5.13.

The plot in Fig. 5.15a) shows the numerical solution of the Schrodinger equation

with Rabi frequencies calculated as previously described. The ion temperature is

the only free parameter used to match the experimental data (see Supplemental

Material). The transverse Lamb-Dicke parameter for the first-order axial sideband

ranges from η̃(1) = 0 to 0.021 in Fig. 5.15. While this Lamb-Dicke parameter is small,

the 3 mK mean occupation number of n̄z = 1800 can produce significant transverse
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motional coupling.

5.6.5 Discussion

Spin-motion coupling due to the transverse electric-field profile presents an addi-

tional tool with which to manipulate trapped ions. However, it may also represent

an additional source of infidelity in trapped ion quantum computers. In many cases,

single-site addressability is required and achieved via tightly focused laser beams

which introduces spin-motion coupling for the transverse directions. It has already

been shown that residual motion transverse to such beams can produce gate infideli-

ties [CEN20], but we now draw attention to the possibility that these beams can also

impart momentum in the transverse directions.

d

z

x

s

∼x ∼x

Figure 5.16: Laser incident on two ions, misaligned from a ‘target’ ion (left) by

d. The transverse spatial profile of the interaction strength is approximately linear

for both the target ion and the neighbouring ion, which can produce spin-motion

coupling along the x direction.

With reference to figure 5.16, we consider as an example the trapped ion quantum

processor of Debnath et al. [DLF16]. Individual 171Yb+ ions, spaced by s ≈ 5 µm

in a trap with axial secular frequency ω/2π = 270 kHz, are addressed by a pair

of stimulated Raman beams. One of the beams provides a uniform intensity, while

the other has waist w ≈ 1.5 µm. Assuming a misalignment of d = w/2, we use

Eq. (5.11) to calculate the transverse Lamb-Dicke parameters associated with the

target ion to be η̃(1) ≈ 0.0098 and η̃(2) = 0 for the first and second sidebands,

respectively. Similarly for the neighbouring ion, η̃(1) ≈ 0.037 and η̃(2) ≈ 0.035.
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If the quoted crosstalk in [DLF16] of 4 % (interpreted as the ratio of carrier Rabi

frequencies between adjacent ions) were solely due to beam misalignment, this would

imply d ≈ 1.8 µm and hence η̃(1) ≈ 0.017, η̃(2) ≈ 0.014 (η̃(1) ≈ 0.030, η̃(2) ≈ 0.028) for

the target (neighbouring) ion. Transverse spin-motion coupling would, in general,

lead to residual spin-motion entanglement in a two-qubit gate. We estimate that

for a Mølmer-Sørensen type interaction [MS99,SM99], with the parameters we have

outlined and assuming the axial modes are cooled to the Doppler limit, this would

produce an infidelity at approximately the 10−5 level. While this is too small to be

of concern, it could become problematic for longer ion chains, or for traps where the

axial modes are less far detuned from the mode used for computation; a fourfold

reduction in detuning would produce an infidelity at the 10−3 level.

5.6.6 Exact Expression for Transverse Rabi Frequency

While the use of a Taylor series in eqs. (5.11) and (5.14) provides intuition about

how coupling between motional states depends on the transverse profile, an exact

analytic expression for the Rabi frequency also exists. The equations below give

the Rabi frequency associated with driving a transition from motional state n to

motional state n′ using transverse spin-motion coupling from a laser beam with a

specific transverse spatial mode (along the motional mode direction) that is displaced

by a distance d from the trap centre. We write the Rabi frequency in terms of the

function Jn′,n,p as

Ωn′,n,p

Ω0

= ⟨n′|Hp

[√
2(x− d)/w0

]
e−(x−d)2/w2 |n⟩ =

Jn′,n,p(α, β, δ)√
π 2n′+n n′! n!

(5.15)

where

α(w) ≡
(
2x0
w

)2

, β ≡ 2x0
w0

, and δ ≡ d√
2x0

. (5.16)

(Recall that in the case of a Raman transition with one TEMp0 beam and one

TEM00 beam, we identify w = w0, whereas for either a Raman transition with one

TEMp0 beam and one uniform beam, or for a single-photon transition driven by a

TEMp0 beam, we use w =
√
2w0.)
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The integral Jn′,n,p is given by

Jn′,n,p(α, β, δ) ≡
∫ ∞

−∞
dξ e−α(ξ−δ)2−ξ2Hn′ (ξ)Hn (ξ)Hp (β(ξ − δ)) (5.17)

=

√
π

1 + α
exp

[
α2δ2

1 + α
− αδ2

]
n′! n! p!

×
min[n′,n]∑

s=0

min[n′−s,p]∑
q=0

min[n−s,p−q]∑
r=0


(

2
1+α

)s+q+r
βq+r(−i)n′+n+p−2(s+q+r)

s! q! r! (n′ − s− q)! (n− s− r)! (p− q − r)!

×
( −α
1 + α

)(n′+n−q−r−2s)/2(
β2

1 + α
− 1

)(p−q−r)/2

×Hn′−s−q

(
δ

√
α

1 + α

)
Hn−s−r

(
δ

√
α

1 + α

)
Hp−q−r

βδ ( α
1+α

− 1
)√

1− β2

1+α

  ,

(5.18)

where ξ = x/
√
2x0 has been used as a normalised spatial coordinate.

To compare different values of p for the same optical power in the TEMp0 mode,

eq. (5.15) should be multiplied by 1/
√
p! 2p. In this case, the effective Lamb-Dicke

factor for the first order sideband in the regime where w0 ≫ x0
√
n scales approxi-

mately as η̃(1) ∝ p
1
4 .

5.6.7 Simulated Spectra

Figure 3 in the main paper shows spectroscopy of a Raman transition, both from

experimental measurements and theory. The theory data are calculated via numerical

solution of the Schrodinger equation. Thermal averaging is incorporated by averaging

the result over a Boltzmann distribution of the initial motional states, nx, ny, nz. We

include all motional transitions that alter the total number of motional quanta by

at most two i.e. |(n′
x − nx)|+ |(n′

y − ny)|+ |(n′
z − nz)| ≤ 2. The only fit parameter is

the (isotropic) temperature of the ion. The other parameters used in the calculation

are obtained as follows:

1. Rabi frequency: By observing Rabi flopping when the beam is aligned with the

ion we directly measure the Rabi frequency. This is then modified for different

beam offsets according to the beam profile. With knowledge of the beam profile

we can then calculate the Rabi frequencies for the various motional transitions

as described in the main paper.
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2. Beam waist: By scanning the beam across the ion and observing the change in

Rabi frequency we directly obtain the beam profile and extract the waist.

3. Beam offset: We find the position with zero offset by computing the centre of

mass of the experimental data, i.e. when the beam offset is calibrated correctly,

the signal integrated along the positive and negative directions of the beam

position is equal. This value was also found to be in good agreement with the

value obtained using the profiling technique described in the previous point.

4. Secular frequency: This was measured directly via a ‘tickle scan’; an RF tone

of varying frequency was applied to trap electrodes to determine the frequency

at which resonant excitation of the ion’s motion occured.

5. Raman pulse duration: This is precisely defined by the experimental sequence.

6. Detuning: The repetition rate of our laser defines the frequency of the beat

note which drives the stimulated Raman transition. This frequency is measured

precisely and allows us to calibrate the detuning axis.

The following parameters were used to produce the fits in figure 5.15:

1. Ion temperature: 3 mK

2. Rabi frequency when aligned with ion: Ω = 2π × 9.5 kHz

3. Beam waist: 9.5 µm along x, 11.5 µm along y

4. Secular frequency: ω = 2π × 34.7 kHz

5. Raman pulse duration: 180 µs, Ωt ≈ 3.5π

Note that the x and y coordinates here are defined with a z axis along the propagation

direction of the beam (as opposed to according to the trap principal axes). A boxcar

average of width 6 kHz is applied to the calculated spectrum to account for the

presence of magnetic field noise in our system.
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5.6.8 Semi-Classical Picture

The driving of motional sidebands can also be understood by considering the classical

trajectory of an ion in a harmonic potential (trap frequency ω) and the resulting

evolution of the Bloch vector. In a frame rotating at the transition frequency, with

an applied field detuned by ∆, the motion of the Bloch vector is derived from two

contributions: precession about the z axis at a frequency ∆ and rotation about the

x (|0⟩ ± |1⟩) axis at the instantaneous Rabi frequency, Ω(t). For constant Ω ≪ ∆,

little population transfer occurs — starting at |1⟩, the Bloch vector rotates about x

towards |0⟩ for half a precession period then back towards |1⟩ for half a precession

period. For a beam aligned with the trap centre, ion motion modulates Ω at a

frequency 2ω:

Ω(t) =Ω0 exp
(
−2x20 sin

2(ωt+ ϕ)/w2
)

(5.19)

where x0 is the amplitude of motion, ϕ is the phase of the motional oscillation and

w is the beam waist. When the precession frequency and modulation frequency are

equal (∆ = 2ω), the Bloch vector will rotate quickly about x towards |0⟩ for half

a precession period and then slowly towards |1⟩ for half a precession period. This

produces the spiral trajectory illustrated in the left-hand plot of figure 5.17 for a

coherent motional state.4

The result is that population transfer occurs on a motional sideband, without

the need for counter-propagating beams. This behaviour persists when we consider

a thermal ensemble which provides a distribution of x0 and ϕ. When we average

over the thermal distribution, the coherence between the |0⟩ and |1⟩ states is lost.

If we consider an ensemble Bloch vector which is the average of individual particle

Bloch vectors, the loss of coherence causes this ensemble vector to lie along ±z. This
behaviour is shown in the right-hand plot of figure 5.17. The distribution of motional

states in the thermal ensemble also limits the transfer from |0⟩ to |1⟩ when averaging

over the distribution; the minimum z coordinate of the Bloch vector trajectory is

higher in this plot than in the left-hand one.

4This example corresponds to a second order sideband, but the same reasoning applies to a
misaligned beam for a first order sideband
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Figure 5.17: Plot of Bloch vector evolution for particles oscillating in a harmonic

potential whilst addressed with an off-resonant laser beam with a Gaussian profile.

Left: Single particle. Right: Average Bloch vector for 10 particles with different

amplitudes and phases of motion.

5.7 Single Pulse SDK

The following comes from R. Putnam et al. “Impulsive Spin-Motion Entanglement

for Fast Quantum Computation and Sensing.” preprint available, arXiv:2307.11287

(2023)

5.7.1 Abstract

We perform entanglement of spin and motional degrees of freedom of a single, ground-

state trapped ion through the application of a 16 ps laser pulse. The duration of the

interaction is significantly shorter than both the motional timescale (30 µs) and spin

precession timescale (1 ns) , demonstrating that neither sets a fundamental speed

limit on this operation for quantum information processing. Entanglement is demon-

strated through the collapse and revival of spin coherence as the spin components

of the wavefunction separate and recombine in phase space. We infer the fidelity of

these single qubit operations to be (97+3
−4)%.

5.7.2 Introduction

Spin-motion entanglement is at the heart of many trapped-ion quantum computers.

Entanglement between the internal qubit states of ions is produced via ion-ion inter-
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actions. These interactions are mediated by motion within the trap and modulated by

the application of spin-dependent forces [CZ95,MS99,SM99,SM00,GTL16,WWC18].

In order to avoid the problem of spectral crowding, gates have been operated in the

strong excitation regime, where the applied spin-dependent forces are impulsive, or

applied much faster than the ions’ motional mode period [GZC03, Dua04, BCK13,

SIH14]. These impulsive forces, known as spin-dependent kicks (SDKs), dynamically

impart momentum to the ion, with the direction of the kick dependent upon the ion’s

internal qubit state.

Previous work has demonstrated both single- and two-qubit gates with ultrafast

pulses [MMM06,CMQ10,MSN13,WMJ17,GWH22]. While the picosecond duration

of a single pulse from a mode-locked laser makes it attractive for building gates

in the strong excitation regime, single pulses do not tend to produce the desired

outcome with hyperfine qubits. Single pulse operations have been performed using

resonant excitation as well as stimulated Raman transitions. In the resonant case, a

π-rotation was performed using a single ultrafast pulse with 98.1% fidelity [GWH22],

but the scheme could not be used to perform arbitrary single qubit rotations. Single-

pulse, single qubit gates using stimulated Raman transitions in the hyperfine qubit of

171Yb+ were limited by the finite qubit splitting while two-qubit gate fidelity using

single-pulse spin-dependent kicks (SDKs) was limited by multi-photon transitions

that produce unwanted higher-order momentum modes [CMQ10,MSN13,WMJ17].

In both schemes, to achieve high-fidelity two-qubit gates, multi-pulse sequences that

are many times longer than the single pulse duration are necessary. This in turn

makes two-qubit gates longer than the attractively-short duration of the atom-light

interaction in a single laser pulse.

Aside from applications in quantum information processing, high-fidelity spin-

dependent kicks are also a key feature of atom interferometry. Increasing wavepacket

separation by large momentum transfer beamsplitter operations enhances interfer-

ometer sensitivity [CSP09, CMC08, MCH09, CKC11, PYZ18, JXH18, PZP19]. The

ability to perform high-fidelity ultrafast spin-dependent kicks would enable even

higher momentum transfer, a key ingredient to the recently proposed ion gyroscope

interferometer [CH17,Wes19].
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Here we demonstrate high-fidelity, ultrafast qubit rotations and spin-motion en-

tanglement using a single, 16 ps laser pulse to drive a stimulated Raman transition

in the ground-state Zeeman qubit of 138Ba+. By observing the decay and revival of

interference fringe visibility using a Ramsey pulse sequence, we verify the generation

of spin-motion entanglement of a Zeeman qubit using a single laser pulse. Working

with a Zeeman qubit offers improvements in both gate speed and simplicity com-

pared to hyperfine qubits. The smaller qubit splitting allows for single-pulse single

qubit gate fidelity comparable with current state of the art. Further, using polariza-

tion selectivity, a spin-dependent kick can be performed in a Zeeman qubit with a

single laser pulse without producing higher-order momentum modes. Zeeman qubits

are also the natural choice for a gyroscope interferometer, as the magnetic moment

associated with the ion’s motion, which can mask the desired rotation phase in the

presence of a magnetic field, can be canceled by the Zeeman qubit’s spin magnetic

moment, essentially making this a clock qubit for the interferometer [CH17].

5.7.3 Experimental Setup

Our apparatus utilizes a single 138Ba+ ion trapped in a four-rod, linear Paul trap

with axial secular frequency ω = 2π× 32.4 kHz and radial secular frequencies ωrad ≈
2π × 100 kHz. The stimulated Raman transition as shown in Fig. 5.18(a), can be

driven using pulses from a 532 nm, mode-locked Nd:YVO4
5 laser with a repetition

rate of 76 MHz [WPC21]. An intensity autocorrelation measurement yields a sech

pulse shape, with a full width at half max of τpulse = 16.4(5) ps, corresponding to a

spectral bandwidth ∆f ≈ 0.315/τpulse ≈ 19 GHz. Arbitrarily gated patterns of laser

pulses can be generated through the use of an electro-optic pulse picker. To achieve

a π pulse within a single laser pulse, we tightly focus a beam to a 1/e2 intensity

radius of w0 = 8.5(4)µm. Single-pulse SDKs, which require differing wavevectors,

are achieved by splitting the laser beam into an additional, orthogonally directed

beam with a waist of w0 = 20(2)µm. Temporal overlap of the Raman beams is

achieved with an optical interferometer to measure the electric field autocorrelation

and is subsequently refined using the response of the ion.

5Coherent Paladin SCAN 532-36000.
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Figure 5.18: a) Energy levels relevant for the stimulated Raman transition. On

the right, a top-down view of the ion (colored circle) with surrounding trap elec-

trodes. The Raman beam directions with their polarizations are shown in green

and the magnetic field direction in black. b) Schematic of ultrafast qubit rotation.

A single, circularly-polarized beam drives the ion from |↑⟩ to |↓⟩. c) Schematic of

spin-dependent kick, with the resulting momentum kick.

5.7.4 Single-Pulse Single Qubit Rotations

The finite bandwidth of the Raman pulse can only fully transfer population between

degenerate levels, and any energy splitting leads to an effective detuning of the

two-photon resonance, resulting in incomplete population transfer. The fidelity of

a hyperbolic secant pulse with pulse area θ =
∫
dt′ Ω(t′) and temporal width τpulse

driving population between a pair of states split by δ has been provided by Rosen

and Zener [RZ32]:

F = sin2

(
θ

2

)
sech2(δτpulse/1.76). (5.20)

First we demonstrate ultrafast single qubit rotations using a single, circularly-

polarized beam directed orthogonal to the applied magnetic field (see Fig. 5.18(b)).

For the given geometry, this polarization maximizes the two-photon Rabi frequency,
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Ω2γ,

Ω2γ =

√
2

6∆

d2

ℏ2

(
2∆

∆− ωFS

− 1

)(
E∗

πEσ− + E∗
σ+
Eπ

)
, (5.21)

while canceling the differential light shift, δ2γ,

δ2γ =
d2

6ℏ2∆

(
2∆

∆− ωFS

+ 1

)(
|Eσ+|2 − |Eσ− |2

)
, (5.22)

with ωFS the fine structure splitting, as shown in Fig. 5.18(a); ∆ = ω − ω0 the

difference between the laser frequency ω = c|k|, with k the laser wavevector, and the

2S1/2 → 2Po
1/2 transition resonance, ω0; d the dipole moment of the same transition;

and Ej the complex electric field amplitude for polarization j. The beam waist

is measured to be w0 = 8.5(4) µm and the maximum pulse energy is 129(5) nJ.

Preparing the ion in |↑⟩, applying a single laser pulse with varying energy, and

reading out the final state we map out Rabi flopping curves such as that shown in

Fig. 5.19. The maximum theoretical fidelity of Fmax = 0.9999 is given by Eq. (5.20),

and is high due to the small qubit energy splitting, δ/(2π) = 150 MHz, compared to

the ∆f ≈ 19GHz bandwidth of the single pulse. To compare, using a hyperfine qubit

with 10 GHz splitting, would limit the fidelity to 72%, demonstrating the benefit of

the small splitting of a Zeeman qubit.

In the experiment, we see additional sources of infidelity. In Fig. 5.19 we see

that the visibility scales inversely with the pulse area, or peak Rabi frequency. The

additional infidelity can be explained by a thermal spread in the ion’s initial position

causing different regions of the laser beam to be sampled experiment to experiment.

The distribution of Rabi frequencies leads to a decay in the visibility. This type of

infidelity in ion traps was studied previously [CEN22], and an analytic solution for

the transition probability can be found [Jaf18]

P↓ =
1

2

(
1− 1F2

[
g

2
;
1

2
, 1 +

g

2
;−θ2

])
, (5.23)

where 1F2[a; b, c;x] is a hypergeometric function, g =
w2

0

2σ2
ion

is the ratio of the beam

waist to the thermal spread of the ion’s position σion =
√

kBT
mω2 [KHB12], with m

the ion mass, T the ion temperature, ω the trap frequency. Fitting the data to

this function we extract the needed energy for a single laser pulse to perform a π

rotation, 38(2) nJ, as well as the ion temperature, T =0.5(1) mK. Using the state
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Figure 5.19: Ultrafast qubit rotations: a Rabi flopping curve produced by applying

a single laser pulse of varying energy to an ion initially prepared in the |↑⟩ state.

Black: data points with statistical error bars from 1000 repetitions of the experiment.

Red: fit to the data, Vfit = 0.68. Blue: bars indicate average state preparation and

measurement (SPAM) limits for |↓⟩ and |↑⟩, VSPAM = 0.70. The width of the bars

indicates the standard deviation of multiple SPAM measurements.

preparation and measurement (SPAM) limits shown in Fig. 5.19, we applied the

Feldman-Cousins method to determine the 90% confidence interval for the SPAM-

corrected fidelity of a π-pulse, Fthermal = (97+3
−4)%. The fidelity central value is

given as the ratio of the visibility of the curve, Vfit = 0.68, to the SPAM visibility,

VSPAM = 0.7, with the visibility taken as the difference between the highest and

lowest transition probabilities.

5.7.5 Single-Pulse Spin-Motion Entanglement

Next, we investigate spin-dependent kicks, a key component for two-qubit gates and

matter wave interferometry. We drive stimulated Raman transitions of the qubit

in a non-copropagating configuration (Fig. 5.18(c)), such that the internal state

(spin) and motional state are left entangled. The polarization of the light is now
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Figure 5.20: Modulation of wavepacket overlap due to spin-motion entanglement

during Ramsey sequence. The evolution of the ion’s coherent state is shown in phase

space. Left: π/2 pulse splits wavepacket due to SDK and the kicked wavepacket

will oscillate in the harmonic potential. Right: second π/2 pulse kicks remaining

population. Overlap of wavepackets determines fringe visibility.

correlated with the direction of propagation such that population transfer can only

occur by exchanging one photon from each beam, producing a spin-dependent kick:

an ion initially in |↑⟩ (|↓⟩) receives a momentum kick of ℏkeff (−ℏkeff) along the

trap axial direction, where keff is the wavevector difference between the two beams,

kσ − kπ. This is equivalent to a displacement, D(iη), in phase space (Fig. 5.20),

with η ≡ |keff |
√

ℏ
2mω

= 0.56 the effective Lamb-Dicke parameter. The kicks are
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accompanied by a spin flip. Since the pulse width is much shorter than the trap

period, we approximate the ultrafast kicks as instaneous momentum displacements

and the time evolution operator for an impulsive SDK pulse between degenerate

Raman levels becomes:

U(θ) = cos
(
θ
2

)
1+ i sin

(
θ
2

)
[D(iη)σ̂− +D(−iη)σ̂+] , (5.24)

where σ̂+ and σ̂− are the qubit raising and lowering operators, which act on the

internal state of the ion and are composed of the usual spin Pauli matrices, σ̂x, σ̂y,

such that σ̂± = 1
2
(σ̂x ± iσ̂y).

To explicitly demonstrate the spin-dependent kick, we prepare the ion in |↑⟩ and
perform a Ramsey pulse sequence consisting of two SDK π/2 pulses separated by a

variable time, τ , set by the pulse picker, during which the ion undergoes harmonic

motion in the trap (Fig. 5.20). For each wait time Ramsey interference fringes (see

insets of Fig. 5.21) were mapped versus detuning, δ, by scanning the qubit splitting

via the static magnetic field. The first SDK π/2 pulse produces a momentum kick

described by a displacement operator D(iη). The time evolution operator during

the Ramsey wait time, Uwait, causes the qubit internal state, |ψ⟩, to pick up a phase

ϕ↑(↓) = (−)δτ/2 and the coherent state evolution, |α⟩ → |αe−iωτ ⟩, as the ion os-

cillates in the trap. The degree of wavepacket overlap is encoded in the Ramsey

interference fringe visibility V and is dependent on the timing of the second π/2

pulse as illustrated in Fig. 5.20.

The wavepacket overlap after the second π/2 pulse depends on the initial motional

distribution of the ion. Doppler cooling prepares the ion in a thermal state with a

mean occupation number n̄ in the harmonic oscillator potential. The thermal distri-

bution creates a mixed state, which can be expressed using the Glauber-Sudashan

distribution ρ =
∫
dα PG(α)|ψ, α⟩⟨ψ, α|, with PG(α) = 1

πn̄
e−|α|2/n̄ for a thermal

distribution of coherent states, |α⟩, with an average occupation number n̄. The fi-

nal density matrix is found by evolving the wavefunction according to Eq. (5.24),

|ψf, αf⟩ = U(π
2
)UwaitU(

π
2
)|ψi, αi⟩. The population of the ion’s internal states is then

found by tracing out the motion from the density matrix: P↑ = ⟨↑|Trα(ρ)|↑⟩ [JNM15].
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Leading to the probability to remain in the |↑⟩ state, with γ = δτ + η2 sinωτ :

P↑ =
1

2
− 1

2
cos (γ) exp

[
−η2(1− cosωτ)(2n̄+ 1)

]
. (5.25)

Scanning over the detuning gives a sinusoidal fringe from which we determine the

visibility, V , the difference between the maximum and minimum transition probabil-

ity:

V = exp[−η2(1− cosωτ)(2n̄+ 1)]. (5.26)

Initially, as the wavepackets separate, the visibility rapidly decays. The wavepackets

re-overlap in phase space after an integer number of trap periods, T = 2π/ω, and

the fringe visibility revives as shown in the top plot of Fig. 5.21. The width of the

decay and revivals is dependent on the combination of ion parameters 2η2 (2n̄+ 1).

Fitting the fringe visibility at each value of the wait time gives the data plotted in

Fig. 5.21, with error bars given by the fit uncertainty. Representative Ramsey fringes

with their fits are inset with arrows indicating the corresponding Ramsey wait time.

The red line is a fit to the data according to Eq. (5.26) with an additional offset

A = 0.036(4) that accounts for quantum projection noise during data collection, as

well as an overall scaling factor, B = 0.41(2) accounting for the finite fidelity of this

operation and our readout procedure:

V = A+B exp
[
−η2(1− cosωτ)(2n̄+ 1)

]
. (5.27)

From this fit we extract a revival time of τrev = 30.864(1) µs. The corresponding sec-

ular frequency of ω = 2π× 32.400(1) kHz is in good agreement with an independent

measurement of the axial secular frequency using the “tickle scan” method [DMM04].

The fit value for the mean occupation number n̄ = 1059(80) implies a temperature

of 1.6(1) mK.

Using known sources of infidelity, we can account for the max fringe visibility,

Vmax = 0.45(2), of the spin-motion entanglement. The visibility is reduced due to

the limited SPAM visibility, the infidelity of the SDK pulses, and the ion coherence

time. Unlike in the single-beam single-qubit rotation experiment, the electric field

polarization at the ion when using two beams has no σ+ component. This leads

to a differential light shift of the qubit states dependent on the strength of the σ−
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Figure 5.21: Collapse and revival of spin coherence at the trap period. The topmost

plot shows the decay and revival of the Ramsey fringe visibility after the ion has

oscillated through one axial trap period. The main plot shows the revival from the

top plot and the data points are the best-fit amplitude values of Ramsey fringes as

a function of the applied wait time, the red line is a fit to Eq. (5.27). Inset shows

some representative fringes.

polarized beam, as seen in Eq. (5.22). Lowering the intensity of the σ− polarized

beam reduces the differential shift but requires higher intensity of the π polarized

beam to maintain the same Rabi frequency. Numerically solving the Schrodinger

equation, we find that with a pulse energy of 14 nJ for the σ− polarized beam at

about half the energy of the π-polarized beam (24 nJ) the differential light shift
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limits our fidelity to Flightshift = 0.95(1). We calculate the overall visibility Vtot =

VSPAM × FSDK × exp(−τrev/T2) = 0.47(4), taking VSPAM = 0.70(3) from Fig. 5.19,

FSDK = Fthermal×Flightshift = 0.92(3), and from auxiliary measurements, the Zeeman

qubit coherence time, T2 ≈ 100 µs.

5.7.6 Conclusion

We have demonstrated ultrafast control of a trapped ion Zeeman qubit. Using a

high-intensity mode-locked laser to drive a Raman transition, we can perform a sin-

gle qubit π-rotation using a single laser pulse, in approximately 16.4(5) ps. The

fidelity of this qubit rotation is estimated to be (97+3
−4)%, currently limited by the

ion’s thermal position spread. Operating in a non-copropagating geometry, the same

Raman transition was used to perform ultrafast spin-motion entanglement, a key

ingredient for two-qubit gates and matter-wave interferometry. The momentum im-

parted by the resulting spin-dependent kick leads to a reduction in the fringe visibility

of a Ramsey pulse sequence as the wavepackets separate. Revival of the visibility is

observed at a time equal to the trap period, and the variation of the visibility allows

us to infer both the efficiency of spin-motion entanglement and the mean occupation

number of the trapped ion.

In contrast to previous work with hyperfine qubits [MMM06, CMQ10,MSN13,

WMJ17], the fideltiy of the spin-motion entanglement is not limited by multi-photon

transitions. Polarization selectivity precludes diffraction of the atomic wavepacket

into multiple momentum orders. For applications, such as matter wave interferome-

try, where higher momentum transfer is beneficial, retroreflecting the SDK beams can

double the momentum transfer while returning the ion to its initial state, enabling

SDKs to be applied at the repetition rate of the laser.

Further improvements can be achieved by increasing the fidelity of the state

readout, decreasing the ion’s thermal position spread, decreasing the differential

light shift, and increasing the qubit coherence. Increasing the SPAM fidelity will

increase the Ramsey fringe visibility and enable a more precise measurement of the

fidelity of ultrafast qubit operations. This can be achieved by using the narrow

2S1/2 ↔ 2D5/2 transition to perform electron shelving [DKN10,YMD17]. The ion’s
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spread in position is strongly dependent on the trap secular frequency. For a 138Ba+

ion cooled to the Doppler limit in a trap with ωsec = 2π × 200 kHz this source of

infidelity is reduced to the 10−5 level. By choosing a laser at the “magic” wavelength

(λ ≈ 480 nm Ba+, corresponding to frequency ω = ω0 + ωFS/3), the differential

light shift can be nulled, as seen in Eq. (5.22). The coherence time can be increased

by using permanent magnets to decrease the magnetic field noise. Zeeman qubits

coherence times exceeding 1 s were demonstrated in [RSK16]. The spin-dependent

kick scheme that we have demonstrated here will be harnessed to perform trapped-ion

interferometry [CH17,Wes19].
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CHAPTER 6

Conclusion

Using a single, high-intensity pulse from a mode-locked laser, ultrafast control of

a trapped ion Zeeman qubit has been demonstrated. Single-pulse stimulated Ra-

man transitions using Zeeman qubits, contrasted to previous work with hyperfine

qubits [MMM06,CMQ10,MSN13,WMJ17], are not as suseptible to the single-qubit-

rotation infidelity due to the laser pulse’s finite bandwidth. The state-dependent mo-

mentum transfer using stimulated Raman transitions in Zeeman qubits is not limited

by multi-photon transitions due to polarization selectivity, preventing diffraction of

the atomic wavepacket into multiple momentum orders. Single qubit rotations are

performed in approximately 16.4(5) ps, the laser pulse length, and the fidelity of this

qubit operation is estimated to be (97+3
−4)%, currently limited by the ion’s thermal

position spread. Stimulating Raman transitions in a non-copropagating geometry, a

single laser pulse generated entanglement between the ion’s momentum and internal

spin state. The momentum imparted by the resulting spin-dependent kick leads to

separation of the different spin states. The wavepacket separation can be observed

from the reduction of fringe visibility when performing Ramsey experiments. Re-

vival of the visibility is observed as the wavepackets re-overlap in phase space due

to the harmonic potential provided by the ion trap. The efficiency of spin-motion

entanglement and the mean occupation number of the trapped ion are inferred from

the variation of the fringe visibility.

In light of the results presented here, the original idea of constructing a trapped

ion interferometer gyroscope becomes more feasible. To realize a high-sensitivity

ion gyroscope as described in the original experiment proposal [CH17], the current

experimental setup will need to advance in several areas. First, to be sensitive to the

Sagnac effect, the interferometer paths must enclose a non-zero area. The research

presented here only investigated 1D interferometry with spin-dependent kicks along
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a single axis. As mentioned in [CH17], the ion orbits can be constructed from a kick

and a displacement. The kicking operation has been shown in this research and a

DC voltage step on the trapping electrodes can be used to displace the ion from the

trap center. This operation needs to be studied and characterized. Second, large-

momentum beamsplitter operations must be investigated. The SDK scheme shown

here will cause consecutive kick momentum to cancel out. To avoid this, the beam

polarization can be quickly switched, but a simpler implementation would be to retro-

reflect the pulses to the ion such that the momentum transfer from consecutive pulses

adds together. Finally, the experiment proposal supposes 100 kicks and 100 ion orbits

while this research has only investigated single SDKs and interferometer operation

on the order of a single ion trap period. With the current kick fidelity of 95%, the

Ramsey fringe visibility will be washed out after just 14 kicks: (0.95)14 < 0.5. The

observed Ramsey fringe decoherence of T2 = 100 µs will limit the number of ion

orbits to less than 4 for the trap period used here of 30 µs.

Further improvements of the SDK operations include increasing the fidelity of

the state readout, decreasing the ion’s thermal position spread, decreasing the differ-

ential light shift, and increasing the qubit coherence. Increasing the SPAM fidelity

will increase the Ramsey fringe visibility and enable a more precise measurement of

the fidelity of ultrafast qubit operations. This can be achieved by using the narrow

2S1/2 ↔ 2D5/2 transition to perform electron shelving [DKN10,YMD17]. The ion’s

spread in position can be decreased by increasing the trap secular frequency. Oper-

ating with a 138Ba+ ion cooled to the Doppler limit in a ωsec = 2π × 200 kHz trap

would reduce this source of infidelity to the 10−5 level. As seen in Eq. (5.22), the

differential light shift can be nulled by choosing a laser at the “magic” wavelength

(λ ≈ 480 nm Ba+, corresponding to frequency ω = ω0 + ωFS/3). The ion coher-

ence time can be increased by using permanent magnets to decrease the magnetic

field noise. Zeeman qubits coherence times exceeding 1 s have been demonstrated

in [RSK16].

The End
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Th. Udem. “Sub-millikelvin spatial thermometry of a single Doppler-
cooled ion in a Paul trap.” Phys. Rev. A, 85:023427, 02 2012.

[Kle13] Daniel Kleppner. “Norman Ramsey and his method.” Physics Today,
66:25, 01 2013.

[Kni81] R. D. Knight. “Storage of ions from laser-produced plasmas.” Applied
Physics Letters, 38(4):221–223, 02 1981.

[Lab] Mittleman Lab. “Measuring Ultrashort Laser Pulses I: Autocor-
relation.” Available at https://www.brown.edu/research/labs/

mittleman/sites/brown.edu.research.labs.mittleman/files/

uploads/lecture14.pdf.

[LBM03] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. “Quantum dynamics
of single trapped ions.” Rev. Mod. Phys., 75:281–324, 03 2003.

[LGA08] Jaroslaw Labaziewicz, Yufei Ge, Paul Antohi, David Leibrandt, Ken-
neth R. Brown, and Isaac L. Chuang. “Suppression of Heating Rates in
Cryogenic Surface-Electrode Ion Traps.” Phys. Rev. Lett., 100:013001,
01 2008.

[Mar97] Raymond E. March. “An Introduction to Quadrupole Ion Trap Mass
Spectrometry.” Journal of Mass Spectrometry, 32(4):351–369, 1997.

[MCH09] Holger Müller, Sheng-wey Chiow, Sven Herrmann, and Steven Chu.
“Atom Interferometers with Scalable Enclosed Area.” Phys. Rev. Lett.,
102:240403, 06 2009.

[MMK96] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland.
“A “Schrödinger Cat” Superposition State of an Atom.” Science,
272(5265):1131–1136, 1996.

[MMM06] M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, L.-M. Duan, and
C. Monroe. “Ultrafast Coherent Excitation of a Trapped Ion Qubit for
Fast Gates and Photon Frequency Qubits.” Phys. Rev. Lett., 97:040505,
07 2006.

[MS99] Klaus Mølmer and Anders Sørensen. “Multiparticle Entanglement of Hot
Trapped Ions.” Phys. Rev. Lett., 82:1835–1838, 03 1999.

102

https://www.brown.edu/research/labs/mittleman/sites/brown.edu.research.labs.mittleman/files/uploads/lecture14.pdf
https://www.brown.edu/research/labs/mittleman/sites/brown.edu.research.labs.mittleman/files/uploads/lecture14.pdf
https://www.brown.edu/research/labs/mittleman/sites/brown.edu.research.labs.mittleman/files/uploads/lecture14.pdf


[MSN13] J. Mizrahi, C. Senko, B. Neyenhuis, K. G. Johnson, W. C. Campbell,
C. W. S. Conover, and C. Monroe. “Ultrafast Spin-Motion Entanglement
and Interferometry with a Single Atom.” Phys. Rev. Lett., 110:203001,
05 2013.

[NDM11] S. Narayanan, N. Daniilidis, S. A. Möller, R. Clark, F. Ziesel, K. Singer,
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