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STATE OF THE ART LECTURE

Toward an Understanding of Host and Bacterial Molecules
Mediating Legionella pneumophila Pathogenesis

MARCUS A. HORWITZ

Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles,
Los Angeles, California 90024

By the time of the 1983 International Sympo-
sium on Legionella, a good general picture of the
immunobiology of Legionella pneumophila in the
mammalian host had been obtained. It was known
that the bacterium is an intracellular pathogen of
the mononuclear phagocyte, chiefly monocytes
and alveolar macrophages (41, 57), that the organ-
ism is phagocytized by host cells and resides intra-
cellularly in a specialized phagosome that does not
fuse with lysosomes or become highly acidified
(35, 36, 38, 40), and that cell-mediated immunity
rather than humoral immunity plays a central role
in host defense against L. pneumophila as it does
against other intracellular pathogens (37, 42-44).
However, most of the knowledge about the immu-
nobiology of L. pneumophila by 1983 was de-
scriptive. What was lacking was an understanding
of the molecular basis for the bacterium’s interac-
tion with its host cells and the immune system,
i.e., of the key host and bacterial molecules that
mediate L. pneumophila pathogenesis.

Since 1983, substantial progress has been made
in understanding the molecular basis for L. pneu-
mophila pathogenesis. This review summarizes
these advances.

PHAGOCYTOSIS

L. pneumophila is phagocytized frequently but
not exclusively by coiling phagocytosis, in which
long phagocyte pseudopods coil around the organ-
ism as it is internalized (38). Phagocytosis by hu-
man monocytes is mediated by a three-component
phagocytic system consisting of monocyte com-
plement receptors CR1 and CR3, fragments of
complement component C3, and the major outer
membrane protein (MOMP) on the surface of L.
pneumophila (3, 54, 62) (Fig. 1). C3 fixes selec-
tively to MOMP by the alternative pathway of
complement activation.

INTRACELLULAR PATHWAY

Inside mononuclear phagocytes, L. pneu-
mophila resides in a phagosome that interacts se-
quentially with host cell smooth vesicles,

mitochondria, and ribosomes until a ribosome-
lined replicative vacuole is formed (Fig. 2) (35).
As already noted, L. pneumophila inhibits phago-
some-lysosome fusion and phagosome acidifica-
tion (36, 40).

A mutant L. pneumophila that does not inhibit
phagosome-lysosome fusion is avirulent for
monocytes (39). Complementation of this mutant
with wild-type DNA restores its capacity to inhibit
phagosome-lysosome fusion, multiply intra-
cellularly in human mononuclear phagocytes, and
cause lethal pneumonia in guinea pigs (53).

ROLE OF IRON IN INTRACELLULAR
MULTIPLICATION

Virtually all pathogens require iron, but L.
pneumophila has a relatively high metabolic re-
quirement for this metal ion. L. pneumophila ac-
quires iron from the intermediate labile iron pool
of the monocyte (17). The iron in this pool is
derived from iron-transferrin via transferrin recep-
tors, iron-lactoferrin via lactoferrin receptors, and
the iron storage protein ferritin (17, 18, 20).

Agents that reduce the size of the intermediate
labile iron pool of the monocyte inhibit L. pneu-

C3b C3bi

FIG. 1. Diagram illustrating a three-component pha-
gocytic system that mediates phagocytosis of L. pneu-
mophila by human monocytes.
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FIG. 2. Intracellular pathways of virulent and avirulent L. pneumophila in human monocytes. Both virulent wild-
type L. pneumophila Philadelphia 1 strain and avirulent mutant 25D derived from it enter phagocytes by coiling
phagocytosis. Thereafter, their pathways diverge. Wild-type L. pneumophila follows an intraphagosomal pathway in
which the phagosome interacts sequentially with host cell smooth vesicles, mitochondria, and ribosomes but does
not fuse with lysosomes. Avirulent L. pneumophila mutant 25D enters an intraphagolysosomal pathway in which the
phagosome does not intereact with the various organelles that surround wild-type phagosomes but does fuse with
lysosomes. Wild-type L. pneumophila multiplies in the ribosome-lined phagosome until its destroys the monocyte.
Mutant 25D remains alive but unable to multiply in the phagolysosome.

mophila intracellular multiplication. Three differ-
ent types of agents inhibit L. pneumophila
multiplication in this way. First, the iron chela-
tors, including the nonphysiologic iron chelator
deferoxamine and the physiologic iron chelator
apolactoferrin, reduce the iron pool by chelating
iron within it (17, 20). Second, the weak bases
chloroquine and ammonium chloride reduce the
iron pool by blocking the pH-dependent release of
iron from endocytized iron-transferrin and the pH-
dependent proteolysis and release of iron from
iron-lactoferrin and ferritin (19). Third, gamma
interferon (IFN-y) reduces iron availability by
down-regulating transferrin receptor expression
and intraceltular ferritin concentration (17, 18).
How L. pneumophila internalizes iron remains
unknown; possibly, its iron reductase plays a role
(48). The iron incorporated into L. pneumophila is
found in seven major iron-containing proteins,
one of which is an iron superoxide dismutase (55).
The major iron-containing protein (MICP) of L.
pneumophila grown on agar has an apparent mo-
lecular mass of 210 kDa under nondenaturing con-

ditions and 85 to 90 kDa under denaturing
conditions (55). MICP retains iron under mild de-

naturing conditions (55). MICP is homologous
with Escherichia coli aconitase and the human
iron responsive element binding protein (54a).

CELL-MEDIATED IMMUNITY

As noted above, the host defends itself against
L. pneumophila by cell-mediated immune mecha-
nisms. Three different types of cell-mediated im-
mune mechanisms have been studied. First,
activated human monocytes and alveolar macro-
phages, including those activated by IFN-vy, have
been shown to inhibit L. pneumophila intracellular
multiplication (4, 5, 44, 47, 56, 57). Second,
polymorphonuclear leukocytes (PMN) activated
by IFN-y and tumor necrosis factor have been
found to have an enhanced capacity to kill L.
pneumophila (7). However, killing was modest
and required several days, raising some question
as to the significance of this immune mechanism.
Third, interleukin-2-activated killer cells from
nonimmune subjects have been studied by two
groups for their capacity to kill L. preumophila.

One group reported positive results, and the other
reported negative results (8, 75). Whether anti-



gen-speciﬁc cytotoxic lymphocytes capable of
lysing infected macrophages are generated in Le-
gionnaires disease remains to be determined.

MECHANISMS OF MACROPHAGE
ACTIVATION

Activated mononuclear phagocytes inhibit L.
pneumophila multiplication in two ways. First,
they phagocytize about 50% fewer L. pneu-
mophila, thereby restricting access of the bacteria
to the intracellular milieu that they require for
multiplication (44). The mechanism for this pro-
cess likely involves IFN-y-mediated down-regula-
tion of the function of complement receptors that
mediate phagocytosis of L. pneumophila (62, 69).
Second, activated monocytes and macrophages
markedly slow the multiplication rate of bacteria
that are internalized (44). As noted above, IFN-y-
activated monocytes do so by limiting the avail-
ability of iron to intracellular L. pneumophila,
which occurs as a consequence of IFN-y-induced
coordinate down-regulation of transferrin receptor
expression and intracellular ferritin concentration
(17, 18, 20a).

PMN-MONOCYTE COOPERATION

PMN are prominent in histological specimens
from the lungs of patients with Legionnaires dis-
ease, and studies of PMN-depleted guinea pigs
challenged with L. pneumophila indicate that
PMN play an important role in host defense; such
guinea pigs have greater susceptibility to infec-
tion, higher numbers of L. pneumophila in their
lungs, and higher mortality than do control ani-
mals (31). Yet in in vitro studies, human PMN

Apolactoferrin

Lactoferrin
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lack the capacity to kill appreciable numbers of L.
pneumophila, even in the presence of anti-L.
pneumophila antibody and complement (42) or
when activated with IFN-y and tumor necrosis
factor (7). The finding that apolactoferrin inhibits
L. pneumophila intracellular multiplication in hu-
man monocytes has raised the possibility that
PMN play a role in host defense by cooperating
with monocytes (20). Apolactoferrin is a major
protein in the specific granules of PMN that is
released at sites of inflammation, such as occurs in
the L. pneumophila-infected lung. By providing
infected mononuclear phagocytes with apolac-
toferrin and thereby allowing them to inhibit L.
pneumophila intracellular multiplication, PMN
may play an important indirect role in host defense
against L. pneumophila (20) (Fig. 3).

IMMUNOPROTECTION

Four different antigenic preparations have been
shown to induce strong cell-mediated immune
responses, manifest by cutaneous delayed-type
hypersensitivity and splenic lymphocyte prolifera-
tion, and strong protective immunity in the guinea
pig model of Legionnaires disease: the avirulent
mutant described above that fails to inhibit phago-
some-lysosome fusion; L. pneumophila mem-
branes; the 39-kDa major secretory protein (MSP)
of L. pneumophila; and the major cytoplasmic
membrane protein (MCMP) of L. pneumophila, a
genus-common antigen and member of the Hsp60
family of heat shock proteins (9-12, 12a, 14). The
MSP is able to induce protective immunity across
serogroups of L. pneumophila and in some cases
across species of Legionella (11). Interestingly,
although MSP is a highly potent immunoprotec-

Receptor

PMN

Monocyte

FIG. 3. Potential PMN-monocyte cooperation in host defense against L. pneumophila. Apolactoferrin is released
by PMN at sites of inflammation. Apolactoferrin is endocytized by lactoferrin receptors on the surface of mono-
cytes. By chelating iron in the intracellular labile iron pool of the cell, apolactoferrin inhibits L. pneumophila
intracellular multiplication. Thus, PMN may play an indirect role in host defense by providing monocytes with
apolactoferrin in the L. pneumophila-infected lung.
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TABLE 1. Characteristics of L. pneumophila MSP

Characteristic Reference
Biologic
Major secretory protein .....viviiniiiiiiiiniiiii e 39
Zinc metalloprotease ................iiiiiiiiiiii, 27
Weak hemolyticactivity . ............... ..., 49
Cytotoxic forCHOcells ........oovviiiiiniiiiiiaianannn 49
Genetic, immunologic, and cytoxic differences among species. . . .. . 63
Structurally and functionally homologous to Pseudomonas
aeruginosa elastase .............iiiiiieiii i 6
Produced intracellularly inmonocytes .. ....................... 25
Immunologic
Protective immunogen ............iiiiiiiiiiiiiii e 10
Cross-serogroup and variable cross-species protection ........... . 12
Virulence
Not virulence determinant in human mononuclear phagocytes . . . ... 72
Not virulence determinant in guineapigs ...................... 13
Homologous with zinc metalloprotease and potential virulence
determinant of fish pathogen Vibrio anguillarum. . ............. 59

tive molecule, it is not a virulence determinant in
the guinea pig model of Legionnaires disease (13).
Isogenic MSP+ and MSP- strains of L. pneu-
mophila have the same 50% and 100% lethal
doses for guinea pigs, multiply at the same rate in
the guinea pig lung, and cause indistinguishable
pathologic lesions in the lung.

MSP has been extensively studied. Its major
characteristics are summarized in Table 1.

ANTIGEN PROCESSING AND
PRESENTATION

The finding that MSP is not a virulence deter-
minant demonstrates that an immunoprotective
molecule need not be a virulence determinant.
What it presumably must be is a molecule that
allows the immune system, especially lympho-
cytes, to recognize infected host cells and mount
an effective antimicrobial defense against them.
This assumption lead us to postulate that MSP is
released by L. pneumophila in infected monocytes
and subsequently processed and presented on the
surface of the monocytes in association with major
histocompatibility complex (MHC) molecules.
Consistent with this hypothesis, immunohisto-
chemical and immunoelectron microscopy studies
using affinity-purified anti-MSP antibody have
demonstrated that L. pneumophila produces MSP
and releases it into its phagosome in infected hu-
man monocytes (25). It is not released by L. pneu-
mophila in the presence of erythromycin, which
blocks bacterial protein synthesis and inhibits L.
pneumophila intracellular multiplication (4, 45).

Interestingly, immunoelectron microscopy
studies have demonstrated that MHC class I and 11
molecules are scarce on the membrane of phago-

somes containing L. pneumophila (26a). Such
molecules are excluded from the phagosome dur-

ing coiling phagocytosis of L. pneumophila (26).

This finding suggests that immunogenic epitopes

of MSP may not bind to MHC molecules in the

phagosome but may bind elsewhere in the cell in

an extraphagosomal compartment.

VIRULENCE DETERMINANTS

Only one L. pneumophila molecule, the Mip
protein, has been rigorously shown to be a viru-
lence determinant. This 24-kDa protein is re-
quired for the full expression of virulence of L.
pneumophila in mononuclear phagocytes and
guinea pigs (22, 23). Interestingly, Mip recently
has been shown to inhibit protein kinase C activity
(46).

Several other molecules of L. pneumophila that
are potentially important to pathogenesis have
been isolated. Biologic and immunologic charac-
teristics of these molecules are summarized in Ta-
ble 2. In addition, two molecules from Legionella
micdadei are of potential significance. First, a
protein kinase of apparent molecular mass 35 kDa
catalyzes phosphorylation of PMN proteins, in-
cluding tubulin, and phosphatidylinositol (66).
Second, an acid phosphatase of apparent molecu-
lar mass 68 kDa inhibits superoxide production by
human PMN and dephosphorylates phospha-
tidylinositol biphosphate (64, 65).

CONCLUSION

Substantial strides have been made in under-
standing key host and bacterial molecules that me-
diate L. pneumophila pathogenesis. However,
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TABLE 2. L. pneumophila molecules of potential importance to pathogenesis

Subunit
apparent
molecular
mass
Molecule (kDa) Characteristic(s) Reference(s)
Flagellin 47 Common antigen in serogroups 28
; 1-3
Legiolysin 39 Hemolytic activity 73
Tyrosine-dependent browning 73
and yellow-green fluorescence
Lipopolysaccharide  Variable Weak endotoxin activity in vivo 74
Predominant molecule 32
recognized by human
antiserum
Serogroup-specific antigen 24,60
Complex and unusual structure 71
that lacks lipid A moieties
essential for maximal
endotoxic effects
MCMP 58/60/65  Major cytoplasmic membrane 33
" protein
Predominant protein recognized 33,68
by human antiserum
Genus-common antigen 61, 68
Heat shock protein 50, 51
Member Hsp60/65 family 70
Protective immunogen 12a
Gene cloned and sequenced 34, 67
MICP 85/90 Major iron-containing protein on 55
solid medium
Aconitase activity S54a
Homologous with E. coli 54a
aconitase and human iron
responsive element binding
protein
Gene cloned and sequenced 54a
Mip 24 Potentiates infection of human 23
mononuclear phagocytes
Virulence determinant in guinea 22
pigs
Protein kinase C-inhibitory 46
activity
Conserved throughout genus 21
L. pneumophila and L. micdadei 2,29
gene sequenced
MOMP 25129 Cation-selective porin 32
Genus-specific epitope 16
Species-specific epitope 58
C3 acceptor molecule 3
MSP 38739 See Table |
PBP 31 Peptidoglycan-bound protein 15
PAL 19 Peptidoglycan-associated 30, 52
lipoprotein
Phospholipase C 50/54 Hydrolyzes phosphatidylcholine 1

large gaps in our knowledge remain. For example,
moiecules that mediate the selection of the intra-

phagosomal pathway, inhibition of phagosome- fied and characterized.

lysosome fusion, and inhibition of phagosome ac-
idification; molecules that mediate iron uptake;

iron-containing molecules; immunoprotective  Institutes of Health.

59

molecules in addition to MSP; and virulence de-
terminants in addition to Mip remain to be identi-

I am Gordon MacDonald Scholar at UCLA. This work was
supported by grants AI22421 and AI28825 from the National
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