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A B S T R A C T

In this work, we compare the rate of warming of summertime extreme temperatures (summer maximum value
of daily maximum temperature; TXx) relative to the local mean (summer mean daily maximum temperature;
TXm) over the Northern Hemisphere in observations and one set of large ensemble (LE) simulations. During
the 1979–2021 historical period, observations and simulations show robust warming trends in both TXm and
TXx almost everywhere in the Northern Hemisphere, except over the eastern U.S. where observations show a
slight cooling trend in TXx, which may be a manifestation of internal variability. We find that the observed
warming rate in TXx is significantly smaller than in TXm in North Africa, western North America, Siberia,
and Eastern Asia, whereas the warming rate in TXx is significantly larger over the Eastern U.S., the U.K., and
Northwestern Europe. This observed geographical pattern is successfully reproduced by the vast majority of the
LE members over the historical period, and is persistent (although less intense) in future climate projections
over the 2051–2100 period. We also find that these relative warming patterns are mostly driven by the local
hydroclimate conditions. TXx warms slower than TXm in the hyper-arid, arid, semi-arid and moist regions,
where trends in the partitioning of the turbulent surface fluxes between the latent and sensible heat flux are
similar during regular and extreme hot days. In contrast, TXx warms faster than TXm in dry-subhumid regions
where trends in the partitioning of the surface fluxes are significantly different between regular and extreme
hot days, with a larger role of sensible heat flux during the extreme hot days.
1. Introduction

Hot extremes pose challenges for different sectors of society and
economy, such as human health (Ebi et al., 2021; Lian et al., 2023),
animal discomfort (Wankar et al., 2021), agriculture (Miller et al.,
2021), and energy (Miller et al., 2008). Backed by a strong scientific
foundation (Alexander et al., 2006; Diffenbaugh and Ashfaq, 2010;
Christidis et al., 2011; Zwiers et al., 2011; Perkins et al., 2012; Min
et al., 2013; Diffenbaugh et al., 2017; Vose et al., 2017; Wehner et al.,
2018b; Byrne, 2021; Li et al., 2021), the sixth Assessment Report (AR6)
of the Intergovernmental Panel on Climate Change (IPCC) reports with
certainty that global warming has increased the frequency and intensity
of heat extremes, and even small incremental warming by 0.5 ◦C of
global mean temperature can cause a statistically significant increase
in temperature extremes on the global scale and large regions (very
likely) (Seneviratne et al., 2021). But will summer hot days warm

∗ Corresponding author.
E-mail address: asrivas@ucdavis.edu (A.K. Srivastava).

at a faster rate than regular summer days? To address this question,
several studies have compared the warming of hot extremes against the
warming of the mean (global and local) temperatures (e.g., McKinnon
et al., 2016; Seneviratne et al., 2016; Donat et al., 2017; Vogel et al.,
2017; Wehner et al., 2018a; Di Luca et al., 2020; Duan et al., 2020;
Byrne, 2021; Wang et al., 2022; Krakauer, 2023; Patterson, 2023).
However, the answer to this question is not straightforward for at
least two reasons: (i) because of how physical processes and their in-
teractions, such as large-scale atmospheric circulation patterns (Meehl
and Tebaldi, 2004; Diffenbaugh and Ashfaq, 2010; Miralles et al.,
2014; Patterson, 2023) and land–atmosphere interactions (e.g., soil
moisture-evaporation-temperature feedback; Seneviratne et al., 2010;
Whan et al., 2015; Donat et al., 2017; Vogel et al., 2017; Miralles et al.,
2019), drive temperature extremes at varied temporal and regional
scales; and (ii) because results strongly depend upon factors such as
https://doi.org/10.1016/j.wace.2024.100709
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timescales, seasons, regions, metrics, and thresholds (Lewis and King,
2017; Di Luca et al., 2020; Duan et al., 2020).

There is now enough evidence to suggest that, on global and con-
tinental scales, warming of heat extremes is significantly faster than
warming of the global mean temperature (e.g., Seneviratne et al., 2021;
Philip et al., 2022). However, there are regional disparities in the trends
of extreme temperatures against trends in both the local and global
mean. For example, a few studies suggest that the hot extremes have
warmed faster than the global mean temperature in many parts of the
world, including Europe, the Mediterranean region, and South Amer-
ica (Seneviratne et al., 2016; Vogel et al., 2017; Philip et al., 2022). On
the other hand, previous studies also indicate that the annual maximum
temperatures over eastern North America are increasing slower than
the mean temperatures (Philip et al., 2022; Patterson, 2023). Donat
et al. (2017) found that the observed changes in the annual maximum
temperature are smaller than the local annual average temperature
almost everywhere in the Northern Hemisphere, except northeastern
Canada and Europe. Patterson (2023) found that the observed changes
in the JJA maximum of the daily maximum temperature are not statisti-
cally different from the local mean JJA daily maximum temperature in
many areas of the Northern Hemisphere, except northwestern Europe
and sporadic regions of Siberia. Recently, Duan et al. (2020) analyzed
the Climate Model Intercomparison Project Phase 5 (CMIP5) model
simulations and showed that, in response to a quadrupling of CO2, the
argest 20% of the simulated summertime daily maximum temperatures
ncrease more than the corresponding mean over moist land regions,
hereas extremes increase less than the mean over dry land regions.

The above studies provide valuable insight into how hot extremes
espond to climate change in comparison to the mean temperatures.
evertheless, the question of the warming of hot extremes relative to

he mean is complex. For example, results based on the comparison
f the warming of annual temperature extremes against the warming
f the annual mean (e.g., Donat et al., 2017) cannot be extrapo-
ated to seasonal extremes. Second, most of the multimodel ensemble-
ased studies analyzing changes in hot extremes against the local/
lobal mean find that the models are often inconsistent with observa-
ions (e.g., Donat et al., 2017; Patterson, 2023). In such multimodel
nsemble-based studies, it is difficult to separate internal variability
rom model errors (Tebaldi et al., 2011; Kay et al., 2015). Li et al.
2021) demonstrated that large ensemble simulations, enabling the
ncreased sampling of internal climate variability, can robustly project
uture changes in climate extremes at small spatial scales. Third,
lmost all of the previous studies address the question of the warming
f extremes relative to the mean by focusing on trends in the two
uantities. Since extremes and mean are described by different distri-
utions, comparing their linear trends may be problematic in a few
egions, especially in places where trends are small and statistically
nsignificant.

With the aim of addressing limitations from these previous studies,
e investigate the question of the warming of the extreme temperatures

elative to the local mean in a statistically rigorous manner. To this end,
e apply a generalized extreme value (GEV) distribution framework

o compare changes in the summertime (June/July/August or JJA)
aximum (TXx) of the daily maximum temperatures relative to the

orresponding local JJA mean (TXm) daily maximum temperatures.
e focus on the summertime mean and extreme temperatures be-

ause warming patterns of the mean temperatures differ by season
nd because summertime heatwaves are the most impactful to human
nd natural ecosystems. We use large ensemble simulations of the
ommunity Earth System Model version 1 (CESM1-LE) to remove the
ffect of model errors from our results. We explain our results by using
rends in the surface turbulent fluxes driven by the local hydroclimate
onditions. Specifically, we address the following questions in this

tudy:

2 
1. Does CESM1-LE simulate the observed warming/ cooling trends
in the summertime TXm and TXx over the northern hemisphere
(NH)?

2. Are the observed cooling trends in the summertime TXx (here-
after defined as the warming hole) over the eastern CONUS a
manifestation of internal climate variability?

3. Are the observed warming trends in TXx larger or smaller than
those in the local TXm during the historical period? Can the
CESM1-LE reproduce observations?

4. How do the competing trends in TXx and TXm change in the
future?

5. Do trends in surface fluxes driven by the local hydroclimate
explain the warming of extreme temperatures relative to the
mean?

We hypothesize that the warming of the TXx relative to the TXm
can be explained by trends in the partitioning of the surface turbulent
fluxes into latent and sensible heat.

The remainder of the paper is as follows. Section 2 describes the
data and methods used in the study. Results are discussed in Section 3
and summarized in Section 4.

2. Data and methods

As a proxy for observed global temperatures, we use ERA5 re-
analysis data over the period 1979–2021 (Hersbach et al., 2020).
For model analysis, we use historical and RCP8.5 simulations of the
CESM1-LE (Kay et al., 2015). The CESM1-LE consists of 40 ensemble
members from the fully-coupled CESM1 simulations of the historical
and future climate for the period 1920–2100. Each ensemble member
uses the same radiative forcing scenario for the historical (1920–2005)
and RCP8.5 (2006–2100) periods but starts from a slightly different
initial atmospheric state. To allow a direct comparison of observed and
simulated changes over the entire reanalysis period, we concatenated
the CESM1-LE historical simulations for the 1979–2005 period with
their corresponding RCP8.5 simulations for the 2005–2021 period. For
estimation of future warming trends, we use the 2051–2100 period
from the RCP8.5 simulations. We focus on the boreal summer season
(JJA) over the regions bounded between 20◦N-90◦N in the Northern
Hemisphere. We emphasize that we selected RCP8.5, regarded as an
‘‘unlikely worst case’’ (Hausfather and Peters, 2020) to explore the
persistence of mechanisms driving differential warming rates of TXx
and TXm in an extreme scenario. Despite criticisms, RCP8.5 provides an
opportunity to understand the risks posed by climate extremes (Tollef-
son, 2020). Arguably, the timing of global warming on RCP8.5 may be
early, but without zero emissions, these temperatures will eventually
be reached and surpassed.

For mean warming (TXm), we use the Northern Hemisphere sum-
mer (JJA) seasonal means of the daily maximum 2 m temperature (2t)
over 1979–2021 (43 years) in ERA5 and the maximum reference height
temperature (TREFHTMX) in the CESM1-LE simulations. For extreme
warming (TXx), we use the JJA maxima of the daily 2 m temperature
in ERA5 and the daily TREFHTMX in CESM1-LE. For convenience,
we denote the JJA mean daily maximum temperatures as TXm and
the overall JJA maxima as TXx. We investigate the warming of the
hot extremes relative to the local mean using the generalized extreme
value (GEV) distribution framework. The GEV distribution has three
parameters: location (𝜇), scale (𝜎) and shape (𝜁). We use the local JJA
mean daily maximum temperature (TXm) as a covariate in the location
parameter of the TXx GEV distribution:

𝜇TXx = 𝜇0 + 𝜇1TXm, (1)

where 𝜇TXx is the location parameter of the TXx GEV distribution, 𝜇0 is
the intercept and 𝜇1 is the slope of the regression Eq. (1). We keep the
other two parameters (scale and shape) fixed. These four parameters of
the fitted GEV distribution are estimated using the maximum-likelihood

method (Coles et al., 2001). The 95% confidence interval (CI = 97.5th
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Weather and Climate Extremes 45 (2024) 100709 
(UCI) minus 2.5th (LCI) percentiles) of the fitted parameters is estimated
sing the parametric bootstrap method that simulates the data from
he fitted distribution and then fits GEV to each simulated data to
btain samples of the parameters. We estimate the confidence intervals
rom 100 bootstrapped samples. If the 95% CI of 𝜇1 (in Eq. (1)) does
ot include zero, 𝜇1 is said to be statistically different from zero. We
se the same 95% confidence interval of 𝜇1 to determine if TXx rises
ignificantly faster or slower than TXm. If both the LCI and UCI are
reater than 1, we conclude that the per ◦C positive change in TXx
s significantly greater than the per ◦C positive change in TXm, i.e., the
JA extreme temperature rises faster than the local temperature mean.
n the other hand, if the CI (UCI minus LCI) does not include zero,
nd both the LCI and UCI are less than 1, we conclude that the per ◦C
ositive change in TXx is significantly smaller than the per ◦C positive
hange in TXm, i.e., the JJA extreme temperature rises slower than the
ocal mean temperature.

Previous studies suggest that soil moisture-evaporation-temperature
eedback is the highly relevant mechanism for the amplification and
ersistence of warm extremes (Benson and Dirmeyer, 2021; Seneviratne
t al., 2010; Whan et al., 2015; Duan et al., 2020). We examine the local
urface conditions on the day when the TXx occurs. Therefore, we use
he CESM1-LE soil moisture, sensible, and latent heat fluxes on the day
hen TXx occurs. All fields are interpolated to the CESM1-LE grid using

he first-order conservative remapping (Jones, 1999).

. Results

.1. Local trends in TXx and TXm

The first objective of this manuscript is to show that CESM1-LE is
onsistent with ERA5, our proxy for globally complete observations.
ig. 1 shows trends in JJA extreme (TXx) and mean (TXm) tempera-
ures over 1979–2021 in the Northern Hemisphere (NH) in ERA5. As
eported in previous studies (e.g., Alexander et al., 2006; Cohen et al.,
012; Dunn et al., 2020; Seneviratne et al., 2021; Patterson, 2023),
oth TXx and TXm show significant warming trends over most of the
H. Warming trends are strongest over Europe, Western North America
nd Greenland. In contrast to ubiquitous warming trends in TXm over
and, TXx exhibits cooling trends (also known as the warming hole)
ver a few regions, most notably over the eastern CONUS (ECONUS),
azakhstan, and India. The reason for the ECONUS warming hole is
ot clear, and possible causes include internal climate variability (e.g.,
unkel et al., 2006; Partridge et al., 2018; Sun et al., 2022), external

orcing (e.g., sulfate aerosols; Leibensperger et al., 2012), irrigation
ractices (Thiery et al., 2017), and land use changes (Cowan et al.,
020).

Fig. 2 (a & b) show the ensemble median trends in TXx and TXm
n the CESM1-LE simulations over 1979–2021. Overall, the CESM1-LE
xhibits warming trends in both the mean and extreme temperatures
verywhere. The warming trend is stronger over central North America,
urope, and Northern Siberian regions. Unsurprisingly, none of the TXx
ooling trends observed in ERA5 appear in the CESM1-LE TXx ensemble
edian trend, corroborating results from previous multimodel ensem-

le mean trend estimates (e.g., Kunkel et al., 2006; Donat et al., 2017).
ig. 2 (c & d) show trends in TXm and TXx over 2051–2100 in RCP8.5.
ESM1-LE projects much-accelerated warming of both the mean and
xtreme temperatures over 2051–2100 in RCP8.5 as compared to 1979–
021, consistent with previous studies (Seneviratne and Hauser, 2020;
ehner, 2020).
Regarding the TXx trends from ERA5 and CESM1-LE, it is natural to

sk whether or not the model simulated warming of TXx during 1979–
021 is consistent with the TXx warming hole in ERA5. This question is
lso interesting, as previous studies (e.g., Donat et al., 2017) note that
he CMIP5 multimodel mean simulated accelerated warming is incon-
istent with observations. We address this question in two steps: First,
e investigate if individual ensemble members reproduce the warming
 n

3 
ole observed in ECONUS during 1979–2021. Second, we investigate
f the CESM1-LE simulated cooling trend is consistent in area with that
n ERA5. Our investigation of TXx trends in CESM1-LE indicates that
round 10 out of 40 ensemble members exhibit TXx cooling trends over
CONUS; and that ensemble member #28 exhibits a TXx warming hole
imilar to that in ERA5 (Supplemental Fig. S1). Our results confirm that
he TXx cooling trend in ERA5 may be (among other plausible causes) a
trong manifestation of internal variability (arising from a backdrop of
orced changes) that is averaged out when the ensemble mean trend
s computed. In the second step, we compute the fractional area of
egative TXx trends in ERA5 and each CESM1-LE ensemble over 1979–
021. Fig. 3 shows the histogram of the fractional area of negative
Xx trends in the CESM1-LE over 1979–2021. The figure shows that
he fractional area of negative TXx trends in ERA5 is above the mean
ut well within the 95th percentile of the fractional area of negative
Xx trends in CESM1-LE ensembles. Thus our investigation suggests
hat CESM1-LE simulates the negative trends in TXx consistent with
RA5, but the location of the negative trends is randomly distributed
ver space across the CESM1-LE ensemble members.

.2. TXx versus TXm warming in ERA5

The question of whether hot extremes are changing faster or slower
han the local mean temperatures has been addressed before (e.g.,
onat et al., 2017; Patterson, 2023). However, these previous studies
ddressed the question by applying simple measures such as differences
or the ratio) of changes in extreme temperatures minus (or over)
ean temperatures. It is not clear if such simplified measures are
owerful enough to elucidate different warming rates, especially in
egions where changes are too small (within the significance range),
s the mean and extreme temperatures follow completely different
istributions. We address this question by fitting the local TXm as a
ovariate in the location parameter of the GEV distribution of TXx, as
hown in Eq. (1).

Fig. 4 shows the regression of the location parameter of TXx on the
ocal TXm in ERA5. Blue colors show grid points where per ◦C change
n TXx is smaller in magnitude than the per ◦C positive change in the
ocal TXm (0 < 𝜇1 < 1). Red colors show grid points where per ◦C
ositive change in TXx is bigger than the per ◦C positive change in the
ocal TXm (𝜇1 > 1). Notably, over most parts of the NH, the regression
arameter is less than 1, suggesting that the extreme temperature
s rising slower than the corresponding summer mean temperature.
articularly, western CONUS, Greenland, the Siberian region, and parts
f central and western Asia are prominent land regions where the trend
n summertime TXx is smaller than the local summertime TXm trend.
n contrast, the eastern CONUS, the U.K., and Northwestern Europe
France, Belgium, Netherlands) are the NH regions where TXx is rising
aster than the local TXm. The regional warming pattern of TXx relative
o the local TXm shown in Fig. 4 has some resemblance with the
orresponding patterns shown in previous research. For example, the
aster warming of TXx over western Europe and the slower warming
ver western CONUS and the northern parts of Siberia have also been
hown by Donat et al. (2017) and Patterson (2023). However, no
revious research showed a faster warming trend of TXx over eastern
ONUS, as appears in Fig. 4.

The results for ECONUS are counterintuitive because TXm has a
mall positive trend while TXx has a small negative trend over the
astern CONUS in the ERA5 reanalysis (Fig. 1). We argue that simple
easures, such as the difference or ratio of the two trends, may not be

ble to quantify the true nature of relative changes in extremes over the
ean, especially in locations where the trends are too small. This point

s further illustrated in the Supplemental Fig. S2 . The black dots in
he figure show the grid points where TXm has a positive trend (panel
), and TXx has a negative trend (panel b). Therefore, the difference
etween trends in TXx and TXm (trend in TXx minus trend in TXm) is
egative (panel c). When the individual TXx and TXm trends are small
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Fig. 1. Trend (◦C/decade) in TXx and TXm computed using Sen’s slope over 1979–2021 in ERA5. Hatchings show trends significant at the 5% level.
Fig. 2. Ensemble median trend (◦C/decade) in TXx and TXm computed using Sen’s slope over 1979–2021 in CESM1-LE. Hatchings show grid points where trends are significant
at the 5% level in at least 20 out of 40 ensemble members.
relative to the uncertainty, apparent contradictions can arise between
trend estimates and the relative behavior of TXx as a function of TXm.
For example, consider the grid points marked by black dots in Fig.
S2, where the regression coefficients are greater than 1 (panel d), yet
the TXx trends are slightly negative (panel b) but the TXm trends
4 
are slightly positive (panel a). These contradictory behaviors occur in
intermediate regions in terms of the local hydroclimatic processes as
discussed in Sections 3.4 and 3.5.

To investigate the hypothesis that TXx may actually be rising faster
than TXm even if TXx has a small negative and TXm has a small positive
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Fig. 3. Histogram of the fractional area of negative TXx trends in CESM1-LE. The black dashed line shows the mean fractional area with a negative TXx trend in CESM1-LE. The
red dashed line indicates the fractional area with a negative TXx trend in ERA5. The blue dashed line shows the 95th percentile of the fractional area in CESM1-LE. Unit: %.
Fig. 4. Regression of the location parameter of TXx on the local TXm in ERA5. The red (blue) colors show grid points where per ◦C positive change in TXx is bigger (smaller)
than the per ◦C positive change in the local TXm over 1979–2021. Green shading shows regions where per ◦C change in TXx is negative for per ◦C positive change in the local
TXm. The hatching shows grid points where the regression parameter is significant at 5%. Unit: ◦C/◦C. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
trend, we perform a statistical test at a location (Longitude: 96.25◦W,
Latitude: 42.9◦N) in the ECONUS (the black circle in the Supplemental
Fig. S2) that has a significant negative trend in TXx and a positive trend
in TXm in ERA5 (Supplemental Fig. S3). The statistical test has the
following steps:

1. Estimate the parameters (location, scale, and shape) of the GEV
distribution of TXx (actual data) whose location parameter is
modeled as: 𝜇TXx∼TXm = 𝜇0 + 𝜇1TXm.

2. Generate a random sample with the length equal to the number
of data points (sampled data) from the distribution that has the
same parameters as in step 1.

3. Estimate the slope of the location parameter (𝜇1) for the sampled
data, similar to step 1.

4. Estimate the trend in the sampled data.
5. Repeat steps 2–4 100 times.
5 
It is apparent from Fig. 5 that there are a significantly large number
(31%) of bootstrapped samples for which TXx is rising faster than TXm
(solid green squares) even though TXx may have a small negative trend
(solid red square) and TXm has a small positive trend (in 36% samples
𝜇1 is still positive but less than 1). Nonetheless, to make sure that
the results shown in Fig. 4 are not an artifact of the GEV distribution
involved, we also perform a linear regression analysis (Supplemental
Fig. S4), in which TXx is linearly regressed on the local TXm over the
CONUS. We find that the spatial pattern of the regression parameter
obtained from the simple linear regression is similar to that obtained
from the GEV distribution analysis as in Fig. 4.

3.3. TXx versus TXm warming in CESM1-LE

Fig. 6(a) shows the ensemble-median regression of the location
parameter of TXx on the local TXm in CESM1-LE for the 1979–2021
period. Blue (red) shading shows the regions where 0 < 𝜇 < 1 (𝜇 > 1),
1 1
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Fig. 5. Results of a statistical test performed at the selected location (Longitude: 96.25◦W, Latitude: 42.9◦N) in the ECONUS to prove the hypothesis that the sampled TXx data
may have a negative trend even when the sampled TXx is actually rising faster than the observed TXm (𝜇1 > 1). The red curve shows the trend in the sampled TXx. The green
curve shows the change in the sampled TXx against the change in the observed TXm. 𝜇1 greater (smaller) than 1 indicates that the sampled TXx is rising faster (slower) than the
observed TXm. The solid green and red boxes indicate the samples for which the above hypothesis is true. The solid gray boxes show the bootstrapped samples for which 0 < 𝜇1
< 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Regression of the location parameter of TXx on the local TXm in CESM1-LE. The regression coefficient shown is the multi-ensemble median of the individual regression
coefficient in the CESM1-LE. The red (blue) colors show grid points where per ◦C positive change in TXx is bigger (smaller) than the per ◦C positive change in the local TXm
over 1979–2021 (a) and 2051–2100 (b). Green shadings show regions where per ◦C change in TXx is negative for per ◦C positive change in the local TXm. The hatchings show
grid points where the regression parameter is significant at 5% in at least 20 out of 40 ensemble members. The closed polygons indicate the geographical regions analyzed in this
study. Unit: ◦C/◦C. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
indicating that TXx is rising slower (faster) than the local TXm in those
regions. Consistent with the corresponding pattern in ERA5 (Fig. 4), the
CESM1-LE shows that over most of the NH land, TXx is rising slower
than TXm. Eastern North America and Western and Central Europe are
the regions where the rate of TXx warming is faster than that of TXm.
It is worth noting that the ensemble median pattern shown in Fig. 6 is
a robust feature of the CESM1-LE because the pattern is present in at
least 36 out of 40 ensemble members. Nonetheless, a striking similarity
of Figs. 4 and 6 indicates that the observed warming/ cooling of TXx
relative to the local TXm is not due to the internal variability and is a
robust feature of the climate system.

Future warming of Txx relative to the local TXm over 2051–2100 in
RCP8.5 is shown in Fig. 6(b). The spatial pattern of the future warming/
cooling of TXx relative to TXm is broadly similar to that during 1979–
2021. However, compared to 1979–2021, the enhanced warming of
TXx relative to TXm is extended over central and western Canada,
northern Europe, and East Asia in the end-of-the-century simulations.
6 
A comparison of Figs. 6(a) and (b) suggests that the regional pattern
of the TXx warming relative to the local TXm warming is robust and
remains more or less intact throughout the end of the 21st century
RCP8.5 simulation.

3.4. Connection between the local hydroclimate and warming of TXx rela-
tive to TXm

Duan et al. (2020) showed that changes in the extreme temperatures
relative to the mean depend upon the local hydroclimate, with extremes
changing more than the mean in moist land regions and less than the
mean in dry land regions. Following Duan et al. (2020), we compute
the Aridity Index (AI), defined as 0.8𝑅𝑛𝑒𝑡∕𝐿𝑣𝑃𝑟, where 𝑅𝑛𝑒𝑡 is the net
radiation (longwave + shortwave) at the surface, 𝑃𝑟 is the precipitation,
and 𝐿𝑣 is the latent heat of vaporization. An AI value of more than
10 indicates a dry, less than 1 indicates a moist, and between 1 and
10 indicates an intermediate hydroclimate. The spatial pattern of the
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Fig. 7. Multiensemble median Aridity Index (AI) in CESM1-LE. Panel (a) shows the climatological mean AI over 1979–2021, panel (b) shows the climatological mean AI over
2051–2100 in RCP8.5, and panel (c) shows the AI over 2051–2100 minus the AI over 1979–2021. AI is unitless.
JJA mean AI in 1979–2021 (Fig. 7) is similar to the annual global
aridity index of the CGIAR Consortium for Spatial Information (CGIAR-
CSI) Global Aridity Index and Potential Evapotranspiration Climate
Database v3 (Zomer et al., 2022). For convenience, we classify regions
based upon the AI values, similar to the classification adopted in the
CGIAR-CSI dataset: 𝐴𝐼 > 10 are classified as hyper-arid, 5 < 𝐴𝐼 ≤ 10
as arid, 2 < 𝐴𝐼 ≤ 5 as semi-arid, 1 < 𝐴𝐼 ≤ 2 as dry-subhumid,
and 𝐴𝐼 ≤ 1 as humid regions. Based upon this classification, we
have identified 6 distinct regions: North Africa (NAf) and Western
North America (WNA) are identified as hyper-arid and arid regions,
respectively; Siberia (Sib) as semi-arid; Eastern CONUS (ECONUS) and
Europe (EU) as dry-subhumid; and East Asia (EA) as a moist region
(delineated in Fig. 7).

The ensemble-median climatological mean AI over 1979–2021 is
shown in Fig. 7(a). A comparison of the figure with the relative warm-
ing pattern of TXx in Fig. 6 suggests that the warming rate of TXx
relative to TXm is slower (𝜇1 < 1) mostly in hyper-arid, arid and
semi-arid regions: the western coastal states of North America, North-
ern Canada, the Siberian region, and a large land region covering
North Africa, the Middle East, and Central Asia. In contrast, the rel-
atively faster warming of TXx compared to TXm occurs in the eastern
CONUS, and West-Central Europe, characterized as dry-subhumid re-
gions. Notably, the East Asian region (parts of Eastern China, the
Korean peninsula, and Japan) is a wet region (AI < 1) that has TXx
rising slower than the local TXm. The strong similarities between Figs. 6
and 7(a) indicate that the warming pattern of TXx relative to TXm is
connected to the local hydroclimate through changes in the local soil
moisture and associated surface latent and sensible heat fluxes.

The climatological mean AI for 2051–2100 in RCP8.5 (Fig. 7(b))
indicates that the spatial pattern of the AI remains roughly similar in an
extreme warming future. However, as indicated by the positive change
in AI (panel b-a in Fig. 7) aridity is expected to increase over central and
northern Canada, Europe, and the Siberian region. The aridity changes
in CESM1-LE are consistent with studies (Denissen et al., 2022; Hsu
and Dirmeyer, 2023) that report a widespread shift from energy to
water-limited soil moisture regimes in a warming world.
7 
3.5. Trends in surface fluxes explain the warming of TXx relative to TXm

Fig. 8 shows the CESM1-LE climatological mean and trends in soil
moisture and turbulent surface fluxes (latent and sensible heat) in the
six regions that show enhanced or suppressed warming of the extreme
temperature relative to the local mean temperature in Figs. 4 and
6. Climatologies and trends for soil moisture and surface fluxes are
shown in columns II and III and columns IV and V, respectively. As
expected, for both TXm and TXx events, the climatological soil moisture
is much lower in the semi-arid, arid, and hyper-arid regions (Sib, WNA,
NAf) than in the three relatively wetter regions (EA, ECONUS, EU)
(column II). Consistent with these soil moisture and AI conditions, the
climatological sensible heat flux is larger than the latent heat flux in
semi-arid, arid and hyper-arid regions, and smaller in the more humid
regions (column IV). Noticeably, the partitioning of the total turbulent
surface fluxes into latent and sensible heat fluxes remains similar during
the normal and extreme hot days in semi-arid, arid, and hyper-arid
regions, but strongly differs in the humid regions, with more prominent
latent heat flux during extreme hot days than during normal days (col-
umn IV). Enhanced latent heat flux during TXx days in dry-subhumid
and humid regions (column IV) is consistent with the reduced soil
moisture during those extreme hot days (column II), suggesting that
higher atmospheric evaporative demand during extreme hot days leads
to more drying of soil (Seneviratne et al., 2010).

Trends in surface fluxes during JJA mean and extreme hot days
are shown in column V of Fig. 8. It is apparent that in the hyper-
arid (NAf), arid (WNA), semi-arid (Sib), and moist (EA) regions, trends
in latent and sensible heat fluxes (TXm and TXx days) are small (<
±1 W∕m2), and show little difference between normal and extreme hot
days. In contrast, over dry-subhumid regions (ECONUS and EU), trends
in latent heat flux change are large and positive (∼ 2 W∕m2) on mean
days, but large and negative on extreme hot days. Correspondingly,
sensible heat flux also exhibits enhanced positive trends that are much
larger on extreme days than on mean days. This suggests that in
these dry-subhumid regions, the partitioning of the total turbulent heat
flux towards sensible heat may increase at a higher rate during days
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Fig. 8. Surface conditions in the CESM1-LE explaining the summertime (JJA) warming of the extreme hot days (TXx days) relative to the mean (TXm days) in 1979–2021. Each
row indicates the mean conditions and trends in the surface variables for a region. Box and whiskers (BW) plots show the quantities computed at each grid point. Column I:
regions where warming of extreme hot days relative to the mean are examined. The colors indicate if the warming of TXx is more (reds) or less (blues) than the local TXm.
Numbers in parentheses show the median AI in that region. Column II: BW plots showing the mean soil moisture (SM) during the mean JJA season (light blue) and during the
extreme hot days (dark blue). Column III: BW plots showing the trend in SM during the mean JJA season (light blue) and during the extreme hot days (dark blue). Column IV:
BW plots showing the mean latent (LH) and sensible heat (SH) fluxes during the mean and extreme hot days. Column V: BW plots for the trends in mean SH and LH during the
mean and extreme hot days. Column VI: BW plots showing the trend in the evaporative fraction (EF) during mean and extreme hot days. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
experiencing extreme temperatures than during the average summer
days.

The partitioning of turbulent heat fluxes can be understood in terms
of either Bowen ratio (𝐵𝑅 = 𝑆𝐻∕𝐿𝐻) or evaporative fraction (𝐸𝐹 =
𝐿𝐻∕[𝐿𝐻 + 𝑆𝐻]). Enhanced partitioning of turbulent fluxes towards
sensible heat flux leads to a higher Bowen ratio or a lower evaporative
fraction. We use evaporative fraction (EF) because Bowen ratio be-
comes unbounded in regions where latent heat flux is zero (Donat et al.,
2017). We first calculate the EF at each grid point for all summer (JJA)
days. Then, we calculate the mean EF for mean summer days (TXm
days) and the extreme hot day (TXx day) in a year. Finally, trends in
the mean and extreme EF are calculated. A positive trend in EF suggests
that the ratio of sensible-to-latent heat flux decreases over time, while
8 
a negative trend in EF indicates that the ratio of sensible-to-latent heat
flux increases over time. It is the sensible heat flux that leads to more
warming of the atmosphere than the latent heat flux (Seneviratne et al.,
2010). Column VI shows trends in the EF. It is apparent that over NAf,
WNA, Sib, and EA, the EF has a small positive or a negative trend on
both mean and extreme days, with little contrast between mean and
extreme days. For ECONUS and EU, the EF has a negative trend on both
mean and extreme days, but this negative trend is significantly bigger
on extreme days relative to the mean, confirming the enhancement of
the partitioning of the total flux towards the sensible heat flux during
extreme temperature days.

Fig. 9 shows trends in surface fluxes and EF over 2051–2100 in the
RCP8.5 simulations. Notably, for all regions except East Asia, future
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Fig. 9. Same as in Fig. 8 but for the 2051–2100 period.
warming of the extremes relative to the mean remains broadly similar
to that in the observed period (1979–2021) (column I). For all regions,
the future mean soil moisture (column II) and surface fluxes (column
IV) during TXm and TXx days remain similar to those in 1979–2021,
however, a few noticeable differences occur in trends of those variables.
For example, over EU, the trend in LH during TXm days (column V)
reverses its sign from positive in 1979–2021 to a negative in 2051–
2100, consistent with the increased negative trend in SM (column
III). On the other hand, trends in the mean LH and SH change from
negative in 1979–2021 to positive in 2051–2100 over EA (column V).
As explained before, it is the partitioning of total fluxes into sensible
and latent heat during the mean and extreme hot days that matters for
relative warming of the extremes relative to the mean. As observed for
the 1979–2021 period, trends in EF change little from mean to extreme
days for hyper-arid, arid, and semi-arid regions (NAf, WNA, Sib), but
decrease more significantly during TXx days than during mean days
for dry-subhumid regions (EU and ECONUS). The large interquartile
range (IQR) in trends of EF for WNA and Sib is attributed to the
regions (northern areas of WNA and western and southern areas in
9 
Sib) where TXx is supposed to rise faster than Txm in future warming.
Interestingly, future warming of hot extremes is faster than the summer
mean daily maximum over EA. This altered nature (reversal of sign) of
the relative warming of the extremes is possibly due to the enhanced
aridity in the central parts of the EA as indicated in Fig. 7, but may
also be connected to other local factors such as changes in large scale
circulation patterns and land-sea temperature contrast, not examined
in this study. Fig. 10 summarizes the thermodynamical mechanism
involved in the land–atmosphere interactions driving the warming of
the extreme temperatures relative to the mean.

In summary, in the regions that are either very dry (WNA, NAf) or
very wet (EA), surface fluxes are not sensitive to changes in the local
soil moisture; thus, there is little or no local soil moisture coupling that
supports enhanced warming during extremes than the local mean. In
contrast, in regions where soil moisture responds to changes in temper-
ature via changes in the partitioning of the surface fluxes (ECONUS and
EU), extreme temperatures increase faster than the mean via suppressed
evapotranspiration (or decreased EF) on extreme temperature days.
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Fig. 10. The infographic shows the role of land–atmosphere interactions in driving the warming of extreme temperatures relative to the mean. The red (blue) arrows indicate
positive (negative) trends. The length of the arrows indicates the magnitude of the trend. The top panel shows that where trends in EF (or equivalently, trends in Bowen Ratio)
during mean and extreme days are small and comparable in magnitude, the TXx has a smaller positive trend than TXm. This thermodynamical mechanism is generally true for
hyper-arid, arid, semi-arid, and moist regions (during 1979–2021); the one exception is East Asia (EA) in the RCP8.5 2051–2100 period, which is a moist region but behaves more
like an intermediate region (discussed in text). The bottom panel shows that where trends in EF are significantly more negative on TXx days (or equivalently, where trends in
Bowen Ratio are significantly higher), the TXx has a bigger positive trend than TXm. This mechanism holds for dry-subhumid regions and EA (in the RCP8.5 2051–2100 period).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4. Summary

In this work, we estimate trends in the summertime extreme and
mean temperatures in the Northern Hemisphere. Our observational
analysis uses ERA5 reanalysis over the 1979–2021 period. Our model
analysis uses CESM1-LE simulations over the 1979–2021 (historical
simulation over 1979–2005 + RCP8.5 simulations over 2006–2021)
and 2051–2100 periods (future RCP8.5 simulations). We use the JJA
maxima of the daily maximum temperatures to represent temperature
extremes (TXx) and JJA means of the daily maximum temperatures
to represent mean temperatures (TXm). We compare the warming of
extremes relative to the mean in a statistically rigorous generalized
extreme value (GEV) distribution approach. We then relate the regional
warming patterns of extremes to the local mean by the trends in the
surface latent and sensible heat fluxes and evaporative fraction. The
trends are examined for the JJA mean and for the day when the extreme
hot day in a calendar year occurs.

We find that CESM1-LE and ERA5 show warming trends in both
the TXx and TXm over the NH for the 1979–2021 period, except that
ERA5 shows a slight negative trend in TXx (i.e., a warming hole)
over the eastern CONUS. The CESM1-LE shows accelerated warming
of both the mean and extreme temperatures over 2051–2100 in the
RCP8.5 simulations. The negative TXx trend over eastern CONUS in
ERA5 is consistent with the model-simulated warming trend in TXx,
as the warming hole over ECONUS occurs in a few of the CESM1-LE
ensemble members. Similar warming holes are randomly distributed in
space across the individual simulations. There are several caveats to
this result: in addition to the internal climate variability, factors such as
land-use intensification (Alter et al., 2018), changes in anthropogenic
aerosols (Banerjee et al., 2017), and indirect response to greenhouse
gas forcings (Eischeid et al., 2023) may be responsible for the TXx
warming hole (Labe et al., 2024). Meehl et al. (2012, 2015) showed
that the warming hole exhibited by few models was connected to the
Interdecadal Pacific Oscillation (IPO). The degree to which CESM1-LE
ensembles simulate these factors/ mechanisms needs to be established.

Changes in TXx relative to the changes in TXm in ERA5 are esti-
mated using a GEV distribution framework, in which the TXm is fitted
as a covariate in the location parameter of TXx. The analysis indicates
that summertime extreme temperatures are rising slower than the
local mean temperatures over most of the Northern Hemisphere during
1979–2021, except in a few regions such as the eastern Contiguous
United States (ECONUS) and Northwestern Europe, where extremes are
rising faster than the local mean. This spatially differential warming
pattern is robust, in the sense that it is simulated by most of the CESM1-
LE ensembles in the 1979–2021 period and broadly persists through the
10 
2051–2100 RCP8.5 warming period with slight changes in the warming
pattern.

We also investigate if the warming pattern of extreme temperatures
against the mean is driven by the local hydroclimate defined in terms
of aridity index (AI). TXx is shown to be rising faster than TXm in
dry-subhumid regions (1 < 𝐴𝐼 ≤ 2; eastern CONUS and Europe), and
rising slower in hyper-arid (𝐴𝐼 > 10; North Africa), arid (5 < 𝐴𝐼 ≤ 10;
Western North America), semi-arid (2 < 𝐴𝐼 ≤ 5; Siberia) and humid
regions (𝐴𝐼 ≤ 1; East Asia). We explain the relative warming patterns
using trends in the partitioning of surface fluxes between latent and
sensible heat, measured as evaporative fraction (EF = LH/[SH+LH]).
Our investigation suggests that in hyper-arid, arid, semi-arid, and moist
regions, trends in EF change little from mean to extreme hot days;
whereas in dry-subhumid regions, the trend in EF reduces significantly
from mean to extreme heat days. To summarize, TXx rises slower in
regions where trends in the partitioning of surface fluxes change little
from mean to extreme hot days. On the other hand, TXx rises faster
in regions where trends in the partitioning of surface fluxes toward
sensible heat during extreme hot days are significantly larger than those
during mean days. The results are consistent with the first-order land–
atmosphere interaction in the conceptual evapotranspiration regimes
described in Fig. 5 of Seneviratne et al. (2010), in that the evaporative
fraction is independent of the soil moisture content in the dry (water-
limited) and wet (energy-limited) regimes, but responds to changes
in soil moisture in the transitional regime between the dry and wet
regimes.

The results present in this work are novel in several aspects. First,
we show that simple methods based upon the ratio (or difference)
of trends in the extreme and mean temperatures may not isolate the
warming pattern of extreme hot days relative to the mean in regions
where trends are too small. A regression-based approach (using a GEV
framework) is a direct method of comparing the changes in extremes
against the means. Second, we show that the observed cooling of
extreme temperatures over the eastern CONUS can be explained from
internal variability (though, we do not rule out the role of the other
plausible mechanisms involved), and that the model examined in the
study is consistent with observations. Third, our approach shows that
the warming of the Northern Hemisphere summertime extreme hot
days relative to the mean has a robust pattern across observations and
models. The relative warming of the extreme temperatures depends
upon the local hydroclimate, which determines the partitioning of
the net radiation into sensible and latent heat flux during mean and
extreme heat days. These results are consistent with the seminal work
of Koster et al. (2009), who identified different responses of the par-
titioning of sensible and latent heat to the surface/soil characteristics
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that control evaporative regimes at each location. A visual comparison
of Fig. 5(a) of Koster et al. (2009) and Fig. 7(a) of this manuscript
indicates some similarities of the regimes. For example, our hyper-arid
North Africa (AI 36.1) and arid coastal western CONUS (AI 6.7) regions
match the regions ‘‘A’’ of Koster et al. (2009) identified as the regions
where the interannual variability in soil-moisture is simply too small
to directly affect the temperature interannual variability. Similarly, our
dry sub-humid eastern CONUS region (AI 1.4) geographically matches
the regions ‘‘B’’ and ‘‘C’’ identified by Koster et al. (2009) as typically,
or frequently, under a soil moisture-controlled regime. However, some
dissimilarities also arise between the two studies. For example, the
semi-arid Siberian (AI 2.3) and humid East Asia (AI 0.7) regions in our
work do not match the energy-controlled (‘‘D’’) nor the straddled evap-
orative (‘‘C’’) regimes expected by Koster et al. (2009), respectively. A
proper investigation of the underlying causes behind the similarities
and dissimilarities of the hydrological regimes identified in the two
studies is out of the scope of this work. We acknowledge the limitations
of this study, as only the role of local heat fluxes in determining
the warming patterns of extreme temperatures relative to the mean is
examined. Other mechanisms such as large-scale atmospheric patterns,
land–ocean contrasts, and external factors such as land use change are
not investigated. We plan to analyze these aspects in the future.

CRediT authorship contribution statement

Abhishekh Kumar Srivastava: Conceptualization, Data curation,
ormal analysis, Investigation, Methodology, Software, Validation,
isualization, Writing – original draft, Writing – review & editing.
ichael Wehner: Conceptualization, Investigation, Writing – original

raft, Writing – review & editing. Céline Bonfils: Investigation, Writing
– original draft, Writing – review & editing. Paul Aaron Ullrich:
Funding acquisition, Investigation, Project administration, Supervision,
Writing – original draft, Writing – review & editing. Mark Risser:
Formal analysis, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The ERA5 data is publicly available on https://www.ecmwf.int/en
/forecasts/dataset/ecmwf-reanalysis-v5. The CESM1-LE data analyzed
in this study can be downloaded from https://www.cesm.ucar.edu/
community-projects/lens.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used no generative
AI and AI-assisted technologies.

Acknowledgments

This research was supported by the Office of Science, Office of
Biological and Environmental Research of the US Department of Energy
under contract no. DE-AC02-05CH11231 for the CASCADE Scientific
Focus (funded by the Regional and Global Model Analysis Program
area within the Earth and Environmental Systems Modeling Program).
The work of C.B. and of P.A.U. is supported by the ‘‘PCMDI: An Earth
System Model Evaluation Project’’ Science Focus Area (SFA) funded
through the Regional and Global Climate Modeling Program of the
Office of Science at the DOE, and is performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under contract DE-AC52-07NA27344. We thank Prof. Timothy
DelSole of George Mason University, Fairfax, VA, USA for his valuable

suggestions on the statistical analysis.

11 
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.wace.2024.100709.

References

Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G.,
Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K.,
Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E.,
Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez-Aguirre, J.L.,
2006. Global observed changes in daily climate extremes of temperature and
precipitation. J. Geophys. Res.: Atmos. 111 (D5), http://dx.doi.org/10.1029/
2005JD006290.

Alter, R.E., Douglas, H.C., Winter, J.M., Eltahir, E.A.B., 2018. Twentieth Century
Regional climate change during the summer in the central United States attributed
to agricultural intensification. Geophys. Res. Lett. 45 (3), 1586–1594. http://dx.
doi.org/10.1002/2017GL075604.

Banerjee, A., Polvani, L.M., Fyfe, J.C., 2017. The United States ‘‘warming hole’’:
Quantifying the forced aerosol response given large internal variability. Geophys.
Res. Lett. 44 (4), 1928–1937. http://dx.doi.org/10.1002/2016GL071567.

Benson, D.O., Dirmeyer, P.A., 2021. Characterizing the relationship between tempera-
ture and soil moisture extremes and their role in the exacerbation of heat waves
over the contiguous United States. J. Clim. 34 (6), 2175–2187. http://dx.doi.org/
10.1175/JCLI-D-20-0440.1.

Byrne, M.P., 2021. Amplified warming of extreme temperatures over tropical land. Nat.
Geosci. 14 (11), 837–841. http://dx.doi.org/10.1038/s41561-021-00828-8.

Christidis, N., Stott, P.A., Brown, S.J., 2011. The role of human activity in the recent
warming of extremely warm daytime temperatures. J. Clim. 24 (7), 1922–1930.
http://dx.doi.org/10.1175/2011JCLI4150.1.

Cohen, J.L., Furtado, J.C., Barlow, M., Alexeev, V.A., Cherry, J.E., 2012. Asymmetric
seasonal temperature trends. Geophys. Res. Lett. 39 (4), http://dx.doi.org/10.1029/
2011GL050582.

Coles, S., Bawa, J., Trenner, L., Dorazio, P., 2001. An Introduction to Statistical
Modeling of Extreme Values, vol. 208, Springer, http://dx.doi.org/10.1007/978-
1-4471-3675-0.

Cowan, T., Hegerl, G.C., Schurer, A., Tett, S.F.B., Vautard, R., Yiou, P., Jézéquel, A.,
Otto, F.E.L., Harrington, L.J., Ng, B., 2020. Ocean and land forcing of the record-
breaking dust bowl heatwaves across central United States. Nature Commun. 11
(1), 2870. http://dx.doi.org/10.1038/s41467-020-16676-w.

Denissen, J.M., Teuling, A.J., Pitman, A.J., Koirala, S., Migliavacca, M., Li, W.,
Reichstein, M., Winkler, A.J., Zhan, C., Orth, R., 2022. Widespread shift from
ecosystem energy to water limitation with climate change. Nature Clim. Change
12 (7), 677–684. http://dx.doi.org/10.1038/s41558-022-01403-8.

Di Luca, A., de Elía, R., Bador, M., Argüeso, D., 2020. Contribution of mean climate to
hot temperature extremes for present and future climates. Weather Clim. Extremes
28, 100255. http://dx.doi.org/10.1016/j.wace.2020.100255.

Diffenbaugh, N.S., Ashfaq, M., 2010. Intensification of hot extremes in the United States.
Geophys. Res. Lett. 37 (15), http://dx.doi.org/10.1029/2010GL043888.

Diffenbaugh, N.S., Singh, D., Mankin, J.S., Horton, D.E., Swain, D.L., Touma, D.,
Charland, A., Liu, Y., Haugen, M., Tsiang, M., Rajaratnam, B., 2017. Quantifying the
influence of global warming on unprecedented extreme climate events. Proc. Natl.
Acad. Sci. 114 (19), 4881–4886. http://dx.doi.org/10.1073/pnas.1618082114.

Donat, M.G., Pitman, A.J., Seneviratne, S.I., 2017. Regional warming of hot extremes
accelerated by surface energy fluxes. Geophys. Res. Lett. 44 (13), 7011–7019.
http://dx.doi.org/10.1002/2017GL073733.

Duan, S.Q., Findell, K.L., Wright, J.S., 2020. Three regimes of temperature distribution
change over dry land, moist land, and oceanic surfaces. Geophys. Res. Lett. 47
(24), http://dx.doi.org/10.1029/2020GL090997, e2020GL090997 2020GL090997.

Dunn, R.J.H., Alexander, L.V., Donat, M.G., Zhang, X., Bador, M., Herold, N., Lipp-
mann, T., Allan, R., Aguilar, E., Barry, A.A., Brunet, M., Caesar, J., Chagnaud, G.,
Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T.M., Wan Ibadullah, W.M.,
Bin Ibrahim, M.K.I., Khoshkam, M., Kruger, A., Kubota, H., Leng, T.W., Lim, G., Li-
Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., de los Milagros Skansi, M.,
Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J.D., Panthou, G.,
Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopa-
heluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der
Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T.,
Vose, R., Bin Hj Yussof, M.N., 2020. Development of an updated global land in
situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys.
Res.: Atmos. 125 (16), http://dx.doi.org/10.1029/2019JD032263, e2019JD032263
10.1029/2019JD032263.

Ebi, K.L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y.,
Kovats, R.S., Ma, W., Malik, A., Morris, N.B., Nybo, L., Seneviratne, S.I., Vanos, J.,
Jay, O., 2021. Hot weather and heat extremes: Health risks. Lancet 398 (10301),
698–708. http://dx.doi.org/10.1016/S0140-6736(21)01208-3.

Eischeid, J.K., Hoerling, M.P., Quan, X.-W., Kumar, A., Barsugli, J., Labe, Z.M.,
Kunkel, K.E., Schreck, C.J., Easterling, D.R., Zhang, T., Uehling, J., Zhang, X., 2023.
Why has the summertime central U.S. warming hole not disappeared? J. Clim. 36

(20), 7319–7336. http://dx.doi.org/10.1175/JCLI-D-22-0716.1.

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.cesm.ucar.edu/community-projects/lens
https://www.cesm.ucar.edu/community-projects/lens
https://www.cesm.ucar.edu/community-projects/lens
https://doi.org/10.1016/j.wace.2024.100709
http://dx.doi.org/10.1029/2005JD006290
http://dx.doi.org/10.1029/2005JD006290
http://dx.doi.org/10.1029/2005JD006290
http://dx.doi.org/10.1002/2017GL075604
http://dx.doi.org/10.1002/2017GL075604
http://dx.doi.org/10.1002/2017GL075604
http://dx.doi.org/10.1002/2016GL071567
http://dx.doi.org/10.1175/JCLI-D-20-0440.1
http://dx.doi.org/10.1175/JCLI-D-20-0440.1
http://dx.doi.org/10.1175/JCLI-D-20-0440.1
http://dx.doi.org/10.1038/s41561-021-00828-8
http://dx.doi.org/10.1175/2011JCLI4150.1
http://dx.doi.org/10.1029/2011GL050582
http://dx.doi.org/10.1029/2011GL050582
http://dx.doi.org/10.1029/2011GL050582
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1038/s41467-020-16676-w
http://dx.doi.org/10.1038/s41558-022-01403-8
http://dx.doi.org/10.1016/j.wace.2020.100255
http://dx.doi.org/10.1029/2010GL043888
http://dx.doi.org/10.1073/pnas.1618082114
http://dx.doi.org/10.1002/2017GL073733
http://dx.doi.org/10.1029/2020GL090997
http://dx.doi.org/10.1029/2019JD032263
http://dx.doi.org/10.1016/S0140-6736(21)01208-3
http://dx.doi.org/10.1175/JCLI-D-22-0716.1


A.K. Srivastava et al. Weather and Climate Extremes 45 (2024) 100709 
Hausfather, Z., Peters, G.P., 2020. Emissions–The ‘Business as Usual’ story Is Misleading.
Nature, http://dx.doi.org/10.1038/d41586-020-00177-3.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S.,
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,
Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de
Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5
global reanalysis. Q. J. R. Meteorol. Soc. 146 (730), 1999–2049. http://dx.doi.org/
10.1002/qj.3803.

Hsu, H., Dirmeyer, P.A., 2023. Soil moisture-evaporation coupling shifts into new gears
under increasing CO2. Nature Commun. 14 (1), 1162. http://dx.doi.org/10.1038/
s41467-023-36794-5.

Jones, P.W., 1999. First- and second-order conservative remapping schemes for grids in
spherical coordinates. Mon. Weather Rev. 127 (9), 2204–2210. http://dx.doi.org/
10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M.,
Bates, S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-
F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K.,
Polvani, L., Vertenstein, M., 2015. The Community Earth System Model (CESM)
large ensemble project: A community resource for studying climate change in the
presence of internal climate variability. Bull. Am. Meteorol. Soc. 96 (8), 1333–1349.
http://dx.doi.org/10.1175/BAMS-D-13-00255.1.

Koster, R.D., Schubert, S.D., Suarez, M.J., 2009. Analyzing the concurrence of me-
teorological droughts and warm periods, with implications for the determination
of evaporative regime. J. Clim. 22 (12), 3331–3341. http://dx.doi.org/10.1175/
2008JCLI2718.1.

Krakauer, N.Y., 2023. Amplification of extreme hot temperatures over recent decades.
Climate 11 (2), http://dx.doi.org/10.3390/cli11020042.

Kunkel, K.E., Liang, X.-Z., Zhu, J., Lin, Y., 2006. Can CGCMs simulate the twentieth-
century ‘‘warming hole’’ in the central United States? J. Clim. 19 (17), 4137–4153.
http://dx.doi.org/10.1175/JCLI3848.1.

Labe, Z.M., Johnson, N.C., Delworth, T.L., 2024. Changes in United States summer
temperatures revealed by explainable neural networks. Earth’s Future 12 (2),
http://dx.doi.org/10.1029/2023EF003981, e2023EF003981 2023EF003981.

Leibensperger, E.M., Mickley, L.J., Jacob, D.J., Chen, W.-T., Seinfeld, J.H., Nenes, A.,
Adams, P.J., Streets, D.G., Kumar, N., Rind, D., 2012. Climatic effects of 1950–2050
changes in US anthropogenic aerosols – Part 2: Climate response. Atmos. Chem.
Phys. 12 (7), 3349–3362. http://dx.doi.org/10.5194/acp-12-3349-2012.

Lewis, S.C., King, A.D., 2017. Evolution of mean, variance and extremes in 21st century
temperatures. Weather Clim. Extremes 15, 1–10. http://dx.doi.org/10.1016/j.wace.
2016.11.002.

Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., Wehner, M., 2021. Changes in annual
extremes of daily temperature and precipitation in CMIP6 models. J. Clim. 34 (9),
3441–3460. http://dx.doi.org/10.1175/JCLI-D-19-1013.1.

Lian, X., Huang, J., Li, H., He, Y., Ouyang, Z., Fu, S., Zhao, Y., Wang, D., Wang, R.,
Guan, X., 2023. Heat waves accelerate the spread of infectious diseases. Environ.
Res. 231, 116090. http://dx.doi.org/10.1016/j.envres.2023.116090, https://www.
sciencedirect.com/science/article/pii/S0013935123008824.

McKinnon, K.A., Rhines, A., Tingley, M.P., Huybers, P., 2016. The changing shape of
northern hemisphere summer temperature distributions. J. Geophys. Res.: Atmos.
121 (15), 8849–8868. http://dx.doi.org/10.1002/2016JD025292.

Meehl, G.A., Arblaster, J.M., Branstator, G., 2012. Mechanisms contributing to the
warming hole and the consequent U.S. East–West differential of heat extremes.
J. Clim. 25 (18), 6394–6408. http://dx.doi.org/10.1175/JCLI-D-11-00655.1.

Meehl, G.A., Arblaster, J.M., Chung, C.T.Y., 2015. Disappearance of the southeast
U.S. ‘‘warming hole’’ with the late 1990s transition of the interdecadal Pacific
oscillation. Geophys. Res. Lett. 42 (13), 5564–5570. http://dx.doi.org/10.1002/
2015GL064586.

Meehl, G.A., Tebaldi, C., 2004. More intense, more frequent, and longer lasting heat
waves in the 21st century. Science 305 (5686), 994–997. http://dx.doi.org/10.
1126/science.1098704.

Miller, S., Chua, K., Coggins, J., Mohtadi, H., 2021. Heat waves, climate change, and
economic output. J. Eur. Econom. Assoc. 19 (5), 2658–2694. http://dx.doi.org/10.
1093/jeea/jvab009.

Miller, N.L., Hayhoe, K., Jin, J., Auffhammer, M., 2008. Climate, extreme heat, and
electricity demand in California. J. Appl. Meteorol. Climatol. 47 (6), 1834–1844.
http://dx.doi.org/10.1175/2007JAMC1480.1.

Min, S.-K., Zhang, X., Zwiers, F., Shiogama, H., Tung, Y.-S., Wehner, M., 2013.
Multimodel detection and attribution of extreme temperature changes. J. Clim. 26
(19), 7430–7451. http://dx.doi.org/10.1175/JCLI-D-12-00551.1.

Miralles, D.G., Gentine, P., Seneviratne, S.I., Teuling, A.J., 2019. Land–atmospheric
feedbacks during droughts and heatwaves: state of the science and current
challenges. Ann. New York Acad. Sci. 1436 (1), 19–35. http://dx.doi.org/10.1111/
nyas.13912.

Miralles, D.G., Teuling, A.J., van Heerwaarden, C.C., Vilà-Guerau de Arellano, J.,
2014. Mega-heatwave temperatures due to combined soil desiccation and atmo-
spheric heat accumulation. Nat. Geosci. 7 (5), 345–349. http://dx.doi.org/10.1038/
ngeo2141.
12 
Partridge, T.F., Winter, J.M., Osterberg, E.C., Hyndman, D.W., Kendall, A.D., Mag-
illigan, F.J., 2018. Spatially distinct seasonal patterns and forcings of the U.S.
warming hole. Geophys. Res. Lett. 45 (4), 2055–2063. http://dx.doi.org/10.1002/
2017GL076463.

Patterson, M., 2023. North-west europe hottest days are warming twice as fast
as mean summer days. Geophys. Res. Lett. 50 (10), http://dx.doi.org/10.1029/
2023GL102757, e2023GL102757 2023GL102757.

Perkins, S.E., Alexander, L.V., Nairn, J.R., 2012. Increasing frequency, intensity and
duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39
(20), http://dx.doi.org/10.1029/2012GL053361.

Philip, S.Y., Kew, S.F., van Oldenborgh, G.J., Anslow, F.S., Seneviratne, S.I., Vautard, R.,
Coumou, D., Ebi, K.L., Arrighi, J., Singh, R., van Aalst, M., Pereira Marghidan, C.,
Wehner, M., Yang, W., Li, S., Schumacher, D.L., Hauser, M., Bonnet, R., Luu, L.N.,
Lehner, F., Gillett, N., Tradowsky, J.S., Vecchi, G.A., Rodell, C., Stull, R.B.,
Howard, R., Otto, F.E.L., 2022. Rapid attribution analysis of the extraordinary heat
wave on the Pacific coast of the US and Canada in June 2021. Earth Syst. Dynam.
13 (4), 1689–1713. http://dx.doi.org/10.5194/esd-13-1689-2022.

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Or-
lowsky, B., Teuling, A.J., 2010. Investigating soil moisture–climate interactions in
a changing climate: A review. Earth-Sci. Rev. 99 (3), 125–161. http://dx.doi.org/
10.1016/j.earscirev.2010.02.004.

Seneviratne, S.I., Donat, M.G., Pitman, A.J., Knutti, R., Wilby, R.L., 2016. Allowable
CO2 emissions based on regional and impact-related climate targets. Nature 529
(7587), 477–483. http://dx.doi.org/10.1038/nature16542.

Seneviratne, S.I., Hauser, M., 2020. Regional climate sensitivity of climate extremes
in CMIP6 versus CMIP5 multimodel ensembles. Earth’s Future 8 (9), http://dx.doi.
org/10.1029/2019EF001474, e2019EF001474 2019EF001474.

Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S.,
Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S.M.,
Wehner, M., Zhou, B., 2021. 2021: Weather and climate extreme events in a
changing climate. In: Zhai, V.P., Pirani, A., Connors, S.L., Péan, C., Berger, S.,
Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J.B.R., Maycock, T.K., Waterfield, T., ci, O.Y., Yu, R., Zhou, B. (Eds.),
Climate Change 2021: the Physical Science Basis. Contribution of Working Group
I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change[masson-Delmotte. Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, pp. 1513–1766.

Sun, C., Zhu, L., Liu, Y., Wei, T., Guo, Z., 2022. CMIP6 model simulation of concurrent
continental warming holes in Eurasia and North America since 1990 and their
relation to the Indo-Pacific SST warming. Glob. Planet. Change 213, 103824.
http://dx.doi.org/10.1016/j.gloplacha.2022.103824.

Tebaldi, C., Arblaster, J.M., Knutti, R., 2011. Mapping model agreement on fu-
ture climate projections. Geophys. Res. Lett. 38 (23), http://dx.doi.org/10.1029/
2011GL049863.

Thiery, W., Davin, E.L., Lawrence, D.M., Hirsch, A.L., Hauser, M., Seneviratne, S.I.,
2017. Present-day irrigation mitigates heat extremes. J. Geophys. Res.: Atmos. 122
(3), 1403–1422. http://dx.doi.org/10.1002/2016JD025740.

Tollefson, J., 2020. How hot will Earth get by 2100. Nature 580 (7804), 443–445.
http://dx.doi.org/10.1038/d41586-020-01125-x.

Vogel, M.M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., van den Hurk, B.J.J.M.,
Seneviratne, S.I., 2017. Regional amplification of projected changes in extreme
temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys.
Res. Lett. 44 (3), 1511–1519. http://dx.doi.org/10.1002/2016GL071235.

Vose, R.S., Easterling, D.R., Kunkel, K.E., LeGrande, A.N., Wehner, M.F., 2017. 2017:
Temperature changes in the United States. In: [Wuebbles, V.I., J., D., Fahey, D.W.,
Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K. (Eds.), In: Climate Science
Special Report: Fourth National Climate Assessment, vol. I, U.S. Global Change
Research Program, Washington, DC, USA, pp. 185–206. http://dx.doi.org/10.7930/
J0N29V45.

Wang, R., Gentine, P., Li, L., Chen, J., Ning, L., Yuan, L., Lü, G., 2022. Observational
evidence of regional increasing hot extreme accelerated by surface energy parti-
tioning. J. Hydrometeorol. 23 (3), 491–501. http://dx.doi.org/10.1175/JHM-D-21-
0114.1.

Wankar, A.K., Rindhe, S.N., Doijad, N.S., 2021. Heat stress in dairy animals and
current milk production trends, economics, and future perspectives: The global
scenario. Trop. Anim. Health Prod. 53 (1), 70. http://dx.doi.org/10.1007/s11250-
020-02541-x.

Wehner, M.F., 2020. Characterization of long period return values of extreme daily
temperature and precipitation in the CMIP6 models: Part 2, projections of future
change. Weather Clim. Extremes 30, 100284. http://dx.doi.org/10.1016/j.wace.
2020.100284.

Wehner, M., Stone, D., Mitchell, D., Shiogama, H., Fischer, E., Graff, L.S., Kharin, V.V.,
Lierhammer, L., Sanderson, B., Krishnan, H., 2018a. Changes in extremely hot days
under stabilized 1.5 and 2.0 ◦C global warming scenarios as simulated by the HAPPI
multi-model ensemble. Earth Syst. Dynam. 9 (1), 299–311. http://dx.doi.org/10.
5194/esd-9-299-2018.

Wehner, M., Stone, D., Shiogama, H., Wolski, P., Ciavarella, A., Christidis, N.,
Krishnan, H., 2018b. Early 21st century anthropogenic changes in extremely hot
days as simulated by the C20C+ detection and attribution multi-model ensemble.
Weather Clim. Extremes 20, 1–8. http://dx.doi.org/10.1016/j.wace.2018.03.001.

http://dx.doi.org/10.1038/d41586-020-00177-3
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1038/s41467-023-36794-5
http://dx.doi.org/10.1038/s41467-023-36794-5
http://dx.doi.org/10.1038/s41467-023-36794-5
http://dx.doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-13-00255.1
http://dx.doi.org/10.1175/2008JCLI2718.1
http://dx.doi.org/10.1175/2008JCLI2718.1
http://dx.doi.org/10.1175/2008JCLI2718.1
http://dx.doi.org/10.3390/cli11020042
http://dx.doi.org/10.1175/JCLI3848.1
http://dx.doi.org/10.1029/2023EF003981
http://dx.doi.org/10.5194/acp-12-3349-2012
http://dx.doi.org/10.1016/j.wace.2016.11.002
http://dx.doi.org/10.1016/j.wace.2016.11.002
http://dx.doi.org/10.1016/j.wace.2016.11.002
http://dx.doi.org/10.1175/JCLI-D-19-1013.1
http://dx.doi.org/10.1016/j.envres.2023.116090
https://www.sciencedirect.com/science/article/pii/S0013935123008824
https://www.sciencedirect.com/science/article/pii/S0013935123008824
https://www.sciencedirect.com/science/article/pii/S0013935123008824
http://dx.doi.org/10.1002/2016JD025292
http://dx.doi.org/10.1175/JCLI-D-11-00655.1
http://dx.doi.org/10.1002/2015GL064586
http://dx.doi.org/10.1002/2015GL064586
http://dx.doi.org/10.1002/2015GL064586
http://dx.doi.org/10.1126/science.1098704
http://dx.doi.org/10.1126/science.1098704
http://dx.doi.org/10.1126/science.1098704
http://dx.doi.org/10.1093/jeea/jvab009
http://dx.doi.org/10.1093/jeea/jvab009
http://dx.doi.org/10.1093/jeea/jvab009
http://dx.doi.org/10.1175/2007JAMC1480.1
http://dx.doi.org/10.1175/JCLI-D-12-00551.1
http://dx.doi.org/10.1111/nyas.13912
http://dx.doi.org/10.1111/nyas.13912
http://dx.doi.org/10.1111/nyas.13912
http://dx.doi.org/10.1038/ngeo2141
http://dx.doi.org/10.1038/ngeo2141
http://dx.doi.org/10.1038/ngeo2141
http://dx.doi.org/10.1002/2017GL076463
http://dx.doi.org/10.1002/2017GL076463
http://dx.doi.org/10.1002/2017GL076463
http://dx.doi.org/10.1029/2023GL102757
http://dx.doi.org/10.1029/2023GL102757
http://dx.doi.org/10.1029/2023GL102757
http://dx.doi.org/10.1029/2012GL053361
http://dx.doi.org/10.5194/esd-13-1689-2022
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1038/nature16542
http://dx.doi.org/10.1029/2019EF001474
http://dx.doi.org/10.1029/2019EF001474
http://dx.doi.org/10.1029/2019EF001474
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://refhub.elsevier.com/S2212-0947(24)00070-7/sb48
http://dx.doi.org/10.1016/j.gloplacha.2022.103824
http://dx.doi.org/10.1029/2011GL049863
http://dx.doi.org/10.1029/2011GL049863
http://dx.doi.org/10.1029/2011GL049863
http://dx.doi.org/10.1002/2016JD025740
http://dx.doi.org/10.1038/d41586-020-01125-x
http://dx.doi.org/10.1002/2016GL071235
http://dx.doi.org/10.7930/J0N29V45
http://dx.doi.org/10.7930/J0N29V45
http://dx.doi.org/10.7930/J0N29V45
http://dx.doi.org/10.1175/JHM-D-21-0114.1
http://dx.doi.org/10.1175/JHM-D-21-0114.1
http://dx.doi.org/10.1175/JHM-D-21-0114.1
http://dx.doi.org/10.1007/s11250-020-02541-x
http://dx.doi.org/10.1007/s11250-020-02541-x
http://dx.doi.org/10.1007/s11250-020-02541-x
http://dx.doi.org/10.1016/j.wace.2020.100284
http://dx.doi.org/10.1016/j.wace.2020.100284
http://dx.doi.org/10.1016/j.wace.2020.100284
http://dx.doi.org/10.5194/esd-9-299-2018
http://dx.doi.org/10.5194/esd-9-299-2018
http://dx.doi.org/10.5194/esd-9-299-2018
http://dx.doi.org/10.1016/j.wace.2018.03.001


A.K. Srivastava et al. Weather and Climate Extremes 45 (2024) 100709 
Whan, K., Zscheischler, J., Orth, R., Shongwe, M., Rahimi, M., Asare, E.O., Senevi-
ratne, S.I., 2015. Impact of soil moisture on extreme maximum temperatures in
Europe. Weather Clim. Extremes 9, 57–67. http://dx.doi.org/10.1016/j.wace.2015.
05.001, The World Climate Research Program Grand Challenge on Extremes –
WCRP-ICTP Summer School on Attribution and Prediction of Extreme Events.
13 
Zomer, R.J., Xu, J., Trabucco, A., 2022. Version 3 of the global aridity index and
potential evapotranspiration database. Sci. Data 9 (1), 409. http://dx.doi.org/10.
1038/s41597-022-01493-1.

Zwiers, F.W., Zhang, X., Feng, Y., 2011. Anthropogenic influence on long return
period daily temperature extremes at regional scales. J. Clim. 24 (3), 881–892.
http://dx.doi.org/10.1175/2010JCLI3908.1.

http://dx.doi.org/10.1016/j.wace.2015.05.001
http://dx.doi.org/10.1016/j.wace.2015.05.001
http://dx.doi.org/10.1016/j.wace.2015.05.001
http://dx.doi.org/10.1038/s41597-022-01493-1
http://dx.doi.org/10.1038/s41597-022-01493-1
http://dx.doi.org/10.1038/s41597-022-01493-1
http://dx.doi.org/10.1175/2010JCLI3908.1

	Local hydroclimate drives differential warming rates between regular summer days and extreme hot days in the Northern Hemisphere
	Introduction
	Data and Methods
	Results
	Local Trends in TXx and TXm
	TXx versus TXm warming in ERA5
	TXx versus TXm warming in CESM1-LE
	Connection between the local hydroclimate and warming of TXx relative to TXm
	Trends in surface fluxes explain the warming of TXx relative to TXm

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	Appendix A. Supplementary data
	References




