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Abstract

Vehicle Detection by Sensor Network Nodes

by

Jiagen(Jason) Ding, Sing-Yiu Cheung, Chin-woo Tan and Pravin Varaiya

,

This report presents the algorithm development and experimental work of the sensor node signal processing

for vehicle detection. The signals used for vehicle detection are acoustic and magnetic signals. The

acoustic signals are characterized by short time FFT analysis and two acoustic vehicle detection algorithms

are proposed: the Adaptive Threshold algorithm (ATA) and the Min-max algorithm (MMA). The ATA

detects vehicle by searching for a sequence of 1’s after slicing the acoustic energy curve using an adaptive

threshold. The MMA detects vehicles by searching the local maximum in the acoustic energy curve. Real

time tests and offline simulations demonstrate the effectiveness of the two algorithms. For magnetic signals,

a simple threshold slicing algorithm is utilized and real time tests give good performance. Finally, FPGA

implementation of ATA is also presented for power efficiency requirement and the implementation justifies

the use of dedicated hardware for low power implementation.
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Chapter 1

Introduction

The idea of deploying sensors to monitor/measure the behaviour of a system is not novel; however, some of

the technological and economic issues remain challenging. In particular, many issues need to be considered

for the price one is willing to pay for collecting information and making system improvement. For example,

can we collect the data we want with only wired sensors? Wireless sensors offer the flexibility advantage,

but just like any portable device, the limit of the energy source is always a concern. Can we deploy a

network of sensors so that we have a high density and fidelity of instrumentation? A high density of

sensors is an obvious benefit, but it also means more cost. In other words, is large-scale deployment

economically feasible? All these issues, nonetheless, can be categorised into three inter-related categories:

cost, benefit, and technological limitation. These three issues will dictate the choice of the sensing device

for applications such as vehicle detection.

A vehicle detection system requires four components: a sensor to sense the signals generated by vehicles,

a processor to process the sensed data, a communication unit to transfer the processed data to the base

station for further processing, and an energy source.

Current vehicle detection technologies are not suitable for large scale deployment as they are usually

destructive, disruptive and have a high cost of installation and maintenance. Thanks to MEMS (micro

electro-mechanical systems) technology, all of these components could now be integrated into a tiny single
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Figure 1.1: Installation of Inductive Loop Detector

device(a Mote). Thus, future vehicle detection system can be a large scale sensor network formed by

interconnecting low cost sensor nodes (tiny motes) via wireless communication, which can be deployed

easily. One of such sensor nodes is developed in Smart-Dust project by the Department of EECS at

University of California at Berkeley[1, 2].

In the following, current vehicle detection technologies will first be reviewed. Secondly, the sensor node

(Mote) technology will be then presented, which may be used for future vehicle detection system. Finally,

the sensor network will be briefly introduced with respect to the vehicle detection application.

1.1 A brief overview of current technologies[3]

1.1.1 Intrusive sensors

Intrusive sensors are those that need to be installed under the pavement, in saw-cuts or holes on the roads.

Popular intrusive sensors include inductive loops, magnetometers, micro-loop probes, pneumatic road

tubes, piezoelectric cables and other weigh-in-motion sensors. The main advantage of these sensors is their

high accuracy for vehicle detection while the drawbacks include the disruption of traffic for installation and

repair, resulting in a high installation and maintenance cost. Figure 1.1 shows the intallation of inductive

loop detectors on a road.

1.1.2 Non-intrusive Sensors

To overcome the disadvantage of intrusive sensors, nonintrusive sensors were developed such as those

aboveground vehicle detection sensors. Aboveground sensors can be mounted above the lane of traffic or
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Figure 1.2: Video Image Vehicle Monitoring(left) and Passive Infrared Vehicle Monitoring(right)

Figure 1.3: Dust Family

on the side of a roadway where they can view multiple lanes of the traffic at angles perpendicular to or

at an oblique angle to the traffic flow direction. Technologies used in aboveground sensors include video

image processing (VIP), microwave radar, laser radar, passive infrared, ultrasonic, passive acoustic array,

and combinations of these sensor technologies. However, these non-intrusive sensors tend to be large size

and power hunger. Figure 1.2 shows that the imaging processing and passive infrared technologies are used

in vehicle monitoring and detection.

1.2 Smart-Dust Sensor Node-Hardware Platform

Smart-Dust sensor[2] is one of several potential sensor nodes which could be used for the future vehicle

detection system. In a Smart-Dust sensor node, essential components for vehicle detection (processor, mem-

ory, sensor and radio) are integrated together as small as a quarter through MEMS technology. Together

with its low power design[4, 5], a network of smart-Dust sensor nodes is a feasible candidate for perform-

ing the vehicle detection. Figure 1.3 shows the different generations of Smart Dust sensor nodes(Motes).

The left photo is a 1st generation Smart Dust sensor node called “Rene Mote”. To its right, from left to

right, are the “MICA Mote”(2dn generation), “MICA2 Mote”(3rd generation) and “MICA2-Dot Mote(3rd

generation)”.
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Smart-Dust sensor nodes are designed by EECS department in UC Berkeley and Intel [1] in a modular

component approach and it consists of two major components: mother board and sensor board. Thus,

different sensor boards could be attached to the same mother board for different applications. Smart-Dust

sensor node could potentially be used in a wide range of applications such as vehicle detection, enemy

montioring in the battlefield, temperature measurement in a building, evironmental monitoring and etc.

In the following, basic components of Smart Dust will be addressed in more detail.

Basic Components of Smart Dust

The basic components of MICA mote(Fig. 1.4) in the Smart-Dust family are listed in Table 1.1. The mother

board consists of an Atmel 90LS8535 processor, 512KB SRAM, 8KB Flash RAM and a RF transceiver

for wireless communication. The Senor board consists of a 10-bit analog to digital converter, a Magne-

tomer(Honeywell HMC1002), a temperature sensor, a photo camera and an accelerometer sensor.

 

Figure 1.4: MICA Mote

Table 1.1: Components of Smart Dust Mote

Mother Board Sensor Board
Atmel 90LS8535 processor (clocked at 4 MHz) 10-bit analog to digital converter

RF Monolithics transceiver (916.50 MHz) Magnetometer(Honeywell HMC1002)
512KB SRAM, 8KB Flash RAM Microphone (Panasonic WM-62A)

Temperature Sensor
Photo Camera

Accelerometer Sensor

In a vehicle detection system, the sensors we adopted are the magnetometer and acoustic sensors. Next,

the basic operating principles of magnetometer and acoustic sensors are reviewed.
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Figure 1.5: Condenser Microphone, AP-the acoustic pressure, C-the variable capacitance, 1-the metal

diaphragm, 2-the metal disk, 3-the insulator and 4-the case

1.2.1 Acoustic Sensors

The acoustic sensor in the Smart Dust sensor node is a condenser type microphone. The schematic for

an typical condenser acoustic sensor is shown in Fig. 1.5. It includes a stretched metal diaphragm that

forms one plate of a capacitor. A metal disk placed close to the diaphragm acts as a backplate. A stable

DC voltage is applied to the plates through a high resistance to keep electrical charges on the plates.

When a sound field excites the diaphragm, the capacitance between the two plates varies according to the

variation in the sound pressure. The change in the capacitance generates an AC output proportional to

the sound pressure, which is ultralow-frequency pressure variation. A high-frequency voltage (carrier) is

applied across the plates and the acoustic sensor output signal is the modulated carrier.

The photo in the right of Fig 1.5 shows the Panasonic WM-62A condenser microphones used in Smart Dust

Motes. Figure 1.6 shows a typical vehicle acoustic signal waveforms. In Fig. 1.6, the sampling frequency

is 64 Hz and the waveform amplitude is the raw ADC readouts.

The problem for acoustic sensor vehicle detection is to achieve robust vehicle detection under various

acoustic noise corruption. Since the sensor nodes (Smart Dusts) are powered by battery, the solution has

to be low power. This report will propose two state machine based vehicle detection algorithms, which

achieve relatively reliable detection. Dedicated hardware implementation of the detection algorithm is also

proposed for satisfying the power efficiency requirement.
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Figure 1.6: Waveforms of Acoustic Signals Emitted from Cars

1.2.2 Magnetic Sensors

The Honeywell HMC1002 magnetometer on the MICA sensor board is a magnetoresistive sensor. The

anisotropic magnetoresistive (AMR) sensor is one type that has a wide Earth’s field sensing range and can

sense both the strength and direction of the Earth field[6].

The AMR sensor is made of a nickel-iron (Permalloy) thin film deposited on a silicon wafer and patterned

as a resistive strip. The strip resistance changes about 2-3% when a magnetic field is applied. Typically,

four of these resistive strips are connected in a Wheatstone bridge configuration so that both magnitude

and direction of a field along a single axis can be measured. The key benefit of AMR sensors is that they

can be bulk manufactured on silicon wafers and mounted in commercial integrated circuit packages.

Figure 1.7 shows a typical change of Earth magnetic field along one axis when a vehicle passes over the

AMR sesnor. In Fig. 1.7, the sampling frequency is 64Hz and the waveform magnitude is the A/D readout.

The problem associated with magenometer vehicle detection is similiar to the acoustic sensors but the

magnetic signals are much cleaner than acoustic signals.
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Figure 1.7: Waveforms of Magnetic Signals

1.3 TinyOS [1]-Software Platform

TinyOS [1] is an open-source operating system developed by the EECS department at UC Berkeley, which

was designed for the Smart-Dust [2] hardware platform. It has a component-based runtime environment

designed to provide support for deeply embedded systems that require concurrency intensive operations

while constrained by minimal hardware resources.

The software architecture [7] is divided into a collection of software components. A complete system con-

figuration consists of a tiny scheduler and a graph of these components. A component has four interrelated

parts: a set of command handlers, a set of event handlers, an encapsulated fixed-size frame and a bundle

of simple tasks.

Tasks, commands, and handlers execute in the context of the frame and operate on its state. To facilitate

modularity, each component also declares the commands it uses and the events it signals. These declarations

are used to compose the modular components in a per-application configuration. The composition process

creates layers of components where higher level components issue commands to lower level components

and lower level components signal events to the higher level components. Physical hardware represents the

lowest level of components.

With this modular components architecture, the operating system is allowed to efficiently share a single
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execution context across multiple components. For example, the same top level program codes could be

applied to different sensors by linking them to lower level codes of the corresponding sensors. This allows

a high level of flexibility for development on both hardware and software.

1.4 Sensor Network

The vehicle sensor network [8] is formed by wireless by interconnecting the smart-dust sensor nodes. The

sensor network can gather signals from multiple points from the same lane or multiple lanes. Thus,

traffic speeds , travel times and other traffic parameters can be estimated from the signals coming from

the sensor network. The sensor network also povides redundancy for the reliability of the whole vehicle

detection system.

1.5 Outline of this report

Next chapter will discuss the sensor operating principle in more details. The characteristics of the sensor

signals is presented in chapter 3. Chapter 4 proposes the vehicle detection algorithms with the real time test

and simulation results. Chapter 5 discusses the FPGA implementation of the vehicle detection algorithms

for power efficiency. Conclusions are given in Chapter 6.
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Chapter 2

Sensors for Vehicle Detection

This chapter will address the acoustic and magnetic sensors for vehicle detection in more details. Next,

we discuss the pickup patterns and frequency responses of the acoustic sensors and their effects on vehicle

detection followed by the basic principle of magnometers for the vehicle detection.

2.1 Acoustic Sensor

The acoustic sensor picks up the acoustic information by sensing the sound pressure change which is

discussed in Chapter 1. Acoustic sensors are divided into two types based on their pickup patterns:

unidirectional microphones and omnidirectional microphones.

2.1.1 Pickup Pattern of Acoustic Sensors

An acoustic sensor’s pickup pattern is three dimensional in character and shows how the microphone

responds, in frequency and level, to sound from different directions. Omnidirectional microphones pick up

sound from all directions. Unidirectional microphones reject or reduce sound from their sides and rear.

The left part of Fig. 2.1 shows the pickup pattern for an omnidirectional microphone. Notice that the

loss in output (in dB) experienced as a constant when the sound source moves 360 degrees around a fixed

microphone at a fixed distance. The right part of Fig. 2.1 shows the pickup pattern for a unidirectional
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Figure 2.1: Microphones

microphone. The most common unidirectional is called a cardioid. Cardioid is a mathematically descriptive

term that denotes the geometric form of the pickup pattern. In the cardioid pattern, side pickup is

moderately reduced in a cardioid microphone and rear pickup is dramatically reduced. For the vehicle

detection application, the unidirectional microphones may be better than omnidirectional ones since the

unidirectional microphones have better rejection of sound from nearby vehicles.

2.1.2 Frequency Response of Panasonic Acoustic Sensors

The Panasonic WM-62A omnimicrophones(see Fig. 1.5) used in the Mote sensor board(Fig. 1.3) have

features such as small size, high resistance to vibration, and pins for flexible PCB. Figure 2.2 shows the

typical frequency response of the panasonic WM-62A acoustic sensors. It is noted that the frequency

response is flat over large frequency range. For the vehicle detection application, filtering may be necessary

to reject the uninterested frequency components.

20 100 1000 5000
Frequency [Hz]

D
B 

-20

0

20

Figure 2.2: Microphones
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2.2 Magnetometers

2.2.1 Basic Principle

The magnetization vector (M) in the Permalloy thin film resistors(Fig. 2.3) is set parallel to the length of

the resistors. Assume that there is a current in the film flowing at a 45 degree angle to the length of the film.

If an external magnetic field is applied normal to the side of the film , the Magnetization vector will rotate

and change the angle θ. This causes the resistance value to vary and produce a voltage output change in

the Wheatstone bridge which is formed by configuring four thin film resistors. This magnetoresistive effect

is used to sense the earth magnetic field.

Magnetization

Magnetization

M

No Field Applied

H Field Applied

Current

Current

θ

θ
M

Figure 2.3: Magenetic Vector

2.2.2 Vehicle Detection

The magnetometers available today can sense magnetic fields within the earth’s field-below 1 gauss. They

can be used for detecting the vehicles, which are ferrous objects that disturb the earth’s field. The earth’s

field provides a uniform magnetic field over wide area in the scale of kilometers and a car, a ferrous object,

can creates a local disturbance in this field. This local field disturbance can be sensed by the magnetometers

for vehicle detection. Figure 2.4 shows that the Earth’s magnetic field is disturbed by a car.

After presenting the basic principles of sensors, the characteristics of the measured acoustic and magnetic

signals will be studied and algorithms are proposed for reliable low cost vehicle detection.
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Figure 2.4: Earth Field with a Car
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Chapter 3

Characterization of Sensor Signals

This chapter will address the characterization of sensor signals. First, the acoustic signals emitted from

vehicles will be studied by analyzing the spectrum using Short Time Fast Fouier Transform(SFFT). We

study the acoustic signals from background noise, stationary vehicles and moving vehicles at various vehicle

speeds. Next, the magnetic signals from magnetometers will also be investigated. We study magnetic

signals with different sensor orientation and sensor locations.

3.1 Acoustic Signals

Short-Time Fourier Transform is a way to have an estimate of the signal spectrum in a short interval.

SFFT is utilized here since the measured vehicle acoustic signals are non-stationary. Figure 3.1 shows the

moving window idea used in SFFT. In the discrete domain, the N -point short time FFT is defined as

follows:

X(n, k) =
∑
m

x(n)w(n−m)e−j2πmk/N (3.1)

Figure 3.1: Short time fft schematic
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where x(n) is the signal for analysis and w(n) is the window function. Popular window functions include

rectangular, hamming window and etc. SFFT can be interepted as a sequence of discrete time Fourier

Transforms(DFT) as the window w[n − m] slides along the signals [9]. In the following, the Hamming

window is chosen for the acoustic signal SFFT analysis.

3.1.1 Field Test Setup

Figure 3.2 shows the test setup for the vehicle acoustic signal measurement. In Fig. 3.2, the acoustic

sensor is an omni-microphone(RadioShack 33 − 3025A) and the microphone output is connected to the

MIC input of a laptop computer. The measured acoustic signal is digitalized with sampling rate 11kHz

and 8 bit resolution.

Figure 3.2: setup

3.1.2 Field Test Results

Acoustic Signals of Vehicle Engine

In this section, the field test results are presented in both time domain waveforms and the corresponding

SFFT’s. The time domain waveforms are the normalized sound pressure. The field testing was done in

Richmond Field Station and the testing vehicles are Ford Van and Mazada LX. First, Fig. 3.3 shows the

background acoustic signals. Notice that the acoustic energy in the background is highly dependent on the

environmental windage and the windage energy mainly concentrates between DC and 500Hz.

Next, the engine acoustic signals were measured by turning on the engine but keeping vehicles at station-
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Figure 3.3: Background Acoustic Signals in Time and Frequency Domain
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Figure 3.4: Acoustic Signals of Mazda 626 Engine in Time and Frequency Domain

ary. Figures 3.4 and 3.5 show the engine acoustic signals emitted from Mazda 626 and Ford WindStrar

respectively by placing the microphone under the front bumper. Compared to the background acoustic

spectrum, the engine acoustic singals have harmonics above 500Hz, which may be coming from engine

cranking.

1

0 2 4 6 8 10-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

Time[s]

Ma
gn

itu
de

-80

-60

-40

-20

0

Time[s]

Fre
q[H

z]

0 2 4 6 8

0

1000

2000

3000

4000

5000

Figure 3.5: Acoustic Signals of Ford WindStar Engine in Time and Frequency Domain

Figure 3.6 shows the engine acoustic signals emitted by Mazda 626 in time and frequency domain by

placing the acoustic sensor close to the engine exhuast.



16

0 2 4 6 8 10-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

Time[s]

Ma
gn

itu
de

-80

-60

-40

-20

0

Time[s]

Fre
q[H

z]

0 2 4 6 8

0
1000

2000

3000

4000

5000

Figure 3.6: Acoustic Signals of Mazda 626 Engine in Time and Frequency Domain
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Figure 3.7: Acoustic Signals of Mazda Engine with Fan on in Time and Frequency Domain

Figure 3.7 further shows the engine acoustic signals for Mazda 626 when the engine fan was on. It is noted

that the fan increases the acoustic energy between 500Hz and 1000Hz.

Acoustic Signals for Moving Vechiles

Finally, the acoustic signals were measured for slow and fast moving vehicles. Figure 3.8 shows the acoustic

signals from Mazda 626 when it was running at about 5mph. Notice that the time domain waveform is

serverly smeared by strong wind disturbance. Figure 3.9 shows the acoustic signal measured from Mazda

626 when it was running at about 15mph and Fig .3.10 shows the acoustic signal from Mazda 626 running

at about 25mph. Noticably, the higher the speed is , the more temporally concentrated the acoustic energy

is.

Figure 3.11 shows the acoustic signals emitted from multiple cars. The acoustic signals were recorded at

the cross between Euclid street and Hearst street at Berkeley. It is noted that there is temporal acoustic

energy concentration corresponding to each vehicle passing by the microphone.
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Figure 3.8: Acoustic Signals of Slow Moving Mazda 626 in Time and Frequency Domain
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Figure 3.9: Acoustic Signals of Fast Moving Mazda 626 in Time and Frequency Domain
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Figure 3.10: Acoustic Signals of Fast Moving Mazda 626 in Time and Frequency Domain
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Figure 3.11: Acoustic Signals of Multiple Cars in Time and Frequency Domain
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Figure 3.12: Background Acoustic Signals with Bandpass Filtering

3.2 Bandpass of Acoustic Signals

According to the SFFT analysis in last section, we found that the background acoustic and noise are mostly

found in the frequency domain below 500Hz. In this section, we would present the analysis of the vehicle

acoustic after band-pass filtering with passband from 450Hz to 5000Hz.

Figure 3.12 shows the background acoustic signal after band-pass filtering. Notice that its energy distri-

bution remains at a low level after the band pass filtering.

Figure 3.13 shows the acoustic signal of the engine after band pass filtering. Notice the energy distribution

(the square of the bandpass filtered acoustic signal) is pretty flat but the magnitude is larger than that of

the background acoustic signal after band pass filtering.

Figure 3.14 shows the acoustic signal of a single slow moving vehicle which passed the microphone at about

4s. The magnitude of the wind disturbance is much larger than that of the vehicle acoustic signal in the

raw signal. However, the wind disturbance is attenuated significantly by the band-pass filter. And the

energy concentration for the vehicle is visible in the energy distribution curve plot.

Figure 3.15 show the acoustic signal of a single fast moving vehicle after band pass filtering. Notice that
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Figure 3.13: Engine Acoustic Signals with Bandpass Filtering (stationary vehicle)
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Figure 3.15: Acoustic Signals of Moving Mazda with Bandpass Filtering

the wind disturbance is almost completely rejected by the band pass filter.

3.3 Magnetic Signals

In this section, the magnetic measurements are presented from the magnetometer HMC1002 on the MICA

mote. Figure 3.16 shows the experimental setup for magnetic sensor test.

Figure 3.16: Schematic for the Magnetic Sensor Setup

Refer to the Fig. 3.16, the measurements of Z-axis and Y-axis (if the sensor node is placed on the side of

road) would be a better choice as they simply give single hill patterns when vehicle pass by. Thus, we would
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Figure 3.17: A single vehicle moving from left to right (x- to x+) on the near lane

Figure 3.18: A single vehicle moving from left to right (x- to x+) on the far lane

focus our analysis on Z-axis and Y-axis measurements in the following section. All the measurements in

this section were taken at 64 Hz for each axis, from the magnetometer HMC1002 on MICA mote, placed

on the SIDE of a two-way traffic road.

Figure 3.17 shows the magnetic signal measurement when a single vehicle moving from left to right (x- to

x+) on the a lane close to the magetometer. Notice that there is a sharp pulse in the measured signal.

Figure 3.18 shows the magnetic signal measurement when a single vehicle moving from left to right (x- to

x+) on the opposite lane . Notice that there is a sharp pulse in the measured signal. Compared to Fig.

3.17, we could find a significant difference between the amplitude of the hill patterns for vehicle moving on

different lanes. Applying a simple threshold cut, we could detect vehicles moving on the near lane while

dropping vehicles on the far lanes.
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Figure 3.19: A single vehicle that stop-and-go in front of a stop sign, moving from left to right on the near

lane

Figure 3.19 shows a single vehicle that stop-and-go in front of a stop sign, moving from left to right on the

near lane. In this case, the single hill pattern has a flatten top. And a simple threshold cut would still be

working well.

3.4 Summary

This chapter first presented the characteristics of the acoustic signals emitted from vehicles. It was shown

that that the background noise is mainly concentrated between DC and 500Hz by the short time Fourier

analysis of the acoustic signals. This chapter then presented the characteristics of magnetic signals for

vehicle detection. Compared to the acoustic signals, the magnetic signals are much cleaner and a simple

threshold may give fairly good detection.
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Chapter 4

Algorithm

This chapter presents the acoustic and magnetic vehicle detection algorithms. Two acoustic algorithms

are proposed: Adaptive Threshold algorithm (ATA) and Min-max algorithm (MMA). These detection

algorithms are both based on the acoustic engergy temporal concentration in the measured acoustic signals.

The ATA detects vehicles by searching sequences of 1’s after adaptively thresholding the energy distribution

curve while the MMA detects vehicles by searching the local maximum points of the acoustic energy

distribution curve. The magnetic vehicle detection algorithm is just a simple threshold slicing algorithm[6].

4.1 Adaptive Thresholding Detection

This section presents the adaptive threshold acoustic detection algorithm. The adaptive acoustic detection

algorithm consists of energy distribution curve computation, energy signal filtering, state machine detector

and threshold adaptation. The block diagram of the adaptive threshold detection algorithm is shown in

Fig. 4.1. In Fig. 4.1, Square&Decimator, FIR Filtering, Adaptive Threshold and Decision correspond

to energy distribution curve computation, energy signal filtering, threshold adaptation and state machine

detector, respectively.
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Figure 4.1: Block Diagram of Algorithm
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Figure 4.2: Signal Squaring

4.1.1 Energy Distribution Computation

The original measured acoustic signal is first filtered through a band pass filter and the filtering output s(k)

is squared (Fig. 4.2) at each sampling point, which is energy distribution signal. In order to reducing the

smooth filtering computation, this energy distribution signal may be decimated before passing to smoothing

filter (the FIR Filtering block in Fig. 4.1).

4.1.2 Smoothing of Acoustic Engergy Signal

The acoustic energy signal is very jerky and a low pass FIR filter is used to smooth it for later detection.

Figure 4.3 shows a typical equal-ripple low pass FIR frequency response. The key parameters for a low pass

FIR filter are the -3dB cut off frequency (ωp), the stop band frequency (ωs) and the stop band attenuation

gain. The FIR filter has the advantage of linear phase and inherent stability. The filtered acoustic energy

signal (ŝ(k)) can be passed to the Adaptive Threshold in Fig. 4.1 for hard decision.
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4.2 Adaptive Thresholding Decision

Hard decision produces an output (u(k)) 1 if the input sample ŝ(k) is larger than detection threshold

T (k). Otherwise, hard decision will produce 0. The threshold T (k) is adaptively updated, which will be

addressed next.

MA(k) =
ŝ(k) + ŝ(k − 1) + ... + ŝ(k −M + 1)

M
(4.1)

where MA denotes the moving average of the acoustic energy and M is the number of moving average.

Then the adaptive threshold T (k) is updated as follows:

if current decision is 1

T (k) = αMA(k −Md) + Toffset

else

T (k) = βMA(k −Md) + Toffset

where α and β are two parameters for adjusting the moving average(MA), Md is an integer for delaying

the moving average and Toffset is a constant which sets the minimum threshold.

4.2.1 State Machine Detection

Figure 4.4 shows the block diagram of state machine for vehicle detection. The state machine consists of :

state(x) : {nocar, car, count1, count0, count0′} (4.2)

input(u) : {1, 0} (4.3)

output(d) : {car, nocar} (4.4)

The input in the state machine is defined as:

u(k) = 1 if ŝ(k) ≥ T (k) (4.5)

= 0 otherwise
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There is a counter for each state in {count1, count0, count0′} and the counter at each state resets whenever

the state machine jumps back from other states to itself.

The state machine starts at state no car and stays at this state if the input u(k) is 0. The state machine

jumps from state no car to state count1 if the input is 1(u(k) = 1). When the state machine enters state

count1, the counter counts up and the state machine stays at this state if the input u(k) is 1 and the

previous counter value is less than Ns. The state machine jumps from count1 to count0 if the input is 0

and to car if the input is 1 and the previous counter value is not less than Ns. When the state machine

enters state count0, the counter at this state counts up and the state machine stays at this state if the

input u(k) is 0 and the previous counter value is less than Ms. The state machine jumps from count0 to

count1 if the input u(k) is 1 and to state no car if the input is zero and the previous counter value is not

less than Ms. When the state machine enters state car, it will stays at this state if the input is 1 and

jumps to count0′ if the input is 0. When the state machine enters state count0′, the counter at this state

counts up and the state machine stays at this state if the input is 0 and the previous counter value is less

than Ms. The state machine jumps from count0′ to count car if the input is 1 and to no car if the input

is zero and the previous counter value is not less than Ms. One vehicle is detected when the state machine

jumps from state count1 to state car.

It is noted that the counter at the states {count1, count0, count0′} and parameters Ms and Ns introduce

hysteresis in the detection, which will make the algorithm more robust to the short burst errors in the hard

decision.

4.3 Min-Max Detection

Figure 4.5 shows the block diagram for Min-Max algorithm. The Squaure&Decimator and FIR Filtering

blocks are the same as in adaptive threshold detection algorithm. Figure 4.6 shows the state machine used

in Min-Max Detection algorithm. The state machine consists of
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state(x) : {flat, f lat count up, flat count down, hill count up, hill count down} (4.6)

input(u) : {1, 0}

output(d) : {car, nocar}

The input for the decision state machine is the sign of the slope of ŝ, which is defined as:

u(k) = sign(ŝ(k)− ŝ(k − 1)) if |(ŝ(k)− ŝ(k − 1)| > min delta U (4.7)

= 0 otherwise (4.8)

where min delta U is a pre-defined positive constant.

There is a counter associated with each state in { Flat count up, Flat count down, Hill count up, Hill count down}.

When the machine jumps from one state to a new state, the counter associated with the new state resets

and only counts up when the state loops back to itself. There are also two variables associated with the

state machine: local min and local max. The local min is updated as following:

local min(k) = (4.9)

min{ŝ(k), local min(k − 1)}, if x ∈ {Flat, F lat count down} (4.10)

ŝ(k), if x = Hill count down and local max(k)− local min(k) > Threshold

unchanged, otherwise
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and the local max is updated as following:

local max(k) = (4.11)

max{ŝ(k), local max(k − 1)}, if x = Hill count up} (4.12)

unchanged, otherwise

The local minimum (local min) tracks the local minimums in real time while the local maximum(local max)

tracks the local maximums. One vehicle is detected if the difference between the local maximum and the lo-

cal minimum is greater than the threshold (Threshold) when the state machine jumps from Hill count down

to Flat.

The detection state machine starts at Flat state and stays at this state if the slope is not positive (u(k) ≤ 1).

The state machine can jumps from Flat state to Flat count up state when the current slope is positive

(u(k) = 1). When the state machine enters Flat count up state, the counter at this state resets. The state

machine stays at Flat count up state and the counter counts up if the slope is positive (u(k) = 1) and the

counter has value less than N . The state machine jumps from Flat count up state to Flat count down

if the the current slope is not positive (u(k) ≤ 1. The state machine can jump from Flat count up state

to Hill count up when the slope is positive (u(k) =1) and the counter at Flat count up has a value not

less than N. When the state machine enters Flat count down, the counter at this state resets. The state

machine stays at Flat count down and ther counter counts up if the slope is not positive (u(k) ≤ 1) and

the counter has value less than M . The state machine will jumps from Flat count down to Flat count up

if the slope is positive (u(k) = 1 and jumps back to Flat if the slope is not positive and the counter has

a value not less than M . When the state machine enters Hill count up, the state machine stays at this

state if the slope is not negative and jumps to Hill count down if the slope is negative. When the state

machine enters Hill count down, the counter at this state resets. The state machine stays at this state and

the counter counts up if the slope is negative and the counter has value less than M . The state machine

will jump back to Hill count up if the slope is not negative. The state machine will jump back to Flat

state if the slope is negative and the counter has a value not less than M . At state Hill count down, the
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Figure 4.6: Detection State Machine for MMA

difference between local max and local min is checked to determine if one vehicle is detected.

4.4 Algorithm Test

This section will demonstrate the two algorithms presented in previous sections. First, the algorithms are

prototyped in a laptop based system as shown in Fig. 3.2. Real time tests and offline simulation results

are both presented for this prototype system. Second, the offline algorithm simulation is discussed for

the acoustic signals measured by the Mote system for the limited computing resource in the Mote system

makes the real time test difficult.

4.4.1 Adaptive Threshold Algorithm

Figure 4.7 shows the use of adaptive threshold algorithm in real time vehicle detection. The decision with

1’s at around 1.8, 4, 6.8, 8.2, 10, 12, and 14 second represent vehicle existence at those instants. The

states 0,1,2,3 and 4 in the state transition traces are corresponding to states no car, car, count0, count1

and count0′ respectively. It is noted that the Adaptive Threshold Algorithm gives the correct real time

detection. Figure 4.8 shows a long time ATA simulation results. In Fig. 4.8, the blue line corresponds to

the energy distribution curve and the red line corresponds the threshold traces. Figure 4.9 shows the zoom
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Figure 4.8: Long Time ATA Simulation

in around 160 second in Fig. 4.8.

Next we will study the effect of parameter choices on the performance of the algorithm.

Table 4.1 summarizes the effect of parameter Ms and Ns on the ATA algorithm performance with α=1.5,

β=0.7 and threshold offset Toffset=2e-5. The smoothing filter is implemented as 40 (M in Eq. 4.1) point

moving average and the delay Md is chosen to be 20. It is noted that large Ms and Ns leads to better

robustness but may miss detecting high speed vehicles. Ms and Ns can be chosen by trading off between

the algorithm robustness and the speed range of detectable vehicles.

Table 4.2 summarizes the effect of α and β on the ATA performance with (Ns,Ms) = (10,10) and threshold



32

120 130 140 150 160 170 180 190 200 210
-0.5

0

0.5

1

1.5

2

2.5

x 10
-3

Time [s]

Energy Distribution and Adaptive Threshold

Energy Distribution
Adaptive Threshold

Figure 4.9: Zoom-in for the Long Time ATA Simulation

Table 4.1: Ms and Ns

(Ns,MS) Ground truth (# of vehicles) Detection result (# of vehicles)
(10,6) 63 64
(10,10) 63 62
(10,15) 63 64
(10,20) 63 62
(20,10) 63 60
(15,10) 63 62
(10,10) 63 63
(6,10) 63 70

offset Toffset = 2e-5. The smoothing filter is implemented as the 40 (M in Eq. 4.1) point moving average

and the delay Md is chosen to be 20. It is noted that the performance is quite robust to the choices of α

and β.

Table 4.3 summarizes the effect of Toffset on the ATA performance with (Ns,Ms) = (10,10) and (α,β) =

(1.3, 07). The smoothing filter is implemented as the 40 (M in Eq. 4.1) point moving average and the

delay Md is chosen to be 20. It is noted that the Toffset is mainly determined by the noise level in the

acoustic energy distribution. Zero offset will result in a lot of over-count and too large offset may lead to

miss detecting quiet vehicles.

Table 4.4 shows the effect of smoothing filter on the ATA algorithm and Min-max algorithm performance.

In Table 4.4, ωp is the low pass FIR -3dB cutoff frequency and ωs is the corresponding stop band frequency.
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Table 4.2: α and β

(α,β) Ground truth (# of vehicles) Detection result (# of vehicles)
(1.8,0.7) 63 58
(1.5,0.7) 63 62
(1.3,0.7) 63 66
(1.5,0.8) 63 63
(1.5,1.0) 63 62

Table 4.3: Toffset

Toffset Ground truth (# of vehicles) Detection result (# of vehicles)
0 63 81

1e-5 63 66
2e-5 63 63
3e-5 63 60
4e-5 63 59
5e-5 63 57

In the Adaptive Threshold algorithm, α = 1.3,β =0.7, Ns = Ms = 10 and threshold offset Toffset=3e-5.

In the Min-max algorithm, Ms and Ns are the same as in the adaptive algorithm with minimum height

(Threshold) 2e-6. It is noted that the MMA algorithm requires more smoothing than the ATA algorithm

to avoid too much over-count since MMA algorithm is based on the energy curve slope.

Table 4.4: Filtering Smoothing on Detection Result

(ωp, ωs) # of coeffs. Ground truth Adaptive Min-max
(Normalized Freq.) ( # of vehicles) ( #of vehicles) (# of vehicles)

40 point MA 40 6̃3 65 58
0.01-0.05Hz 67 6̃3 62 68
0.005-0.05Hz 56 6̃3 63 66
0.01-0.1Hz 27 6̃3 70 89

4.4.2 Min-max Algorithm

Figure 4.10 shows the real time detection using Min-max algorithm. The Hill Energy is the just the energy

distribution curve used in ATA algorithm. The solid and dash line in the right of Fig.4.10 correspond to

the trace of local min and local max respectively.
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Figure 4.10: Min-max Algorithm

Next, the effect of parameters in the MMA algorithm will be studied.

Table 4.5: Filter Smoothing on the MMA Algorithm

Smoothing filter Smoothing filter # of filter taps Ground truth Detection result
(cutoff freq, Hz) (Stop freq,Hz) (# of vehicles) (# of vehicles)

0.005 0.05 56 63 66
0.005 0.04 72 63 64
0.005 0.03 100 63 61

Table 4.5 shows the MMA detection results with different smoothing filters with Minimum height (Threshold)

=2e-6 and (Ms, Ns) =(10,10). It is noted that smaller stop frequency ωs results better smoothing which

may cause miss detection while larger stop frequency ωs may lead to over-count.

Table 4.6: Minimum Height

Minimum Height Smoothing filter # of filter taps Ground truth Detection result
(Threshold) (Stop freq,Hz) ( of vehicles) ( of vehicles)

1e-7 0.005 56 63 65
5e-7 0.005 56 63 64
1e-6 0.005 56 63 64
2e-6 0.005 56 63 63
3e-6 0.005 56 63 60
5e-6 0.005 56 63 53

Table 4.6 shows the MMA detection results with different Minimum heights (Threshold) and (cut off freq.,

stop freq.) = (0.005,0.04) (Ms, Ns) =(10,10). It is noted that too large Minimum height may lead to miss
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detection.

Table 4.7: Ms and Ns

Count up /down Smoothing filter # of filter taps Ground truth Detection result
(Ms,Ns) (Stop freq,Hz) # of vehicles # of vehicles

(1,1) 0.05 56 63 66
(5,5) 0.05 56 63 64

(10,10) 0.05 56 63 64
(15,15) 0.05 56 63 64

Table 4.7 shows the MMA detection results with different (Ms,Ns) with Minimum height (Threshold)

=2e-6 and (cut off freq., stop freq.) =(0.005,0.04). It is noted that the MMA algorithm is pretty robust

to (Ms, Ns).

4.5 Mote Acoustic Detection

The sampling frequency for the acoustic sensor in Mote system is only 256Hz. The algorithm block diagram

is the same as the laptop prototype system but the original acoustic signal is not band pass filtered. Since

the Mote system has limited computing resources, the algorithm is not implemented in the Mote but is

simulated offline with the measured acoustic signal by the Mote system. Figure 4.11 shows the Adaptive

Threshold Algorithm and the Min-max Algorithm simulation results for the Mote system. In Fig. 4.11,

the left top is the original acoustic waveform and the left bottom is energy distribution curve. It is noted

that both ATA and MMA end up with correct detection.

More algorithm simulation for Mote measured acoustic signals is summarized in Table 4.8.

Table 4.8: Ms and Ns

Count up /down Smoothing filter # of filter taps Ground truth Detection result
(Ms,Ns) (Stop freq,Hz) # of vehicles # of vehicles

(1,1) 0.05 56 63 66
(5,5) 0.05 56 63 64

(10,10) 0.05 56 63 64
(15,15) 0.05 56 63 64
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Figure 4.11: Mote Acoustic Detection

Table 4.9: Summary of Mote Detection

Data set Ground truth Adaptive Threshold Min-max Threshold
# of vehicles # of vehicles # of vehicles

#1 1 1 1
#2 3 3 4
#3 3 3 3
#4 4 4 4
#5 2 1 1
#6 1 2 2
#7 4 4 4

4.6 Magnetic Detection Algorithm

The threshold slicing algorithm had been implemented on the Smart-Dust [1] [2] MICA sensor mote. The

real time testes had been done on Hearst outside Etcheverry with the sensor on the side of road. In this

section, we would present the results of these vehicle detection testes.

Figures 4.12 and 4.13 show the results of 2 sample detection testes for 20s. The plots on the top are the

raw signal of Z-axis and Y-axis sampling at 64Hz each. The plot on the bottom left shows the detection

flag after a threshold cut for the Z and Y axis. And the one on the bottom right shows the final detection

flag which is a logic operation of ”Z” AND ”Y” detection flags. The test in Fig. 4.12 gave a detection of 2

out of 2(ground truth) SUV (vehicles), while that in Fig. 4.13 gave another detection of 7 out of 7(ground
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Figure 4.12: Magnetic Threshold Slicing Detection

Figure 4.13: Magnetic Threshold Slicing Detection
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truth) vehicles.

4.7 Summary

This Chapter discussed two acoustic vehicle detection algorithms: the Adaptive Threshold Algorithm and

the Min-max Algorithm. Real time test and offline simulation demonstrated the effectiveness of these two

algorithms prototyped in a laptop computer system. The effect of parameters on the two algorithms was

also presented. The application of the two algorithms on the Mote measured acoustic signals was shown

to be effective. Finally, the threshold slicing algorithm for magnetic vehicle detection was presented.
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Chapter 5

FPGA Implementaton

5.1 Introduction

The current Tiny Mote has limited computing resources and the filtering based detection is very compu-

tation intensive. ASIC implementation is one possible solution. The feasibility of ASIC implementation

can be verified by the Field Programmable Gate Array (FPGA) implementation of the algorithm. FPGA

implementation presents the upbound for ASIC implementation in area and power consumption.

The rest of this chapter is organized as follows. Section 2 reviews the FPGA and System Generator for

MATLAB. Section 3 presents the implementation of the components in the algorithm. Section 4 shows

the algorithm simulation of the FPGA implementation. Conclusion is given section 5.

5.2 FPGA Introduction

FPGA is a 2-D array of logic blocks and flip-flops, where users can configure the interconnection between

blocks and the function of each block. The following reviews a typical FPGA based design flow:
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5.2.1 Design Entry

The first step in FPGA design flow is to conceptualize the design. In circuit logic design, Hardware De-

scription Language (HDL) is widely used to represent the design. In DSP algorithm design, Simulink is one

of very popular simulation tool. For fast FPGA based DSP design, Xilinx provides a dedicated Blocksets

for Simulink, which can be used to simulate DSP algorithm and are mapped to HDL automatically.

5.2.2 Synthesis

Once the algorithm design is represented by Xilinx Blocksets, the next step is synthesis. The synthesis

translates the HDLs generated from Xilinx Blocksets into an equivalent circuit comprising a set of primitive

circuit components that can be directly implemented on an FPGA like a compiler. The synthesis tool

produces a final netlist file, which contains a list of all the instances of primitive components in the

translated circuit and a description of how they are interconnected.

5.2.3 Placement and Routing

The next step in the implementation flow turns the netlist into bits, which are used to configure the

interconnections in FPGA. First, the primitive circuit components in the netlist are assigned specific

places on the FPGA. Next, the proper connections must be routed according to the netlist description.

5.2.4 Program Hardware

The last step in the implementation flow is the simple act of transporting the configuration bits to the

FPGA.

5.3 FPGA Implementation

Figure 5.1 shows the overall block diagram for the diction algorithm. Detailed description of the detection

algorithm is given in chapter 4.
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5.3.1 Square Decimator

The Square Decimator block consists of squaring, short length moving average and decimating elements.

The detail structure of this block is given in Figure 5.2. In this Figure, ACC is the accumulator block and

is reset by counter every Nd samples and the ACC output is also downsampled by Nd.

5.3.2 FIR Filter Implementation

Figure 5.3 shows the Direction form-II implementation of a FIR filter F(z)(Eq. 5.1).

F (z) = h0 + h1z
−1 + ... + hN−1z

−(N−1) (5.1)

where h0, h1, h2,...,hN−1 are the filter taps. Noticing that the FIR filters have symmetric taps, i.e.

h0=hN−1, h1=hN−2, and etc. Thus the F(z) can be rewritten as:
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F (z) = h0(1 + z−(N−1)) + h1(z−1 + z−(N−2)) + ... (5.2)

and the number of multiplication can be further reduced into half.

The advantage of this implementation is that critical path delay is determined by one multiplication and

addition and is independent of the number of filter taps.

5.3.3 Adaptive Threshold Block

The detail structure of the Adpative Threshold block is shown in Figure 5.4.

In this figure, MA is long time moving average (¿20 samples average) and a, b and Threshold offset are

programmed constants, which can be adjusted for best detection. In order to avoid a lot of additions,

MA is actually implemented in an iterative way (Fig. 5.5). Moving Average Implementation The moving
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average can be expressed in an iterative difference equation:

MA(k) = MA(k − 1) +
[s(k)− s(k −M)]

M
(5.3)

Where MA(k) denotes the moving average output and M is the number of average.

5.3.4 Decision Block Implementation

The decision block is a modified finite state machine [reference here about state machine]. Finite state

machine is a powerful tool for describing the discrete event system. A general Moore state machine diagram

is shown in Fig.5.6.

The state machine consists of states, inputs and outputs. In a conventional synchronous state machine,

states make transition only when the clock ticks. The new states are the combinatorial logic function of the

inputs and the current states and the new output is function of current states. One natural implementation

of state machine in FPGA is that the states are mapped to flip-flops and combinatorial logic functions are
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Table 5.1: Design Result on Xilinx Virtex-E 2000 FPGA

items Word length Supply voltage Area (%of slices) Max Freq. Power at 256 Hz
8.5 1.8 ≈ 6% ≈ 80MHz 0.025mW

mapped to sum of product (first ”AND” and then ”OR”). In our diction algorithm, the state transition

and output also depends on the counter value. Thus a counter is also included in the state machine

implementation.

5.4 Design Results

In FPGA implementation, all the data are represented in fixed-point format. The number of bits is chosen

to as small as possible for low cost and power consumption.

Figure 5.7 shows the filtering simulation. The top plot is the original acoustic signal waveform s(k) and

the bottom plot is the filtered signal s(k). Figure 5.8 shows the detection result and the square pulse shows

one vehicle is correctly detected.

All the design results are summarized in Table 5.1
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5.5 Summary

The chapter evaluates the possible ASIC implementation of the detection algorithm by FPGA implemen-

tation. The FPGA implementation demonstrates good power efficiency. The ASIC implementation of the

algorithm is justified since the Mote has very limited computation resources and its good power efficiency.
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Chapter 6

Conclusion

This research report studied the vehicle detection by the sensor network node (the Mote). The sensors

in the Mote system used for vehicle detection are acoustic and magnetic sensors (Magnetometer). The

characteristics of acoustic signals emitted from vehicle was analyzed by short time Fourier Transform. Two

acoustic vehicle detection algorithms were proposed: the Adaptive Threshold Algorithm and the Min-max

Algorithm. Both acoustic algorithms are based on the detection of temporal acoustic energy concentration.

Real time tests and offline simulations demonstrated the effectiveness of the two algorithms. A simple

threshold slicing algorithm was also used for magnetic vehicle detection and the effectiveness was verified

by real time tests. Finally, FPGA implementation of the acoustic algorithm was presented for power

efficiency.
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