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The human melanocyte is continuously exposed to intrinsic and
extrinsic sources of reactive biochemical species, but is finely
tuned via the intrinsic anti-oxidant and radical properties of
melanin to suppress the build-up of an altered redox pheno-
type. We propose that this control is lost during melanomage-
nesis and inappropriate redox-sensitive transcriptional factor
activations occur which result in enhancement of an anti-apop-

totic phenotype in the transformed cell. This conceptual frame-
work offers testable steps to determine the role of redox
alterations in the carcinogenic evolution, prevention and treat-
ment of melanoma and other diseases of the melanocyte.

Key words: Transcription factor, NF-kB, AP-1, Reactive
oxygen species, Glutathione, Superoxide anion

INTRODUCTION

The melanocyte, which is uniquely poised to accomplish its
primary function of delivering melanin to keratinocytes, is
under continuous low-grade oxidative insult (Fig. 1). Within
the melanocyte the synthesis of its sine qua non-product
(melanin) results in the generation of hydrogen peroxide. If
inappropriately processed within the melanosome, this
molecule can lead to the generation of hydroxyl radicals and
other ROS. Melanin itself can serve as both an anti-oxidant
and pro-oxidant depending on its redox state, the presence
of metal ions, and potentially its state of aggregation. The
implications of these diverse sources of generalized oxidative
stress for melanocytes and their potential consequences dur-
ing or contributing to carcinogenesis of this cell has been
little explored. In this review, we emphasize the role of
redox in melanocyte transformation and melanoma cell
proliferation. A growing literature suggests that a review of
redox regulation by melanin stimulating hormone (MSH)
and in such diseases as vitiligo would offer new insights into
normal melanocyte regulation as well.

The following topics as they relate to redox control will
be covered in this review: melanogenesis, melanin synthesis

and glutathione (GSH), melanin as an anti-oxidant and
cellular pro-oxidant, response of melanin to ultraviolet (UV)
light, anti-oxidant levels and melanomagenesis, redox regu-
lation of transcription factors, and a conceptual framework
for the pathogenesis of melanoma based on altered redox
control.

In response to UV light an inflammatory response is
generated involving the production of massive amounts of
various cytokines and growth factors by keratinocytes, a
vigorous inflammatory/immunologic host response, and in
some cases angiogenesis. Each one of these responses gener-
ates or stimulates the production of reactive oxygen or
nitrogen species. Additionally, UV light interacts directly
with biochemical constituents of the melanocyte to generate
intracellular reactive oxygen species (ROS), hydrogen perox-
ide and/or superoxide anion. The sum total of these alter-
ations is that melanocytes are subjected to an panoply of
redox changes with secondary effects on melanin synthesis
and a variety of signaling cascades.

We suggest that alterations in these processes are funda-
mentally involved in the pathogenesis of melanoma and
perhaps other pathologic states. These observations encum-

Abbreviations — GST, glutathione-S-transferase; GSH, glutathione (reduced); ROS, reactive oxygen species; UV, ultraviolet light; EPR,

electronic paramagnetic resonance
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Fig. 1. The natural condition of the melanocyte assures exposure to
multiple sources of oxidative stress.

ber the seeds of novel therapeutic strategies for melanoma,
as well as harboring etiologic implications.

Melanogenesis

Melanins are polymeric pigments formed from successive
oxidations of tyrosine. Two general types are known (Fig.
2), black eumelanins formed by the polymerization of dihy-
droxyindole precursors and red/brown pheomelanins, that
are colored as a result of cysteine incorporation during
oxidation (1). In melanocytes, tyrosinase catalyzes two suc-
cessive reactions, hydroxylation of tyrosine and oxidation of
the product, L-dopa. It has been postulated that tyrosine
may protect melanocytes from the cytotoxic effects of super-
oxide anion (2). The product of dopa oxidation cyclizes to a
5,6-dihydroxyindole intermediate, which is highly reactive
and upon further oxidation gives rise to eumelanin polymers
by a radical-coupling pathway. Pheomelanins are thought to
be engendered by covalent linkage of dopaquinone (DQ)
with cysteine, which results in the incorporation of a ben-
zothiazine monomer into the polymer (3).

The chemical structure of these pigments is not well
defined because of a variety of coupling modes and precur-

sors available. The details of the polymeric structure and
bonding patterns have been difficult to characterize, and
likely vary in subtle ways. Although often presented as
separate forms, eumelanin and pheomelanin are rather qual-
itative descriptions of a wide variety of native melanins,
likely co-polymers with both indolic (eu-) or benzothiazine
(pheo-) subunits. Chemical analysis has shown that natural
melanins are composed mainly of dihydroxyindole subunits,
with a much lower percentage of benzothiazine subunits
even in red and blond-colored samples (4, 5).

Melanin Synthesis and GSH

The regulation of GSH metabolism is complex and the
reduced form of GSH interacts with the melanin synthesis
pathway in a complex manner (Fig. 3). GSH is involved in
one of the initial steps in pheomelanin synthesis via its
conjugation to DQ by glutathione-S-transferase (GST), and
in the reduction of hydrogen peroxide evolved during both
eumelanin and pheomelanin synthesis via GSH-dependent
peroxidase (6).

GSH levels influence melanin synthetic pathways through
the formation of adducts with DQ, an unstable intermediate
in melanin synthesis produced by tyrosinase action on ty-
rosine and dopa (7-10). Like cysteinyldopa, glutathionyl-
dopa formation favors pheomelanin over eumelanin
synthesis. In addition to neutralizing this highly reactive
orthoquinone, GSH metabolism protects melanocytes from
the toxic effects of hydrogen peroxides formed during
melanin synthesis (6, 11, 12). GSH metabolism, therefore,
appears to be critically important to the maintenance of
melanocyte and melanoma cell viability.

Interruption of GSH Metabolism and Cytotoxicity to
Melanoma Cells

GSH, in conjunction with GST, is also involved in the
detoxification of therapeutic agents, particularly alkylating
agents (13—15). Therefore, disruption of GSH metabolism
should adversely affect melanoma cell viability, and increase
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Fig. 2. The major synthetic pathways of melanin synthesis and its relationship to GSH. GSH levels in the cytoplasm are related to cysteine
levels but GSH does not directly participate in melanin synthesis as it does not get through the melanosomal membrane.
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Fig. 3. The regulation of GSH metabolism. GST, glutathione-S-
transferase; RR, ribonucleotide reductase.

melanoma response to alkylator therapy. Glutathione per-
oxidase is the primary means for converting peroxides to
water. If neutralization of these molecules can be blocked by
depletion of GSH, peroxides should accumulate and a vi-
cious cytotoxic cycle would be created.

L-Buthionine-S-sulfoximine (BSO) is a selective, irre-
versible inhibitor of y-glutamylcysteine synthetase (GCS),
the enzyme involved in the first step in GSH synthesis (16,
17). Inhibition of GSH synthesis results in depletion of
intracellular GSH over time as GSH-dependent processes
consume GSH. The use of BSO as a way to enhance
intracellular oxidative stress may provide a new approach to
melanoma treatment (18, 19). In one study involving
melanoma, a patient with metastatic melanoma treated with
standard dose melphalan and infusional BSO was noted to
have a partial response after course two (19). After four
additional cycles a complete response was attained which
was durable for 18 months.

An additional and highly significant aspect of GSH
metabolism involves its participation in the synthesis of
deoxyribonucleotide precursors of DNA (20, 21). Ribonu-
cleotide reductase catalyses the first unique and rate-limiting
step of DNA synthesis by reduction of the 2 OH group of
ribose. Either thioredoxin or glutaredoxin may function as
ribonucleotide reductase co-factors by donating reducing
equivalents. GSH is utilized by glutaredoxin, while NADPH
is used by thioredoxin. GSH is oxidized to GSSG in this
reaction, with GSSG recycled back to GSH by glutathione
reductase and NADPH (22). In cells that utilize glutare-
doxin as the primary ribonucleotide reductase cofactor,
DNA synthesis is dependent on adequate levels of GSH.
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Tumors dependent on the glutaredoxin system have been
found to be sensitive to BCNU, which blocks GSH recy-
cling, and to GSH depletion by BSO (23-26).

Schallreuter et al. have found that human melanoma
specimens could be distinguished on the basis of their
glutaredoxin vs. thioredoxin dependence (23, 24). Amelan-
otic melanomas tended to have higher levels of thioredoxin
and were sensitive to Fotemustine, while those that were
melanotic contained more glutaredoxin than thioredoxin,
and were Fotemustine resistant. This group has also found
that reduced thioredoxin inhibits tyrosinase activity, possi-
bly contributing to the amelanotic character of thioredoxin
rich melanomas. These studies indicate that DNA synthesis
in some malignant melanomas may be dependent on
glutaredoxin, and therefore, sensitive to GSH depletion by
BSO. In fact, our data indicate that melanotic melanomas
are indeed more sensitive to BSO than amelanotic tumors
(26). We have found that melanoma cell lines show signifi-
cant DNA synthesis inhibition after BSO, which becomes
stoichiometrically related to GSH levels in the presence of
BCNU, which cripples GSH recycling. The ability of BCNU
to inhibit both glutathione reductase and thioredoxin reduc-
tase makes it particularly well suited to act in combination
with BSO for attacking DNA synthesis. BSO may therefore
act both by increasing free radical damage to melanomas
and by blocking the formation of deoxynucleotides neces-
sary for repair and synthesis of DNA.

Melanin as an Anti-oxidant

A large body of work has been undertaken on the interac-
tion of melanins with oxygen, hydroxyl radicals, and super-
oxide (27). The ability of melanin to neutralize ROS has
been well documented. Quinol/quinone redox transforma-
tions of DHI monomers are the source of this anti-oxidant
reactivity (Fig. 4). Benzoquinol, the simplest para-substi-
tuted dihydroxybenzene, can both oxidize and reduce super-
oxide via electron transfer reactions (28), thus, acting as a
superoxide dismutase by catalyzing the disproportionation
of superoxide to peroxide and oxygen. Similar SOD activity
has been demonstrated for isolated melanins (29).

We have reported direct evidence of the ability of cellular
melanins to mediate oxidative stress (30). In these studies,
cells from various sources were exposed to oxidative stress
resulting from generation of H,0O, by glucose/glucose ox-
idase. For all cells tested, an initial build-up of extracellular
peroxide was seen, but melanocytes were found to vary
significantly, proportional to their melanin content, in their

H
+0y . +0,
—_— -
-H,0, -0,
OH OH (0]
quinole semiquinone quinone

Fig. 4. The mediation of the anti-oxidant activity of melanoma by
quinol/quinone transformation.
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ability to inhibit this initial build-up. After the initial period,
all normal melanocytes were able to neutralize the peroxide
to comparable levels, but melanoma cells showed dramati-
cally less ability to neutralize the extracellular peroxide that
resulted in a continued build-up over extended periods.
Interestingly, the addition of SOD during this time resulted
in a 3-fold increase in peroxide, implying that large amounts
of superoxide were being generated by the melanoma cells
under peroxide stress.

Further evidence of the protective anti-oxidant ability of
melanins is found in its use by pathogenic black fungus and
bacteria (31). Melanin formation in the cell wall of the
pathogen is cited as a virulence factor aiding the protection
of the pathogen from normal respiratory burst and microbi-
cidal defenses of the host. For example, the melanin produc-
tion by E. dermatitidis was demonstrated to protect the
yeast from being killed in the phagolysosome, even after
phacocytosis and oxidative burst by neutrophils (32).

Still, the presence of melanin does not completely negate
susceptibility to oxidative stress. Excess hydrogen peroxide
decomposes melanin in vitro (33). In vivo it induces higher
tyrosinase levels in melanocytes (34). The cytotoxic effect of
catechol derivatives towards melanogenic cells has been
linked to hydrogen peroxide formation (35).

Melanin as a Cellular Pro-oxidant

A unique feature of melanogenesis is that ROS are gener-
ated during the oxidative polymerization (36, 37), the impli-
cations of which have not been explored. When the
pheomelanin pathway is inhibited, the eumelanin pathway is
favored, and 2-fold greater levels of peroxide are produced.
As the peroxides formed during melanin synthesis are toxic
to the cell, blocking the pheomelanin pathway may be
advantageous. Thus, ‘factors modulating the levels of H,O,
in melanocytes and melanoma cells play critical roles in
directing the course of melanogenesis and influencing the
potential cytotoxicity of the biosynthetic pathways’ (36, 37).

Melanins are known to absorb metal ions in vivo (38);
these metal ions dramatically affect the redox status of the
polymer. The absorbance of cationic metal ions can affect
the quinole/semiquinone/quinone redox state by inducing
the deprotonation of the quinole form; e.g., Zn>* binding
greatly stabilizes the EPR-active semiquinone radical of
dihydroxyindoles (39). The common bio-metals, Fe and Cu,
may themselves be involved in specific redox reactivities
with melanin and oxygen species. Melanin initiated lipid
peroxidation is accelerated by the presence of Fe ions (40).
This reactivity is thought to involve Fenton chemistry, in
which a redox-active metal mediates the formation of reac-
tive hydroxyl (OH) radicals from melanin-derived superox-
ide. Fe-induced pro-oxidant behavior has been implicated in
the neurodegeneration associated with Parkinson’s disease
(41). Likewise, diffusible melanin-related metabolites are
susceptible to such effects. Dihydroxyindole was found to be
pro-oxidant at low concentrations relative to Fe because of
reduction of the metal by semiquinone produced by autoox-
idation (42). Recently, it has also been reported that the
aggregate state of melanin affects the redox state (43), which
may have substantial implications during the processing of
melanin precursors during melanosome biogenesis (44, 45).

Pigment Cell Res. 14, 2001

Response of Melanin to UV light

UV light has been generally accepted to lead to altered ROS
levels in mammalian cells (46), although this phenomenon
has been little studied in melanocytes. It is generally ac-
cepted that melanin is produced to shield the skin against
photodamage. UV radiation is the main physiological stimu-
lus for human skin pigmentation; recent work suggests this
process may be mediated by nitric oxide activation of
guanylate cyclase, in manner similar to the initiation of
endothelial cell relaxation (47). It has been well character-
ized that UV irradiation of both eumelanin and pheome-
lanin can lead to the production of superoxide and peroxide
from reaction of the photo-excited pigment with oxygen
(48-50), but the photo-yields are small compared with the
ability of melanin itself to attenuate such ROS. Melanoma
cells, even with low levels of endogenous anti-oxidants such
as GSH, are relatively resistant to photo-induced stress (51).
Similarly, the sensitivity of human melanomas to photody-
namic therapy has been shown to decrease with the melanin
content of the cells; the melanin acts as a mediator of both
oxidative and irradiative stress (52).

Because of the susceptibility of fair-skinned sun-exposed
individuals to melanomagenesis, it has been postulated that
this cancer results from the effect of UV radiation on
pheomelanin substituents or precursors (5). However, the
exact nature of the photobiological response is unknown, as
is the specific chromophore that initiates it. Prota has found
that photoanalysis of 5-S-cysteinyldopa by UVA (320-400
nm) leads to oxygen-dependent oxidation producing the
quinone (and subsequent oxidative products such as the
benzothiazines) and presumably superoxide (53). Irradiation
with UVB (280-320 nm) results in desulfurization by cleav-
age of the C-S bond, yielding dopa as the main product.
Previously Koch and Chedekel had suggested the potential
mutagenic effects of the radical photodecomposition prod-
ucts of UVB irradiation of 5-S-cysteinyldopa (54).

Anti-oxidant Levels and Melanomagenesis

Nearly all cancers have some imbalance in anti-oxidant
levels compared with the cell of origin (55). Levels of
anti-oxidant enzymes such as MnSOD, catalase, and glu-
tathione peroxidase are typically decreased, as are levels of
non-enzymatic small molecular weight anti-oxidants such as
GSH and vitamins E, C, and A (56). It was noted over a
decade ago that normal cutaneous fibroblasts, keratinocytes,
and melanocytes exhibited disparate anti-oxidant enzyme
activities in culture (56). Although abnormalities in chromo-
some 6 and the MnSOD gene have been demonstrated in
some melanomas (57), this is uncommon and unlikely to
provide a genetic or generic basis for the altered anti-oxi-
dant phenotype. Picardo and his colleagues have followed
up this observation and found that the anti-oxidant pheno-
type of normal epidermal melanocytes from patients with
melanoma fell into one of two categories: a) the same as
melanocytes from normal donors or b) a phenotype resem-
bling melanoma cells: elevated vitamin E and polyunsatu-
rated fatty acids and a lowered catalase and unchanged
SOD activity (58—60). Remarkably, a similar anti-oxidant
pattern was also seen when uveal melanocytes and uveal
melanoma cell cultures were compared (61).
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Increased extracellular production of superoxide anion in
melanoma cells has been demonstrated (62). We have shown
that intracellular levels of this ROS are probably elevated
also, both indirectly using chemiluminescent probes follow-
ing exogenous oxidant stress (30) and more directly under
basal conditions using fluorescent molecular probes (63). In
the former situation melanoma cells were exposed to exoge-
nous hydrogen peroxide and ROS measured by luminol-en-
hanced chemiluminescence. Melanocytes were able to
suppress the response while melanoma cells were not. Fur-
ther, the addition of superoxide dismutase unexpectedly
increased the signal in melanoma cells, while having no
effect on melanocytes in this situation. This result suggested
that under conditions of oxidant stress, melanin in
melanoma cells functioned as a pro-oxidant and generated
superoxide anion. We propose that continuously elevated
levels of intracellular oxidants leads to an altered redox state
with complex compensatory mechanisms. One would antici-
pate that the anti-oxidant enzymes would increase, but this
does not seem to occur, as these enzymes are low in
melanoma cells. However, these changes have not been
measured throughout melanocyte progression so it is possi-
ble that these enzymes are elevated early on during carcino-
genesis. This is not an unreasonable expectation as
pre-neoplasias in many organs have increased enzymatic or
molecular changes that are subsequently depressed after the
cell is completely transformed (64).

Redox Regulation of Transcription Factors

The major redox-sensitive transcription factors in mam-
malian cells are NF-xkB, AP-1, and thioredoxin (65). We
have previously shown that jun and fos regulation is dysreg-
ulated in melanoma cells (65). Although these early studies
did not explore the mechanistic basis for this phenomenon,
we further examined the complex effects of low and high
dose UV light B on AP-1 and NF-kB binding in human
melanocytes (66). We have recently studied the NF-xB and
AP-1 binding in melanoma cells and melanocytes (67, 68).
Under basal conditions, NF-kb binding was markedly ele-
vated in melanoma cells and despite this high level was
further increased in the presence of a peroxidative stress. In
contrast, AP-1 binding was unaffected in melanocytes and
decreased in melanoma cells. The molecular basis for these
responses is unclear, but we have recently shown that consti-
tutive overexpression of RelA may underlie the abnormality
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in NFkB regulation in melanoma cells (68). Others have
suggested that abnormal IxBa processing may also play a
role (69). NF-kB/relA activity has also been demonstrated
to contribute to tumorigenicity, angiogenesis, and metastasis
of human melanoma cells implanted in nude mice (70).
Haycock has also shown that MSH can inhibit activation of
NF-xB in human melanocytes and melanoma cells (71). Of
related interest is the observation that o-MSH modulates
nitric oxide production in human melanocytes (72).

Conceptual Framework for Pathogenesis of Melanoma
Based on Altered Redox Control

We propose the following scenario (Fig. 5). The process of
melanin synthesis is a highly regulated process that results in
the formation of a biopolymer that normally functions as an
anti-oxidant. This results in efficient sequestration of ROS
generated by endogenous melanin synthesis, cellular interac-
tion with UVA and UVB, and superoxide anion and perox-
ides produced by host immune and angiogenic responses
(e.g., to UV or in response to antigenic changes during
carcinogenesis). In melanocytes this process is under tight
control and the lowering of intracellular ROS or inhibition
of an increase allows turning off of NF-xB activation and
other redox-sensitive transcription factors and abrogation of
the stress response. It has been well established by others
that the process of melanin synthesis becomes dysregulated
during carcinogenesis, with differential polymerization of
selected melanins and disruption of melanosomal organiza-
tion (73-75). We propose that at some point early in
pathogenesis, melanin becomes progressively more oxidized
and begins to function as a pro-oxidant. Additionally, we
speculate that as the cell becomes transformed, the disorga-
nization of melanosomal structure leads to less efficient
handling of the generated ROS within the matrix and
‘leaking’ of radicals to the cytoplasm and the production of
further intracellular oxidative stress. This leads to NF-xB
activation and other transcription factor alterations and a
downstream stress response including an anti-apoptotic ef-
fect. (Alternatively, this might occur in ageing normal
melanocytes and lead to premature cell death with hair
graying and vitiligo as the outcome.) However, as a result of
either continuous high level of ROS, protein modification
secondary to high levels of ROS or a primary mutation in
the Rel system (possibly induced by ROS), the NF-«B
pathway remains activated and an anti-apoptotic milieu

Pigment Cell Res. 14, 2001



maintained. We further propose that these alterations are at
the heart of the remarkable changes in genotype and pheno-
type that occur during melanocyte carcinogenesis. Each of
these steps is testable, and others and we are beginning to
examine this candidate pathogenic mechanism.

Acknowledgements — Supported in part by CA62203 from the
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administrative assistance.
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