
Lawrence Berkeley National Laboratory
LBL Publications

Title
Macroscopic dynamics and the collapse of urban traffic.

Permalink
https://escholarship.org/uc/item/72b7n90n

Journal
Proceedings of the National Academy of Sciences of USA, 115(50)

Authors
Olmos, Luis
Çolak, Serdar
Shafiei, Sajjad
et al.

Publication Date
2018-12-11

DOI
10.1073/pnas.1800474115
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/72b7n90n
https://escholarship.org/uc/item/72b7n90n#author
https://escholarship.org
http://www.cdlib.org/


Macroscopic dynamics and the collapse of urban traffic
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Stories of mega-jams that last tens of hours or even days appear
not only in fiction but also in reality. In this context, it is impor-
tant to characterize the collapse of the network, defined as the
transition from a characteristic travel time to orders of magni-
tude longer for the same distance traveled. In this multicity study,
we unravel this complex phenomenon under various conditions
of demand and translate it to the travel time of the individual
drivers. First, we start with the current conditions, showing that
there is a characteristic time τ that takes a representative group
of commuters to arrive at their destinations once their maximum
density has been reached. While this time differs from city to
city, it can be explained by Γ, defined as the ratio of the vehi-
cle miles traveled to the total vehicle distance the road network
can support per hour. Modifying Γ can improve τ and directly
inform planning and infrastructure interventions. In this study we
focus on measuring the vulnerability of the system by increas-
ing the volume of cars in the network, keeping the road capacity
and the empirical spatial dynamics from origins to destinations
unchanged. We identify three states of urban traffic, separated by
two distinctive transitions. The first one describes the appearance
of the first bottlenecks and the second one the collapse of the
system. This collapse is marked by a given number of commuters
in each city and it is formally characterized by a nonequilibrium
phase transition.

urban traffic gridlock | nonequilibrium phase transition |
directed percolation | human mobility | mobile phone

The steady increase of traffic congestion not only trans-
lates into overpowering travel times (1–3), but also erodes

economic growth (4) and has negative environmental impacts
(5–7). Urban traffic has extensively been studied through com-
puter simulations with particular interest in the characterization
of the transition from free flow to congestion (8–10). Tra-
ditional approaches in traffic engineering have described the
phenomenon within the framework of a well-defined relation-
ship between network-wide average flow and the density of cars
(11–17). Considering the network density as the control param-
eter, a congested state at the network level emerges when car
outflow starts decreasing when the vehicular demand exceeds a
certain value. In parallel, critical loads Rc at which vehicles start
accumulating in a road network have been studied in abstract
frameworks unrelated to empirical travel demand of cities (18–
20). All these approaches fall short by assuming steady-state
traffic conditions and using state parameters unrelated to the
individual travelers. Congestion at the urban scale is by nature
unevenly distributed in space and the volume of cars varies
strongly during the day.

The recent availability of data on personal tracking devices
has enriched the study of traffic models. Origin–destination
(OD) tables can be extracted from call-detailed records (CDRs)
of mobile phones (21, 22) and GPS-equipped vehicles can act
as sensors of traffic conditions (15, 23). Patterns of individual
mobility have been uncovered (24, 25) and allow us to model
individual daily mobility from passively collected sources (26).

Comparing various cities, scaling of urban indicators emerges
(27, 28). Examples are travel times and road network charac-
teristics as a function of population and socioeconomic charac-
teristics (27, 29, 30). For operational and planning purposes, a
macroscopic description of the urban traffic dynamics and their
vulnerability to collapse, measured in terms of car volumes, road
network supply, and individual travels, is essential, yet still miss-
ing. In other words, In what way does the information contained
in the ODs determine the travel time of target individuals and
how can these dynamics be understood in terms of actionable
quantities to explain when the system will collapse?

As a first step in that direction, Çolak et al. (22) used a frame-
work of static equilibrium to compare the morning conditions of
congested travel times (tue) along the routes of five cities as a
function of the road supply to vehicle demand (Γ). In this work
we go a step farther, fully studying the nonequilibrium dynamics
of six cities for which we have information on their empirical
vehicular demand. We show that the state of the system can
be characterized by the time that a representative number of
commuters take to depart at the beginning of the peak hour
and arrive at their destinations. We formulate the measurements
as the unloading time of individuals departing within the same
hour and then measure after they reach their maximum num-
ber in the network. As recently proposed in simulations of the
Chicago road network (31), the concept of the recovery period is
an important element to diagnose urban congested states. Here
we focus in the travelers departing at the beginning of the peak
hour in diverse cities.

First we directly measure the reported times of individual
travel diaries in Boston, San Francisco, and Bogotá, and we build
their reported temporal profile of car trips vs. time in the morn-
ing peak period. We focus on the target group of vehicles that
enter the network within the peak hour (7:00–8:00 AM) and
find that they have an exponential unloading period. This empir-
ical observation is corroborated by a calibrated and validated
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simulation-based dynamic traffic assignment model of the entire
city of Melbourne. We argue that this characteristic unload-
ing time τ faced by commuters can be related by macroscopic
characteristics that contain the overall road capacity and travel
demand. To uncover the macroscopic dynamic that explains
τ , we implemented a cellular automata (CA) model on the
road networks of five cities around the world, namely Boston,
Porto, Lisbon, Rio de Janeiro, and the San Francisco Bay area.
Informed by the empirical trip demand derived from CDRs
from each city, we analyze the morning peak hour by loading
constantly during 1 h and letting the drivers arrive at their des-
tination. We show that the exponential form of the unloading
time is a consequence of the log-normal distribution exhibited
by the commuting distances. As expected, τ ∼Γ, each city has
a different τ every morning, and the differences are explained
by the ratio of the total vehicle demand to their available street
capacity. We further conduct a scenario analysis for a different
number of cars entering for the peak hour, keeping the empir-
ical distribution of OD trips in the morning peak. In doing so,
we uncover three different states of urban traffic and the critical
demand beyond which the system collapses. As an illustration,
snapshots of these states at the same hour are shown in Fig. 1A
for Boston. We show that the dynamical response is indepen-
dent of the level of detail of the traffic model and the city under
consideration.

The Unloading Time of Urban Road Networks
Peak-hour traffic congestion is inherent to the circadian rhythm
of modern city life. After an intense and heterogeneous load-
ing period, there is a recovery period where traffic jams on
major arterial roads dissipate, thus relieving the city traffic. We
focus, in this work, on the recovery period after the morn-
ing peak hours under current traffic conditions and further
see how it changes as a function of the number of cars in
diverse cities, paying particular attention to the collapse of the
system.

We start by gathering empirical observations on urban con-
gestion. We analyze individual travel diaries in Boston, San

Francisco, and Bogotá. This allows us to build an approximate
temporal profile of car trips in the network. To have a controlled
sample, we focus on the target group of vehicles that enter the
network within the peak hour, defined as the hour immediately
before the peak, here from 7:00 AM to 8:00 AM. Remarkably,
we observe a generic behavior: After a loading period, the num-
ber of target group vehicles still in the network, N (t), follows a
characteristic unloading time that follows an exponential decay
that is depicted in Fig. 1B. It is important to note that this obser-
vation is in contrast with that of all of the vehicles of commuters
also shown in Fig. 1B. This sample has a more heterogeneous
mix of times to unload, not properly characterized by a single
relaxation time.

We further measure the loading and unloading with the
simulation-based dynamic traffic assignment (DTA) model of
the city of Melbourne (32). This model has been carefully cal-
ibrated for the entire city and simulates almost 2.1 million
commuters in a 4-h morning peak period (Materials and Meth-
ods). Similar to the empirical results reported in surveys, we
observe a recovery period that follows an exponential decay that
can be written as

N (t)t≥t0 =N (t0)e−
t−t0
τ , [1]

with t0 = 8:30 AM and the unloading time τ = 0.51(4) h (Fig.
1C). This implies a proportionality between the exit function
G(N (t)) and the number of vehicles, namely

G(N (t)) =

∣∣∣∣dN (t)

dt

∣∣∣∣∝N (t) for t ≥ t0. [2]

This relation is confirmed by simulations (SI Appendix, Fig. S2).
Thus, τ should indicate the network response to the conges-
tion, including also vehicles not belonging to the target group.
We further study how τ depends on network characteristics and
different travel demands over diverse cities.

A B

C

Fig. 1. Urban traffic dynamics. (A) Snapshots of the simulated Boston network just in the morning peak hour (8:30 AM) for three different demand levels.
For very low traffic demand (free flow), interaction between vehicles can be neglected and the spatial distribution of short queues at intersections looks
uncorrelated. For current traffic demands, traffic jams emerge along the roads, showing a clear heterogeneous spatial distribution, but even so vehicles
still flow. For high demands, these traffic jams grow to such an extent that they merge into each other, leading to the eventual network collapse. Road
segments are classified into four depicted categories according to the speed ratio, i.e., the current speed divided by the speed limit of the street (empty
roads are included in the green category). (B) Temporal profile of the vehicle trips in the road network during the morning peak hour built from travel
diaries in Boston and San Francisco. For the target group (TG) of vehicles entering from 7:00 AM to 8:00 AM, we observe a clear exponential unloading
process; i.e., N(t) = N(to) exp(− t−to

τ ). In contrast, the profile for all commuters (AC) shows a more heterogeneous behavior. Similar results for Bogotá are
presented in SI Appendix, Fig. S1. (C) A simulation-based dynamics traffic assignment model of Melbourne confirms the exponential decay of the TG, here
defined from 7:30 AM to 8:30 AM. In contrast, all of the vehicles of commuters have a more heterogeneous unloading, not properly characterized by a single
relaxation time.
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CA Model
Due to the complexities of large-scale traffic simulations, to com-
pare cities we implement a CA model (33). As an input, we
use validated travel demand models obtained by Çolak et al.
(22). We focus on traffic demand from 7:30 AM to 8:30 AM
for the subject cities (22) (Materials and Methods). To model
the observed recovery, we load the road network during 1 h;
i.e., every time step ∆t , the network is loaded with R randomly
chosen trips. After that, we stop the loading and let the system
recover within a long time window. We select a sufficiently long
time of observation that allows us later to observe the dynamics
of long-lasting traffic jams.

The initial route in the road networks is precalculated with
the congested traveled time tue as weights assuming the shortest
time path. Vehicles depart from origin nodes (intersections) and
then are inserted into the network according to the initial routing
strategy, such that, for high insertion rates, queues of new vehi-
cles can be formed at origin nodes. Once vehicles are inserted
into the network, the trips toward their destinations are deter-
mined by two processes: the dynamics along the streets and the
routing at the intersections (Fig. 2A).

We implement the deterministic Nagel–Schreckenberg CA
model (33), where for simplicity each edge only has one lane.
When a car is traveling in free flow and approaches an inter-
section, it decreases its speed to vuts. In the implementation
presented here our unit time step (uts) is ∆t = 1.2375[s] and
the cell sizes are l = 5.5[m]. This defines the minimum distance
per uts that vehicles can travel in the absence of congestion,
which corresponds to vuts = 16[km/h]. Each vehicle keeps a gap
distance which creates congestion when cars accumulate in the
streets, taking speeds in the range [0, vmax], where vmax is the
speed limit of the road segment.

In each time step in a random sequence, the intersections
transmit the first vehicles of the originating streets. The vehi-
cles pass through a street segment (i) if the first cell in the
next desired street is empty and (ii) if the road capacity of
the originating street allows it. In the latter case, the vehicle
is delivered with a probability p proportional to the road ca-
pacity of the originating street, Ce (SI Appendix, Table S1). In
the case of long waiting times, we introduce a basic dynamic rout-
ing strategy, commonly known as adaptive driving: A vehicle that
has been stopped at an intersection during more than twait = 96
time steps (approximately 2 min) can decide to reroute to a less
congested destination street and recomputes its route.

In SI Appendix, Fig. S3, we show how this simple model offers a
reasonable description of important empirical features of urban
traffic reported in previous works (12, 15, 17).

Comparing Morning Traffic
Due to the one-lane representation of the streets and the sim-
plicity of the vehicle dynamics, the networks studied via the CA
model are more susceptible to congestion if using the empirical
volume demand (V ). We thus rescaled V by the ratio between
the space demands in simulated and real networks, given by

Vca ≡ 0.7×

∑
e∈E

xe · `e∑
e∈E

xe · `e ·ne
·V , [3]

where `e and ne are the length (in kilometers) and number of
lanes that a road segment e contains in the shortest path from
origin to destination, and xe is the number of cars that pass
through it. With the calibration factor 0.7, we obtain a reason-
able correlation between the travel times obtained from our

A B

DC

Fig. 2. Comparison of congestion levels for five studied cities. (A) Schematic for the proposed CA model. (Lower Inset) The snapshot illustrates the various
cases of the NaSch CA dynamics (33) using vmax = 3 cells/∆t; black vehicles correspond to the configuration at time t and gray ones correspond to the
position at t + 1 after the velocity updating. (Upper Inset) Colored arrows illustrate several possibilities of moving in the intersections: green (successful),
red (not successful), and blue (a new route chosen). A light-blue vehicle means that the cell is occupied by a vehicle that has crossed before or by one
that just entered the network. (B) During the first hour every city is loaded homogeneously with a rescaled loading rate R = Rca (Table 1) from their
empirical travel demand. Inset shows the log-lin plot of the recovery period with the unloading time τ of the fitted exponential function depicted in the
key. Every curve here is an average over 30 realizations. (C) After the loading hour, the remaining distance d̂ and the remaining travel time t̂ for the cars
in the network can be fitted by a Weibull distribution with parameters shown in the keys (see SI Appendix, Fig. S7 and Table S2, for more details). This
explains the exponential behavior in B. (D) Under current traffic conditions, we observe a linear trend between τ and Γ, the actual demand to supply
ratio for each city. Error bars show the SD. A comparison between τ and both the TomTom traffic index and data derived from GoogleAPI is shown in SI
Appendix, Fig. S8.
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Table 1. A comparison of the actual travel demand and road network in the subject cities

City

City characteristics Boston Porto Lisbon Rio de Janeiro San Francisco Bay

Population, millions 4.5 1.7 2.8 12.6 7.15
Area, 1,000 km2 4.6 2.0 2.9 4.6 18.1
Roads, thousand miles 12 3 7 6 30
Total volume, V , millions 0.916 0.171 0.324 0.432 1.015
Vca/V 0.292 0.282 0.290 0.307 0.274
Rca[veh/∆t] 92 16 33 45 94

simulations and the publicly available Google Maps Application
Programming Interface (API) (SI Appendix, Fig. S4). Despite
the differences in road infrastructure, there are small differ-
ences between these ratios for the considered cities, as shown
in Table 1.

Next, we distribute the calibrated volume demand (Vca) in the
1-h loading, such that Rca = Vca

1 h
·∆t randomly chosen trips are

inserted each time step ∆t .
The observed patterns here are independent of the simula-

tion modeling methodology. Both the simplified simulation and
the more complex DTA model reveal similar outcomes. Fig.
2B shows the loading and unloading in terms of the fraction
of vehicles in the network, n(t)≡ N (t)

Vca
. The exponential decay

is reproduced with unloading times τca ranging from 0.26 h to
0.66 h (Fig. 2B, Inset). As expected, we can see the network
responds differently from city to city. Note that the values of
τca of the empirical representation are higher than those of
the empirical travel conditions. Because the same simplifica-
tions are done for each city, the relative differences of τca are
preserved.

The exponential recovery can be explained by commuting trip
distances, d , which can be approximated by a log-normal distribu-
tion (SI Appendix, Fig. S5), P(d ;µ,σ) = 1√

2πσd
e−(ln(d)−µ)2/2σ2

with medians ranging from 10 [km] to 16 [km] and the SD rang-
ing from 2.13 km to 2.91 km: µ(σ)Boston = 2.31(1.07), µ(σ)Porto =
2.52(0.76), µ(σ)Lisbon = 2.77(0.91), µ(σ)Rio = 2.48(1.04), and
µ(σ)San Francisco Bay = 2.73(0.97). After the first hour there is an
important fraction of vehicles that have not reached their des-
tination. The remaining distance of these vehicles follows a
Weibull distribution, P(d̂ ;κ,λ) = κ

λ
( d̂
λ

)κ−1e−(d̂/λ)κ (presented
in Fig. 2C, Left). In a noncollapsed state, the remaining travel
times, t̂ , follow the same distribution, as shown in Fig. 2C,
Right. Thus, in the recovery period after the first hour, the
number of vehicles as a function of time, tr = t − to , can be
estimated as

n(tr ) =n(to) ·

1−
tr∫
0

P(t̂ ;κ,λ) dt̂

=n(to) · e−(tr/λ)
κ

. [4]

Note that κ takes values very close to 1.0 and the λ values
are similar to the τca of each city; this explains the exponential
recovery time. Similar results are obtained for Melbourne (SI
Appendix, Fig. S6).

We can further explain τca as a function of the vehicle miles
traveled and the road network capacity. To that end, we measure
the demand-to-supply ratio, defined as

Γ≡

∑
e∈E

`exe∑
xe>0,e∈E

`eCe
. [5]

This measure is a simple ratio. The numerator is the distance that
needs to be traveled from origin to destination, in the static equi-
librium with the estimates of current demand, adding the trips
of the target group that departs in the peak hour. The denom-
inator is the upper bound of the total vehicle kilometers the
road network can support per hour. Thus, it captures the spatial
distribution of the loading on the available road infrastructure
of the city. This definition differs from the one used in ref. 22;
here Γ has dimensions of time. The values of this parameter
under current traffic conditions, Γca , are shown in Table 2. As
shown in Fig. 2D there is an increasing relation between τca and
Γca . Remarkably, the congestion levels suffered by commuters in
diverse cities can be defined by a metric that synthesizes the trip
distribution of a target group and the available road infrastruc-
ture. SI Appendix, Fig. S9 shows a sensitivity analysis of τca with
respect to the parameter twait of the CA model.

Dynamics of Urban Traffic
To have a complete understanding of τ and the macroscopic
dynamics of urban traffic, we analyze different demand levels,
keeping the spatial distribution of trips and the loading in the
morning peak hour. In doing so, we uncover three different states
of urban traffic (Fig. 3). We call them free flow, traffic jam, and
network collapse, also known as gridlock. We further use the
superscript i to emphasize that the values are calculated for each
city i . First, for very low Γi , as vehicles do not affect each other,
τ i = τ io is independent of the volume of cars and depends only on
the distribution of travel distances in each city (Table 3). After a
certain value Γi

1, queues start to emerge at the intersections. As a

Table 2. Comparison of metrics associated with urban traffic in the subject cities

City

City metrics Boston Porto Lisbon Rio de Janeiro San Francisco Bay

Demand to supply, Γca[h] 0.092 0.068 0.085 0.130 0.145
Unloading time, τca[h] 0.34(1) 0.26(2) 0.52(2) 0.66(2) 0.65(2)
Mean commuting distance d[km] 10.07 12.45 15.99 11.98 15.33
SD commuting distance [km] 2.91 2.13 2.48 2.82 2.64
Mean remaining distance d̂[km] 16.22 11.48 18.52 18.34 19.53
Mean remaining travel time, t̂[h] 0.321 0.258 0.501 0.534 0.629
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A

B C

Fig. 3. Effects of Γ on the unloading time τ . (A) When scanning different demand levels, we can identify a transition from a free-flow state with a constant
τ i = τ i

o to a traffic jam phase where τ i increases linearly with Γi . (B) Comparison between previous curves for all cities for a wider travel demand range.
Beyond the linear region, τ increases dramatically as evidence of the transition to a collapsed state. (C) Plot of τ i − τ i

o vs. Γi −Γi
1. The traffic jam phases for

all cities collapse onto a thin band, meaning that urban traffic networks respond similarly to the congestion. Vertical lines identify the critical threshold to
the network collapse. Every point is an average over 30 realizations. Stars represent the current traffic conditions for each city.

result, while preserving the exponential recovery, τ depends lin-
early on Γ. This is the state observed in the studied cities under
the current commuting conditions. Interestingly, when we plot
τ i − τ io vs. Γi −Γi

1, the linear regions for all cities collapse into
a band as shown in Fig. 3C, indicating that after their partic-
ular threshold Γi

1, all observed cities respond similarly to the
congestion. It is worth mentioning that Γi

1 coincides with the
critical insertion rates studied in previous works with constant
loadings (18–20) (SI Appendix, Fig. S10). Now, if the demand
keeps growing, long-lasting traffic jams emerge, deforming the
initially exponential unloading, and thus τ increase dramatically
as shown in Fig. 3C. This is the onset of the transition to the
network collapse, because for a large number of cars we do not
observe an exponential unloading anymore. From this state, τ is
measured as how long it takes to unload the network to reach the
value of n(to) exp(−1).

Γ is a state variable that allows us to compare the congestion
level for different cities. Interestingly, according to its definition
(Eq. 5), Γ is an extensive variable, and thus we can expect a
dependency on the city size. SI Appendix, Fig. S11 suggests that
Γca may be set just by population (P) and spatial extent of the
urban area (A). We find Γca ∼ (PA)0.21(4), a result aligned with
the recently reported scaling laws for urban systems (28–30).

Urban Vulnerability and Transition to a Collapsed State
While the considered cities already face high traffic demand, the
studied exponential decay indicates a characteristic time in the
recovery without the occurrence of long-lasting traffic jams that
expand to the majority of the network. We further compare the
emergence of collapse induced by the number of cars.

Fig. 4A shows the recovery period for all five cities under high
loading rates. At a certain critical value Ri

c (colored symbols),

cities recover algebraically over a wide time window up to an
exponential cutoff. As depicted, the power-law decay is fitted as
n(t)∼ t−α, where the critical exponent α is obtained from the
slopes of the black solid lines. For R>Rc , the unloading follows
a slower recovery until an inflection point appears, where the
outflow rate decreases to very low levels and remains so for a con-
siderable time, as shown in SI Appendix, Fig. S12. In this transient
collapsed state, most of the vehicles remain trapped in long-
lasting gridlocks. Eventually, due to the rerouting possibilities,
the system recovers and unloads completely.

The dynamics of n(t) resemble the critical behavior of the
directed percolation (DP) universality class, with the difference
that traffic systems do not have irreversible absorbing states due
to the rerouting rules. Prompted by this analogy, we follow the
scaling approach in the DP framework (34–36) for characteriz-
ing the transition to the network collapse. As Fig. 4B shows, we
find that curves collapse when n(t) · tα is plotted as a function

of (t − to)ε, where ε=
|R2−R2

c |
R2

c
is the deviation from criticality.

Table 3. Comparison of metrics associated to the phase
transitions observed in the CA model of the subject cities

City

Critical Rio de San Francisco
parameters Boston Porto Lisbon Janeiro Bay

Γi
1[h] 0.0843 0.055 0.0531 0.0703 0.1077
τ i

o[h] 0.247(2) 0.184(2) 0.287(2) 0.269(2) 0.326(1)
Ri

c
vehs
∆t 178 37 66 86 168

α 1.54(1) 0.60(2) 0.56(1) 0.65(1) 0.75(1)
β 0.8(1) 0.21(2) 0.27(2) 0.61(3) 0.53(5)
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A

B

Fig. 4. Critical behavior of the fraction of vehicles in the network n(t). To study the transition to urban gridlock, we systematically increase the traffic
demand per time step in each city. (A) Number of vehicles in the network n(t) after the loading, for several loading rates. The critical condition is indicated
by the solid black lines where the n(t), the order parameter, follows a power law t−α. The nonuniversal values of the critical exponent α are shown for
each city. The critical loading rate Rc is estimated as the average loading rate of the two colored curves. Vertical lines define the time at which the order

parameter n(R) is measured (SI Appendix, Fig. S13). (B) Scaling plot of data in A, where ε=
|R2−R2

c |
R2

c
is the deviation from criticality. Above the critical point

R> Rc, the system falls into a gridlock state that eventually resolves after several hours.

Even though α is different for each city, indicating nonuniversal-
ity, this behavior evidences that the onset of the traffic gridlock
is a nonequilibrium phase transition (34–36).

We further study the transition in the supercritical region,
using the loading rate as a control parameter. The natural
order parameter is the remaining percentage of vehicles in the

D

A CB

Fig. 5. Phase transition vs. the control parameter R/Rc. (A) Order parameter n(R) vs. R/Rc for the five cities. Inset shows the same data in logarithmic scales,
and the solid lines show n(R)∼ εβ . (B) Relationship between the critical exponents α and β. Black lines depict the universal values of β1D (dashed-dotted
line) and β2D (solid line) of DP. (C) Recovery time T diverges at the critical point. A data collapse can be obtained by plotting the quantity (T/τ )α. (D)
Snapshots of long-lasting gridlock configurations for all cities with R> Rc. The color code of the road segments is the same as in Fig. 1A, and the orange
shading indicates zones with a high density of destinations.
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network at very long times, n(R), where it is expected that a scal-
ing law n(R)∼ εβ . However, since the gridlocks always recover,
it becomes difficult to define the proper time t to measure n(R).
We define it as the moment at which the best fit of β is obtained
for each city, indicated by the vertical lines in Fig. 4A (also SI
Appendix, Fig. S13).

Fig. 5A shows n(R) as a function of R
Rc

for all cities. As
depicted, with increasing R

Rc
, n(R) increases continuously at the

vicinity of R
Rc

= 1.0. The power law n(R)∼ εβ in this second-
order transition is shown in Fig. 5A, Inset. Fig. 5B shows how
β increases with increasing α. For comparison, the universal
exponents of (1 + 1) and (2 + 1) dimensions in DP are also
sketched.

To compare the response of various cities, we define (τ/τca)α

as the temporal order parameter. Note that τca are the reference
values that resemble the traffic conditions in the city today. Fig.
5C shows that this quantity diverges at the vicinity of R

Rc
= 1.0

and, once again, we obtain a data collapse onto a single curve.
Thus, the transition point separates a traffic jam phase with finite
recovery times and a collapsed phase in which the dynamics are
almost frozen.

The dynamics of the presented results do not depend on
the rules of the CA. A sensitivity analysis (SI Appendix, Fig.
S14) indicates that, as expected, Rc increases and α decreases
with increasing twait. In contrast, the critical exponent β seems
to be robust, suggesting that it does not depend on details
of the model such as rerouting strategy, but rather depends
on the structural shape of the traffic gridlocks in the city. To
have some insights about the differences in the cities’ criti-
cal behavior, we show snapshots of long-lasting gridlock con-
figurations along with the business districts for each city. At
one extreme, Porto exhibits a single mega-jam spreading in its
unique business district. At the other end, Boston shows several
big traffic jams, one for each working zone. The differences in
the spatial structure from a monocentric to a polycentric orga-
nization generate differences in the values of the exponents
that characterize the collapse. Further spatial studies of traffic
dynamics under actual conditions have been studied with perco-
lation theory (23). In SI Appendix, Figs. S15 and S16, we study
the percolation transition with various demand volumes. From
the perspective of the nonequilibrium phase transitions, future
work should focus on studying the spatial and temporal corre-
lation lengths around the criticality (Rc). Further comparative
studies of cities can give insights into evaluating mitigation strate-
gies like congestion pricing (37–39) and routing policies (40). A
discussion on this can be found in SI Appendix, section A.

Discussion
We have uncovered an exponential recovery in urban traffic,
given by the unloading time of a target group in the peak hour.
This value relates individual mobility with traffic congestion lev-
els and depends on the road infrastructure and travel demand.
Within this framework, we measure the vulnerability of urban
networks to loading vehicles, while keeping the trip distributions
and street capacities unchanged. We show that the transition
to urban gridlock resembles the DP universality class, and it

is studied as a nonequilibrium phase transition. In a data-rich
reality, the aim of this work is to open avenues for direct mea-
surements and description of urban traffic with methods of
statistical physics.

Materials and Methods
Surveys Datasets. Data were derived from the 2010/2011 Massachusetts
Travel Survey (MTS) and the 2000 Bay Area Transportation Survey (BATS).

Extraction of Validated Travel Demand Information. Travel information can
be extracted from the analysis of CDRs from mobile phones. Çolak et al.
(22) estimated and validated the OD tables during the morning peak hour
for the same five cities discussed here. Using these OD tables, along with
road networks publicly available on OpenStreetMaps (OSM), the congested
travel time (tue) for each road was estimated through a static traffic assign-
ment algorithm. In summary, we implement a four-step travel model (31,
32). For the CA simulations, we start from OD matrices aggregated at a level
of census tracts. Once a trip is chosen to enter the network, both the origin
and destination nodes are assigned at random from the nodes within the
corresponding census tract.

Simulations of Melbourne. DynaMel is a large-scale simulation-based DTA
model of Melbourne, Australia. The model has been calibrated and val-
idated to simulate the 6:00 AM to 10:00 AM morning peak period. The
model consists of 55, 719 links and 24, 502 nodes and simulates almost 2.1
million commuters in the 6:00 AM to 10:00 AM morning peak period. As
an input of the DTA model, DynaMel applies a machine-learning–based
technique to calibrate the traffic-flow fundamental diagram using the
observed traffic data from hundreds of freeway loop detectors across the
entire network.

Details of the CA Model. Vehicle dynamics along road segments are modeled
with the deterministic Nagel–Schreckenberg CA model (33). For simplicity,
each edge has only one lane. Therefore, every road segment is discretized in
cells of equal length, l = 5.5[m], and no more than one vehicle can occupy
a cell at every time step ∆t = 1.2375[s]; hence the speed unity is fixed to
vuts = 16[km/h] corresponding to 1 cell per time step. At each time step, all
vehicles update in parallel their velocities and move according to the rule
vt+1 = min(vt + 1, gap, vmax), where gap is the distance from the car ahead
or to the next intersection and vmax taken from the speed limit of the road
network data (Fig. 1A). When a car is traveling in free flow and approaches
an intersection, it decreases its speed to vuts. The dynamic at the intersection
has three steps. First, the first new vehicle in the queue is chosen to pass.
Second, incoming streets are checked in a random sequence asking for the
destination of the first vehicle in the street. If the intersection is just the des-
tination node, then the vehicle is removed from the network. Otherwise, if
the first cell of the desired destination street is free, the vehicle is delivered
with a probability p proportional to the empirical flow capacity of the origi-
nating street, Ce (see Table S1 for the values used). Finally, in the case of long
waiting times, there is the rerouting strategy we have already explained.

For contractual and privacy reasons, we cannot make the raw data avail-
able. We are pleased to make available the data of the OD matrices,
software to replicate the method, and the appropriate documentation. This
information may be accessed at the GitHub repository https://github.com/
leolmoss/CollapseUrbanTraffic. This repository is sufficient to reproduce the
results of this paper.
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