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ARTICLE OPEN

A quantum hamiltonian simulation benchmark
Yulong Dong 1,2, K. Birgitta Whaley 1,3,4 and Lin Lin2,4,5✉

Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value
transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves
multiple ancilla qubits and multi-qubit control gates. In order to simulate a certain class of n-qubit random Hamiltonians, we
propose a drastically simplified quantum circuit that we refer to as the minimal QSVT circuit, which uses only one ancilla qubit and
no multi-qubit controlled gates. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a
scalable quantum benchmark and can be verified without any need for classical computation. Under the globally depolarized noise
model, we demonstrate that QUES is directly related to the circuit fidelity, and the potential classical hardness of an associated
quantum circuit sampling problem. Under the same assumption, theoretical analysis suggests there exists an ‘optimal’ simulation
time topt ≈ 4.81, at which even a noisy quantum device may be sufficient to demonstrate the potential classical hardness.

npj Quantum Information           (2022) 8:131 ; https://doi.org/10.1038/s41534-022-00636-x

INTRODUCTION
Recent years have witnessed tremendous progress in quantum
hardware and quantum algorithms. As near-term quantum
devices become increasingly accessible, the need for holistic
benchmarking of such devices is also rapidly growing. Indeed,
while most of the frequently used quantum benchmarks, such as
randomized benchmarking1 and gateset tomography2, still focus
on the performance of one or a few qubits, over the past three
years a number of ‘whole machine’ benchmarks have been
proposed that aim at assessing the performance of quantum
devices beyond a small number of qubits3–10.
While results from such generic benchmarks certainly provide

important characteristics of the quantum devices themselves, we
are ultimately interested in applying the devices to carry out
specific computational tasks. However, the circuit structure of
quantum algorithms can be vastly different for different
algorithms. Generic quantum benchmarks can miss structural
information that is specific to a particular algorithm and which
may amplify either quantum errors of certain types or errors
amongst a certain group of qubits, and/or reduce errors
elsewhere. In this work we address the benchmarking of quantum
simulations for time-independent Hamiltonians. Such a simulation
can be stated as follows: given an initial state ψ0j i and a
Hamiltonian H, evaluate the quantum state at time t according to
ψðtÞj i ¼ expð�itHÞ ψ0j i. Hamiltonian simulation is of immense
importance in characterizing quantum dynamics for a diverse
range of systems and situations in quantum physics, chemistry
and materials science. Simulation of one quantum Hamiltonian by
another quantum system was also one of the motivations of
Feynman’s 1982 proposal for design of quantum computers11.
Hamiltonian simulation is also used as a subroutine in numerous
other quantum algorithms, such as quantum phase estimation12

and solving linear systems of equations13.
Following the conceptualization of a universal quantum

simulator using a Trotter decomposition of the time evolution
operator e�itH14, a number of quantum algorithms for Hamiltonian

simulation have been proposed15–19. Detailed assessment of these
algorithms, with continued improvement of theoretical error
bounds, has since emerged as a very active area of research20–31.
In this context, one of the most significant developments in recent
years is the quantum signal processing (QSP) method17, and its
generalization, the quantum singular value transformation (QSVT)
method32. For sparse Hamiltonian simulation, the query complex-
ity of QSVT matches the complexity lower bound with respect to
all parameters17,32. The QSVT method also enjoys another
advantage, namely that the quantum circuit is relatively simple,
and requires very few ancilla qubits. QSVT allows one to use
essentially the same parameterized quantum circuit to perform a
wide range of useful computational tasks, including Hamiltonian
simulation33, solution of linear systems32,34,35, and finding
eigenstates of quantum Hamiltonians36. In this sense, it provides
a ‘grand unification’ of a large class of known quantum
algorithms37.
Despite these advantages, QSVT is generally not viewed as a

suitable technique for near-term quantum devices today. This is
largely because these techniques rely on an input model called
‘block encoding’ which views the Hamiltonian H as a submatrix of
an enlarged unitary matrix UH. For Hamiltonians arising from
realistic applications (e.g., linear combination of products of Pauli
or fermionic operators, and sparse matrices in general), the
construction of UH often involves multiple ancilla qubits and
multi-qubit control gates. Taken together, these requirements can
make QSVT very difficult to implement with high fidelity and to
date there has been no QSVT based Hamiltonian simulation on
realistic devices.

RESULTS
Overview
In this work we remedy this situation by identifying and
demonstrating an application for QSVT on near term quantum
devices that allows benchmarking of Hamiltonian simulation for a
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class of Hamiltonians that are relevant to recent efforts to
demonstrate supremacy of quantum computation over classical
computation6. This is the class of random Hamiltonians generated
from block encoding of random unitary operators that correspond
to random unitary circuits. We show that for this class of
Hamiltonians it is possible to formulate a simple metric, called
the quantum unitary evolution score (QUES), for the success of
quantum unitary evolution. This metric is the primary output from
the Hamiltonian simulation benchmark, and is directly related to
the circuit fidelity. This allows verification of Hamiltonian
simulation on near-term quantum devices without any need for
classical computation, and the approach can be scaled to a large
number of qubits.
The main result of this paper is a very simple quantum circuit

(Fig. 1), called the minimal QSVT (mQSVT) circuit. With proper
parameterization, the mQSVT circuit is able to propagate a certain
class of random Hamiltonians H to any given target accuracy. In
fact, we argue that the mQSVT circuit is not only the simplest
quantum circuit for carrying out a QSVT based Hamiltonian
simulation, but that it is actually the simplest possible circuit for all
tasks based on QSVT. Here H is not a Hamiltonian corresponding
to a given physical system, but a random Hamiltonian generated
using a simple random unitary circuit, called a Hermitian random
circuit block encoded matrix (H-RACBEM)9. However, for the
purpose of benchmarking the capability of a quantum device to
perform arbitrary Hamiltonian simulations, averaging over a
distribution of the underlying arbitrary Hamiltonians is precisely
what is required to generate a holistic benchmark protocol that
samples from all possible instantiations.
The quantum circuit in Fig. 1 consists of two components: an

arbitrary random unitary matrix UA that implicitly defines the
Hamiltonian H, together with its Hermitian conjugate Uy

A and a
series of Rz gates with carefully chosen phase factors fφig2di¼0 (see
Supplementary Note 3). The mQSVT circuit makes d queries to UA

and Uy
A, two of which are shown explicitly in Fig. 1. For an n-qubit

matrix H, the total number of qubits needed is always n+ 1, i.e.,
only 1 ancilla qubit, hereafter referred to as the signal qubit, is
required. This is even smaller than the simplest QSVT circuit17,
which requires at least 2 ancilla qubits. However, more important

than the reduction of the number of qubits is the fact that Fig. 1
removes all two-qubit and multi-qubit gates outside of the unitary
UA. This means that one can choose any convenient entangling
two-qubit gate (e.g. CZ, CNOT,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
) and any coupling map

that is native to a quantum device to construct the random UA.
Combining this with the sequence of single qubit Rz gates then
makes the resulting benchmarking quantum circuit of Fig. 1
readily executable.

Quantum unitary evolution score (QUES)
Figure 1 implements f tðHÞ 0nj i on the system qubits, where f tðHÞ
is a matrix polynomial (see Supplementary Note for details), with
approximation error in the operator norm upper bounded by
kf tðHÞ � e�itHk2 � ϵ. Therefore in the absence of quantum errors,
after applying the circuit to the input state 0nþ1

�� �
, the probability

PtðUAÞ :¼ kf tðHÞ 0nj ik2 of measuring the top ancilla qubit with
outcome 0 will be close to 1, indicating that the underlying
Hamiltonian evolution is unitary.
From now on, we will primarily consider mQSVT circuits with a

fixed set of phase factors {φi} and hence fixed simulation time t.
For notational simplicity, we will drop the t-dependence in
quantities such as Pt(UA), unless specified otherwise.
On a real quantum device, the probability P(UA) should be

replaced by PexpðUAÞ, which is the experimentally measured
probability. We define the quantum unitary evolution score
(QUES) by

QUES ðn; dÞ :¼ E PexpðUAÞ
� �

; (1)

where the expectation is taken over the ensemble of random
quantum circuit instances UA. The deviation of QUES from 1 then
measures the average performance of the quantum computer
under a Hamiltonian simulation task.
There is no unique prescription for constructing random

quantum circuits. To fix the choice of UA, we employ here the
model random quantum circuit construction used to analyze the
concept of quantum volume in4. Here, given a number of qubits n,
UA is constructed to contain n layers, each consisting of a random
permutation of the qubit labels followed by random two-qubit
gates between the n qubits. Given this construction, the QUES in

Fig. 1 Illustration of the minimal quantum singular value transformation (mQSVT) circuit for the Hamiltonian simulation benchmark. The
overall circuit implements a complex matrix polynomial f tðHÞ of degree d on the Hamiltonian H that is defined in terms of a pseudo random
quantum circuit UA. The circuit acts on n+ 1 qubits, consisting of n system qubits and 1 ancilla qubit. After measuring the top ancilla qubit
and post-selecting on the 0 outcome of this, the action on the bottom n system qubits accurately approximates expð�itHÞ 0nj i.
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Eq. (1) will then depend only on n and d, and the overall depth of
the circuit is approximately 2d times the circuit depth of UA. Note
that given the basic quantum gate set of a particular quantum
device, alternative constructions of UA using random choices of
specific one- and two-qubit gates are possible.
Figure 2 shows the results of computing the QUES across 8

different IBM Q quantum devices (https://quantum-
computing.ibm.com), each having 5 qubits and one of three
distinct coupling maps (panel b). When the number of qubits
n ≤ 3, the QUES on all devices is relatively high (≳0.7) but it
decreases sharply for n ≥ 4. In contrast, the QUES decreases only
relatively mildly as d increases. This is particularly noticeable for
n= 2, which may indicate that the quantum circuit transpiler
provided by the IBM Q may be particularly effective for this device
with very small qubit number. We emphasize that compared to
generic benchmark measures such as the quantum volume, the
QUES is specific to the computational task of the Hamiltonian
simulation, and any information specific to this is not diluted by
additional averaging over output distributions from other
computational tasks. In particular, we find that even for quantum
devices with relatively small quantum volume (8-QV), the
performance in terms of QUES is only mildly worse than for those
with a larger quantum volume (32-QV).

Circuit fidelity and system linear cross-entropy score (sXES)
The quality of a noisy implementation of a quantum circuit is often
characterized by the circuit fidelity. Loosely speaking, the output
quantum state of a noisy circuit can be characterized as a convex
combination of the correct result and the result obtained under
noise, i.e., ‘output’= α × ‘correct result’+ (1− α) × ‘noise’, where
0 ≤ α ≤1 is the circuit fidelity. Let p(UA, x) be the noiseless bitstring

probability of measuring the mQSVT circuit with outcome 0 in the
ancilla qubit and an n-bit binary string x in the n system qubits. Let
pexpðUA; xÞ be the corresponding experimental bitstring prob-
ability, which can be estimated from the frequency of occurrence
of the bitstring 0x in the measurement outcomes. Since the
random circuit UA is approximately drawn from the Haar measure,
we make analogous assumptions to those in3,6, and assume the
following global depolarized error model:

pexpðUA; xÞ ¼ αpðUA; xÞ þ 1� α

2nþ1 : (2)

We discuss the justification and potential generalization of such
an error model in Supplementary Note 4.
Under the global depolarized error model, we now analyze the

effect of noise on the circuit and show how measuring the QUES
allows the circuit fidelity to be extracted. Prior work has made use of
a combination of quantum and classical computation to obtain the
circuit fidelity α. Such analysis relies on the possibility of evaluating
the noiseless bitstring probability p(UA, x) classically, given UA and x,
e.g., via tensor network contraction38. This enabled the estimation of
α from measurements of cross-entropy, referred to as XEB in this
setting3,6. We adapt this approach to the Hamiltonian simulation
problem by defining a system linear cross-entropy score (sXES):

sXES ðUAÞ :¼
X
x≠0n

pðUA; xÞpexpðUA; xÞ: (3)

The prefix ‘system’ is added because the ancilla qubit is fixed to
be the 0j i state in the definition of pðUA; xÞ; pexpðUA; xÞ, and the
xj i state belongs to the system register. In order to connect to the
problem of generating heavy weight samples later, our definition
of sXES excludes the bitstring 0n. This is necessary also since the

Fig. 2 Quantum unitary evolution score (QUES) of the 5-qubit quantum devices provided by the IBM Q platform. (a) Visualization of the
quantum circuit UA used in computing QUES. When the number of qubits is n, there are n layers of the dashed boxes consists of the random
permutation of the qubits labels followed by random two-qubit gates. After calling the transpiler, the circuit UA is decomposed with respect to
the basic gate set Γ ¼ f Rz; ffiffiffi

X
p

;X;CNOT g and the coupling map which indicates the available qubit pairs on which CNOT can act. b Layouts of
coupling maps. c Color bar of the heatmap. d Each heatmap displays the benchmarking result of a specific quantum device, with the title
showing the name of the device, its quantum volume, and its coupling map. Each QUES is estimated from 50 circuit instances. Each circuit
instance is measured with 1000 measurement shots. The number displayed in each heatmap is the QUES value and its 95% confidence
interval.
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statistical properties of the bitstring 0n are different from those of
the bitstrings in the system register. Taking the expectation with
respect to the distribution of UA, and rearranging Eq. (2) then gives
an expression for the circuit fidelity:

α ¼ E sXES ðUAÞð Þ � 1
2nþ1 E

P
x≠0npðUA; xÞ

� �

E
P

x≠0npðUA; xÞ2
� �

� 1
2nþ1 E

P
x≠0npðUA; xÞ

� � : (4)

This expression holds for any ensemble of random matrices,
and relies only on the assumption that the noise model is
depolarizing.
Once the probability distribution of UA is specified (e.g., the Haar

measure39), the only term in α that requires a quantum
computation is sXES(UA), and all other terms in Eq. (4) can be
evaluated classically. However, evaluation of the right-hand side of
Eq. (4) often requires a significant amount of classical computation
when n becomes large3.

Inferring circuit fidelity from QUES
Based on the discussion so far, it might seem surprising that an
alternative, very good approximation to the circuit fidelity can readily
be obtained from the QUES metric in Eq. (1). This is arrived at by first
defining PexpðUAÞ ¼

P
xpexpðUA; xÞ, i.e., the average over all possible

output bit strings x of the probability of measuring a given bit string
as outcome of the action of UA on the input state 0nþ1

�� �
. Then

summing both sides of Eq. (2) with respect to all bit strings x, further
taking the expectation value of both sides over all possible UA yields
a fidelity estimate αQUES that can be obtained directly from the

measured QUES value, namely

αQUES ¼ 2 ´ QUES � 1: (5)

The approximation error ϵ is defined as the maximal error for
simulating a bounded Hamiltonian using the mQSVT circuit,
namely ϵ :¼ maxkHk2�1 kf tðHÞ � e�itHk2. It determines the extent
of deviation of αQUES from α. Specifically, under the globally
depolarized noise model, we have the following bound (Supple-
mentary Note 6)

jαQUES � αj � 16ϵþOðϵ2Þ: (6)

Here the error bound is derived without including the Monte
Carlo measurement error due to the finite number of measure-
ment shots. The analysis of the resulting statistical error is given in
Supplementary Note 12 C.
It is evident that, unlike Eq. (4), there is no classical overhead for

evaluating αQUES for any n. Since the circuit fidelity α should be
non-negative, combining Eq. (5) and Eq. (6) also indicates that
under the assumption of the depolarizing noise model, we have
QUES � 0:5� 8ϵþOðϵ2Þ.
To numerically verify the relation between QUES and circuit

fidelity, we make use of the digital error model of3 in which each
quantum gate in the circuit is subject to a depolarizing error
channel with a certain error rate. We test the resulting noisy
quantum circuit with different two-qubit gate error rates r2 and set
the one-qubit gate error rate to r1= r2/10. We also discard the
rotation gate with phase factor φ2d, since this just adds a global
phase to the exact Hamiltonian simulation. Then, given UA with a

Fig. 3 Circuit fidelity estimated from the quantum Hamiltonian simulation benchmark. Colored grids represent the circuit fidelity
estimated from ~100 circuit repetitions. The benchmarking is performed for circuits with a range of number of system qubits, having also
variable types of couplings and a range of error parameters. The depth of the random circuit instances is set to the convergent depth deduced
from the convergence to Haar measure (see Supplementary Note 7). The right column contains graphical depictions of the coupling maps, the
layout of each grid, and the color bar.
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total of g1 one-qubit gates and g2 two-qubit gates, the reference
value of the circuit fidelity can be set to
αref :¼ ð1� r1Þ2dðg1þ1Þð1� r2Þ2dg2 3,6. We assume UA is Haar-
distributed (numerically verified in Supplementary Note 7) to
simplify the computation of classical expectations.
Figure 3 summarizes the estimated circuit fidelity for random

quantum circuits with different depth parameter d, variable
coupling maps, and a range of error parameters. In all cases, we
find that the derived circuit fidelity from QUES (αQUES), the circuit
fidelity α obtained from sXES, and the reference value αref are
generally consistent with each other. Numerical results also show
that αQUES exhibits a trend that slightly overestimates the value of
the fidelity α (see Supplementary Table 1 for numerical values of
the fidelities). We also see that for a given set of error rates r1, r2,
the circuits with highest connectivity show the best performance.
This is because random circuits on these architectures converge
faster to the Haar measure, which reduces the circuit depth (see
Supplementary Note 7).
In the next two subsections we show how to assess and

evaluate whether the Hamiltonian simulation with the mQSVT
circuit can be a classically hard task. We first define the analog of
XHOG for Hamiltonian simulation, which we refer to as sXHOG,
and give conditions for the hardness of this. We then show that
potential classical hardness can be inferred directly from the value
of the circuit fidelity obtained from the QUES, i.e. from αQUES.

Classical hardness and system linear cross-entropy heavy
output generation (sXHOG)
The complexity-theoretic foundation of the Google claim of
‘quantum supremacy’ in6 is based on a computational task called
linear cross-entropy heavy output generation (XHOG) with Haar-
distributed unitaries3,6,40,41. Specifically, given a number b > 1 and
a random n-qubit unitary U, the task is to generate k nonzero
bitstrings x1, x2,⋯ , xk ∈ {0, 1}n such that 1

k

Pk
j¼1 qðU; xjÞ � b ´ 2�n,

where qðU; xÞ ¼ j xh jU 0nj ij2. Here we use U without the subscript
to distinguish the XHOG problem and the sXHOG problem which
will be defined later. For k randomly generated bitstrings, we
expect that 1

k

Pk
j¼1 qðU; xjÞ � 2�n. Therefore any value b > 1 will

correspond to a ‘heavy weight’ output. When k is large enough,
successful solution of the XHOG problem is considered to be
classically hard for every value b > 140,41. This holds for every
circuit fidelity estimate α > 0 obtained from the XEB metric,
leading to the claim of supremacy in6 based on extraction of a
value α ≈ 0.002 from the experiments.
For the Hamiltonian simulation benchmark, we can define an

analogous linear cross-entropy heavy output generation problem
for the n system qubits. Note that the heavy weight samples are
now defined only for the system qubits. We shall refer to this
heavy output generation problem for Hamiltonian simulation as
the sXHOG problem, to emphasize this important feature and the
difference from the standard XHOG problem. Specifically, given a
number b > 1, a Hamiltonian simulation benchmark circuit with
sufficiently small approximation error ϵ, and a random (n+ 1)-
qubit unitary UA defining a random Hamiltonian on the n qubits,
the task is to generate k nonzero bitstrings x1, x2,⋯ , xk ∈ {0, 1}
n\{0n} such that 1

k

Pk
j¼1 pðUA; xjÞ � b ´ 2�n. Now for the case of

Hamiltonian simulation, pðUA; xÞ ¼ Oð2�nÞ for any x ≠ 0n at all t,
but p(UA, 0n) can be much larger (for more details see
Supplementary Figure 5(b) in Supplementary Note 11). The state
0n is then by definition ‘heavy’ and we must therefore exclude this
from the measure in order to avoid a trivial outcome. This is what
distinguishes the sXHOG problem from the original XHOG
problem.
The potential classical hardness of the XHOG problem is

justified by a reduction to a complexity-theoretic conjecture,
called linear cross-entropy quantum threshold assumption
(XQUATH)40. For completeness, we give a similar variant of the

reduction of sHOG problem to a conjecture named system linear
cross-entropy quantum threshold assumption (sXQUATH) in
Theorem 6 of Supplementary Note 9. The concept of sXQUATH
directly parallelizes that of XQUATH, with a similar restriction as
above to exclude the output bit string 0n (for more details see
Supplementary Note 9). Similar to the construction in ref. 40, the
classically efficient solution to sXHOG problem yields a violation to
sXQUATH, which assumes that p(UA, x) for x ≠ 0n cannot be
efficiently estimated on classical computers to sufficient precision.

Inferring classical hardness from QUES
In order to decide whether a noisy implementation of the
Hamiltonian simulation benchmark is potentially in the classically
hard regime, we need to establish whether or not the sXHOG
problem can be solved for b > 1.
Under the assumption that UA is drawn from the Haar measure,

and that the approximation error ϵ of the mQSVT circuit is
sufficiently small, we derive the following relation between b and
the circuit fidelity α:

b ¼ 1þ γðα� α�Þ
αþ 1

: (7)

Here α* is a fidelity threshold (not the complex conjugation of α)
and γ a constant. Explicit expressions for the threshold value α*

and the constant γ are given in Supplementary Note 10. Both
quantities are independent of the circuit fidelity α and depend
only on the number of system qubits n and the simulation time t.
Eq. (7) thus shows that when γ > 0 and α > α*, we will have b > 1 so
that the sXHOG problem solved by the mQSVT circuit might be
classically hard. This is qualitatively different from the situation for
XEB experiments, for which every α > 0 implies b > 16.
Using the relation between QUES and α in Eqs. (5) and (6), and

assuming that ϵ is sufficiently small, we immediately arrive at the
conclusion that when

QUES � ð1þ α�Þ=2; γ > 0; (8)

the corresponding sXHOG problem might be classically hard for a
sufficiently large value of n. This is a surprising result, since as
noted above, the estimation of QUES does not require intensive
classical computation. In fact it is not even necessary to actually
generate any heavy weight samples - instead we just need to
measure the value of QUES, Eq. (1), which is readily done by
repeatedly running the circuit in Fig. 1 with random circuit
parameters as described above. Of course, should one wish to
actually solve the sXHOG problem itself, the heavy weight samples
would need to be generated using a quantum computer and
intensive classical computation for computation of 1k

Pk
j¼1 pðUA; xjÞ

would then also be required. But in order to demonstrate the
potential regime of classical hardness for Hamiltonian simulation,
i.e., the minimal values of n and d to reach this regime, this is not
required.
To further investigate the implications of Eq. (7), we now

explicitly indicate the time dependence of all quantities (i.e., we
employ the notation γ ! γt; α

� ! α�t ). In Fig. 4 we plot the values
of γt; α

�
t according to the expressions given in Supplementary

Note 10 as a function of the simulation time t, for n= 4, 8, 12
qubits. Figure 4 shows that γt > 0 for all t, so then we only need to
determine whether it is possible to have fidelity α � α�t . It is
evident from Fig. 4 that both α�t (panel (a)) and γt (panel (b)) show
oscillatory behavior. We now analyze this behavior to identify an
optimal time at which the potential classical hardness of
Hamiltonian simulation in this random Hamiltonian setting can
be demonstrated for a sufficiently large number of qubits n.
For very short times, i.e., when t ≈ 0, we have α�t > 1. This means

that we cannot have b > 1 for any value of the circuit fidelity
0 ≤ α ≤ 1. To see why this is the case, consider the limit t= 0. Here
pt(UA, 0n)= 1, and pt(UA, x)= 0 for any x ≠ 0n. By continuity, when t

Y. Dong et al.
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is very small, the magnitude of pt(UA, x) for most bitstrings x ≠ 0n is
still very small and cannot reach the heavy output regime. Figure
4(a) also shows that there is a critical simulation time tthr ≈ 2.26, for
which α�t < 1 for any t > tthr.
When t > tthr, ideally we would like to have α�t � 0, so that a very

low experimental circuit fidelity α is sufficient to reach the heavy
output regime. To this end we investigate what happens at the
vanishing circuit fidelity, i.e., α= 0. Detailed analysis shows that in
the large n limit, we have γtα

�
t ¼ E ptðUA; 0nÞð Þ, and Eq. (7) can be

simplified as (see Supplementary Note 10)

bjα¼0 ¼ 1�E ptðUA; 0
nÞð Þ; (9)

where the expectation value is taken with respect to the random
unitaries UA as before. Thus when the expectation value is positive,
i.e., E ptðUA; 0nÞð Þ> 0, in the large n limit we have b∣α=0 < 1 and the
task should not be classically hard. Moreover, since b is a
continuous function of α, even if we now have finite circuit fidelity
α, when this is small enough we can still find b < 1. This provides
an alternative explanation of Eq. (7), namely, that the circuit
fidelity α needs to be larger than the finite positive threshold value
α�t > 0 for most values of t > tthr.
As a result of these considerations, when n is large enough, it is

important to focus on the regimes where the expectation value
E ptðUA; 0nÞð Þ � 0, which from Eq. (7) implies that the threshold
fidelity α�t � 0. The numerical results shown in Fig. 4 indicate that
this can happen in two different scenarios. The first is when the
simulation time t→∞ (see the analytic justification of this
statement in Supplementary Note 12 D). Of course this requires
a very large circuit depth and is a physically ‘trivial’ limit that is
impractical on near-term quantum devices. The second scenario,
which is much more relevant in practice, is when α�t reaches its
first minimum, which defines an optimal time t= topt. In the large
n limit, the value of topt can be rationalized as the first node of the
Bessel function J0(t/2) (see Supplementary Note 11). Figure 4(a)
shows that for topt ≈ 4.81, we already have E ptðUA; 0nÞð Þ � 0 and
α�t � 0. Therefore simulating to the time t= topt is highly desirable,
since this is a relatively short time at which the Hamiltonian
simulation benchmark is nevertheless now guaranteed to solve
the sXHOG problem even for a very small circuit fidelity. Our
numerical results indicate that the values of t* and topt depend
only weakly on n, and their values are nearly converged for n as
small as 12. Therefore this value of topt can be used in a future
quantum simulation in the heavy output regime.

DISCUSSION
We have presented a quantum benchmark for Hamiltonian
simulation on quantum computers. The Hamiltonian simulation
problem is solved using a minimal quantum singular value
transformation (mQSVT) circuit. The primary output of the
Hamiltonian simulation benchmark is a single number called
QUES, which can be verified without any classical computation,
even in the regime that is potentially hard for classical
computation. Therefore the Hamiltonian simulation benchmark
provides a scalable benchmark of the circuit fidelity under the
global depolarized error model, and can be executed and verified
on future quantum devices with a large number of qubits.
As the current quantum computing technologies advance, the

possibility of implementing some error correction is improving42.
Here the highly structured mQSVT circuit provides useful
indications of where best to implement error correction under
limited resources for this. Recall that the mQSVT circuit consists of
a series of repetitions of a random circuit UA and its conjugate Uy

A,
interleaved with single-qubit Z rotation operators characterized by
carefully selected phase factors. Thus given a specific random
Hamiltonian block encoded in UA, the time dependent evolution
operator for this Hamiltonian is defined entirely in terms of the
phase angles for the single-qubit Z rotation operators. Since these
phases should moreover be precisely determined, this suggests
that on near-term quantum devices that may allow for some error
correction but have overall limited resources, quantum error
correction for these single-qubit rotations should be prioritized.
It is also useful to consider here the applicability of this

Hamiltonian simulation approach to general Hamiltonians, i.e., not
restricted to random Hamiltonians, on near-term quantum
computers. Unfortunately it appears that for current quantum
technologies there is potentially a large gap between the feasible
simulation of a H-RACBEM given in this work and that of a general
Hamiltonian relevant to e.g., molecular or solid-state physics. The
main reason is that the block encoding of most Hamiltonians of
practical interest will involve significant numbers of ancilla qubits,
as well as multi-qubit control gates, all of which are extremely
expensive on near-term quantum devices. In contrast to this
general situation, the construction of H-RACBEM uses only
whatever one-qubit and two-qubit gates are available for a given
quantum device and is thus considerably easier. Nevertheless, it is
possible that undertaking Hamiltonian simulation with H-RACBEM
may also yield interesting physical applications to the various

Fig. 4 Quantities relevant to the system linear cross-entropy heavy output generation (sXHOG) problem, evaluated using the explicit
expressions given in Supplementary Note 10. a The threshold fidelity α�t as a function of Hamiltonian simulation time t. The upper value
noted on the plot indicates the time value tthr ≈ 2.26 where α*(tthr)= 1. The lower value noted on the plot indicates the regime at finite time
topt ≈ 4.81 with the first minimal value of threshold fidelity. b The parameter γt as a function of Hamiltonian simulation time t. The value noted
on the plot indicates the value γt ≈ 2 at the optimal time topt ≈ 4.81. The averages in (a) and (b) are estimated numerically from ~100 instances
of the mQSVT circuit encoding random Hamiltonians drawn from the Haar measure. Insets in each panel show the behavior of α�t and γt near
the optimal time topt ≈ 4.81.
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settings in which quantum chaotic dynamics are relevant. One
immediate possibility in this direction is to use H-RACBEM to
simulate the dynamics of quantum scrambling or quantum chaos
in strongly interacting quantum systems. Scrambling dynamics
can be studied by simulating out-of-time-order correlators
(OTOCs) for effective Hamiltonians that can be defined implicitly
in terms of a random circuit for time t (see e.g., ref. 43). We note
that one can easily perform a Hamiltonian simulation backward in
time, merely by reversing the sign of t, so the mQSVT circuit for an
OTOC at any time t of a random Hamiltonian encoded in
H-RACBEM can be readily constructed by adding local operators
between forward and backward implementations of the mQSVT.
Evaluation of the circuit at different times t can be implemented
either by reevaluating the phase factors (which may required
building a longer circuit depending on the accuracy required). The
circuits can also be adapted to Hamiltonian simulation at finite
temperatures and hence also to scrambling at finite temperatures.
From a theoretical perspective it would also be useful to explore
to what extent the structure of the H-RACBEM influences the
speed of scrambling44.
Our theoretical analysis of the sensitivity of the Hamiltonian

benchmarking scheme in this work was based on a fully
depolarized noise model, which is often assumed to be a good
model for superconducting qubits6. In general the Pauli stochastic
noise model on which is based may be biased or non-uniform
across qubits. In addition, thermal noise and coherent errors are
important for some qubit architectures. It will be useful to extend
the current analysis to more general noise models, and some of
these aspects are discussed in Supplementary Note 4.
Finally, we note that while this Hamiltonian simulation bench-

mark is restricted to the specific class of random Hamiltonians, it
might also provide information relevant to more general
Hamiltonian simulations. Efforts to analyze the complexity of
analog Hamiltonian simulations have often focused on the
relation of such simulations to classical sampling tasks45–47, and
are closely related to the cross-entropy analysis for sampling of
random quantum circuits of3,6. As noted recently47, the classical
hardness can be shown for certain classes of analog quantum
Hamiltonian simulation48,49. Note that the potential classical
hardness of the original XHOG problem corresponding to Google’s
supremacy experiment is justified by a reduction to a complexity-
theoretic conjecture called XQUATH40. However, a recent paper50

that appeared after submission of the current work has provided
evidence that can refute XQUATH, at least for some classes of
quantum circuits. Therefore it is possible that our sXQUATH
assumption can be refuted on the same basis. It could be useful to
explore generalizations of other classical sampling tasks to the
QSVT setting, as was done here for the cross-entropy heavy output
generation, to help guide the search for Hamiltonians whose
simulation by QSVT can exhibit quantum advantages. Finally, the
current approach of analysis of alternative fidelity measures under
Hamiltonian simulation using mQSVT may provide useful for
analysis of recent fidelity based experimental studies of analog
Hamiltonian simulations that followed the emergent random
nature of a projected ensemble of states51.

METHODS
Details of numerical simulations
All numerical tests are implemented in python3.7 and
Qiskit52. Quantum circuits in Fig. 2 are optimized by the
transpiler provided by Qiskit before being executed on a
real quantum device. The number of measurements (shots) is
fixed to be 1000 for the experiments on real quantum devices in
Fig. 2, and it is set to 1,000,000 for those on classical simulators in
Fig. 3. The classical generation of Haar random unitaries in Fig. 4 is

performed by QR factorization to random complex matrices with
i.i.d. Gaussian entries according to the recipe in ref. 53.
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