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Abstract 

Barsalou (1999) presented a simulation-based theory of 
grounded cognition called Perceptual Symbol Systems. 
According to this theory, a fully functional conceptual system 
can be implemented using only modal representations (aka 
perceptual symbols) and simulations. While the theory has 
gained considerable neuroscientific and experimental support, 
there is an urgent need for computational accounts that flesh 
out the theory. The current paper explores one approach for 
implementing these computational foundations. We present an 
implementation of perceptual symbols, simulators, simulation-
based perception, and “conscious” multi-modal perceptual 
learning based on generative neural networks, called 
𝛽-variational autoencoders, combined with LIDA, a 
biologically-inspired cognitive architecture. We show that our 
implementation satisfies many of the properties attributed to 
perceptual symbol systems, and provides a solid foundation for 
future computational work in perception, categorization, and 
simulation-based cognition. 

Keywords: perceptual symbol systems; multi-modal 
perception; mental simulation; LIDA; unsupervised machine 
learning 

Introduction 

Barsalou (1999) argued that “cognition is inherently 

perceptual,” using similar mental representations and 

processes as perception. He demonstrated that a “fully 

functional conceptual system” could, in theory, be 

implemented using modal representations (representations 

grounded1 in sensory and motor systems) and modal 

simulations (the reenactment of previously learned 

perceptual and motor states). He referred to the resulting 

architecture as a perceptual symbol system (PSS). 

Barsalou’s approach relies heavily on generative processes 

called simulators that collectively form the basis of an 

individual’s conceptual system. “A concept is equivalent to a 

simulator” according to Barsalou’s theory, and once 

individuals can simulate an object, entity, or event accurately 

and reliably, they can be said to “understand” it. Based on 

this, Barsalou concluded that “the primary goal of human 

learning is to establish simulators.”  

While there is a growing body of neuroscientific and 

experimental support for PSSs, computational mechanisms 

are needed to further validate the theory. Barsalou (2009) 

stated, “Perhaps the most pressing issue surrounding this area 

of work is the lack of well-specified computational accounts. 

Our understanding of simulators, simulations, situated 

conceptualizations and pattern completion inference would 

 
1 See (Harnad, 1990) for more information on the meaning of 

“grounding” and “the symbol grounding problem.” 

be much deeper if computational accounts specified the 

underlying mechanisms.”  

The goal of this paper is to explore one approach for 

implementing the computational foundations of a PSS. The 

present work focuses on perceptual symbols, simulators, 

simulation-based perception, and “conscious” multi-modal 

perceptual learning. Our implementation combines 

generative neural networks, called 𝛽-variational 

autoencoders (Higgins, et al., 2017), with LIDA (Franklin, et 

al., 2016), a biologically-inspired cognitive architecture. We 

will argue that our approach satisfies many of the properties 

attributed to perceptual symbol systems, and provides a solid 

foundation for future work in perception, categorization, and 

simulation-based cognition. We believe that continued 

research in this direction will lead to theoretical advances in 

both PSSs and LIDA, and may inspire similar approaches in 

other cognitive architectures and computational frameworks. 

Background 

In this section, we review the core components of a 

perceptual symbol system, as outlined in Barsalou (1999), 

namely, perceptual symbols, simulators, and simulations. We 

will also provide a brief introduction to LIDA and variational 

autoencoders (VAEs). 

Perceptual Symbols 

Barsalou (1999) argued that the patterns of activation 

occurring in sensory and motor systems during perception 

and action can be learned into long-term memory, albeit in a 

partial and attenuated form. If later recalled (i.e., reactivated), 

these perceptual representations, which he called perceptual 

symbols, can signify entities, objects, and events in the world. 

Perceptual symbols are (1) modal, grounded in modality-

specific sensory and motor representations, (2) analogical, 

sharing properties with, and likely bearing some structural 

resemblance to, their originating perceptual states, (3) not 

complete recordings of perceptual states, reflecting only 

their most salient or important aspects, (4) dynamic (i.e., 

their reactivations are sensitive to differences in context and 

changes in nearby regions of long-term memory resulting in 

variable reconstructions), and (5) componential, 

representing a conjunction of independently activatable 

feature dimensions (e.g., shape, orientation, and color). 
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Simulators and Simulations 

Perceptual symbols become integrated into simulators, which 

construct simulations of their associated concepts. Simulators 

encompass “the knowledge and accompanying processes that 

allow an individual to represent some kind of entity or event 

adequately” (Barsalou, 1999). An individual can be said to 

“understand” a concept once a simulator is learned that can 

adequately simulate that concept. Simulations are typically 

preconscious2 representations that are referred to as mental 

images if/when they become conscious. 

LIDA 

Learning Intelligent Decision3 Agent (LIDA) (see Franklin et 

al., 2016) is a biologically-inspired cognitive architecture that 

provides a comprehensive theory and model of minds (both 

biological and artificial). LIDA also implements, and fleshes 

out, many psychological theories, including the Global 

Workspace Theory (GWT) of consciousness (Baars, 1988), 

making it ideal for the modeling of “preconscious 

simulations” and “conscious mental imagery.” 

Cognition occurs in LIDA over a series of cognitive cycles, 

where “cognition” in this context refers loosely to the sum 

total of an agent’s mental activities, including, but not limited 

to, perception, long-term memory recall, situational 

understanding, attention, and action selection and execution. 

Each cognitive cycle can be conceptually divided into three 

phases: understanding, attention, and “action and learning.” 

During the understanding phase, modality-specific 

sensory stimuli (from the environment via an agent’s sensors) 

are encoded into the activation of low-level features in 

Sensory Memory (SM). These, in turn, activate object, entity, 

and event representations in Perceptual Associative Memory 

(PAM). Sufficiently activated representations in PAM are 

instantiated as “percepts” in the preconscious workspace (p-

Workspace). Content in the p-Workspace can also “cue” 

long-term memory (that is, activate long-term memory 

representations via associative links) causing their 

instantiation and integration into the p-Workspace. 

Specialized processors called structure building codelets 

(SBCs) monitor the content in the p-Workspace, and may 

 
2 We follow the Franklin et al. (2016) convention of using the term 

“preconscious” (instead of unconscious) to denote non-conscious 

representations that have the potential to become conscious.  

construct complex representations that facilitate an agent’s 

current situational understanding.  

During the attention phase, other specialized processors 

called attention codelets (ACs) advocate for the salience of 

preconscious content in the p-Workspace. Based on their 

individual concerns (for example, situational or goal 

relevance, novelty, surprise, etc.), ACs identify preconscious 

content of interest to them, and collaborate with other “like-

minded” ACs (i.e., those that are also interested in the same, 

or related, content) to form coalitions. Coalitions compete in 

the Global Workspace (GW), and the winning coalition’s 

content is included in the global “conscious” broadcast. The 

content contained in the global broadcast is received by all 

LIDA modules, initiating the “action and learning” phase.  

During the action and learning phase, module-specific 

learning mechanisms can create, or update, representations 

stored in each module. All “significant learning” in LIDA is 

mediated by the global broadcast, proceeding only from 

“conscious” content. This position is a direct consequence of 

LIDA’s commitment to the Conscious Learning Hypothesis 

from GWT. (For brevity, we omit a summary of the action-

related portions of the “action and learning phase,” as it is not 

needed to understand the partial implementation of LIDA 

presented in this paper.) 

Variational Autoencoders (VAEs) 

Variational autoencoders (VAEs) (Kingma & Welling, 2014) 

are connectionist (neural network) architectures composed of 

a recognition network and a generative network (see Figure 

1). Data are fed into the recognition network, which learns to 

generate probability distributions (e.g., Gaussians) that 

(hopefully) characterize the most important features of those 

data. Latent vectors are then sampled from these probability 

distributions and fed into the generative network, which 

learns to construct likenesses of the original inputs from the 

latent vectors. 

VAEs learn by unsupervised learning, that is, from 

unlabeled data such as images, sounds, or other forms of 

uncategorized sensory stimuli. They achieve this (in part) by 

attempting to minimize discrepancies between the 

recognition network’s inputs and the generative network’s 

attempted reconstructions of those inputs (i.e., its 

3 For historical reasons, this word was previously “distribution.” It 

was later changed. 

Figure 1: Depiction of a variational autoencoder (VAE). 
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reconstruction error). 𝛽-VAEs (Higgins, et al., 2017) 

augment the standard VAE loss function with a penalty 

coefficient (𝛽) that encourages disentangled latent 

representations, but are otherwise identical to “vanilla” 

VAEs. Unlike the “entangled” representations that are 

typically learned by standard VAEs, disentangled 

representations can be decomposed into subcomponents that 

represent distinct generative features (e.g., brightness, 

position, and size). These subcomponents can be manipulated 

to selectively control aspects of the generative process. 

General Approach and Implementation 

In this section, we describe our “proof-of-concept” 

computational implementations of perceptual symbols, 

simulators, and “conscious” multi-modal perceptual learning. 

Our approach is based on a partial implementation of the 

LIDA cognitive model (see Figure 2) focused on the 

understanding phase of LIDA’s cognitive cycle. We use 

𝛽-VAEs to implement Sensory Memory (SM) and 

“simulator” structure-building codelets (SBCs). We 

implement Perceptual Associative Memory (PAM) as a 

content-addressable “activation graph” that exhibits simple 

perceptual priming and typicality effects (based on the 

frequency, recency, and overall “strength” of “conscious” 

experiences). Perceptual symbols are implemented as 

subgraphs of this activation graph. All learning is limited to 

“conscious” content in accordance with the Conscious 

Learning Hypothesis. 

In the subsections that follow, we first detail our 

implementations of relevant LIDA modules and processes, 

perceptual symbols, and simulators. We then describe how 

these interact to implement bottom-up perception and 

“conscious” multi-modal perceptual learning. 

Component Implementations 

Sensory Memory (SM) We implement SM using a set of 

modality-specific 𝛽-VAE recognition networks—one per 

sensory modality (see Figure 3). Incoming sensory stimuli 

initiate their feed-forward activation, resulting in the 

generation of modal probability distributions. These 

probability distributions are represented as vectors of means 

(𝜇) and std. deviations (�⃗�) that are approximately Gaussian 

after “enough training.” Modal probability distributions are 

the basis for several key capabilities including the activation 

of modal representations in PAM and simulation. 

 

Perceptual Associative Memory (PAM) We implement 

PAM using a directed, hierarchical, “activation graph.” Each 

node in our graph has two parameters: a current activation 

(representing its current situational relevance) and a base-

 
4 A primitive feature detector can be (and frequently is) associated 

with multiple non-primitive feature detectors. 

level activation (representing its historical frequency, 

recency, and “strength” in “conscious” broadcasts). We refer 

to the sum of the current and base-level activations simply as 

a node’s activation. Activation can propagate between nodes 

over directed links, resulting in increased current activation 

in the targeted nodes. 

We differentiate between two types of PAM nodes: 

primitive and non-primitive feature detectors. Primitive 

feature detectors receive activation exclusively from SM, 

whereas non-primitive feature detectors can receive 

activation from representations in both SM and PAM. Each 

primitive feature detector, in our implementation, is 

associated with a modality indicator and a modal probability 

distribution. Non-primitive feature detectors, on the other 

hand, have neither of these attributes, as they are (typically) 

multi-modal, and receive all of their current activation from 

other PAM nodes over directed activation links. 

  

Perceptual Symbols We implement perceptual symbols as 

the combination of a uniquely-assigned, non-primitive 

feature detector (representing some, potentially multi-modal, 

perceptual experience) combined with a set of modality-

specific, primitive feature detectors connected to it over 

directed links. SM can activate these primitive feature 

detectors (e.g., during bottom-up perception), and part of this 

activation can then propagate to linked, non-primitive feature 

detector(s)4. If, as a result, the activation of a non-primitive 

feature detector becomes greater than an instantiation 

threshold, the entire perceptual symbol is instantiated into 

LIDA’s p-Workspace as part of a percept. We implement this 

instantiation operation as the insertion of a reference5 to the 

perceptual symbol in the p-Workspace.

5 We use references (not copies), so that perceptual symbols and 

their instantiations can share the same parameter values. 

Figure 2: Our (partial) implementation of the LIDA 

cognitive model focused on the understanding phase. 

Relevant LIDA modules and processes are depicted, as well 

as mental representations, such as perceptual symbols 

(abbreviated as “p. symbols”). 
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Simulators and Simulation Barsalou (1999) defined 

simulators as the combination of knowledge, and generative 

processes that use that knowledge, to construct simulations. 

For our proof-of-concept implementation, these are 

implemented as perceptual symbols and “simulator” SBCs, 

respectively. Future work will extend our knowledge 

representations to more complex “conceptual” 

representations, such as frames (see Barsalou, 1999). 

Our simulator SBC is composed of a stochastic “sampler” 

and a set of modality-specific generative networks. The 

sampler generates a latent vector from each modal probability 

distribution associated with a perceptual symbol, which then 

activates the generative networks creating a set of modal 

simulations. The SBC associates these simulations with their 

corresponding perceptual symbol in the p-Workspace. 

 

Attention Our attentional processes consist of two ACs and 

a coalition-forming process. The first AC selects perceptual 

symbols based on their activation, and the second their 

reconstruction error6. A high reconstruction error indicates 

that an agent lacks the experience to adequately simulate an 

object, entity, or event, and can be interpreted as an indication 

of “surprise.”  

Whenever both ACs advocate for the same perceptual 

symbol, our coalition-forming process creates a single 

coalition containing that perceptual symbol and adds it to the 

GW; otherwise, two (competing) coalitions are added. When 

a competition is “triggered” in the GW, content from the 

coalition with the highest activation is included in the global 

 
6 The reconstruction error can only be calculated after the simulator 

SBC has constructed modal simulations for a perceptual symbol; as 

a result, our ACs are constrained to select from the subset of 

(conscious) broadcast. In the LIDA conceptual model, a 

coalition’s activation can be based on many factors (see 

Franklin et al., 2016); however, for our simple 

implementation, we base it solely on the activations of the 

selected perceptual symbols and the magnitudes of their 

associated reconstruction errors. 

 

Activation Decay and Structural Pruning Decay is applied 

to the current and base-level activations of PAM nodes 

following each conscious broadcast, with current activations 

decaying much more rapidly than base-level activations. 

Perceptual symbols are pruned from PAM’s activation graph 

if their base-level activations are less than the PAM removal 

threshold. References to perceptual symbols are removed 

from the p-Workspace when their activation crosses below 

the instantiation threshold. 

 

Perception (Bottom-Up) 

We define bottom-up perception (see Figure 3) as a feed-

forward process that begins with the arrival of sensory stimuli 

in SM and ends with a global (conscious) broadcast. Each 

step of this process is described below.  

 

(1) Bottom-up perception begins when sensory stimuli 

activate SM’s modality-specific 𝛽-VAE recognition 

networks, resulting in the generation of modal 

probability distributions.  

perceptual symbols in the p-Workspace which have associated 

modal simulations.  

Figure 3: Bottom-up perception. Modality-specific recognition networks (in SM) generate modal 

probability distributions, which activate primitive feature detectors (in PAM). Activation spreads through 

PAM’s activation graph over directed links, activating perceptual symbols. If they receive enough 

activation, perceptual symbols are instantiated into the p-Workspace. 
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(2) SM updates the current activation of primitive feature 

detectors (in PAM) based on their cosine similarity with 

the probability distributions generated in step (1). 

(3) In parallel to step 2, SM’s probability distributions are 

encapsulated in new nodes that are sent to the p-

Workspace along with the multi-modal sensory inputs 

that generated them. 

(4) Base-level and current activations combine (in PAM) to 

determine the activation of each primitive feature 

detector. Activation propagates over directed links to 

connected non-primitive feature detectors associated 

with perceptual symbols. Perceptual symbols with 

activations over the instantiation threshold are 

instantiated into the p-Workspace. 

(5) A simulator SBC continually scans the p-Workspace 

looking for perceptual symbols without associated 

simulations. For each such perceptual symbol, the 

simulator SBC constructs a set of modal simulations, 

which it associates with the perceptual symbol. 

(6) ACs scan the p-Workspace looking for perceptual 

symbols with associated simulations, and selects from 

among these based on their own interests (e.g., activation 

or reconstruction error). Selected perceptual symbols are 

sent to the coalition forming process, which constructs 

coalition(s) and sends them to the GW. 

(7) The GW conducts an activation-based, winner-take-all 

competition among the coalitions, and globally 

broadcasts the winning coalition’s content. 

“Conscious” Perceptual Learning 

Learning Perceptual Symbols New perceptual symbols are 

constructed by an SBC in the p-Workspace. This SBC scans 

the p-Workspace for groups of unattached modal nodes from 

SM (created during step (3) of the bottom-up perceptual 

process described earlier). If found, the SBC creates a new 

node that will function as the perceptual symbol’s non-

primitive feature detector, and directed links to it from each 

unattached modal node in a group. These nodes will later 

function as primitive feature detectors. The originating multi-

modal sensory stimuli (i.e., the inputs to the SM recognition 

networks) are also associated with this new structure. If/when 

this “proto-perceptual symbol” is attended to by ACs and 

consciously broadcast to PAM, it will be learned into PAM 

as a new perceptual symbol. 

 

Updating Base-Level Activation When PAM receives a 

“conscious” broadcast, it increases the base-level activation 

of each node in its activation graph that was present in the 

broadcast. The magnitude of this increase is based on the 

“strength” of the conscious broadcast (i.e., the activation of 

the winning coalition). 

 

 
7 This follows from the fact that our SM representations are only 

(directly) used to (1) activate modality-specific primitive feature 

detectors in PAM and (2) construct unimodal simulations. And, that 

multi-modal representations (e.g., perceptual symbols) are only 

constructed via their association. 

Updating 𝛽-VAE Parameters Following the “conscious” 

broadcast of a perceptual symbol, the recognition and 

generative networks are updated based on the 𝛽-VAE loss 

using stochastic gradient descent. The calculation of the loss 

function requires the original stimuli, their corresponding 

simulations, and the modal probability distributions 

associated with that perceptual symbol. 

Evaluation 

The viability of our approach depends on whether our SM 

representations (i.e., modal probability distributions) have 

several properties. First, the (cosine) similarity between two 

SM representations must serve as a reliable proxy for the 

degree of resemblance between their corresponding sensory 

stimuli. We refer to this as the property of analogical 

representations. Second, our SM representations must 

capture enough information about their originating sensory 

stimuli to enable the construction of simulations that 

“sufficiently” resemble those stimuli. We refer to this as the 

sufficiency of generative representations. 

In the remainder of this section, we describe a series of 

experiments that demonstrate the feasibility of learning SM 

representations (and, by extension, perceptual symbols) that 

satisfy these properties. For brevity, we focus on a single 

sensory modality; however, the same approach can be easily 

extended to multiple modalities by confirming these 

properties independently7 for each modality. 

Experimental Setup 

We trained a 𝛽-VAE with a convolutional architecture (see 

Krizhevsky, Sutskever, & Hinton, 2012) on Fashion MNIST 

(Xiao, Rasul, & Vollgraf, 2017)—a well-known data set 

containing 70, 000 grayscale images (28 × 28 pixels each) 

from ten different categories of “fashion products.” Training 

consisted of five training epochs8 over the data set’s 60,000 

“training” images. Our 𝛽-VAE had 538,529 parameters (i.e., 

weights and biases), our latent vectors (𝑧) had 128 

dimensions, and we used a 𝛽 value of 1.2. We calculated the 

cosine similarity (𝛿) for two probability distributions over 

their means (𝜇), and the current activation (𝛼𝑐) using the 

sigmoidal function 

 

𝛼𝑐(𝛿) =
1

1 + 𝑒(−15𝛿+10)
    . 

 

All demonstrations that follow are based on the data set’s 

10,000 “test” images, which were unseen during training. 

Analogical Representations 

We randomly selected 250 images (25 per object class) and 

generated their modal probability distributions by feed-

8 5 epochs of training took approximately 20 seconds on a single 

mid-range GPU. Additional epochs yielded only modest 

improvements, and were deemed unnecessary for the present 

demonstrations. 
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forward activation of the 𝛽-VAE's recognition network. 𝑎𝑐 

was calculated for each pair of probability distributions, 

resulting in a 250 × 250 matrix, which we plotted as a 

heatmap (see Figure 4, Left) with rows/columns sorted by 

object class. We found that 𝛼𝑐 was much higher (on average) 

for stimuli/exemplar pairs of the same class. The exemplars 

receiving the highest 𝛼𝑐 were from the same class as the 

stimuli in over 70% of cases (see Figure 4, Right for 

examples). Inter-class activation generally occurred as the 

result of confusion between highly similar object classes 

(e.g., object classes 0, 2, 4, and 6, which represented “t-

shirts,” “pullovers,” “coats,” and “shirts,” respectively). 

These observations are consistent with the hypothesis that our 

implementation satisfies the property of analogical 

representations. 

  

Sufficiency of Generative Representations 

We will claim that our implementation has learned generative 

representations that suffice if they allow the creation of modal 

simulations that are recognizable by the implementation. In 

other words, if we generate a simulation for a shirt, shoe, or 

bag, we want the system’s perceptual processes to reactivate 

perceptual symbols for shirt-like, shoe-like, and bag-like 

objects, respectively. This criterion is very different from the 

usual focus in the machine learning community that typically 

rates generative quality in terms of human judgments. From 

our perspective, the simulations may look like random noise 

to a human, so long as they activate perceptual 

representations if and only if they “sufficiently resemble” 

those simulations. 

To demonstrate that our implementation possesses this 

property, we generated modal simulations for the same 

randomly selected images, and used these to activate the 

𝛽-VAEs recognition network as if they were incoming 

sensory stimuli, generating modal probability distributions, 

and calculated the pairwise 𝑎𝑐 as before. The resulting 𝛼𝑐 

heatmap (not shown) looked very similar to the heatmap 

shown in Figure 4 (Left) with only slightly more inter-class 

noise. This strongly suggests that our recognition networks 

recognize the “gist” of the objects depicted in modal 

simulations. 

Related Work 

While there have been numerous attempts at implementing 

portions of a PSS, few have attempted to systematically build 

a PSS from the ground up based on first principles. Many 

implementations attempt to address topics of high theoretical 

interest, such as abstract concepts and language, without a 

firm implementation of PSS’s basic components. While these 

are worthwhile pursuits, we believe they are premature. We 

briefly survey a few noteworthy attempts at more general 

PSS, and simulation-based, implementations, and contrast 

them with our approach. 

Joyce, Richards, Cangelosi, and Coventry (2003) 

implemented a connectionist, computational model based on 

a recurrent neural network architecture that they call the 

Connectionist Perceptual Symbol System Network (CPSSN), 

and they applied it to labelled video sequences. The authors 

claimed that CPSSN is a mechanism for implementing 

perceptual symbols, and that it contains “categorical 

information summarising the event/episode.” A major 

drawback of this, and most other purely connectionist 

approaches, is that the representations tend to be buried 

within the network’s hidden units, limiting their ability to 

support compositionality and other cognitive processes. 

Perlovsky and Illin (2012) argued that computational 

accounts of PSS require new mathematical frameworks that 

are “different from traditional artificial intelligence, pattern 

recognition, or connectionist methods,” and they propose the 

use of Dynamic Logic (DL) for that purpose. They 

experimentally show that DL can implement object/situation 

representations and recognition, and may be capable of 

supporting multiple modalities; however, the connections 

between DL’s operations and PSS are somewhat speculative, 

and would benefit from additional (property-based) analysis. 

It’s also not clear whether DL will be able to model all of 

PSS’s components, as the authors’ hope.  

Shanahan (2006) proposed a cognitive architecture that 

implements internal simulations, analogical representations 

Figure 4: Current activations (𝛼𝑐) for 250 randomly selected images (25 per object class). A heatmap (left) 

depicts the 𝛼𝑐 for each pair of images. Example stimuli and their most activated exemplars are also shown. 
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via “topographically organized maps of neurons,” and 

portions of GWT. While he didn’t intend his architecture to 

be an implementation of a PSS, it’s one of the few simulation-

based cognitive architectures, and well worth mentioning. 

Shanahan’s architecture combines a low-level, reactive, 

behavioral system with a higher-level, predictive system that 

“simulates” action outcomes. These simulations can elicit 

affective responses (i.e., “feelings”) and guide action 

selection. Unlike the simulations in our implementation, 

Shanahan’s do not seem to support conceptual 

representations or operations. Instead, they function similarly 

to models in model-based reinforcement learning that are 

used for “state-space planning” (Sutton & Barto, 2018). 

Previous work on LIDA has explored symbol grounding 

using modular composite representation (MCR) vectors 

(Snaider & Franklin, 2014; Agrawal, Franklin, & Snaider, 

2018). MCR vectors can be grounded and analogical, but they 

are not generative. Therefore, it’s unclear how to use them as 

the representational basis for a PSS. 

Discussion 

Our goals were to establish a computational foundation for 

PSS, simulation-based perception, and “conscious” multi-

modal perceptual learning. We believe that we have made 

progress towards these goals. Our initial experiments suggest 

that our SM representations, and, by extension, our 

perceptual symbols, satisfy both the property of analogical 

representations and sufficiency of generative 

representations, paving the way for future work in 

perception, categorization, and simulation-based cognition. 

Furthermore, our perceptual symbols exhibit many of the 

properties attributed to them by Barsalou (1999). They are 

multi-modal, analogical (since they satisfy the property of 

analogical representations), not complete recordings, 

dynamic, and componential (since they are based on 

disentangled latent representations). 

Our approach differentiates itself from many previous 

attempts at implementing a PSS based on (1) its generality 

(i.e., it’s not application-specific or focused on a single 

theoretical concern), (2) our explicit identification and 

intentional construction of each fundamental PSS component 

(as opposed to post-hoc attributions), (3) our systematic 

attempt at analyzing the properties of said components, and 

(4) our integration with a well-developed, agent architecture 

(LIDA). An additional strength of this approach is that it 

leverages theoretically sound, and experimentally proven, 

generative connectionist networks (i.e., VAEs), rather than 

trying to “reinvent the wheel.” 

Future work will explore resemblance-based 

generalization for concept learning, context-dependent and 

multi-part mental simulations, and the development of 

simulation-based, analogical reasoning processes. We will 

also complete our implementation of LIDA’s cognitive cycle, 

incorporating an action phase with motor simulations. 
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