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Visual Analogical Mapping

Paul Thagard, David Gochfeld, and Susan Hardy
Cognitive Science Laboratory
Princeton University
221 Nassau St., Princeton, NJ 08542!

Abstract

This paper describes some results of research
aimed at understanding the structures and processes
required for understanding analogical thinking that
involves images and diagrams. We will describe
VAMP.1 and VAMP.2, two programs for visual ana-
logical mapping. VAMP.1 uses a knowledge
representation scheme proposed by Janice Glasgow
that captures spatial information using nested three-
dimensional arrays. VAMP.2 overcomes some limi-
tations of VAMP.1 by replacing the array representa-
tion with a scheme inspired by Minsky’s Society of
Mind and connectionism.

Introduction

Part of analogical thinking involves finding
correspondences between structures that represent
analogous problems. Various computational models
of how mapping between analogs can be conducted
have been proposed (SME: Falkenhainer, Forbus,
and Gentner 1989; Gentner 1983; ACME: Holyoak
and Thagard 1989).2 Like the vast majority of Al
programs, analogy programs such as SME and ACME
represent analogs propositionally rather than visually.

But many analogies have a strong visual com-
ponent. Consider the Duncker tumor problem that has
been widely used in psychological experiments (Gick
and Holyoak 1980, 1983). Subjects are told to try to
figure out how to use an x-ray machine to destroy a
tumor inside a patient without damaging the patient’s

! This research was supported by contract
MDA903-89-K-0179 from the Basic Research Office
of the U.S. Army Research Institute for the Behavioral
and Social Sciences. Paul Thagard's current address
is: Department of Philosophy, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3G1. Email:
prthagard@logos. waterloo.edu.

2 Mapping is also implicit in computational models
of case-based reasoning (e.g. Riesbeck and Schank
1989). See also Mitchell and Hofstadter (1990).
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flesh. The solution is to use a number of x-ray
sources producing rays of diminished intensity that
converge on the tumor and destroy it. Subjects are
aided in coming up with this solution if they are told
of a general whose strategy for attacking a fortress
involved dispersing his army and having them con-
verge on the fortress from different directions.
Although all the information necessary can be
represented propositionally, it is natural to produce a
diagram or mental picture that shows the army and
the rays converging on the tumor and the fortress
from different directions. Gick (1985) and Beveridge
and Parkins (1987) found that the use of diagrams
improved subjects problem solving effectiveness on
this problem.

But it is difficult to model the visual aspect of
analogical reasoning using the knowledge representa-
tion techniques that have been most common in Al
Ideally, visual representations should serve to make
mapping between analogs much easier than proposi-
tional representations, which require considerable
work to place appropriate predicates and arguments in
correspondence. If, for example, we had a visual
representation of the Duncker problem, we could map
the tumor problem to the fortress problem by simply
superimposing an image of the one onto the other and
identify by inspection the objects that correspond to
each other, such as the tumor and fortress. We cannot
expect the visual representation to do all the work of
analogical mapping, since many predicates such as
cause will not lend themselves to visual representa-
tion, but visual representation should help greatly
with aspects of the problems that are easily pictured.
Finke (1989) provides a convenient summary of the
large body of psychological experimentation that sup-
ports the contention that human thinking involves an
important visual component.3

3 Finke and others distinguish between visual infor-
mation (how things look) and spatial information (how
things relate to each other) but [ shall include both of
these under the heading "visual."
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This paper describes some results of research
aimed at understanding the structures and processes
required for understanding analogical thinking that
involves images and diagrams. We will describe
VAMP.1 and VAMP.2, two programs for visual ana-
logical mapping. VAMP.1 uses a knowledge
representation scheme proposed by Janice Glasgow
that captures spatial information using nested three-
dimensional arrays. VAMP.2 overcomes some limi-
tations of VAMP.1 by replacing the array representa-
tion with a scheme inspired by Minsky’s Society of
Mind and connectionism.

VAMP.1

VAMP.1 (Visual Analogical Mapping Program) is
based on the knowledge representation scheme for
computational imagery that Glasgow and her col-
leagues have been developing (Glasgow 1990; Glas-
gow and Papadias in press; Papadias and Glasgow
1991). In the earlier computational model of Kosslyn
(1980), quasi-pictorial images were represented by a
configuration of points in a matrix; an image is
displayed by selectively filling in cells of the matrix.
An image, then, is construed as a two-dimensional
array, with each entry like a pixel that is either on or
off. Glasgow’s scheme is more complex in two key
respects. First, it takes images to be inherently three-
dimensional, although two-dimensional projects can
also be handled as a special case. Greater dimen-
sionality obviously makes possible representation of
more complex images such as those required for men-
tal rotation. Second, the entries in the three-
dimensional arrays can be encoded hierarchically, in
that each entry is represented symbolically by a entry
that can have a subimage. For example, a house can
be represented by the array shown in Figure 1, with
each symbolic entry such as "window" providing a
pointer to another array. In sum, Glasgow’s represen-
tational scheme takes images to be three-dimensional
symbolic hierarchical arrays. Numerous important
visual operations can be defined on Glasgow’s arrays,
including constructing symbolic arrays from proposi-
tional representations, comparing images using array
information, and moving and rotating images.?

We have developed a Common LISP imple-
mentation of parts of Glasgow’s scheme and extended
it to produce VAMP.1, a visual analogical mapping
program. Given two arrays, VAMP.1 can do simple
analogical mapping, putting the elements of the two

4 Other computational models of visual thinking
have been developed by Funt (1980), Shrager (1990),
and Chandrasekaran and Narayanan (1990).
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Figure 1: Array representation of a house.

arrays in correspondence with each other. VAMP.1
first checks to see if the arrays are the same size. If
not, it scales them up to the size of the least common
multiple of their sizes. For example, to compare a
4x4x4 array and a 6x6x6 array, VAMP.1 converts
both arrays to 12x12x12 arrays. When both arrays
are equal in size, VAMP.1 superimposes them and
gives a list of all parts which are in corresponding
cells.

As described in Thagard and Hardy (1992),
VAMP.1 has been used to model the use by John Dal-
ton (1808) of an analogy between the structure of the
atmosphere involving molecules and a pile of shot. It
is natural to construct a mental image of a pile of can-
non balls with one ball nesting on four below which
nest on nine below, and then transform this into a pic-
ture of the atmosphere consisting of atoms surrounded
by heat similarly nesting. The representation of the
pile of balls is not just the various slices shown, but
the whole array which encapsulates a very large
amount of spatial information. This encapsulation
makes creating a visual analog trivial: all we have to
do to produce a representation of the structure of the
atmosphere is to replace each entry of BALL with an
entry of ATOM. The hierarchical nature of the
representation scheme is important because it allows
us to substitute a complex of atom and heat, as Dalton
recommended, rather than just atom.

Glasgow’s knowledge representation scheme is
very useful in suggesting how visual/spatial informa-
tion can be stored and used. But it has some clear
limitations. Arrays are too "boxy" to capture more
complex spatial arrangements than left, right, above,
below: a cannon ball sits above four others at roughly
60 degree angles, not directly above. Also not natur-
ally represented in Glasgow’s scheme are relations of
containment. In the tumor problem, for example, the
patient’s flesh contains the tumor: there are not dis-
tinct objects of flesh filling all the adjacent boxes.
From the perspective of processing, the Glasgow
scheme has advantages in making the appropriate
maps readily identifiable when the arrays coincide,



but does not suggest how partial maps might be
found. In addition, using the array structures seems
potentially inefficient, since they will contain various
empty cells and have to be worked with in monolithic
fashion. Accordingly, we have tried to retain some of
the advantages of Glasgow's scheme while producing
more flexible mappings.

VAMP.2

According to Marvin Minsky’s provocative "Society
of Mind" theory, each mind is made up of many small
processes he calls agents. Minsky says (1986, p. 17):
"Each mental agent by itself can only do some simple
thing that needs no mind or thought at all. Yet when
we join these agents in societies - in certain very spe-
cial ways - this leads to true intelligence." We pro-
pose to reconceptualize Glasgow’s scheme by imagin-
ing that corresponding to each box in the 3-D array
there is a simple agent that can communicate with
other agents representing other boxes. Each agent
knows what other agents are adjacent to it in various
directions. The agents can process information in
parallel to provide answers to simpler questions. For
example, if you want to know what is above the door
in a visual representation, you can query all agents
until you find one that has the door, then have that
agent ask the agent above it what it has. This
corresponds to simply looking at the door and then
looking up above it.

Once you have a set of agents each of which
has knowledge of the adjacent agents, you no longer
need the array structure at all. The same information
captured by the boxes in the 3-D array can be cap-
tured more locally by what the individual agents
know about themselves and the adjacent agents.
Moreover, much more flexible spatial structures can
be used than simply left, right, above, and below as in
the array: an agent can know that there is an agent
above it and to the left at a particular angle. Agents
can also possess another important kind of spatial
information: what agents contain them or are con-
tained by them.

For visual analogical mapping, each analog can
be represented by a set of agents, and the computa-
tional problem is to put agents from different sets in
communication with each other in such a way that the
appropriate correspondences are found. For example,
the agent for tumor in the Dunker problem must be
put in contact with the agent for fortress in the other
problem. Think of two competing baseball teams
whose members shout at each other to find the players
in corresponding positions; after an initial noisy
display, the shortstops on each team will find each
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other, and so on, This example shows that the map-
ping may not be simple, since more than one pitcher
on each team may correspond to more than one
pitcher on the other.

VAMP .2 is a program that implements this kind
of analogical mapping. It is written in the Common
LISP Object System, for it is natural to encode
society-of-mind ideas using object-oriented program-
ming. Each thing in an analogy is represented by an
agent, implemented as a CLOS object. For mapping
purposes, we want to avoid the complexity of having
every agent in one analog try to correspond to every
agent in the other analog, so visual similarity used to
screcn for agents of mutual relevance: two agents
only begin a relationship if the things they represent
have similar appearance or containment relations,
But once such a relationship is established between
agents S1 from the source analog and T1 from the tar-
get analog, the agents adjacent to S1 can be put in
correspondence with agents adjacent to T1 even if
they have different shapes and spatial relations. We
want, for example, to have S2 which is to the right of
S1 establish a connection with T2 which is to the right
of T1. Matters obviously become much trickier when
the target contains more than one agent that is similar
in shape to S1 so that we cannot tell right away which
one should correspond to it.

To solve this problem, we have used connec-
tionist techniques of parallel constraint satisfaction
that worked well in earlier models of analogical map-
ping and retrieval, ACME and ARCS (Holyoak and
Thagard 1989; Thagard, Holyoak, Nelson and Goch-
feld 1990). ACME and ARCS showed that analogs
can be retrieved from memory and mapped by satisfy-
ing a combination of semantic, structural, and prag-
matic constraints. These constraints are represented
in a connectionist network of units with excitatory
and inhibitory links, and a simple settling process
selects out what correspondences best satisfy the con-
straints. VAMP.2 uses constraints specific to visual
representations that can however be viewed as special
cases of constraints in the more general programs.
We want to encourage mappings between things of
similar appearance, encourage mappings between
things with similar adjacencies and containment rela-
tions, and discourage one-many and many-one map-
pings.

For each pair of agents who establish a relation-
ship for appearance or containment relations,
VAMP.2 creates a mapping unit that represents the
plausibility of their being in correspondence: we will
write the mapping unit that pairs S1 and T1 as S1=T1.
Mapping units form packages that tend to go together.
If S1 is adjacent to S2, and T1 is adjacent to T2 in the



same way, then the unit S2=T2 will be formed. We
want the mappings S1=T1 and S2=T2 to go togcther,
so a symmetric excitatory link is established between
these two units. Similarly, if S1 contains S2 and T!
contains T2, then we want the mappings S1=S2 and
T1=T2 to encourage each other, so an excitatory link
is established between those units. A special unit that
is always active is used 1o encourage mappings
between agents representing things that are visually
similar. VAMP.2 is given a verbal description of
things and uses this to compute visual similarity, or
visual similarity is specified by the programmer.’ If
S1 and T1 are visually similar, then an excitatory link
is established between S1=T1 and the special unit. To
discourage mappings that are not one-to-one, an inhi-
bitory link will be created between S1=T1 and any
units $*=T1 and S1=T* representing other ways of
mapping S1 and T1. In VAMP.2, all links are sym-
metric. Once these networks are created, a simple
connectionist settling algorithm is used to adjust the
activation of units in parallel until they all settle and
the winning and losing units are apparent. The appen-
dix contains a precise description of the algorithms
used by VAMP.2.

Now let us look at a simple example of
VAMP.2 in operation. Holyoak and Koh (1987) did
experiments using the Duncker tumor problem with
another problem that is more isomorphic to it than the
fortress problem. The filament problem requires
finding a way to use a laser to fuse a broken filament
inside a glass bulb without breaking the glass. Our
representation of the two problems is portrayed in
figure 2. The tumor is contained in flesh which is
contained in a hospital room along with an x-ray
source and the rays, which are to the left of the the
patient. To provide a greater challenge for VAMP.2,
the representation of the other problem has the laser
and beam to the right of the the filament and glass,
which are contained in a laboratory. VAMP.2 is
given the information that there is some visual simi-
larity between the beam and ray and between the laser
and x-ray source.® It therefore creates the units
BEAM=RAY and LASER=SOURCE. Similarity in
containment relations leads to creation of units
LAB=ROOM, GLASS=FLESH, and several others.
Figure 3 shows all the units created by VAMP.2 along
with their inhibitory links. After 44 cycles of updat-
ing, the units all achieve stable activations and the
appropriate mappings, BEAM=RAY,
LASER=SOURCE, FILAMENT=TUMOR,

5 Ideally, the program would make this sort of
judgment itself on the basis of a pictorial representa-
tion.
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Figure 2. Diagrammatic representation of tumor
and filament problems.
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Figure 3. Network created to map tumor and
filament representations.

Links to the special unit based on visual similarity are
shown with double solid lines. Other links to the spe-
cial unit based on adjacency and containment rela-
tions are shown by single lines, as are links between
other units based on adjacency and containment rela-
tions. The dotted lines indicate inhibitory links that
serve to discourage mappings that are not one-to-one.



LAB=ROOM, and GLASS=FLESH all settle with
positive activation while the other four units all settle
with negative activation. To compare VAMP.2's
operation on this problem with our previous mapping
program, ACME, we propositionally represented the
two problems at the same level of detail using predi-
cate calculus. ACME produces far more units to cal-
culate the mapping than VAMP.2 (115 versus 9) and
has difficulty recovering from the mismatch that is
suggested by having the tumor and filament on oppo-
site sides of the ray and beam.

VAMP.2 has also been run successfully on
several other examples: the tumor/fortress analogy,
the atom/solar system analogy, and Dalton’s 3-D
analogy between molecules and piles of shot. The
atom/solar system example shows that VAMP.2, like
ACME but unlike SME, can perform one-many map-
pings when it is appropriate to do so. Given represen-
tations of a hydrogen atom with one electron and a
solar system with several planets, VAMP.2 correctly
maps the electron to each of the planets. The Dalton
analogy is much trickier for VAMP.2 than for
VAMP.1, where array structure makes finding the
correspondences between atoms and balls very easy.
Nevertheless, despite the much greater number of
possible correspondences between atoms and balls
that VAMP.2 must deal with, it manages to sort out
appropriate mappings using 107 units. In contrast,
when ACME is given a long non-visual encoding of
the analogs using representations such as

(LEFT-OF (BALL2 BALL3)) and
(ABOVE-LEFT (BALL1 BALL2)),

it creates 3500 units, more than our SPARCstation 2
could handle.

VAMP.2 is by no means the final word on
visual analogical mapping. While it has a much more
flexible scheme for knowledge representation than
VAMP.1, it still is limited in how well it can represent
such visually complex matters as how rays converge
at a point. Moreover, it does not address the crucial
question of visually representing dynamic information
of the sort that might be found in a movie-like mental
image of rays shooting out and converging. The
atom/solar system analogy can most cffectively be
conveyed by imagining electrons and planets in mov-
ing orbits. Finally, VAMP.2 performs mapping by
visual representations alone, ignoring many cues that
might be provided by proposition-based mapping. A

6 If this information is omitted, VAMP.2 still
creates the units BEAM=RAY and LASER=SOURCE
because of similar containment relations and number
of adjacencies.
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powerful integrated mapping scheme could be built
by having VAMP.2 work in concert with a program
like ACME, with each program passing partial results
back and forth, getting the most out of the different
kinds of representation available. Our new system
CARE alrecady integrates analogical mapping with
retrieval and rule based reasoning, and it should be
possible to fit VAMP.2 into it gracefully (Nelson,
Thagard, and Hardy, in press). VAMP.2 is already
capable of modeling some of what is involved in
transferring a solution to a source problem into one
for the target problem: given a description of the
filament problem that includes its solution with con-
vergent beams, it maps part of the solution back to the
target tumor problem.

Many analogies in ordinary life and in science
have a substantial visual component. We have shown
that it is possible to start to model visual aspects of
analogy without having to simulate the entire human
perceptual system. While structured array representa-
tions have many attractive features, visual analogical
mapping of complex examples requires a more flexi-
ble representation such as that inspired by Minsky’s
Society of Mind theory. The price of this flexibility is
that additional mechanisms of parallel constraint
satisfaction are needed to accomplish the mapping.

Appendix: VAMP.2 Algorithms
A. Map visually similar things.
For each thing S in the source image, and any thing T
in the target image such that

a) T is the same type of thing as S,

b) T has been declared to be visually similar to S,
or,

c) both S and T contain something,

create a mapping unit "S=T" and add this to M, the
list of mapping units. Make an excitatory link
between this unit and the visual special unit.

B. Map adjacencies of previously mapped things.
Copy M into N, and then repeat the following steps
until there are no mapping units left in N:

1) Let N1 be the first unit in N.

2) Let S be the source thing that is mapped in N1,
and T be the target thing mapped in N1.

3) Let A(S) be the list of things adjacent to S, and
A(T) be the things adjacent to T.

4) For each thing AS1 in A(S), and any thing AT1
in A(T) which is the same direction from T as ASI is
from §, create a mapping unit "AS1=AT1", if it does
not already exist.

5) Add AS1=AT]I to N and M, and create an excita-
tory link between it and unit N1.



6) Remove N1 from N, and repeat the above steps
until N is empty.

C. Map contents of previously mapped things.

Again copy M into N and repeat the following step:

1) Let N1 be the first unit in N,

2) Let S be the source thing that is mapped in N1,
and let T be the target thing that is mapped in N1.

3) Let C(S) be the list of things directly contained in
S, and C(T) be the things directly contained in T.

4) For each thing CS1 in C(S), and any thing CT1 in
C(T) that has the same number of adjacencies as does
CS1, create a mapping unit "CS1=CT1", if it does not
already exist.

5) Add CS1=CT1 to N and M. Create an excitatory
link between this and N1.

6) Remove N1 from N, and repeat the above steps
until N is empty.

D. Inhibit multiple mappings by creating inhibitory
links,

E. Update activation of units until network settles.
The algorithms for D and E are the same as in
ACME; see Holyoak and Thagard (1989), p. 314.
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