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Near-field scanning optical microscopy (NSOM) is a powerful technique

which allows deeply subwavelength imaging by placing a nanoscale aperture in

close proximity to a sample where it can collect evanescent fields which contain

information about subwavelength features. Additionally, by coupling out these

evanescent fields, it has the ability to image light propagation within light-confining

guided-wave structures. NSOM can be enhanced by integration into the signal arm

of a heterodyne interferometer (H-NSOM), which allows imaging of both amplitude

and phase at subwavelength resolution. In this dissertation we apply H-NSOM to

characterize novel structures, and introduce a new technique for using H-NSOM

in a liquid environment.
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First, we use the H-NSOM to characterize an asymetric mode converter,

which uses a one-way wavevector created by a metallic grating. The asymmetric

propagation is visualized directly, then verified by using Fourier analysis to examine

the mode content of the waveguide fields. Next, we propose and implement a

scheme for H-NSOM measurement of silicon integrated waveguides with liquid

cladding. Fourier analysis is used to determine an effective index shift of .08

in the quasi-TM mode between air and water overcladdings. This technique is

then succesfully applied to directly image long range surface plasmons for the

first time. The liquid cladding enables preservation of the symmetric cladding

environment required for long range plasmon propagation. We directly observe the

field distribution of the single mode, and show that it matches well to simulations.
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Chapter 1

Introduction

In recent years the field of nanophotonics has grown to be an important

area of science and engineering. Nanophotonics concerns the behavior of light

at small scales, typically below the wavelength. Light at these dimensions may

take on unexpected properties, due to the fundamental limits imposed by diffrac-

tion, and therefore it is a significant engineering challenge to design structures and

tools capable of handling it, in addition to the fabrication challenges associated

with these structures and tools in the first place. In this thesis I discuss several

techniques for imaging and measuring nanophotonic devices with a heterodyne

near-field scanning optical microscope (NSOM), the tool perhaps most associated

with nanophotonic imaging. In order to provide some context for these experi-

ments, we will briefly examine the history, physics, and technical importance of

NSOM and integrated photonics.

1.1 Near-Field Microscopy

1.1.1 History

Although the earliest known lenses date back to ancient Assyria [5], where

polished lenses were known for their ability to magnify, no known mathematical

theories of optics were created until Euclid postulated his theory of geometrical

optics in approximately 300 BCE. While this theory does not explain reflection or

1
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refraction, it does lay out the basic principles of ray optics, with some similarity

to modern understanding. Euclid’s theory was extended by Hero of Alexandria to

include mirrors, a fundamental component of many imaging systems. Snell’s law

of refraction was first understood by Persian philosopher Ibn Sahl around 984. In

general, it was understood that a curved piece of glass could magnify an object,

allowing the invention of spectacles in Medieval Italy. Still, until the Renaissance,

optics lacked a formal engineering approach required to produce images of a desired

size and magnification in a desired place.

This breakthrough occurred with the development of telescopes and mi-

croscopes in 17th-Century Europe. Although the early microscopes were simply

single lenses, equivalent to a magnifying glass, the compound microscope with its

separate optics for light collection and focusing into the eye was a sophisticated

and powerful system. Likely invented by Galileo in 1609, its utility for biological

studies was soon realized by Hooke and van Leeuwenhoek, who famously used it to

observe the “thousands of living creatures in one small drop of water.” Although

magnification was increasing with the improving manufacturability of refractive

lenses, the limited abilities of optical systems due to diffractive effects were not yet

understood.

Francesco Grimaldi observed diffraction patterns and recorded his observa-

tions, which were published posthumously in 1665, noting that it was impossible

for light to travel in rays and yet seem to ”spread out” in the fashion it did. Soon

Huuygens advanced a theory that rather than light being a ray or particle, it

was a wave, an idea not widely accepted until in the 1800’s Thomas Young per-

formed the famous double-slit experiment which demonstrated interference, further

demonstrated by Fresnel soon after. The wave theory of light allowed Ernst Abbe

to derive his diffraction limit [6], which gives the minimum spot size d for an optical

system:

d =
λ

2NA
, (1.1)

where λ is the wavelength and NA gives the system numerical aperture. NA typi-

cally does not exceed 1.5, so, the diffraction limit indicates that any optical system

cannot resolve any features smaller than roughly half to one-third the wavelength



3

of the system. The diffraction limit was further refined by Lord Rayleigh, who de-

rived the resolution based on the ability of two separate points to be independently

resolved [6]:

d =
.61λ

NA
. (1.2)

The .61 factor derives from the radial position of the first null of an Airy disk,

the diffraction pattern of a circular aperture, and (1.2) is known as the Rayleigh

Criterion. The diffraction limit was a fundamental restriction to conventional

optical imaging and numerous 20th century efforts in microscopy were devoted to

circumventing it.

Some of these innovations included electron microscopy[7], which uses elec-

trons rather than light, but has to be operated in vacuum with conductive samples;

numerical aperture-increasing techniques, such as solid immersion lenses [8], 4Pi

microscopy [9], and structured illumination microscopy [10]; and more modern

nonlinear techniques such as stimulated emission depletion (STED) microscopy

[11]. One technique that must be mentioned is confocal microscopy [12, 13], in

which an illumination pinhole is imaged onto the sample rather than flooding the

sample in light. This provides a slight increase in resolution and more importantly,

prevents light from other parts of the sample entering the collection optics. In typ-

ical implementations, the sample (or in some cases the optical system) is scanned

and the intensity is recorded at each point.

The basic idea behind NSOM was first realized by Irish physicist E.H.

Synge, who wrote in a letter to Einstein in 1928 [14] that it should be possible to

image subwavelength features by placing a subwavelength aperture in close prox-

imity to a sample surface. Despite skepticism from Einstein, Synge later published

his idea [15]. The difficulty of implementing such a scheme was explained in 1956

by mathematician John O’Keefe, who proposed something similar [16]: ”The re-

alization of this proposal is rather remote, because of the difficulty of providing

for relative motion between the pinhole and the object, when the object must

be brought so close to the pinhole.” In 1972, Ash and Nicholls [17] implemented

this concept at microwave frequencies; the high wavelengths involved did not re-

quire small apertures or sensitive probe-sample distance control. This was the
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first demonstration of near-field imaging of electromagnetic waves. However, on

its own, the concept was not scalable to the optical domain, which would require

both apertures and probe-sample distances much smaller than the wavelength, on

the order of 100s of nm or less.

The true breakthrough in the possibility of near-field imaging at optical

wavelengths came in the early 1980s with the invention of scanning probe mi-

croscopy (SPM), which relies on a sensitive tip held close to a sample surface by

negative feedback on a tip-sample interaction. The early SPMs were the scanning

tunneling microscope (STM) and the atomic force microscope (AFM). STM, first

devised by Binnig and Rohrer of IBM in 1981 [18], uses electron tunneling from

conductive samples to measure the tip-sample height. AFM [19] works by feeding

back against the mechanical interaction between the tip and sample to maintain

a constant tip-sample distance. Since that time there have been a number of

new SPM modalities, including magnetic force microscopy and kelvin probe force

microscopy.

Optical near-field imaging was then independently developed by two teams,

one at Cornell [20, 21], and one at IBM-Zurich [22], producing the first optical im-

ages at siginficantly subwavelength resolution. Since then, a number of new appli-

cations and techniques in NSOM have been created. NSOM has been successfully

used for many purposes, including imaging of biological samples [21, 23, 24], testing

of photonic and plasmonic structures, materials characterization, and photolithog-

raphy [25].

1.1.2 Physical Principles and Engineering Design

The basic idea of confocal miroscopy, locally illuminating a sample one

point at a time, then scanning, is an important concept which also serves as the

insight behind NSOM. If one could focus a point of light to a spot smaller than

that given by the diffraction limit (or equivalently, collect light from such a spot),

it would seem possible to image with a resolution of that spot. However, diffraction

specifically dictates that no such spot can be formed in the far-field. To further

understand what happens when light strikes an object with subwavelength features,
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it is instructive to examine the angular spectrum representation [26] of optical

fields:

~E(x, y, z) =

∞∫∫
−∞

~̃E(kx, ky; 0)ei(kxx+kyy+kzz)dkxdky (1.3)

(1.3) means that a planar field distribution with a set of spatial frequencies

(kx, ky) will propagate to the z-plane with frequency kz. This propagator is subject

to the condition that:

k2
x + k2

y + k2
z = k2 =

(
2πn

λ

)2

, (1.4)

for medium refractive index n, which can also be written:

kz =

√(
2πn

λ

)2

− (k2
x + k2

y). (1.5)

Under normal imaging conditions, (k2
x + k2

y) < k, and the object propagates to

arbitrary z-planes. However, when the object plane contains sufficiently high spa-

tial frequencies (i.e. features smaller than the wavelength), the number under the

square root in (1.5) becomes negative, making kz imaginary. When inserted in

(1.3), it causes the spectrum to decay in the z-direction rather than propagate.

This piece of information is at the center of the near-field imaging, as it means that

information about subwavelength features still exists, in evanescent waves close to

the object surface. If one can place a sufficiently small aperture at a sufficiently

close distance (in order to minimize the effect of evanescent decay) to the object

plane, subwavelength imaging is feasible.

In short, the operation of an NSOM may be described in the following way.

A subwavelength optical probe scans over a surface at a close, typically constant

distance (h� λ), where it interacts with the near-field of the surface fields, causing

light to be coupled from the near-field into the far-field, where it is collected by

a detection system. When the NSOM is being operated in collection mode, the

sample is being excited while the probe couples light to the detection system. In

illumination mode the light is injected through the probe aperture to create a

nanoscale spot on the sample, and the detection system detects the light that is
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reflected or transmitted (which can further be divided into reflection mode and

transmission mode respectively. In some cases, for example the probe blocking

incoming or emitted light, the NSOM may be operated in illumination-collection

mode, where both the parts of the optical system run through the tip. It should

be noted that in principle, the illumination and collection modes are equivalent,

due to electromagnetic reciprocity. In practice, there may be functional reasons

for choosing one or the other. For instance, if high optical powers are required,

there is a risk of burning the probe due to high concentrations of field at the

metal-dielectric interface. In this work all experiments are done using collection

mode.

NSOM probes may generally be divided into apertureless [27] and aperture

designs. The apertureless design consists of a subwavelength particle, or an AFM-

type tetrahedral probe with a subwavelength tip, that radiates into free space,

where it may be collected by a lens. This style can exhibit very high resolution, but

the meanings of the images it produces may be unclear due to multiple-scattering

effects, and because of the wide-field collection necessary it is subject to siginficant

noise. The more common design, discussed in this thesis, is the aperture probe,

which is a subwavelength aperture in a metal film. The metal film must be thicker

than the skin depth of the metal at the wavelength of operation, so that the only

measured signal comes from light transferred through the aperture. Typically,

the aperture is formed at the end of a tapered metal-coated fiber (although some

designs use an aperture in free space), which may be fabricated by heating and

pulling [28, 29] or chemical etching [30]. After the taper is formed, metal is evapo-

rated to form the aperture. Apertures down to 20 nm may be fabricated by these

methods. When a field is coupled through the aperture, it conveniently enters the

fiber where it is accessible for NSOM analysis.

When the aperture is placed in an evanescent field, light is coupled through

it into the fiber or free space (or vice versa in the case of illumination mode). It is

well-known that an evanescent field carries no energy in the direction of decay, so

there must be some means to convert the near-field signal into a far-field signal.

The presence of the probe acts as a perturbation, with the sample near-field directly
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Figure 1.1: Tip-sample interaction potential V as a function of distance between
the two z. At intermediate range the Van der Waals attraction dominates, while
at short range the electrostatic repulsion dominates.

interacting with the tip near-field to couple to the fiber’s propagating modes. Due

to the subwavelength size of the aperture, very little light is transmitted through

it. According to the Bethe-Bouwkamp model of diffraction through small holes

[31, 32], T ∝
(
d
λ

)4
. This implies a rapid decline in transmission as one attempts

to improve the resolution by decreasing aperture size. In typical experiments,

this corresponds to a transmission on the order of 10−6 − 10−9. Therefore it is

important to use methods such as interferometry and avalanche detection as well

as high source power to increase available signal to detectable levels.

The probe is scanned across the surface at nanometric resolution. The scan

is actuated by a piezoelectric crystal, allowing sufficiently small steps such that the

resolution is limited by the probe rather than the scanner. The image is formed

by point-by-point recording of the field intensity (or other quantity of interest).

As it is scanned, the probe must be maintained at a constant height above the
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sample surface to prevent damage to either one. Since the sample may have an

uneven topography, this requires an active feedback mechanism. Although this is

occasionally done with electron tunneling as in STM, it is most commonly done

through atomic force feedback. When the probe is brought close to the surface,

molecular interactions between the tip and the sample are used to measure the

distance. A qualitative diagram of these interactions may be seen in Fig. 1.1. At

medium range, the Van der Waals force, which is attractive in nature, dominates

while at close range, the interaction is governed by the Coulombic electrostatic

repulsion (ESR). The ESR goes to infinity as the probe and sample get closer, so

it is essential that the probe be held where the net force is small. Of course, when

the probe is far away the probe-sample interaction goes asymptotically to 0.

There are a number of ways in which the force on the probe may be mea-

sured. In normal force feedback, the bent probe is mounted on a horizontal tuning

fork and oscillated vertically [33]. As the probe comes into contact with the sam-

ple, the resonance shifts due to the Van der Waals and electrostatic forces. In shear

force feedback, the probe is mounted on a vertical tuning fork and oscillated side to

side. Though the exact forces in this case are not well understood, likely candidates

include capillary action, friction, and viscous drag. In beam-bounce feedback, a

laser beam is reflected off the top of the probe, and its deflection off-center is

measured by a position-sensitive detector (PSD). The beam-bounce configuration

may be used to measure the probe resonance in a normal-force scheme, or it can

directly measure the deflection of the probe due to ESR. The former arrangement

is called ”tapping mode”, due to the probe oscillation, while the latter is called

”contact mode”, since the probe is in continuous rather than intermittent contact

with the sample. Although contact mode may offer higher signal strengths, the

strong-probe sample interaction may be damaging to one or the other.

The feedback signal (tuning fork resonance shift, beam deflection, etc.) is

connected to a control mechanism, typically a PID (proportional-integral-derivative)

controller. The controller drives a vertical scanner so as to hold the feedback signal

constant, thereby maintaining the tip at a constant height. Since the error signal

(the difference between present and target value of the feedback signal) reflects
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changes in the sample height, and therefore acts mostly as a derivative of the to-

pography, the integral value is generally highest, in order to ensure that responses

to rapid changes are held in place for a long time. Specific values of the PID multi-

pliers should be set for each individual probe according to control theory. At each

point in the scan, the tip height is adjusted to reflect the sample height, which has

the side benefit of producing a map of the sample topography in addition to the

optical quantities of interest. For aperture NSOM, the topography is generally not

as good as that measured by a purpose-built AFM, due to the width (∼300-500

nm) of the aperture tip which limits the mechanical resolution. Scattering-type

(apertureless) probes may see improved lateral resolution.

1.2 Integrated Photonics

The notion of integrated photonics comes from two major technological

advances: electronic integration and photonic telecommunications. Electronic in-

tegration began with the invention of the transistor [34] by Shockley and his team

at Bell Labs, for which they were later awarded the Nobel Prize. This allowed

logical operations to be performed in electronics completely in the solid state. The

next fundamental step in this area was the invention of the integrated circuit [35],

primarily developed by Jack Kilby at Texas Instruments, for which he too was

awarded the Nobel Prize. Integration revolutionized computing by enabling many

electronic components, including transistors, to be packaged on a single chip, in an

automated and repeatable fashion. Large-scale integration led to major progress

in computing power, while automation substantially brought down the cost of

computation. In 1965, Intel founder Gordon Moore predicted [36] that transistor

density on silicon chips would double every 18 month’s. Moore’s Law has been

consistently upheld, and indeed the doubling time has even dropped to about 1

year, although many experts believe it is reaching its limits due to on-chip heat

generation and quantum tunneling effects.

Around the same time came the development of photonic communication.

In principle communicating at optical rather than radio frequencies is preferable,
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as it allows higher bandwidth. Since free-space communication is impractical due

to line-of-sight restrictions, long-distance optical waveguides were required. Al-

though the concept of dielectric wave guiding by total internal reflection had been

known since the mid-19th century, innovations in the 1930s and 40s developed the

idea of using a thin glass rod coated with a lower-index cladding. Initially optical

fiber was developed for medical imaging, for which their 1 dB/m loss was accept-

able, but unusable for telecommunication. In the 1960s, Charles Kao of Standard

Telecommunications Lab in the UK demonstrated [37] that these losses were due

to impurities in the glass rather than the glass itself, a realization which began the

fiber optic communications revolution.

The success of these two areas has led to a great deal of interest in integrat-

ing photonics on chip, in particular using the standard CMOS processes already

available to industry at low cost. Photonic integration has the capacity to trans-

fer large optical systems composed of many bulky optical components onto single

chips, reducing footprint and improving predictability and repeatability. Addition-

ally, adding photonic components to microelectronics may be useful in increasing

speed and decreasing heat generation, helping to forestall the decline of Moore’s

Law. Silicon photonics [38], first suggested by Soref [39] takes advantage of sili-

con’s low absorption in the near-infrared and leverages the existing infrastructure

used for microelectronics to create the next generation of photonic devices.

1.3 Near-Field Measurements of Integrated Pho-

tonics

The development of integrated photonic devices, in particular at the in-

dustrial scale, requires reliable testing and characterization methods to determine

device functionality and performance, as well as understand the physics of various

designs. In many cases the standard for characterization is transmission and reflec-

tion testing using bench-top fiber and free-space measurement systems. Although

this kind of far-field ‘black box’ testing is very useful for determining whether a

photonic circuit works as designed, and often for quantitatively characterizing the
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degree to which it works, it lacks the ability to measure local properties, and thus

frequently cannot determine why a device does not work, or isolate a problematic

component in a system. The ‘cutback’ method, in which portions of the chip are

successively removed and measurements taken at each one, has had some success

[40], but has numerous disadvantages such as destroying the chip, not allowing

‘in-situ’ characterization of the final device, consuming a considerable amount of

time, and requiring realignment of the optical system for each measurement which

may not be identical. Additionally, it does not offer the opportunity to image the

fields as they propagate.

Near-field microscopy offers an opportunity in this regard. Light propa-

gating in a waveguide or waveguide-based device has an evanescent field at each

core-cladding boundary. This means that where the top is accessible, the NSOM

probe can be used to access this evanescent field. If we take the evanescent field

to be representative of the confined field as a whole (in terms of relative magni-

tude, phase, etc.) it offers a useful insight into device operation. When the probe

is placed at a distance from the waveguide much shorter than the decay length,

some of the evanescent field couples into the probe and the detection system. Even

though the Poynting vector of the field is typically along the waveguide (i.e. per-

pendicular to the probe), there is an exponential decay in the direction parallel

to the probe that can be coupled by scattering into the optical fiber. This phe-

nomenon is inherently perturbative, as the presence of the probe affects the mode

propagation due to scattering, but this perturbation occurs ‘downstream’ from the

probe, so for non-resonant devices the NSOM image can be taken to be a reliable

representation of the field in absence of the probe [41].

Although fabrication and simulation technology has improved steadily, nu-

merous defects such as etch roughness, proximity effect, and under-etching con-

tribute in unpredictable or poorly quantifiable ways to integrated photonic device

performance, making their incorporation into simulations impractical. Therefore,

local characterization techniques are necessary to fully understand device oper-

ation and properties. First explored by Choo et al. [42] and Toda et al. [43],

NSOM characterization of waveguide-based devices is now a well-established tech-
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nique [44, 45, 46]. In addition to simple channel waveguide structures, this mode

of NSOM, known as photon scanning tunneling microscopy (PSTM) [47], can also

be used for photonic crystal [48, 49] and plasmonic waveguides [50, 51], as well as

any number of guided-wave devices.

In this dissertation we make use of a heterodyne NSOM (H-NSOM) which

has the capability of imaging phase. This technique was first introduced by Phillips

et al. in 2000 [52] using a pseudoheterodyne Mach-Zehnder interferometer, and

soon expanded to a full heterodyne arrangement [53, 54, 55]. With the sample

and NSOM tip placed in the signal arm of a Mach-Zehnder interferometer, with

a modulated external reference as the other arm, it is possible to quantitatively

detect phase, and the SNR increases substantially, for reasons explained in Section

2.2. Using short-pulse lasers [56], or low-coherence sources [57], H-NSOM is ca-

pable of doing time-resolved measurements. It can also fully characterize complex

polarization [58] and even magnetic field [59]. Although here we principally discuss

aperture NSOM, it should be noted that the heterodyne setup can be applied to

apertureless NSOM as well [60].

1.4 Organization of the Dissertation

This dissertation discusses characterization of integrated photonic devices

and introduces the technique of heterodyne near-field imaging under liquid cladding.

It presents several structures and describes their design and fabrication, explains

how NSOM can be applied to characterize them, and shows how the NSOM data

can be effectively analyzed. The disseration is organized as follows:

Chapter 2 describes the NSOM setup in detail and discusses the behavior

of the heterodyne interferometer.

Chapter 3 discusses a novel asymmetric mode converter. After describing

the concept of the device, we present maps of the near field and introduce Fourier

analysis of the complex field.

Chapter 4 introduces the new technique of near-field imaging of amplitude

and phase in a liquid-clad structure, using silicon waveguides as a model system.
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Experimental considerations necessary to the device design and microscope setup

are analyzed, and measured data are presented to validate and justify the tech-

nique.

Chapter 5 presents near-field images of long range surface plasmons, enabled

by the liquid cladding method. Once again, the necessary considerations for device

design to accomodate the measurement are presented, as well as measured data

and detailed analysis.

Chapter 6 concludes the dissertation with a summary of contributions.

Chapter 7 suggests future directions for research to follow what has been

presented here.



Chapter 2

Experimental Setup

2.1 NSOM System

All experiments in this thesis were performed with a Nanonics NSOM head

and SPMD-260 controller, which is run using Nanonics NWS (NanoWorkShop)

software. The work done with NSOM in a liquid environment uses the Nanonics

MV-1000 head with liquid cell, while the work without any liquid uses the Nanonics

MV-2000 head. The MV-1000 uses beam-bounce normal-force feedback without

any tuning fork and it is operated in tapping mode, based on the mechanical

resonance of the probe itself. The MV-2000 also uses normal-force feedback in

tapping mode, but the probe is mounted on a piezoelectric tuning fork, which

returns the mechanical oscillation amplitude to the controller via a pair of magnetic

metal contacts which also attach the probe mount to the head. The probes are

bent fiber aperture probes supplied by Nanonics Imaging, Ltd, constructed from

single-mode (SMF-28) optical fiber with a gold coating and a chromium adhesion

layer. Aperture sizes range from 50 nm to 250 nm, though most experiments

are done with apertures between 150 and 200 nm, which empirically provide a

reasonable balance between resolution and SNR (signal-to-noise ratio).

X-Y scanning is done by 2 pairs of piezoelectric crystals which each of a

range of ∼ 35µm, for a total scan distance of ∼ 70µm, with either axis being

allowed to be the fast or slow axis. On the MV-1000 the sample is scanned, while

on the MV-2000 the tip is scanned. Another ∼ 35µm piezo scanner raises and

14
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Figure 2.1: Diagram of the heterodyne interferometer. NSOM in signal arm.
Signal and reference arms acousto-optically modulated at slightly different fre-
quencies. Difference frequency used as reference for lock-in amplifier.

lowers the tip according to the feedback gains to accomodate the topography of

the sample. The head performs a raster scan of the sample, collecting topographic

and optical data at each point in the scan through the data translation box. The

images are then reconstructed point-by-point in software. MATLAB code was

written to plot and analyze the images produced by the NWS software.

2.2 Heterodyne Interferometer

The NSOM probe is integrated into a heterodyne interferometer [61], in

order to allow phase acquisition, and improve measured SNR. The setup is shown

in Fig. 2.1. The source is a laser at 1550 nm, which is split into a signal and

reference arm by a 2x2 90:10 coupler. The asymmetry in coupling strengths is

chosen due to the low optical power transmitted through the tip. On each arm

the splitter is connected to an acousto-optic modulator (AOM), one at 40.00 MHz,

the other at 40.07 MHz. The two AOMs are driven by a common-phase RF

dual frequency generator, which also outputs reference signals at those frequencies

connected to an RF mixer. The 70 kHz difference frequency signal from the mixer

serves as a reference for the lock-in amplifier.

On the reference arm, after the AOM there is a set of polarization paddles,

which can be used to align the reference polarization with that of the signal from

the tip for maximum interferometric intensity. There is also a variable delay line
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which may be used for low-coherence time-resolved NSOM measurements. On the

signal arm, the light proceeds from the AOM to a set of polarization paddles, which

is used to align the incoming signal polarization with the linear polarizer which

follows, to insure that the input field is in a linearly polarized state; the fiber

is mounted in a chuck which may be rotated to vary this polarization between

horizontal and vertical. The light then enters the sample, where it propagates

partway through, and is then picked up by the near-field tip into another optical

fiber. The near-field signal from this fiber is then interferometrically mixed with

the reference in a 99:1 2x2 coupler, with the ratio chosen due to low near-field

signal strength. The superposed fields strike a Laboptic DPT100FC-15V insert

detector detail here photodector, the output of which is used as the input of a

lock-in amplifier. The amplitude and phase are taken from the lock-in amplifier

and read into the computer via the NWS software.

In order to understand the behavior of the heterodyne detection system in

relation to the NSOM, we now mathematically derive the photodetector signal as

a function fo the input field paramters. Before the AOM, the field on the reference

arm at time t may be modeled as:

Eri(t) =
√
Irie

i(ωt+φri), (2.1)

where Iri is the initial field intensity, ω = 2πc
λ

is the frequency, and φri is an

arbitrary phase shift. The AOM then shifts the frequency by ∆ωr = 40.00 MHz,

using the Doppler shift of the first order of a moving acoustically-induced Bragg

grating. This gives a reference field:

Er(t) =
√
Ire

i((ω+∆ωr)t+φr). (2.2)

We have changed the notation for the intensity and phase here to reflect the loss

and phase shift due to the AOM and fiber, but it will be seen that these are of no

consequence in the final result. We may follow a similar derivation to obtain the

field on the signal arm:

Es(x, y, t) =
√
Is(x, y)ei((ω+∆ωs)t+φs(x,y)). (2.3)
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Note that the signal intensity and phase (and thus the field) are now functions of

the tip position (x, y). It is of course expected that the field will vary over the area

of the scan.

The fields of the two arms are then superposed by the coupler, which gives

an interference intensity:

I(x, y, t) = |Er + Es|2 (2.4)

= |Er|2 + |Es|2 +
√
Ir
√
Ise

i((∆ωs−∆ωr)t+φs−φr(x,y)) + c.c. (2.5)

= Ir + Is(x, y) +
√
IrIs(x, y) cos((∆ωs −∆ωr)t+ φs(x, y)− φr) (2.6)

This signal is then coupled into the photodetector, with responsivity R, which

converts the intensity into a voltage:

V (x, y, t) = Vbg +R
√
IrIs(x, y) cos((∆ωs −∆ωr)t+ φs(x, y)− φr) (2.7)

Here the first two terms in (2.4) are rolled into a background voltage Vbg, since the

lock-in amplifier selects out the term which are at its reference frequency. It can

be seen that the two slightly different optical frequencies of the two arms subtract

to form an RF beat frequency, 70 kHz in this case. The reference frequency put

out by the mixer is the difference between the modulation frequencies of the two

arms ∆ω = (∆ωs−∆ωr), identical to the frequency of the final term in (2.7). The

lock-in amplifier therefore reports the amplitude and phase of this cross term. At

any given point (x, y) the amplitude is proportional to the field amplitude (square

root of the intensity) Is(x, y) coupled by the tip, with the proportion being given

by the detector responsivity, the reference field amplitude, and the loss in the

fiber and components. The phase is given as φs(x, y) − φr, also as a function

of the tip position. This is the signal phase relative to a constant reference φr;

the reference phase is not important as we are only concerned with the relative

phases at different points in the scan. Therefore the heterodyne NSOM allows

simultaneous acquisition of topography, amplitude and phase.

In addition to phase-imaging capability, the heterodyne setup also provides

the NSOM with an increase in signal power. Since photodetectors only measure

the intensity, if the tip were connected directly to the detector, the voltage would
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be proportional to Is, which as established in 1.1.2 is quite small due to low tip

transmission. However the heterodyne setup measures the field amplitude
√
Is,

meaning it drops with decreasing aperture diameter (and therefore increasing res-

olution) according to d−2 rather than d−4 as in the intensity case. Additionally,

the multiplication by the reference field amplitude
√
Ir provides an additional

gain. Overall the interferometer provides a gain of
√

Er
Es
∼ 104 over the non-

interferometric case. Furthermore, the lock-in amplifier provides gain according

to the chosen sensitivity, but this gain also amplifies electronic noise that occurs

between the detector and the amplifier.

We now discuss the noise performance and accuracy of the detection system,

principally following the analysis presented in [62]. The SNR of the detection

system may be written:

SNR =
PAC

PSN + PTN
, (2.8)

where PAC is the total AC signal power at the detection frequency (determined by

the square of the interference cross-term in (2.7)), PSN = 2eBSPoptR0 is the shot

noise power due to the quantization of the electric charge (for bandwidth B, sensi-

tivity S, optical power Popt, and detector resistance R0) and PTN = d4kBTB is the

Johnson (thermal) noise power due to thermal fluctuations of the electrons (where

kB is Boltzmann’s constant, and T is temperature). Since the shot noise power is

proportional to the incident optical power on the detector, Popt = Pr + Ps (sum of

the reference and signal arm powers), if the power is sufficiently high the detection

will be in the shot noise limit, which is desirable as it asymptotically maximizes

the SNR. Generally we have Pr � Ps, so the shot noise power is dominated by

the reference arm. Here the interferometric setup is advantageous as the reference

power may be tuned to put the system into the shot noise limit, as long as it does

not saturate the detector or data acquisition system. In practice, this setup does

operate in the shot noise limit [62].

Knowing the SNR, we may determine the errors in the amplitude and phase

reported by the lock-in amplifier. The relative standard deviation of the relative
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amplitude, calculated in terms of the signal and noise currents iN and iAC , is:

∆V

V
=

√
i2N

i2AC
=

1√
SNR

. (2.9)

It can also be shown that the absolute standard deviation in the phase due to noise

can be written:

∆φ =
1√
SNR

(2.10)

This of course is identical to the relative amplitude error given in (2.9). Empirically,

typical power SNR for this system, measured according to the voltage, is on the

order of 50 dB. This corresponds to a phase deviation of approximately .2◦ due

to electronic noise. However, larger variations may be observable due to thermal

fluctuations and drift of the coupling fiber. The effect of phase drift is treated

further in Subsection 4.4.1



Chapter 3

Asymmetric Mode Converter

Validated by NSOM

3.1 Background

The breaking of time-reversal symmetry of light is typically achieved with

magneto-optical materials that introduce a set of antisymmetric off-diagonal di-

electric tensor elements [63, 64] or by involving nonlinear optical activities [65, 66].

However, practical applications of these approaches are limited for the rapidly

growing field of silicon (Si) photonics because of their incompatibility with conven-

tional complementary metal-oxide-semiconductor (CMOS) processing. Si optical

chips have demonstrated integrated capabilities of generating [67, 68, 69, 70, 71],

modulating [72], processing [73] and detecting [74] light signals for next-generation

optical communications but one component which has not been demonstrated is

an asymmetric mode converter.

Parity-time (PT) symmetry is crucial in quantum mechanics. In contrast

to conventional quantum mechanics, it has been proposed that non-Hermitian

Hamiltonians where Ĥ 6= Ĥ† can still have an entirely real spectrum with respect to

the PT symmetry [75, 76]. Due to the equivalence between the Schrdinger equation

in quantum mechanics and the wave equation in optics, PT symmetry has been

studied in the realm of optics with non-Hermitian optical potentials [77, 78, 79].

20
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The breaking of PT symmetry has recently been experimentally observed, showing

asymmetric characteristics transverse to light propagation above the PT threshold

[80, 81]. Here, we have designed a Si waveguide integrated with complex optical

potentials that have a thresholdless broken PT symmetry along the direction of

light propagation.

3.2 Theory

On a Si-on-insulator (SOI) platform, the designed two-mode Si waveguide is

200 nm thick and 800 nm wide, allowing a fundamental symmetric quasi-TE mode

with a wave vector of k1 = 2.59k0 and a higher-order antisymmetric mode with

a wave vector of k2 = 2k0 at the wavelength of 1.55 µm. Periodically arranged

optical potentials are implemented in the Si waveguide and occupy half of the

waveguide width in the x direction (Fig. 3.1(a)). The optical potentials have a

complex modulation in their dielectric constants along light propagation in the z

direction compared with the Si waveguide background (εSi = 12.11), as shown in

Fig. 3.1(b)

∆ε = eiq(z−z0) (3.1)

where q = k1 − k2, and z0 is the starting point of the first modulation region.

This complex exponential variation of ∆ε along the z direction introduces a one-

way wave vector that is intrinsically asymmetric because its corresponding Fourier

transform is one-sided to the guided light inside the Si waveguide. These complex

optical potentials are located in phase with each other with a spacing of 2π/q (or

multiples of 2π/q ) in between, such that light modulation always remains in phase

with and is consistently applied to guided light. We chose the dielectric constant

modulation to be completely passive in order to make the experiment easier to per-

form, meaning that the modulation length of each optical potential is π/q. There-

fore, no gain is required to construct these optical potentials. From a quantum me-

chanics analysis, these optical potentials have a spontaneously broken PT symme-

try with a non-Hermitian Hamiltonian Ĥ†(x, z) 6= H(x, z) or Ĥ†(x,−z) 6= H(x, z) ,

suggesting noncommutative binary operations to the Hamiltonian PTĤ† 6= ĤPT .
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In our system, this is observed as asymmetric mode conversion through the optical

potentials in the Si waveguide.

More intuitively, the introduced one-way wave vector q shifts the incoming

photons of the symmetric mode with an additional spatial frequency: k1 + q for

forward propagation and −k1 + q for backward propagation. The mode transition

between the symmetric mode and the antisymmetric mode can happen only when

the phase-matching condition is approximately satisfied ∆k = ±(k1− k2) + q ≈ 0,

where + and - represent forward and backward propagation, respectively. In our

case, for an incoming symmetric mode the phase-matching condition is only valid

in the backward direction, supporting a one-way mode conversion from k1 to k2

(Fig. 3.1(c)). In the modulated regime, the electric field of light is given by:

E(x, z, t) = A1(z)E1(x)ei(k1z−ωt) + A2(z)E2(x)ei(k2z−ωt) (3.2)

where E1,2(x) are normalized mode profiles of two different modes, and A1,2(z) are

the corresponding normalized amplitudes of two modes, respectively. Assuming

a slowly varying approximation, the coupled-mode equations can be expressed as

follows:

d

dz
A1(z) = −iB1 exp(−iqz)A1(z)− iC1A2(z)

d

dz
A2(z) = −iC2 exp(−i2qz)A1(z)− iB2 exp(−iqz)A2(z) (3.3)

for forward propagation and

d

dz
A1(z) = iB1 exp(−iqz)A1(z) + iC1 exp(−i2qz)A2(z)

d

dz
A2(z) = iC2A1(z) + iB2 exp(−iqz)A2(z) (3.4)

for backward propagation, where B1 = 1
2k1

ω2

c2

∫
E∗

1
(x)E1(x)dx∫
|E1(x)|2dx , C1 = 1

2k1
ω2

c2

∫
E∗

1
(x)E2(x)dx∫
|E1(x)|2dx ,

C2 = 1
2k2

ω2

c2

∫
E∗

2
(x)E1(x)dx∫
|E2(x)|2dx , and B2 = 1

2k2
ω2

c2

∫
E∗

2
(x)E2(x)dx∫
|E2(x)|2dx . The mode transition can

happen only when the phase-matching condition is satisfied as the exponential

term disappears because exp(−i∆kz) = 1. Therefore, it is evident that with an

initial condition of A1 = 1 and A2 = 0, photons from the symmetric mode can

be converted to the antisymmetric mode only for backward propagation, whereas
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(a)

(b)

(c)

Figure 3.1: (a) Asymmetric mode conversion in a silicon photonic device, in the
”ideal” design . Based on a SOI platform, PT optical potentials with exponen-
tially modulated dielectric constants, as depicted in (B) where blue and red curves
represent the real and imaginary parts of ∆ε, respectively, are embedded in the Si
waveguide to introduce an additional wave vector q to guided light. (c) Band dia-
gram for TE-like polarization of the Si waveguide, where the frequency and wave
vector are normalized with a = 1µm. At the wavelength of 1.55 m, if incoming light
is a fundamental symmetric mode, one-way mode conversion is only expected for
backward propagation where the phase-matching condition is satisfied as indicated
by arrows.
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A2 remains 0 for forward propagation, indicating negligible mode conversion. The

asymmetric nature of the mode transition here results from the spontaneous break-

ing of the PT symmetry of guided light by the engineered complex optical poten-

tials. It is worth emphasizing that this unidirectional mode transition is always

valid with any modulation intensity, indicating a completely thresholdless break-

ing of PT symmetry (22), in stark contrast to previous work on threshold PT

symmetry breaking (20, 21).

Fully vectorial three-dimensional (3D) finite element method simulations

have been performed to validate the proposed asymmetric propagation of guided

light at the telecom wavelength of 1.55 µm. With a TE-like symmetric incident

mode, after forward propagating through the PT optical potentials where ∆ε fol-

lows the exponential modulation, guided light does not meet any phase-matching

condition with the additional wave vector q and therefore retains the same sym-

metric mode profile. However, for backward propagation, it is evident that the

antisymmetric mode is converted from the incoming symmetric mode due to the

phase matching with the additional wave vector q, showing a one-way mode tran-

sition (Fig. 3.1(a)). The asymmetric mode conversion can also be analytically

calculated using the coupled-mode theory from (3.3) and (3.4), consistent with the

simulated results.

3.3 Design and Implementation

However, the approach so far demonstrated to create the exponentially mod-

ulated ∆ε [81] is difficult to integrate with Si photonics. It is therefore necessary to

design an equivalent guided-mode modulation that at a macroscopic scale mimics

the intrinsically microscopic exponential modulation of the PT optical potentials.

To simplify fabrication, each complex exponential modulation is separated into two

different modulation regions: one providing only the imaginary sinusoidal modu-

lation of the dielectric constant covering one transverse half space (bottom) of the

waveguide, and the other creating the real cosine modulation occupying the other
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(a)

(b)

(c)

Figure 3.2: Evolution of PT optical potentials in the Si waveguide (top) and
their corresponding field distributions of Ex for forward (middle) and backward
(bottom) propagation with an incoming symmetric mode. (a) Original PT optical
potentials with exponentially modulated dielectric constant. (b) Two different
kinds of optical potentials with real cosine and imaginary sinusoidal modulated
dielectric constants. (c) Optical potentials with the real part modulation in (B)
are shifted π/2q in the z direction.
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transverse half space (top) of the waveguide (Fig. 3.1(b)), as follows:

∆εreal = − cos[q(z − z0)]

∆εimag = i sin[q(z − z0)] (3.5)

Although individual sinusoidal or cosine modulation does not contribute to the

breaking of PT symmetry, simultaneous modulations of both cause an equivalent

one-way mode transition. Guided light in different half spaces experiences com-

plementary mode modulation from each other and therefore behaves as if the PT

optical potentials do exist. Moreover, to have only the positive ∆εreal of the mod-

ulations for ease of fabrication, regions of ∆εreal are shifted π/2q in the z direction:

∆εreal = sin[q(z−(z0+π/2q)] (Fig. 3.2(c)). The resulting one-way mode transition

of guided light consequently remains the same.

Finally, to achieve sinusoidal optical potentials using microscopically ho-

mogeneous materials, sinusoidal-shaped structures are adopted on top of the Si

waveguide for both real and imaginary modulations to mimic the modulations de-

scribed in (3.5) (Fig. 3.3(a)). An 11-nm germanium (Ge)/18-nm chrome (Cr)

bilayer structure is applied for the imaginary modulation ∆εimag as guided modes

have the same effective indices as ∆ε = i. For the real modulation ∆εreal, an

additional 40-nm Si layer on top of the original Si waveguide achieves the same

effective indices of guided modes as ∆ε = 1. The length, period, and locations

of these sinusoidal shaped structures follow those in Fig. 3.2(c). The designed

sinusoidal-shaped structures have almost the same effective indices of the waveg-

uide modes, as if the real and imaginary function-like modulations exist in the

waveguide (Fig. 3.3(b) and (c)), such that the same unidirectional wave vector q

can be introduced. Therefore, an equivalent one-way mode transition is realized, as

shown in Fig. 3.3(d): Forward propagating light remains in the symmetric profile,

whereas mode conversion from the symmetric mode to the antisymmetric mode

exists for backward propagation. It is thus evident that our classical waveguide

system successfully mimics the quantum effect inherently associated with a broken

PT symmetry. Overall, at different steps of the evolution of PT optical potentials

from Fig. 3.2 to Fig. 3.3, guided light exhibits almost identical phase and intensity

for both forward and backward propagation, further proving the equivalence of our
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(a)

(b) (c)

(d)

Figure 3.3: (a) Design of the metallic-Si waveguide to mimic the light modulation
of PT optical potentials. (b) Effective indices of symmetric and antisymmetric
modes with the imaginary part sinusoidal-modulated optical potential (red lines)
and the sinusoidal-shaped Ge/Cr bilayer structure (blue dots). (c) Modes effective
indices with the real part sinusoidal-modulated optical potential (red lines) and
the sinusoidal-shaped Si structure (blue dots). Insets in (b) and (c) show the
considered waveguide, and z starts from where modulation begins. (d) Numerical
mappings of Ex for forward (upper) and backward (lower) propagation with an
incoming symmetric mode.
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(a)

(b)

Figure 3.4: (a) Scanning electron microscope image of the fabricated device. (b)
Measured near-field amplitude distribution of light in the one-way mode converter
for both forward (upper) and backward (lower) light propagation.

classical design to the quantum PT potentials for guided light.

3.4 Experimental Results

A picture of the fabricated device is shown in Fig. 3.4(a). The light prop-

agation in the Si waveguide was observed using the H-NSOM. In experiments, a

tapered fiber was used to couple light into the waveguide. Although the funda-

mental symmetric mode is dominant in incidence, there also exists some power

coupled to the antisymmetric mode as shown in Fig. 3.4(b). Consistent with

simulations, light remains predominantly the fundamental symmetric mode after

propagating through the optical potentials for forward propagation. However, the

symmetric-mode-dominant incoming light in backward propagation clearly shows

mode conversion to the antisymmetric mode after the device. It is therefore evident
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that one-way mode conversion has been successfully realized in CMOS-compatible

Si photonics. Although the insertion loss of about 7 dB is observed through the

optical potentials, it can be completely compensated by incorporating gain into the

imaginary part modulation of the PT optical potentials in (3.1) and eqrefdielectric-

modulation. The excited antisymmetric mode can be removed in transmitted fields

by implementing, next to the PT optical potentials, an optical mode filter that

completely reflects the antisymmetric mode but allows the symmetric mode to

transmit. However, it should be noted that the mode conversion efficiency in one

direction is equal to the mode attenuation in the other.

We can further confirm the one-way mode conversion effect by taking advan-

tage the phase data collected by the H-NSOM and applying a Fourier transform to

look at the modal spectrum. This allows us to examine the behavior of the modes

independently as they pass through the device. The center of Fig. 3.5 shows the

amplitude A multiplied by the sine of the phase φ to obtain a representation of

the field A sinφ. Although this is of course a purely real quantity, it provides some

intuition into the complex field behavior.

The proposed one-way system is completely linear and expected to have

higher efficiencies and broader operation bandwidths than nonlinear strategies.

The text of this Chapter, in part or in full, is a reprint of the material as it

appears in the following journal publication:

Liang Feng, Maurice Ayache, Jingqing Huang, Ye-Long Xu, Ming-Hui Lu, Yan-

Feng Chen, Yeshaiahu Fainman, and Axel Scherer. Nonreciprocal light propagation

in a silicon photonic circuit. Science (New York, N.Y.), 333(6043):729–33, August

2011

The dissertation author was a primary co-investigator and co-author of this

paper. The other authors assisted and supervised the research.
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Figure 3.5: Experimental mappings of electric field A sinφ for both forward (up-
per) and backward (lower) propagation, and their corresponding Fourier transforms
before and after the device.



Chapter 4

Near-Field Measurement of

Amplitude and Phase in Silicon

Waveguides with Liquid Cladding

4.1 Introduction

Photonic integrated circuits are typically coated with a solid overcladding to

improve symmetry, protect the sample, and allow deposition of successive layers.

Near-field characterization of such circuits must be done without the cladding

since it prevents the NSOM probe from accessing the evanescent fields at the core-

cladding boundary. With no cladding, however, numerous devices lose or change

their functionality, making such characterization deviate from the performance of

the final device. Here we demonstrate a technique that allows optical near-field

characterization of devices while preserving their optical properties. To do so, a

liquid cladding is introduced to emulate the actual cladding of the final operational

device while allowing the probe to sample the fields at the core-cladding boundary

for NSOM analysis. NSOM has previously been applied in a liquid environment

for characterization of biological samples [82, 83, 84]. A significant contribution

was made by Ji et al. [85] who used the NSOM to measure the intensity profile

of a waveguide with a liquid overcladding. However, to date there has been no

31
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heterodyne near-field imaging of a waveguide with a liquid overcladding, which is

essential due to the effect of cladding on phase.

In this experiment we measure amplitude and phase of air- and liquid-clad

waveguides in the near-field, then use Fourier analysis of the complex field to ob-

tain the effective index difference between them. To the best of our knowledge this

is the only H-NSOM technique that allows characterization of complex photonic

circuits in their final form, as a part of the fabrication and validation process.

As a proof-of-concept, we consider a silicon waveguide, resting on top of a silicon

dioxide substrate, with a liquid cladding. Such a configuration serves as a canon-

ical example for many chip-scale device and circuit designs in numerous material

systems.

4.2 Liquid NSOM

Characterization of the waveguide is done with a liquid-capable heterodyne

near field microscope (H-NSOM) . Rather than the MV-2000 head we used before,

here we use a Nanonics MultiView (MV) 1000 (see Fig. 4.1) with a liquid cell

module which enables full probe and sample immersion in a liquid environment.

This permits simultaneous acquisition of topographic and optical data. The MV-

1000 uses the beam-bounce feedback discussed in Subsection 1.1.2, and in this

experiment we operate in tapping mode with the beam deflection used to measure

the mechanical oscillation of the probe. The sample is mounted in a liquid cell

sealed with a rubber gasket. When the liquid is transferred to the bath, it must

form a meniscus high enough to immerse not just the sample, but the probe as

well. Full immersion of the probe is necessary to prevent it from feeding back on

the liquid-air interface, or from the resonance properties changing as the probe

enters the liquid. Because of the nature of the feedback system, the head must be

based on sample-scanning, as opposed to tip-scanning, to avoid having to scan the

entire optical system in tandem with the probe. This makes it impossible to use

a static optical fiber for coupling. Instead, in order to preserve alignment during

sample motion, the fiber must be rigidly bound to the waveguide. A method for



33

(a) (b)

(c) (d)

Figure 4.1: Nanonics MV-1000 head. (a) Top view of the head. (b) Head while
open, with mounted probe fiber exiting to right. During scanning, sample moves
underneath fixed tip. (c) Liquid cell module where tip is mounted. The walls of
the bath allow full tip and sample immersion in the liquid. (d) Liquid-capable
probe mount. Conical shape allows damping of probe induced oscillation in the
liquid.
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doing so will be detailed later.

The presence of the liquid causes a number of mechanical and optical ef-

fects which influence the mechanical performance of the probe, chief among them

damping and noise. The effects of damping may be understood by considering the

probe as a standard mechanical resonator in the ”mass on a spring” model. This

model is described by the differential equation:

d2x

dt2
+
γ

m

dx

dt
+
k

m
x− F = 0. (4.1)

Here x = x0e
iωt is the probe position describing oscillation at frequency ω, F =

F0e
iωt is the applied oscillation force, γ is the damping due to the liquid, k is the

probe spring constant, and m is the probe mass. By defining ω0 as the undamped

resonance frequency of the probe, we can solve for its frequency response:

x0 =
1

m

F0

(ω2 − ω2
0)− iγω

(4.2)

The damping γ broadens the resonance, to a width of 2γ, and brings down its

peak value by a factor of γ. This causes the probe to oscillate less strongly at its

peak frequency, as well as to be less responsive to changes in the resonance due to

contact. Thus the gain must be increased which may have the effect of increasing

unwanted oscillation. Because of the slowed response of the probe in the liquid,

the damping also causes the resonant frequency to drop to
√
ω2

0 − 2γ2. The liquid

also introduces unwanted noise due to its stronger ability to conduct mechanical

waves as a result of its higher density as compared to air. As a result, many new

mechanical resonances are introduced due to the multiple interactions between the

probe and the environment through the liquid. The liquid can also conduct waves

induced by the probe oscillation itself through the bath and back to the probe.

The probe mount for the MV-1000, as seen in Fig. 4.1(d), thus has a partial cone

shape designed to damp these oscillations. However, one must be careful to select

the correct the correct resonance based on the strength of the probe response, the

resonance width, and its freqency relative to the probe frequency in air.

The optical properties of the liquid also come into play for detection of the

mechanical oscillation. The laser that is reflected off of the top of the probe must

now pass through the liquid. The beam strikes the first mirror and is reflected
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(a) (b)

(c) (d)

Figure 4.2: Top figures show the designed refractive index distribution of the
waveguide in cross-section for both (a) air and (b) water overcladding. Bottom
figures show the electric field distributions, calculated by finite element analysis,
of the quasi-TM mode for the corresponding overcladdings ((c) air and (d) water).
This mode has a large vertical penetration depth, permitting the NSOM probe
access to a significant portion of the optical power.

down through the window and into the liquid. At this point there is a Fresnel

reflection due to the index mismatch between the glass of the window and the

liquid. However, this reflection is smaller than in air, so the loss due to reflection

is reduced. The same phenomenon occurs as the beam exits the bath through the

window. However, there is an increased loss in the beam due to absorption and

scattering in the liquid. Furthermore, the beam must be focused onto the probe in

air, so introducing the liquid causes a small defocusing effect, once again reducing

the optical power reflected from the probe onto the second mirror and eventually

onto the PSD. In practice, the sum of all these effects causes less optical signal to

be reflected onto the PSD, necessitating a higher gain of the photodetector signal.
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4.3 Sample Design and Fabrication

The sample, as designed, is a 500 nm wide by 250 nm tall silicon (n =

3.48) channel on top of a SiO2 (n = 1.46) substrate. The designed cross-sections

are displayed with their refractive index distributions, for both air (n = 1) and

water (n = 1.33) overcladdings in Fig. 4.2(a) and (b). In order to estimate

the results of the experiment, we numerically simulate this structure in cross-

section according to the design parameters with commercial finite element software

(COMSOL Multiphysics RF module). The simulation returns the field distribution

as well as the effective index of the hybrid quasi-TM mode of the designed structure,

for both air and water overcladdings. The results of the simulation are shown in

Fig. 4.2. Although the field is predominantly localized in the silicon core, the

distribution of the quasi-TM mode demonstrates low confinement in the vertical

direction, making it favorable to NSOM characterization. The simulation returns

the effective index for both cases, defined as

neff =
k

k0

, (4.3)

for a field propagating in the x direction as

E(x, y, z) = f(y, z)expi(kx−ωt). (4.4)

The simulation gives neff = 1.84 for air overcladding, and neff = 1.95 for water

overcladding. This constitutes a shift of .11 for the silicon waveguide.

Water is optically lossy in the near-infrared wavelength regime, and we can

learn the effect of this absorption by including its complex refractive index in the

simulation. The imaginary part of the refractive index is k = 9.86×10−5 [86], which

corresponds to a loss of 3.47 dB/mm for propagation completely through water.

Using the complex refractive index, the simulation returns neff = 1.95+3.92×10−5.

This gives a loss of 1.38 dB/mm. For a longitudinal scan range of 25 µm, this is

a loss of 1.38 dB, or 1%. The region of interest also sits approximately 2 mm

from the chip entrance, which means there will be about 6.94 dB of loss due to

absporption during propagation from the beginning of the waveguide to the tip

location. This is a loss of 48%. In particular, one would expect approximately
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twice the SNR for the air-clad waveguide as for the water-clad for the same-size

tip.

The fabrication process is diagrammed step-by-step in Fig. 4.3. HSQ (hy-

drogen silesquioxane) resist is deposited on a standard silicon-on-insulator wafer,

then patterned by electron beam-lithography and developed. The silicon is then

etched using a reactive ion etching with the waveguides being protected by the

HSQ mask, which is then removed by a 30 s soak in 1:10 Buffered Oxide Etch

(BOE) solution. Each waveguide is comprised of a 500 nm wide by 250 nm tall

silicon channel on top of a silicon dioxide substrate buried oxide layer. The pattern

produced after etching is a set of these waveguides with a 90 bend, with a taper

at each end. The wafer is then spin-coated with NR-9 resist to protect it during

singulation. In order to form a single chip with the waveguide coming to both ends,

we singulate the wafer by a special dicing process. Cuts are partially diced into

each wafer at the input end, leaving a 500-µmgap around of the set of tapers. The

wafer is then cleaved along an edge defined by these cuts, forming a clean break

which is relatively smooth due to its orientation along the silicon crystal axis. It

should be noted that this break may occur anywhere within the width of the cut

(∼ 70µm), but most likely occurs at the center of the cut; the taper is designed

to take this effect into account. A full dice is performed across the output end

since minimizing scattering is not critical there. The NR-9 is then removed with

acetone.

In order to accomodate the fiber-chip bonding process and improve fiber-

waveguide coupling, the waveguides have tapers [87] at either end. Below a critical

width, reducing the width of a waveguide begins to force the mode outside of the

core and into the cladding, and in fact increases the mode field diameter (MFD)

as the waveguide width is reduced. The mode cross-section of such a narrow

waveguide is shown in Fig. 4.4(b). This can be used to adiabatically couple light

from a high-mode field diameter (MFD) structure such as a fiber to a low-MFD

structure such as a silicon waveguide. In such a coupler, the width of the waveguide

tapers parabolically from the full 500 nm width, to a minimum width on the order

of 100 nm. A 2-d model of the propagation through the taper is shown in Fig.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.3: Fabrication process for silicon waveguides. (a) SOI wafer. (b) Spin-
coat HSQ resist. (c) Expose HSQ by e-beam lithography. (d) Develop resist. (e)
Reactive ion etching of Si. (f) Resist removal with 1:10 BOE solution. (g) Spin-
coat protective NR-9 layer. (h) Partial dicing. (i) Cleave between dicing cuts to
create smooth edge at taper. (j) Remove NR-9 with acetone



39

(a) (b)

(c)

Figure 4.4: Taper to adiabatically couple light from high-MFD fiber to low-MFD
waveguide. (a) In-plane overview of mode propagation in taper. Notice mode is
deconfined in narrow section of taper, then almost totally contained in full-width
section. (b) Cross-section of low-confinement mode distribution in narrow section
of taper. (c) Optimization plot for taper width for both TE and TM illumination
from an optical fiber of MFD=4.8 µm. Taken from [87]
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4.4(a). As the waveguide expands, the mode becomes increasingly confined in

the waveguide core. Because of the low-confinement nature of the taper mode,

the refractive indices of the undercladding and overcladding must be well-matched

in order to sustain the mode. In this case, the epoxy for fiber bonding serves

as the overcladding. Although the waveguide width can be optimized to match

the fiber mode through simulation, as shown in Fig. 4.4(c), in practice due to

inexact knowledge of the cladding dispersion it is necessary to fabricate a number

of tapers and maximize the coupling expeirmentally. It was found that maximum

fiber-waveguide coupling is obtained when the waveguide tapers to 135 nm.

Since the field mostly occupies the low-index cladding, the modal effective

index is quite low (1.48 for a 135 nm taper), which reduces Fresnel reflection at the

chip edge due to effective index mismatch with free space. For this reason, there

is also a taper on the output end of the waveguide, which minimizes backreflection

into the waveguide in order to prevent standing waves from appearing in the NSOM

image. The expected reflection can be calclulated according to the Fresnel equation

for normal incidence:

R =

(
n2 − n1

n2 + n1

)2

(4.5)

Using n1 = neff , and substituting in the values for neff found previously through

simulation, we estimate a backreflection of 3.5% in air and .3% in water, calculated

on an intensity basis, with the output taper. Without the output taper, we would

expect 8.7% reflection in air 3.6% in water.

Since the MV-1000 scans the sample underneath the tip, the fiber must be

bonded to the chip. The chip is mounted in a fiber-based transmission setup, where

its output is imaged through two 4f setups onto a camera (see Fig. 4.5). A single-

mode polarization-maintaining fiber is aligned to the waveguide by maximizing the

transmission as measured by the camera. The fiber is oriented with the electric field

vertical to the chip plane in order to excite the quasi-TM waveguide mode, which

is favorable to NSOM characterization due to its long vertical evanescent decay.

When the the fiber is aligned, it is bonded to the tapered waveguide end with

low-shrinkage UV-cured epoxy (Dymax OP-20), as shown in Fig. 4.6. The fiber

is then bonded to the slide on which the chip sits using low-shrinkage epoxy (OP-
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Figure 4.5: Image of quasi-TM mode as captured by infrared camera through
two 4f systems.

4-20632-GEL). This forms an integrated package with high mechanical stability.

4.4 Experimental Measurement

4.4.1 Phase Drift

This is a phase-sensitive measurement, so minimizing phase aberrations is

critical, in particular due to the quantitative nature of the desired results. The

key effect to be concerned about is phase drift due to thermal variation among

the fibers, which has previously been observed in [88]. At room temperature, the

silicon dioxide has a thermal expansion coefficient α = 5.5 × 10−7◦C−1. For the

10 m of fiber in each arm of the heterodyne interferometer, we apply the thermal

expansion formula:
∆L

L
= α∆T , (4.6)
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Figure 4.6: Scanning electron micrograph of PM fiber bonded to silicon waveg-
uide. Epoxy forms overcladding for tapers

which can be rearranged to:
∆L

∆T
= αL, (4.7)

to find a thermal expansion of 5500 nm for each ◦C change in the fiber temperature.

A relative change in length ∆L of the fiber in the two arms induces a phase change

∆φ = β∆L, with β = 2πn
λ0

(for single mode fiber n ∼ neff due to low core-cladding

index contrast). Thus we have:

∆φ

∆T
=

2πnαL

λ0

. (4.8)

For n = 1.46 and λ0 = 1550nm, (4.8) implies that it only takes a change of .03◦C

in the temperature difference between the two arms to change the interferometer

phase byπ.

We determine the degree of phase drift present in the system by tracking

the phase recorded by the lock-in at a single location of the tip over time. With

the heterodyne system uncovered, the phase is recorded at a single point of the

waveguide for 150 s. The lock-in returns phases between 0 and 2π, so the phase

is unwrapped before plotting. The plot of φ(t) is given in Fig. 4.7(a). There is a
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(a)

(b)

Figure 4.7: Variation in phase over time φ(t) as recorded by the lock-in for
a single position of the tip. (a) Heterodyne system uncovered. (b) Heterodyne
system covered with an acrylic box.
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clear linear drift observable in the data, at a rate of 4.7◦/s. The drift is caused by

thermal gradients and air currents present in the room, likely tied to the HVAC

system. This linear drift is problematic for a quantitative measurement for the

following reason. Under a phase drift φd(t) = at, the NSOM will record a phase

φ = φs(x, y)− φr + at. (4.9)

For a scan in the x direction at a rate v = x/t of a waveguide with propagation

constant k, this becomes

φ(x, y) = (k + a/v)x− φr. (4.10)

Thus a linear drift in the phase corresponds to a constant shift a/v in the measured

frequency (and consequently in the Fourier transform), necessitating a substantial

reduction in its severity.

The heterodyne system is then covered with an acrylic box and allowed to

sit for several hours for the thermal gradients within the box to settle. The drift

is re-recorded for about 15 minutes (approximately the length of time required for

one typical NSOM scan), with the results shown in Fig. 4.7(b). With the box

covered, we observe a stochastic drift with a random-walk appearance. The full

range of variation is less than 70◦over the 15 minute span, and not in a consistent

direction. Each measured point effectively has a small random phase in addition to

the true phase. In frequency space, this corresponds to a widening of the Fourier

transform, due to the distribution of phase jitter causing a larger distribution of

frequencies to be present.

4.4.2 Measurement and Results

With the fiber-connectorized waveguide is mounted in the liquid cell in the

MV-1000 head, we measured at λ0 = 1550 nm wavelength with the H-NSOM using

a 200-nm metal-coated aperture probe, with overcladdings of air and water. The

waveguide is raster-scanned beneath the probe, with the fast (x) axis 25 m long,

parallel in the 128 x 128 point grid. The results of the experiment for air and water

overcladding are shown in Fig. 4.8. In addition to the raw topography, amplitude
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8: Silicon waveguide NSOM results in (a-d) air and (e-g) water over-
cladding. (a,e) Topography. (b,f) Optical amplitude A. (c,g) Optical phase φ.
(d,h) A sinφ, the imaginary part of the complex electric field.
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A and phase φ, we also show the calculated A sinφ , which is the imaginary part

of the complex electric field propagating along the waveguide, i.e. the optical field

distribution at a particular time. Despite the presence of the water, the measured

waveguide height matches closely to the design, and the overall profile is similar to

that recorded without any water. The amplitude plot displays a weak modulation

due to reflection of the mode at the waveguide output, which will be addressed in

Section 4.5.

4.5 Fourier analysis

To evaluate quantitatively the effect of the water, Fourier analysis is applied

to each set of amplitude and phase maps. For amplitude A and phase φ, using the

Fast Fourier Transform (FFT) along the x-axis on Fig. 4.8, we calculate the esti-

mated power spectral density |Fx(Aeiφ)|2, where x is the direction of propagation.

The frequency axis is given by neff = kλ0, where k is the FFT spatial frequency

coordinate, which gives the phase spatial frequency or propagation constant. The

square magnitude corresponds to the power spectrum of the propagating modes.

By only taking the Fourier transform along one direction, we preserve the infor-

mation about the transverse distribution of the modes. To obtain the effective

indices, we can then integrate along the transverse (y) coordinate.

As an initial example, Fig. 4.9 shows the raw integrated Fourier spectrum

without any preprocessing, calculated according to:∫
|Fx(Aeiφ)|2dy (4.11)

For both air and water claddings, we see a spectrum with two peaks; one at an

effective index close to the simulation value, and one at a lower effective index. A

number of hypotheses fail to account for this extra peak. These include birefrin-

gence of TE and TM modes, phase drift, and angle of the waveguide relative to the

scan. In fact, the extra peak seems to be an artifact of spectral leakage [89], which

is the formation of spurious peaks due to phase discontinuities at the two ends of

a scan. The phase discontinuity arises from the fact that the scan resolution is

not an integral multiple of the signal wavelength, and effectively corresponds to an
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Figure 4.9: Raw integrated Fourier data for both air and water claddings. The
peak power has been normalized to 1 for readability. Note the double peaks on
each curve due to spectral leakage.

extra frequency introduced in the signal. The extra peak only occurs on one side

of the real peak due to the complex nature of the field used for the transform.

An alternative method is to remove lines from the end of the scan to attempt

to equalize the phase, then take the Fourier transform. We remove one line from

the scan for air overcladding, and two from the scan for water overcladding. The

results of this method are shown in Fig. 4.10, with the peak power arbitrarily

scaled to 1 to improve readability. Although the extra peak is not apparent, the

spectrum appears to have an asymmetric tail. In fact, this tail is the remnant of

the suppressed peak. Each scan line represents a given amount of phase, so it is not

necessarily possible to equalize the phase exactly, if the line does not correspond to

an integer multiple of the difference between the phases at the beginning and end.

If we continue to remove lines, the peak periodically disappears, and reappears,

lending strong credence to the phase discontinuity hypothesis. A Gaussian fit is

applied to the two spectra. In each case the fit has R2 > 95% and measures the

effective index with a tolerance of ±.005.

To improve further, rather than removing scanlines, we can apply a window

function w(x) before performing the Fourier transform. Specifically we apply the
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Figure 4.10: Integrated Fourier transform of the complex field with scan lines re-
moved (1 for air overcladding, 2 for water overcladding) to reduce spectral leakage.
This leaves a low-index tail visible which is the remnant of the suppressed peak.
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Figure 4.11: The Hamming window function given by (4.12). The Hamming
function reduces the influence of the edges on the Fourier transform.

Hamming window [90], defined for a set of points n by:

w(n) = .54− .46 cos
(

2π
n

N

)
, (4.12)

where N is the number of points in the domain. Although the function is typically

defined for a set of points on a discrete domain, we may easily redefine it for the

real-space variable x by taking n = x and setting N to the length of space sampled,

provided it is centered at 0. It is clear from examining the plot of (4.12) shown

in Fig. 4.11 that the effect of the Hamming window is to weight the center of the

image while discounting the edges, in order to suppress the phase discontinuities

at the edges.

After calculating |Fx{w(x)A(x, y)eiφ(x,y)}|2 and plotting the results in Fig.

4.12(c) we can see that the symmetry of the peak is greatly improved. The Gaus-

sian fit has R2 > 98%, demonstrating the effectiveness of this model. Fig. 4.12

(a) and (b) show the square magnitude of the power spectral density (without
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integration) in the x direction for air and water claddings, respectively. The hor-

izontal coordinate gives the effective index, which increases as the cladding index

is increased. The shape of the single TM mode is visible along the y-axis (perpen-

dicular to the guide), with a peak in the middle that decays evanescently to the

sides.

By integrating the estimated power spectral density (PSD) along the y-axis,

as shown in Fig. 4.12, and fitting it to a Gaussian distribution, we obtain the effec-

tive index at the peak of this Gaussian fit. With an air overcladding, the effective

refractive index obtained by analyzing the experimental data is 1.881± .002, close

to the value of 1.84 obtained from the simulation. With a water overcladding,

the index estimated from the experimental data is 1.96 ± .002, also close to the

value of 1.95 predicted by the simulation. The precision is quite high due to the

high SNR enabled by the heterodyne setup and integration over the waveguide

width; the accuracy, which determines the difference between the simulation and

the experiment, is primarily affected by phase drift and mechanical stability. The

addition of the water causes a measured effective index shift of .08, 4%. This

corresponds to a π phase difference over 10 µm, less than characteristic lengths of

typical silicon photonic devices, making an accurate cladding essential to preserve

the phase properties of the device.

It was previously noted that the amplitude displays a standing wave pattern

typically associated with reflections at the output facet. Measured crest-to-crest

directly on the amplitude image, the wavelength of this modulation is approxi-

mately 419 nm. One expects the the wavelength of a standing wave will be half

that of the traveling wave that generated it. The wavelength of the traveling wave,

as measured in the phase signal, is λ
neff

= 791 nm, approximately twice the value

measured in the amplitude data. The use of the complex phase in the Fourier trans-

form allows the separation of positive and negative frequencies. Fig. 4.13 shows

the integrated Fourier spectrum (raw data) in the neighborhood of the negative

effective index previously calculated. There we observe a weak backpropagating

mode at the expected effective index. By comparing to the power in the foward-

propagting mode, we determine that the reflection at the output is less than 1% by
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(a) (b)

(c)

Figure 4.12: Fourier transform of the complex field data with Hamming window
applied. The effective distribution of each modal peak is now highly symmetrical,
due to the window de-weighting the phase-discontinuous edges in the plot. (a,b)
Estimated power spectral density for both (a) air and (b) water, showing a single
mode in each case. (c) y-integrated data from (a) and (b), demonstrating an
effective index shift of 0.08 from air to water cladding.
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Figure 4.13: Backward-propagating mode due to Fresnel reflection (¡1% inten-
sity). Applying the Fourier transform to the complex field allows separation of
negative and positive frequencies.

intensity. This is close to the .3% predicted by theory in Section 4.3. The reason

for this small disparity is not clear.

In summary, we demonstrated a technique of liquid-based heterodyne near-

field characterization of photonic devices and circuits. As a proof-of-concept, we

measured the full complex field (amplitude and phase) of the guided quasi-TM

mode in a waveguide with air and water overcladdings. Using Fourier analysis of

the measured fields we obtained the effective indices of the guided modes, which

are in good agreement with the results obtained from numerical simulations. This

technique opens up a number of new possibilities, including using H-NSOM as a

part of photonic circuit validation during and after the fabrication process. Avail-

ability of liquids with refractive indices varying from 1.3 to 1.8 allows emulation

of most solid dielectrics commonly used as a cladding. For structures with SiO2

undercladding, using index-matching liquid at n=1.46 to create a symmetric en-

vironment would be useful in measurement of losses, as well as characterization

of low-confinement fields such as those associated with tapers and higher-order
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modes. Additionally, aqueous solutions would be useful for high-resolution phase-

contrast imaging of biological molecules and live cells.

The text of this Chapter, in part or in full, is a reprint of the material as it

appears in the following journal publication:

Maurice Ayache, Maziar P. Nezhad, Steve Zamek, Maxim Abashin, and Yeshaiahu

Fainman. Near-field measurement of amplitude and phase in silicon waveguides

with liquid cladding. Optics Letters, 36(10):1869, May 2011 The dissertation author

was the primary investigator and author of this paper. The other authors assisted

and supervised the research.



Chapter 5

Direct Imaging of Long-Range

Surface Plasmons

5.1 Introduction to LRSP

Surface plasmon polaritons (often referred to as surface plasmons or SPPs)

are waves that form at the interface between a metal and a dielectric. The SPP

consists of an electromagnetic field coupled to coherent oscillations of the ”sea of

electrons” in the metal. Because of the metal’s complex refractive index, SPPs peak

at the interface and decay in the direction normal to it, while propagating along the

interface. For similar reasons, their effective wavelength can be substantially lower

than the vacuum wavelength, confining light well below the classical diffraction

limit. SPPs have been applied

To understand the electromagnetic origin of SPPs, we consider an interface

between a metal and a dielectric in two dimensions. The interface occurs at z = 0

and extends infinitely in both the x and −x directions. The dielectric has a purely

real dielectric constant εd, while the metal has a complex dielectric constant εm =

εmr+εmi, where εmr < 0. The negative nature of εmr is responsible for the existence

of the surface mode.

Although SPPs are subject to loss because of εmi, it is possible to take

advantage of their surface-bound nature while substantially reducing attenuation

54
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Figure 5.1: Metal slab configuration of thickness h. Decaying E-field of LRSP
mode is shown.

using long-range surface plasmons (LRSPs). Consider, as depicted in Fig. 5.1 a

metal slab of thickness h with dielectric on either side of it. It is clear that both

metal-dielectric interfaces will independently support SPPs. Now imagine that we

reduce t until it is comparable to the SPP decay length. When the two modes

become sufficiently close together, they will no longer act independently. In fact,

they will combine to form two supermodes which are linear combinations of the

individual modes. This is similar to other situations where two resonant oscillators

are brought togther, such as bonding and anti-bonding states of two atoms in

close proximity. Although the original modes on either inteface are identical, in

combination two new modes form to break the degeneracy: one symmetric (shown

in Fig. 5.1) and the other anti-symmetric. Like single-interface SPPs, these modes

must be TM-polarized.

In the anti-symmetric configuration, the field in the lower half-space is

identical in magnitude but opposite in sign to that in the upper half-space, as is

the charge density in the metal. The field is highly confined within the metal core.

This implies high absorption in the metal and therefore a short propgation length.

Although this mode has a zero at the waveguide center, leading one to suspect

lower field confinement, it turns out that the energy is primarily carried in the

core. It is the symmetric mode that is of interest here, as the anti-symmetric is

mostly contained in the metal and is therefore absorbed quickly. The symmetric

mode, on the other hand, has a long z-decay length in the cladding and is mostly

located there. Therefore it has low loss and a long propagation length, since the
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dielectric cladding is taken to be totally transmissive.

To further understand the behavior of the metal slab, we discuss the dis-

persion of the two modes, following the analysis of Burke [91]. For a magnetic field

propagating as ~H = ~JH0f(z)ei(ωt−βx), the field variation in the three sections may

be modeled as:

f(z) = eS1z, z < 0 (5.1)

f(z) = cosh(S2z) +
S1εm
S2ε1

sinh(S2z), 0 < z < h (5.2)

f(z) = e−S3(z−h), z > h (5.3)

The relative constants in (5.2) are chosen to preserve the transverse magnetic

boundary condition at z = h. Each boundary has a surface-bound mode which

decays exponentially, as in the single interface case. The two hyperbolic sinusoidal

terms in (5.2) reflect the two possible linear combinations of exponential functions,

cosh(x) = ex + e−x and sinh(x) = ex − e−x.
The decay factors Si are subject to the constraints:

S2
1 = ε1k

2
0 − β2 (5.4)

S2
2 = εmk

2
0 − β2 (5.5)

S2
3 = ε3k

2
0 − β2 (5.6)

These equations allow positive or negative values for the real part of Si, but only

negative values of the real part of S1 correspond to bound modes. Note that f(z) is

identical for positive or negative S2. Since f(z) gives the variation of the transverse

magnetic field, the electric field may be determined using Maxwell’s equation:

Ex =
i

ωε0ε

∂Hy

∂z
(5.7)

Applying (5.7) to (5.2) and (5.3) and setting them equal at z = h according to

continuity of transverse electric field gives the following dispersion relation:

tanh(S2h)(ε1ε3S
2
2 + εmS1S3) + [S2(ε1S3 + ε3S1)] = 0 (5.8)

This is a transcendental equation which must be solved numerically. If the

metal is taken to be lossy, i.e. εm = εmr + εmi, there will be a complex β = βr +βi,
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(a) (b)

Figure 5.2: Dispersion of the metal slab, from [91]. (a) Real and (b) imaginary
parts of the propagation constant, scaled to vacuum wavenumber, as a function of
slab thickness.

and therefore also S1 and S3 according to (5.6). We first consider the specific

case S1 = S3, where the geometry is symmetrical about the line z = h/2. The

intensity distribution then must be symmetrical, meaning the field distribution

must be either symmetric or anti-symmetric. Additionally, (5.8) will always have

two solutions. In Fig. 5.2 we present the solution from [91]. The system (5.6) and

(5.8) is solved numerically for a range of thicknesses h, for a silver (εm = −19−.53i)

slab surrounded by a dielectric (ε1 = ε3 = 2.13), at a wavelength λ0 = 633 nm.

This calculation returns the values βr(t) and βi(t), which appear in the plot for

both symmetric and anti-symmetric solutions.

We observe a number of interesting features here. There are two observable

branches of each plot. The upper branch represents the anti-symmetric mode,

while the lower branch represents the symmetric mode. For the anti-symmetric

branch, βr increases as h drops, meaning that S1 = S3 increases. This implies

a faster decay into the cladding, and so conservation of energy dictates more of

the optical power must be carried in the metal. The effect of the increased metal

confinement is visible in Fig. 5.2(b), where we can see that as the thickness goes to

0, the loss factor βi goes to infinity, meaning the absorption increases without limit.

The symmetric mode (lower branch) exhibits the opposite behavior. A decrease
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in slab thickness results in a slower decay into the dielectric cladding, which then

carries more of the optical power. The loss βi therefore declines toward 0 as

the slab becomes thinner, because of reduced light-metal interaction. Therefore

the symmetric mode for small h is termed a long-range surface plasmon. At 0,

βr = ε1k0, which is the propagation constant of a plane wave in the dielectric

media. This makes intuitive sense as one imagines the disappearance of the metal

slab. The symmetric mode becomes increasingly like a TEM plane wave in the

cladding.

At the other end of the thickness range, where h → ∞, β for both modes

goes to the same value as the coupled modes separate out into the single-interface

SPPs. In this case tanh(S2h)→ 1, so (5.8) becomes:

(S1εm + S2ε1)(S3εm + S2ε3) = 0 (5.9)

This equation can be easily factored, and then β can be calculated from the values

of Si. Breaking them out into real and imaginary parts, we have for the interface

with ε1:

β1r(h→∞) ' ε
1/2
1 k0

(
ε2
mr − εmrε1 + ε2

1

|εm + ε1|2

)1/2

(5.10)

β1i(h→∞) =
εmiε1

2β1r

k2
0

|εm + ε1|2
(5.11)

The equations are the same for interface with ε3, with the substitution ε3 for the

case of non-symmetric geometry.

It is clear now how the thin metal slab behaves when the dielectric medium

is identical to either side of it. How does the situation vary when the dielectric

is different at one interface from the other? (5.8), which is written generally,

still applies in this case. However, the existence of two bound solutions is not

guaranteed as it was for the symmetric case [91]. In fact, when the index difference

becomes too high, the symmetric solution breaks down, and the long-range mode

goes into cutoff [92]. Thus it is important that to preserve the existence of the

long-range plasmon mode, the indices must be sufficiently matched for the slab

thickness.
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5.2 Metal Slab Configuration

While the original work on LRSPs centered on metal slabs of infinite width,

in 1999 Berini [93] first investigated the propagation of LRSPs on metal waveguides

of finite width. This is known as the metal stripe configuration, and is useful since it

can keep power confined in two dimensions rather than one. This configuration may

be more practical for real implementation of LRSPs at the chip scale for practical

purposes due to its high power concentrations. The stripe arrangement, due to its

more complicated geometry, does not lend itself to analytic calculations, even of

the dispersion relation. However, we may simulate it to estimate its performance.

The typical thickness of the metal stripe is similar to that of the metal slab,

on the order of 20-50 nm. The width, however, may have considerable variance,

from 1 µmto 10s of µm. There is effectively no maximum, as the metal stripe

with infinite width is simply the metal slab previously considered. High widths

introduce many new modes beyond the fundamental which vary in their horizontal

distribution. The modes vary in four basic ways and are named accordingly. They

may be symmetric or anti-symmetric in the x and y directions, which give the

first and second letters respectively (a or s). They may be bound or leaky; here

we consider only bound modes, which have a ’b’ as a subscript. Finally, higher

order modes will have higher numbers of nodes, which are used as a superscript in

the modal nomenclature. Thus, the sa0
b mode is symmetric along the transverse

(x) direction, anti symmetric perpendicular to the waveguide surface (y direction),

and has no nodes along x.

The mode of interest in this study is the ss0
b , which corresponds to the sb

long range surface plasmon in the metal slab. It is easy to see in Fig. 5.3 that

this mode is highly deconfined, as compared to the other bound modes of the

metal stripe. It has a long propagation distance for that reason. At 1550 nm,

the COMSOL simulation reveals the ss0
b mode has <[neff ] = 1.445, close to the

silica cladding index of 1.444, due to the low confinement. Since the field has

very little overlap with the metal, it has an extremely low loss =[neff ] ∼ 10−5.

For comparison, the other low-order modes all have loss factors on the order of

.01, so they are absorbed quickly even under ideal conditions. The low loss of the
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(a) (b)

(c) (d)

Figure 5.3: Ey(x, y) for several modes of the metal stripe. (a) ss0
b (b) aa1

b (c) sa0
b

(d) sa2
b . The low confinement of the ss0

b long-range surface plasmon mode, which
allows it to propagate long distances, is easy to see here.
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Figure 5.4: COMSOL simulation of 20 nm Au stripe between dielectric media
of n = 1.444 and n = 1.448. Mode is drawn into high index substrate but is still
bound rather than leaky.

ss0
b mode allows it to be termed a long-range surface plasmon mode, and to have

potential practical applications in integrated optics.

As in the slab, the index matching between the undercladding and over-

cladding is critical in the metal stripe to maintain a bound symmetric mode for

small thickness of the metal. This effect is visible in Fig. 5.4, which shows the

mode of a 12 µmAu stripe bounded below by a medium of n = 1.448, and above

by a medium of n = 1.444. The field is drawn into the high-index medium, caus-

ing a geometrical imbalance in the mode distribution. For small index mismatch,

the simulation converges on a bound solution, which for these parameters has

neff = 1.447 + 3.59× 10−5i.

As the index mismatch on either side of the metal stripe increases, the field

increasingly projects into the high-index medium, until it cuts off. This can be seen

in Fig. 5.5(a), which is adapted from [94]. The structure under consideration here

is a 20 nm-thick Au stripe of varying width on an SiO2 (n = 1.447)-like medium.

The effective index is plotted for a range of overcladdings (”superstrates”) as a

function of the index contrast ∆ between the two media. The modes enter cutoff

when their effective index reaches the higher index of the two claddings. For

∆ < 0, the cutoff occurs at n = 1.447, while for ∆ > 0, the index of the higher
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(a) (b)

Figure 5.5: Effects of cladding index mismatch on metal stripe LRSP for a variety
of stripe widths. (a) Effective index dominated by higher index medium. (b) Modal
power attenuation (loss) exhibits small variation ¡ 10 for most of range, then drops
rapidly near cutoff index contrast

index medium varies according to the superstrate contrast n2 = n1 + ∆. This

makes sense, as in the limit where the mode is pulled out of confinement and into

a free-space wave in the high-index region (i.e. cutoff), its effective index would

be the index of that region.

We can also examine the effect of index mismatch on the propagation loss,

which is given as the modal power attenuation (MPA) in Fig. 5.5(b), also from [94].

Initially the loss increases slightly with increasing index difference, corresponding

to an increased penetration depth into the metal from the low-index side. Past a

critical value of ∆, the loss drops rapidly. In this regime, the field is distributed

primarily in the high-index dielectric, which is taken to be lossless. Ideally the

indices would be chosen to be in this regime, but in practice this is not feasible

because of the very low index range before the waveguide enters cutoff, represented

by the asymptote of the plot. Therefore we typically desire ∆ = 0, which has the

lowest realistically available MPA. It is absolutely essential that ∆ be sufficiently

small to put the waveguide outside of the cutoff region.

This sensitivity to index mismatch has posed a challenge for applying

NSOM to long range plasmon structures. Although there is an extensive history

of NSOM characterization of surface plasmons in general, there have been lim-

ited efforts towards NSOM characterization of LRSPs. Since the top and bottom

claddings must be of equal index, to allow propagation of LRSPs in an air envi-

ronment requires the creation of suspended waveguides, a technically challenging
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(a) (b)

Figure 5.6: NSOM experiment on LRSP imaging from [95]. (a) Experimental
setup, with solid dielectric layer on either side of Au film. (b) Optical intensity
distribution recorded by NSOM for various tip heights from 0 to 1000 nm. Because
the tip sits atop a solid dielectric, the NSOM actually records far-field scattering
rather than near-field evanescent waves. Both images adapted from [95].

feat. Traditionally, NSOM has been limited to the air environment.

One attempt in this direction was made by Salakhutdinov et al. [95]. Their

experimental setup is depicted in Fig. 5.6(a). A gold stripe on a BCB (benzo-

cyclobutene, n = 1.535) substrate is symmetrically coated with a BCB layer on

top. The LRSP mode is excited by endfire coupling, and the NSOM tip is scanned

over the BCB surface to detect the near-field signal. Their results are shown in

Fig. 5.6(b). Although there is a detected signal which corresponds roughly to the

waveguide shape, it should be noted that this is not the LRSP mode being evanes-

cently coupled to the tip, since the probe is not being placed in the near-field.

Rather, as the authors say, ”the light collected by the SNOM is scattered light

from the surface and not the evanescent field.” The detected signal is from light

scattered by the rough metal-dielectric interface; thus even though it originates in

the LRSP mode, this is a far-field detection method which can offer none of the

traditional advantanges of NSOM.

The liquid NSOM technique we developed in Chapter 4 offers the potential

to achieve a true near-field measurement of LRSPs. Here we use a liquid cladding
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: LRSP waveguide fabrication process. (a) SiO2 wafer. (b) PECVD
of additional SiO2. (c) Spin-coating of SU8 resist. (d) Photolithography. (e)
Evaporation of 20 nm Au layer. (f) Liftoff of SU8. (g) Placement of macroscopic
Si block. (h) PECVD of SiO2. (i) Removal of Si block

which is index-matched to the substrate to maintain refractive index symmetry

while allowing the near-field probe direct access to the evanescent fields at the core-

cladding boundary. The device is fabricated in a manner tailored to the NSOM

measurement, then bonded using a version of the process described in Chapter4,

then measured in amplitude and phase with the liquid NSOM. This represents the

first true near-field imaging of long-range surface plasmons.
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Figure 5.8: Sample after attempted window etching. Waveguide destroyed due
to Ar sputtering.

5.3 Sample Preparation

The chip consists of several sets of gold waveguides, with widths ranging

from 2 to 20 µm, on a silicon dioxide substrate. The fabrication process is detailed

in Fig. 5.7. An SiO2 wafer is coated with another layer of thermal SiO2 by

PECVD (plasma-enhanced chemical vapor deposition). The thermal oxide layer

is necessary in order to maximize index matching to the top layer of SiO2 which

will have to be deposited layer. SU-8 negative photoresist is spin-coated on a SiO2

wafer, then exposed by photolithography according to a prefabricated mask with

the waveguide pattern. After developing, 20 nm of gold is deposited by e-beam

evaporation. Although it is frequently difficult to adhere gold films to glass, the

gold adheres well because at low thickness, it forms a series of islands which have

high adhesion rather than a single film. However, the gold still behaves optically as

a single film. The resist is removed by acetone in a liftoff process, leaving the gold

waveguides on the SiO2 substrate. At this point it is necessary to apply another

layer of SiO2 as an overcladding.

Ideally, the overcladding would not be necessary due to the liquid cladding.
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However, as will be explained later, a partial cladding is required for the fiber

bonding process. Specifically, we seek to have the edges of the chip coated in SiO2,

with a ”window” open in the center to allow the probe access to the waveguide.

In practice, this is a significant fabrication challenge. One approach is to fabricate

the chip, deposit the SiO2 overcladding, then perform reactive ion etching (RIE)

to remove the window. In this case the oxide is etched with a mixture of CHF3

and Ar. Even though the difficulty of knowing the exact etch rate to sufficient

precision prevents being able to stop the etch exactly at the top of the waveguide,

in principle the waveguide itself, being made of non-reactive gold, should act as a

mask for the SiO2 beneath it which will remain unetched and provide structural

support. The liquid cladding would then fill in the gaps created between the

waveguides. In practice, the waveguide is destroyed during etching. A scanning

electron micrograph showing the results of this process is given in Fig. 5.8. The

remnants of the waveguide are clearly visible. The most likely explanation is that

the gold was mechanically sputtered away by the argon atoms, a well-known effect

frequently used in metal deposition, and without it the SiO2 could be etched off by

the CHF3. It should be noted that even without any argon, the waveguides were

still destroyed; it is probable that the CHF3 is also capable of sputtering gold.

A form of liftoff was therefore pursued as an alternative approach. In a

traditional liftoff process, a resist is deposited and patterned, after which the ma-

terial of interest is deposited. The resist is then removed, leaving the material in

the pattern defined by the original mask. For liftoff to be successful, the resist

layer must be thicker than the final material, to separate the pieces to be lifted off

from those to remain on the sample. The SiO2 must be several µmthick, while the

thicknesses of spin-coated layers of resist typically max out on the order of several

hundred nm. To form the window, a 350 µmthick piece of silicon wafer, diced to

a 5 mm x 1mm area, was placed atop the chip before PECVD of 6 µmof SiO2.

Silicon was chosen as a block material over SiO2, which posed the risk of bonding

to the cladding or the substrate, and metal, which could bond to the gold. After

PECVD, the wafer was simply removed by hand, leaving a window where the chip

had no cladding. A micrograph of the window edge is shown in Fig. 5.9. The
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Figure 5.9: Au waveguides on SiO2 with window created by the Si block method.
The waveguides are visibly intact without damage from the block.

edge is well-defined, and no damage appears to have been done to the waveguides.

The sloped sidewall of the window is visible as a multicolor thin-film interference

pattern immediately adjacent to the edge.

The next step was to bond a fiber, as before, to the chip aligned to one of

the LRSP waveguides. In the case of the silicon waveguide, the waveguide is able

to transmit light without any overcladding, allowing the fiber bonding to be done

without the liquid cladding. The LRSP waveguide however requires a symmetric

cladding environment to carry the mode. Thus the liquid cladding must be in place

for the fiber bonding process. The refractive index oils used are likely to interfere

with proper setting of the epoxy, so the window previously described was created

to contain the liquid cladding, with the solid-clad portion having refractive index

symmetry permitting the LRSP mode to propagate. It was found experimentally

that the sidewalls are too shallow at 6 µmto contain the fluid. The window still

serves an important role as surface tension allows a drop of index-matching oil to

sit at the chip center. When aligning the fiber for bonding, the presence of the

SiO2 cladding at the edges ensures LRSP propagation, while the liquid-filled center

later enables NSOM measurements. Additionally, the SiO2 layer provides superior
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index matching to the epoxy used in the Si waveguide experiment.

To prepare the chip for fiber bonding, it is inserted in the previously de-

scribed fiber-free space transmission setup. A drop of index-matching oil (Cargille

Series A 1.46) small enough to just cover the window without spreading is placed

at the chip center. For the initial alignment, the fiber is turned to produce a

45◦polarization. The fiber is translated until a suspected output waveguide mode

is seen on the video camera. The output polarization is then measured by rotating

a linear polarization analyzer. If the mode is maximum when the analyzer pass

axis is vertical (corresponding to TM), it is taken to be the LRSP mode. The

background is at 45◦as initially chosen. This disparity between the signal and

background polarizations allows discrimination between the two, even though the

straight nature of the waveguides (necessitated by the high bending loss of the

LRSP) causes a great deal of background light to appear on the camera. Then the

fiber is turned to be TM-polarized, and realigned by visually matching the output

mode to the image recorded at 45◦polarization.

A drop of OP-4-20632-GEL epoxy is deposited on the fiber facet. Although

this epoxy is not index-matched to the substrate as well as the OP-20 used in the

Si waveguide experiment, index matching is no longer necessary due to the solid

overcladding. The fiber is brought close to the waveguide, maintaining alignment,

and moved toward the chip until the drop bridges the fiber-chip gap. The epoxy is

cured with UV light, and the fiber is bonded again to the slide on which the chip

sits for mechanical stability.

5.4 NSOM Measurement

The experiment is based on providing a liquid cladding for the gold waveg-

uide chip, index-matched to the SiO2 substrate. For index-matching to be success-

ful, the liquid must be sufficiently close in refractive index at the wavelength chosen

to the substrate to sustain the LRSP mode. The allowed ∆n before the waveguide

goes into cutoff depends on the stripe thickness and width, as shown in Fig. 5.5.

Refractive index oils are commercially available in a range of indices from ∼ 1.3
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Figure 5.10: Index matching between SiO2 deposited by PECVD and Cargille
Refractive Index Liquid Series A 1.46 near 1550 nm wavelength, marked by dashed
line.
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to ∼ 1.8; this experiment used Cargille Series A 1.46, which is so named because

it has n(λ = 589nm) = 1.46. Since the experiment is being done at 1550 nm, we

must consider the dispersion, which can be approximated for a liquid according to

the Cauchy relation:

n(λ) = A+Bλ−2 + Cλ−2 (5.12)

Typically (5.12) is accurate to within .005. For this liquid, the coefficients are

given by the manufacturer as A = 1.447924, B = 4.074357× 10−8
µm2, C = 4.15×

10−5
µm4. The SiO2 dispersion is obtained from [96]. The dispersion relations n(λ)

near 1550 nm are compared in Fig. 5.10, with a vertical dashed line marking the

wavelength of choice. As the wavelength increases, the refractive indices separate.

At 1550 nm, for SiO2 n = 1.444, and for the oil n = 1.450. This is just at the edge

of the range allowed in Fig. 5.5 for an 8 µmguide at 20 nm thickness. However,

given the Cauchy tolerance of ±.005 and the increased width of the waveguide

used in the experiment (12 µm), this difference may be acceptable.

The fiber-connectorized chip is coated with the index-matching oil and

characterized with the NSOM at 1550 nm wavelength. The waveguide was 20 nm

thick and 12 µmwide. Topography, amplitude, and phase are all measured within

the window with the fast axis of the scan set to the longitudinal direction. The

results of the scan are shown in Fig. 5.11. A few interesting features are notable

in the plots. The topography recorded by AFM displays a rough texture. This

is caused by the e-beam evaporation method discussed previously, which results

in isolated islands rather than a single film. The roughness is visible on both the

trace and retrace signals, which gives confidence that it is real and not an artifact

of the probe oscillation.

The optical amplitude shows a signal clearly correlated with the location

of the waveguide. There is a visible modulation in the amplitude signal along

the direction of propgation. This modulation is likely to be due to interference

between the guided LRSP mode and stray light from the illuminating fiber. The

phase signal displays a number of bright spots seemingly randomly distribut ed

in space, but also a faint modulation in the direction of propagation underneath.

The bright spots are correlated to points of high optical amplitude. As established
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(a) (b)

(c) (d)

Figure 5.11: Results of NSOM measurement of LRSP sample. (a) Topography.
(b) TM amplitude (c) TM phase (d) TE amplitude.
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(a) (b)

Figure 5.12: FFT of the LRSP data. (a) One-dimensional FFT showing trans-
verse distribution of a single LRSP mode. (b) Mode spectrum produced by inte-
grating along the transverse direction, showing a single LRSP mode at neff = 1.47.

previously, we can also combine the two signals in a plot of one field component

A sinφ. The modulation appears here too, and there is no discrepancy between

the amplitude and phase.

We can confirm the existence of the guided plasmonic mode, as opposed to

stray light propagating from the fiber and scattering from the top, by varying the

polarization. To switch the input polarization to TE rather than TM, a slow-to-fast

axis PM fiber was inserted between the linear polarizer and the device pigtail. The

device was remeasured under the same experimental conditions in the orthogonal

polarization. The detected optical amplitude is shown in Fig. 5.11(d). It is easy

to see that no signal propagates in this TE polarization, which serves as evidence

of the plasmonic nature of the signal detected under TM illumination conditions.

We may also analyze the modal properties of the detected signal by Fourier

analysis, as previously discussed in Chapters 3 and 4. With the amplitude A(x, y)

and phase φ(x, y) from the NSOM data, we calculate Fx(A(x, y)eiφ(x,y)) using the

FFT. Prior to taking the Fourier transform, the mean of each scanline is subtracted

from each datapoint in that line in order to remove the DC component visible in

the amplitude data. The transform is also taken with a Hamming window applied

to the data as discussed in Chapter 4. This calculation gives the modal structure
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Figure 5.13: Transverse distribution of the LRSP mode with Gaussian fit. Fit
has FWHM=12.9µm, with R2 > 95%.

which is shown in Fig. 5.12(a), with the transverse-integrated spectrum shown in

Fig. 5.12(b). We observe a single mode, at an effective index of neff = 1.47, as

compared to the simulated value of neff = 1.45 . As expected, this is close to

the SiO2 cladding refractive index of 1.44 due to the low confinement of the LRSP

mode. There is no measurable reflected mode visible for neff < 0.

It is also interesting to examine in detail the transverse distribution of the

mode. Fig. 5.13 shows a cross section of the mode across a single effective index

from Fig. 5.12(a). The distribution data is fit with a Gaussian function Ae−
(x−x0)

2

2σ2 .

Although we do not expect the mode shape to be defined by a Gaussian, it turns

out to be an empirically good model with R2 > 95%. The fitting returns values

of x0 = −14µm and σ = 5.50± .21µm. This distribution has FWHM = 2.35σ =

12.9µm, a reasonable value given the waveguide width of 12 µmand the extent of

the ss0
b mode over the full width.



Chapter 6

Conclusion

In this dissertation we have explored techniques in heterodyne near-field

imaging of integrated photonic devices, and introduced the concept of H-NSOM

in a liquid environment. The operation of the heterodyne interferometer was dis-

cussed in conjunction with the principles of near-field imaging with aperture tips.

We applied this to several samples in order to explore new possibilities.

First, we used the H-NSOM to analyze the operation of an asymmetric

mode converter designed to break PT symmetry on a silicon photonic chip. The

electric field propagating through the converter was imaged with propagation in

both directions. The image clearly showed conversion from the first mode to the

second mode in one direction, with no conversion in the other direction. Since

the H-NSOM records both amplitude and phase, it was possible to apply a Fourier

transform to the complex field to determine the mode structure of the fields. A 1-D

FFT was applied both before and after the device, which separated out the modes

of propagation according to their effective indices, while preserving their transverse

distributions. Similar to the pure amplitude image, this visibly demonstrated one-

way mode conversion.

Next, NSOM imaging of amplitude and phase in liquid-clad waveguides was

introduced. Although integrated photonic devices are typically fabricated with a

solid overcladding, the presence of the cladding prevents the NSOM probe from

accessing the core-cladding boundary. Therefore we substituted a liquid cladding

to emulate the solid cladding in the real device. Silicon channel waveguides were
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fabricated on SiO2, and one of them was pigtailed with polarization-maintaining

fiber, using inverse tapers to solve the issues of misalignment due to epoxy shrink-

age. Using a liquid-capable NSOM, we measured the amplitude and phase of

1550 nm light propagating in the waveguide, with claddings of both air and water.

We then used Fourier analysis to measure the effective index in both situations.

The measured effective indices corresponded closely to COMSOL simulations, and

demonstrated a shift of .08 between the two, both validating the technique and

establishing its importance for accurate characterization of phase in real devices.

Finally, the liquid cladding technique was applied to long-range surface

plasmons in Au-on-SiO2 stripe waveguides. LRSPs require a symmetric cladding

environment to propagate due to their low confinement. To allow bonding to the

fully clad edge while maintaining a space for NSOM analysis, the waveguides were

fabricated with a window in the SiO2 overcladding. The sample was immersed

in index-matching oil and measured with the H-NSOM under TM excitation at

1550 nm. The amplitude demonstrated a clear correlation with the waveguide

topography. There was a visible amplitude modulation due to interference of the

LRSP mode and the incident free-space light. The FFT, using both amplitude and

phase, showed a single mode at an effective index of 1.47, close to that predicted

by simulation. To verify the plasmonic nature of the measured field, the incident

light was turned to TE, and no signal was observed, confirming the validity of the

observation. Thus the the liquid cladding technology enabled measurement of a

mode previously unobservable by near-field techniques.



Chapter 7

Future Directions

The techniques introduced in this dissertation open the door to a number

of possibilities in near-field imaging. The potential to combine subwavelength

imaging in a liquid environment with heterodyne detection enables a new source

of contrast for a multitude of applications. In this chapter we explore several of

these possibilities and suggest areas of research to develop them.

Extending the work done in Chapter 4, using liquid cladding for silicon and

other integrated photonic devices offers the potential to accurately characterize

these devices as a standard part of the fabrication and testing procedure. A wide

variety of silicon photonic devices, such as modulators, gratings, and couplers,

should be imaged with index-matching liquid cladding to understand how fields

propagate within them in their true form. This is particularly essential for low-

confinement modes. As observed in the case of both inverse tapers and long-range

surface plasmons, waveguide modes with low confinement require a symmetric

cladding medium due to their tendency to be drawn into the region of higher index.

In addition to the modes previously mentioned, there are generally second- and

higher-order modes available in waveguides with a symmetric cladding not available

when the top cladding is removed. NSOM analysis of waveguide behavior in these

regimes can offer useful insights, whether the presence of these modes is desired

in the final device or not. Finally, index symmetry of the cladding environment

has important effects in 2-d photonic crystal devices, so liquid NSOM may find

applications there.
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Another potential application is phase contrast imaging of live cells. A

liquid environment is generally necessary to keep cells alive, so one can easily

imagine using the liquid-capable NSOM for bioimaging. NSOM has an extensive

history in biological imaging, but the introduction of phase contrast could allow

new features to be resolved in a label-free fashion. One can conceive of illuminating

an immersed cell from below, through the transparent mount, and measuring the

transmitted field over a given area using the H-NSOM. An aqueous solution could

be flowed in and out of the NSOM’s liquid cell, and introducing the solution at

the appropriate temperature would allow cell survival for signifcant periods of

time. In this configuration, the phase signal would correspond to variations in the

refractive index and thickness, potentially showing important cell features. This

method would be highly surface-sensitive, so the image would be of features at

the cell membrane. Surface features are essential in many cellular proceses such as

sensing. One such application would be validating the autodigestion hypothesis of

insulin resistance, which holds that surface insulin receptors are cleaved due to the

presence of certain enzymes. The liquid NSOM technique offers the opportunity to

introduce such enzymes in the cell environment and image the receptors directly

in optical phase contrast.

Optofluidics has garnered strong interest in recent years. The combination

of optics with microfluidics has enabled a wealth of applications in the areas such

as sensing, liquid core waveguides, and imaging. In principle, liquid-capable het-

erodyne NSOM can be a useful tool for characterizing optofluidic devices. This

will require a strong understanding of the optical as well as mechanical effects of

the tip on the measurement. In liquid-core waveguides, for instance, the presence

of the tip may serve as an impediment to flow. However, if these questions are

resolved or minimized, the NSOM can offer direct visualizations of the near-field

effects of phenomena such as analyte binding, as well as provide a diagnostic aid for

devices that do not work as expected. The presence of phase information increases

the utility of H-NSOM for these applications.

The effect of the tip on the measurement is a significant issue for the NSOM

community. It is an ongoing question to what extent the fields measured by the
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NSOM, for a given structure, represent the fields which would be present if the tip

were not there. A number of approaches have been attempted toward minimally

perturbing near-field tips. Some of these include fluorescent particles being used as

NSOM probes. This approach can be expanded by index-matching the fluorescent

particle to the surrounding liquid medium. One can choose a particle of the same

refractive index as the tip holding it (typically SiO2), immersed in a liquid of the

same index. In this arrangement, the only perturbation is the evanescent field

asborbed by the particle being reradiated to the environment. However, there is

no ”lightning rod” effect due to the presence of the metal, and it is not possible

to use the heterodyne setup because of the difference in wavelength between the

source and detection wavelengths. Additionally, the sample may heat according to

the local electric field, which will vary the fluorescence behavior.

More generally, a strategy of tip design for minimal perturbation should be

pursued. Metallized aperture tips are highly perturbative, which causes problems

in resonant structures as well as structures supporting localized surface plasmons.

In addition to fluorescent particles, the use of single-particle metallic probes is

recommended, in particular with index-matching liquid to ”hide” the tip. We can

extend this to nanoantenna-based probes specially designed for increasing field

localization, such as metallic tapers, bowties, and nanocrescents. These types of

probes siginfiicantly increase imaging resolution, but metal-metal interactions are

responsible for unpredictable behavior in imaging of metallic samples, so it is worth

devoting effort to reducing their effect on sample behaviors.



Appendix A

Fourier-Space Measurement of

Surface Plasmon Dispersion

Here we briefly present a near-field method used to measure the spatial

dispersion relation of a metal film. Similar methods have been presented in [97, 98].

We consider a rough silver film of arbitrary thickness in air under collimated

illumination at an angle θ (see Fig. A.1(a)). To excite a surface plasmon, a

wavevector must be introduced to compensate the difference between the surface

plasmon wavevector kp and the component of the wavevector which lies in the plane

kx. The film roughness R(x) has many different spatial frequency components,

which can be determined by its Fourier transform:

R̃(k) =

∫
R(x)eikxdx. (A.1)

When k = kp− kx, for |R̃(k)| > 0, there exists a grating within the film roughness

capable of converting the incident light to a plasmon at the silver-air interface.

The conversion efficiency is determined by the magnitude of |R̃(k)|.
The NSOM (MV-2000) tip is scanned over the sample within the spot cre-

ated by the beam, and records an image corresponding to the interference between

the planar components of the incident light and the propagating surface plasmons.

This interference is given by:

I(~r) = |Epei
~kp·~r + E0e

i sin θ(kxx̂+ky ŷ)·~r|2 (A.2)
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A k-space diagram of the interference between the two components given by (A.2)

is shown in Fig. A.1(b). We note a number of critical features. There are two

possible circles in k-space where interference occurs, corresponding to positive and

negative frequencies. The radius of the circles is kp, so it is a direct measure of

the surface plasmon frequency. Each is off-center by an amount k|| = ki cos θ, the

projection of the incident k-vector in the x− y plane.

The measurement returns the amplitude distribution shown in Fig. A.1(c).

Although it is difficult to directly extract any information from this image, it is

composed of the interference intensity given by (A.2). By taking the FFT of the

amplitude image, as shown in Fig. A.1(d), we can directly examine its frequency

content which corresponds to the spatial dispersion of the surface plasmons. The

obtained image fits well the model shown in Fig. A.1(b). We observe identical two

circles, due to the inherently symmetric nature of the FFT, with the separation

between the two given by the incident angle. The circle radius is 1.2 µm−1. We

can calculate the surface plasmon dispersion relation according to:

kp =
ω0

c

√(
ε1ε2

ε1ε2

)
(A.3)

Plugging in the values for air ε1 = 1 and Ag varepsilon2 = 123, we find kp =

1.3µm−1, very close to the measured value.
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(a) (b)

(c) (d)

Figure A.1: (a) SPP interference experimental setup. (b) Diagram of the inter-
ference between the incident field and the omnidirectional surface plasmons. (c)
Amplitude distribution measured on the silver film.



Appendix B

MATLAB Code for Data

Processing and Analysis

function S = importNSOMData ( f i l ename )

%take NSOM data from f i l e , put each v a r i a b l e in p l o t t a b l e

matrix form in

%s t r u c t u r e S

i f nargin < 1

f = f u l l g e t ; %p i c k a f i l e o f NSOM data to import

else

f = f i l ename ; %use the f i l e g i ven in the f u n c t i o n

argument

end

raw = importdata ( f ) ; %load the f i l e i n t o v a r i a b l e raw

i f ( not ( i s f i e l d ( raw , ’ c o lh eade r s ’ ) ) ) %i f the f i l e doesn ’ t

parse p r o p e r l y

disp ( ’ Fix ing NSOM Data F i l e . . . . ’ )

f f i x e d = fixNSOMFile ( f ) ; %f i x i t !

raw = importdata ( f f i x e d ) ; %now s w i t c h to the data from
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the f i x e d f i l e

end

[ po in t s channe l s ] = s ize ( raw . data ) ;

[ S . path , S . f i l ename ] = f i l e p a r t s ( f ) ;

%note t h a t x a x i s i s a lways used as f a s t ax i s , and y a x i s

a lways as s low a x i s

%x

xCol = find ( not ( c e l l f u n ( ’ isempty ’ , regexp ( raw . co lheaders , ’

X Axis ’ ) ) ) ) ;

%y

yCol = find ( not ( c e l l f u n ( ’ isempty ’ , regexp ( raw . co lheaders , ’

Y Axis ’ ) ) ) ) ;

%f i n d f a s t a x i s and scan s i z e

%{
To find the f a s t axis and r e s o l u t i o n ( scan s ize ) , we use

the Fast Four i e r

Transform , whose x axis ( f r e q u e n c i e s ) i s g iven by the t o t a l

number o f

po in t s d iv ided by the per iod p lus 1 (1 + po in t s / r e s in t h i s

case ) .

The f a s t axis has the s h o r t e r per iod o f o s c i l l a t i o n , which

means i t should

be the axis whose FFT has a maximum at a h igher index . The

f requency i s

a c t u a l l y doubled due to trace and r e t r a c e .
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%}
xVals = raw . data ( : , xCol ) ; yVals = raw . data ( : , yCol ) ;

[ cx , i x ] = max(abs ( f f t ( xVals−mean( xVals ) ) ) ) ;

[ cy , i y ] = max(abs ( f f t ( yVals−mean( yVals ) ) ) ) ;

i f a s t = max( i x , i y ) ;

f a s t r e s = po in t s /(2∗ ( i f a s t −1) ) ;

s l owre s = po in t s /(2∗ f a s t r e s ) ;

%f a s t r e s = 128;

%s l o w r e s = 128;

x = reshape ( raw . data ( : , xCol ) , f a s t r e s , s l owre s ∗2) ; %put

data in matrix form

S . xt = x ( : , 1 : 2 : end) ; %t r a c e s i g n a l in odd rows

S . xr t = f l i p l r ( x ( : , 2 : 2 : end) ) ; %r e t r a c e s i g n a l in even rows

y = reshape ( raw . data ( : , yCol ) , f a s t r e s , s l owre s ∗2) ; %put

data in matrix form

S . yt = y ( : , 1 : 2 : end) ; %t r a c e s i g n a l in odd rows

S . yr t = f l i p l r ( y ( : , 2 : 2 : end) ) ; %r e t r a c e s i g n a l in even rows

%t h i s can p r o b a b l y be made more e f f i c i e n t

i f ( i x > i y )

S . f a s t v e c = linspace (min(mean(S . xt , 2 ) ) , max(mean(S . xt

, 2 ) ) , f a s t r e s ) ;

S . s lowvec = linspace (min(mean(S . yt , 1 ) ) , max(mean(S . yt

, 1 ) ) , s l owre s ) ;

else

S . f a s t v e c = linspace (min(mean(S . yt , 2 ) ) , max(mean(S . yt

, 2 ) ) , f a s t r e s ) ;

S . s lowvec = linspace (min(mean(S . xt , 1 ) ) , max(mean(S . xt

, 1 ) ) , s l owre s ) ;
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end

%h e i g h t

%f i n d the r i g h t column :

he ightCol = find ( not ( c e l l f u n ( ’ isempty ’ , regexp ( raw .

co lheader s , ’ Height ’ ) ) ) ) ;

he ight = reshape ( raw . data ( : , he ightCol ) , f a s t r e s , s l owre s ∗2)

; %put data in matrix form

S . ht = he ight ( : , 1 : 2 : end) ’ ; %t r a c e s i g n a l in odd rows

S . hrt = f l i p l r ( he ight ( : , 2 : 2 : end) ) ’ ; %r e t r a c e s i g n a l in

even rows

%o p t i c a l ampl i tude

amplCol = find ( not ( c e l l f u n ( ’ isempty ’ , regexp ( raw . co lheaders ,

’NSOM’ ) ) ) ) ;

ampl = reshape ( raw . data ( : , amplCol ) , f a s t r e s , s l owre s ∗2) ; %

put data in matrix form

S . at = ampl ( : , 1 : 2 : end) ’ ; %t r a c e s i g n a l in odd rows

S . a r t = f l i p l r ( ampl ( : , 2 : 2 : end) ) ’ ; %r e t r a c e s i g n a l in even

rows

%o p t i c a l phase

phaseCol = find ( not ( c e l l f u n ( ’ isempty ’ , regexp ( raw . co lheader s

, ’ Opt ica l Phase ’ ) ) ) ) ;

phase = pi /9∗reshape ( raw . data ( : , phaseCol ) , f a s t r e s , s l owre s

∗2) ; %put data in matrix form , and r e s c a l e to [−pi , p i ]

S . pht = phase ( : , 1 : 2 : end) ’ ; %t r a c e s i g n a l in odd rows

S . phrt = f l i p l r ( phase ( : , 2 : 2 : end) ) ’ ; %r e t r a c e s i g n a l in

even rows
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% xmin = mean(S . x t ( : , 1 ) ) ;

% xmax = mean(S . x t ( : , x r e s ) ) ;

% S . x i n t = (xmax − xmin ) / ( xres−1) ;

% S . xvec = [ xmin : S . x i n t : xmax ] ;

%

% ymin = mean(S . y t (1 , : ) ) ;

% ymax = mean(S . y t ( yres , : ) ) ;

% S . y i n t = (ymax − ymin ) / ( yres−1) ;

% S . yvec = [ ymin : S . y i n t : ymax ] ;

%

% S . x r e s = x r e s ;

% S . yres = yres ;

end

function f f i x e d = fixNSOMFile ( f i l ename )

i f nargin < 1

f = f u l l g e t ; %p i c k a f i l e o f NSOM data to import

else

f = f i l ename ; %use the f i l e g i ven in the f u n c t i o n

argument

end

[ pathstr , name , ext , versn ] = f i l e p a r t s ( f ) ;

data = f i l e r e a d ( f ) ;

d a t a f i x e d = regexprep ( data , ’\ t\ r ’ , ’\ r ’ ) ;

name f ixed = [ name ’ FIXED ’ ] ;

f f i x e d = f u l l f i l e ( pathstr , [ name f ixed ext versn ] ) ;

f i d = fopen ( f f i x e d , ’w+’ ) ;

fpr intf ( f i d , ’%s ’ , d a t a f i x e d ) ;

fc lose ( f i d ) ;

end
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function f i l e r e f = f u l l g e t ( )

[ f i l e path ] = uiget f i l e ;

f i l e r e f = f u l l f i l e (path , f i l e ) ;

function s u r f s = plotNSOMData(S , plotnew )

%p l o t he i gh t , ampli tude , and phase from a g iven NSOM data

s t r u c t u r e S

xvec = S . f a s t v e c ;

yvec = S . s lowvec ;

hold o f f

i f nargin<2

plotnew = f a l s e ;

end

%h e i g h t ( minus bes t− f i t p lane to e l i m i n a t e t i l t )

param = [ S . xt ( : ) S . yt ( : ) ones ( numel (S . at ) , 1 ) ] \ S . ht ( : ) ;

ht = (S . ht − ( param (1) ∗S . xt + param (2) ∗S . yt + param (3) ) ) ;

newf ig ( plotnew , 1 )

h = NSOMPlot( xvec , yvec , ht ) ;

t i t l e ( ’ Height (nm) ’ )

%o p t i c a l ampl i tude

newf ig ( plotnew , 2 )

a = NSOMPlot( xvec , yvec , S . at ) ;

t i t l e ( ’ Amplitude (V) ’ )

%o p t i c a l phase

newf ig ( plotnew , 3 )

ph = NSOMPlot( xvec , yvec , S . pht ) ;

t i t l e ( ’ Phase ’ )
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%s i n e o f o p t i c a l phase

newf ig ( plotnew , 4 )

ph = NSOMPlot( xvec , yvec , S . at .∗ sin (S . pht ) ) ;

t i t l e ( ’A s i n \phi (V) ’ )

end

function newf ig ( plotnew , n)

i f plotnew == true

f igure

else

figure (n)

end

end

function hp = NSOMPlot (x , y , z )

%p l o t a s e t o f NSOM data z a long the x and y axes

colormap hot

axis equal

hp = pcolor (x , y , z ) ;

% s e t ( hp , ’ ButtonDownFcn ’ , ’ bdf ’ )

axis image

xlabel ( ’ x (\mum) ’ , ’ FontSize ’ , 10)

ylabel ( ’ y (\mum) ’ , ’ FontSize ’ , 10)

shading i n t e r p

colorbar

set (hp , ’ l i n e s t y l e ’ , ’ none ’ )

set (gca , ’ FontSize ’ , 10)

function plotNSOMFFT (M)

[ FFTdata , k ] = NSOMFFT(M) ;

f igure (10) ;
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pcolor (abs (FFTdata ) . ˆ 2 )

n e f f = k ∗1 . 5 5 ; %c a l c u l a t e e f f e c t i v e index , assuming 1550

f igure (5 ) ;

pcolor ( n e f f , M. slowvec , abs (FFTdata ) . ˆ 2 ) ;

shading i n t e r p ; colormap hot ; colorbar ;

xlabel ( ’ n { e f f } ’ ) ; ylabel ( ’ y (\mum) ’ ) ;

t i t l e ( ’ S p a t i a l D i s t r i b u t i o n o f Modes ’ ) ;

f igure (6 ) ;

% a = n e f f ;

% b = mean( abs ( FFTdata ) . ˆ 2 , 2 ) ;

% d i s p ( a∗b ) ;

plot ( n e f f , mean(abs (FFTdata ) . ˆ 2 , 1 ) ) ;

xlabel ( ’ n { e f f } ’ ) ; ylabel ( ’ Power ( a . u . ) ’ ) ;

t i t l e ( ’Mode Spectrum ’ ) ;

f igure (7 )

pcolor (M. slowvec , n e f f , ( angle (FFTdata ) ) ) ;

shading i n t e r p ; colormap hot ; colorbar ;

ylabel ( ’ n { e f f } ’ ) ; xlabel ( ’ y (\mum) ’ ) ;

ang = angle (FFTdata ) ;

power = abs (FFTdata ) . ˆ 2 ;

f igure (8 )

plot ( n e f f , ang ( : , 5 0 ) ) ;

end
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function [ f ieldFFT , f r e q ] = NSOMFFT (M)

N = length (M. f a s t v e c ) ;

r e s = max(M. f a s t v e c ) − min(M. f a s t v e c ) ;

% f i e l d = M. at .∗ exp ( i ∗M. pht ) − mean(mean(M. at .∗ exp ( i ∗M. pht )

) ) ;%.∗meshgrid ( l i n s p a c e ( exp ( i ∗0) , exp ( i∗−p i /2) ,128) ) ;

f i e l d = M. at .∗exp(− i ∗M. pht ) ;%.∗meshgrid ( l i n s p a c e ( exp ( i ∗0) ,

exp ( i∗−p i /2) ,128) ) ;

f i e l d = f i e l d − mean( f i e l d , 2 ) ∗ones (1 , s ize (M. at , 2 ) ) ;

win = repmat (hamming (128) ’ , 128 ,1 ) ;

f i e l d = f i e l d .∗win ;

f ie ldFFT = f f t s h i f t ( f f t ( f i e l d , [ ] , 2 ) , 2 ) / sqrt (N) ;

i f mod(N, 2 )==0

k=−N/2 :N/2−1; % N even

else

k=−(N−1) / 2 : (N−1) /2 ; % N odd

end

f r e q=k/ r e s ; %the f requency a x i s

end

function plotNSOMFFTPartial (M, f a s t coo rd s , s lowcoords )

[ FFTdata , k ] = NSOMFFTPartial (M, f a s t coo rd s , s lowcoords ) ;

n e f f = k ∗1 . 5 5 ; %c a l c u l a t e e f f e c t i v e index , assuming 1550

length ( n e f f )

length (FFTdata )
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f igure (5 ) ;

pcolor ( n e f f , M. s lowvec ( s lowcoords ) , abs (FFTdata ) .ˆ2/max(

max(abs (FFTdata ) . ˆ 2 ) ) ) ;

shading i n t e r p ; colormap hot ; colorbar ;

xlabel ( ’ n { e f f } ’ ) ; ylabel ( ’ y (\mum) ’ ) ;

t i t l e ( ’ S p a t i a l D i s t r i b u t i o n o f Modes ( a . u . ) ’ ) ;

f igure (6 ) ;

% hold on

plot ( n e f f , mean(abs (FFTdata ) . ˆ 2 , 1 ) /max(mean(abs (FFTdata )

. ˆ 2 , 1 ) ) ) ;

xlabel ( ’ n { e f f } ’ ) ; ylabel ( ’ Power ( a . u . ) ’ ) ;

t i t l e ( ’Mode Spectrum ’ ) ;

% hold o f f

f igure (7 )

pcolor ( n e f f , M. s lowvec ( s lowcoords ) , ( angle (FFTdata ) ) ) ;

shading i n t e r p ; colormap hot ; colorbar ;

ylabel ( ’ n { e f f } ’ ) ; xlabel ( ’ y (\mum) ’ ) ;

ang = angle (FFTdata ) ;

power = abs (FFTdata ) . ˆ 2 ;

end

function [ f ieldFFT , f r e q ] = NSOMFFTPartial (M, f a s t coo rd s ,

s lowcoords )

% N = l e n g t h (M. f a s t v e c ) ;

% res = max(M. f a s t v e c ) − min(M. f a s t v e c ) ;

f a s t v e c = M. f a s t v e c ( f a s t c o o r d s ) ;

N = length ( f a s t c o o r d s ) ;
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r e s = max( f a s t v e c ) − min( f a s t v e c ) ;

% f i e l d = M. at .∗ exp ( i ∗M. pht ) − mean(mean(M. at .∗ exp ( i ∗M. pht )

) ) ;%.∗meshgrid ( l i n s p a c e ( exp ( i ∗0) , exp ( i∗−p i /2) ,128) ) ;

f i e l d = M. at ( s lowcoords , f a s t c o o r d s ) .∗exp(− i ∗M. pht (

s lowcoords , f a s t c o o r d s ) ) ;%.∗meshgrid ( l i n s p a c e ( exp ( i ∗0) ,

exp ( i∗−p i /2) ,128) ) ;

f i e l d = f i e l d − mean( f i e l d , 2 ) ∗ones (1 , s ize ( f a s tvec , 2 ) ) ;

f ie ldFFT = f f t s h i f t ( f f t ( f i e l d , [ ] , 2 ) , 2 ) / sqrt (N) ;

i f mod(N, 2 )==0

k=−N/2 :N/2−1; % N even

else

k=−(N−1) / 2 : (N−1) /2 ; % N odd

end

f r e q=k/ r e s ; %the f requency a x i s

end
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