Lawrence Berkeley National Laboratory

LBL Publications

Title

Major Detectors in Elementary Particle Physics

Permalink

https://escholarship.org/uc/item/72m76164

Authors

Gidal, G Armstrong, B Rittenberg, A

Publication Date

1985-05-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

RECEIVED LAWRENCE BERKELEY LABOPATORY

JUL 2 5 1985

LIBRARY AND DOCUMENTS SECTION LBL-91 Supplement Revised UC-34D May 1985

MAJOR DETECTORS IN ELEMENTARY PARTICLE PHYSICS

G. Gidal, B. Armstrong, A. Rittenberg

Particle Data Group* Lawrence Berkeley Laboratory University of California Berkeley, CA 94720, USA

Abstract

This report is the second edition of a loose-leaf compendium of the properties and performance characteristics of the major detectors of elementary particle physics.

> TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks.

*The Berkeley Particle Data Group is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the U.S. National Science Foundation under Agreement No. PHY83-18358.

BL_911, Suppl. Re

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

INTRODUCTION

This introduces the second edition of the LBL-91 Supplement "Major Detectors in Elementary Particle Physics." For some detectors the update merely documents minor modifications or provides additional references. Others have undergone major rebuilding or have been augmented with new subsystems. The new LEP, SLC, TRISTAN, BEPC, and FNAL detectors have had their designs fixed and are now under construction. Some detectors have completed their programs since the last edition and so are omitted. The use of colored loose-leaf paper should allow users to maintain a historical record of each detector.

We again thank those physicists working with each detector who took the time to summarize its properties and supply us with the appropriate drawings.

Notes

- Depending on the state of completion of the detector, the performance characteristics may be actual or projected. No attempt is made to distinguish them.
- Expressions of energy and momentum resolution are correct only if E is in GeV and p is in GeV/c.
- For further information, please contact the experimental group itself. Current spokesmen for particular experiments may be found in the Spokesman Index of LBL-91, "Current Experiments in Elementary Particle Physics."
- In the Table of Contents, the experiments column refers to the summaries in the January 1985 edition of LBL-91. Experiments completed before 1980 are not included.

TABLE OF CONTENTS

DETECTOR

EXPERIMENT

CERN-LEP-ALEPH

ALEPH AMY ARGUS **BES (Beijing Spectrometer)** Brookhaven Neutrino Detector Brookhaven Neutrino Oscillation Detector **CCFR** Neutrino Detector CDF (Collider Detector at Fermilab) CELLO CHARM II Neutrino Detector CLEO Crystal Ball **CUSB-II** DØ DELPHI EMC FNAL-605 FNAL High Intensity Lab Spectrometer **FNAL Multiparticle Spectrometer** FNAL Muon Spectrometer **FNAL** Neutrino Detector FREJUS Detector for Nucleon Decay HELIOS Homestake Detector HRS (High Resolution Spectrometer) IMB Detector for Nucleon Decay JADE Kamioka Nucleon Decay Detector KGF Detector for Nucleon Decay LEP3 MAC (MAgnetic Calorimeter) MARK II MARK III MARK-J **MD-1** MPS II NUSEX Detector for Nucleon Decay **OMEGA** OPAL PEP-9 2γ Detector SLD SOUDAN-2 Detector for Nucleon Decay **Tagged Photon Spectrometer TASSO** TOPAZ TPC UA1 UA2 VENUS

KEK-TE-003 DESY-ARGUS BNL-734. -775 **BNL-776** FNAL-616, -652, -701, -744 **FNAL-741 DESY-PETRA-CELLO** CERN-PS-181, CERN-WA-018; -018-2, -065, -079 **CESR-CLEO** SLAC-SP-030, DESY-CRYSTAL-BALL **CESR-CUSB-II FNAL-740 CERN-LEP-DELPHI** CERN-NA-002, -009, -028 FNAL-605 FNAL-537, -705, -721 FNAL-557, -580, -623, -672, -743 FNAL-665, -673 FNAL-594, -649, -733 **P-DECAY-FREJUS** CERN-NA-034 P-DECAY-HOMESTAKE SLAC-PEP-012 P-DECAY-IMB **DESY-PETRA-JADE** P-DECAY-KAMIOKA P-DECAY-KGF **CERN-LEP-L3** SLAC-PEP-006 SLAC-PEP-005, SLAC-SLC-6 SLAC-SP-031, -032 **DESY-PETRA-MARKJ** BNL-747, -751, -769, -771 P-DECAY-NUSEX CERN-WA-056, -058, -063, -067, -069, -070, -071, -072, -074, -076, -077 **CERN-LEP-OPAL** SLAC-PEP-009 SLAC-SLC-SLD P-DECAY-SOUDANII FNAL-516, -691 **DESY-PETRA-TASSO KEK-TE-002** SLAC-PEP-004 CERN-UA-001 CERN-UA-002 **KEK-TE-001**

ALEPH

.

LOCATION	LEP e ⁺ e ⁻ ring CERN, Geneva, Switzerland
MAGNET	 1.5 Tesla superconducting solenoid 6.4 m long at 2.65 m radius (123 m³)
TRACKING	 Time projection chamber (TPC): Central HV plane separates two 2.2 m long drift spaces Inner radius = 0.35 m, outer radius = 1.8 m 90% argon - 10% methane gas at 1 atm. 20 kV/m drift field with gating grid Each end plate divided into 18 sectors containing total of 20,500 pads (30 × 6.5 mm) and 3240 peripheral wires giving 21 space points and 320 ionization samples per track
	$\sigma/p_T^2 = 0.1\%$, dE/dx resolution = 12% Nd-YAG laser calibration
	Inner track chamber: 2.1 m long drift chamber covering 97% of 4π Inner radius = 12.8 cm, outer radius = 28.0 cm 8 sensitive cells in 4 isolated concentric tubes $r\phi$ tracking with $\sigma \simeq 100 \ \mu m$ z readout with cathode hoops, $\sigma_z < 40 \ mm$ $1.2\%X_0$
ELECTROMAGNETIC CALORIMETERS	2 mm Pb-wire chamber sandwich with cathode pad readout, connected in 3 cm \times 3 cm projective towers and summed in 3 depths corresponding to first $4X_0$, central $9X_0$, last $9X_0$ Barrel contains 4096 towers in each of 12 modules (50,000 towers) Segmentation $\Delta \phi = 0.94^\circ$, $\Delta \theta = 0.93^\circ \sin \theta$ Endcaps consist of twelve 30° modules each, larger $\Delta \phi$ segmentation (25,000 towers total) $\Delta E/E = 18\%/\sqrt{E}$
HADRON CALORIMETER	 Main support and magnet return yoke instrumented every 5 cm with 23 layers of 1 cm × 1 cm plastic streamer tubes Pad readout on one side (projective towers with Δφ = 3.75° and Δθ = 5°) Parallel strip readout on other side 3456 towers in barrel, 1320 towers in endcaps 14% argon - 56% CO₂ - 30% η-pentane gas ΔE/E = 0.85/√E
MUON TRACKING	In addition to strip readouts of hadron calorimeters Have 2 external double layers of tubes
LUMINOSITY MONITOR	Tracking with 9 layers of tube chambers Covers 42-89 mrad Shower counters have 41 layers of Pb-wire tubes $(22X_0)$ Operated in saturated proportional mode cathode pad readout Covers 39-131 mrad $\Delta E/E = 19\%/\sqrt{E}$
REFERENCES	

ALEPH Technical Report, CERN/LEPC 83-2, LEPC/P1 (1983).
 ALEPH Status Report, CERN/LEPC 84-15, LEPC/M50 (1984).

ALEPH

AMY

.

.

LOCATION	TRISTAN e^+e^- storage ring, the OHO experimental hall National Laboratory for High Energy Physics, KEK Tsukuba, Japan
MAGNET	30 kG superconducting solenoid 8 cm thick coil ($\sim 6.5X_0$ package) Cryogenically stable; pool boiling cooling system Cryostat inner diameter = 2.22 m, length = 2.10 m
TRACKING SYSTEM	Central drift chamber: $R_i = 0.15 \text{ m}$, $R_o = 0.67 \text{ m}$ 40 cylinders of close packed hexagonal drift cells 25 axial and 15 small angle $(4.1^\circ - 4.9^\circ)$ stereo layers Full coverage for $ \cos \theta \le 0.8$ (26 cylinders for $ \cos \theta \le 0.85$) 9072 cells; 32,158 total wires Average cell radius = 0.66 cm Inner entrance: 1.5 mm Kevlar tube Outer exit: 6 foam reinforced Kapton windows
ELECTRON TAGGING	Xe (98)% + Propane (2%) synchrotron X-ray detector 10 cm deep jet chamber, 36 cells in azimuth $R_i = 0.67$ m, $R_o = 0.77$ m, length = 2.0 m Expect \ge 3 detected X-rays for $4 \le p_e \le 10$ GeV e [±] 's
BARREL SHOWER COUNTER	Pb + resistive plastic PWC's, 20 layers ($15X_0$ total) $R_i = 0.78 \text{ m}, R_0 = 1.10 \text{ m}, \text{ length} = 2.20 \text{ m}$ inside the coil Full coverage for $ \cos \theta \le 0.71$ Cathode strip readout: 13.5 mrad × 0.52 rad θ -strips 16.3 mrad × 0.38 rad ϕ -strips (projective geometry) 5 depth segments: $2.5X_0, 2.5X_0, 2.5X_0, 5X_0$
MUON DETECTION	\geq 9 absorption lengths (λ_a) of material for $ \cos \theta \leq 0.71$ 4 layers of 5 cm \times 10 cm drift tubes behind the return iron Transverse flight path to 1 λ_a = 1.25 m Decays in flight \approx 2.5%/p, hadron punch-thru \leq 0.1%
FORWARD- BACKWARD DETECTION	Pb-scintillator counters covering 100 mrads $\leq \theta \leq 40^{\circ}$ serve as luminosity monitors of Bhabha scattering and veto counters for missing transverse energy measurements
SPECIAL FEATURES	Open space near the beam line allows μ -beta quads to extend in to $z = \pm 1.2$ m from the interaction point
STARTUP	November 1986
REFERENCE	

1. AMY-Chan, C. Back et al., KEK preprint TRISTAN-EXP-003.

AMY

ARGUS

LOCATION	DORIS II e ⁺ e ⁻ ring DESY, Hamburg, W. Germany
COLLABORATION	DESY, Univ. Dortmund, Univ. Heidelberg, IPP Canada, Univ. Kansas, Univ. Lund, Univ. Ljubljana, ITEP Moscow, Univ. South Carolina
MAGNET	0.8 Tesla solenoid, 13 copper coils Diameter = 2.8 m, length = 2.9 m
MINIBETA	Quads integrated and compensated inside magnet
TRACKING	Cylindrical drift chamber Radius 15 to 85 cm, length 200 cm 5940 drift cells with $18 \times 18.8 \text{ mm}^2$ cross section 36 cylindrical layers, 18 of which at stereo angles varying from 40 to 80 mrad Propane-methylal at 1 atm. dE/dx : 10% FWHM $\sigma_p/p = (1.0^2 + p^2)^{1/2} \%$ $\sigma_{\theta} = 3.4 \text{ mrad}$
VERTEX CHAMBER	Radius = 5 to 14 cm, length = 104 cm 594 hexagonal cells, 4.5 mm inscribed radius $\sigma_x = 50 \ \mu m$
SHOWER COUNTERS	Barrel arranged as 20 rings, 64 counters in each ring 40 cm deep, $12.5X_0$ sandwich of 1 mm lead and 5 mm scintillator, BBQ readout, lightguides between coils $\sigma_E/E = (7.0^2 + 8.0^2/E)^{1/2}$ % Solid angle 96% in total
TIME-OF-FLIGHT	Barrel of 64 counters, radius 96 cm Endcaps 2 × 48 counters TOF resolution σ_T = 220 ps Solid angle 92%
MUON DETECTION	1744 proportional tubes with $6 \times 6 \text{ cm}^2$ cross section Layer behind shower counters and coil Layer behind the return yoke Solid angle 85%

REFERENCES

1. ARGUS, a New Detector for DORIS, DESY F15/Pro 148, October 1978.

ARGUS

- 1. Muon cambers
- 2. Shower counters
- 3. Time of flight counters
- 4. Drift chamber
- 5. Vertex chamber
- 6. Iron yoke
- 7. Solenoid coils
- 8. Compensation coils
- 9. Mini beta quadrupole

BES (Beijing Spectrometer)

LOCATION	BEPC e ⁺ e ⁻ storage ring IHEP, Beijing, People's Republic of China
MAGNET	4.5-5.0 kG conventional Al coil solenoid, 3.60 m long, inner radius 1.74 m I = 3700 A, R = 75 m Ω , W ~ 1MW
TRACKING CENTRAL DRIFT CHAM	IBER
	Cylindrical, radius 8.9 to 15.0 cm, length 1.10 m 4 axial layers of cells, 48 one-sense wire cells in each layer $\sigma \sim 150 \ \mu m$
MAIN DRIFT CHAMBER	λ
	Cylindrical, radius 15.5 to 115.0 cm, length 2.2 m 10 layers of cells, 5 stereo and 5 axial 702 four-sense wire cells in total and with dE/dx readout Gas 89% Argon, 10% CO ₂ , and 1% methane at 1 atm.
	$\sigma_{\rm x} \sim 150-200 \ \mu {\rm m}$
	$(\Delta p/p)^2 \sim (1.5\%)^2 + (0.8\% p)^2$
	$\sigma(dE/dx) \sim 9\%$ with 40 samples each track
TIME-OF-FLIGHT	NE110 scintillation counters
BARREL	48 pieces of 15 cm \times 5 cm \times 2.80 m mounted in a cylindrical array around MDC
	Read out by XP2020 photomultipliers on each end of the scintillators Solid angle 80% of 4π , 1.17 m flight path at $\theta = 90^{\circ}$
	$\sigma_t \sim 170-200$ ps; π/K separation up to 1.07 GeV/c at 2 σ_t level, K/p separation up to 1.78 GeV/c at 2 σ_t level
ENDCAPS	2×24 sector pieces form two disks with inner radius 25 cm and outer radius 108 cm
	1.22 m flight path at $\theta = 0^{\circ}$
	$\sigma_t \sim 200 \text{ ps}, \pi/\text{K}$ separation up to 1 GeV/c at 2 σ_t level
	Solid angle 14% of 4π
SHOWER COUNTER	24 layers of Pb-gas tubes sandwich $(12X_0 \text{ total})$
BARREL	3.85 m long cylindrical annulus, 560 drift cells per layer, 13 cm \times (1.5–1.8) cm in cross section, read out at both ends with charge division
ENDCAPS	Two circulars with inner radius 20 cm and outer radius 105 cm, 164–180 tubes per layer, 1.3 cm \times 1.3 cm in cross section, with charge division readout
MUON IDENTIFIER	3 double layers of 4.4 m long proportional tubes interspersed with 3 layers of absorber (12 cm, 14 cm magnet flux return yoke and additional 14 cm Fe as the third absorber)
LUMINOSITY MONITOR	ee \rightarrow ee at small angles, 4 scintillator + shower counter telescopes cover 31 mrad $< \theta < 66$ mrad
TRIGGER	Charged track trigger uses timing information from TOF and tracking information from four layers of MDC
	Neutral trigger requires energy deposition in the shower counters and μ -tube cosmic veto

BES (Beijing Spectrometer)

XBL 852-10254

Brookhaven Neutrino Detector

LOCATION	Brookhaven National Laboratory Upton, NY, USA
INCIDENT BEAM	Neutrino, horn focussed from 28 GeV Protons 110 m from proton target
ASSEMBLY	 Modular construction, each module consisting of a plane of calorimeter and two planes (x,y) of tracking proportional drift tubes 112 Modules + γ-catcher + spectrometer Weight: 172 + 30 metric tons
CALORIMETER (LIQUID S	SCINTILLATOR)
	Active area $4.22 \times 4.09 \text{ m}^2$; thickness 7.9 cm
	Weight (liquid & acrylic) 1.35 metric tons
	1 pulse height measurement/2 time measurements per tube readout
PROPORTIONAL DRIFT 1	TUBES (PDT)
	Active area $4.2 \times 4.2 \text{ m}^2$
	Thickness (x and y) 7.6 cm, 54 x wires, 54 y wires 1 pulse height measurement/2 time measurements per wire readout
GAMMA CATCHER	10 standard calorimeter modules with 1 radiation length of lead between each module
	30 metric tons target mass
MUON SPECTROMETER	$2m \times 2m$ aperture muon spectrometer
	$\langle \int Bdl \rangle = 70 \text{ MeV/c}$
	$(\Delta p/p)^2 = [0.10^2 + (0.067p)^2] p$

-

BNL NEUTRINO DETECTOR

Brookhaven Neutrino Detector

XBL 831-7890

Brookhaven Neutrino Oscillation Detector

LOCATION	Brookhaven National Laboratory Upton, NY, USA
BEAM	Neutrino, horn focussed from 28 GeV protons 1 km from proton target
ELECTRON DETECTOR	 Finely segmented EM calorimeter Size: 18 ft × 18 ft × 27 ft Weight: 240 metric tons (fiducial: 200 tons) Absorber: concrete (density ≃ 2.3 g /cm³), segmented every 1 in. along beam direction, 81 planes, Detector: 90 planes (45 x, 45 y) of drift tubes, 64 wires/plane; organized in 9 sections; section structure is 5 x, 5 y, 9 Abs, 1 Sci, as follows: 4(x-Abs-y-Abs) + (x-Abs-y-Sci)
DRIFT TUBES	Extruded Al, 4 tubes per extrusion, 18 ft \times 3 ¹ / ₄ in. \times 1 ¹ / ₂ in. per tube Signal readout: 25 ns, 6-bit flash ADC, one per wire Memory depth: 256 bits
SCINTILLATOR	1 in. thick acrylic 200 in. \times 200 in./plane 8 segments/plane, read out with 14 BBQ doped acrylic wave shifter bars, 1 in. ² RCA 8575 phototubes Signal readout: flash ADC's for cosmic ray trigger, and timing mainly
MUON SPECTROMETER	 Five 18 ft octagonal steel toroids, 5-5-5-7-7 inches with 2 (1 x, 1 y) proportional drift tube planes per gap, 1 (u,v) pair upstream and 3 (x,y) pairs downstream Signal readout: 25 ns multihit TDC Magnetic field: 1.5-1.8 Tesla ⟨∫Gdℓ⟩ ≈ 400 MeV/c

.

Brookhaven Neutrino Oscillation Detector

CCFR Neutrino Detector

LOCATION	Fermilab neutrino area, Lab E Batavia, IL, USA
TARGET	$8 \text{ m} \times 3 \text{ m} \times 3 \text{ m}$ Fe tracking calorimeter
MAGNETS	3.5 m diameter iron toroids, instrumented with acrylic scintillator every 20 cm steelThree toroids, each with 1.6 m steel along beam direction
TARGET CALORIMETRY	10 cm steel separation between 2.5 cm liquid scintillator planes with BBQ wavelength-shifting bars on side Four 2-in. phototubes per counter $\sigma_{\rm E}/{\rm E} = 0.84/\sqrt{\rm E}$
TARGET TRACKING	 20 cm steel separation between 3 m × 3 m drift chambers, each with x and y planes A chamber has 24 cells in each of two planes: 12 cm transverse for each cell, with two-wire readout (no left-right ambiguity) σ = 250 µm positional accuracy Multihit readout with measurement of leading and trailing edges Linear output available for charge vs. time readout
TOROID TRACKING	Drift chambers, located as shown in figure, are similar to those in target, except for one wire/cell $\Delta p/p \approx 0.11$, dominated by multiple scattering in iron toroids
BEAM	Dichromatic and quad triplet neutrino beams (Tevatron) $p_{sec} \lesssim 700 \text{ GeV}$
INTENSITY MONITORS	Neutrino lab facility providing calibrated ion chamber monitoring of momentum-selected hadron beam for dichromatic running Additionally, rf cavity monitors, Cerenkov counter, and muon monitors for redundant measures of flux

-

.

.

CDF (Collider Detector at Fermilab)

LOCATION	BO pp collision area Fermilab, Batavia, IL, USA
MAGNET	1.5 Tesla superconducting solenoid 5 m long \times 3 m diameter
TRACKING	
CENTRAL REGION	Cylindrical drift chamber 84 layers arranged into 9 layers of supercells 5 axial superlayers (12 wires/layer) 4 small-angle stereo superlayers 6144 total sense wires
VERTEX REGION	TPC, 150 mm drift distance 2176 sense wires 2448 pads
SHOWER COUNTERS	
CENTRAL REGION	 0.6X₀ Pb, 0.6 cm scintillator with wave shifter readout arranged in towers of constant rapidity intervals 33 layers 1 layer of wire chamber for shower localization σ_E/E = 14%/√E 48 modules total
END PLUG	 0.7X₀ Pb, resistive plastic proportional tubes with cathode pad readout arranged in towers of constant rapidity intervals 30 layers (21X₀ total thickness) 1 layer of strip readout for localization σ_E/E ≈ 24%/√E Spatial resolution ≈ 3 mm at 40 GeV
FORWARD	40 layers of 0.57X ₀ Pb, proportional tubes Construction similar to end plug
HADRON CALORIMETRY	
CENTRAL	 2.5 cm steel, 1 cm scintillator with wave shifter readout, arranged in towers of constant rapidity intervals and matched to shower counters 34 layers (5 absorption lengths) σ/E ≃ 5.5% + 62%/√E
END WALL	5 cm steel, 1 cm scintillator Construction similar to central modules $\sigma/E \simeq 6\% + 77\%/\sqrt{E}$
END PLUG	5 cm steel, resistive plastic proportional tubes with cathode pad readout Pads are arranged in towers of constant rapidity intervals and matched to shower counter 20 layers $\sigma/E \simeq 11\%$ at 100 GeV
FORWARD	5 cm steel, resistive plastic proportional tube readout similar in construction to end plug
MUON DETECTION	4 layers of drift tubes outside hadron calorimeter in central region Toroids and drift chambers in small angle region
TRIGGER	3 level trigger Analog energy cluster finder for level 1 (fast) trigger Fastbus-based trigger processor for higher levels

XBL 853-10349

CELLO

LOCATION	PETRA e ⁺ e ⁻ ring DESY, Hamburg, W. Germany
COLLABORATION	DESY, Hamburg University of Glasgow Universität Hamburg KfK und Universität, Karlsruhe MPI, München LAL, Université de Paris XI, Orsay LPNHE, Université de Paris University of Rome and INFN CEN, Saclay Tel Aviv University
MAGNET	 1.3 Tesla superconducting thin (0.49X₀) solenoid 0.75 m inner bore radius 3.8 m length
TRACKING	5 cylindrical proportional chambers with cathode strips 7 cylindrical drift chambers 2 cylindrical layers of drift tubes (vertex detector installed end 1982) 8 planar endcap chambers Tracking down to $\theta = 150$ mrad $\sigma_p/p = 2\%$ p sin θ (p > 2 GeV, $\theta > 30^\circ$) $\sigma_z = 0.4$ mm centroid measurement on cathode strips
EM CALORIMETRY	 20 lead-liquid argon modules (20X₀) covering 30° < θ < 150° and 130 < θ < 400 mrad 7 layers in depth for shower sampling Resolution: σ_E/E = 13%/√E, σ_θ = 4 mrad Lead-scintillator sandwich (2 layers), 23° < θ < 30° Two forward detectors made of Pb-glass blocks + scintillators, 50 < θ < 100 mrad
MUON DETECTION	30 planar proportional chambers (covering 92% of 4π) $\sigma_{\text{position}} = 6 \text{ mm}$ $p_{\text{cut-off}} = 1.4 \text{ GeV}$
TRIGGERS	Charged-track trigger in $r\phi$ ($p_T > 200$ MeV) and rz projections Calorimetric triggers

REFERENCES

1. H.J. Behrend et al., CELLO Collaboration, Phys. Scripta 23 (1981) 610.

Drift Chambers

٩

0

ŏ

- Õ **Scintillation Trigger Counters**
- Õ Lead glass Counters

CHARM II Neutrino Detector

LOCATION	450 GeV proton synchrotron Neutrino Beam Facility CERN, Geneva, Switzerland
FINE GRAIN TARGET CALORIMETER	 420 modules (½X₀ and 0.12Λ_{abs} each), each consisting of a target plate (glass) 3.7 × 3.7 m² and 4.8 cm thick, and 352 streamer tubes 3.7 m long and 1 cm wire spacing (digital wire readout, analog cathode strip orthogonal to wires with 2 cm spacing) The wire orientation alternates between horizontal and vertical in successive modules A plane of 20 scintillators 3 m × 0.15 m is inserted every fifth module, and a plane of streamer tubes with inclined vertical wires (± 7°) every twentieth module 692 tons of glass
TRIGGER	At least one hit in seven planes and shower width criteria discriminating electron and hadron showers
PERFORMANCE (EXPECTED)	$\sigma(E_e)/E_e \sim 0.25/\sqrt{E_e}$ $\sigma(\theta_e) \sim 16 \text{ mrad}/\sqrt{E_e}$
MUON SPECTROMETER	Six modules of 20 magnetized iron disks of 2.5 cm thickness each Tracking with drift chambers, two in front and two at the end, and one in each gap between modules $\sigma(p_{\mu})/p_{\mu} \sim 20\%$
TIMETABLE	Installation February 1985 – December 1985 Test run summer 1985 Data-taking 1986/87

REFERENCE

٠

1. CHARM II Collaboration, Proposal for measuring the ratio of $\sigma(\nu_{\mu}e)$ and $\sigma(\overline{\nu}_{\mu}e)$, CERN/SPSC/83-24, SPSC/P186 (April 1983).

.

CLEO

LOCATION	CESR e ⁺ e ⁻ ring Wilson Laboratory, Cornell University, Ithaca, NY, USA
MAGNET	1.0 Tesla (superconducting)
TRACKING	New vertex detector + drift chamber 10 cylinders of sense wires, 2 cylinders of cathode strips Resolution: $\sigma_{r\phi} = 90 \ \mu m$, $\sigma_z = 10 \ mm$ (current division), $\sigma_z = 500 \ \mu m$ (cathode strips)
	Momentum resolution of vertex detector + drift chamber $(\Delta p/p)^2 = (0.0065p)^2 + (0.006/\beta)^2$
SHOWER COUNTERS	12 X ₀ of Pb-proportional tube sandwich $\Delta E/E = 0.17/\sqrt{E}$ $\Delta \theta = 6 \text{ mrad}$
ENDCAP SHOWER COUNTERS	10 X_0 of Pb-proportional tube sandwich $\Delta E/E = 0.26/\sqrt{E}$ $\Delta \theta = 6 \text{ mrad}$
PARTICLE IDENTIFICATION	Time-of-flight counters $\sigma = 320 \text{ ps} (\pi, \text{ K}, \text{ p separation})$
	dE/dx chambers $\sigma = 5.8\%$ (e, π , K, p separation)
	dE/dx in 17 cylinders of drift chamber, $\sigma_{dE/dx} = 10\%$
MUON DETECTION	4-10 interaction lengths of iron $p_{cutoff} \approx 1.5 \text{ GeV/c}$

LUMINOSITY MONITOR 8 scintillator + shower counter telescopes at 39-70 mrad from the beam line

REFERENCES

-

- The CLEO Collaboration, CLNS 82/538 (1982).
 E. Nordberg and A. Silverman, The CLEO Detector, CLNS, CBX 79-6 (1979), unpublished.

CLEO

Crystal Ball

LOCATION	DORIS e ⁺ e ⁻ ring DESY, Hamburg, W. Germany
SCINTILLATOR	16 X_0 of NaI(T1)
(MAIN ARRAYS)	(1 nuclear absorption length) Segmentation: 672 truncated triangular pyramidal crystals Solid angle covered = 93% of 4π Resolution on γ or e: $\sigma_{\rm E}/{\rm E} = 0.026/{\rm E}^{1/4}$ $\sigma_{\theta} = 1$ to 2°, depending on energy $\sigma_{\phi} = \sigma_{\theta}/{\rm sin}\theta$
(ENDCAP ARRAYS)	NaI(T1) - 40 hexagonal crystals, extending solid angle coverage to 98% of 4π
TRACKING	4 double layers of drift tubes with charge division readout (800 tubes total) $\sigma_{\phi} = 1^{\circ}$ $\sigma_{z} = 1-2\%$ of length (60 cm inner layer, 33 cm outer layer) Solid angle covered = 98% of 4π (inner layer), 74% of 4π (outer layer)

LUMINOSITY MONITOR 4 scintillator + shower counter telescopes

REFERENCES

- 1. M. Oreglia et al., Phys. Rev. D25 (1982) 2259.
- 2. R. Chestnut et al., IEEE Trans. Nucl. Sci. NS 26 (1978) 4395.
- 3. G.I. Kirkbride et al., IEEE Trans. Nucl. Sci. NS 26 (1979) 1535.
- 4. Proposal of the Crystal Ball collaboration to the DESY Physics Research Committee, PRC 81/09, June 30, 1981.

Crystal Ball

,

CUSB-II

LOCATION	CESR e ⁺ e ⁻ ring Wilson Laboratory, Cornell University, Ithaca, NY, USA
COLLABORATION	Columbia University, SUNY at Stony Brook
TRACKING	Mini jet chambers, between beam pipe and first BGO plane
CENTRAL CALORIMETER	 Segmented cylindrical BGO array and NaI(Tl) array with interspersed strip chambers (not shown) surrounded by lead-glass array; PM readout on all calorimeter elements 360 bismuth germanate (BGO) crystals (36 liters), 12X₀, in 5 radial sectors, 36 φ sectors (10°), 2 θ sectors Scintillator strips or mini strip chambers between first and third BGO layers 332 NaI(Tl) crystals (580 liters), 9X₀, in 5 radial layers, 32 φ sectors, 2 θ sectors 16 proportional chambers with cathode strip (1 cm) readout located in 4 planes between NaI(Tl) layers; ΔΩ = 64%, σ_{shower} = 0.6 cm 256 lead-glass blocks in four 8x8 arrays surrounding the NaI(Tl) array, 7X₀ ΔΩ = 66%, σ_E/E = 1%/√E + 1% (in quadrature)
MUON IDENTIFICATION	Dimuon identification with 35 scintillation counters surrounding lead-glass arrays; $\Delta \Omega = 42\%$
LUMINOSITY MONITOR	2 scintillators and lead-scintillator shower counters 45 mrad $< \Delta \theta < 90$ mrad, $\Delta \phi = 61\%$ of 2π

REFERENCES

- P. Franzini and J. Lee-Franzini, Phys. Rep. 81 (1982) 241.
 The CUSB-II Detector, C02 at the XXIIth International Conference on High Energy Physics, Leipzig (1984).

 1

Dÿ	
LOCATION	Fermilab pp collider Batavia, IL, USA
TRACKING	 Vertex detector: 3 < r < 10 cm, z < 40 cm, pseudorapidity η < 2, rΔφ resolution 100 μm, z resolution 5 mm, two-track resolution in rΔφ ~ 1 mm Central drift chambers: 4 supercells of 6 sense wires and 2 delay lines for a total of 24 sense wire measurements of rφ and 8 delay line measurements of z per track, 32 azimuthal sectors, 768 sense wires, 256 delay lines, 40 < r < 70 cm, z < 74 cm, σ_{rφ} = 200 μm, σ_z = 5 mm, 2-track resolution 2.5 mm in rΔφ, 10 cm in Δz, 2 overlapped track rejection by dE/dx 50:1 Endcap drift chambers: supercells of 7 sense wires and 2 delay lines, 14 supercells per plane, orthogonal pairs of planes before and after TRD's, total of 8 planes, 784 sense wires, 224 delay lines, 80 < z < 137 cm, 10 < r < 65 cm, σ_x = σ_y = 200 μm, σ_z = 5 mm, etc., same as central drift chamber, η < 3.5
TRANSITION RADIATION DETECTORS	 Two radiator sections deep, each having 640 lithium foils of 30 μm thickness separated by 150 μm, followed by a xenon-filled proportional chamber 1 cm thick with 8 mm wire spacing, e/π discrimination 50:1, 1080 channels total for all sections Central TRD's: 10 < r < 40cm, z < 70 cm Endcap TRD's: 92 < z < 122 cm, r < 65 cm, η < 3.1
CALORIMETRY	 Uranium/copper liquid argon stacks, projective geometry with transverse segmentation 0.1(Δφ) × 0.1(Δη), longitudinal segmentation 4 in EM and 4 in hadronic, 5312 towers, 42560 channels, (σ_E/E)_{EM} = 12%/√E, position resolution for EM shower 8 mm/√E, η < 4.7, five parts Central calorimeter: radiation lengths 21X₀ in EM section, absorption lengths 6.9λ₀, 75 < r < 222 cm, z < 113 cm, η < 0.9, 1536 towers, 13952 channels Endcap calorimeter (each): 20X₀ in EM section, 8.9λ₀, 142 < z < 340 cm, r < 207 cm, 0.9 < η < 3.1, 1536 towers, 12192 channels Plug calorimeter (each): 9λ₀, 500 < z < 650 cm, 9 < r < 65 cm, 3 < η < 5, 352 towers, 2112 channels
MUON SYSTEM	 Proportional drift tube layers: extruded Al tubes 10 cm × 2.5 cm × (≤600 cm long), 12,720 PDT's total, coordinate along wire measured to ±1 mm by vernier cathode strips, resolution perpendicular to wire ±0.5 mm, magnetic field inside toroids 20 kG, Δ_{pT}/p_T = 20% (multiple coulomb scattering limit), sign determination at 3σ for p_T = 300 GeV/c, η < 2.34, 11° < θ < 169° Central toroidal magnet: z < 425 cm, 308 < r_⊥ < 410 cm, absorption lengths including calorimeter 13.3λ₀ at 90° End toroidal magnet: 447 < z < 559 cm, 86 < r_⊥ < 410 cm, absorption lengths including calorimeter 18λ₀ at 11°

REFERENCE

 \checkmark

1. DØ Design Report (November 1984).

•

.

DØ

DELPHI

LOCATION	LEP e ⁺ e ⁻ rings CERN, Geneva, Switzerland
MAGNET	Superconducting solenoid: 12 kG, $R_i = 2.6$ m, $L = 7.4$ m
TRACKING	Vertex detector: Si strips, 25 μ m pitch, 1–3 layers, R _i = 8.5 cm, $\sigma_{r\phi}$ = 5 μ m, L = 42 cm
	Inner drift chamber: Jet chamber section: $R_i = 11.8 \text{ cm}, R_o = 22.3 \text{ cm}, L = 80 \text{ cm}, 24 \text{ r}\phi \text{ signals}, \sigma_{r\phi} = 100 \mu\text{m}$ Outer section: 5 cylindrical layers with z readout (strips), $R_o = 28 \text{ cm}, L = 100 \text{ cm}, \sigma_z = 500 \mu\text{m}$
	Time projection chamber (TPC): $R_i = 28 \text{ cm}$, $R_o = 122 \text{ cm}$, $L = 2 \times 1.36 \text{ m}$ (max. drift), 192 sense wire hits for 39° $< \theta < 141$ ° to provide dE/dx and rz, 16 3-dim. space points from circular pad rows (r, ϕ ,z), $\sigma_{r\phi} = 250 \mu \text{m}$, $\sigma_z < 1 \text{ mm}$, 2-track separation = 1-2 cm, dE/dx = 5.5% , $\sigma_p/p = [(0.6 \text{ p})^2 + 0.5^2]^{1/2}$
	Outer drift chamber: 5 layers of Al tubes ($1.75 \times 1.75 \text{ cm}^2$), $R_i = 192 \text{ cm}$, $R_o = 208 \text{ cm}$, $L = 470 \text{ cm}$, $\sigma_{r\phi} = 300 \ \mu\text{m}$; z-information from timing, 3 layers with fast response, $\sigma_z = 15 \text{ cm}$
	Forward drift chambers: chamber A at $z = 156$ cm, 6 (x,u,v) projections, $\sigma = 150 \mu$ m; chamber B at $z = 266.5$ cm, 12 (x,u,v) projections, $\sigma = 150 \mu$ m
TIME-OF-FLIGHT	Scintillators, 200 counters, $3.5 \times 20 \times 2 \text{ cm}^3$, R = 314 cm, 2PM's each, $\sigma_t = 0.5 \text{ ns}$
SHOWER COUNTERS	Barrel: high density projection chamber (HPC), 40 sampling slots of 8 mm Ar/CH ₄ , max. drift = 90 cm, 8 charge samples in R, R _i = 208 cm, R _o = 260 cm, $20X_0$; 24×6 modules, $41.5^\circ < \theta$ < 138.5°, trigger gap with proportional tubes after $5X_0$; $\sigma_E/E = 18.5\%/\sqrt{E}$
	Endcap: lead-glass blocks, $5 \times 5 \text{ cm}^2 (1^\circ \times 1^\circ)$, pointing geometry (-3°) , >22X ₀ , triode readout, $10^\circ < \theta < 35.5^\circ$; $\sigma_{\rm E}/{\rm E} = [(0.4 + 5.9/\sqrt{\rm E})^2 + (6/{\rm E})^2]^{1/2}$
	Small angle tagger (SAT): 36–150 mrad, proportional tubes or Si strips, shower counter with scintillating fibers (1 mm) embedded in lead, 25X ₀
HADRON CALORIMETER	20 layers of streamer tubes inside return yoke, pointing geometry (2.8° \times 3.6°), 4 samples in depth, $\sigma_{\rm E}/E = 100\%/\sqrt{E}$ (behind coil)
HADRON IDENTIFICATION	Ring imaging Cerenkov counters (RICH), both gas (C_5F_{12}) and liquid (C_6F_{14})
	Barrel: $41.5^{\circ} < \theta < 138.5^{\circ}$, $R_i = 123$ cm, $Ro = 197$ cm, 1.3 atm., $40^{\circ}C$; 4.2σ separation limits: $\pi/K = 18 \text{ GeV/c}$, $K/p = 35 \text{ GeV/c}$
	Endcap: $15.5^{\circ} < \theta < 35.5^{\circ}$, 1 atm., 40°C; 4.2 σ separation limits: $\pi/K = 30$ GeV/c, K/p = 50 GeV/c
MUON DETECTION	2 drift chamber layers behind \ge 90 cm and 110 cm Fe of return yoke
	Barrel: 2 layers of 3 points: $\sigma_{r\phi} = 1 \text{ mm}, \sigma_z = 1 \text{ cm}$
	Endcap: 2 layers of 2 points: $\sigma_x = \sigma_y = 1 \text{ mm}$

FORWARD DETECTORS Scintillator hodoscopes, tracking chambers, and EM shower detector

REFERENCES

Ň

_

DELPHI Collaboration, Technical Proposal, CERN/LEPC 83-3, DELPHI 83-66.
 DELPHI Collaboration, Progress Report, CERN/LEPC 84-16, DELPHI 84-60 GEN-11.

DELPHI

EMC

LOCATION	CERN-SPS Geneva, Switzerland
BEAM	SPS muon beam line M2 $E_{\mu} = 120-280 \text{ GeV} (400 \text{ GeV protons})$
	Intensity $1-5 \times 10^7 \mu$ /pulse 1.8 sec pulse, rep. rate 14 sec Beam momentum $\Delta p = 4.5\%$
Ň	Halo 6% Intensity monitor hodoscope Beam hodoscope
TARGET	NA2: 6 m H_2/D_2 , 4.75 (2.75) m iron-scintillator, polarized target NA9: 1 m H_2/D_2 , heavy targets NA28: heavy targets
MAGNET	Forward Spectrometer (FS) 15 kG, Bdl = 5.18 T-m Vertex Spectrometer (VS) 16 kG, Bdl ~ 4 T-m, superconducting
TRACKING	FS: Drift chambers, proportional chambers VS: Streamer chamber, proportional chambers, drift tubes
	$\sigma_{\rm p}/{\rm p} \sim (20 + 1.1 {\rm p}) \times 10^{-4}$ (FS) $\sigma_{\rm p}/{\rm p} \sim 1/5 (10 + 9 {\rm p}) \times 10^{-3}$ (VS)
TRIGGER	Scintillator hodoscopes + veto hodoscopes on scattered μ crossing 2.5 m iron absorber
PARTICLE IDENTIFICATION	Gas Cerenkov counter (FS + VS) (neon, nitrogen, neopentane) Aerogel Cerenkov counter (VS) TOF Hodoscopes (VS) Lead-glass array (FS) $\sigma_E/E = 20\%/\sqrt{E}$ Hadron calorimeter (FS) $\sigma_E/E = 120\%/\sqrt{E}$

REFERENCES

O.C. Allkofer et al., Nucl. Instr. & Meth. 179 (1981) 445.
 J.P. Albanese et al., to be published in Nucl. Instr. & Meth.

EMC

FNAL-605

LOCATION	ME External Proton Beam, FNAL Batavia, IL, USA	
INCIDENT BEAMS	External Proton Beam, Pions (Future)	
MAGNETS ¹	SM12 Dipole:15 m long by 1.2 m high by 0.9 m gapSM3 Dipole:3 m long by 1.6 m high by 1.5 m gap	
TRACKING	STATION 1:6 planes MWPC2 mm wire spacingSTATION 2:6 planes DC1 cm cell sizeSTATION 3:6 planes DC2 cm cell size	
CERENKOV COUNTER ²	 Ring-imaging Cerenkov: intended to identify hadrons up to 200 GeV/c 15 m of helium gas at atmospheric pressure 8 m focal length mirrors Multistep PWC ultraviolet photon detector utilizing triethylamine and calcium fluoride windows 	
CALORIMETRY ³	 Electron calorimeter: 18 radiation length lead-scintillator sandwich array longitudinally segmented at 2, 4, 8, and 13 rad. lengths to optimize pion rejection Resolution of 15%/√E Hadron calorimeter: iron-scintillator sandwich 12 2.5-cm plates followed by 20 5-cm plates, each section read out with wavelength shifter bars Resolution of 70%/√E 	
MUON DETECTION	Absorber wall of zinc and concrete followed by crossed proportional tube hodoscopes	

REFERENCES

- R.W. Fast et al., submitted to the 7th International Magnet Conference, 1981, Karlsruhe, Germany.
 H. Glass et al., submitted to IEEE Transactions, 1982 Nuclear Science Symposium.
- 3. Y. Sakai et al., and J. Hanson et al., submitted to IEEE Transactions, 1980 Nuclear Science Symposium.

Fermilab 605: Precision Spectrometer for High P_T Particles. Fermilab, StonyBrook, University of Washington, Columbia, Saclay, CERN, Kyoto, KEK.

FNAL-605

XBL 831-7892

FNAL High Intensity Lab Spectrometer

LOCATION	Fermilab, High Intensity Lab — Proton West Beam Line Batavia, IL, USA Experiments 537, 705, 721
TARGETS	0.5 and 1.0 m H_2/D_2 targets; Be, Cu, W nuclear targets
BEAMS	\overline{p} , p, π^+ , π^- , e^{\pm} (30-300 GeV/c); unique antiproton tertiary beam derived from Λ decays; secondary π^{\pm} beam yields up to $10^{10}/10^{13}$ 800 GeV protons with $\Delta p/p = \pm 10\%$ Beam momentum and trajectory tagged with beam Cerenkovs (90 ft long – helium filled) and beam PWC system
ANALYSIS MAGNET	Conventional analysis magnet, 1018 kG-inches, aperature $3' \times 6'$
TRACKING	Proportional wire chambers (upstream of analysis magnet) 6000 wires; wire spacings - 0.75 mm, 1.5 mm; 6 stations with x, u, v planes, 16.7° stereo Drift chambers (upstream of analysis magnet) 830 wires; drift distance 0.6 cm and 1.2 cm; 3 stations with x, u, v planes, 16.7° stereo Drift chambers (downstream of analysis magnet) 2000 wires; drift distance 2 cm; 3 stations with x, u, v, x' planes, 16.7° stereo Drift chambers resolution $-\sigma \sim 280 \ \mu m$
ELECTRO- MAGNETIC DETECTOR	 600 element scintillation and lead-glass counter array; 24X₀, 2λ_a Transverse segmentation 7.5 cm² and 15.0 cm² at 10 meters from targets Resolution of scintillation glass counters ≈1% + 1.5%/ √E Resolution of lead-glass section elements ≈1% + 4.5%/ √E High resolution scintillation glass section covers 5° cone in the forward direction Position measurement done by means of planes of 5 mm gas tubes (x,y,u) positioned after the first 3.5X₀ of the glass detector Electron position resolution = 3 mm + 4.6 mm/√E Tube hodoscope operated in the saturated avalanche mode Calibration of the electromagnetic detector performed in situ by changing beam to electron mode and automatically moving the 30 ton detector element-by-element into the beam Detector couples to analog cluster-finding trigger electronics which finds and reconstructs photon showers
MUON DETECTOR	400 element scintillation counter hodoscope used for dimuon trigger; 4 planes (y,x,x,x) First two planes situated behind $22\lambda_a$ of steel Triple coincidences between the three x planes form fast muon trigger Triple coincidences are used to define roads in the drift chambers DC4,5,6 in which a fast- muon trigger processor reconstructs track trajectories and momenta and calculates the mass of each pair-wise combination in less than 10 μ s

REFERENCES

- 1. Fermilab-Pub. 85/35-E, submitted to Nucl. Instr. & Meth.
- 2. D.E. Wagoner et al., Fermilab-Conf. 84/21-E, submitted to Nucl. Instr. & Meth.
- 3. R. Rameika et al., Fermilab-Conf. 84/22-E, submitted to Nucl. Instr. & Meth.
- 4. B. Cox et al., Fermilab-Conf. 84/23-E, submitted to Nucl. Instr. & Meth.
- 5. B. Cox et al., Nucl. Instr. & Meth. 219 (1984) 491.
- 6. B. Cox et al., Nucl. Instr. & Meth. 219 (1984) 487.
- 7. H. Areti et al., Nucl. Instr. & Meth. 212 (1983) 135.

FNAL High Intensity Lab Spectrometer

FNAL Multiparticle Spectrometer

LOCATION	Fermilab, meson area, MT beam line Batavia, IL, USA	
MAGNET	16.9 kG (superconducting) p _t kick ~ 0.7 GeV/c	
TRACKING	PWC + drift chambers, 35 planes A through F $\sigma_{\rm p}/{\rm p} = \left\{ 0.003 \left[1 + ({\rm p}_0/{\rm p})^2 \right]^{1/2} \right\} {\rm p}$	
E-672 LAYOUT RECOIL DETECTOR	46 segments Pb-glass $\Delta \phi = 2\pi$	
PARTICLE IDENTIFICATION	C1 44 cell atmospheric (C counter)	
CENTRAL CALORIMETER	EM Pb-scintillator, $16X_0$, $\sigma_E/E = 20\%/\sqrt{E}$, 206 elements Hadron Fe-scintillator, $3.8X_0$, $\sigma_E/E = 70\%/\sqrt{E}$	
MUON DETECTION	Fe toroid, 2.5 m thick, 18 kG $\mu_{1,2,3,4}$ PWC	
FORWARD LEVER ARM	G PWC	
FORWARD CALORIMETER	EM Pb-scintillator, 16X ₀ , 96 elements Hadron Fe-scintillator, 10X ₀ , 162 elements	
BEAM CALORIMETER	Fe-scintillator, 1 element	
E-743 LAYOUT TARGET AREA	$15\mu m$ hydrogen bubble chamber $50\mu m$ mini drift and PWC	
PARTICLE IDENTIFICATION	C2 68 cell atmospheric (C counter) C3 34 cell atmospheric (C counter) P1,P2 current division proportional tubes	
	TRD carbon fiber Xe transition radiation detector, 20 planes xenon PWC	
FORWARD LEVER ARM	H PWC	
REFERENCES		

- P. Rapp et al., Nucl. Instr. & Meth. 188 (1981) 285.
 J.L. Benichou et al., Nucl. Instr. & Meth. 190 (1981) 48.
 M. Deutschmann et al., unpublished.

FNAL Multiparticle Spectrometer

FNAL Muon Spectrometer LOCATION Fermilab Tevatron (E665) Batavia, IL, USA **BEAM** Tevatron NM beamline $E_{\mu} = 100-700 \text{ GeV} (900 \text{ GeV protons})$ Intensity > $10^8 \mu$ /pulse 20 sec pulse; rep. rate = 1 minute Beam momentum $\Delta p \sim \pm 15\%$ Halo ≤ 10% $\begin{array}{ll} \text{Momentum} & \sigma_{\rm p}/{\rm p}\sim 0.3\%\\ \text{Angle vert.} & \sigma(\theta)\sim 3\mu\text{rad} \end{array}$ Beam tagging: Angle horiz. $\sigma(\theta) \sim 7\mu$ rad TARGET $1 \text{ m H}_2/D_2$ 1 m xenon (15 atm.) Assorted heavy targets MAGNETS CVM – dipole, 16 kG; BL \approx 4 T-m, superconducting CCM – dipole, 14 kG; BL \approx 7 T-m, superconducting TRACKING Vertex spectrometer (CVM): Streamer chamber, proportional chambers, proportional drift tubes $\sigma_{\rm p}/{\rm p} \sim \frac{1}{5}(10 + 9{\rm p}) \times 10^{-3}$ Forward spectrometer (CCM): Proportional chambers, drift chambers $\sigma_{\rm p}/{\rm p} \sim 3 \times 10^{-5} {\rm p}$ MUON DETECTOR Iron absorber, concrete absorbers (interleaved with scintillators and proportional tube planes) TRIGGER Muon track in muon detector system (fast processor) Beam tagging scintillator Halo veto hodoscopes PARTICLE IDENTIFICATION Vertex spectrometer: **TOF** hodoscopes Threshold Cerenkov counters a) Freon at STP; b) Nitrogen at STP Forward spectrometer: Ring imaging Cerenkov counter, radiator 6 m Argon/helium at STP Electromagnetic calorimeter Lead/proportional tube sandwich $\sigma(E)/E \sim 30\%/\sqrt{E}$ (for electrons)

 $\sigma(\text{pos}) \sim 2 \text{ mm}$

1. 7Mx3M Veto Counter Wall

• ~

- 2. CERN Vertex Magnet
- IM LH₂/LD₂ Target
- 4. 1Mx2Mx0.7M Streamer Chamber
- 5. 3Mx1M MWPC, 6 Planes
- 6. 144Cell Threshold Cerenkov Cntr 13.
- 7. 58 Cell Threshold Cerenkov Cntr
- 8. 4Mx1.6M Scintillation TOF Arrays
- 9. 2Mx2M Prop. Drift Tube Arrays 4 Planes 15.
- 10. 2Mx2M MWPC, 12 Planes
- 11. Chicago Cyclotron Magnet
- 12. 2Mx1M MWPC, 15 Planes
 - 4Mx2M Drift Chambers, 8 Planes

- 14. Ring Imaging Cerenkov Counter
- 15. 6Mx2M Drift Chambers, 8 Planes
- 16. 3Mx3M EM Shower Calorimeter
- 17. 7Mx3Mx3M Iron Absorber
- 18. 7Mx 3M Prop. Tube Arrays, 8 Planes
- 19. 7Mx3M Scintillation Trigger Arrays

FNAL Neutrino Detector

FNAL neutrino beam line, Lab C Batavia, IL, USA
608 flash chambers, $3.66 \times 3.66 \text{ m}^2$ sensitive area, and 37 proportional tube chambers Half are with horizontal cells and the other half at ± 10 degrees from the vertical Between each flash chamber there are 1.6-cm thick alternating planes of iron shot and sand, giving a total tonnage of 340 tons Showers are sampled every 22% of X_0 and every 3% of λ_{abs} The angular resolution for electrons and hadrons is: $\sigma_e = 3.5 + 53/E_e \text{ mrad}$ $\sigma_h = 6 + 640/E_h \text{ mrad}$ The energy resolution is: $\sigma_E/E = 10\%$ for $5 \le E \le 100 \text{ GeV}$ for both electrons and hadrons
Proportional chambers, $3.66 \times 3.66 \text{ m}^2$ throughout the calorimeter every 16 flash chambers
Magnetized iron toroids 7.32 m diameter and 3.66 m diameter interspersed with drift chambers $\sigma_p/p = 10\%$ for p < 300 GeV/c

REFERENCES

D. Bogert et al., IEEE Trans. Nucl. Sci. NS 29 (1982) 363.
 J. Bofill et al., IEEE Trans. Nucl. Sci. NS 29 (1982) 400.

FREJUS Detector for Nucleon Decay

LOCATION	FREJUS Tunnel, 4500 m water-equivdepth Modane, France	
COLLABORATION	Aachen, Orsay, Palaiseau, Saclay, Wuppertal	
TRACKING-PLASTIC	Flash chambers $0.5 \times 0.5 \text{ cm}^2$ section Neogal (70% neon, 30% helium) 1 atm. Crossed planes (1024 tubes) of $6 \times 6 \text{ m}^2$ Iron sampling 3 mm between F.C. planes Capacitive strips readout Energy resolution $15\%/\sqrt{E}$ for electrons ~20% for pions around 0.3 GeV/c ~3% for muons around 0.3 GeV/c	
TRIGGER	Geiger tubes $1.5 \times 1.5 \text{ cm}^2$ section Argon-ethylal-freon 1 atm. Crossed planes (344 tubes) of $6 \times 6 \text{ m}^2$	
MASS	8 tons per module (8 F.C. planes, 1 Geiger plane) Detector modular, mass 900 t Average density ~ 2 Fiducial mass 600 t	
SENSITIVITY	~ 10 events/year for well-identified decay mode of 10^{31} years partial lifetime	

REFERENCES

- 1. P. Bareyre et al., (Orsay, Palaiseau, Saclay), Proposal to Study the Instability of the Nucleon Lifetime with a Modular Flash Chamber Detector (1980).
- 2. R. Barloutaud, Nucleon Decay Experiment with a Modular Flash Chamber Detector (Proceedings of the ICOBAN Conference, Bombay (1982).

•

FREJUS Detector for Nucleon Decay

HELIOS

LOCATION	CERN-SPS (NA34) Geneva, Switzerland
BEAM/TARGET	(a) 450 GeV/c protons, 10^{6} /sec, $<$ 50 μ m diameter spot on 50 μ m Be wire target followed by 4 planes of Si detectors at z = 60, 90, 120, 150 mm
	(b) 200 GeV/c oxygen nuclei, 10^6 /sec on 200 wire targets, each 100 μ m diameter, separated by 0.5 mm along beam direction; the wires form part of a drift chamber (active target)
TRACKING	3 sets of drift chambers using CO ₂ at 1 atm. in 0.35 Tesla-m dipole field $\sigma/p = 0.001 p + 0.015$
CALORIMETERS	Dipole calorimeter: Fe yoke interleaved with 5 mm thick scintillator sheets in 24 azimuthal wedges Hadronic $\sigma/E \simeq 0.55/\sqrt{E}$
	Wide-angle calorimeters: Wall of U-Cu/scintillator and Cu/scintillator modules Hadrons: $\sigma/E \simeq 0.37/\sqrt{E}$ and $0.50/\sqrt{E}$ Electrons: $\sigma/E \simeq 0.16/\sqrt{E}$ (previously used in AFS)
	Target and drift chamber region: Surrounded on four sides by U-Cu/scintillator calorimeters
	Uranium-liquid argon calorimeter: 6.0 absorption lengths thick, covering forward cone 1% methane added to reduce readout time of LA 264 cells, each 1.7 mm U, 1.5 mm LA 1.9 mm readout plane, 1.5 mm LA First 35 cells ($20X_0$) have highly segmented pad readout Read out longitudinally in 2 sections ($8X_0$, $12X_0$) Hadronic part has x-y strips Electrons: $\sigma/E = 0.11/\sqrt{E}$ Hadrons: $\sigma/E = 0.28/\sqrt{E}$
	Backing calorimeter: U-Cu/scintillator modules (6 absorption lengths) as in wide-angle calorimeter
PARTICLE IDENTIFICATION	8-layer transition radiation detector Polypropylene radiator foils and Xe/CO ₂ drift chamber to detect TR photons π/e rejection ~ 1000 Total hadron rejection of spectrometer $\simeq 10^5$
MUON SPECTROMETER	Proportional chamber Spectrometer used in NA3 experiment 3 mm wire spacing 4.1 Tesla-m superconducting magnet $\sigma_p/p \leq 10^{-3}p$
EXTERNAL SPECTROMETER	Covers rapidity region 0.9-2.0 3 drift chambers, 0.2 Tesla-m magnet $\sigma_p/p = 0.01p$ Aerogel Cerenkov counter (n = 1.031) TOF hodoscopes $\pi/k/p$ separation up to 2 GeV/c p identification up to 3.8 GeV/c AFS U-Cu/scintillator calorimeter modules

REFERENCES

- 1. Proposals of NA34 collaboration, CERN-SPSC/84-43 and CERN-SPSC/83-51.
- 2. D. Bettoni et al., CERN-EP/84-162 (1984).
- 3. H. Gordon et al., Nucl. Instr. & Meth. 196 (1982) 303, and O. Botner et al., CERN/EF 80-7 (1980).
- 4. C.W. Fabjan et al., Nucl. Instr. & Meth. 216 (1983) 105.
- 5. J. Badier et al., Nucl. Instr. & Meth. 175 (1980) 319.

. •

HELIOS

.

Homestake Detector

LOCATION	Homestake Gold Mine Lead, SD, USA	
COLLABORATION	University of Pennsylvania, I	Brookhaven National Laboratory
DETECTOR	Deep underground liquid scin array of 100 counters, each Liquid scintillator modules - hemispherical 13 cm phot Depth: 4200 m.w.e. (1480 m	ntillation detector together with a surface air shower h 1.2 m \times 2.4 m, deployed over one square kilometer PVC housings 30 cm \times 30 cm \times 8 m viewed by two comultipliers rock)
PHASE 1:	 250 detector modules arrange m Each of the four long faces concornain 25 modules each Spatial resolution: Energy resolution: Energy threshold: Time resolution: Detector mass: 	ed into a hollow box of dimensions 8 m × 8 m × 16 onsists of 50 detector modules, while the two end faces 15 cm 7.8% per module for minimum ionizing track 1/25 minimum ionizing (2 MeV) 1.3 ns 170 tons
PHASE 2:	 1878 detector modules (same each 8 m × 8 m × 8 m The detector elements are arr Tracking chambers are inters; Parameters are as in phase 1 Spatial resolution: Nucleon decay modes: Muon → electron decay detection efficiency: Detector mass: Nucleon lifetime sensitivity: 	as those in phase 1) arranged in 3 stacks, ranged with alternate layers in crossed directions persed between the scintillator elements except for the following: 1 cm All modes except those with more than one neutrino 90% 1400 tons 5×10^{32} yr

Homestake Detector

NEW HOMESTAKE UNDERGROUND LABORATORY

HRS (High Resolution Spectrometer)

LOCATION	PEP e ⁺ e ⁻ ring SLAC, Stanford, CA, USA
MAGNET	16 kG (superconducting) Diameter = 4 m, length = 3.8 m
TRACKING	4-layer vertex chamber: 330 cells, 100 μ m spatial resolution Inner cylindrical drift chamber (15 layers): 2.53 m long at 0.21–1.02 m radius Outer drift tubes (2 layers): 3.66 m long at 1.90 m radius Momentum resolution $\sigma_p/p < 0.1\%$ p for p = 14.5 GeV/c
SHOWER COUNTERS	40 Modules $11X_0$ Pb-scint. sandwich inside the coil; 1 layer PWC $\sigma_E/E = 16\% / \sqrt{E}$ 2 samples in depth
ENDCAPS	40 Modules $8X_0$ Pb-scint. sandwich Wave shifter readout; 1 layer PWC $\sigma_E/E = 20\% / \sqrt{E}$
TIME-OF-FLIGHT	From front $3X_0$ of shower counter at r = 1.95 m $\sigma_{\tau} = 170$ ps for Bhabhas $\sigma_{\tau} = 350$ ps for hadrons
PHOTO-IONIZATION CERENKOVS	704 segments in 11 toroids 10 atmospheres give (K, p) π separation between 1.6 and 6 GeV/c
LUMINOSITY MONITOR	Telescope with Pb-glass at 32-60 mrad
REFERENCES	

- D. Rubin et al., Nucl. Instr. & Meth. 203 (1983) 90.
 N. Harnew and D. Meyer, Nucl. Instr. & Meth. 186 (1981) 513.
- 3. D. Bender et al., Phys. Rev. D30 (1984) 515.
- 4. D. Bender et al., Phys. Rev. D31 (1985) 1.

HIGH RESOLUTION SPECTROMETER ARGONNE - INDIANA - LBL - MICHIGAN - PURDUE - SLAC

XBL 831-7884

IMB Detector for Nucleon Decay

	(Irvine-Michigan-Brookhaven Water Cerenkov Detector)
LOCATION	Fairport Harbor Salt Mine, Morton-Thiokol Corporation Painesville, OH, USA Latitude = 41.72°, longitude = 81.27°
SHIELDING	1940 feet overburden 1570 m water equivalent Cosmic ray muon rate = 2.7 Hz Cosmic ray neutrino rate $\sim 1/\text{day} (2:1 = \nu_{\mu}:\nu_{e})$
	Stopping much rate $\sim 3\%$ Dimuon rate $\sim 3\%$
ACTIVE MEDIUM	Pure water Transmission length > 40 m at 440 nm ≥ 20 m at 330 nm and 550 nm
	Cerenkov angle = 41° (at $\beta = 1$)
DETECTORS	2048 5"-diameter, hemispherical PM tubes PM threshold ~ 1/4 photoelectron PM noise rate = 1.5 kHz median Dynamic range recorded per PM: fast time = 512 ns (1 ns least count) slow time = 7 μ s (15 ns least count) pulse height ~ 200 photoelectrons (~ 1/4 pe least count)
THRESHOLD	>25 MeV dE/dx at $\beta = 1$
SENSITIVITY	~4 MeV dE/dx at β = 1 produces 1 photoelectron Efficiency for $\mu \rightarrow e$ detection = 60%
DETECTOR LAYOUT	 Regular, rectangular array at ~1 m spacing on 6 faces; 16 × 24 PM's on 4 faces, 16 × 16 PM's on 2 faces Totally absorptive face behind PM's ~0.5 m water behind PM's
MASS	Total = 8000 tons (17.8 m × 18.7 m × 23.9 m) Fiducial for $p \rightarrow e^{+} \pi^{0}$ = 3300 tons = 2 × 10 ³³ nucleons (13 m × 14 m × 19 m)
RESOLUTION	For $p \rightarrow e^+ \pi^0$ depositing ~225 photoelectrons: vertex $\Delta r = 0.6$ m energy $\Delta E/E = \pm 10\%$ opening angle $\Delta \sigma = 15^\circ$ Similar vertex and energy resolutions for $\mu^+ K^0$ with $K^0 \rightarrow \pi^0 \pi^0$
OPERATIONAL	August 1, 1982 Duty cycle $\sim 70\%$

IRVINE - MICHIGAN - BROOKHAVEN DETECTOR

JADE

LOCATION	PETRA e ⁺ e ⁻ ring DESY, Hamburg, W. Germany	
MAGNET	4.8 kG solenoid; normally conducting, water-cooled, Al coil; thickness $0.5X_0$ Diameter = 2 m, length = 3.5 m	
TRACKING	Cylindrical drift chamber (JET chamber) 2.36 m long at 21-79 cm radius Argon-methane-isobutane at 4 atm. 48 points on tracks with $ \cos \theta < 0.83$ ≥ 8 points over 97% of Ω Charge division gives $\Delta z = 1.6$ cm dE/dx to $\pm 6\%$ for Bhabhas $\sigma_p/p = 4\%$ for $p < 2$ GeV/c = 1.8% for high p = 1.3% for high p with event vertex used in track fit	
	Vertex chamber (beampipe chamber) 76 cm long at 9–16 cm radius 7 points on track with $ \cos \theta < 0.93$	
	 Z chamber (cylindrical drift chamber with wires strung polygonally, yielding drift fields parallel to the beam direction to allow accurate measurement of the z-coordinate) 2.4 m long at 86-88 cm radius 	
SHOWER COUNTERS BARREL	2604 tapered modules of Pb-glass 30 cm deep, arranged in 31 rings, 84 wedges per ring (central 6 rings SF6, 17.3X ₀ , remainder SF5, 12.5X ₀) $\Delta E/E = 6\%/\sqrt{E}$ $\sigma_{\theta} = 0.6^{\circ}, \sigma_{\phi} = 0.6^{\circ}$	
ENDCAPS	192 elements of Pb-glass (SF5) as in barrel	
MUON DETECTION	 618 single-wire drift chambers, arranged in 4 or 5 planes, interspersed with absorber (magnet flux return + 3 layers of iron-loaded concrete; total thickness 785 g/cm²) Covers 93% of Ω 	
TIME-OF-FLIGHT	42-counter scintillator hodoscope (r = 95 cm) between JET chamber and magnet coilIn conjunction with beam crossing signal, gives TOF resolution = 400 ps	
LUMINOSITY MONITOR	 35-75 mrad Pb-scintillator sandwich, 50 cm deep (20X₀), arranged in 8 sectors, each divided into 3 concentric rings giving equal Bhabha rates BBQ light guides on both sides of each ring element (40 scintillator slices, 1 cm deep) 	
OTHER COUNTERS	20-counter forward scintillator hodoscope, between endcaps and muon detector, for forward muon triggering	

JADE

Kamioka Nucleon Decay Detector

LOCATION	1000 m underground in Kamioka mine Gifu prefecture (~300 km west of Tokyo), Japan
WATER CONTAINER	Steel tank of cylindrical shape, 15.6 m diameter \times 16 m high, containing 2900 m ³ of pure water
WATER PURIFIER	50 μ filter / 20 μ filter-ion exchange purifier / 0.45 μ filter-UV sterilizer / 0.22 μ filter
CERENKOV LIGHT DETECTOR	 1050 × 20" diameter photomultipliers, R1449X, distributed over the inner surfaces of the water tank at 1 PM/m² Photocathode covers 20% of the entire surface Expected energy resolution of p → eπ⁰ event is 4% Equipped with FADC's to record μ-e decays and/or successive nucleon decays, if such existed
ANTICOUNTER LAYERS	Water layers at least 1.2 m thick, viewed by 123×R1449X, covering the whole sensitive volume
DATA-TAKING	PDP 11/60

REFERENCES

- 1. T. Suda et al., Neutrino '81 Conf., Hawaii (July 1981).
- K. Takahashi et al., Third Workshop on Grand Unification, Univ. of North Carolina (April 1982).
 M. Koshiba et al., 21st Int. Conf. on High Energy Physics, Paris (July 1982).

.

Kamioka Nucleon Decay Detector

KGF Detector for Nucleon Decay Kolar Gold Fields, South India, Latitude 12°N 7000 kg/cm² deep in Kolar rock (= 7600 m.w.e. of standard rock) LOCATION COSMIC RAYS Rate of atmospheric muons is 1.9/day DETECTOR Comprised of 1594 proportional counters of sealed type filled with 90% Ar and 10% methane up to 1.1 atm. 4 m long and 6 m long counters are set in alternative layers, crossed geometry Each counter has a cross section $10 \times 10 \text{cm}^2$ with 2.3 mm thick iron wall Iron plates between layers are 1.2 cm thick Total weight is 140 tons TRIGGER 5 hold coincidence in any consecutive 11 layers, or 2 hold coincidence of 2 fired counters in any 3 consecutive layers RECORD Position, pulse height, and time of fired counters ANALYSIS Direction of motion: from increase of dE/dx OF TRACKS Identification of particles: from relation of dE/dx and residual range Energy estimation: total ionization loss and also range-energy relation **OPERATIONAL** 21 October 1980

KGF Detector for Nucleon Decay

LEP3

~

LOCATION	LEP e ⁺ e ⁻ rings CERN, Geneva, Switzerland
MAGNET	Large volume, 0.5 Tesla solenoid 15.6 m high, 13.6 m long
MUON CHAMBERS	Inside magnet coil, $BL^2 = 5.9 \text{ Tesla-m}^2$ Central drift chambers 3 layers with multiple sampling $40^\circ < \theta < 135^\circ$ 2 layers for $30^\circ - 45^\circ$ Forward chambers for $0^\circ < \theta < 30^\circ$ $\Delta_p/p = 0.04\% \text{ p} (2\% \text{ at } 50 \text{ GeV})$
HADRON CALORIMETER	7 interaction lengths Octagonal barrel and endcaps Barrel IR = 87 cm, OR = 213 cm Cu-U absorber interspersed with proportional tubes Projective tower readout Muons below 1.6 GeV/c range out 97% 4π coverage (13.5° - 166.5° in polar angle)
ELECTROMAGNETIC CALORIMETER	12,000 BGO ($Bi_4Ge_3O_{12}$) crystals, 22X ₀ thick All point to IR with nearly equal cross sections $\sigma_E/E = 0.5\%/\sqrt{E}$ at low energies = 1% for 1 GeV < E < 50 GeV $\sigma_{xy} < 3$ mm
VERTEX CHAMBER	TEC (time expansion chamber) 2 sections: inner has 12 segments, outer has 24 segments IR = 8 cm, OR = 50 cm, length = 90 cm 100 MHz flash ADC's readout 80% CO ₂ - 20% isobutane $\sigma \simeq 40 \mu\text{m}$
LUMINOSITY MONITOR	BGO crystals and proportional chambers covering 25 - 58 mrad

 $\mathbf{\tilde{k}}_{i}$

•

MAC (MAgnetic Calorimeter)

PEP e^+e^- storage ring LOCATION SLAC, Stanford, CA, USA MAGNETS 5.7 kG solenoid, 7.5 cm thick Al coil Diameter = 1 m, length = 2.3 m17 kG iron toroids, 1 m thick TRACKING Vertex chamber 60 cm long, 4.5-8.5 cm tracking radius 6 layers, 7 mm diameter drift tubes 49% Ar, 50% CO_2 , 1% Methane at 4 atm Cylindrical drift chamber 2.2 m long, 12-45 cm tracking radius Argon - 10% methane at 1 atm. 10 layers, double sense wires, 3° stereo \geq 5 points on tracks over $\Delta \Omega = 95\%$ of 4π $\sigma_{\rm p}/{\rm p} = 6.5\% {\rm p}; {\rm dE}/{\rm dx} {\rm to} \pm 15\%$ Muon tracking chambers 4 planes of 10 cm diam. drift tubes surrounding magnetized iron toroids $\sigma_{\rm p}/{\rm p} = 30\%$; $\Delta\Omega = 97\%$ of 4π SHOWER DETECTORS Barrel: 14X₀ of Pb - proportional chamber sandwich $\sigma_{\rm E}/{\rm E} = 20\%/\sqrt{\rm E}; \, \sigma_{\phi} = 0.8^\circ, \, \sigma_{\theta} = 1.3^\circ$ z-coordinate from charge division $14X_0$ of Fe - proportional chamber sandwich Endcaps: $\sigma_{\rm E}/{\rm E} = 45\%/\sqrt{\rm E}; \, \sigma_{\phi} = 2^\circ, \, \sigma_{\theta} = 1.5^\circ$ ϕ -coordinate from cathode strips $\Delta\Omega = 97\%$ of 4π Total: HADRON CALORIMETER 5.5 λ_{abs} of Fe - proportional chamber sandwich $\sigma_{\rm F}/{\rm E} = 75\%/\sqrt{\rm E}; \ \Delta\Omega = 97\% \text{ of } 4\pi$ $\sigma_{\theta} = 1.5^{\circ}; \sigma_{\phi} = 1^{\circ} \text{ (barrel), } 5^{\circ} \text{ (endcaps)}$ TIME-OF-FLIGHT 144 scintillation counters (72 barrel, 72 endcaps) r = 1.3 m; $\Delta t = 1 ns$; $\Delta \Omega = 97\%$ of 4π **SMALL-ANGLE VETO** $8.5X_0$ of Pb - proportional chamber sandwich Covers 5°-17° from beam LUMINOSITY MONITOR 4 scintillator/shower counter telescopes at 32 mrad horizontally REFERENCES

- 1. R.L. Anderson et al., IEEE Trans. NS 25, (1978) 340.
- 2. W.T. Ford, SLAC-PUB-2894, March 1982 (Proceedings SLAC International Conference on Instrumentation for Colliding Beams).
- 3. E. Fernandez et al., SLAC-PUB-3390, August 1984.

MAC Detector Components:

- VC Vertex Chamber
- CD Central Drift Chamber
- SC Shower Chamber (Central)
- TC Trigger/TOF Scintillators HC Hadron Calorimeter (Central)
- SAV -Small Angle Veto EC -End-cap Shower and Hadron Calorimeters MO, MI - Muon Drift Chambers Coils -Solenoid and Toroid

MARK II

LOCATION	PEP and SLC SLAC, Stanford, CA, USA
MAGNET	5 kG Al coil solenoid, 1.6 m radius
TRACKING CHAMBERS	Central drift chamber: Inner radius = 19.2 cm, outer radius = 152 cm, active length = 2.3 m 12 radial layers of cells with 6 sense wires each, $\pm 3.8^{\circ}$ stereo angle on alternate layers Each cell contains six 30 µm gold-plated tungsten wires at 8.33 mm spacing staggered at ± 380 µm from cell axis, $\sigma < 200$ µm σ_p/p^2 with vertex constraint is 0.15% GeV ⁻¹ for $ \cos \theta < 0.7$ 0.30% GeV ⁻¹ for 0.7 $< \cos \theta < 0.85$ 0.85% GeV ⁻¹ for 0.85 $< \cos \theta < 0.89$ Full tracking efficiency for $ \cos \theta < 0.89$ de/dx with 72 samples gives 6.9% resolution Probable gas is 89% argon, 10% CO ₂ , 1% methane
	Vertex drift chamber (SLC only): Developing prototypes of precision drift chamber, silicon strip detector, and CCD detector
	Inner trigger chamber (PEP only): 6 layers of aluminized mylar proportional tubes Inner radius = 9.5 cm, outer radius = 14.8 cm, length = 74.6 cm Covers polar angles between 23 and 157 degrees
TIME-OF-FLIGHT	48 counters, 5 cm thick, read out at both ends Covers 68% of 4π 1.52 m flight path
	3σ particle separation of $\begin{cases} e/\pi \text{ for } p < 7 \text{ GeV/c} \\ \pi/\text{K} \text{ for } p < 1.1 \text{ GeV/c} \end{cases}$
MUON DETECTION	Proportional tubes interleaved with steel absorber covering 55% of 4π (4 layers each for total thickness of 1 m)
ELECTROMAGNETIC CALORIMETERS	Barrel: 8 modules of Pb-liquid argon (15X ₀ each), arranged in octagon outside coil Covers 64% of 4π 2 mm Pb sheets separated by 3 mm liquid argon gaps 37 layers (0.4X ₀ sampling) are ganged to provide 6 samples in depth Readout in 3.8 cm wide strips in ϕ , θ , u directions $\Delta E/E \simeq 13\%/\sqrt{E}$
	Endcaps: 36 layers of alternating X, Y, U, V Pb-proportional tubes $(18X_0)$ 50 micron stablohm wire in 1.5 cm × 0.9 cm tubes projectively ganged $0.7 < \cos \theta < 0.95$ $\Delta E/E \simeq 17\%/\sqrt{E}$
	Small angle monitor (SLC only): 9 drift chamber planes followed by 6 Pb drift chamber planes with $\sigma \sim 200 \ \mu m$ Covers 50-200 mrad $\Delta E/E \simeq 30\%/\sqrt{E}$ at lower momenta and 15% at 50 GeV
LUMINOSITY MONITOR	 PEP: Defining scintillation counters + shower counter 18 layers 1/4" Pb and 1/2" scintillator, read out with BBQ wave shifter
	SLC: Tungsten-scintillator mini SAM Covers 15–25 mrad
REFERENCES	
1. Proposal for the N 2. G.S. Abrams et al	MARK II at SLC, CALT-68-1015 (April 1983). IEEE Trans. Nucl. Sci. NS 25 (1978) 1, <i>ibid</i> 309, and NS 27 (1980) 59.

G.S. Abrams et al., IEEE Trans. Nucl. Sci. NS 25 (1978) 1, *ibid* 309, and NS 27 (1980) 59.
 G.G. Hanson, Proc. of the 3rd Int. Conf. on Instrumentation for Colliding Beam Physics, SLAC-3317 (1984).

MARK III

LOCATION	SPEAR e ⁺ e ⁻ storage ring SLAC, Stanford, CA, USA
MAGNET	4.0 kG conventional aluminum coil
TRACKING	Drift chamber, O.D. 229 cm, length 234 cm 8 layers of cells, 2 stereo, 4 charge division 4×32 1-wire cells in trigger layer 12×32 sense-wire cells in inner dE/dx layer $16 \times$ layer number, 3 sense-wire cells in outer layers 89% argon, 10% CO ₂ , 1% methane $(\Delta p/p)^2 = (1.5\%)^2 + (1.5\% p)^2$
SHOWER COUNTER	24 layers of Pb-gas proportional chamber sandwich (12X ₀ total) A cylindrical array of 1.3 cm × 2.9 cm × 3.5 m cells, 320 per layer, read out at both ends with charge division; the inner 6 layers are read individually, and the outer 18 in groups of 3 80% argon, 20% methane $\sigma_{\phi} = 7 \text{ mrad}; \sigma_{\theta} \sim 15 \text{ mrad at } 45^\circ; \sigma_{\text{E}}/\text{E} = 17\%/\sqrt{\text{E}}$
ENDCAPS	 24 layers of Pb-gas proportional chamber sandwich (12X₀ total) An array of rectangular 1.2 cm × 2.7 cm wide aluminum proportional tubes are glued between ½X₀ layers of Pb 80% argon, 20% methane σ_x = 0.7 cm; σ_y ~ 0.9 cm
TIME-OF-FLIGHT	$48 \times 15 \text{ cm} \times 5 \text{ cm} \times 3.2 \text{ m}$ Pilot F scintillation counters mounted in a cylindrical array around the drift chamber, read out by Amperex XP2020 photo-multipliers on each end of the scintillators $\sigma_{\rm t} \simeq 170-190 \text{ ps}$
MUON DETECTION	2 double layers of 5 cm diameter, 4.2 m long proportional tubes mounted outside a 20 cm Fe flux return and separated by an additional 13 cm of Fe absorber The array covers 2/3 of the solid angle $\sigma_{\phi} = 4 \text{ mrad}; \sigma_{\theta} = 24 \text{ mrad}$
TRIGGER	 Uses timing information from 2 layers of the inner trigger chamber and a chronotron circuit to restrict the trigger to a ±100 ns interval Three layers of unfitted tracking information from the drift chambers are used to define tracks Triggering is on one track plus time-of-flight information or 2 tracks; solid angle ~ 80%
LUMINOSITY MONITOR	4 scintillator + shower counter telescopes at 25 mrad

MARK III

MARK-J

LOCATION	PETRA e ⁺ e ⁻ rings DESY, Hamburg, W. Germany
DETECTOR	Calorimetric, specialized for μ -detection and asymmetry measurements Can rotate around the beam $\phi \pm \pi$ and $\theta \pm \pi/2$ Decay path ~ 20 cm
MAGNET	Toroid, 500 To, iron magnetized to 17 kG 5 concentric squares of 87 cm thickness No field at beam; polarity can be changed
CENTRAL TRACKING	4000 drift tubes in 4 layers orthogonal to beam from 11-17 cm radius Vertex reconstruction to 3 mm
SHOWER COUNTERS	 60 modules Pb-scintillator parallel to beam with double-sided readout 3 concentric layers of 3-3-12 X₀ completely overlapping in φ; 12 < θ < 168° coverage ΔE/E ≃ 12%/√E
CALORIMETER	192 scintillators in 7 layers of magnetized iron Resolution $\leq 20\%$ at 30 GeV, detecting charged and neutral energy flow 12 layers of drift chamber in front No magnetic analysis
MUON DETECTOR	 Trigger by 24(48) counters with 400 ps resolution Tracking: 12 layers of drift chamber before magnet, 2 within and 10 behind magnet Minimal pulse height followed through in 3 layers of shower + 7 layers of calorimeter counters Low cutoff: 1.3 GeV

REFERENCES

- The MARK-J Collaboration (Aachen, DESY, MIT, NIKHEF, Peking), Phys. Rep. 63 (1980) 1.
 The MARK-J Collaboration (Aachen, Pasadena, DESY, MIT, Madrid, NIKHEF, Peking), Phys. Rep. **109** (1984) 131.

MD-1

LOCATION	VEPP-4 e ⁺ e ⁻ rings Novosibirsk, USSR
MAGNET	\vec{B} transverse to orbit plane $B \propto E_b, B_{max} = 16 \text{ kG}$ $B = 12 \text{ kG}$ at $E_b = 5 \text{ GeV}$
TRACKING	MWPC, s = 2+4 mm $\sigma_{\rm p}/{\rm p} = (5+10)\% {\rm p}$
SCINTILLATION COUNTERS	24 counters, $40 \times 40 \times 1 \text{ cm}^3$ $\sigma_A/A = 20\% \ (\beta = 1), \ \sigma_{TOF} = 0.4 \text{ ns}$
CHERENKOV	8 counters, $160 \times 70 \times 20 \text{ cm}^3$, 60% of Ω Gas: ethylene, P = 25 atm. $(p_{\pi})_{\text{thresh}} = 0.7 \text{ GeV/c}, (p_k)_{\text{thresh}} = 2.5 \text{ GeV/c}$ $\epsilon(\beta=1) = 98\% \rightarrow \epsilon(\beta < \beta_{\text{th}}) < 0.1$ $\epsilon(\beta=1) = 60\% \rightarrow \epsilon(\beta < \beta_{\text{th}}) < 5 \times 10^{-3}$
SHOWER-RANGE CHAMBERS	14 chambers, $10 \times (13 \text{ mm Fe} + 10 \text{ mm MWPC})$ Gas: Ar + 20% CO ₂ , P = 1 atm. $\sigma_E/E = (40+15)\%$ at $E_{\gamma} = 0.15+5$ GeV $\epsilon_{\gamma} = 50\%$ at 150 MeV, $\epsilon_{\gamma} \ge 90\%$ at $E_{\gamma} \ge 250$ MeV $\sigma_{\theta} \approx \sigma_{\phi} \sim 1 \text{plus2}^{\circ}$
MUON DETECTION	MWPC, $(p_{\mu})_{\text{thresh}} = 0.75 + 2.1 \text{ GeV/c}$
SCATTERED ELECTRON	MWPC with $s = 4 \text{ mm}$ and with delay
TAGGING SYSTEM	Line readout with $\sigma = 0.1$ mm For $E = E_b$, $\theta = 12+100$ mrad For $\theta = 0$, $(E_b-E)/E_b = 0.1+0.5$ $\sigma_E/E = 1+1.5\%$
LUMINOSITY MONITOR	1. ee \rightarrow ee γ , NaI(T1) counters 2. ee \rightarrow ee at small angles, scintillation counters

REFERENCES

· · · · · · · · · · · ·

- 1. S.E. Baru et al., Preprint INF 77-75, Novosibirsk, 1977.
- 2. S.E. Baru et al., Inter. Conf. on Instrumentation for Colliding Beam Physics, SLAC, 1982.

٠

XBL 832-8021

MPS II

LOCATION	AGS, Brookhaven National Laboratory Upton, NY, USA
BEAMS	High energy unseparated beam, 10–25 GeV/c Medium energy unseparated beam, K to 6 GeV/c, \overline{p} to 9 GeV/c Beam Flux $\approx 2 \times 10^6$ /pulse
MAGNET	"C" magnet, max field 10 kG Pole area 460 cm \times 180 cm; height 120 cm
MAIN DETECTORS	Narrow cell drift chamber modules Drift distance 0.3 cm Active area 173 cm W × 100 cm H Resolution ≈ 250 µm 7 anode planes (XXX'YY'UV) per module 7 modules available – actual location determined by experiment
EXTERNAL EQUIPMENT	Atmospheric pressure Cerenkov counter hodoscope 540 cm W × 200 cm H γ_{τ} (Freon 114) \approx 20 High pressure Cerenkov counter hodoscope (60 psi max) 350 cm W × 120 cm H Typical $\gamma_{\tau} \approx 10$
	Scintillation counter hodoscope 112 counters, each 6.4 cm W × 200 cm H 3-gap drift chamber (XXX') 400 cm W × 120 cm H 2.5 cm drift distance
TRIGGER ELEMENTS	 3 PWC's, 0.25 cm between anode wires Can be used to count clusters "RAM-TRIGGER": a 2 million bit, three-dimensional look-up memory to select angle and momentum

REFERENCES

- 1. S. Eiseman et al., "The MPS II Drift Chamber System", paper presented at the IEEE 1982 Nuclear Science Symposium, Washington D.C. (Sept. 20-22, 1982). Proceedings to be published in IEEE Transactions on Nuclear Science. BNL-32011.
- 2. E.D. Platner et al., Nucl. Instr. & Meth. 140 (1977) 549.

MPS II

NUSEX Detector for Nucleon Decay

 \gtrsim

LOCATION	Mont Blanc Laboratory Italian-French border
SHIELDING DEPTH	~5000 m.w.e.
DETECTOR	Digital tracking calorimeters; 1 cm iron interleaved with plastic streamer tubes: 134 layers
MASS	150 tons (average density: 3.5 g/cm ³)
VOLUME	$(3.5m)^3$
SENSITIVE ELEMENTS	48,880 plastic streamer tubes with resistive cathode Cell 9 × 9 mm ² , 100 μ m wire, gas mixture Ar+CO ₂ +n-pentane (1+2+1), HV = 3900 V External pick-up strips for x and y streamer localization on each tube layer
READOUT	81,472 readout channels Discriminator ($\sim 3 \text{ mV}/50\Omega$ threshold); shift register memory
SPATIAL RESOLUTION	$\sigma_{\rm x} \sim \sigma_{\rm y} \sim 3 \ {\rm mm}$
ENERGY RESOLUTION	$\sigma_{\rm E}/{\rm E} \sim 20\%/\sqrt{\rm E}$ for e.m. showers
TIME RESOLUTION	100 ns for the single streamer
µ→e DETECTION EFFICIENCY	40%
MINIMUM TRIGGER FOR RELATIVISTIC PARTICLES	4 contiguous planes
TRIGGER FOR SLOW PARTICLES	$\begin{cases} \beta > 10^{-4} \\ \frac{dE/dx}{(dE/dx)_{\text{min.ion.part.}}} > 6 \times 10^{-2} \end{cases}$

REFERENCES

- G. Battistoni et al., Phys. Lett. 118B (1982) 461.
 G. Battistoni et al., Nucl. Instr. & Meth. 176 (1980) 297.

NUCLEON STABILITY EXPERIMENT

FRASCATI-MILANO-TORINO-CERN

/ Y-STRIPS (10mm

NUSEX Detector for Nucleon Decay

OMEGA

LOCATION	West area, 450 GeV secondary beam CERN, Geneva, Switzerland
MAGNET	18 kG (superconducting) Field volume: height = 150 cm; diameter (½ field) = 400 cm
TRACKING	Proportional chambers inside field $\sigma_p/p = 10^{-3} p$ with lever arm drift chambers $\sigma_p/p = 2 \times 10^{-4} p$
PARTICLE IDENTIFICATION	Ring image Cerenkov, 5 m gas radiator, spherical mirror 6.4 m wide, 3.2 m high; or, alternatively, two threshold Cerenkov counters with 30 and 32 cells
PHOTON DETECTORS	$4 \times 4 \text{ m}^2$ electromagnetic calorimeter, $42 \times 42 \text{ cm}^2$ central hole, $24X_0$, 1 cm liquid scintillator bins horizontal/vertical in three separate layers, $\sigma_E/E = 15\%/\sqrt{E}$ Lead and scintillating fiber calorimeter filling the central hole, $28X_0$, $3.2 \times 3.2 \text{ cm}^2$ cells
HIGH RESOLUTION DETECTORS	$50\mu m$ pitch microstrips for measurement of beam and decay vertices (5000 channels)

REFERENCE

1. W. Beusch et al., CERN/SPSC/77-70 and CERN/SPSC/T-17.

OMEGA

OPAL

•

LOCATION	CERN-LEP CERN, Geneva, Switzerland
MAGNET	Solenoid, 0.4 Tesla, $R = 2 m$, $L = 6.5 m$
TRACKING VERTEX CHAMBER	$R_i = 85 \text{ mm}, R_o = 235 \text{ mm}, L = 1000 \text{ mm}$
JET CHAMBER	$R_i = 245 \text{ mm}, R_o = 1850 \text{ mm}, L = 4000 \text{ mm}, 24 \text{ sectors}, 160 \text{ anodes per sector}$
Z CHAMBER	Layer of axial drift chamber between $R = 1880$ and 1960 mm
GAS PRESSURE	\leq 4 bar
ELECTRONICS	100 MHz flash ADC, about 11,000 channels
TIME-OF-FLIGHT	160 7m long scintillators on the outside of the coil
E.M. CALORIMETER	Lead-glass barrel and endcap about 12,300 blocks, projective geometry Presampler around the coil behind $1.4X_0$ aluminium Forward lead scintillator sandwich Coverage: 99.9% of 4π
HADRON CALORIMETER	Calorimeterized iron yoke, 10 cm Fe plates interleaved with streamer tubes Coverage: 97% of 4π Pointing geometry tower readout, about 2000 towers
MUON DETECTOR	 Barrel part: 4 layers of large-area drift chambers with space point readout of ~1 mm in both coordinates Endcap: streamer tubes, X-Y readout on layers separated by 0.6 m
FORWARD DETECTORS	Scintillator hodoscopes, tracking chambers, and EM shower detector
REFERENCES	

- The OPAL Detector Technical Proposal, CERN/LEPC/83-4, LEPC/P3 (16 May 1983).
 OPAL Status Report, CERN LEPC/84-17 (September 1984).
 OPAL Status Report, CERN LEPC/M-51 (18 September 1984).

OPAL

PEP-9 2γ Detector

LOCATION	PEP e ⁺ e ⁻ ring Interaction Region 2 (with TPC) SLAC, Stanford, CA, USA
MAGNETS	2 septum magnets: 1 m long, aperture 2.24 m horizontal by 2.1 m vertical B _{max} = 1.7 kG; ∫Bdℓ ≈ 2.6 kGm; B = 0 on beam axis Each magnet compensated by air core, skew quads immediately around the beam pipe
TRACKING	5 drift chamber (DC) modules at each end DC-1: 4 planes, 2 horizontal, 2 vertical (±10°), Ar-Eth (50%-50%) DC-3: 2 vertical (±10°), Ar-CO ₂ (83%-17%) DC-2,4,5: 3 planes, 1 horizontal, 2 vertical (±10°), Ar-CO ₂ (83%-17%) σ position $\simeq 300 \mu\text{m}$ $\sigma_p/p \simeq \pm \sqrt{(0.008p)^2 + (0.025)^2}$ Angular acceptance of system — 22 mrad to 180 mrad
NaI SHOWER DETECTOR	Angular acceptance — 22 mrad to 100 mrad at either end Each detector contains 60 individual NaI crystals each 22" long and hexagonal cross-section 6" apex to apex $\sigma_E/E = 0.9\%$ @ 14.5 GeV (best performance without radiation damage) Spatial resolution: $\sigma \simeq 0.4$ cm
Pb-SCINTILLATOR SHOWER	Angular acceptance — 100 mrad to 180 mrad at either end Alternate layers of Pb sheets and plastic scintillator strips set in three 60° stereo views; wave bar readout; 54 total layers, $18X_0$ $\sigma_E/E = \pm 15\%/\sqrt{E}$ Spatial resolution: $\sigma \simeq 1$ cm
TIME-OF-FLIGHT	Two planes of scintillation hodoscope at each end; one plane has 50 horizontal scintillator strips, the other 62 vertical strips. Time resolution: $\sigma_T = 0.3$ ns
MUON DETECTOR	1 meter of iron (787 g/cm ²) at each end 3 drift chamber modules at each end, each module having 2 offset, vertical sense wire planes, Ar-Eth (50%-50%) Spatial resolution: $\sigma = 220 \ \mu m$
CERENKOV	 1 atm., CO₂ radiator, 70 cm long, divided into 12 azimuthal segments at each end Efficiency for electrons >90% overall, >95% over 80% of angular coverage (22 mrad to 180 mrad)
TRIGGER	Double tag., $E > 2$ GeV in NaI Single tag., $E > 4$ GeV in NaI, in coincidence with extra particle (charged or neutral)

.

XBL 845-2033

SLD

LOCATION	SLC e ⁺ e ⁻ collider SLAC, Stanford, CA, USA
MAGNET	6 kG aluminum solenoid Diameter = 5.8 m, length = 6.8 m 5 cm laminated iron flux return integrated with warm iron calorimeter
VERTEX DETECTOR	CCD cylinders and endplates Cylinder radii: 1,2 cm Segmentation: $22 \ \mu m \times 22 \ \mu m$ Precision transverse to line of flight: $4-20 \ \mu m$ Two-track resolution: $40 \ \mu m$
DRIFT CHAMBERS	 Barrel drift chamber: I.R. = 20 cm, O.R. = 100 cm Length: ±1 m 10 superlayers of vector cells, each cell having 8 sense wires; 50 mrad stereo with current division for pattern recognition; CO₂-isobutane gas Endcaps at z's of ±100 and ±200 cm Spatial resolution: ~100 µm Momentum resolution:
CALORIMETRY	 Uranium liquid argon inside coil (2.7 interaction lengths); calorimetry completed by WIC (warm iron calorimeter) consisting of 5 interaction lengths of 2.5 cm iron laminated with limited streamer mode readout chambers Electromagnetic: Energy resolution: ΔE/E ~ 8%/√E Segmentation: ~33 mrad × 33 mrad Angular resolution: ΔE/E ~ 45%/√E Segmentation: ~66 mrad × 66 mrad Angular resolution: ~10 mrad
PARTICLE IDENTIFICATION	Cerenkov ring imaging detectors, barrel, and endcaps Proximity focussed 1 cm liquid freon (FC-72) radiator Mirror focussed 45 cm isobutane radiator TMAE photodetector; number of photoelectrons (β =1) is 23 for liquid, 14 for gas Particle separation range at 90°, 3 σ , both radiators e/π 0.2 to 7 GeV/c μ/π 0.2 to 1.1 GeV/c and 2.1 to 4 GeV/c π/K 0.23 to 32 GeV/c K/p 0.80 to 55 GeV/c
SOLID ANGLE COVERAGE	Tracking97%Particle id97%EM cal>99%Had cal97%

REFERENCE

1. SLD Design Report SLAC-REPORT-273 (May 1984).

3645 3745 4577 ŧİ WARM IRON CALORIMETER BARREL 1 3320 <u>31:0</u> 3504 * COIL 2900 2880 2705 2360 1-1-1 1 1 LIQUID ARGON CALORIMETER 3100 <u>2222</u> 1930 1770 1750 1914 1 1710 1595 1 i WARM IRON CALORIMETER ENDCAP CRID 1320 LICUID 1020 ij ARCON 1000 CALORIMETER 960 i INNER E.C. DRIFT OUTER E.C. DRIFT :1 CRID CENTRAL DRIFT 14 ----330 200 0 4456 2616 3497 1974 2324 1000 1320 1244 3250 đ

SOUDAN-2 Detector for Nucleon Decay

<u>د</u>

LOCATION	Soudan Mine, Tower-Soudan State Park Soudan, MN, USA Latitude 48°N, longitude 92°W
EARTH SHIELDING	700 m rock overburden 2200 m water-equivalent Cosmic ray muon rate = 0.5 Hz
MASS AND LAYOUT	First stage: 1100 metric tons active mass 256 modules, each 1 m \times 1 m \times 2.5 m (high) Modules arranged 2 high \times 8 wide \times 16 long Average density = 2 g/cm ²
CAVITY DIMENSIONS	14 m \times 72 m \times 11 m (h) Accommodates 3300 metric tons of detector
MAIN DETECTOR	Formed steel sheets 1.6 mm thick, stacked vertically to give hexagonal close- packed array of holes filled by resistive plastic tubes (OD = 16 mm, ID = 15 mm, length = 1 m), enclosed in mylar sheets Electric potential applied to tube gives up to 50 cm drift of ionization electrons, which are detected by vertical proportional wires backed by horizontal cathode strips
READOUT	6-bit flash ADC's, controlled by 24 microprocessors
TRACKING RESOLUTION	Anode wire spacing = 15 mm Cathode strip spacing = 10 mm Drift distance binning = 2 mm
ACTIVE SHIELD	Main detector is entirely surrounded by a 2-layer array of extruded aluminum proportional tubes
THRESHOLD	100 MeV kinetic energy pion, muon, or electron
SENSITIVITY	3 events/year for $\tau/B = 10^{32}$ years 150 points (x, y, z, dE/dx) for typical decay event
SCHEDULE	200 tons operational: February 1986 1100 tons operational: December 1987
INSTITUTIONS	Argonne National Laboratory University of Minnesota University of Oxford Rutherford Appleton Laboratory Tufts University

REFERENCE

,

1. D.S. Ayres et al., "The Soudan 2 Nucleon Decay Experiment: Description and Status Report," ANL-HEP-PR-84-30 (September 1984, unpublished).

Proportional Wires (Backed by Cathode Strips)

Tagged Photon Spectrometer LOCATION Tagged Photon Lab, Proton East Fermilab, Batavia, IL, USA MAGNETS 1. 80.9 cm gap, 183 cm wide, 100 cm long; 7.1 kG-m (can be increased to 14.2 kG-m) 2. 85.7 cm gap, 183 cm wide, 100 cm long; 14.2 kG-m VERTEX DETECTOR 9 planes of silicon microstrip detectors 50 μ m pitch, covers $|\theta_{\chi}|, |\theta_{\chi}| < 100$ mrad MWPC-type readout on each of 7500 strips Operates with beryllium target RECOIL DETECTOR $\Delta \phi = 5.9 \text{ rad}, \Delta z(\text{scintillator}) = 210 \text{ cm at radius 54 cm}$ Cyl. proportional chamber with cathode readout: $\sigma_{\theta} = 5 \text{ mrad}, \sigma_{\phi} = 15 \text{ mrad}$ 2 layers plastic + 2 layers liquid dE/dx scintillators in 15 azimuthal sectors $0.06 < t < 1.2 (GeV/c)^2$, $\sigma_t/t = 5-10\%$ End-to-end timing: $\sigma_z = 10 \text{ cm}$ FORWARD Tracking: 35 drift chamber planes SPECTROMETER 2 magnets: $|\theta_{\rm x}| < 170$ mrad and $|\theta_{\rm y}| < 72$ mrad $\sigma_{\theta} = 1.0 \text{ mrad}, \sigma_{p}/p^{2} = 2.5 \times 10^{-4} \text{ GeV}^{-1}$ 1 magnet: $|\theta_{x}| < 350 \text{ mrad} \text{ and } |\theta_{y}| < 145 \text{ mrad}$ $\sigma_{\theta} = 2.7 \text{ mrad}, \sigma_{p}/p^{2} = 30 \times 10^{-4} \text{ GeV}^{-1}$ Charged particle identification: 2 Cerenkov detectors operating at 1 atm. pressure N_2 and 20% N_2 - 80% He mixture, 32 segments each 6Separation: π vs K or p 20 π vs K vs p Neutral Detection: Electromagnetic -Pb-liq. scint. (SLIC): u,v,y readout, 60×0.16 cm Pb samples $\sigma_{\theta} = 0.3 \text{ mrad}, \sigma_{\text{F}}/\sqrt{\text{E}} = 12\% (|\theta_{\text{x}}| < 134 \text{ mrad and } |\theta_{\text{y}}| < 67 \text{ mrad})$ Pb-plastic scint. (Outrigger): x,y readout, 16 × 0.64 cm Pb samples $\sigma_{\theta} = 2.0 \text{ mrad}, \sigma_{E}/\sqrt{E} = 20\% (|\theta_{x}| < 157 \text{ mrad and } |\theta_{y}| = 58-160 \text{ mrad})$ Hadronic -Fe-plastic scint. (Hadrometer): x,y readout, 36 total samples (2.5 cm Fe each) $\sigma_{\theta} = 2 \text{ mrad}, \sigma_{\text{F}} / \sqrt{\text{E}} = 70\%$ Muon detector hodoscope: 30 counters following \sim 200 cm Fe **BEAM** 300 GeV e⁻ with γ tagging system (0.45 $< E_{\gamma}/E_{e} < 0.95$); $\sigma_{\gamma} \simeq 3-6$ GeV **BUILDERS** Tagged Photon Collaboration: Fermilab, Carleton Univ., Toronto Univ., Univ. of California at Santa Barbara, Univ. of Colorado REFERENCES

- 1. J. Appel et al., Tagged Photon Magnetic Spectrometer Facility Report, Fermilab, 1977.
- 2. V.K. Bharadwaj et al., Nucl. Instr. & Meth. 155 (1978) 411.
- 3. T. Nash, Proceedings Top. Conference Applic. of Microprocessors to HEP Experiments, Geneva, May 1981, p. 132.
- 4. J. Martin et al., *ibid*, p. 164.
- 5. E. Barsotti et al., IEEE Trans. Nucl. Sci. NS 26 (1979) 686.
- 6. A.L. Duncan, Ph.D. Thesis, Univ. Colorado, 1982 (COLO-HEP-57).
- 7. D.J. Summers et al., Phys. Rev. Lett. 52 (1984) 410.
- 8. B.H. Denby et al., Phys. Rev. Lett. 52 (1984) 795.

.

XBL 831-7899

TASSO

LOCATION	PETRA e ⁺ e ⁻ rings DESY, Hamburg, W. Germany
MAGNET	Solenoid, 5 kG, $R_i = 135$ cm, $L = 440$ cm, $d = 10$ cm Al
TRACKING	Vertex detector, drift chamber, 8 layers, cell size 0.71–0.87 cm, 720 signal wires, $R_i = 6.5$ cm, $R_o = 16.1$ cm, $L = 60$ cm Cyl. proportional chamber, 4 anode layers, wire spacing ~3 mm, 1920 signal wires, 8 cathode layers, 960 channels, $R_i = 17$ cm, $R_o = 29$ cm, $L = 140$ cm Cyl. drift chamber, 15 layers, 9 with 0°, 6 stereo, cell size 3.2 cm, 2340 signal wires, $R_i = 30$ cm, $R_o = 130$ cm, $L = 323$ cm, using all chambers $\sigma_p/p < 1\%$ p for $p > 2$ GeV/c
TIME-OF-FLIGHT	Between drift chamber and coil, 48 counters, $390 \times 17 \times 2 \text{ cm}^3$, $\sigma_{\text{TOF}} = 270-450 \text{ ps}$ depending on z
SHOWER COUNTERS NEAR CENTRAL DETECTOR	Liquid argon-lead with towers pointing to I.P.; towers for energy measurement, strips for position measurement Barrel 42° < θ < 138°; ϕ : 30°-150°, 210°-330°; 0.2 cm Pb, 0.5 cm argon, 14X ₀ , 5088 front towers, 1248 back towers, 4592 strips for z, ϕ , dE/dx $\sigma_{\rm E}/{\rm E} = (0.11 + \frac{0.02}{{\rm E}-0.5})/\sqrt{{\rm E}}$, E > 1 GeV; $\sigma_{\theta} = \sigma_{\phi} = 2$ mrad Endcap 12° < θ < 30°, 150° < θ < 168°, ϕ : 0-360°, 0.2 cm Pb, 0.3 cm argon, 12.6X ₀ , 1444 front towers, 872 back towers, 840 strips for R and ϕ
HADRON ARMS	For particle identification up to high momenta; $50^{\circ} < \theta < 130^{\circ}$, $-26^{\circ} < \phi < 26^{\circ}$, $154^{\circ} < \phi < 206^{\circ}$; following coils are: Plane drift chamber, 8 layers Aerogel Cerenkov counter, n = 1.024, d = 13.5 cm, 32 cells Freon 114, n = 1.0014, 1 atm., 64 cells CO ₂ , n = 1.00043, 1 atm., 64 cells threshold momenta (GeV/c) π K p Aerogel 0.6 2.2 4.2 Freon 114 2.6 9.3 17.8 CO ₂ 4.8 16.8 32.0
	Time-of-flight, 96 counters, $\sigma = 450$ ps
	Shower counters: lead-scintillator with wavelength shifter readout, $7.4X_0$, 128 counters, $\sigma/E = 17\%$
MUON DETECTION	Behind magnet yoke (50-80 cm Fe) and behind hadron wall (87 cm Fe), 4 layers of proportional tube chambers, 4×4 cm ²
FORWARD DETECTOR	25-115 mrad, scintillation hodoscope, proportional tube chambers, lead-scintillator shower counter
REFERENCES	

- 1. TASSO Collaboration, R. Brandelik et al., Phys. Lett. 83B (1979) 261, 108B (1982) 71, and 113B (1982) 98.
- 2. H. Boerner et al., Nucl. Instr. & Meth. 176 (1980) 151.
- 3. K. Bell et al., Nucl. Instr. & Meth. 179 (1981) 27.
- 4. H. Burkhardt et al., Nucl. Instr. & Meth. 184 (1981) 319.

.

XBL 831-7895

TOPAZ

LOCATION	TRISTAN e ⁺ e ⁻ ring National Laboratory for High Energy Physics, KEK Tsukuba, Japan
MAGNET	1.2 Tesla superconducting thin $(0.7X_0)$ solenoid Al-stablized Nb-Ti-Cu coil ID = 2.88 m, L = 5.1 m
TRACKING	Inner drift chamber (IDC): Radius 10 to 24.5 cm, L = 150 cm 10 cylindrical layers, 1024 drift cells, $\sigma_{r\phi} = 110 \ \mu m$ 8 layers of printed delay line cathodes, 256 delay lines, $\sigma_z = 3 \ mm$
	Time projection chamber (TPC): Radius 30 to 130 cm, L = 260 cm (130 cm max. drift) Ar/CH ₄ (90/10) at 4 atm., 385 V/cm drift field 178 sense wires (cos $\theta < 0.8$) and 10 cathode pad rows (512 pads) per 45° sector at each end $\sigma_p/p < 1\%p$ (p > 2 GeV, 1 Tesla), $\sigma(dE/dx) = 4\%$
	Outer drift chambers: 4 layers, limited streamer plastic tubes, 110 μ m resolution Barrel: 1280 wires and 2000 strips, 5 m length Endcap: 560 wires and 560 strips per end, 0.97 > cos θ > 0.83
TIME-OF-FLIGHT	Barrel: 64 plastic scintillators, $400 \times 13 \times 4 \text{ cm}^3$, $\sigma_{\text{TOF}} = 200 \text{ ps}$ Endcap: 2 layer planar spark counters, 0.5 mm gap, 3 atm., 208 strips per end, $\sigma_{\text{TOF}} = 150 \text{ ps}$
CALORIMETER	Barrel: $\cos \theta < 0.85$, $2\pi \text{ in } \phi$, $R_i = 1.75 \text{ m}$ 4320 lead-glass counters, $12 \times 11 \text{ cm}^2 \times 34 \text{ cm} (20X_0)$ $\sigma_E/E = 0.08/E$ with light guide and mag. coil $\sigma_\theta = \sigma_\phi = 6 \text{ mrad}$ Endcap: $0.97 > \cos \theta > 0.83$, $2\pi \text{ in } \phi$ Pb-proportional counter sandwich, $18X_0$ (3 modules) 1024 projective tower signals and 320 strips per end $\sigma_E/E = 0.2/E$, $\sigma_\theta = \sigma_\phi = 3 \text{ mrad}$
MUON DETECTOR	 8 layers, Al proportional drift tubes, 5 × 10 cm² × 6 m Interleaved with Fe absorbers (30.5, 34.8 cm) behind magnet yoke (40 cm), >5.9 total abs. length 4230 signal wires, 0.7 - 1 mm resolution, Ar/Ch₄ (90/10)
LUMINOSITY MONITOR	2 pairs wrt I.P., 2 scintillators and a Pb-scintillator sandwich

REFERENCES

7

- TOPAZ Collaboration, Study of e⁺e⁻ Annihilation Phenomena by a Detector with Particle Identification, TRISTAN-EXP-002 (1983).
 K. Fujii et al., Nucl. Instr. & Meth. 225 (1984) 23.
 K. Ogawa et al., IEEE Trans. NS-31 (1984) 79.

.

.

TOPAZ

TPC

٠

LOCATION	PEP e^+e^- ring, Interaction Region (IR) 2 SLAC, Stanford, CA, USA Note: see also PEP-9 2γ detector description
MAGNET	13.2 kG superconducting coil (0.86 X_0 package) Diameter = 2.15 m, length = 3.0 m
TRACKING	Time projection chamber (TPC) 2.0 m long (in z) at 20 to 100 cm radius (r) Argon-methane (80%-20%) at 8.5 atm. Max. drift 1.0 m in 30 μ s, 50 kV/m drift electric field 183 proportional wire hits on tracks with $ \cos \theta < 0.71$; each wire gives r, z, and amplitude and provides dE/dx meas. by multiple ionization sampling; the azimuth is divided into six 60° sectors 15 3-dim. space points from induced cathode signals on several of 13,824 channels to give r, ϕ , and z (from the drift time), for $ \cos \theta < 0.71$ ≥ 2 3-dim. points and ≥ 15 wire hits over 97% of 4π A gating grid (+/- 100V) was installed in 1984 to eliminate positive ion feedback into the drift region Track pair resolution of 1-2 cm dE/dx = $\pm 3.0\%$ for Bhabhas $= \pm 3.5\%$ for tracks with ≥ 120 samples in jet events $\sigma_p/p < \pm 0.5\%$ at high momentum Position resolution in bending plane is 150 μ m and in axial (z) direction 300 μ m Inner drift chamber at 13 to 19 cm radius 8.5 atm. Ar-CH ₄ (80%-20%), 1.2 m long covering 95% of 4π , with 4 axial layers Only used for triggering at present Outer drift chamber at 1.19 to 1.24 m radius 1 atm. Ar-CH ₄ (80%-20%), 3 m long covering 77% of 4π , with 3 axial layers
HEXAGONAL CALORIMETER	Gas, limited Geiger mode, sampling Pb-laminate calorimeter 6 modules, $10X_0$ deep, 4.2 m long at 1.2 m radius Argon-methylal(5.5%)-N ₂ O(2.2%) at 1 atm. Solid angle coverage of 75% (90% including pole tip calorimeter) 3 correlated 60° stereo views using wire and cathode signals in 40 samples (27 and 13 samples in depth) Projective strip geometry with 9 mrad angular segment. $\sigma_E/E = \pm 16\% / \sqrt{E}$, below 1 GeV $= \pm 14\%$ for Bhabhas at 14.5 GeV
POLE-TIP CALORIMETER	Gas, proportional mode, sampling Pb-laminate calorimeter 2 modules, $13.5X_0$ deep, at z= 1.1 m covering 18% of 4π Argon-methane (80%-20%) at 8.5 atm.; total of 51 samples Three 60° stereo views, each with 13 and 4 samples in depth Projective strip geometry with 8 mrad angular segment. $\sigma_E/E = \pm 11\% / \sqrt{E}$, below 10 GeV $= \pm 6.0\%$ for Bhabhas at 14.5 GeV
MUON DETECTOR	Magnet flux return + 2 layers iron, total 810 g/cm ² Triangular,double layer,extruded Al proportional tubes Argon-methane (80%-20%) at 1 atm. 3 layers with axial wires and 4th layer at 90° Endcap with 3 layers provides 98% of 4π coverage Resolution = 1 cm, except 3 mm when operated as drift tube
TRIGGER	 ≥2 charged tracks in the TPC covering over 85% of 4π Neutral energy of ≥2 GeV (hex calorimeter) or ≥1 GeV (pole tip calorimeter with 2 clusters required), or energy in two or more calorimeter modules of ≥0.7 GeV (each) ≥1 charged in the TPC and neutral energy of ≥750 MeV
REFERENCES	
1. TPC:	H. Aihara et al., IEEE Trans. NS-30 (1983) 63, 76, and 162, and Nucl. Instr. & Meth. 223 (1984) 40.
2. IDC/ODC:	W. Gorn et al., IEEE Trans. NS-26 (1979) 67 and IEEE Trans. NS-30 (1983) 153.

- H. Aihara et al., IEEE Trans. NS-30 (1983) 117 and Nucl. Instr. & Meth. 217 (1983) 259. J. Bakken et al., IEEE Trans. NS-30 (1983) 67. 3. HEX:
- 4. MUON:
- 5. TRIGGER: M. Ronan et al., IEEE Trans. NS-29 (1982) 427.

TPC

UA1

LOCATION	CERN SPS pp Collider CERN, Geneva, Switzerland
MAGNET	Dipole field up to 0.7 Tesla, Al coils Magnetic volume = $7.0 \times 3.5 \times 3.5 \text{ m}^3$
CENTRAL DETECTOR	 Cylinder (6 m long, 2.2 m diameter) made of 6 independent modules containing drift chambers with 18 cm drift space Covers 5° < θ < 175° 60% ethane - 40% argon 3-dimensional readout by continuous digitization in drift direction and charge division along wires Average of 110 space points per track σ ≈ 250 µm in drift plane σ ≈ 2% of wire length along wire σ ≈ 6% for dE/dx
ELECTROMAGNETIC CALORIMETERS	Pb-scintillator sandwich (26X ₀) with BBQ readout Gondolas (25° < θ < 155°) and Bouchons (5° < θ < 25°, 155° θ <175°) ($\sigma_{\rm E}/{\rm E})^2 = (0.15/\sqrt{\rm E})^2 + (0.016)^2$ $\sigma_{\rm x} = 4 \text{ cm}/\sqrt{\rm E} (\theta \text{ direction})$ $\sigma_{\rm y} = 16 \text{ cm}/\sqrt{\rm E} (\phi \text{ direction})$ $\sigma_{\rm E_t}/{\rm E_t} = 0.12/\sqrt{\rm E_t}$
HADRON CALORIMETERS	Fe-scintillator sandwich with BBQ readout based on the laminated return yoke of the magnet 16 samplings (5 cm Fe, 1 cm scint. each) in barrel, 23 samplings in endcaps $\Delta E/E \simeq 0.8/\sqrt{E}$
MUON DETECTION	Large-area drift tube chambers (8 layers) Angular resolution $\sigma = 1$ mrad
FORWARD DETECTORS	 0.2° < θ < 5° and 0 < φ < 2π Rapidity acceptance 3.4 < y < 7.4 Endcap chambers Trigger counters (4 cm thick scint.) Electromagnetic calorimeter (4 modules Pb-scint., 7.2X₀ each) EM shower chambers between first and second EM modules (proportional chambers delay line readout) Hadron calorimeter (6 modules, 1.7 λ_{abs} each), based on compensating magnet steel Hadron shower chamber between first and second hadron calorimeter modules
ROMAN POTS	8 small drift chambers, 4 on each arm at ± 22 m from collision point, which enter the SPS vacuum pipe vertically
REFERENCES	

- G. Arnison et al., Phys. Lett. 107B (1981) 320.
 M. Calvetti, The UA1 Central Detector, Proceedings of Int. Conf. on Instrumentation for Colliding Beam Physics, SLAC-250 (Feb. 17-23, 1982).
- 3. M. Barranco-Luque et al., Nucl. Instr. & Meth. 176 (1980) 175.
- 4. M. Calvetti et al., Nucl. Instr. & Meth. 176 (1980) 217.

UA2

LOCATION	CERN SPS pp Collider CERN, Geneva, Switzerland
COLLABORATION	Univ. Bern, CERN, NBI Copenhagen, LAL Orsay, Univ. and INFN Pavia, CEN Saclay
CENTRAL DETECTOR	
TRACKING	 20° < θ < 160°, 2π in φ 4 cylindrical multiwire proportional chambers (MWPC) with helicoidal cathode strips at ±45° readout 2 cylindrical JADE type drift chambers at atmospheric pressure with charge division and multihit readout Vertex resolution σ = 1 mm in all coordinates 1 cylindrical scintillator hodoscope, 24 strips
SHOWER COUNTERS	 40° < θ < 140°, 2π in φ Preshower counter is a cylindrical MWPC with pulse height readout on wires and helicoidal cathode strips behind a 1.5 X₀ W cylinder 17 X₀ Pb-scint. sandwich em calorimeters 4 abs. length Fe-scint. sandwich hadronic calorimeters, BBQ readout Tower structure with cell Δφ × Δθ = 15° × 10° and 3 longitudinal segments σ_E/E = 14%/√E em and σ_E/E ~ 60%/√E hadronic showers
FORWARD-BACKWARD S	PECTROMETERS
MAGNET	Toroidal magnet, 0.38 T-m $20^{\circ} < \theta < 37.5^{\circ}$ and $142.5^{\circ} < \theta < 160^{\circ}$, 80% of 2π in ϕ 12 spectrometer sectors on each side
TRACKING	9 drift chamber planes (\pm 7°, 0°) per sector 5 cm drift space $\sigma_p/p \sim 0.006$ p
SHOWER COUNTERS	Preshower counter with 4 layers of multitube proportional chambers behind 1.4 X_0 lead-steel converter, $\sigma_x = \sigma_y = 5$ mm 24 + 6 X_0 lead-scint. sandwich electromagnetic calorimeters, BBQ readout, cell size $\Delta \phi \times \Delta \theta = 15^\circ \times 3.5^\circ$, two longitudinal segments $\sigma_E/E = 15\%/\sqrt{E}$

REFERENCES

- 1. B. Mansoulié, Proceedings of the 3rd Moriond Workshop on pp Physics (ed. Frontières, Dreux, 1983), p. 609.
- 2. M. Dialinas et al., The Vertex Detector of the UA2 Experiment, LAL-RT/83-14 (Orsay, 1983).
- 3. C. Conta et al., Nucl. Instr. & Meth. 224 (1984) 65.
- 4. K. Borer et al., Multitube Proportional Chambers for the Localization of Electromagnetic Showers in the UA2 Detector, CERN-EP/83-177, submitted to Nucl. Instr. & Meth.
- 5. A. Beer et al., Nucl. Instr. & Meth. 224 (1984) 360.

UA2

XBL 831-7888

VENUS

LOCATION	TRISTAN 30 GeV e ⁺ e ⁻ ring, Fuji experiment hall National Laboratory for High Energy Physics, KEK Tsukuba, Japan
TIME SCHEDULE	Initial operation expected in November 1986
MAGNET	5-7 kG superconducting solenoid, 0.52X ₀ package, coil diameter 354cm, 564 cm long, r = 170-190.8 cm, bobbinless, 4.2°K forced He flow cooling, CFRP cryostat cylinder
TRACKING	Inner chamber (IC): r = 10-25 cm, 160 cm long, 6 layers, 640 axial wires, 1536 cathode pads for z trigger
	Central drift chamber (CDC): r = 25-125 cm, 300 cm long, 20 axial, 9 stereo layers, 7104 sense wires, 2 cm drift cells, $\sigma_p/p^2 = 0.9\%$ for p>2 GeV/c at 5 kG expected Outer drift tubes (ODT): $r = 157-162$ cm, 280 cm long, 3 layers, 1528 tubes, tube diameter 1.95 cm, $\sigma_p/p^2 =$
	0.2% with CDC Streamer tubes (ST): $r = 191-194$ cm, 444 cm long, 1200 resistive tubes with 1.9×1.3 cm ² , 2 layers, 4800 cathode strips
TIME-OF-FLIGHT	96 scintillation counters at r = 166 cm, 466 \times 10.7 \times 4.2 cm ³ , 2" phototubes on both ends, $\sigma_{\text{TOF}} \simeq 200$ ps expected
BARREL CALORIMETERS	Lead glass, $r = 200-230$ cm, 5160 towers covering 37°-143° pointing to I.P., DF6 glass, 18X ₀ , 30 cm long, cross section 11 × 12 cm ² typical, 3" phototubes with plastic light guides, monitored by 2 independent Xe-lamp and optical-fiber systems, $\sigma_E/E = 6\%/\sqrt{E}$ expected
ENDCAP CALORIMETER	Liquid argon, 480 towers/endcap, covering 150 mrad-37° spherically arranged pointing to I.P., cross section $10 \times 10 \text{ cm}^2$, 71 Pb plates 1.5 mm thick, 3 mm argon gap, $20.5X_0$, 4 longitudinal segmentations, $\sigma_{\rm E}/\rm E \simeq 10\%/\sqrt{\rm E}$ expected
MUON DETECTOR	Flux return yoke + 2 layers of iron, 900 g/cm ² at 90°, 5263 rectangular double staggered layers, extruded Al drift tubes of $7 \times 5 \times 780$ cm ³ , 6 axial layers and last 2 layers at 90°, 0.8 mm position resolution expected
PARTICLE ID DEVICE	Expect transition radiation detectors (TRD) in future r = 126-156 cm, 18 μ m polypropylene fibers for radiator, 3 layers of photon detectors with Xe(90%)-CH ₄ (10%)
LUMINOSITY MONITOR	48 Pb-scintillator shower counters with PWC's, $15X_0$, covering 60–150 mrad
TRIGGER	Combinations of r- ϕ track finder, z track finder, calorimeter energy triggers, and TOF timings

REFERENCES

- 1. PROPOSAL: TRISTAN-EXP-001, KEK (Jan. 1983).
- 2. CDC: R. Arai et al., Nucl. Instr. & Meth. 217 (1983) 181.
- 3. Status of VENUS, F. Takasaki, KEK-84-16 (1984).

VENUS

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price Code: A05

Lawrence Berkeley Laboratory is an equal opportunity employer.