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Abstract

Analyzing Protein Dynamics Using Dimensionality

Reduction

Atahan Eryol

This thesis investigates dimensionality reduction for analyzing the dynamics of

protein simulations, particularly disordered proteins which do not fold into a fixed

shape but are thought to perform their functions through their movements. Rather

than analyze the movement of the proteins in 3D space, we use dimensionality

reduction to project the molecular structure of the proteins into a target space in

which each structure is represented as a point. All that is needed to do this are

the pairwise distances between the protein structures. We can then visualize the

projected structures in three dimensions to get a general idea of the dynamics of

the protein. We can also measure how well the projection preserves the pairwise

distances between structures for a particular target dimension to get an idea of

the dimension of the dynamics of the protein in the original space.
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Chapter 1

Introduction

Molecular Dynamics simulation is a powerful technique for sampling the mo-

tion and structure of proteins and other biomolecules. It is particularly useful for

studying disordered proteins which change their structural shape through time.

In this work we investigate protein dynamics using dimensionality reduction. One

of the major goals of this work is to understand if disordered proteins move in a

lower dimensional space than they structurally exist and to what degree they are

disordered.

We model proteins as chains of amino acids in which the distance between

amino acids is fixed but the angles can vary. A chain of N amino acids has order

N degrees of freedom but in reality moves on a lower dimensional manifold.

The dimensionality reduction methods we consider require pairwise structural

differences and so we investigate different interstructure distance measures such as

root mean squared distance (RMSD), angular distance, etc. We also investigate
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Chapter 1. Introduction

different dimensionality reduction techniques such as multidimensional scaling and

Isomap. To analyze the effectiveness of the dimensionality reduction we investigate

methods of comparing the distances between the structures in the original space

and their projected representations as points in the reduced space. Correlation and

Kruskals stress are different measures of agreement between the original pairwise

distances and the pairwise distances of the points in the reduced space.

Throughout the project, three types of data, fully synthetic, partially synthetic

and real proteins, are used to perform the experiments. Totally synthetic data

that is comprised of random points in a high dimensional Euclidean space is used

to evaluate the correctness of our methods by comparing our outputs to known

results. Partially synthetic proteins for which we know the true dimensionality are

used to investigate the interstructure distances and the dimensionality reduction

methods. Once calibrated, the technique is applied to the real protein data for

which we can only hypothesize dimensionality.

1.1 Motivation and Background

Generally in protein biophysics, the focus has been concentrated on the struc-

ture and the mechanics of natively folded proteins. With recent developments

there has been a growing interest in the movement and dynamics of intrinsically

2
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disordered proteins which do not fold but are thought to perform their functions

through their dynamics. As most tools and studies of proteins are focused on

their folded state, new analysis and visualization tools are needed to characterize

the properties of these unfolded or disordered proteins. The current tools allow

us to visualize the 3D motion of these proteins, but as their movement is hard

to distinguish with mere observation, our work aims to provide better ways of

understanding the movement. The question of whether disordered proteins are

limited to lower dimensional dynamics is often asked and by using dimensional-

ity reduction our goal is to provide broader understanding of the space and the

dimensions they explore. In this project we investigate whether dimensionality

reduction is useful for answering this problem.

The simulation data that contains the movement and coordinates of the atoms

that makeup the proteins are generated by computational biologists using molec-

ular dynamics software such as the GROningen MAchine for Chemical Simula-

tions (GROMACS) [1]. Afterwards, the coordinate data is processed using inter-

structure distance measures which calculate the pairwise distances. This pairwise

distance data is used throughout the project in the form of symmetric pairwise

distance matrices.

3



Chapter 1. Introduction

1.2 Use Case Example

This section provides a full example as a way of introducing our analysis

pipeline. The details of this use case will be explained in the rest of the the-

sis. For the ease of explanation, a disordered protein named Poly-G is used.

Initially the protein is modeled using a preset model that explains what atoms

the protein consists of and what other characteristics it has. The model of the

protein is then simulated using molecular dynamics software which in our case

is GROMACS. During the simulation, the protein moves through time and this

movement is recorded by the software. Depending on the timestep initially set

before the simulation, the structure of the protein is recorded by the software

at every t timesteps. The 3D locations of the atoms that make up the protein

are recorded at each step. The simulation run by the software finally creates a

trajectory that consists of all the structures that are observed during the simu-

lation. For example, if a protein with 4 significant atoms, those that define the

molecular chains, is simulated for 1000 ms and the timestep is 1ms, the resulting

trajectory will have 1000 structures that make up the movement of the protein.

These structures are also called the frames of the trajectory. In each structure

(frame), the 3D location of the significant atoms are recorded. Therefore we will

4
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have 3 coordinates in physical XYZ space for each of the significant atoms and in

total 12 values that define the structure of the protein at a particular time.

The next step is to create a pairwise distance matrix for dimensionality re-

duction. In order to create a pairwise distance matrix where each of the entries

corresponds to two single frames, a distance measurement is needed which takes

the two groups of points that form the structures and outputs a single value that

indicates the distance or dissimilarity between those two structures. In this use

case, angular distance is chosen. In creating a pairwise distance matrix, each

frames’ dissimilarity (distance) to every other frame is calculated. For instance,

a trajectory that consists of 1000 frames (structures) will result in a 1000x1000

pairwise distance matrix where each element of the matrix is the distance between

the corresponding row index and column index of the selected entry. For example,

the entry in the matrix in row 25 and column 15 is the distance (dissimilarity)

between frames (structures) 25 and 15. It is important to note here that all of the

interstructure distance measures used are symmetric, meaning that comparing the

distance between structure p1 and p2 will have the same result as comparing p2

and p1. The diagonal consists of zeros as a structures’ dissimilarity (distance) to

itself is zero. The work up until this point is done by our computational biology

collaborators; the rest of the analysis and the dimensionality reduction is the focus

of this project.

5
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In the next step, the generated pairwise distance matrix is given to the MDS

(multidimensional scaling) algorithm which performs the dimensionality reduc-

tion. Multidimensional scaling takes the matrix as an input and tries to recon-

struct the input data in a D dimensional Euclidean space where the pairwise

distances are preserved as best as possible. The output is a matrix where rows

correspond to the input data (in our case structures (frames)) and the columns

correspond to the dimensions in the reconstructed space sorted from most signifi-

cant to the least significant. It is important to note that the points in the output

matrix are not the coordinates of the significant atoms of the original protein but

represent the structures in a new space. For instance, a trajectory that initially

had 1000 frames has a pairwise distance matrix of 1000x1000. After the dimen-

sionality reduction, the resulting matrix will be 1000xD where D is the number of

dimensions the data has been reduced to. In this use case, the pairwise distance

matrix of Poly-G is reduced to 231 dimensions, therefore the resulting matrix is

1000x231. The 231 dimensions is the number of positive eigenvalues acquired from

the MDS transformation.

Finally, the reconstructed data is used to do the analysis on the protein. In

the following sections, the analysis methods will be explained in more detail. For

this use case, certain attributes can be observed based on the analysis results. For

example, 3D visualization in figure 1.1 provides a broad look at the movement of

6
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Figure 1.1: 3D plot of Poly-G using angular interstructure distance and MDS.

Each point represents a structure. The coordinates of each point is the three

most significant dimensions of that point. The color indicates the time.

the protein. It is created by taking the first 3 most significant dimensions of the

resulting dimensionality reduced matrix. The values in the first 3 dimensions are

taken as the x,y,z coordinates in the plot so that each structure in the input data

is reperesented by a point in 3D space. The red points which represent the frames

towards the end, between 800-1000, are closer to each other relative to the rest of

the points. All the analysis is done either by visualizing the dimensionality reduced

data or by comparing the pairwise distances in the output data to the original

pairwise distances to try to understand whether the structures can faithfully be

represented in the lower dimensional space.

7
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1.3 Basics

In this section, the general workflow is explained step by step in a broad

manner. Figure 1.2 illustrates the order of the processes.

1. If the data is synthetic, points or structures are randomly created. If the

data is a protein, it is produced using Molecular Dynamics simulations. The

movement of a protein is simulated with a given timestep which is gener-

ally between 10-100ps. The structures that result from these simulations,

which we call frames, are subsampled in order to reduce the computational

complexity.

2. The pairwise distances between each of these subsampled frames are cal-

culated using different interstructure distance methods such as root mean

square distance, angular, etc. The symmetric pairwise distance matrix,

where each entry Xij refers to the distance between the structures at time

frames i and j, is generated.

3. This pairwise distance matrix is given as an input to one of the dimension-

ality reduction methods explained below.

4. The output of the dimensionality reduction is a set of points in a standard

Euclidean space where each point corresponds to a structure. These points

8
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Figure 1.2: Data processing pipeline.

are then visualized in two or three dimensions. They are also analyzed in

varying dimensions to see how faithfully they capture the pairwise distances

between the original data. The general idea is that if a set of structures can

be represented in a D dimensional space, then they have a dimension less

than or equal to D.

9



Chapter 2

Methods

2.1 Introduction

We focus on two aspects of the analysis pipeline in figure 1.2: the interstructure

distance computation and the dimensionality reduction. We consider a number of

different algorithms for both. Each of the dimensionality reduction methods we

consider takes a pairwise distance matrix as an input. Therefore the interstruc-

ture distance computation takes a trajectory consisting of the structures (frames)

and outputs a symmetric pairwise distance matrix. The best distance measure to

calculate distances between two structures is not obvious, therefore several meth-

ods are considered and explained in more detail in the following sections. For

each trajectory, four different interstructure distance measurements are used to

compute the distances between any two given structures. A symmetric pairwise

distance matrix is formed with each row corresponding to the distance of the nth

10
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structure to the rest of the structures in the trajectory. In the matrix, the diagonal

consists of zeros.

Each of the dimensionality reduction methods takes a symmetric pairwise dis-

tance matrix and outputs a matrix that defines where the points corresponding to

the input frames lie in a multi-dimensional Euclidean space. A number of different

dimensionality reduction methods are considered and compared.

2.2 Interstructure Distance (ISD) Measures

The aim of computing distances between two structures is to have a single value

that represents how similar they are. The structures (frames of the trajectory)

are initially N points in a 3D space where each point is a bead that represents

the backbone atoms of the protein. The beads move in time forming different

structures so that we have M structures each with N points in 3D space. The

methods mentioned below take all these structures as input and calculate a single

value for each of the structure pairs. The output is an MxM pairwise distance

matrix where each entry Mij is the value of the distance between the structures i

and j.

11
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2.2.1 RMSD (Root Mean Square Distance)

As mentioned before, a protein can be defined by its significant atoms (our

beads) and their locations in physical 3D space. RMSD computes the difference

between two protein structures using the locations of the significant atoms. This

method takes two structures as an input and outputs a single value which indicates

the difference between those two structures. The smaller the output the more

similar the structures. For this measurement, each structure is fit separately

to an ellipse and the center of mass and major/minor axes of the ellipse are

calculated. For comparing two structures, the ellipses are aligned and centered.

After the alignment, the Euclidean distance between corresponding beads, which

are treated as 3D points, is measured. Finally these distances are averaged for a

final value. Figure 2.1 illustrates the computation in more detail.

Our RMSD implementation uses the GROMACS 4 library functions resetx

and dofit to perform the molecular alignment. All RMSD results presented here

use Cα atoms for alignment and distance calculations. If vi and wi represent the

atoms that form the protein then RMSD is calculated as (after alignment):

ISDRMSD(v,w) =

√√√√ 1

n

n∑
i=1

‖vi − wi‖2 (2.1)

=

√√√√ 1

n

n∑
i=1

((vix − wix)2 + (viy − wiy)2 + (viz − wiz)2) (2.2)

12
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Figure 2.1: (I) Input structures. (II) The structures are fit to ellipses. (III) The

ellipses are aligned. (IV) After the alignment, the distances between the beads

are calculated and averaged.

13
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Figure 2.2: The angles α1 and α2 illustrate the angles used for the angular ISD.

The blue disks are significant atoms forming the protein and the lines between

the disks are the fixed length chains that connect the atoms.

2.2.2 Angular

The locations of the significant atoms in a protein is one way to define its

structure. However, since the distances between the significant atoms are fixed,

the structure can also be characterized by the backbone angles between adjacent

atoms. In our context, changes in these angles encode the movement of the protein.

However, a change in a single angle (which is considered a small change in our

context) can result in a change in the location of multiple significant atoms. This

might result in a large dissimilarity for distance measures based on coordinates

such as RMSD. We therefore consider an angular based measure.

As shown in figure 2.2, the angle formed by triplets of beads in a single struc-

ture is calculated. With this method, each structure has N − 2 angles that define

the structure, where N is the total number of beads that form the structure. For

14
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comparing two structures, the Euclidean distances between corresponding angles

are calculated.

Structures are compared by calculating the root-mean-square of the differences

between corresponding backbone angles. The reference structure angle θRi
and

the comparison structure angle θSi
is calculated for each contiguous set of three

Cα atoms. Therefore for N beads, there are N − 2 total backbone angles. Each

backbone angle θi is calculated using the gmxangle [2] function from the GRO-

MACS 4 library with the two vectors CiCi−1 and CiCi+1 as inputs where Ci is a

bead coordinate. This function calculates θi using the equation:

θi = tan−1

∥∥∥∥CiCi−1 × CiCi+1

CiCi−1 · CiCi+1

∥∥∥∥ (2.3)

The angular ISD measure is defined as the root-mean-square of the differences

between backbone angles rescaled to return a value between zero and one:

ISDang =
1

π

√√√√ 1

n− 2

n−1∑
i=2

(θSi
− θRi

)2 (2.4)

2.2.3 Dihedral Angles

For this measurement, the structure is represented by the dihedral angles be-

tween overlapping triplets of beads as shown in figure 2.3. Each triplet of beads

creates a plane and the angle between adjacent planes, the dihedral angle, is cal-

culated. A structure with N beads has N − 3 dihedral angles. For comparing two

15
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Figure 2.3: Θ is the angle formed by the triplets of beads. π1 is the plane uniquely

defined by the first three beads Ai−2, Ai−1 and Ai. Similarly, π2 is the plane

uniquely defined by the last three beads Ai−1, Ai, and Ai+1. The dihedral angle,

Θ, is defined as the smallest angle between these two planes [5].

structures, the Euclidean distance between the vectors formed by these dihedral

angles is calculated.

The backbone dihedral angle made by each set of four beads is determined by

choosing two vectors normal to the planes formed by the two contiguous sets of

three beads. The two normal vectors are calculated by taking the cross products

of the bead coordinates
−→
V1 =

−−−−→
CiCi−1 ×

−−−−→
CiCi+1 and

−→
V1 =

−−−−→
CiCi+1 ×

−−−−−→
Ci+2Ci+1. The

dihedral angle θi between the resultant vectors is calculated using the GROMACS
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4 library function gmxangle [2]. The dihedral angle is multiplied by the sign of

−−−−→
CiCi−1 ·

−→
V2 to give a consistent dihedral angle measure with a range of 2π.

θi =

 −−−−→CiCi−1 ·
−→
V2∣∣∣−−−−→CiCi−1 ·
−→
V2

∣∣∣
 tan−1 |

−→
V1 ×

−→
V2|

−→
V1 ·
−→
V2

(2.5)

Since the corresponding dihedral angles in two structures, θSi
and θRi

are

both bounded by [−π, π], the difference ∆θi = θSi
− θRi

has a range of 4π. An

adjustment is made by adding 2π to ∆θi for ∆θi < −π and subtracting 2π from

∆θi for ∆θi > π. The ISD is defined as the root-mean-square of the differences

between the N -3 backbone dihedral angles rescaled to return a value between zero

for θRi = θSi and a maximum of one.

ISDdih =
1

2π

√√√√ 1

n− 3

N−2∑
i=2

∆θi
2 (2.6)

Because of this adjustment, we suspect that during the calculation of dihedral

angles between the beads, any dihedral angle that changes more than 180 degrees

can be considered an additional dimension. Therefore instead of having N -3

dimensions we end up with having 2*(N -3) dimensions where one half of the

circular motion (first 180 degrees change in the angle) is considered a degree of

freedom, and the other half of the the circular motion (degree change ranging

from 180-360 in the angle) is considered another degree of freedom.
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2.3 Dimensionality Reduction Methods

In general, the problem of dimensionality reduction is the transformation of

high-dimensional data into a lower dimension without distorting the relations be-

tween the data. In an ideal scenario, the reduced space should perfectly reflect

all the properties expected to be observed in the original data. There are mul-

tiple ways of reducing the dimension of the data such as PCA (principle compo-

nent analysis), LLE (local linear embedding) or MDS (multidimensional scaling).

Methods based on PCA require the original data to explicitly lie in a multidi-

mensional space (one value per axis). In our context of analyzing the movement

of proteins, we do not have such an explicit representation but only have the

distances between structures. Therefore we will focus on using methods such as

MDS that only require pairwise distances.

The overall goal of applying dimensionality reduction to our data is to try

understand the dimensionality of the dynamics. The output of MDS and other

dimensionality reduction methods we consider is an explicit representation of the

structures as points in a multidimensional space. The benefit of the dimensionality

reduction techniques we consider is that only pairwise distance matrices are needed

as input. This allows us to treat the structures themselves as points in a D

dimensional space after dimensionality reduction is performed. That is, the input
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is a PxP symmetric pairwise distance matrix, where P is the number of structures

and the output is a PxD matrix where D is the target dimension. Each row in

the output matrix is the coordinates of one of the input structures in the D

dimensional space. We can visualize the structures by setting D=3. We can also

use this framework to try determine the true dimension of the input data (the

structures) by looking at how well the relations between structures are preserved

as we vary (lower) D.

2.3.1 Classical Multidimensional Scaling

MDS is a dimensionality reduction method which aims to place each object

in a D dimensional space such that the pairwise distances between the original

data and the projected data are preserved as much as possible. The objects in

the original space are assigned coordinates in each of the projected dimensions [7].

The input to the method is a symmetric, PxP , zero diagonal matrix where each

entry is the difference between structure P1 and P2. The output is a PxD matrix

where D refers to the number of dimensions in the projected space and each row is

a projected point. The method is able to preserve pairwise distances if the original

points are already in a Euclidean space and do not have a dimension greater than
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D. The problem can be formulated as the following:

min
x1,...,xI

∑
i<j

(‖xi − xj‖ − δi,j)2. (2.7)

where xi is the coordinate of the point i in the projected space and δi,j is the

original distance between structure i and j [10].

Additionally, the method provides eigenvalues associated with the dimensions.

The larger the eigenvalue is for a particular dimension, the larger the impact

of that dimension is to the resulting space. Therefore when selecting a target

dimension to reduce to, the dimensions corresponding to the largest eigenvalues

are selected. When starting in a Euclidean space with no noise, the number of

nonzero eigenvalues indicates the dimensionality of the input data. The other

eigenvalues (if any) will be zero. Negative eigenvalues indicate that the distance

measure used in the original matrix is not Euclidean. It is also important to

note that there should be enough instances in the pairwise matrix such that the

the original dimensionality can be estimated correctly, meaning that the number

instances should be higher than the number of dimensions the objects lie in. The

following example further illustrates how MDS works:

Let us assume we are given a distance matrix for 5 cities in the United States,

in the following table:
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Atl Chi Den Hou LA
0 587 1212 701 1936
587 0 920 940 1745
1212 920 0 879 831
701 940 879 0 1374
1936 1745 831 1374 0

As it can be seen, the distances matrix is 5x5 and symmetric. Each value

corresponds to the distance in miles between the two cities. When we apply

classical MDS to this distance matrix we get the following 5x2 output:

X Y
-791.596226485087 134.256819268446
-544.586489107515 -400.590490571815
361.832113247859 -240.774124034717
-168.167800188666 460.933482163693
1142.51840253341 46.1743131743929

And these are the eigenvalues:

Eigenvalues
2387750.21722908
451061.555638008

2.15888744381498e-10
-451.507829006487
-2537.66503808011

In this case it can be observed that the first two eigenvalues are significantly

larger than the rest. This indicates that the first two dimensions of the projected

space capture most of the variation in the data. The negative eigenvalues indicate

that the distances in the input matrix are not Euclidean. This makes sense as

the distances are measured with the curvature of the Earth taken into account.

When these 5 points are plotted using the first two dimensions of the projection

we can observe that they are placed in correspondence with their actual locations
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Figure 2.4: Each point represents a city labeled by its name. It is important to

note that orientation is arbitrary and in this case north is downwards.

on a map as shown in figure 2.4. The side effect of MDS is that the orientation

can be arbitrary, where in this case north is not pointing upwards and the map is

rotated.

In summary, the number of non-zero eigenvalues indicates the dimensionality

of the input data if the pairwise distances are Euclidean. If the distances are

not, such as the case with our pairwise structure distances, then there will be
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negative eigenvalues and the dimensionality of the input data will not be clear.

Nevertheless, the ordering of the positive eigenvalues should still indicate the

significance of the dimensions in the projected space which is important when

reducing the dimensionality to just 3 for visualization.

2.3.2 Non-classical Multidimensional Scaling

Similar to classical MDS, nonclassical MDS is used to visualize high dimen-

sional data by reducing its dimensionality. In classical MDS, the goal is to place

points in a way such that the distances between them are approximate to the dis-

similarities given in the input matrix. In some cases this might be too strict of a

requirement and nonclassical MDS allows this constraint to be relaxed. Nonclassi-

cal MDS is based on classical MDS with extra iterative post-processing to achieve

a better fit of the pairwise distances in the reduced space. It accepts an NxN

input distance matrix similar to classical MDS. It starts by applying the classical

method as a starting point. After that, it iteratively perturbs the points so as to

minimize the difference of the pairwise distances in the original and the reduced

space. It does this using gradient decent. For data that is not Euclidean, it can

give better results in terms of difference of the pairwise distances compared to the

classical method. The target dimensionality is given as an input (unlike classical

MDS) and the iterative process to reduce the pairwise differences is done on that
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many number of dimensions. The iteration is done until the distances between the

resulting points closely resembles the original dissimilarities or a threshold for the

number of iterations is reached. In addition to an output matrix consisting of the

points in a D dimensional space, the method provides metrics for the goodness of

the fit which will be explained further in the results.

Note that while nonclassical MDS preserves the ordering of the pairwise dis-

tances the distances might undergo non-linear transformation. That is, distances

of different magnitudes might be scaled differently [3].

2.3.3 Isomap

Isomap is a dimensionality reduction method similar to MDS. The major dif-

ference is that MDS uses the original pairwise distances, whereas Isomap uses the

pairwise geodesic distances to create the low dimensional embedding. K-nearest

neighbors are calculated where the distance between neighbors is the original

distance. Non-neighbor distances are initially set as infinite, and a graph search

algorithm is performed to calculate the distance between any two non-neighboring

points. The distance between them is then the sum of the edges of neighboring

points along the shortest path. For all geodesic pairwise distances to be calculated,

the points with k-nearest neighbors has to form a single connected component.

This can be achieved by tuning the parameters of the method, such as increasing k
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which the number of neighbors selected initially to construct the graph. After the

construction of the graph, classical MDS is run on the geodesic distances to cre-

ate the lower dimensional space [8]. Isomap has the potential benefit of correctly

identifying the dimensionality of non-Euclidean data.

It is important to note that the evaluation methods described in Chapter 4

are not necessarily appropriate for Isomap. These evaluation methods compare

the pairwise distances before and after dimensionality reduction. Isomap uses the

geodesic distances which clearly distorts the original distances in an attempt to

unravel lower dimensional attributes. Despite this handicap, 3D plots based on

Isomap dimensionality reduction are useful for visualization. In particular, when

combined with temporal information, Isomap can determine when a structure

undergoes a large change or when a trajectory revisits itself. This is due to

Isomap’s neighborhood-based analysis.
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Data

Three types of data are used throughout the project to perform the evaluations.

I Fully synthetic data consisting of random points in aD dimensional Euclidean

space.

II A collection of synthetically created structures.

III Trajectories of real proteins.

All of this data is are preprocessed by calculating the pairwise distances for

input to the dimensionality reduction techniques.

3.1 Fully Synthetic

The fully synthetic data set consists of random points in aD dimensional space.

The symmetric input matrix is constructed using the pairwise Euclidean distances

26



Chapter 3. Data

between the points. This data set allows us to observe how the dimensionality

reduction methods perform on data with known dimension and with pairwise

distances computed using a Euclidean distance.

We generate 1000 points at random in a 3D space. Figure shows the 1000x1000

symmetric matrix that is the pairwise distances of the randomly generated points.

The points are uniformly distributed and therefore the indices do not relate to the

distance between points. We expect MDS to be able to perfectly reconstruct the

distributions of the 1000 points given the distance matrix. The orientation of the

points in the projected space is arbitrary and may not be the same as the original

space.

3.2 Synthetic MD Simulations

The synthetic molecular dynamics dataset consists of artificially constructed

molecules that exhibit a certain behavior and have known properties such as

their dimension. A protein with N beads can be constructed and its trajectory

can be created without any other constraints. This type of data allows us to

explore the dimensionality captured by different interstructure distance measures

particularly in relation to the size of the protein which we can vary. The artificially

constructed proteins can be processed into symmetric different pairwise distance
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Figure 3.1: Color representation of the pairwise distance matrix of the synthetic

points that were created in 3 dimensions. The colorbar represents the values where

blue is smaller and red is further apart. The diagonal is dark blue which indicates

that the distance between a point and itself is zero.
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matrices using any of the distance measures described in chapter 2. We can thus

observe which of the interstructure distance measures give more reliable results for

a particular dimensionality reduction method. This data set is used to validate the

dimensionality reduction and evaluation methods since we have the true dimension

of the dynamics of the structures. This data set allows us to calibrate our methods

for when we apply them to the real MD simulations.

We refer to the movement of a molecule through time as a trajectory and a

snapshot of the molecule at a particular time as a frame. Our synthetic MD data

set consists of trajectories in which the frames are generated using what we refer

to as a random chain. A random chain consists of N beads with fixed size links

but which are otherwise free to move at will. The points are randomly distributed

and therefore the frame indices do not relate to the distance between structures.

For the context of this thesis, several synthetic simulations are used with vary-

ing sizes. Random moving chains with the following number of beads are used: 10,

30, 50. The pairwise distances of each of the trajectories are calculated using the

interstructure distance measures explained in chapter 2. Therefore, as an input

to our dimensionality reduction methods, we have 3 pairwise distances matrices

for each of the different sized random chains. Table 3.1 provides information re-

garding the attributes of the random chains and the expected dimensionality with

respect to ISD measures. To recall, we expect 3N dimensions for RMSD, N − 2
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Figure 3.2: Color representation of the pairwise distance matrix of RCn10 using

dihedral angles ISD. The colorbar represents the values where blue is smaller and

red is further apart. The diagonal is dark blue which indicates that the distance

between a point and itself is zero.
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Synthetic
Trajec-
tory

Trajectory
Size

#Of
Beads

#Of
Angles

#Of Di-
hedral
Angles

Expected
for An-
gular
ISD

Expected
for Di-
hedral
ISD

Expected
for
RMSD
ISD

RCn10 1000
Frames

10 8 7 8 14 30

RCn30 1000
Frames

30 28 27 28 54 90

RCn50 1000
Frames

50 48 47 48 94 150

Table 3.1: Number of beads, angles and dihedral angles with expected number of

dimensions for each random chain.

dimensions for angular and 2N − 6 dimensions for dihedral angles where N is the

number of beads.

3.3 Real Protein Simulations

Our third data set consists of MD simulations of real proteins. The motivation

for applying dimensionality reduction to MD simulations of real proteins is to

better understand their dynamics. Insight into whether a protein is moving in a

lower dimensional subspace can provide clues to its level of disorder.

In real trajectories, one can observe which parts of the trajectory are closer or

farther by just looking at the pairwise distance matrices. In the synthetic points,

it is evident from the color matrix that the points are randomly distributed and
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therefore the frame indices do not relate to the distance between structures. On

the other hand, in real trajectories, it is often observed that the trajectory usually

does not make large movements in small time steps therefore making the frames

that are close by in time also more similar in structure. This is reflected in

the pairwise distance matrix where the diagonal region is blueish but the matrix

becomes more red for frames that are further apart in time.

The following real protein trajectories are used :

• Poly-A, 1 trajectory with 1000 frames, 50 amino acids

• Poly-G, 1 trajectory with 1000 frames, 50 amino acids

• Poly-Q, 1 trajectory with 1000 frames, 50 amino acids

• GLFG, 5 trajectories all merged into a single set of frames. Each trajectory

has 360 frames so 1800 frames in total.

• AXAG, 5 trajectories all merged into a single set of frames. Each trajectory

has 360 frames so 1800 frames in total.

Poly-A, Poly-G and Poly-Q are created in GROMACS 4.5.5 using explicit

solvent, pressure coupling and amber-99SB-ILDN as the force field. Poly-A, Poly-

G and Poly-Q are all disordered proteins with Poly-Q being more disordered than

Poly-G and Poly-G more disordered than Poly-A.
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Results

We perform both qualitative and quantitative analysis of the dimensionality

reduction results. We qualitatively visualize the trajectories in 3D. We also derive

quantitative measures that try get at how well the pairwise distances are preserved

for a particular combination of ISD and dimensionality reduction method. The

synthetic data allows us to study and calibrate the analysis framework so that it

can be then applied to the real data.

4.1 3D Plots

3D plots are used to visualize the trajectories and to get a basic idea of the

motion of the protein throughout its trajectory. It is good for understanding how

much of the space it is exploring or if it is revisiting certain states. The plot

is derived by the output of the dimensionality reduction for a trajectory. The

most significant 3 dimensions are used as the x, y, z coordinates of the plot.
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It is important to note here that each of the frames are represented here as a

point. Although it is limited to only 3 dimensions, if these 3 dimensions capture

most of the variance, it is an accurate representation of the relationships between

structures. That is, if two points are close to each other, the structures they

represent are considered similar with respect to the ISD measure that was used to

create the pairwise distance matrix as an input to the dimensionality reduction.

The 3D plots of the random chains do not vary in any meaningful way between

ISD measures (for MDS). This is in part because the structures are independent

and do not have any temporal correlation. It is also due to the high dimensionality

of the structures: three dimensions clearly cannot capture most of the variance. If

we were able to visualize the projected data in a D+1 dimensional space where D

is dimension of the structures, we might expect to see the data on a D dimensional

manifold. But in our case, as it can be seen in figure 4.1 three dimensions do not

provide much insight into the movement and behavior of the random chains.

An example of a 3D plot of the protein Poly-A is shown in figure 4.2 with

angular distance used as the interstructure distance measure. The colorbar in the

plot indicates time. In this plot we can observe that the frames near the end of the

trajectory (the red cluster) are closer to each other, which tells us that towards

the end of the simulation the protein tends to explore less space relative to the

beginning.
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(a) RMSD RC-10 (b) Angular RC-10

(c) Dihedral RC-10 (d) Angular RC-30

Figure 4.1: 3D plots using three different distance measures for RC-10 and angular

ISD for RC-30. The color bar indicates the index of the structure (from 1 to 1000

but scaled to 0 to 1).
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Figure 4.2: 3D plot of Poly-A using angular ISD and MDS. Each point represents

a structure. The coordinates of each point is the three most significant dimensions

of that point. The color indicates the time.

Based on our observations, the 3D plots based on nonclassical MDS do not

differ in any significant way from those based on MDS, as shown in figure 4.3. We

do note, however, that the 3D plots based on Isomap can help identify big leaps

or drastic changes in a trajectory, as shown in figure 4.4.

It can be argued that in most cases nonclassical MDS does not result in much

difference in visualization for the proteins we analyze. Isomap is helpful in iden-

tifying big leaps or drastic changes in the movement of the trajectory. It is less

sensitive to small changes in structure depending on the number of neighbors

selected to construct the geodesic distances.

36



Chapter 4. Results

(a) 3D plot of Poly-A using the angular

distance measure and MDS.

(b) 3D plot of Poly-A using the angular

distance measure and nc-MDS.

Figure 4.3: 3D plots of Poly-A protein using angular distance measure presented

to compare MDS and nonclassical MDS.

(a) 3D plot of Poly-A using the angular

distance measure and MDS.

(b) 3D plot of Poly-A using the angular

distance measure and Isomap.

Figure 4.4: 3D plots of Poly-A protein using the angular distance measure com-

paring MDS and Isomap.
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(a) Pairwise distance matrix of Poly-A

using the angular distance measure.
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(b) Geodesic pairwise distance matrix

of Poly-A using the angular distance.

Figure 4.5: Pairwise distance matrices of Poly-A protein using angular distance

measure presented to compare MDS and Isomap.

Isomap changes the original pairwise distances by making them geodesic dis-

tances as explained in chapter 2. In our case, Isomap enhances the proximity of

points, meaning that close points are closer and far points are further apart in the

resulting pairwise matrix. Figure 4.5 shows the pairwise distance matrices before

and after the geodesic distances have been calculated.

Our framework can also be used to investigate how multiple trajectories (repli-

cates) of the same protein explore structural space in relation to each other. That

is, it can help answer the question whether the trajectories overlap in structural

space or not. This is accomplished by combining all the structures from multiple

trajectories and then visualizing them in the reduced 3D space. Figure 4.6 shows
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Figure 4.6: The pairwise distance matrix for five GLFG trajectories. The color

indicates the distance between structures, red being far and blue being close. This

is generated using angular distance measure.

the pairwise distance matrix for five GLFG trajectories using angular distance

measure and figure 4.7 visualizes the structures in 3D space after MDS for an-

gular and RMSD distance measures. Figure 4.7 shows that the five trajectories

do not overlap. Angular measure performs better in distinguishing all five trajec-

tories, whereas RMSD has two of the trajectories overlapping which results in 4

distinct clusters.

Similar to GLFG, AXAG is analyzed by combining the structures from five

trajectories. Unlike GLFG, the individual trajectories cannot be distinguished by

observing the 3D plots which is shown in figure 4.8. This confirms the fact that

AXAG is more disordered than GLFG.
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(a) Angular (b) RMSD

Figure 4.7: 3D plot for five GLFG trajectories using RMSD and angular distance

measures for MDS.

(a) Angular (b) RMSD

Figure 4.8: 3D plot for five AXAG trajectories using RMSD and angular distance

measures for MDS.
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4.2 Pairwise Distance Comparison

The original pairwise distances and the pairwise distances in the projected

space are compared in this evaluation method to observe how well the relative

ordering of the distances is preserved. This is done using a plot created as follows.

The original distances are sorted and used as the x values. The corresponding

pairwise distances between the points in the projected space are calculated using

Euclidean distance and used as the y values. If the resulting plot is a one to

one and monotonically increasing this indicates that the order of the pairwise

distances is preserved. A benefit of this evaluation is that we can observe how

well the distances are preserved for a selected target dimension D.

We apply pairwise distance comparison to the RC dataset. Figure 4.9 shows

the pairwise distance plots for RC-10 using RMSD, angular and dihedral distance

measures. Angular distance measure achieves one-to-one monotonically increasing

pairwise distance plot for D dimensions where D is the number of positive eigen-

values. Recall, that in MDS, the maximum number of dimensions is limited by

the maximum number of eigenvalues. For RMSD and dihedral distance measures,

even when maximum number of dimensions are used for the pairwise distance

plots, the results still do not achieve one-to-one correspondence and monotonic-

ity.
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(a) RMSD (b) Angular

(c) Dihedral

Figure 4.9: Pairwise distance plots of 3 different distance measures for RC-10.

The x-axis is the original pairwise distances. The y-axis is the pairwise distances

in the projected space.
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Figure 4.10: The x-axis is the original pairwise distances. The y-axis is the

pairwise distances in the projected space. This is for Poly-A using angular ISD

and MDS.

Figure 4.10 shows an example pairwise distance comparison plot for Poly-A

when reduced to 524 dimensions, which is the number of positive eigenvalues,

using MDS with angular distance used as the interstructure distance measure.

We can observe that this plot is one to one and monotonically increasing which

tells us that the ordering of the pairwise distances is perfectly preserved using 524

dimensions.

Figure 4.11 shows the pairwise distance comparison for Poly-A after using

MDS to reduce the dimension to 524 but using the dihedral measure. This is not

one-to-one nor monotonically increasing due to the fact that the dihedral ISD is

not Euclidean (because of the angle wrap-around).
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Figure 4.11: The x-axis is the original pairwise distances. The y-axis is the

pairwise distances in reduced space. This is for Poly-A using dihedrals and MDS.

While the dihedral ISD does not preserve the ordering of all the pairwise

distances, it does do this for most. When a density plot is used to visualize the

frequency of points, it can be observed that the concentration is along a one to

one monotonically increasing line. This is shown in figure 4.12 using a density plot

of the protein Poly-A using MDS and dihedral angles as the distance measure.

4.3 Correlation

The pairwise distance comparison plots in the previous section allowed us to

visually determine how well a given combination of ISD and dimensionality reduc-

tion methods preserves the relative ordering of and even the relative magnitudes
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Figure 4.12: Density plot the pairwise distances of Poly-A using the dihedral

angles. The x-axis is the original pairwise distances. The y-axis is the pairwise

distances in the projected space.
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of a trajectory. However, it is visual and therefore qualitative and can only be

done for a single target dimension at a time. In this section, we seek to summarize

how well the pairwise distances are preserved using a single value so that we can

plot it as the target dimension is varied.

Correlation is a measure of how well one set of values linearly predicts another

related set (up to a scaling factor). It measures how well a (non-vertical, non-

horizontal) line can be fit to the plot of one set of values versus the other. Given

a set of x values and a set of corresponding y values, the correlation (coefficient)

is computed as [9]

Corr =
n
∑n

i=1(xiyi)−
∑n

i=1(xi)
∑n

i=1(yi)√
n
∑n

i=1(x
2
i )− (

∑n
i=1(xi))

2
√
n
∑n

i=1(y
2
i )− (

∑n
i=1(yi))

2
(4.1)

We can compute the correlation of our pairwise distances comparison plots to

estimate how well pairwise distances are preserved for a particular target dimen-

sion. The x values in equation 4.1 are taken as the original pairwise distances and

the y values are taken as the distance in the reduced space. This value ranges

from 0 to 1 where a higher value indicates a better linear fit. We can then plot

correlation versus target dimension to get an idea of the dimension of the trajec-

tory.

We first compute and plot correlation versus target dimension for the RC

dataset to calibrate the analysis. Figure 4.13 shows the correlation plots for RC-

10 after MDS using RMSD, angular and dihedral distance measures. Recall, we
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expect the dimension of this trajectory to be 30, 8 and 14 for these measures

respectively. We see that the correlation reaches a value of 1 at 8 dimensions for

the angular distance measure. Correlation never reaches 1 for dihedral meaning

that the relative ordering and scale of the pairwise distances is never preserved by

MDS and the dihedral distance measure no matter how large the target dimension.

The correlation does reach a maximum value at 14 dimensions, the expected value.

The correlation plot for RMSD is less clear. It does not reach a maximum

value at 30 and it actually decreases with increasing dimension.

These plots demonstrate two things. First, that MDS does not preserve pair-

wise distances when the original distances are computed using RMSD and dihedral

distance measures no matter what the target dimension is. This is because RMSD

and dihedral are not Euclidean. And, second, that RMSD is poor distance mea-

sure particularly when computing the pairwise distances for input dimensionality

reduction methods.

Table 4.1 shows the maximum correlation values for all three RC trajectories

for the various distance measures. Table 4.2 shows the maximum correlation values

for Poly-A, Poly-G and Poly-Q trajectories for the various distance measures.

Figure 4.14 shows the correlation plots for Poly-A. As is often the case with

our problem, even though the analysis framework performed as expected on the
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Figure 4.13: Correlation evaluations of 3 different distance measures for RC-10.
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Figure 4.14: Correlation evaluations of 3 different distance measures for Poly-A.
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Synthetic
Trajectory

Trajectory
Size

Beads Dimensions Max Value

RCn10-
RMSD

1000
Frames

10 38 0.9890

RCn10-
Ang

1000
Frames

10 8 1

RCn10-
Dih

1000
Frames

10 14 0.9644

RCn30-
RMSD

1000
Frames

30 45 0.9887

RCn30-
Ang

1000
Frames

30 28 1

RCn30-
Dih

1000
Frames

30 54 0.9624

RCn50-
RMSD

1000
Frames

50 39 0.9903

RCn50-
Ang

1000
Frames

50 48 1

RCn50-
Dih

1000
Frames

50 94 0.9628

Table 4.1: The maximum correlation values and the corresponding dimensions for

random chains of size 10, 30 and 50 using different ISD measures.

50



Chapter 4. Results

Real Tra-
jectory

Trajectory
Size

Beads Dimensions Max Value

PolyA-
RMSD

1000
Frames

50 22 0.9973

PolyA-
Ang

1000
Frames

50 48 1

PolyA-Dih 1000
Frames

50 52 0.9975

PolyG-
RMSD

1000
Frames

50 30 0.9980

PolyG-
Ang

1000
Frames

50 48 1

PolyG-Dih 1000
Frames

50 75 0.9906

PolyQ-
RMSD

1000
Frames

50 33 0.9999

PolyQ-
Ang

1000
Frames

50 48 1

PolyQ-Dih 1000
Frames

50 29 0.9969

Table 4.2: The maximum correlation values and the corresponding dimensions for

Poly-A, Poly-G and Poly-Q using different ISD measures.

synthetic data, the results on real data are rarely straightforward. Angular reaches

a correlation of 1 in 48 dimensions as expected.

4.4 Kruskal’s Stress Measure

Kruskals stress measure also known as stress-1 is similar to correlation and

helps identify the amount of invariance (variance that is not explained) given a
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target dimension D. This method is more useful in non-classical MDS where the

data is processed using isotonic regression where the points are fit to a monoton-

ically increasing line. It can also be applied to linear classical MDS. Figure 4.15

shows an example plot for Poly-A with angular distances used as the interstruc-

ture distance measure. From these plots we can observe that most of the time

after three dimensions less than 0.1 percent of the variance is unexplained, which

tells us that the 3D plot of this trajectory will reflect most of the data with good

accuracy.

The stress measurement is computed as follows:

Stress =

√∑n
i=1

∑n
j=1(f(xij)− dij)2∑n

i=1

∑n
j=1 (dij)2

(4.2)

In the equation, dij refers to the Euclidean distance, across all dimensions,

between points i and j in the projected space, f(xij) is some function of the input

data, and the divisor is a scaling factor used to keep stress values between 0 and

1. When MDS perfectly projects the input data, f(xij) − dij is 0 for all i and j,

so stress is zero. Thus, the smaller the stress, the better the representation [4].

The transformation of the input values f(xij) depends on whether its classical

or non-classical MDS. In metric scaling, f(xij) = xij. In other words, the raw

input data is compared directly to the projected distances. In non-classical MDS,

f(xij) is a weakly monotonic transformation of the input data that minimizes the
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stress function [4]. The monotonic transformation is computed via “monotonic

regression”, also known as “isotonic regression” [6].

Similar to correlation evaluation, it is beneficial to examine the results of

the synthetic random chains using the stress measurement. It can be seen from

the plots in figure 4.15 that stress follows the same pattern as correlation. The

angular distance measure is the only one that reaches zero stress at the exact

dimension of 8. Similarly, both RMSD and the dihedral measure does not reach

zero stress where dihedral achieves lowest stress value at 14 dimensions. For the

lower dimensions, non-classical MDS achieves a lower stress value, indicating that

it can be beneficial to use non-classical MDS if the aim is to represent or evaluate

the movement of these random chains in a relatively low dimension.

In the case of Poly-A, the results of the stress evaluation are as expected.

For all the interstructure distance measures, non-classical MDS provides lower

stress values than classical-MDS. The results of the evaluation can be observed in

figure 4.16. This indicates that in lower dimensions, using non-classical MDS cap-

tures the movement of the protein and the pairwise distances between structures

better than classical MDS.
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(a) RMSD (b) Angular

(c) Dihedral

Figure 4.15: Stress evaluations of 3 different distance measures for RC-10 com-

paring classical and non-classical MDS.
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(a) RMSD (b) Angular

(c) Dihedral

Figure 4.16: Stress evaluations of 3 different distance measures for PolyA com-

paring classical and non-classical MDS.
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Conclusions

5.1 Overview and Summary

This thesis investigated dimensionality reduction methods for analyzing the

dynamics of protein simulations, particularly disordered proteins which do not

fold into fixed shapes but are thought to perform their functions through their

movements. The question of whether these disordered proteins are limited to lower

dimensional dynamics is often asked and by using dimensionality reduction this

thesis aimed to provide broader understanding of the space and the dimensions

they explore.

The dimensionality reduction methods we considered required pairwise differ-

ences and so we investigated different interstructure distance measures of root

mean square distance (RMSD), angular distance and dihedral angles distance

to compute the distance between two protein structures. We also investigated
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different dimensionality reduction techniques: classical multidimensional scaling

(MDS), non-classical MDS and Isomap.

The following workflow was used to do the analysis of the proteins:

• The movement of a protein is simulated using Molecular Dynamics simu-

lations. The structures that result from these simulations, which we call

frames, is considered the initial data.

• The pairwise distances between each of these frames are calculated using

different interstructure distance methods.

• This pairwise distance matrix is given as an input to one of the dimension-

ality reduction methods.

• The output of the dimensionality reduction is a set of points in a standard

Euclidean space where each point corresponds to a structure. These points

are then visualized. They are also analyzed in varying dimensions to see how

faithfully they capture the pairwise distances between the original data.

The aim is to answer which interstructure distance method and dimensionality

reduction method is best for observing degree of disorder and preservation of pair-

wise distances with respect to a particular dimension. The following conclusions

can be reached from the experiments:

57



Chapter 5. Conclusions

• For random chains, angular and dihedral distance measures are informative

when combined with MDS.

• For real proteins, angular and in some cases dihedral distance measures are

informative when combined with MDS.

• Non-classical MDS is not particularly useful in identifying the degree of

disorder, but it can be perform better than MDS if the movement of a

protein needs to be constrained and examined in a low dimensional space.

• Isomap is useful in limited cases regarding visualization. If a trajectory’s

movement can be sufficiently captured in 3 degrees of freedom, the Isomap

plot provides good visualization.

Additionally there are points of caution and general take away ideas:

• 3D plots of the results of the dimensionality reduction provide insight into

the degree of disorder.

• Proteins that are less disordered tend to have more clustered and distin-

guishable movement patterns that are reflected in the plots. This may prove

useful in the early stages of the analysis and can be used as a starting point.

• The dimension corresponding to the maximum correlation between input

and projected distances does not always indicate the total degree of freedom.
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• The less sharp the rise in of the correlation graph for a trajectory, the

more disordered the movement of that trajectory is. A steady rise in the

correlation graph indicates that large number of atoms in the protein are in

rapid movement resulting in higher dimensionality.

• Trajectories capture a limited duration of the movement of the protein,

therefore throughout the thesis the trajectories used may not fully reflect

the general behavior and dynamics of that protein.
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Appendix A

Additional Plots

This appendix contains additional plots for Poly-A, Poly-G and Poly-Q. Four
plots are shown for each protein and each distance measure: a 3D plot, a correla-
tion plot, a pairwise distance comparison plot and the plot of the eigenvalues that
result from the MDS projection. All results are for MDS. The pairwise distance
comparison plots are for the maximum dimension identified in the correlation
plots.
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Figure A.1: 3D plot of Poly-A using angular ISD and MDS.
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Figure A.2: Correlation plot of Poly-A using angular ISD and MDS.
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Figure A.3: Pairwise distance plot of Poly-A using angular ISD and MDS.
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Figure A.4: Eigenvalues of Poly-A using angular ISD and MDS.
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Figure A.5: 3D plot of Poly-G using angular ISD and MDS.
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Figure A.6: Correlation plot of Poly-G using angular ISD and MDS.
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Figure A.7: Pairwise distance plot of Poly-G using angular ISD and MDS.
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Figure A.8: Eigenvalues of Poly-G using angular ISD and MDS.
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Figure A.9: 3D plot of Poly-Q using angular ISD and MDS.
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Figure A.10: Correlation plot of Poly-Q using angular ISD and MDS.
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Figure A.11: Pairwise distance plot of Poly-Q using angular ISD and MDS.
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Figure A.12: Eigenvalues of Poly-Q using angular ISD and MDS.
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Figure A.13: 3D plot of Poly-A using RMSD ISD and MDS.
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Figure A.14: Correlation plot of Poly-A using RMSD ISD and MDS.
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Figure A.15: Pairwise distance plot of Poly-A using RMSD ISD and MDS.
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Figure A.16: Eigenvalues of Poly-A using RMSD ISD and MDS.

69



Appendix A. Additional Plots

Figure A.17: 3D plot of Poly-G using RMSD ISD and MDS.
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Figure A.18: Correlation plot of Poly-G using RMSD ISD and MDS.
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Figure A.19: Pairwise distance plot of Poly-G using RMSD ISD and MDS.
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Figure A.20: Eigenvalues of Poly-G using RMSD ISD and MDS.
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Figure A.21: 3D plot of Poly-Q using RMSD ISD and MDS.
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Figure A.22: Correlation plot of Poly-Q using RMSD ISD and MDS.
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Figure A.23: Pairwise distance plot of Poly-Q using RMSD ISD and MDS.
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Figure A.24: Eigenvalues of Poly-Q using RMSD ISD and MDS.
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Figure A.25: 3D plot of Poly-A using dihedral ISD and MDS.
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Figure A.26: Correlation plot of Poly-A using dihdral ISD and MDS.
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Figure A.27: Pairwise distance plot of Poly-A using dihedral ISD and MDS.
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Figure A.28: Eigenvalues of Poly-A using dihedral ISD and MDS.
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Figure A.29: 3D plot of Poly-G using dihedral ISD and MDS.
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Figure A.30: Correlation plot of Poly-G using dihedral ISD and MDS.

76



Appendix A. Additional Plots

Figure A.31: Pairwise distance plot of Poly-G using dihedral ISD and MDS.
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Figure A.32: Eigenvalues of Poly-G using dihedral ISD and MDS.
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Figure A.33: 3D plot of Poly-Q using dihedral ISD and MDS.
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Figure A.34: Correlation plot of Poly-Q using dihedral ISD and MDS.
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Figure A.35: Pairwise distance plot of Poly-Q using dihedral ISD and MDS.
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Figure A.36: Eigenvalues of Poly-Q using dihedral ISD and MDS.
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