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ABSTRACT OF THE DISSERTATION 

 

Combatting Circulating Infectious Diseases in California: Evaluating New Approaches to 

Surveillance and the Costs of Outbreaks on Public Health Agencies 

 

by 

John Dave Diaz-Decaro 

 

Doctor of Philosophy in Environmental Health Sciences 

University of California, Los Angeles, 2018 

Professor Hilary Godwin, Chair 

 

The costs of circulating infectious diseases in California and the need for better approaches to 

surveillance are major challenges for surveillance laboratories tasked with controlling and 

preventing the spread of disease. This is particularly true for respiratory pathogens and measles. 

Although vaccines are widely available for common respiratory tract pathogens as well as measles, 

outbreaks of both still occur, straining California local and state public health agencies on an 

annual basis. In the first part of this thesis, I critically evaluate the utility of multiplex molecular 

diagnostics for public health surveillance of respiratory pathogens and provide recommendations 

for the development of new assays that better meet the needs of the surveillance community. Next, 

I present a case study in which multiplex assays were used to study respiratory infections in nursing 
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homes in California. This case study demonstrates the utility of multiplex assays for studying 

correlations between environmental contamination and human illness and suggests that this 

approach could be an effective tool for infection control in healthcare settings. Last, I present a 

study in which we modeled the epidemiological and economic impact of two recent measles 

outbreaks in California (the 2014-15 U.S. multi-state and the 2016-17 measles outbreak). The 

results of this study suggests that, at the county level, population density and the distance from the 

epicenter of the outbreak are the best predictors of contact counts and costs for these two measles 

outbreaks. In addition to providing insights into the true costs of prior measles outbreaks, this 

model also could be used prospectively by local health departments to better manage future 

outbreaks. Collectively, these studies provide important insights and tools for improving 

surveillance of respiratory pathogens, more effective controlling respiratory infections in 

healthcare settings, and decreasing costs of outbreaks. 
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CHAPTER 1 

 

Introduction and Overview of the Organization of Thesis 

 

INTRODUCTION 

Despite advances in the prevention and surveillance of circulating infectious diseases, such 

as respiratory tract infections (RTIs) and measles, these diseases continue to pose a substantial 

burden on public health in the United States. Circulating infectious diseases may be defined as 

seasonal or endemic communicable disease transmitted through one or several modes of 

transmission such as direct or indirect (1). Direct transmission occurs when an infectious host 

comes in direct contact with a susceptible individual. Indirect transmission occurs when the 

environment acts as a reservoir or vector spreading disease with no direct human-to-human 

contact. The number of deaths due to selected notifiable infectious diseases in the United States 

has been increasing in recent years. 1,252,022 deaths occurred in 2000, 1,861,588 deaths in 2010, 

and 2,082,672 deaths in 2014. This represents an 11.8% increase in 2010 and a 66.34% increase 

in 2014 since 2000 (2). In the United States, across all age groups age-adjusted death rates for 

some infectious diseases have decreased but are still more than some chronic conditions (3). 

Collectively, infectious diseases cost the United States $120 billion in 2014 (4). For comparison, 

RTIs cost $40 billion annually ($17 billion in direct costs and $22.5 billion in indirect costs) (5, 

6). The annual cost of influenza in the United States in direct medical expenses is estimated at 

$10.4 billion a year with an additional $16.3 billion in lost wages (7). RTIs represent a third of the 

economic burden due to infectious disease. For measles, despite being declared eliminated from 

the United States in 2000, outbreaks cost local and state public health agencies ranged from $2.7 
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million to $5.3 million in 2011 (8).  While the cost of measles is relatively low in the U.S. compared 

to other infectious disease, measles is still a major public health concern as the frequency and size 

of outbreaks is sporadic and individually very costly.  

Respiratory tract infections and measles also place a significant burden upon the health of 

Californians and on the public health system across the state. The annual economic costs from 

RTIs are estimated to be $143.3 mil across all 58 California (CA) counties with county-specific 

costs varying due to demographics (i.e., population size, age structure, and income level) (9, 10). 

Mortality of RTIs in CA such as influenza accounts for 6 to 14% of all annual deaths in the United 

States (11). For a common RTI such as the common cold, Californians experience an estimated 

78.5 million to 1.5 billion episodes annually (2 to 4 episodes per person) (12). Although mortality 

is rare among cases measles cases in California (case-fatality rate is 0.2%); 13, 14), the economic 

burden of measles is a recurring public health concern. Local and state public health agencies spent 

roughly $141,068 ($10,367 per case) on a measles outbreak in San Diego county where an 

unvaccinated individual was returning home from an overseas trip (8). Recently, in responding to 

a measles outbreak originating from a US-bound refugee arriving in Los Angeles International 

Airport, local response costs ranged from $64,210 to $72,456 (15). The burden of measles and 

similarly to RTIs in CA has been mostly from controlling and preventing disease in various 

populations. Thus, heightened surveillance both locally and throughout the state is a priority for 

public health agencies.  

Improved epidemiological tools for surveillance of RTIs and improved understanding of 

how to control costs of measles can help to mitigate the burden of these diseases. In California, as 

is the case in many states, Local Health Departments and Public Health Laboratories play a critical 

role in surveillance of infectious diseases such as RTIs and measles (16, 17). For RTIs, traditional 
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laboratory methods are the “gold standard” but have been steadily replaced by the commercial 

release of novel molecular technologies (18). While clinical management of RTIs depend on 

knowing etiology, respiratory multiplex assays offer rapid detection and characterization 

addressing many of the limitations of conventional methods. However, while multiplex diagnostic 

tests have dramatically improved clinical care of RTIs, use of these methods as surveillance tools 

needs to be further evaluated. Specifically, assessment of the use of multiplexed diagnostic tests 

as surveillance tools should reflect epidemiological diagnostic measures that are relevant for 

surveillance purposes. For measles, surveillance initiatives in California have often focused on 

increasing vaccination rates, yet population based tools that help understand transmission factors 

and population dynamics are greatly needed as recent costly measles outbreaks have been large 

and sporadic despite a high vaccination coverage throughout the state. A better understanding of 

how multiplexed assays perform in surveillance studies on RTIs and a better understanding of what 

drives costs of measles outbreaks would not only improve communicable disease prevention and 

control programs but also yield better public health outcomes. While the studies in this thesis focus 

on Los Angeles and the State of California, they have broad reaching implications for how to 

improve surveillance of RTIs and reduce costs associated with measles outbreaks in other 

jurisdictions as well. 

 

RESPIRATORY TRACT INFECTIONS 

RTIs are defined as acute respiratory infections affecting either the upper respiratory tract 

(URTIs) (comprised of the nasal cavity, pharynx and larynx) or lower respiratory tract (LRTIs) 

(comprised of the trachea, primary bronchi and lungs). (Figure 1.1). Symptoms vary depending 

on etiology, but are often overlapping, which complicates direct diagnosis by clinicians.  
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Acute disease due to URTIs include the common cold, sinusitis, pharyngitis, epiglottitis 

and laryngotracheitis. Symptoms vary with type of URTI, patient demographics and medical 

history, however significant overlap exists. Symptoms for many URTIs include coughing, 

sneezing, nasal discharge, nasal congestion, runny nose, fever, sore throat and heavy nasal 

breathing (19). Onset of symptoms typically occurs 1 to 3 days after exposure, with symptoms 

lasting as much as 3 weeks depending on the type of URTI (20). The most common URTI is the 

common cold, which is a mild self-limiting disease that annually leads to approximately 1 billion 

colds in the U.S. (20). Risk factors include close contact with an infected individual with an 

existing URTI, poor personal hygiene, and overcrowding (especially among children in a group 

setting or in healthcare facilities), smoking, and a compromised immune status (19, 21). Other risk 

factors include time of year with most URTIs occurring during the winter months. 

Acute disease due to LRTIs include acute bronchitis and bronchiolitis, influenza and 

pneumonia. Symptoms of less-serious disease include congestion, dry cough, sore throat, low-

grade fever and mild headache lasting roughly 2 weeks (22, 23). More serious symptoms include 

fever, severe cough, rapid breathing, wheezing, chest pain and skin discoloration. As a leading 

cause of morbidity and mortality in both children and adults, LRTIs have risk factors that are at 

times disease specific. For bronchitis, risk factors include exposure to cigarette smoke, age, 

occupational hazards that increase exposure to lung irritants and gastric reflux (24). Influenza risk 

factors include age, living or working conditions, chronic illnesses, pregnancy and obesity (25). 

The CDC suggest that flu-related complications are mostly observed in high-risk populations (i.e., 

children under 5, adults over 65 years of age and older, pregnant women, long-term care facility 

residents, and American Indians and Alaskan Natives) (26). Risk factors for pneumonia are 

dependent on the type of pneumonia: community-acquire pneumonia (CAP), hospital-acquired 
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pneumonia or ventilator-associated pneumonia (VAP) (27-29).  Despite the many risk factors, the 

multi-causal pathways leading to a RTI always begins by first identifying the etiological agents 

causing disease.  

While most URTIs result from viral infection the causative agents for LRTI can be either 

viral or bacterial (30). The “common cold” is most often associated with viral infections, including 

rhinoviruses, coronaviruses, parainfluenza, adenoviruses, RSV, and influenza viruses. However, 

illness diagnosed as a “common cold” can also be bacterial in origin (e.g. Chlamydia pneumonia, 

Streptococcus pneumonia, Mycoplasma pneumonia). Epiglottitis and laryngotracheitis have been 

associated with infections due to RSV, parainfluenza, and several bacteria, including Haemophilus 

influenzae type b, Corynebacterium diphtheria, Streptococcus pneumoniae, and group A 

streptococci (31). Acute epiglottitis can be a life threatening condition. In recent years, the 

incidence of this disease has been increasing in adults and decreasing in children (32). 

Laryngotracheitis, commonly known as croup, is a condition that affects the larynx, trachea and 

bronchi that is typically associated with a variety of viruses: parainfluenza virus (types 1-4), 

influenza A and B, rhinovirus, enteroviruses, RSV and measles (in unvaccinated children) (33). 

While croup is usually due to viral infections, it has occasionally been associated with the 

bacterium Mycoplasma pneumoniae (34). Common causes of acute bronchitis include: influenza 

A and B, parainfluenza viruses, adenovirus, RSV, rhinovirus, coxsackievirus groups A and B, and 

echovirus, C. pneumoniae and M. pneumonia (35, 36). Bronchiolitis is caused by RSV, hMPV, 

parainfluenza viruses, and adenoviruses (35, 37). Pneumonia is caused by a variety of bacterial 

and viral respiratory pathogens (38), however influenza is a common cause in both children and 

adults (39). While viral pneumonia is often associated with community outbreaks of influenza, 

RSV and parainfluenza (40, 41), the most prevalent causes of viral pneumonia in infants and young 
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children are RSV and parainfluenza infections (42). Bacterial pneumonia is a frequent 

complication following a viral RTI. Common etiologies for bacterial pneumonia include M. 

pneumoniae, Staphylococcus aureus and gram-negative bacteria (43). Older adults and patients 

residing in long-term care facilities are at highest risk for bacterial pneumonia (38). While acute 

respiratory disease may be due to LRTI or URTI, failure to identify viral or bacterial etiology poses 

a significant clinical risk to patients and population health.  

 

CLINICAL MANAGEMENT OF RESPIRATORY TRACT INFECTIONS 

RTIs are a clinical challenge due to the similar symptoms shared by many respiratory viral 

and bacterial infections. The CDC case definition for influenza-like illness (ILI) includes a fever 

(temperature of 100°F [≥ 37.8°C] or greater), accompanied by a cough and sore throat without a 

known cause other than influenza (44). The U.S. Outpatient Influenza-like Illness Surveillance 

Network (ILINet) is a collaborative effort between the CDC, local and state public health agencies 

and healthcare providers. With nearly 3000 participating outpatient sites providing data, ILINet 

collects and trends data of patient visits to heath care providers for ILI. Data shows that on average, 

during recent flu seasons (2010 to 2015), only 2.6% of all patients visits are because of ILI 

symptoms (45). State-level data reveals that a majority of ILI’s are seldom resolved by initial 

laboratory testing. Data from World Health Organization (WHO) and National Respiratory and 

Enteric Virus Surveillance System (NREVSS) collaborating laboratories who screen for influenza 

A (H1N1pdm09, /H1, /H3) and influenza B, suggests that only a small fraction of all ILI’s in 

California are actually due to either influenza A or B alone (Figure 1.2).  

Clinical management of RTIs varies with causative agent. Both antivirals and antibiotics 

are available for treating RTIs but use depends on whether the acute infection is viral or bacterial. 
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For influenza A and B infections, zanamivir (Relenza ®) and oseltamivir (Tamiflu ®) are widely 

used antiviral chemoprophylaxis that target neuramindase activity inhibiting progeny viral particle 

release from an infected cell (46). While zanamivir alleviates symptoms when used early during 

disease progression, oselatmivir reduces duration of symptoms and viral shedding when used even 

after 48hrs after onset (47, 48). Recently, oseltamivir and zanamivir resistance has been reported 

in some circulating influenza A and B strains in very low prevalence (49). For parainfluenza 

viruses, coronaviruses, rhinoviruses, and enteroviruses many therapeutics are in development, but 

no specific antivirals are available as respiratory disease associated with these pathogens is often 

self-limiting (50-52). Similarly, uncomplicated adenoviral infections are often mild and transient 

with available treatments targeting symptoms rather than mitigating viral infection (53).  For RTIs 

that have a bacterial etiology, many antibiotics are available. For pertussis (commonly referred to 

as “whooping cough”), current CDC guidelines recommend the following chemoprophyaxes: 

azithromycin, clarithromycin, erythromycin, and Trimethoprim-sufamethoxasole (54). However, 

clinicians are advised to consider patient age, tolerability, and cost when choosing a treatment (55). 

For atypical pneumonia species such as C. pneumoniae and M. pneumonia, treatment is on a case-

by-case basis. However, CDC recommends azithromycin as a first line therapy, but also 

recommends tetracycline and doxycycline (56). M. pneumonia treatment includes macrolides, 

tetracyclines, and fluoroquinolones (57). In the era of antibiotic stewardship, correct clinical 

diagnosis of ILI due to influenza, another virus, bacteria or some other respiratory pathogen is 

critical for patient management. 

When available, the best preventative measure against RTIs is vaccination. Immunization 

against circulating and seasonal influenza strains occurs requires an annual seasonal flu vaccine. 

An annual seasonal flu vaccine is recommended for anyone 6 months and older. Seasonal flu 
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vaccines are available as a trivalent type that protects against influenza A/H1N1, influenza 

A/H3N2, and an influenza B (Yamagata or Victoria strain) virus. Quadrivalent flu vaccines are 

also available, and provide protection against an additional influenza B virus strain. Due to 

antigenic drift, influenza viruses are constantly changing, thus the flu vaccine is updated yearly 

based on recommendations from the CDC. Due to yearly composition changes, the flu shot will 

not protect against every influenza A and influenza B viral strain. In some years, as little as 10% 

of those receiving the vaccine were protected against circulating strains (58, 59). However, the 

effectiveness of the flu shot in individuals and populations is based on the antigenic similarities 

present in many influenza strains which enables some cross-protection (60).  However, in years 

when there is an antigenic mismatch between the flu shot and circulating strains, overall vaccine 

effectiveness is reduced but not eliminated. A universal flu vaccine is currently in Phase IIb of 

clinical trials by Oxford University’s Jenner Institute and Vaccitech. The universal flu vaccine 

targets inner proteins (61). If effective, this universal flu vaccine will provide protection against 

circulating seasonal influenza strains as well as avian subtypes (62). During past flu seasons (2010 

to 2017), the average annual flu vaccination coverage in adults (≥ 18 years of age) has been lower 

than children (6 months to 17 years of age), 41.7% to 56.5%, respectively (63). Vaccination is also 

available for other RTIs such as pertussis. Protection against pertussis occurs when receiving either 

the diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP) or the tetanus, diphtheria, 

and acellular pertussis vaccine (Tdap). The DTaP vaccine is administrated as a 5-dose series and 

is recommended for children and adolescents aged 18 years or younger (64). The Tdap vaccine is 

recommended for anyone 7 years or older with a booster of tetanus and diphtheria every 10 years 

(65, 66). Aceullar vaccines have been shown to have high vaccine effectiveness but exhibit waning 

immunity over time (67). Vaccine effectiveness for DTaP is 80-90% and about 70% for Tdap (68, 
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69). While preventative treatment in the form of vaccination is preferred over antibiotics and 

antivirals, in the absence of vaccination and when post-exposure prophylaxis is available, early 

diagnosis of RTI can greatly improve patient outcomes (70).  

 

PUBLIC HEALTH SURVEILLANCE AND THE CHALLENGE OF RESPIRATORY 

TRACT INFECTIONS 

Surveillance of RTIs provides the evidence for public health decisions and action to 

mitigate the spread of these diseases (71).  For instance, surveillance is used to uncover trends 

within populations related to prevalence and incidence changes of viruses and bacteria that have 

the potential to negatively impact human health. Public health surveillance also helps identify the 

emergence of novel variants and resistant organisms that could lead to increased morbidity and 

mortality. Additionally, surveillance serves to evaluate effectiveness and improvements in current 

prevention and control programs and interventions. Based on regional and global trends, the CDC 

along with collaborating laboratories from around the world provide recommendations each year 

for selecting the annual candidate strains of seasonal influenza vaccines (72). Similarly, In the 

U.S., deployment of CDC’s Strategic National Stockpile (SNS), which houses medicine and 

medical supplies to manage diseases such as pandemic influenza and a variety of RTIs is based on 

surveillance data (73). By recognizing trends, surveillance helps communicable disease programs 

formulate preparedness and response plans, provide clinical direction for appropriate patient care, 

and allocate resources during outbreak response. However, a limiting factor in surveillance is 

having appropriate tools for identifying causes of acute respiratory disease.  

Distinguishing between a viral or bacterial RTI is a significant challenge not just for 

delivering appropriate care but for surveillance purposes as well. Rhinoviruses, coronaviruses, 
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parainfluenza viruses, adenoviruses, respiratory syncytial viruses, influenza viruses, and a few 

bacteria (e.g., Mycoplasma pneumonia and Chlamydolphila pneumonia) clinically present the 

same ILI symptoms (30) making treatment decisions based on symptoms difficult. For 

surveillance, failure to characterize definitive causes of disease affects populations by delaying 

public health decisions and interventions. In cases of a novel outbreak, a delay in distinguishing 

between a pandemic strain and another pathogen may increase prevalence and incidence leadings 

to poorer population health outcomes (74). Culture and serology-based assays have been the 

traditional methods for detecting and characterizing causes of acute respiratory infection. 

However, while these conventional methods are widely available, delays in turnaround time, poor 

sensitivity and lack of expertise have limited their usefulness for clinical and surveillance purposes 

(75). Multiplex respiratory assays address many of these limitations with the added benefit of not 

only screening for a variety of common RTIs at one time, but also providing qualitative and 

quantitative data with each test result, which could be used for treatment and screening of disease 

(76). While respiratory multiplex assays have been a tremendous asset, these methods could 

significantly improve RTI surveillance. 

 

EPIDEMIOLOGY OF RESPIRATORY TRACT INFECTIONS GLOBALLY AND IN 

THE UNITED STATES 

RTIs are a global public health challenge. As a leading cause of death worldwide across all 

age groups, total deaths due to RTIs account for more than liver, colon, breast and prostate cancer 

combined (77). Over the past decade, deaths in children under the age of 5 due to RTIs and RTI-

related complications have decreased by 36.8% (95% UI -42.0 to -31.6), however, RTIs are still a 

leading cause of death under the age of 5 in low income countries and among the top killers in 
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middle and high income countries (Table 1.1) (78). In 2015, 1.8 million deaths due to RTIs and 

RTI-related complications occurred in children under the age of 5 (79). A decrease in the the 

burden of RTIs in adults was also observed in adults, as deaths due to RTIs decreased by 3.2% 

with 2.7 million deaths occurring in 2015. Global trends show that in high-and middle-income 

countries, the burden due to RTIs in adults has been increasing over time. Risk factors associated 

with this increase include: malnutrition, population growth, population aging and air pollution 

(80). For lower income countries such as those in the Sub-Saharan African region, the burden of 

RTI’s is compounded due to mosquito borne diseases, HIV/AIDS, malnutrition and economic 

instability (81).  

In the U.S. a common causative agent for acute respiratory disease is influenza. CDC 

estimates that on average, 5% to 20% of the American population will contract the flu. Thus, local 

and state public health agencies can assume that approximately 16 to 64 million Americans will 

contract the flu annually with certain high-risk populations additionally experiencing flu-related 

complications (82). Figure 1.3 depicts the number of weekly flu-related deaths across all ages 

throughout the United States during past flu seasons. The highest seasonal flu-related deaths (n = 

8189) occurred during the 2014-2015 flu season; the lowest occurred during the 2011-12 flu season 

(n = 738).  Collectively, data from previous flu seasons shows a slight shift during the past two flu 

seasons (2015-16 and 2016-17) with peak mortality observed later in the year suggesting seasonal 

fluctuations possibly related to social and environmental factors (83). At a state-level, seasonal 

related-deaths are reported in conjunction with secondary bacterial infections (such as bacterial 

pneumonia). Figure 1.4 shows the total number of pneumonia and influenza-related deaths 

through several flu seasons in California showing peak mortality remaining the same from season 

to season. In California, 6 to 14% of all annual deaths are due to influenza, which, when coupled 



12 
 

with costs associated with other RTIs, translates to an annual economic burden over $143 mil (84-

86). The data presented thus far shows that while a small percentage of people visit healthcare 

providers due to ILI symptoms and while seasonal flu vaccination coverage has remained 

relatively the same since 2010, at the local and state level, percentage of deaths due to flu and flu-

related complications are a significant economic burden that can plausibly be reduced by 

increasing adult flu vaccination coverage and visits to healthcare providers. Surveillance data for 

other RTIs shows additional local burdens due to acute respiratory disease.  

In the U.S., the National Respiratory and Enteric Virus Surveillance System (NREVSS) 

provides laboratory-based surveillance data of select respiratory viruses: respiratory syncytial 

virus (RSV), adenovirus, parainfluenza viruses, and human metapneumovirus (hMPV) across all 

regions within the U.S. Data is voluntarily reported by participating U.S. laboratories. For RSV, 

national trends show a seasonal increase during winter months with a notable peak at the beginning 

of the year. California shows a similar trend. While adenovirus is both an enteric and respiratory 

virus depending on genotype, during 2003-2016 the most common adenovirus types (type 3, 2, 1, 

4, 7, 14) were all associated with respiratory tract infections (87). Surveillance data on 

parainfluenza viruses (type-1, -2, and -3) shows year round prevalence with spikes varying on 

parainfluenza type. During the past year (2017), parainfluenza type-1 peaked during late summer 

months and remained unchanged until mid-fall. For parainfluenza type-2, peak months occurred 

during the fall and lasted through early March. Parainfluenza type-3 was found throughout the year 

but was most prevalent during early spring through summer. While not monitored through 

NREVSS, parainfluenza type 4 has year round prevalence peaking during the fall during odd-

numbered years (88). For hMPV, infections appeared to spike at the end of March and last through 

early September. 
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Another source of national surveillance data for common respiratory pathogens is provided 

by selected U.S. clinical laboratories (89). Over the past two years (2015 - 2017), data has been 

collected from participating sites whose volume is at least 30 multiplex respiratory tests per week. 

This data is compiled by private industry whose proprietary technology, the FilmArray Respiratory 

Panel (RP) will be described below. Surveillance data from clinical sites shows that human 

rhinovirus/enterovirus is consistently the highest detected respiratory pathogen year-round (low, 

10.5% to high, 34.8%). Other viral respiratory pathogens show varying prevalence throughout the 

year: coronavirus (0.6% to 15%), influenza A (0.2% to 17.9%), RSV (0.8% to 19.7%), and 

parainfluenza viruses (1.2% to 12.8%). Bacterial respiratory pathogens (i.e., Bordetella pertussis, 

C. pneumonia, and M. pneumonia) have also been detected at low prevalence throughout the year 

(0.1% to 2.6%). Prevalence data of viral and bacterial respiratory pathogens from national and 

private surveillance efforts show a sustained burden of RTIs in the U.S. throughout the year. 

 

DIAGNOSTIC METHODS FOR IDENTIFYING ETIOLOGIES OF RESPIRATORY 

TRACT INFECTIONS 

Traditional Methods 

Several standard methods are used in detecting the causative agents of RTIs. Historically, 

viral and bacterial characterization have included conventional culture methods and serological 

diagnostic tests. For decades, conventional culture has served as the ‘gold standard’ for confirming 

the causative agent of disease. However, a significant drawback of these traditional methods is the 

limited clinical impact on patient management as they often take as much as 2 weeks (or longer) 

incubation for interpretable results. For example, influenza viral culture may provide results from 

3 to 10 days. For surveillance purposes, a delay in diagnosis of a single day results aides disease 
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transmission. Rapid culture is possible via shell-vial culture assays, which utilize a monolayer of 

different cell lines to observe cytopathic effect (CPE). Shell-vial assays while less labor intensive 

than culture, reduce time-to-result at the expense of reduced sensitivity (90). Serological tests, such 

as direct fluorescence antibody (DFA) and enzyme immunoassays (EIA), may reduce the time-to-

result even further but suffer not only from reduced sensitivity, but also vary in specificity for viral 

targets and often require technical expertise that is absent in inexperienced laboratories.  Some 

limitations of conventional methods are not inherent to the actual tests, but are due to workflow. 

Sample transport, collection and processing of samples all can adversely affect pathogen isolation 

and detection. Despite limitations, conventional methods are far from obsolete as they are a useful 

tool to validate molecular assays, catch potential new variants that newer tests may not detect, and 

add important diagnostic and screening information to research and clinical investigation (91).  

 

Molecular Methods: PCR-based Nucleic Acid Amplification Tests (NAATs)  

A transition from using conventional techniques to molecular based methods for 

identification of pathogens has been occurring in both clinical and public health laboratories for 

several decades. The switch to molecular methods has been the product of not only improved 

technology and lower costs, but also the growing needs of clinical and surveillance labs that are 

constantly asked to make “active” decisions for delivering timely diagnosis and interventions (92). 

One of the most widely used molecular methods is PCR-based nucleic acid amplification 

tests (NAATs). Nucleic acid amplification by PCR has been the cornerstone of molecular 

diagnostics (93). PCR assays can be optimized for any pathogen, as long as the sequence is known 

for a gene that is specific to that pathogen. By offering greater sensitivity and specificity (for nearly 

all clinically relevant targets), reduced time-to-result (minutes to hours instead of days or weeks), 
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quantitative data (instead of subjective results) and lower limits of detection (versus variable 

growth requirements), PCR-based NAATs resolve many of the limitations of conventional 

methods. When compared to shell vial and conventional culture, real-time PCR for influenza A 

was significantly more sensitive detecting the virus as much as 7 days after infection (94). 

Turnaround times were more rapid for PCR (14.8 hrs) than shell vial (49.3 hrs) and conventional 

culture (199.2 hrs). For some targets, such as B. pertussis, PCR-based NAATs have been reported 

to be nearly twice as sensitive as direct DFA and 6 times more sensitive than culture (95). Real-

time PCR based NAATs enable quantification of viral or bacterial titers throughout infection, 

which allows for disease progression from the onset of disease to recovery to be monitored (91, 

96). Limit of detection, which is an important analytical measure of sensitivity, is as low as 1 to 

10 copies per target for some PCR-based NAATs (97). In addition, PCR-based NAATs, often 

require less laboratory expertise than conventional methods (98).  

Singleplex NAATs were among the first PCR-based assays to be developed for identifying 

the causative agents of RTIs. PCR-based singleplex NAATs target a single gene (e.g., the HA gene 

of influenza A). Singleplex NAATs are optimized to distinguish the target of choice against a 

backdrop of normal carriage and other potential pathogenic microbes. The first singleplex PCR 

assay to detect influenza A/H1 was described in 1990 (99). The assay targeted a conserved region 

of the HA gene segment (100). A year later, a rapid method of isolating viral RNA and synthesis 

of cDNA was introduced (101). These methods were used to develop singleplex assays for 

influenza A, influenza B, and influenza C. PCR-based NAATs were viewed as possible 

alternatives to existing conventional methods (i.e., culture). The first regulatory approved PCR 

singleplex assay for influenza A was developed by the CDC in 2006 (102). The real-time assay 
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included two sets of primers and probes targeting the HA gene segment of influenza A/H5 (Asian 

lineage) making the assay highly specific.  

Despite the benefits of singleplex assays over conventional methods, the inability to screen 

for more than one target is a major limitation for patient management and surveillance. For clinical 

diagnostics, screening for only one target at a time could severely inhibit healthcare delivery. 

Similarly, for surveillance purposes, limited screening capacity could mitigate effective disease 

control and prevention strategies. Additionally, a positive result on a singleplex assay does not rule 

out the presence of some other pathogen if present.  

Unlike singleplex assays, multiplex NAATs screen for more than one target per test run 

simultaneously amplifying multiple gene sequences in a single reaction (e.g., nucleoprotein gene 

of human metapnuemovirus and the matrix protein of RSV). The term ‘multiplex’ is given to any 

assay that screens for more than one target. Larger multiplex assays identify between 12-20 (103) 

detecting both viral and bacterial targets. Multiplex NAATs are cost-effective alternatives to 

singleplex assays benefiting clinical management and disease surveillance capabilities (101). In 

clinical settings, broad screening improves patient outcomes by rapidly detecting disease in a 

singular assay instead of several singleplex NAATs. Similarly, for surveillance, broad screening 

allows epidemiological associations to be revealed sooner rather than waiting on several individual 

NAATs.  

 

ENHANCING SURVEILLANCE THROUGH THE USE OF MULTIPLEX ASSAYS FOR 

RESPIRATORY PATHOGENS 

Many regulatory-approved major PCR based multiplex platforms are commercially 

available (Table 1.2, 1.3), several of which have point of care potential. In Chapter 2, I provide a 
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critical review of four major multiplex assays for RTIs from an epidemiological perspective: the 

Luminex NxTAG Respiratory Pathogen Panel (RPP), the BioFire FilmArray Respiratory Panel 

(RP), the Nanosphere Verigene Respiratory Pathogens Flex Test (RP Flex), and the GenMark 

Respiratory Viral Panel (RVP). Each multiplex platform differs in user complexity, run time, and 

number (and type) of targets screened. Additionally, while each platform is PCR-based, these 

instrument systems differ in primer selection, amplification strategy, amplicon detection, and 

automation (93).  

In Chapter 2, I review how the multiplex respiratory assays that are FDA approved 

compare with each other and assess how each meets particular needs of laboratories involved in 

surveillance of RTIs. These assays differ in turnaround time, target sensitivity and specificity, limit 

of detection, PCR and chemistry, and cost. In Chapter 2, I provide guidance on the use of specific 

diagnostic performance measures (including ROC space plot, likelihood ratios (LRs), Diagnostic 

Odds Ratios (DORs), and the Youden Index (J)) that can provide insights into which instrument 

is most appropriate for surveillance of different common RTI analytes. This analysis allows 

laboratories to identify which multiplex assay would best suit their outbreak response or routine 

surveillance needs on a per target basis. By identifying which assay performs better for specific 

targets, communicable disease control programs and public health laboratories can effectively 

direct public health resources targeting surveillance efforts systematically and precisely. 

 

DIRECT APPLICATION OF RESPIRATORY MULTIPLEX TECHNOLOIGES FOR 

SURVEILLANCE PURPOSES USING ENVIRONMENTAL SAMPLES 

As evidence to support how respiratory multiplex assays can improve surveillance 

capabilities, I present a case study in Chapter 3 in which we used the FilmArray RP assay to 
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conduct surveillance of RTIs in symptomatic nursing home residents and their environment. 

During the current 2016-17 influenza season, the majority of flu outbreaks in the State of California 

occurred in long-term care facilities (104). There are currently 1112 licensed long-term care skilled 

nursing housing as many as 370,000 residents in California, the most in the country (105). The 

nursing home environment houses a highly susceptible vulnerable population frequently exposed 

to potential respiratory pathogens from the flow of staff, visitors and other residents (106).  

While host transmission of healthcare-associated infections in nursing homes is a well-

known concern, our understanding of the role of fomite-mediated transmission in these 

environments is limited (107). From an infection control perspective, sources of transmission in 

nursing homes are from both symptomatic residents and any viruses or bacteria on high contact 

surfaces. The burden of contamination of respiratory viruses and bacteria in the environment is 

unknown. Thus, the minimum prevalence of disease in the environment is either equal to or greater 

than the prevalence of disease in residents. In Chapter 3, we utilized the minimum prevalence of 

disease along with likelihood ratios as conditional probabilities to determine the probability of 

environmental contamination due to shedding from symptomatic residents. This approach 

involved the application of Bayes’ Theorem (108). Overall, our method gives specific 

environmental shedding probabilities that reveal hygiene and infection control opportunities 

within the nursing home environment. By using multiplex assays to evaluate the role of the 

environment in disease transmission, we show how these assays could enhance environmental 

public health surveillance efforts. 
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THE RE-EMERGING PUBLIC HEALTH BURDEN OF MEASLES  

Like RTIs, measles is another circulating infectious disease that imposes a substantial 

burden on public health in California. Measles (rubeola) is a highly contagious disease caused by 

the measles virus (a paramyxovirus). The primary route of transmission is through respiratory 

secretions (i.e., coughing and sneezing) leading to upper respiratory tract colonization and 

infection. Clinical diagnosis is based either on laboratory confirmation or by meeting the WHO or 

CDC clinical case definition, which includes the characteristic maculopapular rash that lasts more 

than 3 days, accompanied by a temperature of 101º F [38.3º C] with cough, coryza, or 

conjunctivitis (109, 110). Viral shedding occurs up to 2 days before onset of symptoms and up to 

5 days after the appearance of a rash (111). Historical U.S. data shows that roughly 1 out of 4 cases 

are hospitalized, 1 case out of 1000 develop encephalitis, and death occurs in 1-2 cases per 1000 

(112). Once infected, no available treatment resolves measles infection, however providing a dose 

of measles immune globulin to group at risk for severe disease (e.g. infants under 1-year-old, 

pregnant women, and immunocompromised persons) can help recovery (113). A single dose of 

200000 IU of Vitamin A has also been shown to be associated with reduced mortality for children 

under 2 years old (114). 

 The development of a highly effective vaccine for measles was thought to have resulted in 

elimination of measles in the United States over fifteen years ago. During the pre-vaccine era in 

the United States, annually roughly 3 to 4 million people were infected, 48000 were hospitalized, 

4000 suffered encephalitis, and 400 to 500 died (115). During the 1950s, 95-98% of young adults 

had serological evidence of a past measles infection (2, 115). Once the first developed and licensed 

measles vaccine was introduced in 1963 cases declined dramatically. For comparison, in 1960 

there were roughly 441703 measles cases in the U.S. and within 7 years after the release of the 
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vaccine, there were 47351 cases (-89.3%) (116). Once a second dose was recommended in 1989 

U.S. measles cases declined even further. A one dose measles, mumps, and rubella (MMR) vaccine 

is roughly 93% effective; the two-dose series is 97% effective (117). Elimination of measles is 

achieved when no sustained transmission is observed over the past 12-month period. In theory, an 

effective vaccine series and high vaccination coverage lead to low levels of susceptibility at a 

national level. Threshold herd immunity is established when a significant portion of a local 

population is immunized against a disease. Under a few assumptions, simple threshold herd 

immunity can be calculated as 1-1/R0 (118). Based on the basic reproductive number (R0), one 

measles case can result up to 11-18 secondary cases in a completely susceptible population. The 

“herd effect” is the risk reduction in susceptible individuals when in close proximity to immune 

individuals. In the U.S., herd immunity can be achieved if a majority of the population is 

vaccinated (119). This level was reached almost two decades ago, which led to official elimination 

of measles being declared in the U.S. in 2000.  

 

GLOBAL, NATIONAL, STATE AND LOCAL BURDEN OF MEASLES  

 The Measles & Rubella Initiative is the WHO strategic plan to control and eliminate 

measles in at least 5 WHO regions by 2020, however measles continues to be a burden in many 

countries (120). Most recent data (2017 YTD) from all six WHO regions show that suspected and 

confirmed measles cases are found globally with the highest incidence found in the South East 

Asia and African regions (Figure 1.5). The WHO member states with the highest suspected 

measles cases include: Nigeria, Dominica, and Iran. The highest confirmed measles cases are 

found in India, Nigeria and Pakistan. Globally, while national efforts continue to help mitigate the 

spread of measles, the greatest burden has been among children and in low income countries with 
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weak health systems (121). Children accounted for 89780 global-measles associated deaths in 

2016 (122). Recent country-specific data show that more than 50% of deaths were reported in 

India (123). In Pakistan and Iran, availability of measles morbidity and mortality data is poor due 

to a weak surveillance structure making assessment difficult (124, 125). In Nigeria, which has a 

suitable measles-case based surveillance system, social and cultural apprehensions on the use of 

vaccines have led to large recurring measles outbreaks (126). Endemically sustained measles 

transmission is found in all but one WHO region: the Americas, which was declared measles-free 

as of September 2016. However, public health efforts against measles continue even in the 

Americas region where countries, such as the U.S. continue to see hundreds of measles cases each 

year.  

 U.S. measles elimination is a great public heath achievement, however importation of cases 

and increased susceptibility at the local level contribute to sporadic measles outbreaks in the U.S.  

Overall, for the past two decades there has been a decreasing number of U.S. measles cases (Figure 

1.6). However, despite elimination and a decline in cases, since 2010, an average of 198 (range: 

55-667) confirmed measles cases have occurred every year (127). Recent trends show that in the 

post-elimination era, more measles cases in the U.S. have been confirmed in the last 5 years (2009-

2014) than previous years (2001-2008) (128). Lack of vaccination coverage may account for the 

increase in susceptibility, however at a national level vaccination coverage has remained the same 

in recent years (90.0 to 91.9%) (116). Despite sustained vaccination coverage, measles outbreaks 

in the U.S. are common. In 2013, the United States experienced 188 confirmed measles cases, 58 

of which were from the largest outbreak in the U.S. since 1996 (129). In 2014, incident measles 

cases tripled from the previous year, with a record-high 644 cases reported from 27 states, recorded 

from 23 distinct outbreaks, the most during the post-elimination era. Most measles outbreaks in 
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the U.S. are local and occur in pockets of highly susceptible populations. Thus, the reasons for 

sporadic measles outbreaks in the U.S. must be addressed as local public health issue rather than 

a national one.  

In recent years, California has recorded several measles outbreaks that show the impact of 

measles at the local level. In 2008, local and state public health agencies in California spent roughly 

$141,068 on a measles outbreak in San Diego county where an unvaccinated individual was 

exposed overseas, contracted measles, and upon returning home exposed 839 people of which 11 

became secondary cases (130). Much of the cost of the outbreak was due to clinical care and in 

investigating contacts. During the summer of 2011, the Los Angeles Department of Public Health 

(LADPH) was notified of a possible measles cases in a refugee from Burma after an 

intercontinental flight from Kuala Lumur, Malaysia (131). LADPH and the California Department 

of Public Health (CDPH) collaborated with nearby states to investigate hundreds of contacts, 3 of 

which developed measles from exposure to the index case. At the end of 2014, a multi-state 

measles outbreak began when CDPH confirmed measles in a hospitalized, unvaccinated 11-year-

old child. Within weeks, additional measles was confirmed in several California counties, nearby 

states, Canada and Mexico. Upon investigation, all primary cases shared one notable exposure: all 

had visited the Disneyland theme park area in Orange County, California (132). The source of the 

outbreak was likely due to an infectious traveler that had visited the theme park area around 

December 18-20, 2014. By the end of the outbreak (April 17, 2015) 131 measles cases were 

confirmed throughout the state, with secondary cases confirmed in household and close contact, 

community and healthcare setting. Over 20 cases required hospitalization due to measles-related 

complications. Age distribution among cases: <1-year-old (15/131, 11%), 1-4-year-old (21/131, 
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15%), 5-19-year-old (24/131, 18%), ≥ 20-year-old (76/131, 56%). Among cases whose 

immunization could be verified, 70% (57/82) a majority were unvaccinated.  

 

MEASLES MODELING AND COST ANALYSIS OF MEASLES OUTBREAKS IN 

CALIFORNIA 

Recurring measles outbreaks in the U.S. are a major public health concern and a better 

understanding of the factors that contribute to them would help local health departments contain 

outbreaks and costs. This year alone, the CDC has reported (as of August 12, 2017) at least 118 

cases from several outbreaks in 14 states, including California (133). The reasons for recurring 

measles cases and outbreaks in California is a complex issue that involves lack of vaccination 

coverage among population subgroups, social stigmas on the effectiveness of vaccines, and the 

importation of exposures and disease from other countries where measles is still endemic. 

However, the underlying drivers of measles transmission during outbreaks also includes 

interactions between populations (134). Aside from the 2014-15 U.S. multi-state outbreak, the 

most recent large-scale measles outbreak in California occurred 2016-17 in Los Angeles County 

in a religious community that resulted in 24 measles cases and thousands of investigated contacts. 

Our approach to assess the economic burden of recent measles outbreaks in California involves 

identifying population dynamic factors to estimate the epidemiologically associated contacts. 

Contacts are estimated through a combination of empirical survey data and regression modelling.  

In Chapter 4, I present a cost analysis of recent measles outbreaks on local and state health 

departments in California. The goal of this study was to elucidate the factors that may contribute 

to measles outbreaks at the local level. Towards this end, we conducted an economic impact 

analysis of the 2014-15 U.S. multi-state and 2016-17 measles outbreaks on local and state 
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communicable disease control programs and public health laboratories in California. Based on this 

analysis, we identify population factors and give recommendations to curb future measles 

outbreaks in local U.S. populations. 

 

CONCLUSION 

The overarching objective fulfilled through this work is to describe how new surveillance 

tools and costs analyses can be used to reduce the spread and impact of infectious diseases such as 

RTIs and measles. During outbreaks, public health surveillance also serves as an early warning 

system mitigating further spread of disease (135). As technology improves, respiratory multiplex 

assays will become rapider, broader and easier to use and has created an opportunity for 

surveillance strategies that should be adopted by California surveillance laboratories. In Chapter 

2, I identify gaps in evaluating current methodologies for public health surveillance for RTIs that 

are applicable to emerging technologies. In Chapter 3, I describe how respiratory multiplex assays 

can significantly impact public health surveillance in combating circulating infectious diseases in 

California. Additionally, I demonstrate how FDA-approved respiratory multiplex assays can be 

used to evaluate concordance between environmental and patient samples for surveillance 

purposes. In Chapter 4, I demonstrate how a cost analysis of measles outbreaks can be used to 

elucidate important risk factors in outbreak propagation. Additionally, by presenting an 

epidemiological and economic impact analysis of recent measles outbreaks, I provide not only a 

method of retrospective count estimation during a measles outbreak event, which alone could be 

applied to other measles or other vaccine preventable disease outbreak scenarios, but also an 

approach to estimate communicable disease control programs and public health laboratories 

response costs during outbreak events. In modeling and economic analysis of measles outbreak, 
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we shed light on some factors that have contributed to the spread of measles in California, and 

provide guidance on how strategic investments in education and outreach could be used to reach 

eradication goals. Taken together, these studies elucidate how enhancing surveillance tools of 

infectious diseases in local populations such as California can be used to mitigate the overall 

burden of disease. 
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Figure 1.1. Upper and lower respiratory tract system and common respiratory infections. At left: Respiratory tract system 

anatomy depicting conditions specific to the upper and lower respiratory tract. At right: Common viruses that infect the upper and 

lower respiratory tract. This figure was adapted from a similar figure that is available online from Wikimedia Commons at 

https://goo.gl/JVFQwg  

 

https://goo.gl/JVFQwg
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Figure 1.2. Percentage of influenza-like illness (ILI) laboratory confirmed samples by laboratories designated as World Health 

Organization (WHO) collaborating and National Respiratory and Enteric Virus Surveillance System (NREVSS) laboratories in 

California during past influenza seasons. Samples are screened for influenza A (H1N1pdm09, /H1, /H3 or untypeable) or influenza B. When 

influenza A and B are not detected, some other respiratory pathogen is assumed to be the causative agent of ILI. However, failure to detect 

influenza A or influenza B does not completely rule out these targets as limit of detection, storage of samples, time of collection, and excessive 

freeze-thaw cycles may have affected some samples. Data obtained from Centers for Disease Control and Prevention’s national, regional, and state 

level outpatient illness and viral surveillance (FluView: https://www.cdc.gov/flu/weekly/index.htm).  

 

https://www.cdc.gov/flu/weekly/index.htm)
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Figure 1.3. Number of flu-related deaths across all age groups throughout the United States during the past seven influenza 

seasons (2010-11 through 2016-17). Flu season typically begins in October (Week 40) with increasing cases through winter peaking 

in February (Week 6) slowly declining into the spring months. Data obtained from the Centers Disease Control and Prevention 

(FluView: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html)   
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Figure 1.4. Weekly deaths due to pneumonia and influenza across all ages in California for past influenza seasons (2010-11 to 

2016-17). Flu season typically begins in October (Week 40) with increasing cases through winter peaking in February (Week 6). Data 

obtained from the Centers for Disease Control and Prevention. (FluView: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html )  
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Figure 1.5. Number of suspected or confirmed measles cases and measles incidence (per 1,000,000 total population) across six 

World Health Organization (WHO) regions in 2017 (YTD). (*) signifies measles elimination in the Americas Region (AMRO) as 

of September 2016. Data obtained from the World Health Organization 

(http://www.who.int/immunization/monitoring_surveillance/burden).  

 

http://www.who.int/immunization/monitoring_surveillance/burden)
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Figure 1.6. Measles cases in the United States during the pre-elimination and post-elimination era beginning from 1993 

through present. Red line: 24-year trend to date. Dashed blue line: Sustained transmissible measles was declared eliminated from the 

United States in 2000. Recurring cases in the United States since 2000 due to domestic and international imported cases exposed 

unvaccinated or undervaccinated pockets of the population. Data obtained from the Centers for Disease Control and Prevention 

(https://www.statista.com/statistics/186678/new-cases-of-measles-in-the-us-since-1950/) 

https://www.statista.com/statistics/186678/new-cases-of-measles-in-the-us-since-1950/)
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Table 1.1. The burden of respiratory tract infections (RTIs) in children under 5 and across all ages in middle to 

high and low income countries. Values shown in bold indicates a positive percent change meaning an increase in RTIs. 

Data obtained from the World Health Organization (http://www.who.int/immunization/monitoring_surveillance/burden).  

 Deaths Children 

younger 5 years 

Number per 

100,000 

Percent change 

(2005-2015) 

Deaths for All Ages Number per 

100,000 

Percent change 

(2005-2015) 

M
id

d
le

 t
o

 H
ig

h
 I

n
co

m
e 

C
o

u
n

tr
ie

s 

United States 538.5 (480.9 to 604.8) 2.7 (2.4 to 3.0) -36.8 (-43.8 to -

28.6) 

91996.2 (88094.3 to 

96175.8) 

28.4 (27.2 to 29.7) 8.0 (3.6 to 12.6) 

Japan 149.7 (127.1 to 169.7) 2.8 (2.4 to 3.2) -38.2 (-44.8 to -

30.5) 

156576.6 (150156.7 to 

162966.9) 

122 (117.0 to 127.0) 40.1 (34.3 to 46.0) 

Germany 42.6 (33.3 to 53.5) 1.3 (1.0 to 1.6) -28.7 (-44.8 to -7.5) 31582.8 (27970.5 to 

35596.7) 

37.8 (33.4 to 42.6) 20.8 (5.0 to 38.9) 

United Kingdom 151.2 (129.9 to 168.5) 3.8 (3.2 to 4.2) -19.0 (-27.9 to -9.0) 39930.4 (37967.4 to 

41942.9) 

62.2 (59.1 to 65.3) -3.4 (-8.2 to 1.3) 

France 45.5 (33.2 to 60.0) 1.2 (0.8 to 1.5) -31.9 (-51.0 to -6.7) 25009.3 (21466.4 to 

29059.2) 

38.3 (32.9 to 44.5) 20.0 (2.9 to 41.8) 

Brazil 4677.3 (4125.4 to 

5300.3) 

31.1 (27.4 to 35.3) -51.3 (-57.1 to -

45.4) 

75602.0 (55632.8 to 

84415.7) 

36.4 (26.8 to 40.6) 31.6 (19.0 to 43.1) 

Italy 30.7 (22.9 to 39.1) 1.2 (0.9 to 1.5) -42.5 (-57.7 to -

23.5) 

15172.6 (13132.5 to 

17635.5) 

24.2 (20.9 to 28.1) 30.9 (11.0 to 54.8) 

Canada 47.1 (38.1 to 57.0) 2.5 (2.0 to 3.0) -13.6 (-30.5 to 6.3) 8742.5 (7676.1 to 

9963.1) 

24.2 (21.2 to 27.6) 22.8 (6.3 to 41.0) 

L
o

w
 I

n
co

m
e 

C
o

u
n

tr
ie

s 

Central African 

Republic 

3222.2 (2087.7 to 

4755.2) 

453.1 (293.1 to 

668.6) 
9.8 (-31.1 to 79.6) 7082.6 (4798.9 to 

9918.4) 

144.4 (97.9 to 202.3) 16.0 (-18.2 to 63.1) 

Democratic 

Republic of Congo 

38357.4 (25735.0 to 

53739.2) 

273.5 (183.5 to 

383.2) 

-8.2 (-40.7 to 36.1) 72827.3 (53663.3 to 

95077.9) 

94.1 (69.3 to 122.8) 8.6 (-16.8 to 45.8) 

Burundi 5261.2 (3329.3 to 

8017.6) 

247.0 (156.3 to 

376.4) 
0.9 (-35.5 to 31.6) 9826.4 (6999.3 to 

13314.4) 

87.4 (62.2 to 118.4) 9.4 (-21.0 to 49.2) 

Malawi 8105.2 (5711.7 to 

11070.3) 

274.5 (193.4 to 

379.4) 

-10.0 (-37.7 to 24.3) 14233.9 (10768.6 to 

18529.2) 

82.7 (62.6 to 107.6) -0.6 (-25.4 to -32.8) 

Mozambique 6557.9 (4615.6 to 

9098.8) 

135.8 (95.6 to 

188.4) 

-35.2 (-55.0 to -9.8) 16219.4 (11530.9 to 

22061.5) 

57.9 (41.2 to 78.8) -6.8 (-35.8 to 32.6) 

Guinea 7135.2 (5258.5 to 

9358.8) 

354.9 (261.5 to 

465.4) 

-20.2 (-42.4 to 7.6) 13571.0 (10473.1 to 

17346.0) 

107.9 (83.3 to 138.0) -2.5 (-25.5 to 27.9) 

Eritrea 1996.5 (1331.0 to 

2837.9) 

240.7 (160.5 to 

342.2) 

-12.5 (-40.9 to 20.7) 4192.0 (2752.6 to 

5955.7) 

80.0 (52.5 to 113.6) 9.4 (-21.3 to 48.5) 

Madagascar 7804.0 (5361.9 to 

11103.9) 

209.4 (143.9 to 

297.9) 

-10.1 (-40.5 to 34.7) 17759.4 (12659.9 to 

23847.2) 

73.4 (52.3 to 98.6) 8.9 (-20.7 to 46.2) 

 
Global 

703917.9 (651385.4 to 

763038.7) 

104.8 (97.0 to 

113.6) 

-36.9 (-42.0 to -

31.6) 

2736714.2 (2500318.4 

to 2860842.8) 
37.1 (33.9 to 38.8) -3.2 (-6.9 to 0.4) 

http://www.who.int/immunization/monitoring_surveillance/burden)
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Table 1.2. Characteristics and viral analytes covered by widely used FDA-approved respiratory multiplex assays.  Assays are 

categories by whether they have a low (left side of table) or high (right side of table) potential to be used as a point of care test. 
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Table 1.3. Characteristics and bacterial analytes covered by widely used FDA-approved respiratory multiplex assays. Assays 

are categories by whether they have a low (left side of table) or high (right side of table) potential to be used as a point of care test. 
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CHAPTER 2 

 

Critical evaluation of FDA-approved respiratory multiplex assays for epidemiological 

surveillance. 

 

(This chapter was submitted as a manuscript for publication in Expert Reviews in Molecular 

Diagnostics on January 9, 2018) 

 

ABSTRACT 

Introduction: Clinical management and identification of respiratory diseases has become more 

rapid and increasingly specific due to widespread use of PCR multiplex technologies. Although 

significantly improving clinical diagnosis, multiplexed PCR assays could have a greater impact on 

local and global disease surveillance. We wish to propose methods of evaluating respiratory 

multiplex assays to maximize diagnostic yields specifically for surveillance efforts. 

 

Areas Covered: Here, we review multiplexed assays and critically assess what barriers have 

limited these assays for disease surveillance and how these barriers might be addressed. We focus 

specifically on the case study of using multiplexed assays for surveillance of respiratory pathogens. 

 

Expert Commentary: Current commercially-available respiratory multiplex PCR assays are 

widely used for clinical diagnosis; however, specific barriers have limited their use for 

surveillance. Key barriers include differences in testing phase requirements and diagnostic 

performance evaluation. In this work we clarify phase testing requirements and introduce unique 
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diagnostic performance measures that simplify the use of these assays on a per target basis for 

disease surveillance. Additionally, we recommend that future efforts focus on developing 

performance standards for next-generation sequencing platforms.  

 

INTRODUCTION 

Multiplexed diagnostic assays have the potential to revolutionize disease surveillance, 

however, these technologies have not had as great of impact on control and prevention efforts as 

compared to healthcare utilities because surveillance needs are fundamentally different from 

clinical diagnostic priorities. Whereas diagnostic assays are used to identify disease etiology and 

appropriate treatment for infected individuals, disease surveillance is conducted at a population 

level to identify trends and disease burden. Despite the substantial benefits (e.g., high efficiency, 

rapid turn-around-time, high through-put, screening for a multitude of targets) of multiplexed 

assays to enhance surveillance efforts, no comprehensive review has assessed whether multiplex 

assays are actually meeting surveillance needs or whether future studies should focus on specific 

laboratory needs when performing surveillance and outbreak testing. Here, we review what the 

barriers are to using multiplexed assays for respiratory tract infections (RTIs) surveillance. By 

focusing on the limitations of current respiratory multiplex assays for surveillance, we are able to 

highlight how new multiplexed assays could be designed to better meet the needs of laboratories 

conducting surveillance. 

Currently, RTIs are among the top five leading causes of death worldwide across all age 

groups accounting for 4.2 million deaths annually; total deaths from RTI’s account for more than 

liver, colon, breast and prostate cancer combined (1). RTIs are a cause of significant morbidity, 

leading to loss of productivity and directly impacting national markets. For instance, seasonal 
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influenza affects 16 to 64 million American each year (2), and can cost the United States close to 

a billion dollars in particularly bad years (3). Hallmark symptoms of RTIs are due to a wide range 

of clinically indistinguishable respiratory pathogens. Not identifying etiological causes of 

respiratory disease can lead to poor antibiotic stewardship that can pose problems for the patient, 

at risk populations, and the healthcare system as a whole. Sensitivity (Sen) is defined as the ability 

of a diagnostic test to correctly identify individuals with disease. When clinicians base treatment 

decisions on symptoms alone Sen can be as low as 36%, resulting in only a small percentage of 

patients receiving appropriate care (4). Given the cost, public health burden, and diversity of 

pathogens that cause similar symptoms, RTIs were among the first group of pathogens tested in a 

multiplex format (5).  

Respiratory multiplex testing algorithms enhance treatment of influenza in children with 

acute respiratory tract infections and have shown to aide surveillance efforts (6). There are four 

major FDA-approved respiratory multiplex assays: Luminex NxTAG Respiratory Pathogen Panel 

(RPP), Nanosphere Verigene Respiratory Panel (RP) Flex, BioFire Film Array Respiratory Panel 

(RP), and eSensor Respiratory Viral Panel (RVP). Because RTI treatment and clinical 

management depends on the etiological agent, the ability to rapidly characterize respiratory 

pathogens is extremely important. Multiplex methods are particularly valuable in the case of RTIs, 

allowing clinicians to simultaneously test for a wide range of possible pathogens, as opposed of 

relying on numerous individuals tests. Correct diagnosis of RTIs is also critical to antibiotic 

stewardship, since roughly 1 in 3 antibiotics prescribed are unnecessary and most of these 

unneeded prescriptions are for respiratory infections (7). Another challenge is diagnosing RTI’s 

across geographic regions where respiratory disease prevalence may be seasonal or region specific. 

A broad spectrum assay screening a variety of targets, would identify changes in seasonal trends 
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significantly impacting regional clinical decisions throughout the year. RSV infections, for 

example, while seasonal, affect different parts of the United States at different times of the year 

with outbreaks varying within regions and between communities (8). Multiplex methods also help 

resolve genotype variation. Recognizing genotypic differences helps in diagnosis by determining 

the course of clinical treatments. For instance, adamantane-resistant A/H3N2 strains have 

circulated globally for the past decade and oseltamivir-resistant seasonal A/H1N1 have circulated 

globally since 2007 (9). During the 2016-2017 influenza season, the predominant strain was 

A/H3N2, compared to a year earlier when H1N1pdm09 was prevalent. These trends call to 

attention of the need to not only identify, but also characterize respiratory pathogens if possible to 

circumvent ineffective treatments. The benefits of multiplex assays have resulted in an increasing 

number of hospital and clinical laboratories adopting these methods strictly for clinical use (10). 

Multiplex technologies can help aide clinical decisions by simultaneously screening for a variety 

of respiratory pathogens often detecting specific genetic differences increasing the value of these 

methods for diagnostic purposes. For surveillance, limited studies have shown the epidemiological 

use of these technologies on control and prevention but when applied, respiratory multiplex assays 

tremendously benefit public health. For example, despite not being included in the first generation 

Luminex xTAG RVP (released in 2008), post-analytical results could still be used as a rule-out 

method for 2009 H1N1pdm09 strain (11). Similarly, during the 2014 EV-D68 outbreak, both the 

eSensor RVP and the FilmArray RP, were used as reliable diagnostic tests in surveillance 

algorithms to distinguish between Rhinovirus and Enterovirus-D68 (12, 13).  

Multiplex assays have the potential to transform surveillance efforts of RTIs by supporting 

control and prevention activities. For instance, during the 2009 H1N1 pandemic, epidemiological 

surveillance was just as important as the narrow focus of patient care that typical in most diagnostic 
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labs (14). Through the use of multiplex methods, public health laboratories (PHLs) helped confirm 

susceptible H1N1pdm cases by identifying transmission patterns and outbreak clusters in affected 

populations. Multiplex methods can also strengthen surveillance activities by allowing PHLs to 

meet the surge capacity needs of surrounding health jurisdictions and to provide baseline trends 

that helps resource planning. By screening acute respiratory infections against a variety of 

pathogens, and rapidly providing results, multiplex assays allow the public health community to 

recommend appropriate clinical interventions and hence shorten the duration of an outbreak within 

the populations served for a given community. Despite these potential advantages to the 

surveillance community, multiplexed PCR-assays have been more slowly adopted by surveillance 

labs than by their clinical counterparts. Currently, a minimum of only 13 state public health 

laboratories have fully implemented respiratory multiplex methods for surveillance use (15). This 

begs the question of whether there are substantive reasons related to the use, design or 

commercialization of these tests that has slowed their uptake by labs focused on surveillance. 

 

CURRENT FDA-APPROVED MULTIPLEXED ASSAYS FOR RESPIRATORY TRACT 

INFECTIONS 

In many clinical laboratories, the use of culture and serology has been greatly reduced (if 

not altogether replaced) due to the availability of nucleic acid amplification tests (NAATs). 

NAATs dramatically reduce turn-around time allowing rapid response for control and prevention 

and by confirming suspect cases in hours instead of days and weeks. NAATs have also shown 

greater sensitivity above conventional methods for all public health relevant targets. NAATs are 

sufficient for making clinical decisions and unlike traditional methods remove subjective 

interpretation that can differ from one technician to the next. The epidemiological use of NAATs 
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such as RT-PCR allows understanding of possible transmission in a population, but also important 

gives information for defining an appropriate case definition. Despite the widespread use of 

NAATs, only a few major FDA-approved multiplex methods are available for the detection of 

respiratory pathogens. 

 

Luminex NxTAG Respiratory Pathogen Panel 

In 2008, the Luminex Corporation (Austin, Texas) unveiled the xTAG RVPv1, a high 

complexity high through-put bead-based qualitative PCR assay capable of detecting a variety of 

respiratory pathogens. The xTAG RVPv1 assay was the first FDA-approved broad respiratory 

panel and is extensively used in clinical and PHLs. Utilizing a bead hybridization fluid array, the 

most current version of the panel is the Luminex NxTAG RPP that can screen 20 total targets from 

NPS: RSV type A and B, influenza A variants, influenza A H1 and H3, influenza B, parainfluenza 

1, 2, 3, and 4, human metapneumovirus (hMPV), adenovirus, rhinovrus/enterovirus, coronavirus 

type HKU1, NL63, 229E, OC43, human bocavirus (hBoV), and bacterial targets, C. pneumoniae 

and M. pneumoniae. Results of up to 96 samples can be obtained in a single working day (3hrs 

post-extraction). Operator time is anywhere between 20 to 25 minutes. Samples are added directly 

to pre-plated lyophilized wells on a 96 well plate. As a closed tube-system, the NxTAG RPP 

requires PCR and hyrbridization prior to adding the plate to Luminex’s MAGPIX® instrument. 

The Luminex MagPix instrument functions as a fluorescent imager (instead of a flow cytometer 

of the original RVPv1 assay). Calls are qualitative based on mean fluorescent intensity (MFI).  
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Nanosphere Verigene Respiratory Panel Flex 

 The Verigene system (now manufactured by Luminex) a moderate complexity, 

customizable throughput assay that detects a variety of pathogens not found in other major FDA-

approved respiratory multiplex panel such as a Bordetella spp group. The Verigene platform 

consists of a reader and a separate processing unit capable of sample-to-results in about 2 hours 

with minimal hands-on time and is fully automated. On-board extraction is followed by PCR 

amplification and subsequent elution of nucleic acids into a test cartridge for hybridization. Targets 

are detected by utilizing gold nanoparticle-conjugated probes that hybridize virus specific 

amplicons on a microarray. The signal from the hybridized probes are amplified by a silver staining 

process. Light scatter is measured on gold nanoparticle probes bound specifically to target-

containing spots on the microarray. Qualitative analysis is then done and reported by the Verigene 

Reader. The most recent panel offered on the Verigene system is the Respiratory Pathogens Flex 

(RP Flex), which received FDA approval in 2015. The panel screens against both viruses and 

bacteria highlighting the Bordetella spp bacterial group. The RP Flex is the first multiplex 

respiratory test to allow customization by user’s reporting preference allowing a  ‘pay for what 

you need’ option. Five reporting blocks that may be released to users. Block 1: adenovirus and 

hMPV, Block 2: influenza A, A/H1, A/H3, and influenza B, Block 3: parainfluenza 1-4 and 

rhinovirus, Block 4: RSV A and B, and Block 5: B. pertussis, B. holmesii and B. 

parapertussis/B.bronchiseptica. While on-board PCR multiplexing is performed for all targets, 

only those results pre-selected are paid for and reported. Endemically circulating viruses may be 

targeted in specific populations while budgeting for targets of interest. For example, Block 1 and 

Block 4 may be of great interest for laboratories serving senior or pediatric populations as 

outbreaks in RSV and adenovirus are common in these sub-populations (16, 17). Additionally, 
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during flu season, Block 2 would give a great profile on circulating influenza viruses. For 

diagnostic laboratories, surveillance and population-based trend data are highly valued and 

therefore the flex option would mostly likely be bypassed in favor of a fixed report for all targets. 

 

eSensor Respiratory Viral Panel (RVP) 

 GenMark Diagnostics, Inc. (Carlsbad, California) received FDA approval for the eSensor 

Respiratory Virus Panel (RVP), a high complexity high-throughput assay in 2012. The assay runs 

on the GenMark’s XT-8 instrument modular system which can integrate from one to three 

analyzers processing up to 8 samples each. The underlying technology combines microfluidics and 

electrochemical detection to characterize 14 viral respiratory pathogens. The initial workflow 

begins with 60 minutes of prep time and includes: pre-extraction, reagent prep, amplification, and 

a single-strand specific exonuclease reaction step. The target DNA is mixed and hybridized with 

specific target signal probes that each contain a ferrocene label. The mixture is placed into an 

eSensor loading cartridge then analyzed by the XT-8 system. Within the cartridge exists a 

microfluidic chamber with pre-assembled capture probes bound on gold electrodes. After the target 

DNA/signal probe complex runs through the cartridge chambers a binding step occurs by capture 

probes giving off a positive signal when voltage is carried through each electrode. The latter part 

of the workflow is roughly 3.5 hours. The respiratory viral panel itself contains several Influenza 

targets, RSV subtypes, parainfluenza types, and hMPV. Additionally, the panel only reports 

Rhinovirus instead of a combined rhinovirus/enterovirus result however, cross-reactivity with 

Enterovirus D68 (EV-D68) has been reported (18). The panel also is the only multiplex panel to 

specifically detect adenovirus types (B/E and C).  
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FilmArray Respiratory Panel (FilmArray RP) 

The FilmArray RP is an FDA-approved (2011) low-throughput, moderate/low complexity, 

multiplex nested PCR assay automated from extraction to result. The assay is able to identify and 

characterize 17 viral as well as 3 bacterial pathogens manufactured by BioFire Diagnostics (Salt 

Lake City, Utah). The 17 viral targets include: adenovirus, coronavirus HKU1, NL63, 229E and 

OC43, hMPV, rhinovrus/enterovirus, influenza A, influenza A subtype H1, H3 and 

(H1N1)pdm09, influenza B, parainfluenza 1,2,3 and 4, and RSV. The 3 bacterial targets include: 

B. pertussis, Chlamydophila pneumonia, and Mycoplasma pneumonia. A major benefit of the 

FilmArray RP is the minimal hands-on operator time (2-4 minutes/sample). The system includes 

onboard automated nucleic acid extraction. NPS samples are injected into a reagent pouch, which 

house freeze-dried regents for sample preparation, purification, and nested multiplex PCR. 

Endpoint melting curve analysis confirms or rejects a call. The time-to-result is about 1 hour. A 

drawback of the FilmArray RP system is that only one sample can be processed at a time. Thus, 

in a single 8hr workday, a total of 6 to 8 samples may be processed. The FilmArray 2.0 System 

received FDA clearance in early 2015. The updated model could include up to 8 modular units 

sequentially linked to one PC allowing higher throughput. In early 2016, Biofire Diagnostics (now 

a subsidiary of BioMerieux) received FDA clearance for an expanded instrument system, the 

FilmArray Torch. The newer platform is comprised of scalable modules that may include up to a 

12-module system capable of screening up to ~90 samples per an 8hr work-day. The newer 

platform follows the same technology and allows the processing of the same RP assay.  
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ANALYTICAL REQUIREMENT DIFFERENCES FOR SURVEILLANCE AND 

CLINICAL DIAGNOSIS 

  The analytical requirements for surveillance of respiratory pathogens differ from those of 

clinical diagnosis (Table 2.1). In the clinical setting, rapid identification is a top priority so that 

the appropriate treatments can be identified and delivered. By contrast, for surveillance purposes, 

definitive characterization is critical to resolving etiologies of outbreaks, understanding 

epidemiological trends and aiding disease control and prevention. Here, we review the testing 

requirement differences for the three phases (pre-analytical, analytical, and post-analytical) of 

clinical and surveillance testing.  

 

Pre-analytical and Analytical Requirements 

The primary differences between the pre-analytical testing requirements for disease 

surveillance and clinical diagnosis begins during specimen collection. Because, healthcare 

facilities only collect specimens from individuals exhibiting RTI symptoms, the likelihood of 

identifying the source of infection is high (19). This selective specimen collection by clinical labs 

minimizes unnecessary testing, which in turn reduces cost and use of medical services. For 

laboratories performing surveillance-based testing, specimens are collected from both 

symptomatic and asymptomatic individuals. Comparing the test results for symptomatic and 

healthy individuals provide an evidence base for epidemiological associations. Critically, active 

surveillance studies have reported that as many as 44% of viral respiratory infections may go 

unreported due to lack of symptoms (20).  Thus, monitoring asymptomatic individuals can 

potentially mitigate further spread of infection by detecting asymptomatic carriers of respiratory 

disease. 
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Another difference between clinical and surveillance testing occurs during related to 

specimen processing. All four of the current major FDA-approved multiplex assays (FilmArray 

RP, Nanosphere RP Flex, Luminex NxTAG RVP, GenMark eSensor RVP) have only received 

FDA approval for the testing of nasopharyngeal specimens (NPS) only. Despite several proof-of- 

principal studies (21-24) that have shown comparable diagnostic sensitivity (Sen) (defined as the 

ability of a diagnostic test to correctly identify individuals with disease) and specificity (Spe) 

(defined as the ability of a diagnostic test to correctly identify individuals without disease) when 

using other samples types (e.g., sputum, bronchoalveolar lavage fluids, bronchial washes, anterior 

nares swabs, throat swabs and tracheal aspirates), processing of other specimen types and 

collection methods requires additional independent studies by the testing laboratory especially if 

results are used to make a clinical decision. Independent studies include analytical validation 

studies of lab-developed tests (LDTs) that establish comparable precision, accuracy, reference 

range and reportable range. Laboratories are also required to assess additional assay performance 

characteristics (e.g., analytical specificity and analytical sensitivity and linearity) (25). For 

surveillance testing, similar independent studies are required especially when results are reported 

to healthcare agencies for clinical purposes. However, because surveillance testing is used to 

establish disease trends and reveal etiology, a variety of sample types are often collected and 

processed since microbial load is unknown and may be higher in one type than another (26). To 

report these results, surveillance labs are also required to perform additional independent 

validation studies or report results as Research Use Only (RUO) or Investigational Use Only 

(IUO). The required additional validation of other sample types likely limits the adoption of 

multiplexed assays for surveillance purpose. 
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Finally, there are differences between the number of samples typically processed for 

clinical diagnostic and surveillance work. Because effective clinical care depends on rapid turn-

around time, clinical labs are more likely to process samples individually or in smaller batches. 

When identifying the source of an outbreak, rapid results are critical for control and prevention 

also requiring small batch testing. However, for routine surveillance whose aim is to trend 

population data, samples can be tested in large batches to minimize costs. However, large batch 

testing is often not possible for some multiplex assays due to the inherent design by manufacturers. 

For instance, both the FilmArray RP and the Nanosphere RP Flex can only process one sample at 

a time, while the Luminex NxTAG RPP and the eSensor RVP can process multiple samples at one 

time. It should be noted that if needed, both the FilmArray RP and the Nanosphere RP Flex allow 

for modular expansion to test more than one sample at a time but even then there are limitations 

to the number of samples that can be processed at one time. Thus, the need for surveillance labs to 

perform large batch testing has not been met which likely has slowed the adoption of respiratory 

multiplex assays by surveillance labs. 

 

Post-Analytical Requirements 

There are also differences between the requirements for tests from the clinical and 

surveillance standpoint at the post-analytical phase. The original intended use of the major FDA-

approved respiratory multiplex assays was to provide rapid results to aide clinical management 

(27-30). As a result, since the commercial release of these assays, studies have mostly reported the 

post-analytical use of respiratory multiplex results in clinical settings (6, 31). Post-analytical 

interpretation of results varies depending on how the results from multiplex testing are used. For 

example, in the clinical environment, and in some instances during surveillance testing, results 
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from multiplex testing are used for healthcare decisions. However, for the majority of surveillance 

testing, results are most often used to trend population data, identify the causative agent of an 

outbreak and confirm cases.  

 

Critical Attributes of Multiplex testing based on Analytical Requirements 

 Diagnostic Validity for Clinical Testing  

Differences during the pre- and post-analytical phases of testing for clinical and 

surveillance purpose define the critical attributes needed in multiplex assays when used for clinical 

diagnostic testing or surveillance (Table 2.1). A major critical attribute is diagnostic validity. 

While the basic measures of diagnostic validity for clinical diagnostic and surveillance labs are the 

same, they are used and prioritized in different ways. These basic diagnostic measures are Sen 

(sensitivity or true positive rate, TP) and Spe (specificity or true negative rate, TN). Sen, sometimes 

referred to as the True Positive Rate, is often expressed as True Positives (TP) and False Negatives 

(FN) given by the following: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

           (Eq. 2.1) 

Spe, sometimes referred to as the True Negative Rate, is often expressed in terms of True Negatives 

(TN) and False Positives (FP) given by the following: 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

           (Eq. 2.2) 

Despite the universal use of Sen and Spe in assessing assay performance, these measures are not 

without limitations (32). Sen and Spe are summarized population parameters used to confirm the 
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presence or absence of disease. Conceptually, Sen and Spe are not appropriate on a case by case 

basis (as disease progression differs from one patient to another). More critically, Sen and Spe are 

independent of disease prevalence, which changes how an assay may perform (33-34). Thus, 

appropriate clinical-decision making using these population parameters requires more parametric 

inputs to aid healthcare decisions (35). The interpretation of Sen and Spe in the clinical area is 

incomplete requiring more scrutiny and explanation for patient management (36).  

A better measure of assay performance for clinical diagnostic purposes is the likelihood 

ratio (LR) particularly when used to describe tests having more than just a dichotomous 

(positive/negative) result (32). LRs are defined as the ratio between the probability of the presence 

or absence of disease in a patient to the probability of the same result in a patient with or without 

disease. LRs provide direction and strength of a test result in ruling-in and ruling-out disease (36, 

37). For clinicians, LRs answer the frequent question: Given a test result, how likely is it that a 

patient may truly have disease? In practice, LRs are presented as positive likelihood ratios (LR+) 

or negative likelihood ratios (LR-). LR+, is the ratio of the probability of a positive test when 

disease is present to the probability of the same test result when disease is absent and may be 

expressed as Sen and Spe:  

𝐿𝑅+ =  
𝑆𝑒𝑛

1 − 𝑆𝑝𝑒
 

          (Eq. 2.3) 

Conversely, LR-, the probability of a negative test result given the disease is present to the 

probability of the same test result when disease is absent is presented as: 

𝐿𝑅− =  
1 − 𝑆𝑒𝑛

𝑆𝑝𝑒
 

          (Eq. 2.4) 
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Using prior evidence to calculate the probability that disease is actually present allows a 

much more stable and clinically applicable diagnostic interpretation (39), with application to 

surveillance. Bayes’ Rule or Bayes’ Theorem describes the probability of an outcome based on 

prior knowledge. For clinical diagnosis, prior knowledge includes prevalence of disease and 

diagnostic validity of the assay used to screen for disease. In assessing the clinical utility of an 

assay, Bayes’ Theorem allows the post-test probability of disease to be calculated from the pre-

test (i.e., prevalence of disease) and conditional probabilities (inherent to the diagnostic test 

calculate post-test used, LRs). Graphically, the relationship between these input probabilities can 

be shown via a Fagan nomogram, a graphical scaling tool designed to help clinicians determine 

the probability of a patient actually having disease based on the value of LR+ for a test and 

prevalence of disease in the population (40). For clinically relevant respiratory pathogens such as 

Influenza A/H1, H3, Influenza B and B. pertussis, Fagan nomograms can be used by healthcare 

professionals comparatively to reveal which assay best suites clinical care needs. Prevalence in a 

Fagan nomogram analysis can range from 0 to 100% and be applied to any population.  

Use of Fagan nomogram analysis in calculating post-test probabilities (the probability of 

positive test given prevalence and the LR+) for each of the major FDA-approved multiplex 

respiratory assays is summarized in Table 2.2. The LR+ shown in Table 2.2 is calculated based 

on the Sen and Spe reported in the FDA 510(k) summaries for each of these assays. The prevalence 

of influenza A subtypes and Influenza B shown here reflects yearly seasonal Influenza trends 

where roughly 5-20% of the U.S. population get the flu each year (41). This calculation uses data 

from a study conducted in a general clinical laboratory supporting inpatient and emergency room 

services where respiratory samples were initially screened for RSV and 2% of the sample 

population tested positive for B. pertussis (42). A positive result for influenza A/H1 on the 
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Luminex NxTAG RPP has a post-test probability of 98.1% (i.e., that the individual who tested 

positive on the assay is actually infected with influenza) (Table 2). The BioFire FilmArray RP 

performs better in detecting Influenza A/H1, H3 and B than all other multiplex platforms listed.  

However, the Nanosphere RP Flex, performs better than the FilmArray RP when detecting B. 

pertussis. Calculating post-test probabilities for different assays given specific parameters for 

specific respiratory pathogens can increase clinical effectiveness by identifying which assay 

performs better per target in a given population through a quantifiable value that helps clinicians 

provide the correct treatment.  

 

Diagnostic Validity for Surveillance Testing 

While comparison of post-test probabilities potentially holds much value for clinical 

diagnoses and helps in understanding the critical attributes for multiplex assays, for surveillance 

purposes, diagnostic odds ratio (DOR) tend to be more useful. DOR can be calculated as:  

𝐿𝑅+

𝐿𝑅−
        

                                                  (Eq. 2.5) 

 

or equivalently: 

(𝑆𝑒𝑛)(𝑆𝑝𝑒)

1 − 𝑆𝑒𝑛 − 𝑆𝑝𝑒 + (𝑆𝑒𝑛)(𝑆𝑝𝑒)
 

          (Eq. 2.6) 

DOR is interpreted as the ratio of the odds of a positive test in the presence of disease to the odds 

of positive test in the absence of disease. The higher the DOR the better discriminatory power of 

a test (43). DOR differentiates between those in the population with disease and those without 
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disease based on the likelihood of a positive test result or equivalently calculated from the Sen and 

Spe for a specific assay. As a measure, the DOR shows the overall strength and epidemiological 

importance of association of between test result and disease (43, 44). For instance, a larger DOR 

would describe a very strong association and conversely, a low DOR would describe a weaker 

association. A higher DOR translates to better discriminatory test performance to identify patients 

with disease (44). The reported Sen and Spe from the 510(k) FDA approval summary reports of 

the major FDA-approved respiratory multiplex assays are summarized in Table 2.3, along with 

the DOR for each assay and for all targets available per assay. The DORs for all of the FDA-

approved multiplex respiratory assays are high, which dictates that each of these assays has good 

discriminatory power. The strength of association for each of the assays varies depending on the 

target (i.e., pathogen of interest). As a result, which assay is the “best” depends on the target being 

studied. The eSensor RVP shows greater diagnostic performance than other multiplex assays (i.e., 

the FilmArray RP and the Luminex NxTAG RPP) when confirming outbreak cases of adenovirus 

(specifically types B/C and E), common in the United States as recently as 2013 (45). By contrast, 

the FilmArray RP performs better than all other comparable assays for all influenza types (A/H1, 

A/H3, A/H1-2009, and B). The Nanosphere RP Flex performs better than all other comparable 

assays for Bordetella bacterial targets (i.e., B. pertussis, B. parapertussis/B. bronchiseptica, B. 

holmesii). In summary, the best assay among targets that overlap across all assays is the FilmArray 

RP. However, not all targets overlap as many assays have a variety of respiratory pathogens 

targeted by the panel, thus the best performing assay needs to be evaluated at a per target basis. 
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COMPARISON OF EXISTING MULTIPLEXED ASSAYS FOR SURVEILLANCE OF 

RESPIRATORY PATHOGENS 

A relatively small number of studies have directly compared the diagnostic performance 

between the major FDA approved multiplex respiratory assays currently available and have mostly 

concluded similar diagnostic performance among all these assays (Table 2.4). These studies have 

used Cohen’s Kappa, κ (46) for comparing diagnostic performance. Popwitch et al. presented the 

most complete comparison of more than two FDA-approved multiplex respiratory assays (47). The 

study included an analytical comparison of the Biofire FilmArray RP, GenMark eSensor RVP, 

Luminex xTAGv1 and Luminex RVP FAST using retrospective samples collected in general 

clinical setting screened by each panel. The eSensor RVP reported the highest Sen (100%) for 

nearly all targets (rhinovirus/enterovirus, 90.7% the lone exception). Low Sen for adenovirus was 

a weakness for most assays: FilmArray RP, 57.1%, xTAG RVPv1, 74.3%, xTAG RVP FAST, 

82.9%, eSensor RVP, 100%. Detection of Influenza B was also difficult: xTAG RVP FAST, 

45.5%, FilmArray RP, 77.3%, xTAG RVPv1, 95.5%, eSensor RVP, 100%. When assessing age-

specific assay performance only the eSensor RVP failed to show any statistically significant 

difference across age groups. The xTAG RVP FAST and FilmArray RP showed higher Sen for 

adults (>18) than children (<5) and teens (<18). Other comparative studies have similarly 

evaluated diagnostic performance based on Sen and Spe comparing the FDA-approved multiplex 

respiratory tests to culture, serology and LDTs. The consensus shows that for all comparable 

targets, Sen and Spe are superior to traditional methods and relatively the same across each 

multiplex assay with few target exceptions (see Table 2.4). 

ROC curves provide an alternative approach for evaluating diagnostic performance 

providing better insight and guidance in differentiating the usefulness of respiratory multiplex 
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assays for either clinical or surveillance use. ROC curves are simple visualizations that allow 

comparison of classifiers (i.e., tests) by plotting the True Positive Rate (TPR= Sen) against the 

False Positive Rate (FPR= 1-Spe) (48). For ARIs, FPs represent a burden to healthcare systems 

especially if the infection is in vulnerable sub-populations or in individuals where co-infection 

exacerbate an already existing condition. For surveillance, FPs represent cases of misallocated 

resources, where efforts are required to treat a non-existing condition in hopes of mitigating the 

further spread of disease in subpopulations. If comparing routine clinical care to routine 

surveillance, FPs are a much greater burden to the healthcare industry especially if the test is either 

expensive or if follow-up is invasive or expensive. Within ROC space, a point (FPR, TPR) on the 

left hand side denotes a classifier that exhibits better performance than random chance (Figure 

2.1). Better performing classifiers are always preferred. The discriminatory line separates “liberal” 

and “conservative” classifiers. Any point in the liberal space represents a classifier that will likely 

identify all the TP despite a weak signal and at the expense of having a high FPR. Conversely, any 

point in the conservative space will identify all the TPs in the presence of strong a strong signal at 

the expense of a low FPR. During an outbreak from a novel respiratory variant (e.g., influenza, 

coronavirus (49)), a high FPR is acceptable especially if we are assured that by identifying all the 

TPs, appropriate control and prevention could mitigate the spread of infection. Additionally, 

because milder forms of RTI go unreported (50) and not every respiratory infection is detected 

(for many reasons) true prevalence and incidence is difficult to estimate. A high FPR respiratory 

multiplex test could potentially minimize the error of not knowing true prevalence estimates by 

including false positives in the total number of positives observed. While may not be ideal for 

correcting true prevalence estimates, a high FPR assay could help in approaching the true burden 

of disease. Finally, from the ROC space plot analysis, clinical care benefits from the use of 
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conservative diagnostic tests but for routine surveillance, liberal diagnostic tests would be more 

effective. Using ROC space provides a valuable method for comparing the major FDA-approved 

respiratory multiplex assays for either clinical diagnostic and surveillance use. 

Upon closer inspection of the ROC space plot (Figure 2.2), important similarities and 

differences arise between the FilmArray RP, Nanosphere RP Flex, Luminex NxTAG RPP and the 

eSensor RVP. While all of these assays are better performers than random chance, a slight majority 

of target calls lie on the conservative side of discrimination suggesting that when considering 

assays as whole performers, few false positives will be reported as most calls will correctly identify 

positive infection.  Every assay has calls throughout the ROC space suggesting that despite an 

overall liberal or conservative classification for any assay, these assays could still be used for either 

patient care or surveillance. The ROC space plot also reveals that the most conservative multiplex 

assay is the Luminex NxTAG RPP which suggests the assay would be most beneficial over other 

assays when used for clinical diagnostic purposes. The most liberal test is the eSensor RVP, which 

would serve well for those performing surveillance work. From the ROC space plot, we can also 

make per target assay specific recommendations. The FilmArray RP has the lowest FPR across all 

targets except when liberal calling rhinovirus/enterovirus, RSV and CoHKU1 and conservative 

calling adenovirus infections. Thus, in an outbreak of rhinovirus/enterovirus, RSV or CoHKU1, 

the FilmArray RP would perform much better than other assays. The Nanosphere RP Flex also has 

a low FPR, but unlike the FilmArray RP, hardly makes any liberal calls except for RSV B 

suggesting a greater clinical application than others. For highly relevant clinical and public health 

targets (e.g., Influenza A, A/H1/ A/H3, A/H1-2009 and influenza B) the FilmArray RP is nearly 

perfect by detecting relatively few false positives when correctly identifying positive infection. 

For pandemic potential targets such as coronaviruses, the FilmArray RP is again an excellent 
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diagnostic test that has both a higher Sen and lower FPR comparable to all other assays with the 

sole exception of CoNL63, detected slightly better on the Luminex NxTAG RPP. Only two assays 

screen for Bordetella spp: the FilmArray RP and the Nanoshpere RP Flex. Among these two 

assays, the Nanosphere RP Flex is a near perfect assay by correctly calling positive Bordetella spp 

infections. The worst performing targets across all assays were conservative calls for parainfluenza 

2 (Luminex NxTAG RPP), parainfluenza 4 (Luminex NxTAG RPP) and B. pertussis (FilmArray 

RP). The use of ROC plots to assess graphically the diagnostic value for respiratory multiplex 

assays adds tremendous value where each target could be evaluated independently of other targets 

and in comparison to the same target across each multiplex assay.  

Another useful measure often presented in conjunction with ROC curves is the Youden 

Index (J) (51). J is a statistical summary measure that (similar to DOR) incorporates both Sen and 

Spe. J is interpreted as diagnostic test maximum effectiveness representing the optimal cutoff 

threshold where the maximum difference between TPR and FPR exists (52). Essentially, J is a 

point (Sen, 1-Spe) in ROC space that defines where a diagnostic test will be able to correctly 

identify the most positives and the fewest false positives. J has a value between 0 and 1. J 

graphically represents the farthest point in ROC space away from random performance. J is 

expressed as: 

J = Sen+Spe-1. 

(Eq. 2.7) 

Unlike other measures, J is not dependent on disease prevalence but does suffer from assuming a 

dichotomous test result which may not always be applicable depending on the assay (53). For 

instance, characterizing influenza A strains on the FilmArray RP gives one of three results, 

“Detected”, “Not Detected”, and “Equviocal”. Similarly, the Luminex xTAG RVP provides 
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“Equivocal’ results for some targets (54). For evaluating respiratory multiplex assays, J can 

provide a simple measure of diagnostic effectiveness for either clinical or surveillance use. Upon 

calculating J for each of the respiratory multiplex assays, a heatmap (Figure 2.3) can be plotted 

that allows a visual comparison of diagnostic performance. The lighter the color the closer J = 1 

meaning the better performing assay for that specific target. Grey boxes indicate targets not 

screened for in the respective assays. When used in conjunction with ROC space plots, the Youden 

Index provides yet another valuable measure of diagnostic accuracy.  

 

LIMITATIONS OF CURRENT MULTIPLEXED ASSAYS FOR SURVEILLANCE OF 

RESPIRATORY PATHOGENS   

 Despite the tremendous benefits and widespread use of respiratory multiplex technologies 

revealed through the use of several diagnostic accuracy measures, these complex assays are not 

without limitations. One of the important aspects in designing PCR based assays is primer 

selection. All of the FDA-approved multiplex respiratory technologies presented contain primer 

pools and probes corresponding to common upper respiratory targets. Optimized primers yield 

reliable qualitative results for all the targets in each individual panel. However, a universal 

challenge for all manufactures is selecting appropriate genomic target sequences to optimize 

hybridization and thereby minimizing unwanted nonspecific interactions which could lead to 

diagnostic errors (i.e., FP and FN). Two targets have challenged manufacturers: adenovirus and 

rhinovirus/enterovirus. Early assay releases of the Luminex xTAG RVP and the BioFire FilmArray 

RP reported poor adenovirus detection and resulted in reduced sensitivity when presented in 

clinical and contrived samples (21, 55, 56). Current versions of the FilmArray RP and the xTAG 

RVP now include updated primers aligned against the complete coding sequences of all adenovirus 
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serotypes. The updated FilmArray RP panel has shown diagnostic improvement over the previous 

version (57). eSensor RVP is the only multiplex assay capable of detecting subgroups B/E and C. 

For surveillance, assay choice depends on surveillance population needs. The increasing DOR 

order of the major FDA-approved respiratory multiplex panels as designed: Nanosphere RP Flex, 

FilmArray RP and Luminex NxTAG RPP.  

Another problematic targets for respiratory multiplex testing are rhinoviruses and 

enteroviruses. Due to genetic homology, these pathogens lack resolution when detected on either 

the Luminex NxTAG RVP or FilmArray RP and as a result, when detected are simply reported as 

either rhinovirus or rhinovirus/enterovirus without differentiation. The primer similarity of 

rhinoviruses and enteroviruses increases the risk of cross-amplification and interference during 

multiplex testing. Per the product insert, Nanosphere RP Flex has observed cross-reactivity of 

rhinovirus/enterovirus primers with Human poliovirus 2 and 3, coxsackievirus A24 and EV-D68. 

When samples are called ‘positive’ for rhinovirus/enterovirus, laboratories should reflex to either 

culture or sequencing to further resolve identification. Detecting and follow-up testing for 

rhinovirus/enterovirus samples has become an important concern due to a nationwide outbreak of 

EV-D68 across the United States (58). Symptoms included hallmark cold symptoms (fever, runny 

nose, muscle aches) as well as difficulty breathing. A recent study has since described the 

association of EV-D68 infection and acute flaccid myelitis (related to acute flaccid paralysis) (59) 

highlighting the importance of good resolution between rhinovirus and enterovirus for all 

respiratory multiplex assays. A similar primer cross-reactivity issue is present for coronavirus 

OC43 and HKU1 viruses in the FilmArray RP assay. Another limitation of respiratory multiplex 

assays is that precise quantification of infection cannot be determined as all of the assays presented 
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are FDA-approved qualitative test unable to determine viral or bacterial load, which (if available) 

may be helpful during surveillance in identifying an appropriate case definition. 

 

CONCLUSION  

The current landscape of respiratory multiplex testing includes a variety of technologies 

that have revolutionized clinical practice, however, due to specific barriers these technologies 

could impact surveillance efforts even more. Despite numerous studies showing real world 

application, full adoption of these methods for routine surveillance testing and outbreak response 

is limited in large part due to how these technologies are evaluated. When compared to culture and 

serology, all of the FDA-approved assays presented in this report provide equivalent Sen and Spe, 

measures that have traditionally been markers for diagnostic performance. However, better 

measures of diagnostic performance such as LRs, DORs, and the Youden Index make assay use 

and result interpretation clearer and much more effective. These measures allow comparisons on 

a per-target basis, providing a much more specific use of these technologies for either surveillance 

or clinical diagnosis. The next few years will see the evolution of respiratory multiplex 

technologies in more rapid, more efficient, easier to use (and easier to interpret) panels capable of 

screening a broader range of pathogens. The challenge bestowed on laboratories is evaluating 

whether newer technologies will meet clinical and public health demand.  

 

FIVE-YEAR VIEW 

Within five years, while multiplex respiratory assays become more rapid, more 

comprehensive and more automated, next-generation sequencing (NGS) will begin to dominate 

the diagnostic market due to the tremendous benefits of this technology. Innovation has defined 
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laboratory diagnostics for detecting respiratory pathogens. What began with culture and serology 

was later improved upon by the introduction of PCR-based assays to now the wide adoption of 

multiplex platforms and assays. The identification of respiratory pathogens has progressively 

become more specific and precise. NGS is the latest advancement that may change not just clinical 

practice but also public health. NGS is a powerful high-throughput tool used for a variety of 

different healthcare and non-healthcare applications (60, 61). As a diagnostic method, multiplex 

NGS has been shown to confirmed viral infections as detected by a PCR-based multiplex assay 

(62). Similarly, Graf et al., showed the reliability of metagenomics (a specific NGS-type of 

analysis) as a comparable method to the eSensor RVP not just in agreement but also in detecting 

additional pathogens (63). For surveillance of respiratory pathogens, NGS provides detailed 

genomic information that aides in identifying resistance, virulence and sequences changes over 

time (64-69). One of the biggest challenge of applying NGS towards surveillance and clinical care 

is the need of FDA regulatory standards and methods. NGS presents a unique regulatory challenge 

that requires evaluation not just of the clinical performance of the method itself, but also of the 

bioinformatic pipelines used for detection, characterization, and phylogenetic relationships.  

 

KEY ISSUES 

 RTIs are among the top 5 leading causes of death worldwide across all age groups 

accounting for 4.2 million deaths annually; total deaths that account for more than liver, 

colon, breast and prostate cancer combined 

 The public health system includes state and local public health and clinical laboratories 

whose responsibility in outbreak response is managing and tracking disease. 
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 Advances in multiplex PCR instrument systems have replaced most traditional methods 

for detecting respiratory pathogens 

 Within the past decade, several multiplex platforms such as the Luminex NxTAG RPP, 

Verigene RP Flex, eSensor RVP and the FilmArray RP have acquired FDA approval for 

use in public health and clinical laboratories. FDA-approved respiratory multiplex assays 

have successfully demonstrated public health benefits in a variety of patient populations.  

 From a clinical standpoint, respiratory multiplex assays should be evaluated not just 

through Sen and Spe measures, but through LRs especially through Fagan nomogram 

analysis that allows incorporating prevalence of disease and assay performance into a post-

test probability on an individual basis. 

 From a public health surveillance perspective, respiratory multiplex assays should be 

compared against epidemiologically relevant and interpretable diagnostic measures such 

as the DOR.  

 ROC space also provides a great tool in comparing diagnostic assays on a per target basis 

 Surveillance needs for future respiratory multiplex technologies include broader panels and 

optimizing multiplex assay performance 

 The future of laboratories performing diagnostic and surveillance testing is directed toward 

adopting NGS technologies and in establishing regulatory guideline.
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Figure 2.1. ROC Space of major FDA-approved respiratory panels showing “Liberal” and “Conservative” calls from 

discrimination. Better performing assays lie on the left of random chance; worse performing assays lie on the right. Outlier at (0,0) is 

for C. pneumo sample tested by Luminex NxTAG RPP during clinical prospective studies; sample was discrepant with follow-up clinical 

site testing unknown. 
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Figure 2.2. Figure 2.1 with x and y-axis adjusted (minus C. pneumo for Luminex NxTAG RPP) to view targets details in 

ROC Space. Outliers circled and identified. 
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Figure 2.3. Heatmap illustrating Youden Index (J) for all FDA-approved respiratory multiplex assay targets. Boxes in gray 

denote not detected targets. No 95% CI calculated per the assumption that some of the index values calculated are close to 0 or 1. 

Per the FDA decision summary, only one C. pneumo target for the Luminex NxTAG RPP was tested during clinical prospective 

studies with discrepant site testing unknown. 
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Table 2.1. Analytical Requirements for Multiplex Diagnostic Assays for Diagnosis and Surveillance of Respiratory Pathogens 

 
 Clinical Diagnosis of Respiratory Pathogens Surveillance of Respiratory Pathogens & Outbreak Control 

Characteristics Critical Attributes for Assays Characteristics Critical Attributes for Assays 

P
re

-a
n

a
ly

ti
ca

l 

Samples processed individually or 

in small batches; number of 

samples varies depending on size 

of laboratory and prevalence of 

disease. 

Small labs (or labs in low 

prevalence areas) require low-cost 

individuals tests; larger labs (or 

labs in high prevalence areas) may 

do better with moderate to high-

throughput assays. 

Periodically, large numbers of 

samples are screened to 

determine etiology and origin 

of outbreak. 

Potential to process large number of 

samples rapidly at minimal cost to 

support surge testing. 

Typically collect specimens from 

individuals with clinical 

symptoms, who are more likely to 

have a high viral or bacterial load. 

Per sample cost, low turnaround 

time and ability to differentiate 

between viral and bacterial 

respiratory pathogens (e.g., 

viruses versus bacterial) more 

important than sensitivity or 

specificity. 

Because syndromic 

surveillance is performed for 

identification of causative 

agents and possible risk 

factors, labs often test 

asymptomatic individuals in 

addition to symptomatic ones. 

Critical that assays are both sensitive 

and specific. 

 

 

Likely to have standard specimen 

type with minimal variation for a 

given pathogen. 

FDA-approval is required for 

standardization in clinical 

decision-making; closed assay 

systems (i.e., not modifiable) are 

ideal preventing operator error 

and contamination.  

Because remnant samples 

may be used and collected 

specimen types may vary, 

sample matrices are highly 

variable, which may limit 

interpretation on FDA-

approved assays. 

FDA-approval is required for clinical 

decision-making; however, 

laboratories tailor and validate assays 

for new sample types and emerging 

pathogens depending on need. 

P
o
st

-a
n

a
ly

ti
ca

l Treatment and patient care 

decisions are based on results. 

Need to accurately distinguish 

between pathogens which have 

similar symptoms but different 

treatments. 

Results used both for 

individual clinical 

management and for 

understanding population-

level trends. 

Need to accurately distinguish 

between pathogens which have 

similar symptoms but different 

treatments for clinical care AND need 

phylogenetic information to identify 

epidemiological trends/identify 

sources of outbreaks.  
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Table 2.2. Comparison of positive likelihood ratios and post-test probabilities for high-prevalence pathogens for commercially-

available and FDA-approved respiratory panels based on Fagan Nomogram Analysis of data reported by manufacturers to 

the FDA as part of the approval processes for the assay.  A positive likelihood ratio (LR+) greater than 10 is considered 

significantly large to rule in or rule out disease. A larger value for the post-test probability indicates that the test has a higher 

probability of being accurate (i.e., the probability of the individual patient having the disease if a positive assay result is obtained is 

greater). In general, assays with higher post-test probabilities are better for clinical diagnostic purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assay 
Prevalence in 

Population 

Positive 
Likelihood 

Ratio (LR+) Post-Test Probability 

In
fl

u
e

n
z
a

 

A
/H

1
 

FilmArray RP 

10% 

999* 99.1%* 

eSensor RVP 967* 99.1%* 

Luminex Nx TAG RPP 111.11 92.5% 

Nanosphere RP Flex 326 97.3% 

In
fl

u
e

n
z
a

 

A
/H

3
 

FilmArray RP 

5% 

999* 98.1%* 

eSensor RVP 38.46 66.9% 

Luminex Nx TAG RPP 42.82 69.3% 

Nanosphere RP Flex 499.5 96.3% 

In
fl

u
e

n
z
a

 B
 FilmArray RP 

5% 

999* 98.1%* 

eSensor RVP 48.84 72.0% 

Luminex Nx TAG RPP 136.57 87.8% 

Nanosphere RP Flex 245 92.8% 

B
o

rd
e

te
ll

a
 

p
e

rt
u

s
s

is
 

FilmArray RP 

2% 

667 93.2% 

eSensor RVP n.r.** n.r.** 

Luminex Nx TAG RPP n.r.** n.r.** 

Nanosphere RP Flex 999* 98.1%* 

*In cases where the specificity was reported as 100%, we substituted a value of 99.9% so that the 
positive likelihood ratio could be calculated using the standard formula. 
**B. pertussis is not a target in the panel 
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Table 2.3 Comparison of sensitivity (Sen), specificity (Spe) and diagnostic odds ratio (DOR, with 95%CI) of FDA-approved 

respiratory panels, based on data reported by manufacturers to the FDA as part of the approval processes for the assays.  
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DOR: Diagnostic Odds Ratio calculated as LR+/LR- per (44) FilmArray RP: InfluA/H1 Sen not reported. Luminex xTAP RPP: C.pneumo site testing 

results for discrepant specimens were available or reported. 
n.d. : target is not included as a target in the panel 
- : As reported in the FDA-decision summary, Sen was reported as 0%; thus, DOR was not able to be calculated. 
95% CI: Calculated as LN(DOR) ± 1.96 (√(1/TP + 1/TN + 1/FP + 1/FN)),*P < 0.05 
NOTE: When reported, instead of using Sen and Spe at 100%, we used 99.9% in our calculations to prevent a DOR = undefined. 
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Table 2.4. List of all direct comparative studies of the major FDA-approved multiplex respiratory assays. 

Study Comparison 
Cohen’s Kappa, κ 

(95% CI) 

Interpretation of κ(61, 

74) 

Lee et al. (2017) (70) 
Luminex NxTAG RPP: Luminex 

xTAG RVPv2 
0.85 (0.757-0.932) Strong 

Chen et al. (2016) (71) 
Luminex NxTAG RPP: FilmArray 

RP 
0.92 (0.90-0.94) Almost Perfect 

Hwang et al. (2014) (72) xTAG RVP: Nanosphere RV+ 0.908* Almost Perfect 

Popowitch, et al. (2013) (47) 

FilmArray RP: eSensor RVP: 

Luminex xTAG RVPv1: Luminex 

xTAG RVP 

Not reported n/a 

Babady et al. (2012) (23) Luminex xTAG RVP: FimArray RP 0.685** Moderate 

Rand et al. (2011) (69) 
FilmArray RP: Luminex xTAG 

RVP 
0.91 (0.85-0.97) Almost Perfect 

Pabbaraju et al. (2011) (73) 
Luminex xTAG RVP: Luminex 

xTAG RVP FAST 
0.548-1.00*** Weak to Almost Perfect 

*study only included comparison of RSV, influenza A and B 
**no 95% CI reported 
***calculated κ for all targets individually. Low end kappa coefficient is for influenza B only. 
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CHAPTER 3 

 

Bayesian evidence of environmental contamination from acute respiratory infection in 

long-term care facilities 

 

(This chapter was submitted as a manuscript for publication in Epidemiology and Infection in 

September 9, 2017) 

 

ABSTRACT  

Skilled nursing home facilities (SNFs) house a vulnerable population frequently exposed to 

respiratory pathogens. Our study aims to gain a better understanding of the transmission of nursing 

home-acquired viral respiratory infections in non-epidemic settings. Symptomatic surveillance 

was performed in 3 SNFs for residents exhibiting acute respiratory symptoms. Environmental 

surveillance of 5 high touch areas was performed to assess possible transmission. All resident and 

environmental samples were screened using a commercial multiplex PCR platform. Bayesian 

methods were used to evaluate environmental contamination. Among nursing home residents with 

respiratory symptoms, 19% had a detectable viral pathogen (parainfluenza-3, 

rhinovirus/enterovirus, RSV, or influenza B). Environmental contamination was found in 20% of 

total room surface swabs of symptomatic residents. Environmental and resident results were all 

concordant. Target period prevalence among symptomatic residents ranged from 5.5 to 13.3% 

depending on target. Bayesian analysis quantifies the probability of environmental shedding due 
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to parainfluenza-3 as 96.1% and due to rhinovirus/enterovirus as 62.5%. Our findings confirm that 

non-epidemic viral infections are common among SNF residents exhibiting acute respiratory 

symptoms and that environmental contamination may facilitate further spread with considerable 

epidemiological implications. Findings further emphasize the importance of environmental 

infection control for viral respiratory pathogens in long-term care facilities.  

 

INTRODUCTION 

Long-term care facilities present a unique public health problem: a highly susceptible 

population in a crowded institutional setting constantly exposed to respiratory pathogens from the 

flow of visitors, personnel and other residents. Nursing home acquired infections cost the U.S. 

healthcare system roughly $673 million to $2 billion annually, and are a significant concern in 

long-term care populations where prevalence of co-morbid disease is high (1). Nearly half (49%) 

of long-term care populations are arthritic and over a quarter are suffering from other chronic 

ailments (2). Among acute morbidities, influenza, upper respiratory tract infections and nursing 

home acquired pneumonia have presented a challenging and prevalent public health concern (3-

8). Vaccines are available, but even for the most seasonal respiratory tract infection (i.e,. influenza) 

vaccine efficacy is <70% (9). And even in highly vaccinated nursing home populations, influenza 

outbreaks still occur leading to substantial morbidity and mortality (10). Outbreaks in long-term 

care facilities have been caused by a variety of respiratory pathogens including influenza B, 

coronavirus, parainfluenza, and Bordetella pertussis (11-13).  

Previous data have suggested that the physical environment plays a prominent role in 

respiratory disease transmission. Influenza A H1N1 has been shown to survive on common 

surfaces for up to 17 days, remaining infectious for at least a week (14, 15). Other respiratory 
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pathogens such as coronavirus 229E remain infectious for at least 5 days on a variety of materials 

including ceramics, rubber, and glass (16). Despite appropriate hygiene and prevention control, 

residual pathogenic microbial contamination persists in healthcare environments (17). Data on 

fomite contamination of respiratory pathogens in endemic (i.e., non-outbreak) settings is limited. 

Respiratory viral contamination is a particular concern given that the environmental burden of 

respiratory pathogens may facilitate transmission, exacerbate existing health conditions, and be a 

potential source of outbreaks. This study is part of a larger collaboration known as PROTECT 

Project, a pilot investigation to study decolonization of nursing home residents against healthcare-

associated infection. The intent of this sub-study is to assess baseline epidemiology and report 

surveillance results of respiratory pathogens from residents and the environments of three skilled 

nursing home-facilities (SNF) in Southern California. The probability of viral shedding in SNFs 

due to symptomatic residents is estimated by applying Bayes’ Theorem providing evidence on the 

importance of infection control in long-term care facilities. 

 

METHODS 

Specimen Collection 

Between May 2015 and July 2015 infection control nurses at each participating site 

identified patient residents with clinical symptoms suggestive of influenza-like illness (ILI), i.e., 

fever, congestion, rhinorrhea, cough (with or without sputum production), shortness of breath, or 

other pulmonary complaints (pleurisy, wheezing). Symptomatic patients underwent nasal and 

environmental swabbing using a viral collection system involving flocked tipped swabs (one per 

nostril or two per surface) placed in M4 viral transport media. For residents with suspected ILI, 

nursing staff returned 3 days later to swab five common high-risk exposure objects (bed side 
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table/bed rail, call button/remote/phones, door knobs (room and bathroom combined), light switch, 

bathroom handles (toilet flush handle and sink handles combined) using the above described viral 

collection system. Two-hundred sixty environmental samples were collected. All samples were 

transported on cold pack, immediately frozen and stored frozen at -70ºC prior to testing. All 

specimens were processed and tested at the Los Angeles County Public Health Laboratories.  

 

Respiratory Multiplex Testing 

All resident and environmental swabs were processed using the FilmArray RP v.1 (BioFire 

Diagnostics, Salt Lake City, Utah) an FDA-approved multiplex nested PCR-based respiratory 

assay capable of detecting 17 viral targets (adenovirus, coronavirus (HKU1, NL63, 229E and 

OC43), human metapnuemovirus, rhinovrus/enterovirus, influenza A, influenza A subtypes H1, 

H3 and (H1N1)pdm09, influenza B, parainfluenza types 1, 2, 3 and 4, and respiratory syncytial 

virus) and 3 bacterial targets (Bordetella pertussis, Chlamydophila pneumonia, and Mycoplasma 

pneumonia). Prospective and retrospective studies have shown the reliable diagnostic performance 

of the FilmArray RP in detecting a variety of respiratory pathogens in vulnerable populations (18-

20). A complete overview of our surveillance and multiplex testing algorithm is found in Figure 

3.1.  

 

Application of Bayes’ Theorem in Environmental Surveillance 

Fagan nomograms are clinical graphical Bayesian tools that determines disease probability 

conditional on the probabilities of input parameters (21). The input parameters include 1) a prior 

(pre-test) probability defined as the disease prevalence in the population and 2) the diagnostic 

performance measures of the test being used to determine the presence of disease. Input parameters 
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determine the posterior (post-test) probability of disease providing a much more confident result 

interpretation. While the use of Fagan nomograms has been limited to clinical practice the 

underlying probabilistic mechanics of Bayes’ Theorem have had a wide range of applications (22-

24). Because we are using a clinical diagnostic test for environmental surveillance purposes, the 

pre-test probability cannot be defined to just disease prevalence within SNF populations. From an 

infection control perspective, the potential for transmission of respiratory pathogens in the 

environment is due to symptomatic individuals, but also fomites in the general environment (25, 

26). Therefore, total prevalence of transmissible pathogens within SNFs includes disease 

prevalence in residents and also the unknown disease prevalence in the general environment. Thus, 

application of the Fagan nomogram is only applicable by including Bayes’ pre-test probability as 

minimum disease prevalence, which we obtained from symptomatic surveillance efforts. 

Logically, the disease prevalence in our SNF environments is either equal to or greater than the 

minimum disease prevalence found among residents.  

The second Bayesian parameter included in our Fagan nomogram is the positive and 

negative likelihood ratio calculated from the diagnostic measures (sensitivity and specificity) 

reported in the FDA-approved summary report of the BioFire FilmArray RP. Both Positive (LR+) 

and Negative Likelihood Ratios (LR-) were calculated directly from sensitivity and specificity: 

LR+ = Sensitivity/1-Specificity, LR- = 1-Sensitivity/Specificity. By standard methods, sensitivity 

is also called the true positive rate, and 1-specificity is called the false positive rate (27). 

Using the above Bayesian parameters of minimum disease prevalence and the diagnostic 

performance measures of the FilmArray RP, the post-test probability can then be interpreted as the 

minimum probability of environmental contamination of high contact surfaces due to either 

shedding from an environmental source or a symptomatic resident. 
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All statistical analyses and data visualizations were done in R Studio (Version 1.0.143). 

 

Institutional Review Board approval was obtained from the Los Angeles County Public 

Health Department, University of California, Los Angeles and the University of California, Irvine. 

 

RESULTS 

Demographics  

The demographics including comorbidities of all patients at risk are listed in Table 3.1. 

The source population for this study included facilities whose mean annual admission was 762 

patients and 47033 resident days. The mean length of stay among patients at all SNFs was 

approximately two months. A majority of residents were white females between the ages of 65-

85, and a third of the total population was >85 years of age. Nearly all residents were admitted 

from local hospitals, and many had existing comorbidities at the time of the study including 

diabetes, fecal incontinence, and a wound and/or rash (Table 3.1).  

 

Symptomatic Surveillance 

Fifty-two residents were identified as symptomatic for acute respiratory illness. Ten of 52 

residents (19%) had a detectable viral pathogen: parainfluenza type 3 (n=4), rhinovirus/enterovirus 

(n=4), RSV (n=1), and influenza B (n=1). (Figure 3.2) All positive results were from two SNFs 

with no FilmArray RP targets detected from a third SNF. Parainfluenza-3 (13.3%) and 

rhino/enterovirus (10.0%) were the most common targets detected. Additional targets identified 
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include influenza B, RSV and rhinovirus/enterovirus (5.5% each). Total period prevalence is 

stratified per facility and per target in Table 3.2.  

 

Environmental Surveillance and Bayes’ Theorem 

Two hundred sixty environmental surfaces were swabbed during environmental 

surveillance. Among residents with detectable viral infection, environmental contamination of the 

same pathogen was found in 20% (2/10) of high-contact surfaces tested (i.e., bedrail, doorknobs). 

The FilmArray RP confirmed the presence of parainfluenza type 3 and rhinovirus/enterovirus in 

the environment. All positive viral environmental specimens were concordant with confirmed 

resident results. No bacterial respiratory pathogens were detected among any resident or 

environmental samples.  

Using disease prevalence from symptomatic surveillance as the minimum pre-test 

probability and the LRs calculated from the reported BioFire FilmArray RP target-specific 

sensitivity and specificity, true environmental contamination probability due to shedding is 96% 

for parainfluenza 3 and 63% for rhinovirus/enterovirus. A Fagan nomogram for parainfluenza 3 

using the appropriate parameters is found in Figure 3.3. Of note, each parameter is used as a linear 

scale bisected to yield the minimum post-test probability. Prevalence and LR- can also be used to 

give the minimum post-test probability of a negative result, meaning < 1% probability of 

parainfuenza 3 environmental shedding upon a positive diagnostic result. Results from the 

complete Bayesian analysis is found in Table 3.3. 

For our Bayesian analysis, minimum pre-test probability is limited to only the disease 

prevalence as determined from our symptomatic surveillance. However, if known, including 

environmental disease prevalence would allow greater approximation of the post-test probability 
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of environmental contamination due to shedding within the SNF environment. To assess how 

increased disease prevalence would affect environmental contamination due to shedding, we 

extend our Bayesian analysis by simulating how post-test probability would be affected by altering 

parainfluenza 3 and rhinovirus/enterovirus pre-test probabilities (i.e., disease prevalence). As 

illustrated in Figure 3.4, viral detection is saturated, marked by an exponential decay relationship 

between environmental contamination due to shedding and increased true disease prevalence, 

which occurs at higher prevalence for either viral target. Figure 3.4 suggests that evidence of 

environmental transmission is more likely to occur when disease prevalence is high but also 

limited by the detection method. 

 

DISCUSSION 

Over the next few decades, older populations will continue to grow at an accelerated rate 

increasing the demand for long-term care facilities and creating new public health challenges in 

managing respiratory health. As of 2012, the long-term care facility workforce functioned in 

hospices, adult day service centers, home health agencies, assisted living communities and nursing 

homes totaling 58600 workers for the 4 million Americans in long-term care facilities (1 long-care 

service worker for every ~67 patient residents) (28, 29). While nursing homes comprise nearly a 

third of all long term care facilities and are expected to increase, appropriate surveillance of 

respiratory tract infections among the elderly should be an important public health priority as most 

of this population is highly susceptible to respiratory outbreaks (30).  

The viral pathogens found among residents and in the environment in this study have all 

been previously implicated in previous outbreaks affecting vulnerable populations in healthcare 

settings (10, 31). From symptomatic surveillance we confirmed the presence of parainfluenza 3, 



101 
 

rhinovirus/enterovirus, RSV and influenza B infection in non-epidemic, i.e., endemic settings. A 

parainfluenza type 3 outbreak was in an adult hematology unit contributed to nosocomial 

transmission occurred over a 5-month span (32). The source of the outbreak was a chronically 

infected resident that had been placed in isolation, suggesting an environmental component of 

transmission in the outbreak. In the present study, all four parainfluenza type 3 specimens found 

during surveillance were detected in the same SNF population (SNF1) within a one-week period, 

plausibly suggesting intra-facility transmission. However, confirmation of intra-facility 

transmission could be resolved only by whole genome sequencing to compare viral genetic profiles 

and phylogeny. Evidence of parainfluenza type 3 environmental contamination due to shedding 

was observed as a symptomatic resident’s call button/TV remote positively detected the virus. 

What role, if any, this shedding had on parainfluenza type 3 transmission to other residents is 

unclear; however, application of Bayes’ Theorem reveals that environmental shedding of 

parainfluenza 3 due to this resident is highly probable.  

The significance of the environmental shedding reported in our study increases upon 

considering that sustained transmission is plausible in a semi-closed population such as a nursing 

home environment (33). This strengthens the use of prevalence of infection as a pre-test probability 

performed during our Bayesian analysis. We additionally found evidence of rhinovirus/enterovirus 

shedding in the environment of the same SNF population (SNF1) on resident door knobs. Once 

again, using a Fagan nomogram helps interpretation: given a 10% prevalence of 

rhinovirus/enterovirus in this subpopulation and given 97.5% true positive rate and 6.5% false 

positive rate, the probability of shedding in the environment by rhinovirus/enterovirus from a 

symptomatic individual is 62.5% suggesting the possible presence of either a different pathogen 

as the aetiological cause of infection or minimal viral shedding in the environment. RSV, influenza 
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B, and rhino/enterovirus were all detected from resident samples collected on the same day from 

one SNF, however no co-infection was detected. The co-circulation and burden from multiple 

respiratory viruses among vulnerable populations is unknown but evidence suggests respiratory 

tract infections may be compounded by the synergistic effect of multiple pathogens (34). 

Based on our clinical and environmental surveillance, clear epidemiological facility 

differences were present. While SNF 1 had the most viral targets confirmed by multiplex testing, 

SNF 2 had greater viral diversity. Additionally, SNF 3 had no targets detected at all. Our 

observations may reflect differences in sanitation and hygiene control, but also may be due to 

unequal foot traffic flow at each facility. High traffic flow would allow greater opportunity for 

resident exposure, colonization and infection; and conversely, low traffic flow would minimize 

the opportunity of the same. Overall, our study did not coincide with the wintertime seasonality of 

most viral respiratory infections, which explains why no targets were confirmed in SNF 3, but 

additionally provides evidence that our reported disease prevalence for each detected viral 

pathogen is likely an underestimate.  

The confirmed presence and absence of respiratory pathogens in our study supports some 

national trends. Based on Western United States Census Region RSV 2015 data gathered from the 

National Respiratory and Enteric Virus Surveillance System (NREVSS), the RSV clinical sample 

identified in this study coincided with a period of low viral isolation among the general US 

population (35). NREVSS data suggests a high percent positive rate for antigen detection of 

parainfluenza 3 in the US compared to RSV at the same time (36). While influenza A was not 

found in any clinical and environmental sample, influenza B infection was confirmed, supporting 

national and regional-level outpatient surveillance from the 2014-2015 flu season, where influenza 

B was the prevalent circulating influenza strain (37). Additionally, influenza B strains are often 
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most prevalent at the end of most influenza seasons, which coincides to when our study was 

conducted (i.e., late spring, early summer). Seasonal trends of other respiratory pathogens may 

help explain the low detection rates reported in our study. 

Our results provide evidence supporting a recent report revealing major gaps in the 

knowledge, practice and policy in infection control of environmental surfaces in healthcare settings 

(38). In our study, environmental contamination was highly likely shed from symptomatic 

residents. Fagan nomograms are methods of Bayesian analysis incorporating conditional 

probabilities for evaluating environmental contamination and person-to-person transmission, but 

only if a baseline prevalence is known. Our data suggests environmental contamination is site 

specific with possible viral shedding only found in SNF 1. This evidence suggests minor 

differences in the adherence to environmental hygiene practices within and between facilities. 

Recommendations for basic and environmental infection control practice in health-care facilities 

have been created by the CDC and the Healthcare Infection Control Practices Advisory Committee 

(39). Per recommendations, high-level disinfectants on noncritical areas or environmental surfaces 

is not required in long term care facilities, however a more frequent cleaning schedule of high-

contact surfaces is suggested.  

The main limitation of our study is related to respiratory viral detection. While some 

residents were confirmed, a majority of residents had no detectable respiratory infection. Results 

do not exclude the presence of other respiratory pathogens not included in the FilmArray RP. 

Despite the high sensitivity of the FilmArray RP, detection may also have been hindered by low 

microbial load or equally likely, routine facility-specific cleaning procedures preventing the 

capture of pathogens altogether. Another significant issue is that the FilmArray RP is only FDA 

approved for processing nasopharyngeal swab (NPS) specimens; however, due to resident co-
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morbidities, a non-invasive sample collection method (i.e., nares swabs) was preferred. However, 

nares swab specimen processing on the FilmArray RP is effective for detecting respiratory 

pathogen (40). Additionally, the time of collection may have not coincided with high viral titres. 

For instance, sampling outside of the general incubation of parainfluenza infections (two to four 

days) or environmental shedding (three to ten days) may have affected detection (41). 

Additionally, the FilmArray RP is FDA-cleared only for in vitro diagnostic use with no clear 

application for environmental testing. However, environmental swab testing and processing has 

been recommended as a method to prevent environmental contamination during routine clinical 

testing (42).  

Our results suggest that heightened surveillance among vulnerable populations in a 

crowded institutional setting may help identify residents with transmissible respiratory infections, 

thereby enhance prevention efforts. Ideally, year round surveillance activities especially during 

influenza season would provide a clearer picture on the role of the environment on respiratory 

pathogen transmission. Additionally, evidence for inter-facility circulation of respiratory viruses 

may be under reported and may be amenable to intervention. For long-term care facility staff, 

heightened awareness about the potential for viral respiratory pathogen spread is necessary as well 

as reinforcement of standard infection control practices of ILI patients. To our knowledge this is 

the first report to use the BioFire FilmArray RP for environmental monitoring for respiratory 

pathogens, and also the first report to use this technology for testing samples on a strictly older 

population in a LTC setting. 
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Figure 3.1. Surveillance and testing algorithm for symptomatic resident and environmental 

multiplex testing. 
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Figure 3.2. Summary of symptomatic surveillance based on BioFire FilmArray RP positive 

and negative call counts separated by target. 10 out of 52 (19.2%) symptomatic residents had 

a detectable viral infection. 
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Figure 3.3. Parainfluenza-3 Fagan nomogram of incorporating disease prevalence from 

symptomatic surveillance in SNF1 and LRs calculated from the diagnostic measures of the 

FilmArray RP to yield the post-test probability of shedding in a high contact surface.  
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Figure 3.4. Post-test probability of environmental contamination with increase prevalence 

of respiratory disease. Dashed line indicates viral prevalence as found during symptomatic 

surveillance (parainfluenza 3:13.3%, rhinovirus/enterovirus:10.0%) 
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Table 3.1. Skilled Nursing Home Facility-level characteristics. 

Facility-level Variable SNF1 SNF2 SNF3 

    

Annual Volume   N   

   Admissions 562 832 892 

   Resident Days 32,638 49,928 58,532 

   Mean Length of Stay (Days) 58 60 66 

       

Demographics and Insurance % 

Age       

     <65 18 38 12 

     65-85 46 42 50 

     85+ 36 20 38 

Male 34 46 41 

Race       

White 92 91 79 

Black 2 3 10 

Asian/Pacific Islander 6 6 11 

Hispanic Ethnicity 25 27 9 

<High School Education 32 19 11 

Medicare Insured 38 20 18 

       

Admitted from Hospital 95 94 92 

       

Illness and Comorbidities       

   Mechanical Ventilation 0 0 0.2 

   End Stage Renal Disease 7 8 9 

   Diabetes 40 42 34 

   Wounds or rash 83 68 90 

   Fecal Incontinence 35 35 34 
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Table 3.2. Epidemiological summary of symptomatic surveillance showing prevalence and 

overall burden from confirmed targets found in SNF 1 and SNF 2. 
 

 

Positive 

target 

detected 

Prevalence 

(%) 

Estimated 

number of 

annual cases* 

SNF1 7 23.3 28 

Para 3 4 13.3 16 

Rhino/Entero 3 10.0 12 

SNF2 3 16.6 12 

Flu B 1 5.5 4 

Rhino/Entero 1 5.5 4 

RSV 1 5.5 4 
*assuming period prevalence is sustained during a 12-month period 
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Table 3.3. Application Bayes’ Theorem to calculate minimum Post-test probability of 

environmental contamination from confirmed targets detected during environmental 

surveillance 
 

 

Diagnostic performance of the 

BioFire FilmArray RP*   

Confirmed target 

from environmental 

surveillance 

Sen Spe LR+ LR- 

Prior 

Probability: 

Minimum 

prevalence in the 

environment** 

Post-test 

probability: 

Minimum 

probability of 

environmental 

contamination***  

Parainfluenza 3 0.956 0.994 159.33 0.0443 13.3% 96.1% 

Rhinovirus/Enterovirus 0.975 0.935 15 0.0267 10.0% 62.5% 
*Sensitivity (Sen); Specificity (Spe); Positive Likelihood Ratio (LR+); Negative Likelihood Ratio (LR-) 
**Total prevalence would have included prevalence of respiratory pathogens on surfaces and inanimate objects within SNFs 

however this is unknown.  

***Minimum probability of environmental contamination given a positive test result on the BioFire FilmArray RP and a 

minimum prevalence as observed from our symptomatic surveillance  
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CHAPTER 4 

 

Modeling the economic impact of recent measles outbreaks to public health infrastructures 

in California 

 

(This chapter has been prepared for submission as a manuscript to Vaccine.) 

 

ABSTRACT 

Introduction: Despite being eliminated from the United States since 2000, measles remains a 

great public health concern with significant economic impact on local and state public health 

departments. Here, we provide a cost analysis of two recent measles outbreaks in Southern 

California: the 2014-15 multi-state and 2016-17 measles outbreaks. We focus on the estimated 

cost to local and state communicable disease control programs and public health laboratories 

(PHLs). 

 

Methods: To capture empirical data about local outbreak response, we sent surveys to all members 

of the California Association of Communicable Disease Controllers and all members of the 

California Association of Public Health Laboratory Directors. We additionally sent surveys to the 

California Department of Public Health to capture state outbreak response. Empirical data included 

costs (in 2017 USD$) to communicable disease control programs due to contact investigations, 

isolation, and personnel costs; and to PHLs due to measles testing and personnel costs. Empirical 

data from the 2014-15 U.S. multi-state measles outbreak was used to model estimated 

epidemiologically-linked measles contact counts at the local level in California. Our model is then 
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applied to estimate the public health epidemiologic and laboratory response to the 2014-15 U.S. 

multi-state measles outbreak and the 2016-17 measles outbreak. We additionally include estimated 

hospitalization costs to capture overall economic burden from a public health perspective. 

 

Results: We estimate that during the 2014-15 multi-state outbreak there were 10,702 

epidemiologically-linked contacts costing CA local and state public health departments 

$3,743,000 - $4,085,000 ($349-$381 per contact, $29,000 - $31,000 per case). In contrast, the 

2016-17 measles outbreak cost $338,000 ($318 per contact, $14,000 per case) from the estimated 

1063 contacts. The difference in cost between both suggests that measles control and prevention 

has improved over time across all public health jurisdictions. These costs are comparable to other 

recent measles outbreaks. 

 

Discussion: Our study provides an economic case study to the need of global eradication of 

measles. Further, we present a robust and stable dynamic contact count model that could be used 

retrospectively or prospectively for future measles or other vaccine-preventable disease outbreaks 

both in and outside California. 

 

INTRODUCTION 

Despite the international and domestic successes against measles, cases and sporadic 

outbreaks still occur even in ‘eliminated’ areas. In early Fall 2016, the Pan American Health 

Organization/World Health Organization (PAHO/WHO) declared the Americas as the first global 

region to have eliminated sustained endemic measles transmission (1). Measles elimination in the 

Americas was facilitated by several factors including, the availability of an effective vaccine, state 
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and local vaccination requirements for daycare and school entry, heightened surveillance systems, 

and the concerted use of better diagnostic tools across local public health infrastructures. Despite 

achieving measles elimination in 2000, the United States has experienced on average 196 annual 

confirmed measles cases since 2010. While the cause of measles in the U.S. is due to case 

importation from countries where sustained measles transmission continues (2), the underlying 

susceptible population in the US that results primarily from personal beliefs allows for and 

contributes to measles transmission. Measles will continue until further elimination occurs abroad 

and until higher vaccination rates are observed domestically. However, until measles elimination 

and vaccination campaigns are successful worldwide, the U.S. is expected to bear some social and 

economic burden of measles. 

Measles resurgence in the U.S. is a recurring economic issue for public health 

infrastructure. In 2004, the Iowa state public health laboratory and the state public health 

departments spent $142,000 in containment and investigation from one exposed U.S. college 

student returning from abroad (3). In 2008, an unvaccinated 7-year-old boy was exposed and 

infected while on vacation overseas with his family, who upon returning home to San Diego 

resulted in measles exposure of 839 persons and 11 additional cases (all unvaccinated children). 

In response to the outbreak, local and state agencies spent an estimated $124,000 ($10,000 per 

case) in control, outbreak and healthcare response (4). Again in the same year, an infectious Swiss 

traveler arrived in the U.S. and exposed thousands of individuals, costing local health care facilities 

$799,000 ($57,000 per case). In 2011, a relatively small outbreak of 9 cases began when an 

unvaccinated 15-year-old refugee traveling from Malaysia to Los Angeles, CA exposed other 

refugees and unvaccinated American passengers. The index case propagated contact investigations 

in several states with estimated costs to state health departments ranging from $621 (Oklahoma) 
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to $35,115 (California). These costs included labor, laboratory testing, treatment and 

hospitalization (5). In early 2014, an economic analysis of 16 outbreaks across the U.S. found that 

the cost per contact investigated was $298, with a cost range of $12,000-$30,000 per measles case 

(6).   

In late 2014, a multi-state measles outbreak began when 42 individuals were exposed to 

measles from an unspecified source while attending the Disney theme parks in California (7). This 

exposure sparked a multi-state outbreak that affected several nearby states: Arizona, Utah, Nevada, 

Washington, Colorado, and Oregon. Additional cases were found outside of the U.S. in Mexico 

and Canada. Sustained transmission of the outbreak lasted for 120 days, with the outbreak being 

declared officially over on April 17th, 2015. Within California a total of 131 cases were confirmed 

in 14 counties across the state. While the highest attack rate was among 20-29 year olds, the highest 

incidence was among the very young (<1-year-olds). Among the 82 cases for which immunization 

status could be verified 70% were unvaccinated. Thirty-one secondary cases were confirmed 

among households or close contacts (23.6%), 14 among community settings (10.6%), and 44 

among unknown epidemiologically linked sources (33.5%).  

In early December 2016, measles began circulating in two Jewish day schools and within 

an Orthodox Jewish community in Los Angeles County (LAC). Eventually, 24 cases were 

identified within Los Angeles (n = 22), Ventura (n = 1) and Santa Barbara (n = 1) counties. Reports 

confirmed that at least 16 out of the first 18 cases identified were unvaccinated (8). Reports also 

estimated that over 2000 individuals may have been exposed, with 10% of them being 

unvaccinated (9). Among the suspected cases confirmed for measles at the LAC Public Health 

Laboratory (LACPHL), a majority were under the age of 20 (data not published). 



121 
 

The aim of our study is to assess the economic burden of the 2014-15 U.S. multi-state 

measles outbreak. We are specifically interested in evaluating the cost to public health 

infrastructure in the state of California, addressing the economic impact to local and state public 

health laboratories, as well as to local and state communicable disease control programs involved 

in response and control. We further evaluate the economic burden of the more recent measles 

outbreak in Southern California that occurred late 2016 through early 2017.  

 

METHODS 

A combination of empirical data and modeling was used to estimate the total cost of the 

2014-15 U.S. multi-state and the 2016-17 measles outbreaks in California. Our economic 

perspective focused on estimating the local and state public health response cost across all 

California counties that both had communicable disease departments that investigated contacts and 

local PHLs that conducted measles testing. We additionally added estimated hospitalization costs 

to assess overall economic burden from a public health perspective. We limited our analysis to 

only those counties that had both public health departments and public health laboratories as the 

activities involved in investigating contacts and confirming measles cases are formally tasked to 

these agencies.  

 

Survey Data 

To capture empirical costs of the 2014 multi-state measles outbreak, we developed 

questionnaires tailored to gather data from both the laboratory and epidemiological staff  at local 

health departments in CA. Surveys were sent to all members of the California Association of Public 

Health Laboratory Directors to capture public health laboratory response costs, and to all members 
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of the California Association of Communicable Disease Controllers across the 61 local health 

jurisdictions in California to capture the public health epidemiologic response costs. The 

questionnaires were sent to all counties and health jurisdictions, regardless of whether a case or 

contact was ever identified in them, because investigations and laboratory testing of potential 

measles cases or exposures lead to costs even in the absence of confirmed cases or contacts. Both 

questionnaires asked respondents to provide information regarding direct costs associated with the 

outbreak response. Direct costs include personnel salaries, fringe benefits, and supplies, shipping 

and courier costs, additional staffing and stand-by time.  

To capture state laboratory data from both outbreaks, we sent out abbreviated surveys to 

the California Department of Public Health (CDPH) which included laboratory questions for the 

Viral and Rickettsial Disease Laboratory (VRDL). These abbreviated surveys were meant to 

capture staff and laboratory specific data corresponding to outbreak response from the state public 

health perspective. (A more detailed explanation of the methods used to gather these data and the 

questionnaires themselves are provided in Appendix A.) 

 

Imputation of Number of Contacts 

Based on survey results, contacts and response costs were only available from a subset of 

counties. Thus, using observed data and other epidemiologically-linked parameters, a Poisson 

regression model was used to estimate contacts (𝜇) for every county whose response included 

communicable disease control and public health laboratory testing information. Contacts are 

considered epidemiologically-linked to cases and resulted in investigation or contact tracing. The 

covariate selection for our regression model is based on previously identified causally associated 

parameters of measles transmission or outbreak propagation (10-15). Our model is fitted with the 
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following predictors: confirmed measles cases within each county (𝑥1), county distance from the 

outbreak epicenter (𝑥2), and population density per county (𝑥3).  

As previously mentioned, each predictor (𝑥𝑗 = 𝑥1 … 𝑥3 ) in our model has a plausible 

association in contributing to the spread of measles outbreaks and potentially contributes to 

determining the number of contacts during the outbreaks involved in this study. The number of 

confirmed cases (𝑥1) within each county was known based on CDPH measles surveillance during 

the 2014-15 multi-state measles outbreak. The distance between counties (𝑥2) was calculated in 

geographical space instead of transit infrastructure space (i.e., distance measured by streets and 

highways) to account for non-linear effects of distance on the number of contacts, 𝑥2 is defined as 

(distance in miles/100)2. Finally, county population densities calculated from American 

Community Survey data census estimates from 2014 and 2016 and expressed as 𝑥3. The estimation 

of 𝜇 in each county took the form: 

 

𝑙𝑜𝑔(𝜇) =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3, 

(Eq. 4.1.) 

 

where 𝛽0 has a constant value regardless of county and 𝛽𝑖 = 𝛽1 … 𝛽𝑛 are the regression coefficient 

values.  

 

Cost Analysis 

A standardized approach was taken to calculate laboratory testing costs by assuming that 

PCR was the preferred method of measles testing in each PHL when appropriate. A more detailed 

explanation of the method used is presented in Appendix A. Serology was also performed, but 

costs were negligible to overall economic impact. We verified whether PCR was performed in 
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each PHL by either direct survey response, follow-up or by accessing online publicly available test 

requisitions from each laboratory. When available, we applied real test costs for either serology or 

PCR. In instances when measles testing was not performed at all, we assumed that state laboratory 

send-outs were conducted at a courier cost of $42.50 per sample (figure based on mean internal 

LAC PHL courier send-out data). In order to include salary information in test cost we used a 

public service website created by the Nevada Policy Research Institute, a non-profit think tank that 

provides the titles, salaries and fringe benefits information for all individual CA county and state 

workers by title and classification. When available, we verified microbiologist (or equivalent) 

salaries within each CA county against county specific class specifications and arrived at a mean 

microbiologist salary per hour for each county during 2014 and 2016, measles PCR assay hands-

on time (3 hrs.) to give full test cost of confirming measles in each county inclusive of personnel 

salary in performing measles testing. 

Because public health epidemiologic response costs were not reported by every county, we 

calculated them for each county by multiplying the estimated number of contacts, 𝜇 (obtained from 

our regression model) by the public health epidemiologic response cost per contact ($250, which 

was calculated from data provided by the Los Angeles Department of Public Health (LADPH)). 

This estimate included direct expenses from several internal subdivisions within Los Angeles 

County involved in the public health epidemiologic response divided by the total contacts 

investigated within LAC.  

We acknowledge that samples from every suspected contact will not necessarily undergo 

laboratory testing. Thus, using the LAC PHL data from the 2014-15 multi-state measles outbreak, 

we estimated that roughly 1 of every 15 suspected contacts investigated were tested for measles. 

This rate estimate (15.14) was applied to 𝜇 at the county level to estimate how many approximated 
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investigated contacts underwent laboratory testing in each CA PHL. Once known, the number of 

contacts that underwent laboratory testing was multiplied by the cost of measles PCR reagents 

only ($25.60). In summary, the total measles laboratory cost per county is either a direct send-out 

($42.50 per laboratory specimen) or includes the PCR test cost for all 𝜇 factored through a rate 

estimate (15.14) and by the cost to run the test inclusive of the average CA microbiologist salary 

(plus benefits) at the time of the outbreak (Eq. 4.2). 

 

(
exp𝜇

15.14
) ∗  $25.60 (𝑃𝐶𝑅 𝑡𝑒𝑠𝑡 𝑐𝑜𝑠𝑡) + 

2014 𝑜𝑟 2016 𝐶𝐴 𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑠𝑡 𝑠𝑎𝑙𝑎𝑟𝑦 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 ∗ 𝑃𝐶𝑅 𝑡𝑒𝑠𝑡 ℎ𝑎𝑛𝑑𝑠 𝑜𝑛 𝑡𝑖𝑚𝑒  

            

           (Eq. 4.2) 

To capture hospitalization response associated with measles complications during the 

2014-15 multi-state outbreak, we added hospitalization costs for 21 confirmed measles cases that 

required hospitalization. Based on previous reports, mean hospitalization cost per measles case 

was estimated to be $25,000 (2017 US$) (16). 

 

2016-17 Measles Outbreak 

Our regression model and standardization approach of laboratory costs was further applied 

to estimate the public health epidemiologic and PHL cost of 𝜇 and the overall cost of the 2016-17 

measles outbreak. We updated our input data to reflect 2016 conditions, such as population density 

data and 2016 CA microbiologist salaries.  
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Validation and Sensitivity Analysis 

The Poisson model was validated internally by assessing parametric relationships via a 

correlation matrix and externally by comparing the expected 𝜇 to the observed 𝜇. Finally, a local 

sensitivity analysis and perturbation-based sensitivity analysis were performed to evaluate the 

robustness and stability of our model and overall approach.  

 

Modeling, statistics and GIS 

All modeling and statistical analysis was performed using the statistical software package 

R (version 3.4.1). A map of California with overlaid 𝜇 for each county was created using ArcGIS 

Online (2017). 

 

RESULTS 

Survey Data 

Survey results for the 2014-15 multi-state measles outbreak provided the observed costs of 

the public health epidemiologic and PHL response from each county, when available (Figure 4.1). 

The public health epidemiologic survey provided observed outbreak counts. Overall, while there 

was a 34.2% response rate among all counties, public health epidemiologic programs comprised a 

majority (>70%) of survey respondents. Based on survey responses, the outbreak response 

required a variety of staff including public health nurses (20%), communicable disease controllers 

(18%), infection control staff (13%), epidemiology analysts (13%), administrative staff (13%), 

medical epidemiologists (9%), students and interns (7%), and other (7%). Our survey also revealed 

that for exposures that occurred in healthcare settings, public health epidemiologic response was 

often aided by in-house hospital epidemiologists. Among public health epidemiologic respondents, 
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self-isolation was recommended in at least five counties and one city health jurisdiction (Marin, 

Alameda, San Joaquin, Nevada, San Luis Obispo and the City of Berkeley). Communicable 

disease control within communities included supplying MMR vaccinations and post-exposure 

prophylaxis treatments (e.g., immunoglobulin). At least two counties and one health jurisdiction 

activated the Incident Command Structure (Fresno, Alameda, and the City of Berkeley) for public 

health epidemiologic response. 

Survey results from the state laboratories revealed number of tests performed and method 

of testing. During the 2014-15 multi-state outbreak, VRDL tested 1850 samples with PCR bulking 

a majority of the testing. Additional testing included serological immunoassays and next-

generation sequencing. During the 2016-17 outbreak, CA state laboratories reported 106 total 

samples tested with a majority undergoing next-generation sequencing. PCR and serology were 

also performed. Culture was not performed during either outbreak response. 

 

Poisson modeling 

Our regression modeling of the 2014-15 multi-state outbreak, predicts that 

epidemiologically-linked contacts would be spatially distributed throughout the state (Figure 4.2). 

Contacts are predicted to be clustered in counties directly adjacent to Orange County and within 

170 miles of the Disney theme parks area. Additionally, contacts were predicted throughout central 

California and in smaller closely adjacent counties near the northern part of the state. Contacts are 

expected as far south as San Diego County (87.5 miles) and as far north as Humboldt County 

(703.0 miles). The total number of epidemiologically-linked measles contacts is predicted from 

the model is 10,591. 
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When applying our regression model to the 2016-17 measles outbreak, our regression 

analysis predicted 1,063 epidemiologically-linked contacts in Los Angeles County alone. 

Additionally, despite confirmed cases found in both Santa Barbara and Ventura counties, our 

model predicts zero epidemiological linked contacts in these areas. Our model also predicted no 

linked contacts in the adjacent counties near LAC (i.e., San Diego, Orange, Riverside or San 

Bernardino counties). 

 

Cost calculations 

We estimate that total public health epidemiologic and PHL response cost across all 

counties from 10,591 expected contacts and 131 confirmed cases during the 2014-15 multi-state 

measles outbreak was $2,757,000 (Figure 4.3). An alternative estimate can be derived by 

substituting contact counts, public health epidemiologic and PHL costs for every county where 

survey data was reported, using regression predictions only for counties with missing data; the 

total investigated counts during the 2014-15 Multi-state outbreak when combining both expected 

and observed data then become 10,702 with a total public health epidemiologic and PHL response 

cost of $3,059,000 (Table 4.1). When hospitalization costs ($531,000) for 21 individuals and state 

costs ($126,000 - $469,000) are included, the total cost for the 2014-15 multi-state measles 

outbreak to local and state public health infrastructure comes to $3,743,000 - $4,085,000. 

When applying our regression model to the epidemiological and PHL response for 2016-

17 measles outbreak, we estimate that the LAC public health department spent $279,000. When 

including the state response ($60,000), the total cost of the outbreak to local and state public health 

infrastructure becomes $338,000. 
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Validation and Sensitivity Analysis 

 To assess the validity of our regression model to predict accurate counts of suspected 

measles contacts, we compared expected 𝜇 to observed 𝜇. There is a strong positive correlative 

relationship (R2 = 0.945) between expected and observed 𝜇 that is highly significant (p > 0.0001) 

providing evidence that our model does well in predicting 𝜇 (Figure 4.4).  

To assess the overall robustness of our model, we performed a one-way sensitivity analysis, 

where we varied parameter 𝛽𝑖 by twice the standard error for each coefficient in the regression 

model. We then applied 𝜇 to our standardization approach for obtaining public health 

epidemiologic and PHL costs, comparing the new estimates to the baseline cost of $2,757,000 

from our Poisson model. Results of this analysis are shown in Table 4.2. The cost range shows 

minimal differences from baseline: the lowest cost ($2.47 million) is 3.17% lower than baseline, 

while the highest cost ($3.27 million) is 18.66% higher than baseline. These results suggest that 

our predicted cost estimates are robust to uncertainty. 

To conduct a broader assessment of the stability of our cost analysis, we performed a 

perturbation-based sensitivity analysis, in which small random perturbations were introduced 

simultaneously for each parameter 𝛽𝑖 and the constant, 𝛽0 for 45 iterations. We then applied 𝜇 to 

our overall approach and compared the resulting estimates to the baseline cost estimate, 

$2,756,808. Figure 4.5 shows the results, in which there is minimal variation across all iterations, 

once again suggesting that our predicted cost estimates are robust to measurement and numerical 

error. 
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DISCUSSION 

We present a functional model and overall approach to determining measles contact counts 

retrospectively and assessing the economic impact of recent measles outbreaks to California’s 

public health infrastructure. For the 2014-15 U.S. multi-state measles outbreak, 10,702 

epidemiologically-linked contacts cost local and state public health agencies $3,743,000 - 

$4,085,000 ($349-$381 per contact, $29,000 - $31,000 per case) in outbreak control, contact 

investigations, laboratory testing, and hospitalizations. During the 2016-17 measles outbreak, 

California spent $338,000 ($318 per contact and $14,000 per case) from the expected 1063 

contacts. Combining costs from both outbreaks, the total economic burden is $4,081,000 to 

$4,424,000 throughout the state with an average $110,000 to $120,000 spent at the county-level. 

Overall, our estimated outbreak costs combine contact investigations, recommended isolation, 

laboratory screening of measles, hospitalization from cases experiencing complications from 

measles infection.   

Aside from shedding light on the economic impact of measles outbreaks in California, our 

model confirms several real-world epidemiological observations form Orange and San Francisco 

counties. During the 2014-15 outbreak, more epidemiologically-linked measles contacts should be 

expected in Orange County than in surrounding counties. The higher count would be due to the 

greater number of confirmed measles cases (n = 35), a more population dense area, and the 

outbreak epicenter occurring within the Disney theme parks area, located in Orange County. This 

evidence suggests a higher measles burden in Orange county. However, survey results revealed 

more counts in Los Angeles County (n = 2180) than Orange County (n = 1955). By predicting 

more counts in Los Angeles County (n = 2022) than Orange County (n = 1969), our model agrees 

with this epidemiological observation, which may also be due to immunization disparities between 
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counties. The threshold count at which this observation is reversed (i.e., more contacts in Orange 

than Los Angeles) is when we simulate either just one additional case in Orange County (n = 36) 

or one less case in Los Angeles (n = 28) (data not shown). Additionally, during the 2014-15 

outbreak, it was observed that although San Francisco County was the most population dense 

county in the state, the surrounding counties of Alameda, Marin and San Mateo all had confirmed 

measles cases, and the immunization status among public and private schools was < 90%, however, 

CA state health department did not confirm any measles cases in San Francisco County. By 

predicting no contacts within this county, our model agrees with this observation. In using our 

model to simulate 100 measles cases in San Francisco county and maintaining the outbreak 

epicenter in Orange County while keeping population density the same, we assessed if the absence 

of expected counts is an artifact or source of error within our model. We estimated that there were 

over 500 contacts in San Francisco county. These observations are likely due to underlying 

correlation dynamics among predictors. These observations support the ability of our model to 

possibly forecast measles contact trends.  

By describing measles contact trends, a further application of our model may be to help in 

outbreak response prospectively. Our methods could be used by communicable disease and control 

programs to predict the severity of a measles outbreak, to plan accordingly in allocating 

appropriate resources at a county-level, and to project the economic impact at the local and state 

levels. For PHLs, estimating contact count would allow laboratories to anticipate workload in 

screening suspected measles cases, which would allow appropriate planning for any surge capacity 

testing as well as anticipating possible laboratory costs. Additionally, our model may be applicable 

for evaluating the epidemiological impact of other vaccine preventable diseases such as mumps or 

Bordetella pertussis, both of which have had notable outbreaks in recent years (17, 18). However, 



132 
 

our model may need adjustment to account for various transmission factors for these other 

infectious diseases.  

Our study reveals the need for specific local and state guidelines for assessing outbreak 

costs and planning preparedness. Local public health agencies tasked with assessing the economic 

impact of a measles outbreak should make every effort to capture all response costs. Our surveys 

used to identify outbreak costs were created to capture most direct and indirect costs. However, 

due to our low response rate our estimates did not include costs associated with personnel over-

time, immunoglobulin prophylaxis, vaccines and mileage. These expenditures could represent 

significant costs to local and state public health departments (ref). We recommend that these costs 

be strongly emphasized in surveys as important determinants of local outbreak costs. Our study 

reveals the highly unpredictable costs of measles outbreaks at the local level. To lessen local costs, 

state public health agencies should have a policy in place that allows a state fiscal reserve to be 

maintained, which could be dispersed to local health departments rapidly in outbreak events for 

communicable control and prevention activities and laboratory testing. Rapid funding for at-risk 

counties and health jurisdictions would mitigate outbreak costs in local health departments. 

We acknowledge several limitations in our study that we encourage should be corrected 

for future measles outbreak economic analyses. Our surveys were designed to gather 

epidemiological and laboratory-based data from public health departments and laboratories but do 

not account for other response costs not reported by counties (e.g., outreach, education, additional 

laboratory testing, mileage, immunoglobulin prophylaxis, and personnel overtime). These 

additional costs mean that the costs reported should be viewed as underestimates/lower bounds on 

possible costs. Another concern regarding our surveys, which could not be anticipated were 

concurrent events that occurred while our surveys were deployed. Our surveys were released at 

https://insights.ovid.com/pubmed?pmid=25973936
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the end of April 2015 with data collection occurring over several months, which at the time, 

coincided when Zika began to draw attention of most public health agencies throughout CA. Thus, 

retroactive interference may be present when we captured empirical data. The baseline cost per 

contact from Los Angeles County used in our economic analyses is based on the payroll code used 

to document time spent on measles response. (A more detailed explanation of how this analysis 

was performed is provided in Appendix A). It is likely that staff could have forgotten to document 

the appropriate time worked; however, it is unknown how this bias could have impacted our 

results. Poisson, quasi-Poisson and negative binomial modeling are used to estimate count data 

with the latter two directly correcting for over dispersion of input data. Blumberg et al. presented 

a negative binomial model to determine the effective reproductive number from the 2014-15 Multi-

state Outbreak during the first-generation measles cases, which was 0.69 using a dispersion 

parameter of 0.27 (21). The dispersion parameter, k, allows for modeling the heterogeneity within 

datasets. However, when fitted to our observed data, while both the quasi-Poisson and negative 

binomial models have similar covariate standard errors, these methods have greater standard errors 

than the classic Poisson model we used for our economic analysis (data not shown). A similar 

observation was reported showing that negative binomial models created too much over dispersion 

in some data leading to overestimation of outbreak counts that when compared to other modeling 

methods, did not match observed data (22). We find that when our model is presented without 

standard error adjustment, we do not grossly overestimate or underestimate the expected counts in 

relation what was captured by our surveys and observed data. By accepting over dispersion within 

our model, we acknowledge that this may be a source of error in our cost estimates but it is unlikely 

due to the strong correlation between the observed and expected contact counts and because of the 

validity of our model. Our analysis of laboratory data assumes uniform testing across all CA PHLs. 
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However, despite the presence of recommended testing algorithms, we find measles testing greatly 

varies across PHLs dependent staff, availability of lab equipment and funding. While every effort 

was made to include true costs of testing in every CA PHL, it is unknown how many samples were 

tested in every PHL. We further do not know how many duplicate or discordant tests were 

performed and we further do not differentiate the obvious duplicate testing by both local and state. 

We also do not account for possible measles genotyping that may have been performed at county 

public health laboratories. Thus, we acknowledge our laboratory testing assumptions may bias our 

economic analyses.  

Despite measles elimination in the US, measles outbreaks continue to occur, and as our 

study points out, responding to these outbreaks is costly. As previous economic studies have 

reported, measles outbreaks require concerted efforts across public health agencies and until 

measles elimination goals are reached in endemic areas around the world or until vaccination rates 

increase across all social groups domestically, measles outbreaks will continue. As of this writing, 

the Centers for Disease Control and Prevention (CDC) reports 117 measles cases recorded from 

13 states (California, Florida, Kansas, Maine, Maryland, Michigan, Minnesota, Nebraska, New 

Jersey, New York, Pennsylvania, Utah and Washington) (23). Without change or even a slight 

decline in national MMR vaccination rates, public health sector costs will continue to accrue 

because there are pockets in our population where this is a substantial drop in vaccination rates 

leading to localized risk, even though the overall average rate only dips slightly (24).
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Figure 4.1. Laboratory and Communicable Disease Control survey and follow-up results 

from 2014-2015 U.S. Multi-state measles outbreak. a) Costs associated from outbreak control 

and laboratory response. Not shown is City of Berkley reported $25,792.88 in communicable 

disease response expenses. Costs adjusted to CPI-U (2017 US$). b) Denotes observed 

susceptible contacts investigated by Disease Control which include CA counties with and 

without (*) confirmed cases. 
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Figure 4.2. Expected measles contacts in California counties during the 2014-15 U.S. multi-

state measles outbreak. Determined from statistical modeling using covariates 𝑥1: confirmed 

cases, 𝑥2: distance from outbreak epicenter, and 𝑥3: CA county population density 
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Figure 4.3. Communicable control programs and public health laboratories estimated total costs from modeled expected 

epidemiologically-linked measles contacts (n=10,591) and confirmed cases (n=131) in CA counties. Hospitalization costs are not 

included.
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Figure 4.4. Poisson model validation of expected counts versus observed counts (from our 

survey) with 95% CI.  R2 = 0.945, p <0.0001. 
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Figure 4.5. Perturbation-based Sensitivity Analysis with 45 iterations. Each iteration 

introduces small random perturbations simultaneously applied to all covariates and intercept. 

Dashed line represents the expected cost from our model and standardization approach: 

$2,756,808. 
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Table 4.1. Communicable disease response and Laboratory response costs from expected 

and observed data stratified by county. All costs CPI adjusted (2017 US$). 
 

California County Communicable Disease Response Laboratory Response 

Alameda  $330,116   $985  

Butte  $7,706   $356  

Contra Costa  $15,585   $723  

El Dorado  $8,401   $98  

Fresno  $96,930   $5,427  

Humboldt  $19,202   $733  

Imperial  $0  $0 

Kern  $68,890   $804  

Kings  $56,953   $665  

Los Angeles  $543,865   $4,851  

Madera  $39,699   $463  

Merced  $37,672   $1,551  

Monterey  $34,233   $1,403  

Napa/Solano/Yolo/Marin* $41,469 $12,133 $14,776 $12,921 $1,455 

Nevada  $1,000   $46  

Orange  $488,887   $23,069  

Placer  $8,927   $104  

Plumas  $250   $3  

Riverside  $171,525   $7,221  

Sacramento  $9,780   $435  

San Bernardino  $239,927   $5,093  

San Diego  $234,653   $11,932  

San Francisco  $12   $-    

San Joaquin  $23,920   $40  

San Luis Obispo  $4,001   $8,884  

San Mateo  $20,175   $1,168  

Santa Barbara  $73,659   $860  

Santa Clara  $17,618   $1,109  

Shasta  $2,328   $27  

Sierra $0 $0 

Sonoma  $8,110   $447  

Stanislaus  $26,622   $311  

Tulare  $59,356   $4,056  

Ventura  $232,932   $10,931  

TOTAL $2,964,235 $95,248 

*Napa-Solano-Yolo-Marin counties have individual public health departments but share the same PHL  
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Table 4.2. One-way Sensitivity Analysis with percent difference from baseline cost. 

Baseline costs includes only communicable disease and laboratory expenses only. 

 

Coefficient 
Name 

Baseline 
Value 

Baseline 
Cost 

Coefficient Range in 
Sensitivity Analysis 

Cost Range in 
Sensitivity Analysis 

% Difference 
from Baseline 

Cost 

Pop. Density -0.000400 $ 2,756,808 (-0.00048, -0.000319) ($2.47 mil, $3.12 mil) (-3.17, 3.67) 
Cases 0.0926172 $ 2,756,808 (0.0826, 0.103) ($2.36 mil, $3.27 mil) (-14.25,18.66) 

(Distance/100)2 -0.097036 $ 2,756,808 (-0.0861, -0.108) ($2.67 mil, $2.86 mil) (-10.22, 13.55) 
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CHAPTER 5 

Overarching Conclusions and Recommendations for Future Studies 

 

INTRODUCTION 

New approaches in local and state surveillance methods and technologies are required to 

address the high burden of circulating infectious diseases. Surveillance is a systems effort 

conducted by a broad array of public health agencies, a key component of which is the local public 

health laboratory (PHL). PHLs are tasked with laboratory testing to confirm or rule out infection 

and identifying outbreaks (1). While PHLs have historically relied on culture and serology, 

molecular methods, such as respiratory multiplex assays have the capacity to greatly mitigate 

morbidity and mortality due to RTIs by detecting infection early during the course of disease. For 

surveillance, early detection allows early treatment limiting the further spread of disease. 

Additionally, multiplex methods meet one of the long term goals of Healthy People 2020 of 

improving surveillance of infectious diseases (2). However, before these assays enhance 

surveillance, a key challenge is in how these assays are evaluated for diagnostic performance. 

Traditionally, diagnostic assays have relied on the use of Sensitivity and Specificity to assess 

performance, however these assays are often evaluated without recommendations for surveillance 

purposes. Another challenge is in how the same multiplex assays perform in different populations 

given variable prevalence of disease. A final challenge for surveillance is in assessing economic 

impact to evaluate existing disease prevention and control strategies and policies.  

To address these challenges, we present useful diagnostic clinical and epidemiological 

measures that compare and contrast multiplex respiratory assays on a per target basis regardless of 

assay categorizing the strength of each assay for surveillance in Chapter 2. In Chapter 3, we 



 

146 

 

describe how these measures have statistical inference application for environmental surveillance 

allowing control and prevention resources to be targeted to specific populations in need. In 

Chapter 4, we present a modeling approach for determining the number of epidemiologically-

linked contacts during a measles outbreak, which we then used to estimate costs to local and state 

communicable control and laboratory agencies. Although the work in Chapters 3 and 4 focuses 

on case studies in California, the results from this work have broad implications for improving 

surveillance of RTIs and reducing costs of measles outbreaks in other jurisdictions. Collectively, 

these studies provide tools that can be used strengthen control and prevention efforts in local and 

state public health laboratories and agencies.  

 

IMPROVING SURVEILLANCE USING MULTIPLEX RESPIRATORY ASSAYS 

Classification of respiratory multiplex assays according to their utility for surveillance 

can help drive improved performance of these assays. In vitro diagnostic assays can be classified 

by different criteria. For example, the federal criteria set by the FDA categorizes in vitro diagnostic 

assays by complexity: waived, moderate or high complexity (3). By evaluating diagnostic 

performance through the use of ROC space plots (Chapter 2) respiratory multiplex assays can be 

further classified as either “liberal” or “conservative” assays based on true positive and false 

positive rates. We describe how these measures are extended to specific analytes as well. This 

additional classification scheme could serve to identify the best performing assay for surveillance 

and clinical needs. For manufacturers, this data could be used to market existing diagnostic assays 

for either surveillance or clinical use or both. Classifying multiplex assays by ROC space plots 

strengthens the role of communicable disease control programs and public health laboratories by 

identifying specific assays that should be used for surveillance of select targets. 
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 In Chapter 2, we present other diagnostic performance measures, beyond just ROC space 

plots, that should be considered when evaluating respiratory multiplex assays for surveillance. In 

comparison studies, Sensitivity (Sen) and Specificity (Spe) are often used to evaluate assay 

performance (4, 5). While these measures are often touted as having universal application 

unaffected by disease prevalence, meta-analysis studies have shown the contrary (6). We 

recommend that the additional diagnostic measures described in Chapter 2 (i.e., LRs, Diagnostic 

Odds Ratios and Youden Index) be regularly used for comparison of respiratory multiplex assays 

to evaluate performance for surveillance purposes. Because disease prevalence may be included 

in the interpretation of these measures, they provide a powerful tool in comparing and contrasting 

respiratory multiplex assay performance in different populations. For example, we describe the 

use of nomograms in a vulnerable population using LRs and disease prevalence (Chapter 3), 

which together provide a robust evaluation of the performance of respiratory multiplex assays in 

specific populations. 

 

Highlighting diagnostic performance differences between multiplex assays will help 

manufacturers identify multiplex targets that need improvement. One of the challenges for 

manufacturers in releasing multiplex assays and subsequently obtaining regulatory approval to 

market these assays, is addressing the tradeoff between detecting specific viruses and bacteria and 

minimizing the cross-reactivity with other targets. For instance, low detection of adenovirus 

respiratory tract infections in immunocompromised patients using the BioFire FilmArray RP has 

been a concern based on real-world performance, but has since improved with the release of an 

updated version of the assay (7). To address poor performing targets, the ROC space plots 

described in Chapter 2 can provide guidance for manufacturers to identify problematic targets 
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during assay development. Using the diagnostic performance measures discussed in Chapter 2, 

targets with a low true positive rate or a high false positive rate could be identified and improved 

prior to release. Additionally, manufacturers could utilize ROC space plots to develop assays 

specific for surveillance purposes by improving liberal target calls or similarly, develop assays for 

specific for clinical diagnosis by improving conservative target calls. By developing of 

surveillance-specific assays separate from clinical-specific assays, manufacturers could target 

separate diagnostic markets broadening their assay portfolio all the while increasing revenue. 

There is potential for manufacturers in using and applying additional diagnostic performance 

measures during assay development and upon assay release. 

 

Respiratory multiplex assays can fulfill critical public health initiatives. Respiratory 

multiplex assays also have the potential to contribute to the development of Precision Public 

Health (PPH), an important new public health initiative. PPH is a budding framework that began 

in 2015 with the introduction of the Precision Medicine Initiative (PMI) under the Obama 

Administration (8, 9). PMI has the intention of improving health care management through an 

individualized approach to disease. At the core of PMI is the realization that health status is an 

integrated relationship between genetic, behavioral and environmental influences that is unique to 

every patient (10). Similarly, PPH depends on the assumption that disease and disease transmission 

are not random but reflect population differences due to several characteristics unique to 

populations. The goal of PPH is to identify populations differences that drive the distribution of 

disease and disease transmission. A key component of this framework is the efficient use of data 

to guide interventions at the population level (11), which can be achieved by using “precise” 

disease tracking to identify disease trends. Respiratory multiplex technologies can fulfill PPH by 
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providing surveillance programs by precisely identifying etiological characteristics of disease in 

populations. And because current multiplex assays can be directly linked to laboratory information 

systems, reporting data can be quickly analyzed and added to existing databases that collectively 

help in local surveillance efforts. 

 

APPLICATION OF STATISTICAL INFERENCES FOR SURVEILLANCE USING 

RESPIRATORY MULTIPLEX ASSAYS  

Multivariate nomograms for respiratory tract infections surveillance. The work 

described in Chapters 2 and 3 highlights how multivariate nomograms might offer an improved 

approach for determining how useful a particular assay is for surveillance purposes. The traditional 

Fagan nomogram, which is typically used by clinicians to determine which assay has the greatest 

utility for clinical diagnosis of a particular disease, consists of two predictive scales: the prevalence 

of disease (pre-test probability) and the diagnostic performance of the assay being used. These 

scales are used to arrive at a post-test probability that is weighted with the values and assumptions 

of the predictor scales (12). However, within the field of nomography there is also a multivariate 

approach (13-15). A multivariate nomogram for RTI surveillance could incorporate prevalence of 

disease, different diagnostic performance measures, and other population characteristics to predict 

disease burden in a specific population. However, two points should be considered. First, local 

public health agencies differ in terms of what multiplex respiratory assays are available and how 

they are used. Seldom do public health laboratories have multiple resources to identify the same 

pathogen. Thus, likelihood ratios (LRs) would vary across laboratories dependent on what 

respiratory multiplex assays are available. Additionally, population differences (e.g., 

demographics, co-morbidities, environmental) will increase or decrease the severity and spread of 
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disease in a population. In light of these variations, multivariate nomograms could be used to assess 

population risk in delaying response to an outbreak. Ultimately, this approach would allow 

decision makers to evaluate control needs based on specific population needs.  

 

Precise population Bayesian analysis. Local public health efforts to control and prevent 

disease can be improved by population-specific statistical inferences used in Fagan nomograms. 

Fagan nomograms are visual representations of Bayes’ Theorem in which prior and conditional 

probabilities are used to estimate a posterior probability (12). The application of Bayes’ Theorem 

that we employed in Chapter 3 uses a population approach instead of the traditional clinical use 

of Fagan nomograms. Based on extensive literature search, we are the first to use Fagan 

nomograms in a population specific approach. In calculating the post-test probability of 

environmental shedding due to a symptomatic resident, we use a baseline prevalence from the 

same population and not from any other source. This approach in including probabilities from only 

those populations from which prior and conditional probabilities are calculated minimizes bias or 

error that may be introduced when using probabilities from other populations. This allows a precise 

interpretation of disease burden probabilities specific to individual populations, which helps local 

public health efforts (i.e., control and prevention, public health laboratory algorithms and clinical 

diagnoses). 

 

THE NEXT DIAGNOSTIC FRONTIER FOR DISEASE SURVEILLANCE  

In reviewing and testing the capabilities of multiplexed assays, one cannot help wondering 

whether it is worth spending time on optimizing this technology for surveillance of infectious 

disease given how rapidly whole genome sequencing (WGS), particularly with the advent of next 
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generation sequencing methods, has supplanted multiplexed PCR in the research realm. However, 

even though WGS has eclipsed multiplexed PCR as a tool in basic research, WGS still poses 

significant challenges when it comes to routine disease surveillance. Whole genome sequencing 

has the advantage of providing comprehensive genomic information which can be used to identify 

genetic variations from a reference strain or de novo assembly of possible new variants. As a result, 

WGS has many advantages over multiplexed PCR methods for identification, typing, resistance 

detection, and virulence profiling (16). The utility of WGS for surveillance of influenza and B. 

pertussis has been demonstrated (17, 18). Several next generation sequencing (NGS) platforms are 

commercially available (e.g., HiSeq and Miseq (Illumina), Ion Torrent (Thermo Fisher), Sequel 

(Pacific Biosciences), 454 GS Junior (Roche), MiniION and PromethION (Oxford Nanopore) that 

can be used for this type of surveillance work. These platforms differ in sequencing chemistry, 

data accuracy, application, read length, ease of use, run time, throughput and price. Comparative 

studies showing differences in analytical sensitivity (19) and accuracy based on single nucleotide 

polymorphisms (20) can be used to evaluate diagnostic performance. However, due to the vast 

amounts of data generated, NGS platforms present a considerable regulatory challenge (21). A 

framework and appropriate performance measures are needed to standardize comparisons allowing 

these newer technologies to be used for public health surveillance. 

As clinical and public health laboratories adopt NGS platforms, for public health 

surveillance managing NGS data is a present concern. NGS technologies are capable of interfacing 

directly with laboratory information systems (LIMS), however each sequencing run holds 

considerable data that is impossible to manage with existing LIMS systems. For example, 

Illumina’s HiSeq-4000 system generates roughly 1300-1500 GB/run using 2 x 150 bp reads (22). 

Additionally, bioinformatic pipelines are required to tease out, analyze and interpret information 
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from NGS data. However, for many laboratories the computational expertise necessary to execute 

pipelines is lacking (23). Future research efforts in public health surveillance should focus on big 

data analytics and data management.  

 

LOCAL AND STATE EPIDEMIOLOGICAL AND ECONOMIC BURDEN OF RECENT 

CALIFORNIA MEALSES OUTBREAKS 

Epidemiological assessment of outbreaks. The model presented in Chapter 4 potentially 

benefits communicable disease programs for controlling and preventing future measles outbreaks 

as well as other vaccine preventable diseases. This model was formulated and optimized to include 

several dynamic parameters: confirmed cases, population density and epicenter distance. Our 

model differs from previous economic measles outbreak models which only included confirmed 

cases, contacts investigated and duration of outbreak (24). Our model allows for numerating counts 

of epidemiological-linked measles contacts at a local level. By estimating which counties have 

greater contact counts, our model reveals local populations where disease burden is greatest 

helping communicable disease programs allocate resources to counties that have the greatest need. 

Additionally, while our model bases population density on 2014 census data and the epicenter of 

the 2014-15 U.S. Multi-state measles outbreak being Orange County, simulations that exchange 

and substitute these parameters specific to other outbreaks would be plausible. For instance, when 

applying our model to the 2016-17 measles outbreak, our analysis substitutes population densities 

to reflect 2016 census estimates as well as setting the outbreak epicenter in Los Angeles County 

rather than Orange County (Chapter 4). Our model may be used for future measles outbreak 

scenarios to estimate the epidemiological burden of disease at a local level. Likewise, the model 

may also be useful for estimating the epidemiological burden of other vaccine preventable diseases 



 

153 

 

that have recently sparked outbreaks across the U.S., such as mumps, Bordetella pertussis and 

bacterial meningitis (25-27). 

 

Economic evaluation of public health laboratory outbreak response. Previous economic 

analysis studies of past measles outbreaks have given little attention to public health laboratory 

response costs (24, 28). In Chapter 4, we highlight the importance of accounting for public health 

laboratory costs by reporting the combined public health laboratory costs for the 2014-15 multi-

state and the 2016-17 measles outbreaks (~$107,000). These costs, while not as great as the 

combined local communicable disease control costs (~3.2 mil) are still significant especially for 

smaller local public health agencies. Our method of calculating local laboratory costs focuses on 

capturing specific local data such as salary information and type of diagnostic testing performed. 

The importance of these gathering this local data allows a much more focused cost analysis at the 

local level. We recommend that future outbreak analysis avoid generalizing laboratory response 

costs to fully reveal the impact of local outbreak response. 

 

CONCLUSION  

 The future of surveillance will be marked by the introduction of novel methods and 

technologies. The challenge for control and prevention efforts in the next decade will be to utilize 

new strategies for detecting respiratory pathogens as multiplex diagnostic platforms become 

broader and much more rapid. A primary challenge within public health will be to ensure that these 

platforms are useful not only for clinical point of care but also for surveillance purposes. NGS 

systems are powerful diagnostic tools that have only been used to a limited extent thus far for 

routine public health surveillance efforts, but with established regulatory standards and the 
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development of bioinformatics pipelines, NGS has the potential to replace most PCR-based 

methods for surveillance. Additionally, novel epidemiological and economic models are needed 

for other vaccine preventable diseases to better understand transmission patterns, identify high-

risk groups and provide further proof of the effectiveness of vaccines. Novel technologies will 

drive the future of surveillance.  
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160 

 

DETAILED METHODS AND QUESTIONNAIRES USED TO GATHER DATA FROM 

LOCAL HEALTH DEPARTMENTS IN CALIFORNIA ON MEASLES OUTBREAK 

COSTS 

The public health epidemiologic and PHL questionnaires were made electronically 

available accessible via web link for 18 months beginning in April 2015. Aggressive follow-up 

was conducted among non-respondents. For the disease controller questionnaire, we asked about 

the number of personnel, wages, hours spent per full time employee, fringe benefits, overhead 

costs and when reported the cost of post-exposure prophylaxis. We additionally asked disease 

controllers to disclose how many contacts were investigated in their county and if any case was 

recommended for self-isolation along with the appropriate cost. For both disease controller and 

laboratory questionnaires we asked if, as a result of the outbreak, there was any delay in other 

projects, surveillance or disease control efforts. For the laboratory questionnaire, respondents were 

asked about number of personnel, wages, hours spent per full-time employee (FTE), fringe 

benefits, overhead rate, courier cost and the general cost of each laboratory test used for confirming 

a susceptible case or exposure (i.e., PCR, IgG EIA, IgM IFA, etc.). The abbreviated surveys sent 

to CDPH asked questions regarding outbreak response time including number of weeks spent, 

average hours per week, overtime as well as salary information. We assume a 30% benefit rate to 

account for additional costs associated with salary. state laboratory questions asked cost and 

quantity of the following diagnostic tests: PCR, IgG EIA, IgG IFA, IgM EIA, IgM IFA, culture 

and genotyping. We also asked questions regarding send-outs and shipping costs. 
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Abbreviated LABORATORY Survey 

Economic Impact of the U.S. Multi-state Measles Outbreak 2014-2015 in California 

 

Q1. What is your name: __________________________________________________ 

 

Q2. What is your title: ___________________________________________________ 

 

Q3. What is your department: _____________________________________________ 

 

Q4. What is your health jurisdiction/county: ________________________________________ 

 

Staff Questions: 

Q5. How many of each of the following staff type were involved in the outbreak response? 

      QUANT. Approx hrs spent on response/day* 

Microbiologist   ______  __________ 

Laboratory Assistant  ______  __________ 

Clerical/Admin Support   ______  __________ 

Manager   ______  __________  

Student Worker/ Intern  ______  __________ 

Other (please specify)  ______  __________ 

_________________ 

Other (please specify)  _______             ___________              

_________________ 
*Outbreak lasted from Dec ’14- Apr ’15. 

 

Q6. What is your county Employee Benefits (EB) rate? (eg 28%): ______________ 

 

Q7. Please give your general overhead rate (ie indirect costs) for your department: _____________ 

 

Laboratory Testing Questions: 

Q8. How many of each of the follow methods to test/confirm measles specimens were performed during 

this outbreak? 

     QUANT.     COST/test* 

PCR    ______      $_______ 

Serology, IgG, EIA ______       $_______ 

Serology, IgG, IFA   ______       $_______  

Serology, IgM, IFA ______       $_______ 

Serology, IgM, EIA  ______      $_______ 

Culture   ______      $_______ 

Other (please specify) ______      $_______ 

Sendouts**  ______  
*Include only the price of the reagent and test, not lab labor costs 

**How many samples were sent out to the State laboratory or other laboratory for confirmatory or add’tl testing 

 

Q9. How many confirmed cases occurred within your county/jurisdiction? _____ 

 

Q10. Please specify and list any miscellaneous costs: _____________________________________ 
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DETAILED METHODS FOR ANALYSIS OF LOS ANGELES COUNTY DATA FOR 

MEASLES OUTBREAK 

During the beginning of the outbreak, all staff of the Los Angeles Department of Public 

Health was allowed to input a special payroll code in their timesheets to account for any time spent 

in responding to the 2014 measles outbreak. Payroll and finance data was used as a baseline to 

approximate the cost per contact in Los Angeles county ($250). In total, our baseline cost per 

contact included direct (salary and fringe benefits) and indirect expenses (operation and 

maintenance costs for facilities and equipment) from several internal subdivisions. Costs 

associated with personnel over-time, immunoglobulin prophylaxis, and mileage were not included. 

A summary of expenses as defined by timesheet and purchasing codes was requested from our 

Finance Management Department within the Los Angeles Public Health Department. From this 

summary expense we subtracted all costs associated with the Los Angeles County Public Health 

Laboratories which gave us a total cost of the outbreak within LAC as $545,000, or $250 per 

contact among the 2180 contacts (confirmed by our Immunization Program) within our county.  

 

DETAILED METHODS FOR STANDARDIZATION OF PUBLIC HEALTH 

LABORATORY DATA FOR MEASLES OUTBREAK 

Based on national and the state guidelines, it is recommended that when receiving suspected 

measles samples, local public health labs should perform measles IgG/IgM serological testing and 

PCR (where available) depending on specimen type. However, based on survey results it was clear 

that some CA PHLs do not perform measles testing and instead send out specimens to the state 

laboratory for testing and confirmation (25). While serology testing is performed for determining 

exposure. the preferred method for confirming an acute measles case is PCR (26). Additionally, 
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discordant or follow-up testing is also performed depending on initial laboratory results. This 

testing algorithm presents a considerable challenge in assessing the overall laboratory response to 

any outbreak that affects more than one county. Thus, a standardized approach was taken as 

described in the text. 




