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A convolutional neural network STIFMap
reveals associations between stromal
stiffness and EMT in breast cancer

Connor Stashko1,2, Mary-Kate Hayward 1,2,12, Jason J. Northey 1,2,12,
Neil Pearson3, Alastair J. Ironside4, Johnathon N. Lakins1,2, Roger Oria 1,2,
Marie-Anne Goyette5, Lakyn Mayo 6, Hege G. Russnes 7,8, E. Shelley Hwang9,
Matthew L. Kutys 6,10, Kornelia Polyak 5 & Valerie M. Weaver 1,2,10,11

Intratumor heterogeneity associates with poor patient outcome. Stromal
stiffening also accompanies cancer. Whether cancers demonstrate stiffness
heterogeneity, and if this is linked to tumor cell heterogeneity remains unclear.
We developed a method to measure the stiffness heterogeneity in human
breast tumors that quantifies the stromal stiffness each cell experiences and
permits visual registration with biomarkers of tumor progression. We present
Spatially Transformed Inferential Force Map (STIFMap) which exploits com-
puter vision toprecisely automate atomic forcemicroscopy (AFM) indentation
combined with a trained convolutional neural network to predict stromal
elasticity with micron-resolution using collagen morphological features and
ground truth AFM data. We registered high-elasticity regions within human
breast tumors colocalizing with markers of mechanical activation and an
epithelial-to-mesenchymal transition (EMT). The findings highlight the utility
of STIFMap to assess mechanical heterogeneity of human tumors across
length scales from single cells to whole tissues and implicates stromal stiffness
in tumor cell heterogeneity.

Intratumor heterogeneity (ITH) is a feature of tumors including breast
cancers1–4. Tumor heterogeneity predicts poor patient outcome as
diversification of genetic, phenotypic and behavioral characteristics
within a tumor support progression, metastasis, and treatment
resistance5–7. Accordingly, much effort has been directed towards
defining ITH and clarifying how it drives tumorigenesis8,9. Towards this
goal, the ability to decipher the causal relationship between cancer
heterogeneity and tumor phenotype relies heavily on the availability of

accurate and quantitativemethods with which tomeasure and analyze
individual features of the tumor.

Tumor tissue variability ismediated, inpart, by intrinsic stochastic
gene expression as well as by genetic and epigenetic differences in the
transformed cells. Approaches including genetic tags and high-
throughput sequencing have permitted researchers to detect geno-
mic abnormalities at the single cell level to provide important insights
into clonal evolution and have linked these findings to patient
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survival10–12. Spatial RNA sequencing (RNAseq) analysis has revealed
underlying spatial associations between stress response gene expres-
sion profiles in cancer cells and inflammatory fibroblast gene
signatures13. Indeed, tumors are organs comprised of transformed
cells interacting with a diverse cellular and acellular stroma. Con-
sistently, in situ multiplexing approaches have revealed broad diver-
sity with respect to the frequency and phenotype of tumor-infiltrating
immune cells and have used these findings to predict patient out-
comes and immune checkpoint inhibitor responsiveness14. In situ
immunofluorescence has also illustrated wide variability in oncogenic
signaling, cellular metabolism and stress responsiveness between the
epithelial and stromal cells within the hypoxic tumor core, and those
cells that localize to the fibrotic tumor periphery, that predict treat-
ment response in patients15,16.

A feature of all solid tumors is the remodeled and crosslinked
extracellular matrix (ECM) that generates a stiffened, fibrotic stroma
characterized by markedly reorganized interstitial collagens17. A stiff
ECM modifies cell and nuclear shape, disrupts tissue organization,
promotes cell growth, viability, and invasion, alters gene expression,
and can induce an epithelial-to-mesenchymal transition (EMT) in cells
cultured in two- and three-dimensional substrates18. Within experi-
mental tumors in vivo, the stiffened tumor ECM promotes solid stress,
disrupts vascular integrity to drive hypoxia and tumor aggression, and
compromises drug delivery19. The stiff in vivo tumor ECM also
increases cytokine and chemokine expression to promotemyeloid cell
infiltration and may impede CD8 T cell infiltration, migration, and
function20. Clinically, the level of tissue fibrosis correlates with worse
patient outcome, and in situ analysis of human breast cancer tissues
revealed that a stiff, fibrotic ECM associates with tumor progression as
well as clinical subtype21–23. Whether stromal stiffness heterogeneity
tracks with tumor cell heterogeneity and contributes to human breast
cancer aggression remains unclear.

To clarify links between stromal stiffness heterogeneity and
tumor cell heterogeneity, approaches are needed that can be com-
bined with state-of-the-art spatial genomics, proteomics, and multi-
plexing protocols24–26. Although techniques do exist with which to
monitor ECM heterogeneity and organization including H&E, second-
harmonic generation (SHG), trichrome, and picrosirius red (PS red)
staining, none can be directly combined with immunostaining on the
same slide21,27,28. Moreover, these protocols do not provide quantita-
tive information regarding mechanically soft and stiff regions within
the tumor. Methods to directly measure ECM stiffness include shear
rheology, magnetic resonance elastography, sonoelastography, and
unconfined compression analysis29–32. However, these approaches do
not provide high resolution spatial and morphological information,
particularlywith respect to the state of the collagenous ECM.Although
stromal stiffness can be measured directly with sub-micron resolution
using AFM, current AFM methods are time-consuming, poorly
resolved spatially, and require specialized equipment not readily
available to most research and clinical laboratories33,34. An automated
AFM developed by Plodinec and colleagues can rapidly quantify the
material properties of tumor biopsies, but the method does not pro-
vide imaging of the probed tissue, nor micron resolution positioning
of where precisely measurements were taken. Thus, while the
approach is useful for characterizing cell and tissue biomechanical
properties, it is not feasible to link the AFM elasticity measurements
obtained of the ECM with biological markers of tumor and stromal
phenotype, genotype, and heterogeneity35. Finally, all of the current
approaches used to quantify cell and stromal stiffness require
manipulation of either fresh or cryopreserved tissue, precluding
comprehensive spatial analysis of elasticity in archived formalin-fixed
paraffin-embedded (FFPE) sections in tissue banks.

Here, we present an approach termed Spatially Transformed
Inferential Force Map (STIFMap), that is able to visualize the hetero-
geneous stiffness landscape of normal and tumor breast tissues with

micron-resolution and can also spatially register this tension pheno-
type together with biological markers of tumor progression and his-
tophenotype at micron resolution. The method works on both
cryopreserved and FFPE tissues and employs a single quick, inexpen-
sive collagen stain that is visualized with standard fluorescence
microscopy. The approach permits simultaneous quantification of the
tension landscapeof the stromal ECMtogetherwith co-staining for cell
or ECM biomarkers of interest, and lends itself to quick assessment of
the impact of biophysical ECM heterogeneity on tumor progression.
The method can be readily integrated with spatial proteomics and
genomics, as well as standard protein marker multiplexing protocols.
To illustrate the potential of the approach, we applied STIFMap to
explore the relationship between stromal stiffness heterogeneity and
markers of mechanical activation and tumor progression in human
breast cancers.Wewereable to link tissuemechanicswith indicatorsof
mechanosignaling and biomarkers of EMT previously implicated in
tumor progression and treatment resistance36,37. The results highlight
the potential utility of using stromal biophysical features to monitor
tumor heterogeneity and clarify links to tumor behavior and possibly
even patient outcome.

Results
Design and development of an automated AFM system
AFM has emerged as themethod of choice to spatially analyze stromal
stiffness at micron resolution in tumors38,39. However, executing AFM
analysis is cumbersome, specialized, and not easily amenable to spatial
registration with sequential in situ analysis and imaging. To improve
upon these pitfalls, we developed AutoAFM to facilitate high-
throughput, spatially-resolved acquisition of AFM data. We automated
AFMmovements by affixing servomotors onto the X and Y translation
knobs of the AFM stage with custom-made, 3D-printed motor mounts
(Fig. 1a, b, Supplementary Table 1, Supplementary Fig. 1a, b, Methods).
Scripts were developed to enable the AFM to move along a user-
specified path (Fig. 1c, d). The system was designed so that as the AFM
moves from one point to the next, a feedback loop reports on the
current position of the AFM and fine-tunes movements to poke the
specimen within a user-designated tolerance of the desired positions.
All movements and imaging were designed to be conducted using
epifluorescence of propidium iodide-stained (PI) cells to guide the
measurements. This strategy was chosen to remove artifacts from the
cantilever shadow that could potentially be introduced into the images
during stitching (Supplementary Fig. 1c). The system was engineered
so that a completed AutoAFM scan will provide the location of each
AFM force curve acquired over the tissue section being measured
(Fig. 1e, f). The AutoAFMwas designed such that scans can be acquired
across as many points as the operator desires and are only spatially
limited by the overall X-Y range of the AFM stage.

Assessment of AutoAFM precision and validation of AFM
measurements
To validate movements of the AutoAFM, a series of elevated PDMS
beams of varying width were fabricated using photolithography fol-
lowed by PDMS soft lithography (Supplementary Fig. 1d). Using this
strategy, the height at which the AFMcontacts the sample is known, so
force curves collected on the beams registered as much higher than
those collected on the surrounding PDMS surface. To determine the
resolution limit of AutoAFM, we used the AFM to ‘walk’ along each
beam and measured the accuracy of the AFM to contact the beam at
each width. The measurements indicated that movements of the
automated AFM are precise to within a few microns (Supplemen-
tary Fig. 1e).

The Young’s Modulus of an AFM cantilever is calibrated before
measurements are performed (Methods). Nevertheless, the cantilever
modulus can change over the course of data collection due to protein
and cell debris deposition onto the cantilever. To ensure that the
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stiffness of the cantilever remained consistent throughout the mea-
surements, we measured the elasticity of polyacrylamide (PA) gels of
known Young’s Moduli before and after probing each sample. By
comparing the stiffnesses pre- and post-sampling, we observed a 1:1
relationship (Supplementary Fig. 2a), indicating no changes in stiffness
of the cantilever had occurred during themeasurements. If the tip was
contaminated, the data wouldhave been consistently above/below the
1:1 line (140 Pa gels p-value = 0.551 and 1 kPa gels p-value = 0.970. Wil-
coxon Rank-SumTest). Additionally, the elasticities of the PA gels used
were also validated independently using shear rheology (Supplemen-
tary Fig. 2a). AFM measurements on each tissue were collected over
1–2 h. To verify that tissues did not degrade over the timespan of AFM
measurements, we collected force curves at the same tissue positions
over a defined length of time. AFM measurements collected in the
same positions every 30min for three hours revealed no noticeable

differences in elasticity, indicating that tissue degradation did not
occur over the timespan that AutoAFM measurements were acquired
for themeasurements conducted in the current study (Supplementary
Fig. 2b). Because tissues are viscoelastic substrates, the rate of force
loading impacts the resulting force curve40. Accordingly, highly vis-
cous substrates will appear stiffer when poked faster if they are
assumed to be purely elastic. To address this potential anomaly, an
AFM velocity of 2μm/s was chosen since Young’s Moduli measure-
ments are constant at this rate (Supplementary Fig. 2c).

To avoid any potential for tip fouling, we chose AFM cantilevers
that were triangular with 5μm spherical beads incorporated onto the
cantilever tip (Supplementary Fig. 2d41;). To stitch together images
taken during AutoAFM, the bead location was estimated for each
image. To estimate the bead location within the image, the average
image for each AutoAFM scan was taken, which revealed a faint but
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AutoAFM collecting AFM measurements over a whole tissue (e) and a region of
interest (f) in a breast tumor section. 200 experiments were conducted obtaining
reproducible results. Scale bar, 100μm.
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distinct outline of the cantilever (Supplementary Fig. 2e). This occur-
red because the stronger PI signals from the cells move during Auto-
AFM acquisition, but the faint cantilever image remains in the same
position throughout. Five cantilevers with known bead locations were
aligned with the average scan images to indicate the actual position of
the bead during imaging (Supplementary Fig. 2f, g).

Overlaying autoAFM measurements onto confocal images
In an effort to ensure visual spatial alignment between tissue mor-
phological features and elasticity measurements, the AutoAFM mea-
surements were overlaid with nuclear staining via alignment with
AutoAFMPI positions. DAPImeasurementswere collected via confocal
imaging at either 40× or 63× magnification, while AutoAFM PI images
were collected at 20×magnification. A pipeline was then developed to
translate low-resolution AutoAFM images onto high-resolution DAPI
imaging (code available onGitHub). To do so, the two imageswerefirst
manually pre-aligned so that the fields of view were similar, and the
confocal DAPI image was down sampled to more closely resemble the
resolution of the AutoAFM image (Supplementary Fig. 3a). Thereafter,
a Fourier-Mellin Transform was applied to determine the scale and
rotation of the AutoAFM image relative to the DAPI image42. Finally,
translation between the two images was computed using phase con-
trast cross-correlation. Using this transformation matrix, AFM posi-
tions were mapped onto the high-resolution images (Supplementary
Fig. 3b). The average mapping error was found to be 2.57μm, esti-
mated bymonitoring nuclei positions before and after transformation
(95% confidence interval: 2.09–3.06μm) (Supplementary Fig. 3c).

Deep learning model of tissue Young’s Modulus from collagen
morphology
Interstitial fibrillar collagens are the major structural component of
breast tissue43–46. As such, we reasoned that the elasticity of breast
tissue could be inferred based on the morphology of interstitial col-
lagen fibers, particularly given that stiff collagen fibers are thick and
highly linear whereas more compliant collagen fibers are typically
more dispersed, relaxed, and visually present as wavy fibers47.
Althoughmost investigators have used SHG imaging or PS red staining
to visualize interstitial fibrillar collagens, collagen SHG imaging is
susceptible to interference fromadditionalfluorophores on co-stained
tissues48, and PS red coloring depends on the angle of the slide on the
microscope relative to the polarizer28. Accordingly, we chose to stain
the collagens using the collagen-binding adhesion protein 35-Orange
Green 488 fusion protein (CNA35-OG488; CNA)49, 50. CNA contains two
subdomains, N1 and N2, which engage in a ‘collagen hug’ around triple
helical collagen in the ECM51. CNA staining was selected because it is
cheap to produce, plasmid sequences are freely available online, and
the stain is not species specific52. TheCNAstain is also rapid andeasy to
perform, and can be viewed on conventional fluorescentmicroscopes,
lending itself to standard research laboratories as well as a clinical lab
format.

To register collagenmorphological featureswith tissue stiffness, a
convolutional neural network (CNN) was applied using CNA and
DAPI imaging as the inputs and the corresponding AFMmeasurements
as the output (Fig. 2a). A CNN was chosen due to its superiority com-
pared to alternative models with image classification tasks53. We rea-
soned that a CNN would be able to learn how factors such as collagen
fiber linearity, thickness, and proximity to cells impacts elasticity
better than alternative models. Different CNN architectures were
applied to predict tissue elasticity including ResNet, DenseNet, and
models discovered using Neural Architecture Search, but the best
performance came from an AlexNet modified for a regression output
instead of classification (https://github.com/pytorch/vision/blob/
main/torchvision/models/alexnet.py).

Neural networks are data hungry, such that their performance is
greatly improved when more data is utilized. When given a small

amount of training data, neural networks tend to over-fit the training
dataset and emphasize features that do not generalize well. To address
this, we artificially enlarged our training dataset of a thousand data
points by applying random rotations, mirroring, and adjustments to
brightness, contrast, and sharpness (Fig. 2b). Based upon the fact that
the Young’s Modulus of the sample is independent of these manip-
ulations, we reasoned this would allow the model to learn which fea-
tures were the most informative while preventing overfitting.
Consistently, we found that the model generalized much better to
validationdatawhen transformationswere applied to the training data.

In the final model, we utilized both the DAPI and collagen chan-
nels. Given that dead cells are typically quite soft when probed using
AFM, the additional information from the DAPI stain helped themodel
to learn and was included in our imaging studies. We also natural log-
transformed elasticity measurements prior to training to alleviate the
influence of outliers. At training completion, the correlation of pre-
dicted to actual Young’s Moduli values was 0.689 (pearson R value;
averaged across 25 trained models) when trained over 100 epochs
(Fig. 2c, d), which performed significantly better than predicting
elasticity based on the intensity of collagen and DAPI alone (multi-
variable (MV) regression line using all training and validation samples;
r = 0.574; p-value (CNN over MV) = 5.23e–10). The validation data is
predicted more accurately than the training data due to the transfor-
mations applied to the training dataset. Saliency maps indicating
image regions that contribute to tissue stiffness demonstrated that the
trained models were able to incorporate morphological information
from nuclei as well as collagen when predicting stiffness (Fig. 2e)54–57.

Generation of STIFMaps
We next applied our trained CNNs to predict the elasticity of normal
human and human breast cancer tissue sections across a region of
interest using STIFMap. We achieved this objective by segmenting the
images into squares matching the input dimensions of the neural
network and predicting the Young’s Moduli for each square (Fig. 3a,
Methods). We then colorized the original images to correspond to the
predicted stiffness of each point (Fig. 3b). To validate the performance
of these stiffness predictions, tissues were immunostained for two
establishedmarkersof cellularmechanosignaling, activatedβ1 integrin
and phospho-Myosin Light Chain 2 (pMLC2) that are typically
increased in cells in response to a stiff ECM58,59. We used the predicted
STIFMaps to evaluate the correlation between expression of these
markers and stromal tissue elasticity (Fig. 3c). Since a large proportion
of the ECM is not directly in contact with cells, we looked at the 99th

percentile of stain intensity for each percentile of ECM elasticity
(Fig. 3d, Supplementary Fig. 4a, b). This allowed us to remove low-
intensity pixels where there were no cells or stain present. The inten-
sity of both mechanosignaling markers positively correlated with the
predicted Young’s Modulus of the local tissue region (Fig. 3e), but not
with the intensity of collagen or DAPI alone (Fig. 3f). We also applied a
mask to better identify pixels located at the cell-ECM interface and
observed the same trend (Supplementary Fig. 4c, d). The findings
indicate that STIFMap can accurately identify mechanical ‘hotspots’
within human breast tumor tissue sections, thus providing an addi-
tional layer of information about the mechanical landscape of human
breast tissue that was not previously possible.

Utilizing STIFMap with formalin-fixed paraffin-embedded tissue
FFPE tissues are frequently used for clinical analysis because this
approach preserves cell and tissue morphology. Unlike cryopreserved
tissues, which are needed for traditional AFM analysis, FFPE tissues are
more readily available for research analysis and clinical translational
studies. However, FFPE tissues are highly cross-linked due to formalin-
fixation, and thus unsuitable for accurate stiffness measurements by
AFM. Accordingly, we asked if STIFMap could predict the elasticity of
the original, unfixed tissue samples based solely on collagen
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morphology. We stained terminal duct lobular units (TDLUs) from
cryo-preserved and FFPE breast tissues with CNA and DAPI. In con-
sultation with a clinical breast cancer pathologist, we detected no
discernable morphological differences between the collagen mor-
phology detected using the CNA collagen stain in a patient-matched
FFPE versus cryopreserved tissue (Supplementary Fig. 5a). Moreover,
we examined whether formalin-fixation or antigen retrieval (AR) could
introduce any changes in collagen morphology that could impact
STIFMappredictions.While it is notpossible to conduct stainingwithin
the same tissue prior and post FFPE tissue processing, to address this
issue we imaged collagen with CNA staining in cryopreserved tissues
before and after 10% formalin-fixation for 1 h (Supplementary Fig. 5b).

We also stained collagenwith PS red in FFPE tissues before and after AR
(Supplementary Fig. 5c). In both cases, we did not observe any sig-
nificant morphological differences in collagen architecture. The
results indicate that STIFMap can be applied to predict the elasticity of
FFPE tissues in which elasticity measurements are not currently
possible.

A stiff, fibrotic collagenous ECM drives an EMT and tumor
metastasis in mice
A stiff ECM can foster the growth, survival, and invasiveness of cul-
tured premalignant and tumorigenic breast cancer cell lines by indu-
cing an EMT60–63. A stiff, cross-linked collagenous stroma can also
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induce an EMT to promote tumor aggression andmetastasis in vivo in
experimental transplant murine models of mammary cancer64.
Nevertheless, there is currently no evidence todirectly implicate a stiff,
fibrotic stroma in human breast cancer progression and metastasis,
nor any published studies that link this phenotype to induction of an

EMT. Therefore, to directly test whether a stiff stroma could drive the
aggressiveness and metastatic behavior of human breast cancers, and
to determine if this is linked to an EMT, wemanipulated HER2+ human
breast cancer patient-derived xenografts (PDX) in vivo. We reasoned
that PDXs are a model that more closely mimics the heterogeneous

Fig. 3 | STIFMap predict high elasticity regions within tissues. a Deconstruction
of a CNA- and DAPI-stained image into squares of ~50 × 50μm. The Young’s Mod-
ulus of each square is predicted. b Elasticity predictions are aggregated and over-
laid over collagen to produce the overall STIFMap for both a normal TDLU and
triple negative breast cancer. c Representative images of immunofluorescent
staining for pMLC (top) and activated β1 integrin (bottom) (60 total FOVs from 10
patient sampleswere imaged).d Scatterplots of STIFMap intensity vs stain intensity
for each pixel shown in c indicating the 99th percentile of stain intensity for each
STIFMap percentile. e STIFMap percentiles versus the 99th percentile of stain
intensity for all acquired fields of view (FOVs). Error bars indicate a 95% confidence

interval. n = 60 FOVs from 10 different patient tumor samples. Median Spearman r
values activated β1 integrin = 0.696, pMLC =0.364. f Violin plots of the Spearman
correlation for each FOV comparing the 99th percentile of staining intensity versus
percentiles of DAPI, predicted elasticity, or collagen stain intensity. Internal gray
bars indicate a Box-plot. The box plots indicate the median, and extreme values.
n = 60 FOVs from 10 different patient tumor samples. p(Elasticity vs DAPI; p-
MLC) = 2.60E−6. p(Elasticity vs Collagen; p-MLC) = 5.28E−6. p(Elasticity vs DAPI;
beta1-integrin) = 2.17E−8. p(Elasticity vs Collagen; beta1-integrin) = 2.36E−5. Scale
bar, 50μm. Statistical analyses were performed using two-sided Mann–Whitney U
test, ****P < 10−5. Source data are provided as a Source Data file.
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phenotype of human breast tumors65,66. To assess this, we implanted
three independent HER2+ human breast cancer PDXs (BCM-3963;
BCM-3143B, HCI-012) embedded within control (SOFT; 140 Pa) and
non-metabolizable L-ribose cross-linked (STIFF; 1200–2000 Pa) col-
lagen gels into the fat pads (orthotopic) of NOD/SCID mice and
monitored the impact on tumor phenotype and behavior (Fig. 4a).
Immunofluorescence analysis revealed a significant increase in

activated β1 integrin, phospho-Y397 focal adhesion kinase activity
(Y397FAK) and yes-associated protein (YAP) in the PDX tumors that
developed within the stiffened collagen gels (Fig. 4b–d). We observed
an increase in tumor outgrowth in all three independent HER2 + PDX
tumors embedded within the stiffened collagen gels (Supplementary
Fig. 6a–c).Markers of growth factor receptor signaling, as indicated by
elevated phosphorylated MAP Kinase (pERK; Supplementary Fig. 6d),
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indicated that tissue tension and integrin signaling promoted tumor
cell growth. Histopathological assessment indicated that all HER2 +
PDX tumors were of high histological grade however, there was more
extensive necrosis in the stiff tumors (STIFF; 58.8% and SOFT; 21.7%
necrotic tumor area). There was also a greater number of larger
metastatic lesions quantified in the lungs of the mice harboring the
stiff tumors (Fig. 4e–h, Supplementary Fig. 6e,f). Consistent with a
relationship between a stiff stroma, breast tumor aggression, and
induction of an EMT, RNAseq analysis revealed a significant elevation
of the ‘Hallmark Epithelial Mesenchymal Transition’ pathway in STIFF
PDX tumors (Fig. 4i, j, MSIGDB pathway M5930). RT-PCR analysis
validated the stiffness induction of the expression of several of the
EMT genes including Vimentin (VIM),TWIST1, SNAI2 (SLUG), andMMP2
(Fig. 4k–n, Supplementary Fig. 6g–l). These findings demonstrate that
a stiff stroma induces integrin and growth factor receptor signaling
and drives tumor progression and metastasis of human breast tumor
PDXs in vivo. The data also implicate stromal stiffness-dependent
induction of an EMT in this phenotype.

STIFMap link stromal elasticity to EMT in patient tumors
Having established that high ECM tension can drive the progression
and metastasis of HER2+ PDX breast tumors in association with
induction of an EMT, we next applied STIFMap to look for clinical
evidence supporting this relationship. We previously showed using
AFMand immunofluorescenceanalysis that themore aggressive triple-
negative breast cancer (TNBC) and HER2+ human breast cancer sub-
types have more cells with activated β1 integrin and develop a stiffer
invasive front21,22. We applied STIFMap to explore if there was a sig-
nificant association between stromal tension and EMT markers in
clinical FFPE samples of TNBC and HER2+ breast tumors. We first
looked within patient transcriptomic data and found that expression
of collagen genes highly correlated with expression of EMT genes
(Fig. 5a, b). Collagen genes were removed fromall gene sets to not bias
this analysis. We then stained TNBC FFPE tissue sections for Twist1,
ZEB1 and SLUG, transcription factors induced by a stiff stroma pre-
viously implicated in EMT61,67–69. We detected expression of Twist1,
ZEB1 and SLUG and found their levels to be positively correlated with
the predicted elasticity of the interstitial collagens in the stroma, but
not individually with total collagen or DAPI intensity (Fig. 5c–f). A
similar trend was also observed across whole-slide images of TNBC
tissues (Supplementary Fig. 7a, b). To determine the broader relevance
of these clinicalfindingswenext applied STIFMap to a cohort ofHER2+
breast tumors with associated clinical follow-up data70. We co-stained
these FFPE tissue sections with HER2 and ZEB1 as well as with CNA to
stain stromal collagens. To facilitate our analysis a pathologist anno-
tated tumor regions within each whole-slide image. The predicted
tissue elasticity from STIFMap positively associated with ZEB1 stain
intensity, but not with HER2, when compared to the correlation with
collagen intensity alone (Fig. 5g, h, Supplementary Fig. 7c, d). We then
looked at the spatial autocorrelation of each stainwithin each tissue by

calculating Moran’s I, which revealed a trend showing that greater
clustering of HER2, ZEB1, and elasticity associated with metastatic
recurrence (Fig. 5i). This observation is consistent with worse overall
survival among patients with high expression of EMT and collagen
gene expression signatures (Fig. 5j, k). These findings demonstrate a
spatial link between high stromal collagen elasticity and biomarkers of
EMT in both TNBCs and HER2+ human breast tumors. Together with
our PDX findings, these data link EMT to ECM stiffness and implicate
tension-induced EMT in human breast tumor metastasis. The findings
also suggest a stiff ECM could promote tumor aggression and com-
promise breast cancer patient outcome.

Discussion
Here we present a method we term Spatially Transformed Inferential
Force Map (STIFMap), which permits the spatial resolution and
quantification with micron-resolution of the mechanical hetero-
geneity of the collagenous stroma within normal and tumor human
breast tissues. The method works on both cryopreserved and FFPE
tissues and employs a quick, inexpensive staining protocol via CNA
and DAPI. The approach permits simultaneous quantification of the
heterogeneous tension landscape of the stromal ECM together with
standard biomarker immunostaining approaches, and could further
be integrated with spatial proteomics and genomics as well as pro-
tein marker multiplexing protocols24–26. Although methods do exist
to broadly quantify tissue elasticity across a tissue section, they do
not provide high-resolution spatial information35. AFM is a technique
that directly probes tissue elasticity at the single cell scale71. However,
standard AFM methods are not high-throughput, require fresh or
cryopreserved tissue, rely upon specialized equipment and opera-
tors, are time-consuming, and only collect sparsely spaced data
points over focused sections of a tissue33, 34. In the absence of the
AutoAFM algorithms presented herein, it is also challenging to
overlay AFM data with biomarker staining. Moreover, the use of
cryopreserved or fresh tissue compromises the ability to simulta-
neously conduct spatial genomic, transcriptomic, or proteomic
analyses. STIFMap overcomes current shortcomings of conventional
AFM methods and can rapidly annotate the elasticity landscape of
whole tissue sections with a simple collagen stain. Themethod is also
amenable to FFPE tissues thereby expanding the scope and applica-
tion of the method. Indeed, using STIFMap we were able, to the best
of our knowledge, to link for the first time in clinical specimens of
human breast cancer, tissue mechanics with indicators of mechan-
osignaling and biomarkers of an EMT previously implicated in tumor
aggression36,37. The results highlight the potential utility of using
STIFMap to quantify stromal biophysical features to predict tumor
behavior and ultimately patient outcome.

We and others showed both in vitro and in experimental models
in vivo that a stiff ECM increases integrin mechanosignaling to foster
tumor cell growth, survival, invasion and metastasis, and that this is
accompanied by induction of an EMT60,61,72. Here we demonstrate,

Fig. 4 | Matrix elasticity associates with EMT in PDX models of HER2+ breast
cancer. a Schematic showing the strategy for implantation of HER2-positive
patient-derived xenograft (PDX) breast cancer tissues. Representative images of
immunofluorescent staining of active β1 integrin (b), phospho-FAK (c) and YAP (d)
in SOFT or STIFF HER2-positive PDX tumors (left). Scale bar, 50μm. Quantification
of average active β1 integrin (b), phospho-FAK (c) and YAP (d) positive cell or
nuclear area for all HER2-positive PDX tumors (right). SOFT; n = 6, STIFF; n = 6.
e Average number of lung metastases for mice bearing BCM-3963 PDX tumors in
SOFT and STIFF ECM stroma as determined by histological analysis. SOFT; n = 10,
STIFF; n = 10. f Average size of the metastatic lesions corresponding to the analysis
in e.gAnalysis as in e formicebearing BCM-3143B PDX tumors. SOFT;n = 10, STIFF;
n = 10. h Analysis as in f for metastatic lesions corresponding to the analysis in
g (left). Images of lung metastases for mice bearing BCM-3143B PDX tumors in
SOFT and STIFF ECM stroma (right). Scale bar, 100μm. iGene ontology (GO) terms

from among the top 23 most significantly upregulated, using RNAseq data derived
from all HER2-positive PDX tumors generated in SOFT (n = 9) and STIFF (n = 9) ECM
stroma (n = 3 for each PDX and condition). j Volcano plot of p-value (-log10) vs. log
fold change (logFC) for gene expression from the HALLMARK_epithelial-to-
mesenchymal transition gene set for RNAseq data of HER2-positive PDX tumors
developed in SOFT and STIFF ECM stroma. k–n qRT-PCR arrays designed to
examine EMT related gene expression to analyze RNA isolated from PDX tumors in
SOFT and STIFF ECM stroma. SOFT; n = 7, STIFF; n = 7. Bar plots for the average
relative expression of the indicated mesenchymal genes. All graphs are presented
as mean+/− S.E.M. Statistical tests used were two-sided Mann–Whitney U test
(c, f, k–n) and two-sided unpaired t-test (b, d, e, g, h), *P <0.03, **P <0.002,
***P <0.0002, ****P <0.0001, ns non-significant. Source data are provided as a
Source Data file.
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using HER2-positive breast tumor PDX specimens, that a stiff stroma
can induce an EMT in vivo and that this is accompanied by metastasis.
By correlating stromal tension with biomarkers of an EMT in human
clinical specimens of TNBCandHER2+ breast cancer, we found clinical
evidence that such a relationship also exists within human tumors,
thereby providing validation of the experimental manipulations. Fur-
thermore, we showed that expression of either collagen genes or an
EMT signature associates with significantly worse patient outcome.

The findings thereby link stromal tension to human breast cancer
progression and directly implicate induction of an EMT in this phe-
notype. AlthoughSTIFMapprovides researcherswith a versatile tool to
explore the role of stromal stiffness in clinical specimens, additional
studies will be necessary to further clarify mechanisms through which
a heterogeneously stiff ECM drives an EMT in tumors. Moreover, more
workwill be needed to assess the clinical relevance of stromal stiffness
on patient outcome.
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There is growing interest in the applicationof artificial intelligence
methods to classify clinical histological images73–75. While early deep
learning algorithms focused on routine tasks such as nuclei segmen-
tation, current state-of-the-art algorithms are beginning to rival
pathologists at tasks such as tumor grading and cancer detection73.
Moving beyond what pathologists are able to detect, some new algo-
rithms are even able to predict tumor recurrence and invasive poten-
tial in cohorts for which there is currently no means available for
evaluating risk to progression76. Notwithstanding these advances, a
number of caveats hinder development in this area such as suboptimal
network architectures, the requirement for large image datasets of
annotated samples, the immense computational processing power
necessary to train highly sophisticated models, overfitting data that is
generated by only one individual or group, and the difficulty in inter-
preting why deep learning models classify results in one group or
another77. Nevertheless, improvements in deep learning such as neural
architecture search to find more optimal networks and advancements
in computational power continue to make computational pathology
more mainstream and accessible in the clinic. While there are still
issues to overcome, deep learning algorithms appear to be the future
of histopathological analysis and tissue classification78.

Tumors are highly heterogeneous at the genomic, transcriptomic,
and proteomic levels1,4. Regions within human andmurine tumors have
been identified in which immune infiltration, cancer cell metabolism,
and stress response pathways exhibit diverse phenotypes. Given that
patient prognosis and outcomes have been linked to genomic hetero-
geneity, as well as variability in immune infiltration and hormone
receptor expression, it is perhaps not surprising that there is a growing
interest in understanding the relevance of and drivers of ITH79. In this
regard, the level of tissue fibrosis also predicts patient outcome and
recent data suggest the level and organization of tissue collagens and
stromal stiffness varies widely within a patient’s tumor21,80,81. Yet, to date
there are no toolswithwhich to spatially resolve themechanical stromal
heterogeneity within a tumor and none that are amenable to scanning
across a full tissue section of a tumor. With STIFMap, it is now possible
to evaluate the association between a biomarker or pathway of interest
and the local and heterogeneous elasticity of the collagen-rich stroma
within a given normal or malignant tissue. Moreover, the STIFMap
method can be combined with spatial sequencing, in situ gene
expression, metabolomics, and even proteomics to allow for unbiased
screening of correlations between molecular heterogeneity and
mechanically regulated pathways in clinical samples. Accordingly,
STIFMap opens the door for clinicians and translational researchers to
explore the impact that tissue elasticity has on cellular phenotypic
variability in healthy and diseased tissues.

Methods
Ethical statement
Our research complies with all relevant ethical regulations. The animal
experiments were performed in accordance with the guidelines from
the Institutional Animal Care Use Committee (IACUC) protocols,

#AN133001 and #AN179766, which adhere to the NIH Guide for the
Care and Use of Laboratory Animals. Within our approved animal
study protocol, no tumor exceeded the maximal tumor size of 1.5 cm.
Human breast tissue specimens were collected prospectively from
consenting patients. Human tissues were stored and analyzed in
accordance with the procedures outlined in the Institutional Review
Board (IRB) Protocol #10-03832, approved by the UCSF committee of
Human Resources and the Duke University IRB Pro00054515.

Atomic Force Microscopy (AFM)
AFM measurements were performed using an MFP-3D BIO Inverted
optical AFM (Asylum Research, Santa Barbara, CA) mounted on a
Nikon TE2000-U inverted fluorescent microscope (Melville, NY) and
placed on a vibration-isolation table (Herzan TS-150). Silicon nitride
cantilevers were usedwith a nominal spring constant of 0.06Nm−1 and
a borosilicate glass spherical tip with 5μm diameter (Novascan Tech).
Cantilevers were calibrated using the thermal fluctuation method and
verified by probing polyacrylamide gels of known elasticity. The spe-
cimens used were 20μm thick OCT-embedded frozen human breast
tissue sections thawed and equilibrated to room temperature by
immersion in PBS for 5min. Thawed sections were immersed in PBS
containing phosphatase inhibitor (GenDEPOT Xpert #P3200-001),
protease inhibitor cocktail (GenDEPOT Xpert # P3100-001), 5μg/mL
propidium iodide (ACROS, Cat# 440300250), and 3μg/mL of CNA35-
OG488. Specimenswere indented at 2μmper second loading rate. The
Young’sModuli of the sampleswere determined by fitting force curves
with the Hertz model using a Poisson ratio of 0.5.

AFM force plot fitting algorithm
AFM force plots were post-processed to obtain Young’sModuli using a
homemade algorithm (seeGitHub repository). Briefly, force plots were
smoothed using a moving average convolution across 100 datapoints
to remove noise and then baseline-corrected using the first third of the
AFM indentation curve. The contact point of each force curve was
estimated as the point at which the derivative of the force curve
increased above an empirically-determined threshold. Then, a more
precise contact point was determined by applying a minimization
function to fit a flat baseline plus a 1.5-power curve (Hertz Model)
onto theAFMdata using the estimated contact point as an initial guess.
With the contact point determined, the Young’s Modulus was calcu-
lated to minimize the squared error between the AFM data and the
fit curve.

AutoAFM design
The AutoAFM assembly’s function is to ensureproper alignment of the
motor relative to the microscope stage’s adjustment knob in order to
allow the motor to accurately control the knob’s rotation and thus the
movement of the microscope stage. It does this by supporting the
weight of the motor and controlling its position, while allowing the
motor to freely slide along its shaft axis. It also allows the operator to
fine-tune themotor’s position and orientation in space, ensuring good

Fig. 5 | EMT markers spatially overlap with high tension matrix and associate
with poor survival in patient tumors. a Pearson correlation betweenGSVA scores
for collagen genes and hallmark pathway genes in the Nuvera dataset.b Scatterplot
of GSVA scores for collagen genes and hallmark EMT genes. Each point represents
one patient. N = 508 patients. Pearson r = 0.880. c FOVs for Twist1 staining within
FFPE tumors (left). Scale bar, 50μm. Inset scale bar, 10μm. Scatterplots of STIFMap
intensity vs stain intensity for each pixel shown in (i) indicating the 99th percentile
of stain intensity for each STIFMap percentile (right). N = 22 imaged FOVs.
d–f Violin plots of the Spearman correlation for each FOV comparing the 99th
percentile of staining intensity versus percentiles of DAPI, predicted elasticity, or
collagen stain intensity. Internal gray bars indicate a box-plot. N = 22 Twist1 FOVs,
n = 5 ZEB1 FOVs, and n = 25 SLUG FOVs. g Representative whole slide image (WSI)
and regions of interest (ROIs) of ZEB1 stain with STIFMap in HER2+ breast cancer

cohort. Scale bar (WSI), 1mm. Scale bar (ROIs), 100μm. N = 21 patient tumor
samples. h Spearman correlation for each whole tissue section comparing the 99th

percentile of staining intensity versus percentiles of predicted elasticity and col-
lagen stain intensity.N = 21patient tumor samples. iBox andwhiskers plots to show
the association between metastatic recurrence and spatial autocorrelation (Mor-
an’s I) for tissue markers and STIFMaps in the HER2+ breast cancer cohort (n = 84
breast tumors). Kaplan–Meier curves comparing survival between the upper and
lower quartiles of EMT (j) and collagen (k) GSVA scores within the Nuvera cohort.
N = 127 patients in each group. Boxes denote 25th to 75th percentile with median
line. Whiskers mark the minima and the maxima excluding outliers. Statistical
analyses were performed using two-sided Mann–Whitney U test (d–f, h, i) and
logrank test (j, k), *P <0.05, **P <0.01, ***P <0.001 ****P < 10−5. Source data are
provided as a Source Data file.
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alignment with (and therefore accurate control of) the stage’s
adjustment knob.

The assembly has three main components: the Stage Frame, the
Motor Frame, and theMotor Bracket. Themotors screw into theMotor
Brackets via the four Motor Screws. The Motor Bracket sits in the
Motor Frame and is pulled down against the Bracket Adjusters by the
springs hooked around the Tensioning Pins. By turning the Bracket
Adjusting Screws, the Bracket Adjusters can be individually moved
forward and backwards, adjusting both the pitch and the roll of the
Motor Bracket relative to the axis of the motor shaft. This allows easy
manual adjustment of the motor to ensure good alignment between
the motor shaft and the stage knob. The Stage Frame is hooked over
the lip of the microscope stage, enclosing the stage’s fine adjustment
knob (not shown), and is able to slide freely along the edge of the
stage. The Alignment Rods are press-fit into the Stage Frame and slip-
fit into the Motor Frame, allowing the Motor Frame to slide freely
towards and away from the Stage Frame along the motor shaft axis.
TheMotor Coupling joins the motor shaft to the Knob Adapter, which
is screwed into the fine adjustment knob via the Adapter Screw. The Y
Stage Frame has rollers attached to reduce friction with the AFM stage
as it slides side-to-side.

Motormount components were 3D printed on either a PrusaMINI
+or LulzBotMini 2with PETG.Ahigh infill was used for ease of sanding.
Some dimensions were slightly oversized so that they could be gra-
dually sanded to fit snugly. See https://github.com/cstashko/
AutoAFM/STL for a full list of part STL files. Other components were
ordered from McMaster-Carr. See supplementary table 1 for a full Bill
of Materials. Motors were driven via an Arduino Mega 2560 Rev3
Classic microcontroller interfacing with RAMPS 1.4 (https://reprap.
org/wiki/RAMPS_1.4).

AutoAFM operates by moving the AFM cantilever to user-defined
positions and acquiring an AFM force curve at each point. Within
MicroManager, the user draws a path via the Freehand Line or Seg-
mented Line tools and specifies the step size between points as well as
the initial cantilever position82. For each point, the motors attempt to
move to the desired location. An image is taken at the new location and
stitched together with existing images using Phase Cross-Correlation
to determine the actual AFM movement that occurred83. If the AFM
cantilever is within toleranceof the desiredposition, then a force curve
is acquired. Otherwise, the motors make additional movements until
the cantilever position is within tolerance (Fig. 1c). At completion,
AutoAFM returns force curves and positions for each of the user-
specified points. Full code and a complete pipeline for AutoAFM
acquisition is available via https://github.com/cstashko/AutoAFM/.

Polyacrylamide hydrogels
Polyacrylamide (PA) hydrogels of varying rigidities were prepared as
described84,85. Briefly, PA gels of specified rigidities were mixed
according to previously reported ratios85, omitting 1% potassium per-
sulfate (PPS). Solutions were degassed for 20min, then PPS was added
and 300μL was quickly deposited onto a Rain-XTM-coated 60mm
coverslip and sandwiched with a glutaraldehyde-activated coverslip.
After one hour of polymerization, Rain-XTM-coated coverslips were
removed. Gels were stored in PBS. For shear rheology studies, gels
were cast directly onto the baseplate of an AR 2000 rheometer (TA
Instruments) and immediately compressed to a barrel shape using a
25mm diameter probe. Gels polymerized for two hours at room
temperature with a 1% applied strain at a frequency of 1 rad*s−1. The
shear modulus was measured for 2 h while following a liner relation-
ship. A Poisson’s Ratio of 0.457 was used when calculating the Young’s
Modulus of PA gels86.

Micropatterned substrates for AFM control studies
Photolithography and soft lithography were used to generate poly-
dimethylsiloxane (PDMS, Dow Silicones Corporation) substrates with

defined ridge topographies (15μm height, 100μm length, and widths
ranging from 12μmto0.5μm) for use in AFM control studies. Briefly, a
siliconwaferwas plasma treated (5min, Harrick Plasma) and a 2μmtall
adhesive layer of SU-8 2002 (Kayaku Advanced Materials) was cast
onto the wafer surface using a spin coater (Laurell Technologies). A
4 cm square was UV patterned onto the adhesive layer using the
PRIMO photopatterning system (Alvéole). A second 15μm layer of SU-
8 2010 (Kayaku AdvancedMaterials) was then cast onto the wafer, and
ridge arrays (100μm length, 12μm–0.5μm width, 30μm spacing)
were subsequently photopatterned. Patterned wafers were developed
using propylene glycol monomethyl ether acetate (PGMEA, Sigma-
Aldrich), cleaned with isopropyl alcohol (IPA, Sigma-Aldrich), and
dried with n-pentane (Acros Organics) and N2 gas. PDMS was poured
over wafer patterns and cured for 15min at 100 °C to generate a
negative mold. The negative mold was silanized overnight by vapor
deposit of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (TFPS, Sigma-
Aldrich). A second layer of PDMS was poured over the silanized
negative mold, and a glass coverslip was applied to sandwich the layer
of PDMS. This PDMSwas cured at 100 °C for 20 h to generate a positive
mold of ridges adhered to a glass coverslip, which was then used for
AFM control studies. Fluorescent beads 1.0μm in diameter (Thermo-
Fisher F8814, 1:500 dilution in water) were allowed to settle into the
PDMS for visualization purposes during AutoAFM.

Image registration
Registration for images with the same scale and orientation was
computed using the phase_cross_correlation function from skimage83.
For images with different scales and orientations, transformations
were found by applying a Fourier Mellin Transform42. Briefly, images
were applied with a band-pass filter followed by a Hanning Window.
Images were then transformed using a Fast Fourier Transform (FFT)
and magnitudes were log-polar transformed. Translations between
these transformed images were calculated using phase_cross_correla-
tion, which can then be used to calculate the rotation and scaling
differences in the original images.

Neural network design
Networks were designed in Pytorch. Input images were used of size
224 × 224× 3 pixels in which the three channels are DAPI, CNA, and a
layer of zeros, which was incorporated for ease of use with existing
Python machine learning image loading functions. Within the training
dataset, images were loaded with size 448 × 448 × 3 pixels, trans-
formed via random rotation of 0–180 degrees, randomly flipped with
probability 0.5, received adjustments to brightness, contrast, and
sharpness, and cropped to 224 × 224 × 3 to remove any zero pixels
resulting from rotation. A mini batch size of 16 was used throughout.
For each round of training, samples were randomly split by patient
with a training:validation ratio of 0.8:0.2 so that the validation dataset
only contained samples from patients that were not included in the
training set. Mean squared error was used as a loss function. Learning
rate and weight decay were set at 4e−6 and 4e−7, respectively. A
dropout rate of 0.5 was used for fully-connected layers. Networks were
trained for 100epochs since this iswhen accuracy for the validation set
converges. Code for network visualizations wasmodified from https://
github.com/utkuozbulak/pytorch-cnn-visualizations#gradient-
visualization.

Human breast tissues
All human breast tissue specimens were collected prospectively from
consenting female patients (all patients provided written informed
consent prior to surgery) undergoing surgery at the University of
California, San Francisco, (UCSF) or Duke University Medical Center
between 2010 and 2020. All patients were treatment naïve when
clinical samples were collected. Only samples of invasive ductal car-
cinoma that were centrally verified as HER2+ or TNBC were analyzed.
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For the clinical cohort of HER2+ samples, untreated core needle
biopsies were compared, and metastatic recurrence data was col-
lected. Samples were stored and analyzed with deidentified labels to
protect patient data in accordance with the procedures outlined in the
Institutional Review Board Protocol #10-03832, approved by the UCSF
Committee of Human Resources and the Duke University IRB
(Pro00054515). Tissue specimens were flash frozen in OCT (Tissue-
Tek) by slow immersion in liquid nitrogen or placement on dry ice and
storedat−80 °Cuntil ready for sectioning.H&Eswereperformedonan
adjacent slide andwere scannedusing aZEISSAxio Scan.Z1 digital slide
scanner equipped with CMOS and color cameras, 10×, 20× and 40×
objectives. H&E-stained tissues were assessed by a pathologist (A.J.I.)
to identify regions of interest for AFM measurements.

CNA35-OG488 transformation and purification
pET28a-EGFP-CNA35was a gift from Jan Liphardt52 (Addgeneplasmid#
61603). CNA35 was expressed and purified as previously described87.
Briefly, bacteria were incubated with 5mL of 2YT media + 100μg/mL
ampicillin + 25μg/mL kanamycin + 1% wt/v glucose overnight at 30 °C
in a shaking incubator. The next day, the culture was diluted in 50mL
of 2YT media + kanamycin for three hours. The culture was then cen-
trifuged, and the supernatant discarded. Then, the sample was diges-
ted for cell wall removal for 30min using 500μL of lysis buffer (50mM
Sodium Phosphate dibasic, 20mM Imidazole, 300mM NaCl, pH 8.0)
supplemented with 0.125mg Lysozyme and 1mM DTT. The sample
was sonicated and centrifuged, then CNA35 was isolated from the
solubilized supernatant via affinity chromatography (Qiagen Ni-NTA
Agarose) according to manufacturer’s instructions. The purified pro-
tein was supplemented with 40% glycerol and stored at −20 °C. Under
typical isolation conditions we obtained a final concentration of
approximately 1.5mg/mL CNA35.

Collagen/rBM hyrdrogels with orthotopic implantation of
tumor cells
Rat tail collagen-1 (High concentration, Corning, Cat. #: 354249) was
incubated with 0.1% acetic acid (non-crosslinked; SOFT) or 0.1% acetic
acid with 500mM L-ribose (Chem Impex International, Cat. #: 28127)
(cross-linked; STIFF) for at least 10 days before preparation of Col1/
rBM hydrogels for orthotopic implantation of tumor cells or tumor
fragments64,88. Col1 mixtures were then combined with basement
membrane extract (R&D Systems, Cultrex BME, type 2, Pathclear, Cat.
#: 3532-005-02) (20% final volume), PBS, and 1N NaOH to a slightly
acidic pH (pH ~6.5) as determined by pH strips. Col1/rBM with and
without L-ribose was injected orthotopically into a cleared inguinal fat
pad and allowed to set for 3–5minprior to implantationof a PDX tissue
fragment ~2 × 2mm in size.

Breast cancer Patient-Derived Xenografts (PDXs)
PDX tissues were obtained from Dr. Alana Welm at the Huntsman
Cancer Institute, University of Utah, Utah (HCI-012) or Dr. Michael
Lewis at Baylor College of Medicine, San Antonio, Texas (BCM-3143B
and BCM-3963)65,66. For the PDX study, 2 × 2 cm breast tumor speci-
mens were collected as fresh tissue with immersion in media (phenol
red free-DMEM/F12) with 10% charcoal-stripped fetal bovine serum
(FBS Benchmark, Cat. #: 100–106) and GlutaMAX (Gibco, Cat. #:
35050-061) supplementation for transportation to the Weaver
laboratory at UCSF. PDX fragments were established from frozen and
implanted in 3-week old female NOD-SCID (strain: 001303, Jackson
Laboratory) immunodeficient mice formaintenance. Once established
tumors reached a maximal tumor size of 1.5 cm diameter, mice were
sacrificed, and tumor tissue was divided into pieces for formalin-
fixation and paraffin embedding, embedding and freezing in OCT, and
flash freezing in liquid nitrogen and cryopreservation in 95% FBS: 5%
DMSO. Flash frozen tumor pieces were used for RNA and protein
isolation for the downstream applications indicated.

Animals and animal care
Animal husbandry and all procedures on mice were carried out in
Laboratory Animal Resource Center (LARC) facilities at UCSF Parnas-
sus in accordance with the guidelines stipulated by the Institutional
Animal Care Use Committee (IACUC) protocols, #AN133001 and
#AN179766, which adhere to the NIH Guide for the Care and Use of
Laboratory Animals. Female NOD/SCID mice were purchased at
3-weeks of age from Jackson Laboratories for orthotopic implantation
assays. Mice were sacrificed twelve weeks after injection or atmaximal
tumor size of 1.5 cm. No tumor exceeded the maximal tumor size of
1.5 cm. Tumors were excised and examined for tumor volume using
calipers, histology by H&E of fixed tissue sections, proliferation and
growth factor and integrin signaling via immunofluorescence in tissue
sections, and gene expression using RNAseq and RT-PCR.

Monitoring of tumor growth and metastasis
Tumor growth was monitored by palpation and caliper measurement
weekly or biweekly. Lung metastases were quantified by counting of
surface lesions at time of animal sacrifice, and by examination of his-
tological lung sections stained by H&E. Lungs were scanned using a
ZEISSAxio Scan.Z1 digital slide scanner equippedwithCMOSand color
cameras, 10×, 20× and 40× objectives, and lesion area was determined
by tracing metastatic lesions in QuPath89.

Quantitative reverse transcriptase-polymerase chain reaction
(qRT-PCR)
RNA was prepared from flash-frozen and pulverized mammary tumor
tissues using TRIZol reagent (Invitrogen). Reverse transcription reac-
tions were performed using M-MLV reverse transcriptase (Biochain,
Cat. #: Z5040002) with random hexamer primers. cDNA was mixed
with PerfeCTa SYBR Green FastMix (Quantibio, Cat. #: 95072-05K) for
qPCRanalysis using anEppendorf realplex2 epgradient Smastercycler.
Thermal cycling conditionswere 10min at 95 °C, followedby 40 cycles
of 15 s at 95 °C and 45 s at 65 °C. Melting curve analysis was used to
verify primer pair specificity. Relative mRNA expression was deter-
mined by the ΔΔCT method with normalization to GAPDH or 18S.

Quantitative polymerase chain reaction (qPCR) arrays
Human EMT qPCR arrays were purchased from Qiagen (Cat. #: PAHS-
021Z), performed as described using RNA fromPDXmammary tumors
grown in SOFT and STIFF Col1/rBM hydrogels, and analyzed using
available product resources fromQiagen. Selected genes were plotted
for presentation in Fig. 4 and Supplementary Fig. 6.

Immunofluorescence
Immunofluorescence was performed using the following specific
antibodies: phospho-FAK (Y397) (Cell Signaling Technology, Cat. #:
8556, 1:200), phospho-p44/42 MAPK (ERK1/2) (T202/Y204) (Cell Sig-
naling Technology, Cat. #: 9101, 1:200), Integrin β1, activated (Sigma-
Aldrich, clone HUTS-4, Cat. #: MAB2079Z, 1:400), phospho-Myosin
Light Chain 2 (Ser19) (Cell Signaling Technology, Cat. #: 3671, 1:200),
yes-activated protein (YAP) (Santa Cruz Biotechnology, Cat. #: sc-
15407, 1:200), SLUG (C19G7) (Cell Signaling Technology, Cat. #: 9585,
1:200), ZEB1 (E2G6Y) (Cell Signaling Technology, Cat. #: 70512), Twist1
(Abcam, Cat. #: ab50887, 1:500) and ErbB2/HER2 (Abcam, clone 3B5,
Cat. #:ab16901). For cryopreserved samples, frozen sectionswerefixed
in 2–4% paraformaldehyde, prior to permeabilization with 1–3% triton-
x-100 and incubation with primary antibodies overnight at 4 °C with
3μg/mL CNA where specified. Sections were then incubated with
species-specific secondary antibodies conjugated to different fluor-
ophores (AF-555, −647, Invitrogen). All washes were carried out using
Phosphate-buffered saline (PBS)with0.5%Tween-20 andnuclei and/or
actin filaments were counterstained using 4′,6-diamidino-2-pheny-
lindole (DAPI, Cat. #: D1306) and Phalloidin-AF488 conjugate (Thermo
Fisher Scientific, Cat. #: A12379), respectively. For FFPE samples,

Article https://doi.org/10.1038/s41467-023-39085-1

Nature Communications |         (2023) 14:3561 12



antigen retrieval was accomplished by boiling sections in 10mM
citrate buffer in a pressure cooker on high power for 3min. Following
blockingwith 10% goat serumand 1%BSA inTris-Buffered Saline (TBS),
sectionswere incubatedwithprimary antibodies overnight at 4 °Cwith
3μg/mL CNA. Sections were incubated for 1 h with species-specific
secondary antibodies conjugated to different fluorophores (AF-555,
−647, Invitrogen). All washes were carried out using TBS with 0.025%
Triton X-100 and nuclei were counterstained using DAPI. Images of
stained sections were acquired on either a Leica TCS SP5 Confocal
microscope, Nikon SoRa Spinning Disk microscope or an inverted
Eclipse Ti-E Nikon microscope with CSU-X1 spinning disk confocal
(Yokogawa Electric Corporation), 405 nm, 488 nm, 561, 635 nm lasers;
a Plan Apo VC 60X/1.40 Oil or an Apo LWD 40X/1.15 Water-immersion
λS objective; electronic shutters; a charge-coupled device (CCD)
camera (Clara; Andor) and controlled by Metamorph.

Image analysis
For STIFMap generation, immunostaining images are first resized to
the same resolution as the panels used to train the neural networks.
Then, the image is decomposed into squares the same dimensions as
the network training panels and separated by a user-defined step size
that is smaller than the panel side length. The elasticity of each square
is predicted using five independently trained models with different
brightness, sharpness, and contrast transformations. Since elasticity
predictions only apply to panel centers where the AFM cantilever
would make contact, the elasticity of pixels between panel centers is
inferred using cubic spine interpolation. STIFMaps are depicted as
collagen pseudocolored to reflect the predicted elasticity of each
position.

Image analysis of percent positive area in PDX samples was per-
formed using ImageJ and QuPath software89,90. For comparison,
immunofluorescence images were subjected to same-level threshold-
ing based on a determined range of positive fluorescence intensity in
each channel and antibody staining panel and the threshold area was
expressed as a percentage of whole cell or nuclear area using DAPI
staining measured in the same manner.

RNA-seq library preparation, sequencing, and analysis
RNA was isolated using TRIzol (Invitrogen, Cat. #: 15596018) followed
by chloroform extraction. RNAseq library preparation was performed
by the Functional Genomics Laboratory (FGL), a QB3-Berkeley Core
Research Facility at UCBerkeley. Total RNA sampleswere checkedona
Bioanalyzer (Agilent) for quality and only high-quality RNA samples
(RIN > 8) were used. At the FGL, Oligo (dT)25 magnetic beads (Ther-
mofisher) were used to enrich mRNA, and the treated RNAs were
rechecked on the Bioanalyzer for their integrity. The library prepara-
tion for sequencing was done on Biomek FX (Beckman) with the KAPA
hyper prep kit for RNA (nowRoche). Truncateduniversal stub adapters
were used for ligation, and indexed primers were used during PCR
amplification to complete the adapters and to enrich the libraries for
adapter-ligated fragments. Samples were checked for quality on an
AATI (nowAgilent) Fragment Analyzer. Samples were then transferred
to the Vincent J. Coates Genomics Sequencing Laboratory (GSL),
another QB3-Berkeley Core Research Facility at UC Berkeley, where
Illumina sequencing libraries were prepared. qPCR was used to cal-
culate sequence-able molarity with the KAPA Biosystems Illumina
Quant qPCR Kits on a BioRad CFX Connect thermal cycler. Libraries
were pooled evenly by molarity and sequenced on an Illumina Nova-
Seq6000 150PE S4. Raw sequencing data were converted into fastq
format, sample-specific files using the Illumina bcl2fastq2 software on
the sequencing centers local Linux server system. RNAseq fastq files
were mapped to the primary assembly of the Gencode v33 human
genome using Rsubread (version 2.0.1) and counted using feature-
Counts. Lowly expressed genes were filtered out if they did not have at
least one count per million (CPM) in at least 4 samples. Data

normalization was performed using calcNormFactors in edgeR (ver-
sion 3.28.1). Gene ontology was performed using Gage (version 2.36.0)
with gene lists from MSigDB version 7.2.

Nuvera dataset analysis
Nuvera patient microarray data was obtained from GSE25066 using
GEOquery (v2.60.0)91. Expression intensities were normalized between
patients using the ‘normBetweenArrays’ function in the R package
limma (v3.48.3)92. Gene set enrichment scores were computed using
GSVA (v1.40.1) to estimate the abundance of each ‘Hallmark’ (‘H’ col-
lection) gene set fromMSIGDBR (v7.4.1) as well as a list of the 12 most
highly expressed collagen genes93. All collagen genes were removed
from Hallmark gene sets to prevent artifactually high correlations due
to the same gene being included in both sets. Correlations between
GSVA scores were plotted in Python using Seaborn (v0.11.2) and Mat-
plotlib (v3.5.1). Kaplan–Meier curves and statistical testing was con-
ducted in Python using the ‘lifelines’ package (v.0.27.0). All analysis
code is available via GitHub repository https://github.com/cstashko/
STIFMaps.

Statistical analysis
Unless otherwise stated, statistical analyses were performed using
GraphPad Prism Version 9.1.2 or SciPy Version 1.7.3. Statistical tests
used as well as significance is noted in the corresponding figure
legends. Tests of normality were used to determine the appropriate
statistical test. All independent variables are described in the text with
measurements always from distinct samples (biological replicates)
unless otherwise stated. All tests are two-tailed unless otherwise
indicated.

Illustrations
The AutoAFM feedback system schematic (Fig. 1c) was created with
BioRender.com (licensed to V.M.W.). The AlexNet visualization
(Fig. 2a) was created using NN-SVG (http://alexlenail.me/NN-SVG/
AlexNet.html). Figure 1a, b and Supplementary Fig. 1a, b were gener-
ated with free license software OnShape.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study
are available within this publication and its Supplementary informa-
tion. Source data are provided as a Source Data file. PDX RNAseq data
has been deposited in NCBI’s Gene Expression Omnibus94 and are
accessible through GEO Series accession number GSE179983. Neural
networks, training data, stain imaging, and STIFMaps are available at
https://github.com/cstashko/STIFMaps and https://data.mendeley.
com/datasets/vw2bb5jy99/2. It is also available in Zenodo under the
https://doi.org/10.5281/Zenodo.78892270, https://doi.org/10.5281/
zenodo.7882270. AutoAFM part files and assembly instructions are
available at https://github.com/cstashko/AutoAFM. Source data are
provided with this paper.

Code availability
All code necessary to implement STIFMap is available via the Github
repository https://github.com/cstashko/STIFMaps. It is also available in
Zenodo https://doi.org/10.5281/zenodo.7882270. AutoAFM code is
available at https://github.com/cstashko/AutoAFM. AlexNet Pytorch
implementation is from https://github.com/pytorch/vision/blob/main/
torchvision/models/alexnet.py and network visualization code mod-
ified from https://github.com/utkuozbulak/pytorch-cnn-visualizations.
All other code used in the preparation of this manuscript is publicly
available from software and commercial sources.
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