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Sex differences in brain protein expression 
and disease

Aliza P. Wingo    1,2 , Yue Liu3, Ekaterina S. Gerasimov3, Selina M. Vattathil3, 
Jiaqi Liu    3, David J. Cutler    4, Michael P. Epstein    4, 
Gabriëlla A. M. Blokland    5, Madhav Thambisetty    6, Juan C. Troncoso7, 
Duc M. Duong8, David A. Bennett9, Allan I. Levey    3,10, Nicholas T. Seyfried    8,10 
& Thomas S. Wingo    3,4,10 

Most complex human traits differ by sex, but we have limited insight 
into the underlying mechanisms. Here, we investigated the influence of 
biological sex on protein expression and its genetic regulation in 1,277 
human brain proteomes. We found that 13.2% (1,354) of brain proteins had 
sex-differentiated abundance and 1.5% (150) of proteins had sex-biased 
protein quantitative trait loci (sb-pQTLs). Among genes with sex-biased 
expression, we found 67% concordance between sex-differentiated protein 
and transcript levels; however, sex effects on the genetic regulation 
of expression were more evident at the protein level. Considering 24 
psychiatric, neurologic and brain morphologic traits, we found that an 
average of 25% of their putatively causal genes had sex-differentiated protein 
abundance and 12 putatively causal proteins had sb-pQTLs. Furthermore, 
integrating sex-specific pQTLs with sex-stratified genome-wide association 
studies of six psychiatric and neurologic conditions, we uncovered 
another 23 proteins contributing to these traits in one sex but not the 
other. Together, these findings begin to provide insights into mechanisms 
underlying sex differences in brain protein expression and disease.

Differences between females and males abound among human traits 
and disease. For instance, the prevalence of common psychiatric and 
neurologic conditions such as major depressive disorder1, schizo-
phrenia2, Parkinson’s disease3 and Alzheimer’s disease (AD)4 differ by 
sex. Even what constitutes disease risk may differ by sex. For instance, 
females have significantly higher risk for myocardial infarction at 
lower systolic blood pressure than males5. Recent genetic studies have 
also found genetic risks differ by sex for psychiatric and neurologic 

conditions6,7. Underlying reasons complex traits differ by sex may stem 
from many factors, including physiologic, genetic and environmental8.

Differences in gene expression by sex have been observed in 
human brain across the major developmental stages (prenatal, early 
childhood, puberty and adulthood)9 and in splicing10. Reasons for 
sex-biased gene expression for some autosomal genes may be related 
to the presence of androgen or estrogen hormone response ele-
ments11. Sex-biased gene expression likely contributes to differences 
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dorsolateral prefrontal cortex (dPFC; Supplementary Table 1). Sex 
was inferred from X-chromosome genotyping and was consistent with 
self-reported sex for all donors. After quality control, 10,198 proteins 
were considered, of which 371 (or 3.6%) were encoded by genes on the 
X chromosome. Before testing for sex-biased expression, the effects 
of protein sequencing batch, post-mortem interval, donor age and 
clinical diagnosis were estimated and removed using linear regres-
sion, and surrogate variable analysis (SVA) was used to infer hidden 
technical or biological factors that may influence brain protein levels, 
including cell-type composition. To identify genes with sex-biased 
expression, we fit a linear regression model with protein expression as 
the outcome, sex as the independent variable and surrogate variables 
(SVs) as covariates in each brain region separately.

Among 10,198 measured proteins, 1,239 differed by sex in the dPFC 
at the false discovery rate (FDR) <0.05 and, of these, 4.8% were encoded 
by genes on the X chromosome (Supplementary Table 2). Among the 
1,239 proteins, 51% had higher expression in females and 49% had higher 
expression in males (Supplementary Table 2). As expected, the sex 
chromosomes had the highest proportions of genes with sex-biased 
expression, whereas the autosomes had roughly similar proportions 
(Extended Data Fig. 1). Since different brain regions may have dif-
ferent cell-type composition and biological functions, we tested for 
sex-biased expression in five additional regions: parahippocampal 
gyrus, temporal cortex, premotor, precuneus and middle frontal gyrus 
(Supplementary Table 2). Within each region, about half of the proteins 
had higher abundance in males, while the other half had higher abun-
dance in females at FDR < 0.05 (Supplementary Tables 2 and 3), which 
was consistent with findings from the dPFC.

in prevalence or manifestation of psychiatric and neurologic condi-
tions12–17. Previous studies of sex-biased genetic regulation of gene 
expression have focused on transcripts in up to 150 post-mortem brain 
tissues12,13. These studies relied on hard-to-obtain post-mortem brain 
tissues, making large-scale studies challenging. Thus, while these stud-
ies provided valuable insights, larger studies and ones that examine 
both transcript and protein expression are needed. No study, however, 
has examined sex differences in brain protein expression, to our knowl-
edge. Directly testing the effect of sex on protein expression is impor-
tant because of the low correlation between messenger RNA (mRNA) 
and protein levels18–21, possibly due to layers of post-transcriptional 
regulation that are also likely influenced by sex.

To address these knowledge gaps, we investigated the influence of 
biological sex on protein abundance and its genetic regulation using 
1,277 human brain proteomes (Fig. 1). Next, we compared effects of 
sex on gene expression and its genetic regulation at the transcript and 
protein levels using data from 621 human brain transcriptomes whose 
donors were a subset of the donors of the brain proteomes. Finally, 
we investigated connections between sex-differentiated brain pro-
tein abundance and a range of psychiatric and neurologic conditions  
(Fig. 1). Collectively, these results shed light on the effects of sex on 
gene expression at both the transcript and protein levels and identify 
new molecular mechanisms underlying the role of sex in brain disease.

Results
Sex differences in brain protein abundance
Deep brain proteomes from 1,277 donors of European ancestry were 
generated from six brain regions with 62% (793 of 1,277) from the 
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Fig. 1 | Summary of main analyses. We investigated sex differences in protein 
expression and its genetic regulation using brain proteomic and genetic data. 
Next, we compared effects of sex on gene expression and its genetic regulation 
at both the mRNA and protein levels using genetic and brain transcriptomic 
and proteomic data. Subsequently, we examined the intersection between 

psychiatric and neurologic causal genes and genes with sex-biased protein 
expression or sb-pQTLs. Finally, we integrated sex-stratified GWAS with pQTLs to 
identify sex-specific causal genes in psychiatric and neurologic disorders. TMT, 
tandem mass tag.
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To identify proteins with sex-biased protein expression across mul-
tiple brain regions, we used multivariate adaptive shrinkage (MASH)22 
to perform a meta-analysis for each protein across all measured brain 
regions and estimated a local false sign rate (LFSR) for each protein. 
LFSR is analogous to the FDR but more stringent22. Sex-biased gene 
expression was observed in each of the six brain regions examined 
(Supplementary Tables 2,3). We found 13.2% (1,354 of 10,198) proteins 
with sex-biased protein expression in at least one brain region at MASH 
LFSR < 0.05 and, among those, 4.7% were encoded by genes on the X 
chromosome (Supplementary Tables 2 and 3).

Sex differences in genetic control of brain protein abundance
We next investigated whether there is a difference in the genetic regula-
tion of protein abundance between females and males by performing 
sex-biased protein quantitative trait locus (sb-pQTL) analysis in the 
dPFC, which is the brain region with the largest sample size with both 
genetic and proteomic data (n = 716). We examined proteins encoded 
by genes on the autosomes and the X chromosome. For the latter, we 
coded the number of minor alleles as 0, 1 or 2 for females and 0 or 2 for 
males who are hemizygous for the X chromosome. To identify proteins 
with sb-pQTL, we performed a two-stage analysis (Fig. 2a). The first 
stage comprehensively identified pQTLs and the second stage tested 
significant pQTLs for interaction with sex. To comprehensively identify 
pQTLs, we performed a pQTL analysis jointly in males and females, and 
in each sex separately. For each pQTL analysis, we adjusted for SVs and 
genetic principal components, and sex in the joint analysis. pQTLs 
were defined as single nucleotide polymorphisms (SNPs) that have 
an association with proteins at FDR < 0.05. In the second stage, pQTLs 
were tested for genotype-by-sex interaction, adjusting for the SVs and 
genetic principal components. sb-pQTLs were defined as pQTLs that 
have a significant genotype-by-sex interaction at FDR < 0.05 (Fig. 2a).

There were 1,036,025 pQTLs identified in the first stage and 1,171 
sb-pQTLs identified in the second stage for 150 unique proteins. Link-
age disequilibrium clumping of the 1,171 sb-pQTLs yielded 166 index 
sb-pQTLs (at r2 < 0.5) or 154 independent sb-pQTLs (at r2 < 0.1), both 
of which corresponded to 150 unique proteins. For the 166 index 
sb-pQTLs, 48% had a positive beta coefficient and 52% had a negative 
beta coefficient for the genotype-by-sex interaction term (Supple-
mentary Table 4). The quantile–quantile plot for the P values of the 
genotype-by-sex interaction term in the regression modeling for all the 
autosomes (Extended Data Fig. 2a) and the X chromosome (Extended 
Data Fig. 2b) showed no evidence of inflation. Of the index sb-pQTLs, 
5.4% were pQTLs in both sexes with concordant direction of association, 
2.4% were pQTLs in both sexes with discordant direction of association, 
51.2% were pQTLs in males only and 37.9% were pQTLs in females only 
(Supplementary Tables 4–6). These sb-pQTLs were enriched for inter-
genic (odds ratio (OR) = 1.73; P = 4.2 × 10−5) and exonic SNPs (OR = 2.1; 
P = 0.01) and depleted for intronic SNPs (OR = 0.6; P = 2.2 × 10−5; Fig. 2b). 
Among the 150 proteins with sb-pQTLs, nine were encoded by genes 
on the X chromosome and none were in the pseudo-autosomal region 
of the X chromosome (Supplementary Table 7).

We found that 17% of the proteins with sb-pQTLs (25 of 150) also 
had sex-differentiated protein abundance (Supplementary Table 8). 
Our findings at the protein level are comparable with published find-
ings at the transcript level, in which 14% of the sex-biased expression 
quantitative trait locus (sb-eQTL) transcripts also had sex-biased mRNA 
expression12.

To determine the internal replication rate (π1) for sb-pQTLs, we 
used the Religious Orders Study (ROS)/Rush Memory and Aging Pro-
ject (MAP) dataset as the discovery sample (n = 565) and the Banner 
dataset (n = 151) as the replication sample. The π1 replication statistic 
estimates the rate of sb-pQTLs identified in the discovery dataset that 
are sb-pQTLs in the replication dataset. The internal replication rate for 
sb-pQTLs was 0.52, which implies that 52% of the sb-pQTLs identified 
in the discovery sample were also sb-pQTLs in the replication sample. 

For context, in the largest sb-eQTL study to date, the most sb-eQTLs 
were identified in breast tissue and the internal replication rate for 
sb-eQTLs in breast tissue was 0.28 (ref. 12).

To test whether environmental factors could explain the modify-
ing effect of sex on genetic regulation of protein expression for the 
identified 150 proteins with sb-pQTLs, we examined the environmental 
factors present in our dataset, including lifetime alcohol use, smoking, 
comorbid medical conditions and education. We found a significant 
difference between males and females for education, alcohol use and 
smoking but not for comorbid medical conditions. Next, we determined 
whether there was a significant SNP-by-environment term in the regres-
sion model ‘protein ~ SNP + environment + SNP × environment + SVs + 10 
principal components’ for the environment factor of education, alcohol 
use and smoking, respectively. We used the P-value threshold of 5.6 × 10−5 
since it was the P-value threshold for FDR < 0.05 for the sb-pQTL analysis. 
We found the SNP-by-environment term to be significant in one SNP for 
education and five SNPs for lifetime alcohol use among the 166 index 
sb-pQTLs. Then we tested whether the genetic interaction with sex 
remained significant when considering a sex-by-environment term for 
these six SNPs using the regression model ‘protein ~ SNP + sex + environ-
ment + SNP × sex + SNP × environment + SVs + 10 principal components’. 
Among these six SNPs, four continued to have a significant SNP × sex 
term (education and alcohol use) and two no longer had a significant 
SNP × sex term (alcohol use; Supplementary Table 9). Thus, among 
the 166 index sb-pQTLs, only two may be potentially affected by the 
difference in lifetime alcohol use between males and females, lending 
confidence to the sb-pQTL findings.

Sex-biased expression at both the mRNA and protein levels
We next examined genes with sex-differentiated expression in 
human brain at both the mRNA and protein levels. First, we identified 
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Fig. 2 | Sex-biased pQTLs. a, Operational definition of sb-pQTLs: an SNP needs to 
meet both of the following two criteria to be declared a sb-pQTL. First, it is a pQTL 
in males or females or both at FDR < 0.05. Second, it has a significant genotype-
by-sex interaction in protein expression at FDR < 0.05. We identified 166 index sb-
pQTLs corresponding to 150 unique proteins in human brain. b, Genomic site-type 
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sex-differentiated mRNA expression using transcriptomic profiles from 
the dPFC of 621 donors of European ancestry (Supplementary Table 1). 
After quality control and normalization, 15,582 mRNAs were included 
in the analysis and 500 (3.2%) mRNAs were encoded by genes on the 
X chromosome. Before testing for sex-biased expression, the effects 
of batch, RNA quality, post-mortem interval, donor age and clinical 
diagnosis were estimated and removed using linear regression, and 
SVA was used to infer hidden technical and biological variables. To 
estimate the effect of sex on brain mRNA expression, we fit a linear 
regression model with mRNA levels as the outcome, sex as the inde-
pendent variable and SVs as covariates. We found that 4,279 (27.5%) 
mRNAs had different expression levels between males and females at 
FDR < 0.05 and, among these, 226 mRNAs (or 5.3%) were encoded by 
genes located on the X chromosome (Supplementary Table 10).

Interestingly, there were 498 (5.5%) genes with sex-differentiated 
expression at both the mRNA and protein levels among the 9,080 
genes measured in both the transcriptomic and proteomic profiles 

(Supplementary Table 11). Among these 498 genes, 76.1% had con-
cordant sex-biased expression for mRNA and protein. The replication 
rate (π1) of sex-biased expression between proteins and mRNAs was 
0.67. Genes with discordant sex-biased expression between mRNA 
and protein were enriched for proteins involved in axonal growth 
cone (adjusted P = 0.013). Genes with concordant sex-biased expres-
sion between mRNA and protein were enriched for proteins involved 
in cellular morphology, cell adhesion, actin filament organization, 
initiation of translation and branched-chain amino acid degradation 
(Supplementary Table 12).

Comparing sex-biased genetic regulation of mRNAs versus 
proteins
To understand the shared and distinct sex effects on genetic regulation 
of brain proteins and mRNAs, we compared sb-pQTLs with sb-eQTLs. 
First, we identified sb-eQTLs using the same two-stage approach as was 
used to identify sb-pQTLs (Fig. 2) in 589 donors of European ancestry 
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with genetic and transcriptomic data from the dPFC (Supplementary 
Table 1). We observed no sb-eQTLs at FDR < 0.05 or FDR < 0.1. Relaxing 
the threshold to FDR < 0.2, there were 2,336 suggestive index sb-eQTLs, 
which corresponded to 1,834 unique mRNAs (Supplementary Table 13). 
Surprisingly, using the threshold of FDR P < 0.2 to define sb-QTLs, the 
replication rate π1 between sb-pQTLs and sb-eQTLs was 0 despite an 
internal sb-pQTL replication rate of 0.53.

We performed several internal and external checks of our sb-eQTL 
findings. First, our sb-eQTL findings are in line with those from a prior 
study that detected sb-eQTLs in brain only at FDR < 0.25 but not at a 
lower FDR threshold12. Second, we found the π1 replication rate between 
our eQTLs and a large published eQTL study23 to be 0.96, lending con-
fidence in our QTL analysis. Third, we investigated whether higher 
interindividual variations in mRNA levels or sample sizes (n = 716 for 
sb-pQTL and n = 589 for sb-eQTL analysis) may partially drive the differ-
ence in sb-eQTLs and sb-pQTLs. To that end, we examined the number 

of pQTLs, eQTLs, sb-pQTLs and sb-eQTLs in two scenarios: (1) among 
all genes profiled in the proteomes and transcriptomes, respectively; 
and (2) only among genes profiled in both the transcriptomes and 
proteomes (n = 8,009 genes). Interestingly, we found more eQTLs than 
pQTLs in both scenarios and in both sexes together or in either sex alone 
at FDR < 0.05 (Supplementary Table 14). Focusing on sb-QTLs, we found 
comparable numbers of sb-eQTLs and sb-pQTLs at FDR P < 0.2 in both 
scenarios; however, there were more sb-pQTLs than sb-eQTLs at more 
stringent FDR thresholds for defining sb-QTLs (Supplementary Table 
15). Together, these findings suggest that the interindividual variations 
in mRNA levels and sample size did not explain the difference in the 
number of sb-eQTL and sb-pQTLs.

Putative causal genes with sex-biased protein expression
We asked whether any of the genes with sex-biased expression identi-
fied here are also causal genes in 24 psychiatric, neurologic and brain 
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Fig. 4 | Sex-specific causal genes and proteins. a, Causal genes with sb-pQTLs 
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b, Causal proteins in females only (n = 11). Among these 11 proteins, three 
also had sex-biased protein expression: DOC2A, ITIH3 and DLST (in bold). 
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morphologic traits found in our recently published study20. In that 
work, we identified brain proteins that are consistent with a causal role 
in those traits by integrating 720 reference human brain proteomes 
with genome-wide association study (GWAS) results for each trait using 
multiple complementary approaches. These include proteome-wide 
association study (PWAS) using FUSION24, Mendelian randomization 
using SMR25 and colocalization analysis using COLOC26 to identify 
proteins with highest level of evidence for a causal role in each trait. 
For brevity, we refer to the identified 651 gene–protein pairs as causal 
genes or causal proteins recognizing that their causal role needs to be 
validated in model systems.

We found 97 causal genes with sex-biased protein expression by 
intersecting the 651 causal genes identified in the previous work with 
the 1,354 proteins with sex-biased expression identified in the current 
work (Supplementary Table 16). Moreover, we found that 25% of the 
causal genes in brain traits, on average, had sex-biased protein expres-
sion (range 5–50%; Fig. 3a). Furthermore, among these causal genes, 33 
had sex-biased expression at both the brain mRNA and protein levels 
and 28 had concordant directions of sex-biased expression at the mRNA 
and protein levels (Fig. 3b and Supplementary Table 17). For instance, 
CTNND1 is a causal gene in four different psychiatric disorders (major 
depression, schizophrenia, post-traumatic stress disorder and prob-
lematic alcohol use) and neuroticism (a personality trait that is prone 
to experiencing negative emotions) and had sex-biased expression at 
both the transcript and protein levels in concordant directions (Fig. 3b).

Putative causal genes having sex-biased genetic regulation
To understand the role sex-biased genetic regulation of protein 
abundance may have on disease, we used two approaches designed 
to circumvent the limited power and small number of the available 
sex-stratified GWAS results.

In the first approach, we intersected 651 causal genes for psy-
chiatric, neurologic and brain morphologic traits identified by the 
above-described work20 with 150 genes with sb-pQTLs identified 
in the current work. The intersection yielded 12 causal genes with 
sb-pQTLs (Fig. 4a and Supplementary Table 18a). To test the possibility 
of multiple independent causal variants within each of the identified 
genes, we performed Sum of Single Effects (SuSiE) regression27 for the 

12 genes and did not find evidence for more than one causal variant 
per gene. These 12 genes influence four psychiatric, one neurologic 
and three brain structural traits, and 5 of 12 influence multiple traits  
(Fig. 4a). Notably, among these 12 causal genes, three also had 
sex-biased protein abundance: ERLEC1, CNTN2 and GIGYF2 (Fig. 4a 
and Supplementary Table 18b).

In the second approach, we performed sex-stratified PWAS and 
colocalization analysis in each sex separately to identify proteins with 
evidence consistent with a causal role in one sex but not in the other 
for six psychiatric and neurologic traits with available sex-stratified 
GWAS results7,28,29 (Supplementary Table 19a). Again, we refer to these 
as causal proteins for brevity. We defined sex-specific causal proteins 
as being significant in the PWAS in one sex (FDR P < 0.05) and having 
evidence of colocalization in that sex (posterior probability for hypoth-
esis 4 (PP4) > 0.75) but not significant in the PWAS of the other sex 
(P > 0.05). Here, colocalization refers to colocalization of the genetic 
variants associated with the protein and trait of interest. We found 23 
sex-specific causal proteins, with 11 for females only and 12 for males 
only (Fig. 4b,c, Tables 1 and 2 and Supplementary Table 20).

To determine whether the identified sex-specific causal proteins 
show sex-specific genetic risk, we asked whether the genetic interaction 
with sex in the corresponding GWAS was nominally significant for the 
considered trait for the sites that were most significantly associated 
with the trait at the locus. There were 14 of 23 sex-specific risk proteins 
(61%) with suggestive evidence for sex-biased genetic risk (Tables 1 and 2  
and Supplementary Table 20). We note that the sex-specific GWAS 
were limited in number and power compared with the joint GWAS 
(Supplementary Table 19a,b), making direct comparisons between 
the two approaches infeasible. Together, the 35 (12 and 23) identified 
sex-biased causal proteins are promising targets for sex-aware mecha-
nistic studies for the 24 considered psychiatric, neurologic and brain 
morphologic traits.

Discussion
We examined effects of biological sex on brain protein expression and 
disease at both the mRNA and protein levels. We found that approxi-
mately 27% of the mRNAs and 13% of the proteins had sex-differentiated 
expression in the brain. Furthermore, we found that only 5.5% of genes 

Table 1 | Proteins consistent with a causal role in females only identified by PWAS and colocalization analyses using 
sex-stratified proteomic data and GWAS results (n = 11)

PWAS and COLOC results in females PWAS results in 
males

Published GWAS results

Protein Trait PWAS Z PWAS p PWAS FDR p COLOC 
PP4

PWAS Z PWAS p Best GWAS 
SNP

SNP×sex  
interaction p

suggestive sex-bias 
(interaction  
p < 0.05)

CSRP2 Cross-disorder 4.1 5.1 ✕ 10−5 1.8 ✕ 10−2 0.92 . . rs7302529 1.6 ✕ 10−7 yes

DOC2A Cross-disorder −3.7 1.8 ✕ 10−4 4.0 ✕ 10−2 0.97 −1.9 0.06 rs11150576 2.1 ✕ 10−2 yes

ITIH3 Cross-disorder −3.8 1.6 ✕ 10−4 4.0 ✕ 10−2 0.77 . . rs2256332 2.3 ✕ 10−1

PDXDC1 Cross-disorder −4.2 2.7 ✕ 10−5 1.6 ✕ 10−2 0.98 −1.9 0.05 rs3751877 2.3 ✕ 10−2 yes

ARHGAP21 Neuroticism −3.7 1.8 ✕ 10−4 2.4 ✕ 10−2 0.96 0.1 0.92 rs2152432 8.6 ✕ 10−3 yes

CNNM2 Neuroticism −5.1 3.8 ✕ 10−7 2.3 ✕ 10−4 0.97 −1.5 0.12 rs732998 1.0 ✕ 10−2 yes

DLST Neuroticism 5.8 6.3 ✕ 10−9 7.7 ✕ 10−6 0.98 . . rs8022046 1.7 ✕ 10−1

EFNA3 Parkinson’s disease −4.6 5.0 ✕ 10−6 1.4 ✕ 10−3 0.86 . . rs12743272 2.7 ✕ 10−1

VKORC1 Parkinson’s disease 6.6 3.9 ✕ 10−11 4.7 ✕ 10−8 0.82 . . rs4889603 2.1 ✕ 10−2 yes

CORO7 Schizophrenia −4.1 3.5 ✕ 10−5 1.4 ✕ 10−2 0.89 −1.3 0.21 rs3747584 1.9 ✕ 10−2 yes

PDXDC1 Schizophrenia −4.6 3.8 ✕ 10−6 3.2 ✕ 10−3 0.98 −1.9 0.06 rs3751877 3.5 ✕ 10−3 yes

Multiple testing was adjusted with FDR. Evidence for sex bias at the genetic level for these proteins was based on published GWAS SNP-by-sex interaction P value. Full results are in 
Supplementary Table 20. Proteins with missing values for PWAS Z and P value in one sex were those not included in the PWAS in that sex because the protein heritability estimate was not 
significant in that sex (that is, heritability P > 0.01) and the PWAS can only be performed on heritable proteins. PWAS FDR P value was adjusted for all proteins included in the sex-specific PWAS. 
Cross-disorder refers to cross-disorders among schizophrenia, bipolar disorder and major depression. Detailed results are in Supplementary Table 20.
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had sex-biased expression at both the transcript and protein levels, 
and 76% of these had concordant directions of sex difference. Next, we 
examined sex effects on the genetic regulation of gene expression and 
identified 150 proteins with sex-biased genetic regulation. To under-
stand the relevance of our findings in brain health, we intersected our 
findings of sex-biased protein expression and genetic regulation of 
brain proteins with previously identified causal proteins for 24 psy-
chiatric, neurologic and brain morphologic traits20. On average, we 
found that 25% of these causal proteins had sex-biased protein abun-
dance and 12 causal proteins had sb-pQTLs. Furthermore, we integrated 
sex-specific GWAS with sex-specific brain protein data for six psychi-
atric and neurologic traits and identified 23 proteins consistent with 
a causal role in these conditions in one sex but not the other. Notably, 
14 of 23 (61%) of these sex-specific causal proteins had suggestive evi-
dence of having sex bias at the GWAS level despite the limited sample 
size and power of the published sex-stratified GWAS. Together, these 
results illuminate the effects of sex on brain health and lay a foundation 
for future sex-aware mechanistic studies of psychiatric and neurologic 
disorders.

To date, studies of sex effects on psychiatric and neurologic dis-
eases have focused on brain transcriptome15–17,30–32. Consistent with the 
prominent role of the synapses and inflammation in sex-specific tran-
scriptomic studies of depression16, our results at the protein level sup-
port the role of synaptic formation and immune function in sex-specific 
risk for depression. In particular, among the four causal genes with 
sb-pQTLs we found for depression, cadherin 13 (CDH13) regulates 
GABAergic neurons, axon guidance and synaptic formation33,34. Moreo-
ver, among the 18 depression causal genes with sex-biased protein 
expression that we identified, GGH and PRKAR2A are implicated in 
immune response35–37. In schizophrenia, a study of human brain tran-
scriptomes found enrichment of gene coexpression modules with the 
sex-by-diagnosis differential mRNAs, and these modules contained 
genes enriched in neural development15. In line with these results, 
among the two schizophrenia causal genes with sb-pQTLs we identi-
fied, PEBP1 is involved in neural development38. In sex-specific studies 
of alcoholism, a recent review of alcohol consumption studies using 

rodent models highlighted neuroimmune processes as a key emerging 
feature in sex differences in alcohol consumption30. In accordance with 
these observations, among the seven alcoholism causal genes with sex 
difference in brain protein expression that we identified, LGALS3 is a 
driver of macrophage and microglia activation and has been impli-
cated in neuroinflammation39–41. In AD, both human and mouse studies 
using brain transcriptomic data also observed the prominent role of 
microglial and inflammatory mechanisms in sex differences in AD31,32. 
In agreement with these results, among the eight AD causal genes with 
either sex-biased expression or genetic regulation of protein expres-
sion that we identified, half of them are involved in immune function: 
CD2AP facilitates recognition of antigen by T cells42; SLMAP participates 
in T cell receptor signaling43; ADAM10 regulates cytokine levels in 
activated microglia44; and STXBP3 is involved in immune function45,46.

An interesting facet of our results is that we did not find sb-eQTLs 
at FDR < 0.1 despite comparable sample sizes for the sb-eQTL and 
sb-pQTL analyses. We performed several verifications of our sb-eQTL 
findings and their results excluded sample size or interindividual vari-
ations in mRNA levels as potential explanations for the difference in 
significant sb-eQTLs and sb-pQTLs. We note that our sb-eQTL findings 
are consistent with those in published work that could only identify 
sb-eQTLs at FDR < 0.25 but not at a lower FDR threshold12,13. The high 
degree of replication between our eQTLs and a large published eQTL 
study23 (π1 = 0.96) and the relatively high internal replication rate for 
our sb-pQTLs (π1 = 0.52) lend confidence to our findings. Of note, the 
highest published internal replication rate for sb-eQTLs was π1 = 0.28 
(ref. 12) and it was from breast tissue sb-eQTLs. Our findings are not 
entirely unexpected since we found generally low correlations (mean 
correlation of 0.11) between the mRNA and protein expression levels 
in 307 individuals with both transcriptomic and proteomic data for 
the 150 proteins with sb-pQTLs. These low correlations are consistent 
with the modest correlations between mRNA and protein levels in brain 
tissues observed in several studies18–20,47. Thus, differences in observed 
sb-pQTLs and sb-eQTLs are likely due to multiple factors ranging from 
technical (that is, differences in platforms for measuring mRNA and 
proteins) to biological (that is, differences in cell-type proportions or 

Table 2 | Proteins consistent with a causal role in males only identified by PWAS and colocalization analyses using 
sex-stratified proteomic data and GWAS results (n = 12)

PWAS and COLOC results in males PWAS results  
in females

Published GWAS results

Protein Trait PWAS Z PWAS p PWAS FDR p COLOC 
PP4

PWAS Z PWAS p Best GWAS 
SNP

SNP×sex  
interaction p

suggestive sex-bias 
(interaction  
p < 0.05)

SLMAP AD −4.1 4.4 ✕ 10−5 3.9 ✕ 10−2 0.87 . . rs266837 4.4 ✕ 10−3 yes

LRRC57 Bipolar disorder 4.1 3.9 ✕ 10−5 2.3 ✕ 10−2 0.99 1.3 0.21 rs4924687 1.5 ✕ 10−3 yes

CADM2 Neuroticism 4.1 4.3 ✕ 10−5 2.5 ✕ 10−2 0.8 . . rs1900916 1.8 ✕ 10−1

FARP1 Neuroticism 3.6 3.5 ✕ 10−4 5.0 ✕ 10−2 0.92 1.5 0.13 rs2274051 1.6 ✕ 10−1

HIP1R Parkinson’s disease −4.1 4.2 ✕ 10−5 9.3 ✕ 10−3 0.99 −1.2 0.23 rs11060180 3.9 ✕ 10−1

OMG Parkinson’s disease −4.0 7.4 ✕ 10−5 1.2 ✕ 10−2 0.93 −0.9 0.36 rs11080149 4.0 ✕ 10−2 yes

FTSJ3 Schizophrenia 3.7 1.9 ✕ 10−4 2.5 ✕ 10−2 0.77 −0.5 0.63 rs1062791 6.4 ✕ 10–3 yes

LRRC57 Schizophrenia 4.0 6.4 ✕ 10−5 1.4 ✕ 10−2 0.76 0.9 0.38 rs2412709 8.7 ✕ 10−2

NAGA Schizophrenia 3.6 2.9 ✕ 10−4 3.5 ✕ 10−2 0.91 1.6 0.11 rs1023500 1.6 ✕ 10−1

NMRK1 Schizophrenia −3.7 2.0 ✕ 10−4 2.6 ✕ 10−2 0.83 −1.8 0.07 rs3780178 4.0 ✕ 10−2 yes

TOM1L2 Schizophrenia −3.8 1.4 ✕ 10−4 2.2 ✕ 10−2 0.76 −1.6 0.11 rs4925133 3.7 ✕ 10−1

ZZEF1 Schizophrenia 4.5 5.8 ✕ 10−6 1.7 ✕ 10−3 0.93 0.0 1 rs10521129 9.0 ✕ 10−3 yes

Multiple testing was adjusted with FDR. Evidence for sex bias at the genetic level for these proteins was based on published GWAS SNP-by-sex interaction P value. Full results are in 
Supplementary Table 20. Proteins with missing values for PWAS Z and P value in one sex were those not included in the PWAS in that sex because the protein heritability estimate was not 
significant in that sex (that is, heritability P > 0.01) and the PWAS can only be performed on heritable proteins. PWAS FDR P value was adjusted for all proteins included in the sex-specific PWAS. 
Cross-disorder refers to cross-disorders among schizophrenia, bipolar disorder and major depression. Detailed results are in Supplementary Table 20.
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post-transcriptional gene regulations). Moreover, emerging evidence 
suggests that gonadal hormones and their receptors have pronounced 
effects on the expression and regulation of microRNAs48–50, which are 
important post-transcriptional regulators of gene expression, and on 
the translation of mRNAs51. Together, the more pronounced effects 
of sex on the genetic regulation of protein expression highlight an 
intriguing difference in what the transcriptome and proteome may 
reveal about sex-differentiated genetic control of gene expression in 
the human brain and should be further investigated.

In interpreting our findings we should take into consideration the 
limitations. Our studies were limited in power since each sex must be 
analyzed separately. There is also a limited number of sex-stratified 
GWAS that can make full use of the sex-specific pQTL data. Moreover, 
the available sex-stratified GWAS had much smaller sample sizes, 
and thus much lower power, compared with the joint GWAS (Supple-
mentary Table 19). Collectively, these factors likely contribute to the 
relatively modest number of genes identified through integrating the 
sb-pQTLs with sex-stratified GWAS compared with traditional pQTL 
and GWAS integration in both sexes jointly. While it seems reasonable 
to speculate that gene-by-sex effects explain a small amount of the 
variance in the observed sex differences in brain traits, their utility 
lies in the mechanistic insights they provide, and larger sex-specific 
GWAS are needed to better gauge their contributions to disease. This 
limitation could be mitigated by standard reporting of sex-stratified 
GWAS results in addition to standard joint analysis results. Other 
limitations of this work include the profiling of brain proteomes 
and transcriptomes in individuals of European ancestry, which may 
potentially limit the generalizability of these findings to individuals 
of other ancestries. Additionally, focusing on older individuals may 
limit the generalizability of our findings to individuals across the age 
spectrum or to brain illnesses with earlier-onset age such as schizo-
phrenia or bipolar disorder, although it likely reduces heterogeneity 
since all individuals can comfortably be assumed to have undergone 
menopause or andropause. Finally, while we found little evidence that 
our results of sex-biased genetic regulation were influenced by demo-
graphic factors correlated with sex, we caution that sex in this study 
should be thought of as biological sex and there are potentially many 
factors that differ between females and males. Thus, unmeasured 
environmental factors that are correlated with biological sex could 
potentially lead to the appearance of sex-biased gene expression or 
genetic regulation. Future studies should test gene-by-environment 
interactions to understand potential underlying mechanisms for sex 
differences in brain illnesses.

Strengths of our study include being the first study of the role of 
sex on protein abundance and its genetic regulation in the brain to the 
best of our knowledge. Second, it is the largest study of the role of sex 
in transcriptional expression, which enables us to compare the role 
of sex at the protein and transcript levels for a gene. Third, our study 
is based on a large dataset of well-characterized post-mortem brains 
that have undergone comprehensive proteomic and transcriptomic 
sequencing. Fourth, given the age of the donors, hormonal state was 
not likely to confound our results. Lastly, we presented here an invalu-
able resource of the largest brain pQTLs, sex-specific brain pQTLs and 
their concordance/discordance with sex-specific brain eQTLs, paving 
the way for future sex-aware studies of neuroscience and brain illnesses.

In conclusion, we found that biological sex has an influence on 
brain mRNA and protein expression and that its effects on genetic regu-
lation of gene expression appeared more pronounced at the protein 
than mRNA level. Furthermore, we uncovered putative causal genes 
in brain traits and disease that have either sex-differentiated protein 
expression or sex-biased genetic regulation of protein expression. 
Finally, we provide a resource of human brain pQTLs, sb-pQTLs, eQTLs, 
sb-eQTLs and sex-specific causal proteins in psychiatric and neurologic 
disorders for the scientific community to study sex-aware mechanisms 
underlying brain illnesses.
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Methods
Cohorts
Participants from the following studies donated post-mortem 
brain tissues for proteomic sequencing. The ROS and MAP are two 
community-based longitudinal clinical–pathologic studies of aging 
and AD52. All participants are organ donors, provide informed consent 
and sign an Anatomical Gift Act and repository consent to allow their 
data and biospecimens to be repurposed. An Institutional Review Board 
of Rush University Medical Center approved the studies.

The Arizona Study of Aging and Neurodegenerative Disorders, 
conducted by Banner Sun Health Research Institute (referred to as ‘Ban-
ner’ here), primarily recruits cognitively normal volunteers from the 
retirement communities and some participants with AD or Parkinson’s 
disease in Phoenix, AZ53. All participants receive annual standardized 
medical, cognitive and neurological assessments. Participants or their 
legal representatives signed an informed consent that was approved 
by the Banner Sun Health Research Institute Institutional Review Board 
allowing for brain donation and use of donated biospecimens for 
approved future research and genetic studies.

The Baltimore Longitudinal Study of Aging (BLSA) is a prospective 
study of aging in community-dwelling individuals. The BLSA study was 
approved by the Institutional Review Board and the National Institute 
on Aging. All BLSA participants provided written informed consent 
at each visit.

Post-mortem brain tissues also came from the Mount Sinai/JJ 
Peters VA Medical Center Brain Bank54. All donors or their representa-
tives provided informed consent approved by the Institutional Review 
Boards of Mount Sinai School of Medicine and JJ Peters VA Medical 
Center. Donors with proteomic data had a mean age of 87 (range: 
61–108). Donors with transcriptomic data had a mean age of 89 (range: 
67–108).

No monetary compensation was provided to participants.

Proteomic data
The proteomic sequencing of each dataset was preformed indepen-
dently, and the methods for proteomic sequencing and quality control 
have been described in detail previously for all datasets21,55 except for 
the precuneus and middle frontal gyrus. All proteomic sequencing 
followed the same approach and was performed using isobaric tandem 
mass tag peptide labeling with peptides analyzed by liquid chroma-
tography coupled to tandem mass spectrometry (MS). The proteomic 
sequencing for the precuneus and middle frontal gyrus are detailed 
here and are illustrative of the approach used for each dataset. Each 
sample was individually homogenized in urea lysis buffer to disrupt 
nucleic acids. Protein concentration was determined using the bicin-
choninic acid method and frozen in aliquots at −80 °C. Protein mixture 
was digested overnight and diluted to obtain peptides. Peptides were 
labeled using TMTPro isobaric tags (Thermo Scientific). Subsequently, 
high pH fractionation was performed as described in research by Ping 
et al.56. All samples were then analyzed on the Evosep One system using 
the preprogrammed 21-min gradient as described by Bekker-Jensen 
et al.57. MS was performed with a high-field asymmetric waveform ion 
mobility spectrometry Pro equipped Orbitrap Eclipse (Thermo) in 
positive ion mode using data-dependent acquisition with 2-second 
top-speed cycles. Each cycle consisted of one full MS scan followed 
by as many MS/MS events that could fit within the given 2-second 
cycle time limit. All raw files were searched using Thermo’s Proteome 
Discoverer suite (v.2.4.1.15) with Sequest HT. The spectra were searched 
against a human uniprot database downloaded in August 2020 (86,395 
target sequences). Percolator software implemented in the Thermo’s 
Proteome Discoverer suite was used to filter peptide spectral matches 
less than 1% FDR. Peptides were grouped using parsimony and unique 
peptides were used for protein-level quantitation. Reporter ions were 
quantified from MS2 scans using an integration tolerance of 20 ppm 
with the most confident centroid setting.

Quality control of the peptide sequencing was performed in each 
proteomics dataset separately and followed our previous approach20,55. 
All proteomic sequencing datasets included at least one global inter-
nal standard (GIS), but some included two GISs. For datasets with two 
GISs (that is, ROS/MAP, Banner and BLSA), proteins with abundance 
levels outside of the 95% confidence interval of the two GIS measure-
ments within a batch were deemed not reliably measured and were thus 
excluded. For datasets with only one GIS per batch, this step was not 
performed. Next, proteins with missing values in more than 50% of the 
samples per dataset were removed. Protein abundance was normalized 
using the total abundance of all the proteins for that sample (to account 
for protein loading differences) and log2 transformed. To identify sam-
ple outliers, we performed iterative principal component analysis to 
remove samples with greater than four standard deviations from the 
mean of either the first or second principal component. Regression 
was used to estimate and remove the effects of batch, MS mode, age at 
death, post-mortem interval and clinical diagnosis from the proteomic 
profiles. To enable comparisons across datasets, a Z-score transforma-
tion was applied. For proteins with multiple isoforms, we selected the 
most abundant isoform for investigation. The three datasets from the 
dPFC were analyzed jointly, including a covariate for dataset, and all 
other datasets were analyzed separately. In total, there were six sets 
of proteomic data from six brain regions used in subsequent analyses 
(Supplementary Table 1).

Genetic data
Genotypes were generated from blood or brain-derived DNA using 
microarrays (ROS/MAP and Banner) and/or whole genome sequencing 
(ROS/MAP and Mount Sinai Brain Bank) as described previously54,55,58. 
First, genotype quality control was performed on each dataset inde-
pendently. Individuals with genotype missing rate > 5% were excluded 
and variants were excluded if they met any of the following criteria: 
genotype missing rate > 5%, minor allele frequency < 5%, Hardy–Wein-
berg equilibrium P < 5 × 10−7 and non-biallelic variants. Related indi-
viduals were identified using KING59 (v.2.2.2) and individuals who were 
second-degree or closer relatives were randomly removed. Individu-
als who were population outliers were identified and removed using 
EIGENSTRAT (v.6.1.4)60. All participants included in the analysis were 
of European ancestry. After initial genotype quality control, genotype 
data were merged, and a second round of population substructure and 
kinship analysis was applied to verify that the final dataset included 
only unrelated samples without population outliers. Lastly, EIGEN-
STRAT60 was used to derive genetic principal components and ten 
principal components were used as covariates in the quantitative trait 
locus analyses.

Transcriptomic data
Transcriptomic profiling was performed as previously described 
in detail61. Briefly, RNA was extracted from post-mortem dPFC and 
sequenced on the Illumina HiSeq. Reads were aligned to a GRCh38 
reference using STAR v.2.4 (ref. 62) and transcript level counts were 
computed. Transcripts with less than 1 count per million (CPM) for at 
least 50% of samples per clinical diagnosis of cognition (normal, AD or 
other), missing gene length or missing percentage guanine–cytosine 
content were removed. Two samples that were outliers based on princi-
pal component analysis of raw CPM values were removed. Raw counts 
for 15,582 genes from 632 individuals were available for analysis. We 
applied the variance stabilizing transformation (‘vst’ function) from 
the R package DESeq2 (ref. 63; v.1.26.0) to normalize for library size, 
reduce heteroskedasticity and transform to log2 CPM while protecting 
the effect of sex (by specifying design formula ~sex). Subsequently, we 
regressed out effects of batch, RNA integrity number, post-mortem 
interval, age and clinical diagnosis from the normalized transcriptomic 
data before performing the downstream analyses. Among these 621 
transcriptomes, 307 were from donors of the proteomes above.
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Definition of sex
Sex was defined using genotyping data. In particular, biological sex 
was determined based on the heterozygosity rate across genetic vari-
ants located on the X chromosome in each donor using PLINK64. All 
donors included in our analyses had biological sex consistent with 
self-reported sex.

Statistical analysis
SVA. We performed SVA using the SVA package65 (v.3.20.0) and the 
significant SVs were later used as covariates in the regression models 
to map QTLs and sb-QTLs. We derived 56 significant SVs from prot-
eomic data and 33 significant SVs from transcriptomic data. For both 
proteomic and transcriptomic SV derivation, the effect of sex on gene 
expression was protected. In particular, in the SVA model, the primary 
variable of interest was sex and the expression matrix was the normal-
ized protein expression levels. Of note, we already regressed out the 
effects of protein sequencing batch, post-mortem interval, study, age 
and cognitive diagnosis from the proteomic profile before using it as 
input in the SVA.

Sex differences in protein expression. We performed regression 
modeling with protein as the outcome, sex as the independent variable 
and 56 SVs as covariates in each brain region separately. To identify 
proteins with sex difference in expression across the different brain 
regions, we performed a meta-analysis following the MASH approach 
(MASHR v.0.2.38)22, which uses an empirical Bayesian approach to 
estimate correlations (using mash_estimate_corr_em) among these 
regions. The priors were effects in each brain region separately fol-
lowing the MASH approach22. We used both cov_pca and cov_flash 
from mashr to derive data-driven covariances. No statistical methods 
were used to predetermine sample sizes, but our sample size of 1,277 
proteomes was larger than those reported in previous publications on 
sex differences in mRNA expression in brain10,12.

Sex differences in mRNA expression. The study of sex differences 
in mRNA expression was performed in an analogous fashion, as was 
done for protein using the transcriptomic count matrix and 33 SVs as 
covariates.

Sex differences in genetic regulation of protein abundance. The 
dPFC was used to investigate sex-differentiated genetic regulation of 
protein abundance because this brain region has the largest sample size 
with both proteomic and genetic data (n = 716). We examined proteins 
encoded by genes located on the 22 autosomes and X chromosome. 
For the latter, we coded the number of the minor allele as 0 or 2 for 
homozygous males and 0, 1, 2 for females. The window for QTL analysis 
was 500 kb up and downstream of the gene. To identify proteins with 
sb-pQTLs, we first performed a joint pQTL analysis in men and women 
combined using linear regression in PLINK, and sex-stratified pQTL 
analysis in men and women separately. Among the pQTLs identified 
at FDR < 0.05 in any of the above three analyses, we examined their 
genotype-by-sex interaction and declared those with a significant 
interaction at FDR < 0.05 as sb-pQTLs (Fig. 2). We performed FDR 
correction on all tested SNP–protein combinations. To identify index 
sb-pQTLs, we performed clumping with PLINK using the parameters of 
r2 of 0.50 and window size of 250 kb. The quantile–quantile plot for the 
P values of the genotype-by-sex term in the regression modeling for all 
the chromosomes (Extended Data Fig. 2a) and for the X chromosome 
(Extended Data Fig. 2b) showed no evidence of inflation, suggesting 
the underlying assumptions of the regression modeling were met, but 
this was not formally tested.

Likewise, to identify sb-QTLs among the genes that were profiled 
in both the proteomes and transcriptomes (n = 8,009 genes) for com-
paring sb-eQTLs to sb-pQTLs, we selected those genes and applied the 
same analysis framework as described above.

Sex differences in genetic regulation of mRNA expression. The 
study of sex differences in genetic regulation of mRNA expression was 
performed in an analogous fashion to sb-pQTLs, using the transcrip-
tomic count matrix and 33 SVs as covariates.

Genomic site-type enrichment for the sb-pQTLs and sb-eQTLs. 
Variant annotation of the sb-QTL sites was performed with Bystro66. 
Fisher’s exact test was used to test for enrichment of different site types 
among the sb-QTL sites.

Internal replication (π1 statistics) of the sb-pQTLs. To determine the 
replication rate of sb-pQTLs, the ROS/MAP dPFC proteomic dataset 
was considered as the discovery dataset (n = 565) and the Banner dPFC 
proteomic dataset was considered the replication set (n = 151). In the 
discovery set, the independent sb-pQTLs were identified after clump-
ing sb-pQTLs at FDR < 0.05 using the threshold of r2 < 0.5. Those results 
were compared with the sb-pQTLs of the replication dataset using the 
qvalue package v.2.22.0 (ref. 67) to estimate π1.

Internal replication (π1 statistics) of the sb-eQTLs. The independent 
significant sb-pQTLs at FDR < 0.2 were tested for replication with the 
sb-eQTLs using the qvalue package in R to estimate π1.

Gene set enrichment analysis. Gene set enrichment analysis was 
performed using GO-Elite (v.1.2.5) for human species68, which included 
Biological Process69, Molecular Function69, Cellular Component69, 
WikiPathways70, KEGG69 and REACTOME71 databases. Fisher’s exact 
test and Z-scores were used to test for significant enrichment among 
the proteins of interest using a background of 10,198 assayed proteins. 
Multiple testing was addressed with the Benjamini–Hochberg FDR.

SuSiE regression. We performed multiple regression using the soft-
ware package SuSIE27 and its default settings for the 12 causal genes 
with sb-pQTLs to examine whether there was more than one causal 
variant per gene.

Sex-specific PWAS. Sex-specific PWAS was performed following 
FUSION24 in males and females, respectively, using the sex-stratified 
GWAS results and sex-specific pQTL data we generated. We had access 
to the following sex-stratified GWAS for this analysis: major depression 
(n = 21,168 males and 27,372 females)7, bipolar disorder (n = 17,995 
males and 21,554 females)7, schizophrenia (n = 32,152 males and 24,093 
females)7, neuroticism (n = 137,880 males and 155,126 females; a person-
ality trait that is prone to experiencing negative emotions)28, Parkin-
son’s disease (n = 110,616 males and 104,082 females)29 and AD proxy 
via family history of dementia (n = 141,897 males and 170,769 females)28 
(Supplementary Table 19a).

First, we restricted the genotype data to the SNPs in the linkage 
disequilibrium reference panel provided with the FUSION24 package, 
which includes 1,190,321 SNPs from 1,000 Genome EUR samples, to 
minimize the influence of linkage disequilibrium on the analysis. Next, 
for each sex separately, SNP-based heritability for each protein was 
estimated. Proteins with SNP-based heritability P < 0.01 were declared 
heritable. Subsequently, for each heritable protein, we estimated 
the effect of a set of SNPs within a 500 kb window of the gene on its 
protein abundance, also referred to as the protein ‘weight’ for each 
sex separately. We applied the BLUP, LASSO, elastic net and BSLMM 
prediction models and kept the weights from the best-performing 
prediction model. Finally, we integrated the brain protein weights 
with each of the sex-specific GWAS summary statistics to perform 
the PWAS for each sex separately. The PWAS Z-score for each gene 
represents the combined effect of the protein and SNPs on the trait.  
The PWAS identified the cis-regulated proteins associated with the 
trait. We defined significant proteins as those with FDR P < 0.05 in 
each sex.
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Sex-specific colocalization analysis. Sex-specific colocalization 
analysis was performed using COLOC26. Specifically, using the marginal 
association statistics, we estimated the posterior probability that a 
protein and trait share or do not share a genetic variant. We used the 
default previous values provided by COLOC, which were p1 = p2 = 10−4 
and p12 = 10−5. We used the PP4 threshold of >75% to declare sharing a 
genetic variant.

Sex-biased causal genes and proteins. We defined genes and cor-
responding proteins identified in the PWAS and COLOC as genes and 
proteins consistent with a causal role or pleiotropy if they have FDR 
P < 0.05 in the PWAS and COLOC PP4 > 75% in the colocalization analy-
sis. Moreover, we operationally defined causal genes/proteins as sex 
differentiated if they (1) have a PWAS FDR P < 0.05 and COLOC PP4 > 75% 
in females but a PWAS P > 0.05 or no PWAS P in males (since the proteins 
were not significantly heritable in males to run the PWAS) or (2) have a 
PWAS FDR P < 0.05 and COLOC PP4 > 75% in males but a PWAS P > 0.05 
or no PWAS P in females.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data and results are deposited at Synapse at https://doi.
org/10.7303/syn51150434. These data include raw, processed and 
normalized proteomic and transcriptomic data, sex-specific pQTLs, 
sex-specific eQTLs, and sex-specific protein weights from FUSION. 
These data are in whole or in part based on data obtained from the 
AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.
org/Explore/Programs/DetailsPage?Program=AMP-AD). The AD 
Knowledge Portal is a platform for accessing data, analyses and tools 
generated by the Accelerating Medicines Partnership (AMP-AD) 
Target Discovery Program and other National Institute on Aging 
(NIA)-supported programs to enable open-science practices and accel-
erate translational learning. The data, analyses and tools are shared 
early in the research cycle without a publication embargo on second-
ary use. Data are available for general research use according to the 
following requirements for data access and data attribution (https://
adknowledgeportal.org/DataAccess/Instructions). The following 
databases for gene set enrichment analyses were used: Molecular Sig-
natures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp); WikiPathways (https://www.wikipathways.org); KEGG pathway 
(https://www.genome.jp/kegg/pathway.html); and Reactome (https://
reactome.org).

Code availability
In-house pipelines and scripts used for this work are available at https://
github.com/wingolab-org/role_of_sex_in_brain_expression.
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Extended Data Fig. 1 | Proteins with sex-biased expression per chromosome. 
Ratio of percent of proteins with sex-differentiated abundance over percent of 
proteins profiled in the brain proteomes for each chromosome. This enables 
comparison of the number of genes with sex-differentiated protein abundance 

across the chromosomes, taking into consideration the number of genes 
encoded on each chromosome and the number of these proteins profiled in the 
brain proteomes.
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Extended Data Fig. 2 | Quantile–quantile (QQ) plots. QQ plots for the P values of the genotype-by-sex interaction term in the regression model protein ~ 
sex + SNP + sex × SNP + 56 SVs + 10 PCs for all autosomes (a) and the X chromosome (b). The genomic inflation factor lambda was 1.011 for all chromosomes and 1.032 for 
the X chromosome.
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