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Abstract

People often plan hierarchically. That is, rather than planning
over a monolithic representation of a task, they decompose the
task into simpler subtasks and then plan to accomplish those.
Although much work explores how people decompose tasks,
there is less analysis of why people decompose tasks in the
way they do. Here, we address this question by formalizing
task decomposition as a resource-rational representation prob-
lem. Specifically, we propose that people decompose tasks in
a manner that facilitates efficient use of limited cognitive re-
sources given the structure of the environment and their own
planning algorithms. Using this model, we replicate several
existing findings. Our account provides a normative explana-
tion for how people identify subtasks as well as a framework
for studying how people reason, plan, and act using resource-
rational representations.
Keywords: planning; task decomposition; option discovery;
hierarchical reinforcement learning; subgoals

Introduction
Your brother’s birthday is coming up, so you decide to leave
work early to drop his gift off at the post office. Although you
know your way around town, you haven’t been to the post
office in several months, so you need to think. In particular,
you start to plan: “How do I get to the post office from here?”
you ask yourself. “Well, there’s that café where I sometimes
get my morning coffee. If I can first get there, then I should
be able to get to the post office easily. Now, how should I
get to the café? I know its east of where I am, so I can walk
that way until I hit the main road...” Continuing this line of
thought for a few moments, you come up with a plan before
setting off with determination.

The seemingly mundane choice to navigate to the café be-
fore navigating from the café to the post office is an example
of task decomposition. That is, rather than reason about a task
in its totality (e.g., going from work to the post office), people
decompose a task into manageable subtasks (e.g., going from
work to the café; going from the café to the post office) and
then reason in terms of those subtasks. Planning at multiple
levels of abstraction has been extensively documented in psy-
chology and neuroscience (Botvinick et al., 2009) and plays
an important role in developing systems that can solve com-
plex, high-dimensional problems (Sacerdoti, 1974). In short,
hierarchical planning and decision-making is a key element
of intelligent behavior in both humans and machines.

Although much research has explored how people leverage
hierarchical representations (Ribas-Fernandes et al., 2011;

Cushman & Morris, 2015; Balaguer et al., 2016), there has
been less systematic investigation into the principles that de-
termine task decompositions in the first place. There are a
few notable exceptions, including accounts that emphasize
the value of inferring the hidden structure to guide behav-
ior across tasks (Collins & Frank, 2013; Tomov et al., 2020)
as well as accounts based on compressing a representation of
optimal behavior (Solway et al., 2014; Maisto et al., 2015).
But, whereas these existing models emphasize decomposi-
tion in relation to statistical inference about the environment
or behavior, our account focuses on a separate role that task
decomposition plays: It makes reasoning easier.

Here, we approach task decomposition as a resource-
rational representation problem. That is, we model people as
solving the problem of how to break down a task in a manner
that makes efficient use of planning resources. In the follow-
ing sections, we provide background on related work before
discussing the mathematical details of our normative account
of task decomposition. We then report several simulations
and show how our model can explain human data from four
experiments reported by Solway et al. (2014). Finally, we
conclude by discussing future directions for resource-rational
approaches to problem solving representations.

Background
Planning is hard because of the curse of dimensionality (Bell-
man, 1957): As one attempts to plan into an increasingly
distant future, over a larger state space, or under condi-
tions of greater uncertainty, computation quickly becomes
intractable. Nonetheless, humans have numerous strategies
that allow us to plan in complex domains. Some of these
strategies involve modifying the search process. For exam-
ple, during search, people have been shown to limit their
depth of planning (MacGregor et al., 2001; Keramati et al.,
2016), prune away unpromising paths (Huys et al., 2012),
and direct their search using model-free value estimates (An-
derson, 1990; Newell & Simon, 1972; van Opheusden et al.,
2017). Another strategy is to modify the problem representa-
tion itself. Various forms of hierarchical planning (Botvinick,
2012) and task decomposition (Solway et al., 2014; Huys et
al., 2015) are characteristic of this approach. But while these
two types of strategies are distinct, they are also clearly in-
tertwined: How one represents a problem can make search
anywhere from impossible to trivial (Kaplan & Simon, 1990).
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The present work takes inspiration from the deep rela-
tionship between search—a type of computation—and task
decomposition—a type of representation—in the cognitively
demanding setting of planning. Task representations can play
a key role in making problem-solving computations more ef-
ficient (Ho et al., 2019), and identifying general principles
for automatically learning such representations is an active
area of research in artificial intelligence. For instance, Jin-
nai et al. (2019) examine how penalizing dynamic program-
ming iterations can guide decomposition, while Harb et al.
(2018) introduce a deliberation cost for switching subtasks
to help shape a decomposition. Here, we extend these ideas
by analyzing human task decomposition in terms of search
costs. Broadly, our approach is in the spirit of resource-
rational analysis (Griffiths et al., 2015; Lieder & Griffiths,
2020), a formal framework for deriving cognitive models un-
der the assumption that people make rational use of their lim-
ited cognitive resources. Previous resource-rational analyses
of planning have focused primarily on the search process it-
self (e.g., Callaway et al., 2018). However, the interdepen-
dence of computations and the representations over which
they operate means that this general framework can be readily
applied to the latter.

Resource-Rational Task Decomposition
By treating task decomposition as a resource-rational prob-
lem, we assume people acquire task representations that en-
able them to plan efficiently and perform tasks successfully.
Our account distinguishes between three nested levels of op-
timization (Figure 1A). The lowest level is action-level plan-
ning, where concrete actions are chosen that solve a subtask
(e.g., which direction should I walk to get to the café). The
next level is subtask-level planning, where a sequence of sub-
tasks is chosen (e.g., navigating to the café and then to the
post office). Finally, the highest level is task decomposition,
where a set of subtasks that constitute the decomposed task
is chosen (e.g., setting the café as a possible subgoal across
multiple tasks).

Importantly, solutions to the higher levels of optimization
depend on what happens at lower levels: A good task de-
composition depends on how the subtask-level planner will
compose the subtasks, and the selection of subtasks depends
on how the action-level planner will accomplish each one.
Furthermore, a resource-rational task decomposition is sen-
sitive not only to how well the planners solve their subprob-
lems (e.g., does action-level planning identify a good route
to the café?), but also on the computational cost of identify-
ing those solutions (e.g. how much thought did it take to find
that route?). Next, we discuss each of the three levels of our
model.

Action-level Planning
Action-level planning computes the optimal actions that one
should take to reach a subgoal. Here, we focus on determin-
istic, shortest path problems (e.g., finding a route to the café).
Formally, action-level planning occurs over a task defined by

a set of states, S ; a transition graph, T ⊆ S × S ; and a sub-
goal state, z ∈ S . In our running example, states are possible
locations (e.g., at the office, at work, at the café, at the post of-
fice); the transition graph represents which locations in town
are accessible to one another; and a subgoal could be the café.

Given an initial state, s, and a subgoal, z, action-level
planning seeks to find a minimum-length sequence of states
that begins at s and ends at z. We denote the length of
this minimum-length sequence to be D(s,z). For comput-
ing the optimal sequence of actions, we consider two broad
classes of search algorithms: uninformed search and heuristic
search (Newell & Simon, 1972; Russell & Norvig, 2009).

Uninformed Search When faced with a domain that lacks
features to guide exploration, the best that a planning agent
can do is blindly but systematically explore their model of
the problem starting from an initial state. This strategy de-
scribes a broad class of search algorithms known as unin-
formed search. For example, breadth-first search (BFS) ex-
plores states in the order of their distance from the starting
state. As a result, for an initial node s and subgoal node z,
BFS will explore all states that are less than the minimum
path length D(s,z), as shown in Figure 1B. The cost of BFS,
CBFS(s,z), is proportional to the number of these states.

Heuristic Search Unlike uninformed search, heuristic
search leverages domain knowledge in the form of a heuris-
tic function that can provide an optimistic estimate of the dis-
tance to a goal. For instance, when navigating to the café,
you might know that it is North-East of work, leading you to
consider walking North or East before South or West. The
canonical heuristic search algorithm is A∗ (Hart et al., 1968),
which considers states in the order of an optimistic estimate
of the total cost of a solution passing through that state (Fig-
ure 1C). This estimate is the cost of reaching that state plus a
lower bound on the cost from that state to the goal, which is
given by the heuristic function. For example, when navigat-
ing to the café, one might use Euclidean distance as a heuris-
tic, which is optimistic because it assumes you can walk di-
rectly towards your destination (e.g., no obstacles will be in
the way). By prioritizing states that are more promising (as
estimated by the heuristic), A∗ can search far fewer states than
BFS, resulting in a lower search cost, CA∗(s,z).

Subtask-Level Planning

A number of formalisms have been used to model hierarchi-
cal decision-making (Sutton et al., 1999; Dietterich, 2000;
Parr & Russell, 1998). Here, we assume a simple model of
hierarchical planning that involves only a single level above
action-level planning, which we call subtask-level planning.
Formally, subtask-level planning occurs over a set of sub-
goals, Z ⊂ S .1Given a set of subgoals, subtask-level plan-
ning consists of choosing the best sequence of subgoals that
accomplish a larger goal. Each subgoal is then provided to
the action-level planner in turn, and the resulting action-level
plans are combined into a complete plan to reach the goal
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Figure 1: (A) Our account relates three levels of optimization during problem solving: task decomposition, subtask-level
planning, and action-level planning. (B) Top: Planning with breadth-first search (BFS) from a start state (small circle) to the
goal state (star) with no subgoals. Grey squares indicate nodes visited during search process (49 nodes visited). Bottom: BFS
with the optimal size 1 task decomposition, where the green circle represents a subgoal (26 nodes visited). (C) Top: Planning
with A∗ search with a Manhattan distance heuristic and no subgoals (28 nodes visited). Bottom: A∗ search with the optimal size
1 task decomposition (13 nodes visited). (D) Indoor/Outdoor domain with optimal size 2 task decomposition. Top: The three
dots represent possible start/goal states. The green and red tiles are the non-trivial subgoals in the optimal task decomposition.
Bottom: Subtask-level policy when the center tile is the goal (star) and the diagonal corners are possible start states (“S”).
Colors correspond to the most likely subgoal chosen at each state. Purple is the trivial “go to goal” subtask.

state. For example, when navigating to the post office, the
subtask-level planner might decide to first go to the café and
then go to the post office from there, and the action-level plan-
ner would figure out the precise sequence of steps to get from
work to the café and from the café to the post office.

The objective of the subtask-level planner is to identify
the sequence of subgoals that brings the agent to the goal
state while maximizing task rewards and minimizing com-
putational costs. Here, we focus on tasks in which the task
is simply to reach the goal state in as few steps as possible.
Additionally, note that we only consider action-level planners
that return the optimal shortest path. Thus, formally, the task
reward associated with choosing a subgoal z from state s is the
negative distance: R(s,z) =−D(s,z). We can then compactly
express the optimization problem faced by the subtask-level
planner as a Bellman equation (Bellman, 1957). Given a task
goal g, a set of subgoals Z, and an algorithm with a search
cost function CAlg, the optimal subtask-level planning utility
from any state s ∈ S is:

V g
Z(s) = max

z∈Z

{
R(s,z)−CAlg(s,z)+V g

Z(z)
}
. (1)

The fixed point of Equation 1 can be used to identify the op-
timal subtask-level policy (Puterman, 1994). Additionally,
we assume that the ultimate goal, g, is always included in
Z to ensure that it is possible for the subtask-level planner

1For readers familiar with the options framework (Sutton et al.,
1999), we note that what we call a subgoal is equivalent to a simple
option where the set of initial states is the full state space, S , and the
termination function is β(s) = 1(s = z). This means that subtask-
level planning is a semi-Markov decision process.

to solve the task. Finally, although we do not explore this
possibility here, note that this formulation allows us to eas-
ily express tradeoffs between task rewards, R, and algorithm-
specific computation costs, CAlg.

Task Decomposition

Having defined action-level planning and subtask-level plan-
ning over subgoals, we can now turn to our original motivat-
ing question: How should people decompose tasks? In this
context, this reduces to the problem of selecting the best set of
subgoals. Importantly, we assume that people rely on a com-
mon set of subgoals for all the different possible tasks that
they might have to accomplish in a given environment. For
example, be at the downtown train station is a good subgoal
because it is often along relatively-optimal paths, whereas be
at a friend’s place on the other side of town is probably not
a good subgoal because it is only relevant when visiting that
friend.

We formalize subgoal selection as an optimization prob-
lem: Identify the set of subgoals, Z∗, that maximize the value
attained by the subtask-level planner on average. That is,

Z∗ = argmax
Z

Es,g[V
g
Z(s)], (2)

where the expectation is with respect to a task distribution,
p(s,g), over starting states s and goals g. Importantly, this
objective takes into account both the expected task rewards
and the costs of action-level planning mediated by subtask-
level planning.
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Figure 2: Analyzing Solway et al. (2014) Experiments 1-3 with uninformed search. (A) Top: Solway et al. (2014) decomposi-
tion of graph from Schapiro et al. (2013). Bottom: Resource-rational task decomposition. (B) Top: Graph used in Experiment
1 from Solway et al. with proportion of “bus stops” placed at states. Bottom: Subgoals do not facilitate more efficient breadth-
first search (BFS) in this graph, so our model does not learn to use any states as subgoals. (C) Top: Graph for Experiment 2
with bottlenecks depicted. Same graph was used in Experiment 3. Bottom: Distribution over subgoals z from softmax of value
of subgoal with inverse temperature of 100. Task decomposition facilitates more efficient BFS in this graph. In particular, the
“bottleneck state” connecting the two regions is the optimal subgoal, followed by the adjacent states. (D) Top: Experiment 3
in Solway et al. probed whether participants’ plans included states in the graph. Responses were significantly faster for bottle-
neck (purple) compared to non-bottleneck states (blue). Bottom: Simulations of probe response computations in experimental
trials with the optimal task decomposition learned by our model. Our model takes fewer steps to respond when the probe is a
bottleneck state, mirroring the experimental findings.

Implementation

The code for all the analyses we report is available at
https://bit.ly/2T44Tun. Here, we briefly describe the imple-
mentation. For both BFS and A∗, we calculated action-level
computational costs CAlg(s,z) and minimum path lengths
D(s,z) for every state s ∈ S and subgoal z ∈ S . With these
quantities, a set of subgoals Z, and distribution over goals
and starting states p(s,g), we can define the optimal ex-
pected subtask-level planning value function, Es,g

[
V g

Z(s)
]

(see Equation 1). We compute this function using value it-
eration with a threshold of ε = 10−5 (Bellman, 1957).

Finally, to solve for the optimal set of subgoals, Z∗, we
explored two methods. The first was an exact method—
enumeration and evaluation of all subgoal sets. The sec-
ond was a gradient-based method. This method used a dif-
ferentiable version of value iteration at the subtask-planning
stage (Haarnoja et al., 2017; Ho et al., 2020) and distribu-
tions over subgoals instead of discrete subgoals at the task de-
composition level. While enumeration is intractable for large
state spaces, we found that the methods produced similar re-
sults when both were feasible. Thus, we present results using
the exact enumeration method when it was computationally
tractable—for the small environments used in Solway et al.
(2014)—and the gradient method otherwise.

Gridworld Simulations
To illustrate the properties of our model, we begin by an-
alyzing optimal decompositions of simple gridworld tasks.
The grids we tested include Open Field, 2-Room, and In-
door/Outdoor. We tested our model with both BFS and A∗.
As shown in Figure 1, our model produces intuitive task de-
compositions as a function of a task and planning algorithm.

Analysis of Solway et al. (2014) Experiments
Solway et al. (2014) reported four studies that investigated
how people decompose tasks and engage in hierarchical plan-
ning. Here, we ask if our resource-rational model can ac-
count for these findings. We first discuss Experiments 1-3
(Figure 2), which relied on tasks in which people could not
leverage prior knowledge and then turn to Experiment 4 (Fig-
ure 3), which used the Tower of Hanoi (Nilsson, 1971), a task
that allows for the use of prior knowledge.

Experiments 1-3: Uninformed Search
Summary of Findings Experiments 1-3 reported by Sol-
way et al. (2014) experimentally tested the hierarchical struc-
ture used by participants when performing navigation tasks
over abstract state spaces. Figures 2B and 2C show the con-
nectivity structure of the domains people were given.

A key qualitative finding reported by Solway et al. (2014)
was that people’s responses reflected a decomposition of the
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Figure 3: Analyzing Solway et al. (2014) Experiment 4. (A) Hierarchically optimal (green) vs. non-hierarchically optimal
(red) paths in Tower of Hanoi. (B) Optimal task decomposition with BFS has one bottleneck subgoal and two neighboring
non-bottleneck states as subgoals. (C) Edit distance to a subgoal (green circle). Edit distance provides useful local information
for heuristic search. (D) Optimal task decomposition with A* and edit distance heuristic has three equidistant bottleneck states
as subgoals.

state space based on bottlenecks, states or transitions that con-
nect more densely-connected regions of a state space (Şimşek
& Barto, 2009). A preliminary modeling result they reported
recovered a task decomposition along community boundaries
in a graph (Figure 2A) studied in Schapiro et al. (2013). Ex-
periment 1 assessed this in the task with the transition struc-
ture in Figure 2B (top) by having participants choose a “bus
stop” that would be most useful for making “deliveries” be-
tween locations represented by the icons. Participants over-
whelmingly chose the bottleneck states, as displayed in the
figure. Experiment 2 had participants actually navigate to and
from random locations in the task with the structure in Fig-
ure 2C. However, on test trials, participants were asked to ei-
ther identify locations along the path in any order or identify
a single location on the path. Participants tended to report
bottleneck states first, suggesting they were thinking about
these states first in their planning process. Finally, Experi-
ment 3 used the same domain as Experiment 2, but partici-
pants were probed about whether a state was on the optimal
path between two states. Participants answered faster for bot-
tleneck states compared to non-bottleneck states, providing
additional evidence that these states are the first to come to
mind (Figure 2D).

Model Implementation and Results For the Schapiro et
al. graph (Figure 2A), we assumed a uniform distribution over
all start and goal states, and set the number of subgoals to
|Z| = 3. The best subgoals separated the three communities
at their boundaries, allowing the action-planner to first find
the community containing the goal and then search for the
goal within that community.

For the second graph (Figure 2B; Solway et al. Experiment
1), we again assumed a uniform distribution over all start and
goal states, and set the number of subgoals to |Z|= 1. Inter-
estingly, no set of subgoals achieved greater value than plan-
ning without subgoals: Z∗ = /0. Thus, the model did not re-
flect the empirical results. Although “bus stop” judgments
recovered bottleneck states, they may reflect a process that is
distinct from task decomposition for planning. Further exper-
iments are needed to evaluate this.

We made the same assumptions for the third graph (Fig-
ure 2C; Experiments 2 & 3), and found that the bottleneck
state was always in the optimal decomposition. The next-best
decompositions all included one of the four states connected
to the bottleneck state, indicating that navigating near the bot-
tleneck state is a useful subgoal in this task.

To replicate the reaction time results reported in Experi-
ment 3 (Figure 2D), we simulated hierarchical planning with
the optimal decomposition using trials as described by Sol-
way et al. Specifically, the model first constructed a subtask-
level plan. If the queried state was a subgoal state, the model
replied “Affirm” as soon as the subtask-level planner encoun-
tered the state and “Reject” if the state was not in the com-
pleted subtask-level plan. If the queried state was not a sub-
goal state, the model proceeded to construct each action-level
plan in turn. As soon as the queried state was encountered,
the model replied “Affirm”. If the final action-level plan to the
goal was completed without encountering the state, the model
replied “Reject”. In either case, we used the total number of
subgoals and states that were simulated before the response
was produced as a proxy for reaction time. These results are
plotted for bottleneck vs. non-bottleneck probes and “Affirm”
vs. “Reject” type probes in Figure 2D.

Experiment 4: Tower of Hanoi and Heuristic
Planning
Summary of Findings In a final experiment, Solway et
al. tested participants solving the Tower of Hanoi (Nilsson,
1971). The experiment focused on “problems of interest”,
trials where two paths of the same length led to a goal but one
crossed more bottleneck states. They found that participants
preferred to take paths that crossed fewer bottleneck states.
Assuming that people prefer hierarchically shorter paths (i.e.,
ones that use fewer subgoals), this has been taken to reflect a
decomposition of the task based on bottleneck states.

Model Implementation and Results The Tower of Hanoi
is an important contrast to the tasks in the first three exper-
iments because states have features that provide clues for
search. For example, the edit distance between two states pro-
vides an optimistic estimate of their minimum path length: it

2977



ignores that some transitions are forbidden and assumes you
can rearrange blocks arbitrarily. Much like how spatial dis-
tance can guide planning in navigation tasks, heuristics like
edit distance can guide problem solving in structured tasks.

To understand the relationships between heuristics, task
decomposition, and Solway et al.’s results, we ran several ver-
sions of our model on the Tower of Hanoi. We set the number
of subgoals to |Z|= 3 and used BFS as the action-level plan-
ner. Notably, the optimal subgoals under this scheme were
systematically “skewed”, consisting of a bottleneck state and
two nearby points (Figure 3B). For our second simulation, we
used the same procedure and parameters, but rather than using
BFS (uninformed search), we used A∗ with an edit-distance
heuristic for action-level planning (Figure 3C). The top two
decompositions both contained three bottleneck states in sep-
arate communities (Figure 3D). Unlike BFS, A∗ can effi-
ciently navigate between these points, allowing for a task de-
composition that spans the full extent of the problem space.

Discussion
We have proposed a resource-rational account of task decom-
position based on the idea that subgoals are decomposed to
make planning easier. Our model specifies three levels of
nested optimization: Task decomposition identifies a set of
subgoals for a given domain, subtask-level planning chooses
sequences of subgoals to reach a goal, and action-level plan-
ning chooses sequences of concrete actions to reach a sub-
goal. Optimal task decomposition thus depends on both the
structure of the environment and the computational resource
usage specific to the planning algorithm. We find that our
model produces interpretable task decompositions in grid-
world tasks and decompositions consistent with three of the
four findings reported by Solway et al. (2014).

The model presented here departs from and complements
other normative proposals in the literature. Most existing ap-
proaches pose task decomposition as an inference problem:
People are modeled as inferring a generative model of the en-
vironment (Collins & Frank, 2013; Tomov et al., 2020) or as
compressing optimal behavior (Solway et al., 2014; Maisto
et al., 2015). In contrast, we pose task decomposition as a
resource-rational representation problem: People are mod-
eled as having subgoals that reduce the computational over-
head of action-level planning. This change in view has sev-
eral consequences worth noting.

First, unlike inferential approaches that abstract away the
underlying reasoning process, our framework requires spec-
ifying a planning algorithm. Different assumptions at this
lowest level (e.g. using breadth first search or A*) can dra-
matically influence the task decomposition (e.g., Figure 3).
On the one hand, this makes model identification more chal-
lenging since the space of planning algorithms and parame-
terizations is vast. On the other hand, because our model is
both algorithmic and normative, it can characterize the inter-
play of planning computations and representations in a well-
posed manner. Additionally, this approach allows us to an-

alyze how behavioral suboptimality can arise from rational
tradeoffs between task rewards and computation costs associ-
ated with particular search algorithms. Future empirical work
on resource-rational planning representations will need to ex-
amine these questions in greater depth.

A second difference is that inferential models generally
emphasize learning from task interactions as data, while we
have deliberately set aside how resource-rational decompo-
sitions are learned. Specifically, our formulation assumes
the existence of an optimization process that can select a de-
composition, whether it be through direct experience with a
task or other means. Although this temporarily defers impor-
tant and interesting questions about online problem solving,
characterizing any learning process requires first identifying
what is being learned (i.e., what is being optimized). It is in
this sense that the model presented here is a resource-rational
analysis of task decomposition (Griffiths et al., 2015).

More broadly, the work presented here is consistent with
other recent efforts within cognitive science to understand
how people engage in computationally efficient decision-
making (Griffiths et al., 2015; Lewis et al., 2014; Gershman et
al., 2015; Lieder & Griffiths, 2020). It is also complementary
to recent work in artificial intelligence that explores the inter-
action between planning and task representations (Jinnai et
al., 2019; Harb et al., 2018). Our hope is that future work on
human planning and problem solving will continue to inves-
tigate the relationships between computation, representation,
and resource-rational decision-making.
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