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SUMMARY

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), 

we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, 

representing one discovery and two validation cohorts across two biospecimen types (formalin-

fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high 

specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in 

two independent patient cohorts. We detected significant association between lack of Ch17 loss 

of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we 

identified 5 clusters of HGSOC, which validated across two independent patient cohorts and 

patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of 

refractoriness and implicate putative therapeutic vulnerabilities.

In brief

Patients with high-grade serous ovarian cancers (HGSOCs) have a poor outcome, with the 

standard of care not having changed over the decades. A detailed characterization of the 

proteogenomic landscape of HGSOCs across multiple cohorts and validation studies identifies 

a distinct signature that predicts with high specificity a subset of patients with chemotherapy-

refractory cancers and implicates potential therapeutic vulnerabilities.

Graphical Abstract
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INTRODUCTION

Epithelial ovarian cancer accounts for >185,000 deaths/year worldwide.1 The most common 

subtype, high-grade serous ovarian cancer (HGSOC), accounts for 60% of deaths. Despite 

improvements in surgical and chemotherapeutic approaches, HGSOC mortality has not 

changed in decades.2 The 5-year survival rate remains ~30% for the majority of patients.1,2

Standard of care involves surgical debulking combined with adjuvant or neoadjuvant 

chemotherapy with carbo- or cisplatin in combination with a taxane.1,3 At diagnosis, 

HGSOC is among the most chemo-sensitive of all epithelial malignancies, with initial 

response rates of ~85%, presumably related to DNA repair defects.4 Platinum is thought 

primarily to drive the response rate, due to the lower single-agent response rate for taxanes.5

10%–20% of HGSOC patients have treatment-refractory disease at diagnosis, fail to respond 

to initial therapy, and have a dismal prognosis.6 The poor response to subsequent therapy 

and median overall survival of ~12 months for these patients has not changed in 40 

years.7,8 Even for the ~85% of tumors that respond to initial chemotherapy, most relapse 

as resistant disease,9 defined as recurrence within 6 months of completing platinum-based 

chemotherapy.10 This chemo-resistant phenotype, which can occur following a single or 

multiple rounds of therapy, is also associated with poor responses to subsequent therapies11 

and limited survival. Patients whose ovarian cancer has responded with a partial or complete 

remission are often treated with PARP inhibitors as maintenance therapy, with the greatest 
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benefit in relapse-free survival observed in cancers with BRCA1 or BRCA2 mutations.12 

These regimens are supported by level 1 evidence from randomized phase III trials13–16 but 

unfortunately do not apply to patients with platinum-refractory HGSOC.

Despite >30 years of literature studying platinum resistance in cancer,17 there currently is 

no way to distinguish refractory from sensitive HGSOCs prior to therapy. Consequently, 

patients with refractory disease experience the toxicity of platinum-based chemotherapy 

without benefit. Due to their rapid progression, they are commonly excluded from 

participating in clinical trials. Accordingly, there is no ongoing clinical research that could 

identify effective therapeutic agents for these patients or provide insights into molecular 

mechanisms of refractory disease.

To address this unmet clinical need, we performed proteogenomic analysis of treatment-

naive HGSOCs (chemo-sensitive and chemo-refractory) and identified a 64-protein signature 

that predicts a subset of chemo-refractory HGSOCs with high specificity and is validated 

in two independent patient cohorts. Additionally, five molecular subtypes are identified, and 

implicate possible therapeutic vulnerabilities.

RESULTS

Study cohort and proteogenomic profiling

We performed proteogenomic analyses on pre-treatment biopsies from three HGSOC patient 

cohorts: FFPE (formalin-fixed paraffin-embedded) discovery (n = 158), FFPE validation 

(n = 20), and frozen validation (n = 64). Biopsies were collected at the time of primary 

debulking surgery (prior to chemotherapy) and were reasonably balanced between chemo-

refractory and sensitive tumors (Figure 1A). Refractory cancers were defined as those 

that progressed or had stable disease within 6 cycles of initial platinum/taxane therapy 

after initial debulking surgery (STAR Methods). Sensitive tumors were defined as those 

that responded to initial platinum/taxane therapy and did not progress within 2 years 

(STAR Methods). Demographic and clinical annotations are provided in Table S1. Biopsies 

were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a 

multiplexed tandem-mass-tag (TMT) isobaric labeling approach coupled with randomization 

to avoid bias (STAR Methods). Details regarding biospecimens and data quality assessments 

are provided (Figures S1B–S1J; STAR Methods). Proteogenomic data can be queried, 

visualized, and downloaded from http://ptrc.cptac-data-view.org/.

The FFPE discovery cohort consisted of 158 biopsies (91 sensitive and 67 refractory) 

(Figure 1A) sourced from 3 academic centers and representing a wide range of storage times 

(Figure S1A). 11,080 proteins and 11,817 phosphosites were quantified by LC-MS/MS. 

8,800 proteins and 2,648 phosphosites were observed in >50% of the biospecimens in either 

sensitive or refractory groups and were included in downstream analyses (STAR Methods, 

processed data). Whole-genome sequencing (WGS) and RNA-seq were performed on the 

FFPE discovery cohort samples. Using mutation and copy-number (CN) variation (CNV) 

information derived from the WGS data (STAR Methods), we delineated sets of likely 

somatic or germline pathogenic variants (“mutations”) and CN aberrations. After imposing 

strict quality control (QC) (STAR Methods), genomic data were available for mutations (n 
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= 120 tumors), CNV (n = 120 tumors), loss of heterozygosity (LOH) (n = 118 tumors), and 

RNA-seq-based gene expression (n = 106 tumors) (Figure 1A).

The FFPE validation cohort was an independent set of 10 sensitive and 10 refractory 

HGSOCs from a 4th academic center. TMT-based LC-MS/MS analysis of the FFPE 

validation cohort tumors identified 8,237 proteins and 3,080 phosphosites that were 

observed in >50% of the biospecimens (in either sensitive or refractory groups) and were 

included in downstream analyses (STAR Methods, processed data). Additionally, after QC 

(STAR Methods), somatic mutation data and DNA CN alteration data were derived for 19 of 

the 20 samples, while RNA-seq-based gene expression data passed QC filters for 14 samples 

(Figure1A).

The frozen validation cohort included 64 HGSOC tumors (44 sensitive, 20 refractory) 

(Figure 1A), of which 29 overlapped with the FFPE discovery cohort to assess replicability 

between biospecimen types (i.e., paired frozen and FFPE biospecimens from the same 

patient). TMT-based LC-MS/MS analyses in this cohort identified 8,272 proteins and 

17,448 phosphosites that were observed in >50% of the biospecimens in either sensitive 

or refractory groups (STAR Methods, processed data) and were included in the downstream 

analyses.

In addition to the validation cohorts generated in this study, two external, independent 

cohorts were used for validating findings: (1) Memorial Sloan Kettering (MSK)-IMPACT18 

and (2) the National Cancer Institute’s Clinical Proteomics Tumor Analysis Consortium’s 

study (“CPTAC-2016”).19

Genomic alterations associated with chemorefractoriness

Consistent with prior reports,20 we found few recurrently mutated genes (FFPE discovery 

cohort) (Figure 1B; Table S1). Tumors harbored 1–7 (median = 2) mutations in known 

tumor suppressor genes, with mutations in DNA damage response genes TP53 (67.5%), 

BRCA1 (15.8%), BRCA2 (15%), and CDK12 (10%) being among the most common (Table 

S1). As expected, mutations in BRCA1 or BRCA2 were more frequent in sensitive (S) vs. 

refractory (R) tumors (p = 0.001) (Figure 1C). No other significant associations between 

simple mutations (including TP53) and response were observed.

We observed a lower frequency of TP53 mutations compared with previous studies,20,21 

likely because we used an allele frequency cutoff of 11% for calling mutations, which was 

considerably higher than that used in The Cancer Genome Atlas (TCGA),20 resulting in 

a lower mutation call. We chose this cutoff to focus primarily on clonal mutation (driver) 

events likely to contribute to tumor biology and clinical behavior.

Because HGSOC is characterized by extensive genomic instability exemplified by segmental 

and chromosome-level alterations, or even whole-genome duplication,22,23 we performed 

absolute CN analysis (STAR Methods). Both sensitive and refractory tumors were 

remarkably unstable, with similar levels of aneuploidy and polyploidy, as well as broadly 

similar frequencies and patterns of gains and losses (Figure S1K). Further comparison of 
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local genomic alterations revealed similar patterns of focal chromosomal gains and losses 

(Figure 1D).

Transcripts, proteins, and CNVs associated with chemorefractoriness

We screened for individual RNAs/proteins/phosphosites whose abundances were associated 

with treatment response using linear regression models adjusted for anatomical tumor 

location, neoadjuvant status, age, institutional sample source site, and tumor purity (STAR 

Methods). 22 RNAs, 4 proteins, and 1 phosphosite showed association (false discovery 

rate [FDR] ≤ 0.1) with treatment response (FFPE discovery cohort) (Figure 1E; Table S1). 

The observed fold differences for significant proteins and phosphosites were small (0.77–

1.29), while fold differences for significant RNAs ranged from 0.20 to 10.18. Among 

the four proteins associated with treatment response, transglutaminase 2 (TGM2) was 

more abundant in refractory vs. sensitive tumors, while CARMIL1, CCDC167, and TPMT 

were more abundant in sensitive tumors. Examination of the validation cohorts indicated 

that only CCDC167 was significantly elevated (marginal p value < 0.05) in sensitive 

tumors. Moreover, no association between the four proteins and survival was detected 

using the dataset from the CPTAC-2016 study19 (STAR Methods). The weak association 

between “individual” RNA/protein species and treatment response could be due to the 

high heterogeneity among HGSOCs and multitude of mechanisms underlying platinum 

responses.17

Examining the CNV data, we detected 938 genes associated with treatment response (FDR 

< 0.1; Table S1). As CNV profiles have strong spatial correlation, many of these genes 

are likely passengers sitting close to genes affecting treatment response, rather than direct 

contributors. In fact, of 938 genes, 361 genes were from nearby regions on chromosome 6 

(Chr6), 355 genes from chromosome 11 (Chr11), 158 genes from chromosome 5 (Chr5), 

and 46 genes from chromosome 20 (Chr20). It is reasonable to assume that only a small 

subset of transcripts/proteins in these big regions might be the real “drivers” of response. 

To point to potential treatment-related genes over passengers, we performed an integrative 

analysis, as described below.

Integrative analysis identifies chemotherapy-response-associated genes

We performed an integrative analysis combining CNV, RNA, and global protein data (FFPE 

discovery cohort) and validated our findings using independent cohorts (STAR Methods). 

424 genes with a combined FDR < 0.1 were identified, 303 of which had consistently 

higher CNV/RNA/protein measurements in sensitive HGSOCs and 121 of which were 

higher in refractory tumors. Of these 424 genes, 53 were validated (marginal p value < 

0.05) in at least one independent validation cohort from this study or the CPTAC-2016 

cohort19 (Table S1). Interestingly, a small region on Chr6 (Figure 1F) contains a group of 

7 genes (TRIM26, HLA-DMB, TAP1, TAP2, TAPBP, HSP90AB1, and HSPA1L) that were 

up in sensitive tumors and are members of immune pathways (e.g., antigen presentation/

processing, interferon) (Figure 1F). For example, our analysis of both FFPE discovery 

and FFPE validation cohorts revealed that chemo-sensitive HGSOCs had elevated TAP1 

protein, RNA, and CN compared with refractory tumors (Figure 1G). TAP1 is a transporter 

associated with antigen processing.24 We also identified higher (in refractory vs. sensitive) 
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CN, RNA, and protein abundance of BCL2L1/BCLXL, an antiapoptotic protein associated 

with treatment resistance25,26 (Figure S1L).

cis-regulation between CNV, RNA, and protein differs between sensitive and refractory 
tumors

The average gene-level CNV-RNA and RNA-protein correlations in sensitive tumors were 

significantly higher than in refractory tumors (Figure 2A). When applying iProFun27 

(STAR Methods) to screen for genes whose CNVs were significantly associated with their 

own RNA and protein levels (“CNV-RNA/protein cascade genes”), we observed a higher 

percentage of cascade genes in sensitive vs. refractory tumors: of the 8,605 genes with both 

RNA and protein abundances measured, 55% and 42% in sensitive and refractory tumors, 

respectively, were detected as CNV-RNA-protein cascade genes (p < 2.2e–16, Figure 2B; 

Table S2). The higher percentage of cascade genes in sensitive vs. refractory tumors was 

validated in the CPTAC-2016 cohort19: 49% and 41% (of the 4,795 eligible genes) in proxy-

sensitive and proxy-refractory tumors (STAR Methods), respectively, had CNV-RNA/protein 

cascade effects (p < 2.2e–16; Figure S2A; Table S2). For both cohorts, metabolism pathways 

(e.g., tricarboxylic acid (TCA) cycle, fatty acid metabolism, and heme metabolism) have a 

higher percentage of cascade genes, while ribosome and translation pathways have lower 

percentage of cascade genes relative to the genome average.

Chr17-LOH is associated with chemo-sensitivity

Consistent with previous studies,28 we noted significant LOH for most chromosomes 

(Figure S2B), with chromosome 17 LOH (Chr17-LOH) being the most common (~80% of 

cases). Among all LOH events, only Chr17-LOH was significantly (FDR < 0.1) associated 

with chemo-sensitivity (Figures 2C and 2D). No other chromosome-level gain, loss, or LOH 

event showed association with treatment response (Figure 2C). 75% of tumors heterozygous 

for Chr17 (i.e., without Chr17-LOH) were refractory, compared with only ~40% of those 

with Chr17-LOH (Figure 2D). Consistent with these results, we observed in an independent 

cohort, MSK-IMPACT,18 that tumors enriched for Chr17-LOH have significantly higher 

overall survival (Figure 2E; STAR Methods), as expected for chemo-responsive disease.

TP53 inactivation is associated with chemo-sensitivity

Chr17 harbors multiple tumor suppressor genes, including TP53. Bi-allelic inactivation 

of TP53 in cancers typically occurs through missense mutations accompanied by LOH.29 

Indeed, we find that mutations in TP53 are significantly associated with Chr17-LOH (odds 

ratio [OR]: 14.6, p < 6.05e–06) (Figure 2F). We observed significantly higher TP53 RNA 

expression (p = 0.002) and p53 protein abundance (p = 0.001) in tumors with TP53 missense 

mutations vs. wild-type (WT) (consistent with the known stabilization of p53 by missense 

mutations30), and lower TP53 RNA expression (p = 0.024) and p53 protein abundance (p = 

0.004) in tumors with TP53-truncating mutations (Figures S2D and S2E). Additionally, we 

observed elevated p53 levels (p = 0.011) among cases with Chr17-LOH (Figure 2G), in line 

with the enrichment of TP53 mutations in tumors with Chr17-LOH.

We hypothesized that the association between Chr17-LOH and sensitivity (Figures 2C and 

2D) is due to bi-allelic inactivation of TP53. We interrogated treatment responses stratified 
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by genetic aberrations (i.e., TP53 mutations and Chr17-LOH) and by transcriptional 

signatures of both “WT” and “mutant” p53. Missense mutations abrogate WT p53 

transcriptional activity31 and are associated with a mutant transcriptional signature.29 A 

WT p53 signature based on validated, direct, transcriptional targets of WT p53 has also been 

reported.32

As predicted, we found that Chr17-LOH was associated with a significantly lower WT p53 

signature (Figure 2H) and a significantly higher mutant p53 signature (Figure S2G). The 

WT p53 signature tended to be higher in tumors without TP53 mutations, although the 

difference was not significant (Figure S2F). Moreover, tumors without Chr17-LOH have 

significantly higher expression of MDM2, a gene activated by WT p53, and significantly 

lower expression of CDC20, a gene repressed by WT p53 (Figures S2H and S2I). These 

results suggest that tumors without Chr17-LOH retain some p53 activity.

Next, we asked whether WT or mutant p53 transcriptional signatures are associated with 

chemo-responsiveness. WT p53 activity was higher in refractory tumors (Figure 2I), 

whereas the mutant p53 signature was higher in sensitive tumors (Figure S2J). Tumors with 

both high WT TP53 activity and low mutant TP53 activity were predominately refractory 

(Figure S2K). Figure S2L illustrates selected pathways associated with Chr17-LOH. E2F 

targets are upregulated in tumors with Chr17-LOH (FDR = 1.47e–20), consistent with their 

lower WT p53 activity (Figure 2H), since WT p53 (acting through p21/CDKN1A and RB1) 

represses E2F.33 In addition, Chr17-LOH tumors show increased mTOR pathway expression 

(FDR = 3.1–21), consistent with repression of the mTOR pathway by WT P5334 (Table S2).

Using a multivariate regression model, we found that Chr17-LOH (OR: 15.76, p < 0.026), 

BRCA1/2 mutation (OR: 4.75, p < 0.011), and loss of WT TP53 activity (OR: 0.4, p < 

0.006) remain independent predictors of response (Figure 2J). These results suggest that WT 

p53 activity is associated with refractoriness and that tumors with Chr17-LOH lack WT p53 

activity, likely due to bi-allelic inactivation of TP53. Conversely, tumors with monoallelic, 

perhaps dominant-negative TP53 mutations, may retain some p53 WT activity.30

Response-associated proteins stratified by Chr17-LOH, BRCA1/2, and TP53 mutations

We hypothesized that additional biomarkers will be identified when tumors are stratified 

by Chr17-LOH, BRCA1/2, and TP53 mutations (Table S2). Using multivariate regression 

models with tumor mutation burden (TMB), patient age, and tumor purity as covariates 

(STAR Methods), we found that when cases were stratified by Chr17-LOH (Figure 2K), 

the abundance of L1CAM protein, a key driver of tumor cell invasion and motility35 

that is strongly associated with TP53 mutations36 and poor prognosis,37 was positively 

associated with refractoriness (p = 1.9–5) in tumors with Chr17-LOH but not among cases 

heterozygous for Chr17 (p = 0.96) (Figure 2L). Conversely, expression of CDKN1A, a 

protein induced by WT p53,38 was associated with refractoriness in tumors without Chr17-

LOH (Figure 2K). Because WT p53 activity was associated with refractoriness, we also 

dichotomized tumors by p53 activity scores (Figure 2M) and found that the TGM2 protein, 

a known TP53 target,39 was associated with refractoriness among high p53 activity tumors 

(Figure 2N).
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Genomic scars associated with chemo-response

HGSOC genomes are characterized by “genomic scars” (i.e., summary scores reflecting 

patterns of genomic instability).40 In the clinical setting, the extent of number of 

telomeric allelic imbalances (nTAIs), weighted genomic integrity index (wGII), number 

of large-scale transitions (nLSTs), and number of LOH (nLOH) are used to identify 

homologous recombination-deficient (HRD) HGSOC as a Food and Drug Administration 

(FDA)-approved companion diagnostic for selecting patients who benefit from PARP 

inhibitors.38 Since HRD is associated with chemo-sensitivity,41 we tested whether HRD 

scores differed between refractory and sensitive tumors (Figure 3A). We found elevated 

levels of “HRD scars” in sensitive tumors based on nTAI (p = 0.0176, Figure 3A left) 

and wGII (p = 0.053053, Figure 3A middle). Furthermore, chemo-sensitive tumors are 

associated with elevated frequencies of focal (short) gains and losses (p value = 0.0011, 

Figure 3A, right), but not with LSTs.

Above, we reported an association between Chr17-LOH and treatment response. 

Interestingly, tumors lacking Chr17-LOH had lower levels of genomic instability and HRD 

scores (nTAI and wGII), as well as weaker genome-wide LOH patterns vs. Chr17-LOH 

tumors (Figures S3A and S3B). Conversely, the genome-wide frequencies and distribution 

of chromosomal gains and losses were similar between tumors with and without Chr17-

LOH (FigureS3B). To interrogate Chr17-LOH asa potential predictor of chemo-sensitivity 

in the context of the clinically established predictors (HRD score and BRCA1/2 mutation), 

we tested the association in a multivariate model (Figure 3B) and found that only Chr17-

LOH and BRCA1/2 mutation status were predictive of response, both associated with 

chemo-sensitivity. We also noted an improvement in predictive power when Chr17-LOH 

is added to a baseline model combining clinical covariates and BRCA1/2 status in two 

S3H; independent patient cohorts (Figures 3C and STAR Methods).The area under the curve 

(AUC) of the receiver operating characteristic (ROC) of the resulting model is 0.73 with a 

95% confidence interval (CI) of 0.63–0.84 (FFPE discovery cohort) (Figure 3C). In addition, 

the AUC of the resulting model is 0.66 with a 96% CI: 0.40–0.92 (FFPE validation cohort) 

(Figure S3H). Despite these encouraging results, better prediction models are needed for 

clinical practice. This motivated us to explore the proteomic data to determine whether more 

effective prediction models could be built based on protein markers.

A protein panel predictive of refractoriness

We constructed an ensemble-based prediction model trained using global proteomic data 

(FFPE discovery cohort). We selected a panel of 1,082 proteins predictive of treatment 

responses (Figure 3D1; STAR Methods) by leveraging proteogenomic profiles from HGSOC 

cell lines and patient-derived xenograft (PDX) models,42 31 years of literature on platinum 

resistance,17 and a machine-learning-based feature selection procedure (STAR Methods). 

We identified a subset of 64 proteins from the metabolic, hypoxia, and NF-κB pathways 

(Table S3; STAR Methods) that were associated with treatment response. We built an 

ensemble prediction model based on the 64 proteins using the ElasticNet,43 Random 

Forest,44 and XGBoost45 algorithms (Figures 3D2; STAR Methods). Details regarding the 

64 protein markers are shown in Figure S3C. For 7 out of the 64 proteins, the RNA-protein 
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correlations were <0.25, and the correlations were negative for COX7A2, COX6C, and 

BIRC2 (Figure S3D), suggesting post-translational regulation.

We evaluated performance of the prediction model through 5-fold cross validation (CV) 

using the FFPE discovery cohort proteomic data. The ROC of the ensemble prediction 

models evaluated on the CV sets showed an AUC of 0.83 (95% CI: 0.77–0.90) (Figures 

3D3). At 98% specificity, we observed a sensitivity of 0.35 with 95% CI: 0.19–0.52. Next, 

we evaluated the performance of the prediction model using two independent patient cohorts 

(frozen and FFPE validation) (Figures 3D3). For the frozen validation cohort, we separately 

considered the subsets of tumors that are independent of vs. overlapping with the FFPE 

discovery cohort. For the frozen-independent and frozen-overlapping subsets, we obtained 

AUCs of 0.79 (95% CI: 0.63–0.96) and 0.81 (95% CI: 0.61–1.00), respectively. At 98% 

specificity, we observed a sensitivity of 0.25 (95% CI: 0.08–0.58) and 0.43 (95% CI: 0.14–

0.86) for the frozen-independent and the frozen-overlapping subsets, respectively.

Finally, because the FFPE validation data cannot be readily aligned with the FFPE discovery 

data (due to the lack of a common reference sample and small sample size), we re-estimated 

and evaluated the prediction model using 3-fold CV. The resulting AUC is 0.91 (95% CI: 

0.84–1.00). At 98% specificity, we observed a sensitivity of 0.70 with 95% CI: 0.40–1.00. 

Based on these results, we conclude that a prediction model based on these 64 proteins 

detects a subset of refractory HGSOCs with high specificity.

We performed technical validation of the predictor model using a targeted multiple 

reaction monitoring-mass spectrometry (MRM-MS) assay panel that quantifies 70 peptides 

representing 22 proteins from the model (STAR Methods). The assay was associated with 

an AUC of 0.76 (Figure S3G; CV), demonstrating the feasibility of developing a multiplex 

MRM assay for prediction and paving the way for an expanded assay including all 64 

proteins in the model.

We built an ensemble-based prediction model using the phospho-proteomic data (FFPE 

discovery cohort) (STAR Methods) and obtained 89 phosphosites corresponding to 

metabolic, ERK, Fanconi, Hippo, and WNT signaling pathways. We evaluated the prediction 

performance of our model using the selected features in the FFPE discovery and FFPE 

validation phosphoproteomic data through CV. In the FFPE discovery data we obtained an 

AUC of 0.78, while in FFPE validation data, we obtained an AUC of 0.76 (Figures S3E and 

S3F).

A proteogenomic panel predictive of refractoriness

We examined the prediction performance of a joint model using genetic predictors (Chr17-

LOH and BRCA1/2 mutation status), the 64 protein markers, and clinical features (Figures 

S3I and S3J; STAR Methods). The resulting model achieved an AUC of 0.87 (CI: 0.79–0.93) 

on the training (FFPE discovery) cohort, and an AUC of 0.98 (CI: 0.93–1.00) on the FFPE 

validation cohort. These results were significantly better than the prediction models based 

on BRCA1/2 mutation status, Chr17, and clinical features in both the FFPE discovery (p = 

0.038) and the FFPE validation cohorts (p = 0.016) (Table S3; STAR Methods). Moreover, 
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at 98% specificity, the combined model had a sensitivity of 0.46 (CI: 0.1–0.66) and 0.8 (CI: 

0.60–1.00) in the FFPE discovery and FFPE validation cohorts, respectively.

Pathway analysis shows diverse processes associated with refractoriness

Using enrichment analysis of global proteomic, phospho-proteomic, and RNA-seq data, we 

searched for pathways associated with sensitivity/refractoriness (Table S4). Figure 4A shows 

a subset of differentially expressed pathways (FDR < 0.1) in one or more of the omics 

datasets (FFPE discovery cohort). E2F targets, G2M checkpoint, and DNA replication, etc. 

are elevated in sensitive tumors in all omics datasets. Conversely, hypoxia, transforming 

growth factor β (TGF-β), and epithelial-mesenchymal transition (EMT), etc. are elevated 

in refractory tumors in all datasets. Oxidative phosphorylation (OXPHOS) and tricarboxylic 

acid (TCA) cycle are elevated in refractory tumors based on protein, but not RNA data, 

consistent with prior reports that concordance between proteomic and RNA-seq data are 

low for metabolic pathways.46 The implicated pathways have varying proportions of overlap 

with reported platinum resistance genes (Figure 4A, left). We validated the association 

between several pathways and chemo-response using independent cohorts (FFPE, frozen, 

and CPTAC-201619) (Figure 4A; Table S4; STAR Methods).

E2F transcription factors have been implicated in platinum response,47 and our study 

suggests an important role of silencing of this pathway in refractory disease, as significantly 

lower levels were observed in refractory tumors vs. sensitive tumors (Figure S4A). We also 

see that a multi-gene proliferation score48 is downregulated (Figure S4A; STAR Methods) 

in refractory tumors, suggesting a relatively lower proliferation rate. Consistent with these 

observations, downregulation of the E2F target PRIM2 (Figure S4A), which encodes the 

large subunit of the DNA primase, is associated with worse prognosis in ovarian cancer.49

Multiple metabolic pathways were associated with chemo-refractory disease in two out of 

the three independent validation cohorts (Figure 4A), consistent with our previous studies 

using cell line and PDX models,42 where metabolic pathways were significantly upregulated 

in resistant cell lines and/or refractory tumors. Figure S4B illustrates the association of 

492 proteins from metabolic pathways with response phenotype (FFPE discovery cohort). 

Among the 492 proteins, 45 were upregulated in refractory tumors (p < 0.05), including 

COX4I1, COX6A1, COX6C, COX7A2, COX7B, COX7C, MT-CO2, and NDUFA4, which 

are all part of mitochondrial complex IV (suggested to negatively regulate mitochondria-

derived reactive oxygen species50,51). Together with previous findings,42 our observations 

suggest association of these metabolic pathways with chemo-refractoriness in HGSOC.

Protein-based pathway scores reveal five HGSOC clusters validated in independent patient 
cohorts and PDX models

To characterize the heterogeneity in mechanisms17 contributing to treatment response in 

HGSOCs, the top 150 pathways significantly enriched in differentially expressed proteins 

between chemo-sensitive and chemo-refractory tumors (FDR < 0.01, Table S4) were used 

to perform consensus clustering analysis (FFPE discovery cohort). Using single sample 

gene set enrichment analysis (ssGSEA)-based protein pathway scores of the 150 pathways 

(STAR Methods), we identified 5 tumor clusters (Figure 4B). Cluster 1 was associated with 

Chowdhury et al. Page 12

Cell. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher expression of translational and rRNA processing pathways (pathway group 4, Figure 

4B). Clusters 1 and 2 showed high cell-cycle-related pathways (pathway group 5). Cluster 

3 showed higher expression of metabolic pathways (pathway group 6), whereas cluster 4 

showed upregulation of hypoxia, EMT, and TGF-β pathways (pathway group 3). Elevated 

immune pathway scores were observed in cluster 4 and 5 tumors (pathway group 1 and 2). 

Moreover, cluster 3 was enriched in chemo-refractory tumors (p = 0.027, Figure S4C). We 

did not observe association between the 5 clusters and tumor anatomical location (Figure 

S4D). We did observe more frequent Chr17-LOH in tumors in clusters 1–3 vs. clusters 4 and 

5 (p = 0.020, Figure 4D). Additionally, one region of chromosome 19p13.3 showed more 

frequent deletions in cluster 2 vs. other clusters (p < 0.0003) (Figure 4E; STAR Methods), 

while a large region of chromosome 1p had more frequent deletions in cluster 4 tumors 

vs. other clusters (p < 0.023, Figure 4F). When comparing this clustering result with that 

based on random sets of 150 pathways or the 150 pathways exhibiting the most variable 

scores, the above clustering results achieved the smallest within/between-cluster-variances 

ratio, indicating that it is not likely due to chance (p = 0; Figure 4B; STAR Methods).

Strikingly, these five proteomic clusters were validated in two independent cohorts 

(frozen validation and CPTAC-201619) and PDX models42 based on both supervised and 

unsupervised analyses (Figures 5A–5C, S5A, and S5B; Table S5; STAR Methods).

We developed an MRM-based assay to quantify 29 proteotypic peptides representing 10 

metabolic proteins that were upregulated in cluster 3 vs. other clusters (STAR Methods). 

We applied the MRM assay to 102 FFPE discovery cohort (all tumors with sufficient 

remaining sample material). For 8 of the 10 proteins, we obtained qualified MRM-based 

abundance measurements (Table S3), which confirmed the upregulation of all 8 metabolic 

protein markers in cluster 3 (Figures 5D and 5F). These 8 proteins also showed higher 

abundances in cluster 3 vs. other clusters in the independent CPTAC-2016 cohort19 (Figure 

5E). Moreover, we utilized the average abundances (Z scores) of the 8 proteins in the MRM 

data as a classifier and obtained an ROC-AUC of 0.84 for identifying cluster 3 tumors 

(Figure 5G).

Comparison with other clustering results

While our gene-level “RNA-seq” data replicate the subtypes reported by TCGA20 and 

others52 (Figure S4G; STAR Methods), the 5 “protein-based” clusters were distinct from the 

“RNA”-based subtypes (Figure S4F). This is consistent with previous studies53–55 reporting 

different results for transcriptomic- vs. proteomic-based pathway activities, likely because 

proteomic data capture post-transcriptional patterns invisible to RNA-seq data. Indeed, based 

on our FFPE discovery cohort, proteomic and transcriptomic pathway scores showed low 

correlation for many pathways (Figure 4B), especially metabolic pathways, suggesting 

extensive post-transcriptional regulation. Consequently, performing consensus clustering 

based on the RNA-seq vs. protein pathway data results in very different clusters (Figures 

S4F and S4H; STAR Methods).

Pathway-based clustering resulted in better separation of tumor clusters vs. protein-based 

analysis, as shown by significantly lower within/between variances based on pathway 

activity scores (Figure S4E; STAR Methods). Moreover, individual protein-based results 
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failed to reproduce across validation datasets (Figure S5E), while pathway-based analysis 

results in more stable/meaningful clusters, consistent with recent literature.56

Immune infiltration

To characterize the tumor microenvironment, we analyzed global proteomic and RNA-

seq profiles (FFPE discovery cohort) using two deconvolution methods, XDec57 and 

BayesDebulk58 (STAR Methods). The estimated proportions of major cell types showed 

large variation across the 5 tumor clusters (Figures 6A and S6C; Table S6). We observed 

the highest proportion of epithelial cells in cluster 1 tumors, and increased proportions of 

stromal cells (fibroblast, adipose) in cluster 2 and 4 tumors. High immune infiltration in 

cluster 5 was supported by high abundance of CD4, CD8A, and several HLA complex 

proteins. To verify these computational observations, we performed a blinded pathological 

review of a subset of the samples (STAR Methods) and found that the pathologist’s 

estimated proportions of epithelial, stromal, and immune cells showed good concordance 

with the computational results (Figure S6A). Additionally, multiplex in situ analysis using 

a fluorescent multiplex immunohistochemistry (IHC) panel for immune cell markers (CD8, 

CD4, and CCR5) validated the inferred percentage of CD8+ T cells and macrophage from 

BayesDebulk58 (Figure S6B; STAR Methods).

We observed significantly higher immune infiltration in the cluster 5 refractory vs. cluster 5 

sensitive tumors (Wilcoxon test p = 0.015, Figure 6B). The frozen validation cohort showed 

a similar trend (Figures 6B and S6D; STAR Methods). Investigation of specific immune cell 

types (inferred by BayesDebulk) suggested higher CD8 T cell (Wilcoxon test, p = 0.02) and 

macrophage (Wilcoxon test, p = 0.04) infiltration in the cluster 5 refractory vs. sensitive 

tumors (Figure 6C). Additionally, IHC data confirmed that the “cluster 5” refractory tumors 

had significantly higher percentages of cells with positive CD8, CD4, and CCR5 stains vs. 

cluster 5 sensitive tumors (Wilcoxon test, p < 0.01, Figure 6B). Figure 6E shows substantial 

staining of CD8, CD4, and CCR5 in a refractory tumor sample, while limited staining of 

these IHC markers can be seen in a sensitive tumor sample.

It has been reported that CD8+ T cell infiltration predicts response to immunotherapy in 

multiple cancers.59–61 We evaluated an anti-PD1 response signature62 in cluster 5 tumors 

(Table S6). This signature was identified using a pan-cancer approach (9,282 patients of 

31 different histologies) and has been shown to predict favorable response to PD-L1/PD1 

checkpoint inhibitors. We observed a higher (p = 0.02) antiPD1 response signature in the 

cluster 5 refractory vs. sensitive tumors (Figure 6C). Note, some genes in the signature are 

related to immune cells, so changes of this signature were likely driven both by cell-type 

composition differences as well as molecular changes within the same type of cells. These 

observations suggest that this subset of tumors might respond to immunotherapy.

By studying the protein co-expression network in refractory tumors, we identified a module 

of highly correlated proteins containing T cell markers, e.g., CD8A, CD7, and CD3D 

(Figure S6G; STAR Methods). There was a trend toward increased abundance of proteins 

in this module in cluster 5 refractory vs. sensitive tumors (Wilcoxon test p = 0.083; Figure 

6D). This same trend also occurred in the frozen validation cohort (Wilcoxon test p = 

0.085; Figure 6D). Leveraging a published ovarian tumor single-cell RNA-seq dataset,63 
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we were able to annotate most genes in the module as T cell and macrophage markers 

(Figure S6E; STAR Methods), consistent with increased T cell and macrophage infiltration 

in cluster 5 refractory tumors (Figures 6B and 6C). The most connected protein in this 

cluster (hub-protein) was SLAMF6, a regulator of exhausted CD8 T cells.64,65 Based on 

single-cell RNA data,63SLAMF6 is preferentially expressed in CD8T cells vs. other cell 

types (Figure S6F; STAR Methods), suggesting that SLAMF6 may play a role in immune 

regulation in some HGSOCs.

Association of TGF-β, alt-EJ, and βAlt signatures with cluster and response

Among the pathways overexpressed in refractory HGSOCs (Figure 4A), the TGF-β 
signaling pathway was of interest due to its role in cancer development66–69 and as a 

therapeutic target.70–72 An inverse correlation between TGF-β and alt-EJ gene expression 

signatures across tumor types has been reported.73–75 Importantly, for tumors with low 

TGF-β and high alt-EJ gene expression (i.e., high “βAlt score”), clinical outcomes were 

better.73,74 We observed similar inverse correlations between TGF-β and alt-EJ gene 

signatures at both the RNA and proteome levels in four independent cohorts (Figure 7A). 

We also observed that the TGF-β, alt-EJ, and βAlt scores significantly differ among tumors 

assigned to different protein-based clusters (Figure 7B; STAR Methods). TGF-β scores were 

higher in clusters 4 and 5, while alt-EJ scores were higher in clusters 1 and 2. The RNA-seq 

data suggested similar trends, although the correlation was less significant (Figure S7A). 

Similar associations between the TGF-β, alt-EJ, βAlt scores and clusters were seen in two 

independent validation cohorts (Figures S7B and S7C).

Bidirectional regulatory loops between TGF-β, proteolytic activity, and matrix 

metalloproteinase (MMP) expression levels have been associated with increased migration, 

invasion, and EMT.76–79 To evaluate the possibility that MMP activity is related to TGF-β 
in our cohorts, we identified peptides resulting from proteases other than trypsin (STAR 

Methods) to serve as a surrogate phenotype for non-tryptic protease activity.66 When we 

calculated the semi- and non-tryptic median ratios for each tumor (STAR Methods), these 

ratios were elevated in clusters 4 and 5 (FFPE discovery cohort) (Figure 7C). This finding 

was validated in the frozen validation cohort (Figure 7D). Some non-tryptic peptides (79 

in the FFPE discovery and 185 in the frozen validation cohort) that showed extremely high 

ratios belonged to extracellular matrix (ECM) proteins (Figures 7C right and 7D right; 

Table S7), consistent with increased MMP activity. The postulated increase in non-tryptic 

enzymatic activity was also supported by the increased protein abundances of several MMPs 

and TGF-β in cluster 4 and 5 tumors (Figure S7D).

Interestingly, further comparison between the TGF-β, alt-EJ, and βAlt scores and treatment 

response within each sample cluster revealed elevated TGF-β scores (Figure 7E; p = 0.038) 

and lower βAlt scores (Figure S7E; p = 0.029) in refractory vs. sensitive tumors in cluster 4. 

These trends were also seen in an independent validation dataset (Figure S7F). In addition, 

we observed that the EMT pathway score was significantly higher in cluster 4 refractory 

vs. sensitive tumors (p = 0.04, Figure 7F, right). The abundances of the non-tryptic peptides 

enriched in ECM-related proteins (Table S7) showed a similar trend of upregulation in 

cluster 4 refractory tumors (Figure S7G). Collectively, these observations suggest that 
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MMPs and TGF-β may have increased activity in cluster 4 refractory samples, motivating 

the hypothesis that these tumors may respond to therapeutic agents targeting TGF-β activity.

DISCUSSION

Implications of the results for precision oncology

Despite >3 decades of research on platinum responses in cancer,17 no predictive biomarker 

has been translated into clinical use. Predictors of refractory disease could enable a precision 

oncology approach and provide a means to select patients for clinical trials to identify and 

implement effective therapies.

In this study, we leveraged technological advances (e.g., LC-MS/MS-based multiplex 

protein quantification, machine learning algorithms) to employ an approach integrating: 

(1) decades of studies reporting single-analyte biomarker candidates,17 (2) proteogenomic 

analyses for dynamic profiling of pre-clinical models,42 and (3) proteogenomic analyses of 

human HGSOCs to identify an ensemble prediction model of chemo-refractoriness based 

on 64 proteins. The 64-protein prediction model detects a subset of ~35% refractory tumors 

with high (98%) specificity and is validated in 2 independent patient cohorts (Figure 3).

Further validation of the 64-protein prediction model in clinical trials requires development 

of a higher throughput, clinical-grade, multiplexed assay, which is currently underway 

(Figure S3G) using a clinically translatable platform based on MRM-MS.80–82 Once mature, 

the assay will be evaluated for performance as a multi-protein panel, which may be 

algorithmically integrated to generate a single parameter, or score, tied to the likelihood 

of the patient having chemo-resistant disease (e.g., similar to the way that Oncotype DX83 

provides the likelihood of recurrence of breast cancer). Similarly, data from our proteomic 

signature, evaluation of Chr17-LOH, and the identification of BRCA mutations could be 

combined into a single output for interpretation by a practicing pathologist. A current 

example in the clinical laboratory lies in the combination of LC-MS/MS proteomic analysis 

of amyloidosis samples with histology, germline genetic mutations, and clinical history 

in the rendering of a diagnosis by the pathologist.84,85 Prior to full clinical deployment, 

validation of this classifier will need to be performed in additional retrospective and 

prospective studies, but the data from this study suggest that variability in study site and 

preanalytical processing procedure had limited effects on the resulting proteomic data, 

suggesting that the quantitative measurements will be robust in future evaluations.

We identified 5 subtypes of HGSOC (replicated in independent patient cohorts and 

PDX models; Figure 5) based on pathway protein expression (Figure 5A), possibly 

reflecting different mechanisms of refractoriness and implicating potential subtype-specific 

treatment approaches (e.g., immune therapies, TGF-β inhibitors, and metabolic inhibitors). 

In support of the hypothesis that these subtypes might predict therapeutic vulnerabilities, 

we demonstrated42 that a treatment-refractory HGSOC PDX model and cell line mapping 

to cluster 3 and showing upregulation of pathway “group 6” (metabolism, Figure S5C) are 

sensitized to platinum-based therapy either through pharmacological inhibition (Figure S5D) 

and/or CRISPR knockout42 of CPT1A, which catalyzes a rate limiting step in fatty acid 

oxidation. This motivates a hypothesis that refractory tumors in cluster 3 might respond to 
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the addition of drugs targeting metabolic processes and sets the stage for further mechanistic 

studies, as well as additional in vivo studies to test other possible therapeutic vulnerabilities 

identified by our data (e.g., immune therapies and TGF-β inhibitors).

Strengths of this study

Strengths of this study include the (1) rigorous definition of refractory disease, requiring 

objective radiographic progression, (2) inclusion of two independent validation cohorts (and 

leveraging of two additional, independent published cohorts), in which major findings are 

confirmed, (3) multi-institutional design with inclusion of samples from 4 academic centers, 

making the results likely to be generalizable beyond this study, (4) retrospective study 

design enabling access to clinical responses and enrichment for chemo-refractory tumors, 

and (5) use of FFPE tissues, which should facilitate clinical validation studies and general 

applicability.

Limitations of this study

First, the sample size (242 tumors) was insufficient to fully capture the complexity of the 

heterogeneous mechanisms underlying chemo-response.17 Although the 64-protein predictor 

model detects a subset (~35%) of refractory tumors with high (98%) specificity, other 

refractory tumors are not detected. Although the current predictor will need to be refined 

in a larger study to predict 100% of refractory cases, this study (1) lays out a road map 

and justification for an expanded study and (2) reports a current predictor that if clinically 

validated would be a game changer for the 35% of patients with refractory disease who 

could avoid ineffective chemotherapy. Second, the reliance on archival FFPE biospecimens 

(vs. frozen) makes genomic profiling challenging and results in a reduced ability to study 

post-translational modifications. Regardless, we detected a panel of phosphosites predictive 

of refractoriness using the FFPE phospho-proteomic data (Figures S3E and S3F), suggesting 

that some clinically relevant signals may be preserved in archival tissues. Third, the lack 

of germline DNA presents challenges to calling somatic mutations. Fourth, although bulk 

profiling of cancer tissues has led to many advances, tumor heterogeneity is a complication. 

Although we employed pathological review, IHC, and deconvolution analyses to address 

heterogeneity, spatially resolved proteogenomics may add value.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to the lead contact, Amanda Paulovich (apaulovi@fredhutch.org).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw proteomic data files and all processed proteogenomic datasets as well as 

clinical meta information have been deposited at the Proteomic Data Commons 

and are publicly available as of the date of this publication. URLs are listed in 

the key resources table. DNA and RNA sequencing data have been deposited at 
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dbGaP and are publicly available as of the date of this publication. Accession 

numbers are listed in the key resources table. H&E images for all the tumors 

analyzed in this study have been deposited at The Cancer Image Archive and 

are publicly available as of the date of this publication. DOIs are listed in the 

key resources table. In addition, all processed proteogenomic datasets as well as 

clinical meta information can be publicly queried, visualized, and downloaded 

from an interactive ProTrack data portal as of the date of this publication. 

The URL for ProTrack is listed in the key resources table. All processed data 

has been deposited at a publicly accessible URL listed in the key resources 

table. All raw data, manually integrated peak areas, transition information, and 

retention times generated from these stressor and time course experiments for 

the LC-MRM peptide target assays have been deposited at Panorama Public86 

and are publicly available at the URL is listed in the key resources table. 

Characterization data for available assays are found in the CPTAC Assay Portal 

(assays.cancer.gov).

• All original code for the data analysis and figures generated for this 

study has been deposited at this Github repository and is publicly 

available as of the date of publication: https://github.com/WangLab-MSSM/

CPTAC_Ovarian_Chemo_Response. URLs for this repository and for other code 

used in this study are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient Selection and Cohorts—Treatment-naive tissue specimens from Stage III or 

IV HGSOCs that underwent primary debulking followed by platinum/taxane adjuvant 

therapy were selected for the study and categorized with respect to response to adjuvant 

chemotherapy, as defined below. (After the profiling was completed, we learned that a subset 

of 13 tumors had undergone neoadjuvant chemotherapy, and these are annotated in Table S1. 

These samples were not included in the construction and evaluation of the prediction model, 

and neoadjuvant status was included as a covariate in other analyses.)

Refractory tumors were defined as follows: After primary debulking: for R0 disease (no 

residual/microscopic disease after primary resection), radiographically detectable disease 

must have been present at the end of 6 cycles of initial platinum/taxane therapy; for R1 

disease (radiographically detectable residual disease is present after primary resection), 

residual disease must either progress or stay stable (radiographically) after 6 cycles of initial 

platinum/taxane therapy.

Sensitive tumors were defined by R1 or R2 disease that received primary resection followed 

by platinum/taxane adjuvant therapy and had a progression-free survival of at least 2 years 

(no R0 disease).

All biospecimens were collected with Institutional Review Board (IRB) approvals: the Mayo 

Clinic IRB numbers: 08–005749 and 17–010405; Fred Hutchinson Cancer Research Center 
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IRB number 4563; University of Alabama at Birmingham IRB number 131007005; and MD 

Anderson Cancer Center IRB number 131007005.

The FFPE Discovery cohort consisted of 158 HGOC tissue biopsies (91 sensitive and 67 

refractory) from three institutes. The FFPE Validation cohort consists of 20 HGSOC tumors 

from MD Anderson Cancer Center, an independent set of patients representing 10 sensitive 

and 10 refractory cases. The Frozen Validation cohort consists of 64 HGSOC tumors (44 

sensitive, 20 refractory) from Fred Hutchinson Cancer Research Center. And 29 of these 64 

tumors were from overlapping patients from the FFPE Discovery cohort.

In addition to the validation cohorts from this study, two published ovarian cancer datasets 

were also used as independent cohorts for validating findings: (i) Memorial Sloan Kettering 

(MSK)-IMPACT18 and (ii) the National Cancer Institute’s Clinical Proteomics Tumor 

Analysis Consortium’s 2016 study (“CPTAC-2016”).19

Ovarian Cancer Tissues—10 μm sections of the FFPE samples were cut using a 

microtome and mounted on glass slides (Leica Biosystems Cat# 3800040). The first and 

last “bookend” sections were 4 μm H&E sections for pathology review. Digital images 

of the H&E slides were recorded using a ScanScope AT Slide Scanner (Leica Aperio 

Technologies, Vista, CA, USA) under 20X objective magnification (0.5 μm resolution). 

Tissue sub-compartment cellularity was reported by a pathologist using the HALO Image 

Analysis Platform (Indica Labs, NM, USA). Follow-up multiplexed IHC analysis was 

performed on a subset of the FFPE samples from four 4 μm sections prepared as above.

METHOD DETAILS

Whole Genome and RNA Sequencing of FFPE Samples

Sample Processing: Samples were processed as follows: the protocol adapted from 

QIAGEN AllPrep DNA/RNA FFPE Kit 80234, QIAamp® DNA FFPE Tissue Kit (56404) 

and miRNeasy FFPE kit (217504). This protocol is optimized for 150–250 mm2 10-

μm sections. All isolations were performed under RNase-free working environment. De-

paraffination and re-hydration was performed using Xylene and ethanol as per standard 

protocols. Tissue was lysed in buffer PKD as per manufacturer’s recommendations. The 

supernatant was processed for RNA and the pellet for DNA (after Protein K digestion 

and using QIAamp MinElute spin column). All nucleic acids were quantified by 260/280 

determination.

RNA Sequencing Library Preparation: Purified total RNA samples were evaluated for 

quantity and quality by calculating the percent DV200 with an Agilent Fragment Analyzer 

RNA kit and reagents (Cat# DNF-471–1000). Samples with <100 ng of RNA and DV200 

< 30% were excluded from the study. Sequencing libraries were prepared using Kapa 

RNA HyperPrep with RiboErase (Cat# KK8561) from 100 ng of RNA according to the 

manufacturer’s protocol.

Whole Genome Library Preparation: Purified gDNA was quantified by Qubit 

Fluorometer and sheared to 300 bp using a Covaris M220. Sequencing libraries were 
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prepared using Swift Biosciences Accel-NGS S2 DNA prep reagents (Cat# 210384) from 

100 ng of DNA according to the manufacturer’s protocol.

Next-Generation Sequencing: The finished libraries were quantified by Qubit fluorometer, 

Agilent TapeStation 2200 D1000 screentape (Cat# 5067–5582), and RT-qPCR using 

the Roche Kapa Biosystems library quantification kit (Cat# KK4854) according to 

manufacturers’ protocols. Whole genome libraries were sequenced with >400M 150 bp read 

pairs and RNAseq libraries (Ribo-Erase) were sequenced with >50M 100 bp read pairs on an 

Illumina NovaSeq 6000 by the Molecular Biology Core Facilities at the Dana-Farber Cancer 

Institute.

Whole Genome Sequencing (WGS) Data Preprocessing and QC

WGS Data Processing and Alignment: All genomic data processing has been performed 

using the TPO workflow (https://github.com/mctp/tpo), which implements standardized 

pipelines for the analysis of DNA and RNA sequencing data.

DNA sequencing paired-end reads were trimmed from adapter sequences using BBMap’s 

bbduk tool with parameters ‘ktrim=r k=23 mink=11 hdist=1 ignorebadquality=t qin=33 

tpe tbo’.125 Sequencing data were aligned to the GRCh38 reference (GRCh38.d1.vd1), 

according to the functional equivalence standards126 and BWA-mem101 (version 0.7.17-

r1188) settings ‘-Y -K 10000000’. The alignments were sorted using Sentieon tools 

sort, which is equivalent to samtools sort.127 Alignment statistics have been collected 

using the algorithms MeanQualityByCycle, QualDistribution, GCBias, AlignmentStat, and 

InsertSize MetricAlgo. Following sorting we followed GATK best-practices, including 

indel realignment, base quality score recalibration (using algorithmsRealigner and QualCal, 

respectively), settings ‘-k ‘DBsnp all variants 20180418’, and the ‘known_indels’ 

and ‘Mills_indels’ from the GATK resource bundle. The resulting alignments were 

genotyped at common heterozygous SNPs (DNAscope gVCF typing) and all samples 

from the same individual were verified to have matching genotypes ‘tpo/refs/grch38/custom/

genotype_positions_hg38.bed’. Duplicates were removed using Sentieon LocusCollector 

and Dedup. Since the sequencing was performed on a Novaseq an optical duplicate 

threshold of 2500 was used to mark ExAmp duplicates ‘--optical_dup_pix_dist 2500’.

WGS Data QC: For the QC of WGS data, we derived multiple quality control measures, 

such as GC BIAS or duplication percentage, and confirmed that average qualities are 

not significantly different between the compared clinical patient subsets (Figure S1J). 

Downstream copy-number analysis factored DNA data quality directly into the procedure 

of segmentation and inference to minimize the influence of data quality on sensitivity and 

recall.

WGS Data Variant/Mutation Calling: Tumor-only somatic variant calling has been 

performed using TNScope, which is a modified version of GATK3 MuTect2 algorithm, 

with the following settings ‘--max_fisher_pv_active 0.05 --min_tumor_allele_frac 

0.0075 --min_init_tumor_lod 2.5 --assemble_mode 4 --trim_soft_clip’ and ‘--dbsnp 

homo_sapiens_assembly38.dbsnp138.vcf.gz’, which is included in the TPO resource bundle.
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Specifically, the ‘trim_soft_clip’ parameter reduces the number FFPE-induced artifacts. 

Multi-nucleotide variants were merged based on phasing information using an inhouse 

script ‘tpo/pipe/carat-anno/carat_mnv.R’. The resulting variants were first filtered to protein 

coding regions (based on Ensemble 97), annotated using VEP,116 and further annotated 

with vcfAnno,117 using the following sets of parameters: ‘--assembly GRCh38 --species 

homo_sapiens --cache_version 97 --format vcf --gene_phenotype --symbol --canonical 

--ccds --hgvs --biotype --tsl --uniprot --domains --appris --protein --variant_class --sift 

b, --polyphen b --no_stats --total_length --allele_number --no_escape --flag_pick_allele 

--pick_order canonical,tsl,biotype,rank,ccds,length --buffer_size 20000’. For vcfAnno 

multiple sources of annotations were used including:

• GDC Panel-of-Normal v4136 based on MuTect2

• 1000 Genomes phase3 variants

• GnomAD exomes r301

• GnomAD exomes r221

• ClinVar release Dec. 2019

• Cosmic v87

• dbSNP release 20180418

• UniProt release Dec. 2019

The resulting annotated variants were subsequently filtered to select for likely somatic 

and pathogenic variants based on automated rules, gene-specific threshold, and manual 

filters. We applied filters based on sequencing evidence (variant allele frequency, coverage, 

mutation likelihood TLOD, strand bias, allele depth, multi-allelic variants), and overlap 

in problematic regions including regions with low-mappability and repetitive sequence as 

well as homopolymer repeats. In addition, all long indels (>20 bp) were removed, as these 

were significantly enriched in this data due to the low quality of the input DNA. All called 

variants in genes known to be recurrently mutated in HGSOC identified based on COSMIC 

and literature, were manually reviewed, according to a procedure following applicable 

recommendations in Barnell et al.128

Tumor Mutation Burden: The tumor mutation burden was determined for each sample 

by counting the number of genes that have any type of mutations. The mutation call was 

first determined for each gene by the above pipeline, and then for a subset of known cancer 

driving genes the mutation call went through additional manual check. For subjects with 

multiple DNA samples, the mutation of a gene was called if it was observed in any DNA 

sample.

CNV Analysis: Copy-number analysis on the tumor DNA was performed by using whole-

genome sequencing (WGS) coverage data and variant calls (see above). To perform the 

analysis, we used CNVEX (https://github.com/mctp/cnvex), a comprehensive copy number 

analysis tool that has been used previously in our ccRCC studies.55 CNVEX uses whole-

genome aligned reads to estimate coverage within fixed genomic intervals and variant 
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calls to compute B-allele frequencies (BAFs) at variant positions (as characterized above). 

Coverages were computed in 10 kb bins, and the resulting log coverage ratios between 

tumor and normal samples were adjusted for GC bias using weighted LOESS smoothing 

across mappable and non-blacklisted genomic intervals within the GC range 0.3–0.7, 

with a span of 0.5 (all target and configuration files are provided within the CNVEX 

repository). The adjusted log coverage-ratios (LR) and BAFs were jointly segmented by a 

custom algorithm based on Circular Binary Segmentation (CBS). Alternative probabilistic 

algorithms were implemented in CNVEX, including algorithms based on recursive binary 

segmentation (RBS),129 and dynamic programming,130 as implemented in the R-package 

jointseg.131 For the CBS-based algorithm, first LR and mirrored BAF were independently 

segmented using CBS (parameters alpha=0.01, trim=0.025) and all candidate breakpoints 

collected.

The resulting segmentation track was iteratively “pruned” by merging segments that had 

similar LR and BAFs, short lengths, enrichment in blacklisted regions, and a high variation 

in coverage among whole cohort germline samples. For the RBS- and DP-based algorithms, 

joint-break-points were “pruned” using a statistical model selection method.132 For the 

final set of CNV segments, we chose the CBS-based results because they did not require 

specifying a prior number of expected segments (K) per chromosome arm, were robust 

to unequal variances between the LR and BAF tracks and provided empirically the best 

fit to the underlying data. Given the relatively high variance of the sequencing data, we 

noticed that some samples were over-segmented using the default settings. To adjust the 

segmentation algorithm to the variance of each sample individually, we performed an 

adaptive procedure of pruning. Default pruning: Perform pruning as described above for 

all samples. Strict pruning: Count the number of segments for each sample, take the samples 

with the top 20 percentile number of segments and perform pruning with stricter parameters. 

Relaxed pruning: Take the samples with the lowest 20 percentile number of segments 

and perform more loose pruning on them. The above procedure was repeated two times, 

effectively adjusting segmentation pruning parameters to the noise-level of each sample. The 

quality of the resulting segmentations was manually evaluated.

The resulting segmented copy-number profiles were then subject to joint inference of tumor 

purity and ploidy and absolute copy number states, implemented in CNVEX, which is 

most similar to the mathematical formalism of ABSOLUTE28 and PureCN.133 Briefly, the 

algorithm inputs the observed log-ratios (of 10 kb bins) and BAFs of individual SNPs. 

LRs and BAFs were assigned to their joint segments and their likelihood is determined 

given a particular purity, ploidy, absolute segment copy number, and number of minor 

alleles. To identify candidate combinations with a high likelihood, we followed a multi-

step optimization procedure that includes gridsearch across purity-ploidy combinations, 

greedy optimization of absolute copy numbers, and maximum-likelihood inferences of 

minor allele counts. Following optimization, CNVEX ranked candidate solutions. Because 

the copy-number inference problem can have multiple equally likely solutions, further 

biological insights were necessary to choose the most parsimonious result. The solutions 

were reviewed by independent analysts following a set of guidelines. Solutions implying 

whole-genome duplication were supported by at least one large segment that cannot be 
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explained by a low-ploidy solution, inferred purity was consistent with the variant-allele-

frequencies of somatic mutations, and large homozygous segments were not allowed.

After selecting the best solution for purity/ploidy of a sample, we then used the method 

explained in PureCN133 to assign total absolute CN to each CNV segment using LR values. 

Purity and ploidy estimates also allowed us to use BAF values for calculating the absolute 

copy number for each allele. We then used the copy number of minor allele to detect LOH 

for each segment. Any segment that had a minor allele copy number of 0, was considered to 

harbor an LOH event.

Chr17-LOH Calling: To call samples with Chr17LOH, we used the same method 

mentioned above to call LOH for all the segments on chr17. Samples that had <25% of 

their chr17 covered with LOH segments were called chr17HET. Any other samples were 

placed in the chr17LOH group.

MSK-IMPACT LOH Analysis: To validate the results of our chr17LOH, CNV data from 

MSK-IMPACT18 (997 patients) was used. Because the LOH values were not provided for 

this cohort, we used the LogRatio values as a surrogate. In our own cohort, we found that 

Chr17-HET and Chr17-LOH have significantly different LR values (Wilcox test P=0.0023, 

Figure S2C). We therefore used our own cohort of patients to define a LR threshold which 

separates patients into two groups of “Chr17-LOH enriched” and “Chr17-HET enriched”. 

For this purpose, we defined samples with chr17 average LR > 0.046 as a surrogate for 

“Chr17-HET” (75 patients) group and samples with chr17 average LR < −0.114 as a 

surrogate for “Chr17-LOH” (495 patients) group. We then used this stratification to perform 

Cox proportional hazards survival analysis.

Instability Measures: For measuring overall instability, we used an already published 

measure of Weighted Genome Instability Index (wGII),134 which was measured as the 

proportion of each chromosome that has a different copy number compared to the baseline 

copy number of the sample. Then the average of scores for each chromosome was 

calculated, weighted by the length of the chromosome such that each chromosome has 

the same contribution to the overall instability score.

To quantify the HRD for each sample, we reimplemented the measures described in 

Sztupinszki et al.135 In short, allelic imbalance was defined as the unequal contribution 

of parental alleles to a region of the genome and contains LOH as well. For nLST we 

defined “large segment” as a segment with minimum length of 10 Mb, and to count one 

event of large segment transition, we allowed maximum distance of 3Mb between two 

“large segments” with allelic imbalances. For nTAI, we counted the allelic imbalances with 

minimum length of 5Mb that stretch to the telomeric end of each chromosome, which on 

GRCh38 we used the 10Kb of chromosome start/end as telomere. For nLOH, we counted 

any segment of minimum length of 15Mb which has Loss of heterozygosity. For all of these 

HRD measures, if the segment is affecting the whole arm of the chromosome (arm-level 

event), it is not counted toward the HRD measures.
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RNA Sequencing Processing and Alignment—The total RNA-seq stranded paired-

end reads were trimmed of adapter sequences using BBMap’s bbduk2 tool with parameters 

‘minlength=25 k=31 qskip=3 rieb=t tbo=t tpe=t’, the resulting reads were aligned to a 

GRCh38 reference including common human oncogenic viruses using STAR, using the 

following settings:

--alignSJoverhangMin 8 \

--alignSJDBoverhangMin 3 \

--scoreGenomicLengthLog2scale 0 \

--alignIntronMin 20 \

--alignIntronMax 1000000 \

--alignMatesGapMax 1000000 \

--outStd “SAM” \

--outReadsUnmapped “Fastx” \

In addition, trimmed paired-end reads were merged into a synthetic single-end reads using 

the BBMap bbmerge tool, the resulting merged single-end and not-merged trimmed paired-

end reads were aligned a second time with STAR using settings to increase the sensitivity of 

fusion detection (see below):

--outFilterType Normal \

--alignIntronMax 150000 \

--alignMatesGapMax 150000 \

--chimSegmentMin 10 \

--chimJunctionOverhangMin 1 \

--chimScoreSeparation 0 \

--chimScoreJunctionNonGTAG 0 \

--chimScoreDropMax 1000 \

--chimScoreMin 1

The resulting RNA-seq BAM files were genotyped using DNAscope with the 

RNASplitReadsAtJunction algorithm and compared to the DNA-based genotypes.

Genotype RNA alignments were used subsequently for gene expression quantification (see 

below) as well as quality control. The alignments were input into CODAC, a component of 
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TPO designed to detect gene fusions, as well as perform quality control, and realignment 

using minimap136 and GMAP.137 The following CODAC settings were used:

- Annotation: /tpo/refs/grch38/config/codac-grch38.97.rds

- Stringency: longread-balanced-stranded

RNA-Sequencing Quantification: Total RNA-seq were quantified using Kallisto.118 First, 

RNA-seq FASTQ files were trimmed of adapter sequences as described above using BBMap 

bbduk2. Next, Kallisto was run using the default settings with ‘--rf-stranded’ against the 

Ensembl 97 transcript database. Kallisto estimated counts were summarized (summed) at the 

gene level based. Both raw counts (optionally adjusted to total sequencing depth) and TPMs 

were used depending on the downstream analysis.

RNA-sequencing Data Quality Control: To mitigate challenges of analyzing genomic 

data from archival FFPE specimens, we performed extensive quality control of the RNA 

sequencing (RNA-seq) to identify low quality samples based on multiple individual control 

variables specific to the RNA, such as estimates of PCR duplication percentage, reverse 

transcription template-switching artifacts as well as 5’ / 3’ bias, transcriptome coverage 

and number of detected splice-junctions. Robust thresholds and cut-point for the control 

variables were established based on a University of Michigan institutional cohort of FFPE 

and clinical samples.138 While we did not detect any differences in quality measures of 

sensitive and refractory samples, we observed variation in duplication percentages and 

detected splice junction numbers across sample source sites (Figure S1I). Thus, in the 

downstream analyses, as appropriate, sample source site has been used as a covariate in all 

association tests.

Preprocessing of FFPE Samples for Proteomics

Deparaffinization and Rehydration of FFPE Samples: FFPE samples were processed as 

previously described.139 Briefly, slide mounted FFPE tissue sections were incubated three 

times in xylene for 3 minutes followed by 100% (v/v) ethanol twice for 3 minutes. The 

tissue was then hydrated twice in 85% (v/v) ethanol for 3 minutes, 70% (v/v) ethanol for 3 

minutes, and distilled water for 3 minutes. The tissue was then blotted and scraped off the 

slide into a screw cap microfuge tube.

Protein Extraction from FFPE Samples: For each sample tube containing 10 μm FFPE 

tissue sections, extraction buffer (0.2% RapiGest in 50 mM NH4HCO3) was added and 

incubated at 95°C for 30 minutes with mixing at 1000 RPM (Thermomixer, Eppendorf). The 

samples were then cooled on ice for 5 minutes and sonicated twice in a cup horn probe 

(filled with ice water) at 50% power for 30 seconds. The samples were then incubated at 

80°C for 120 minutes with mixing at 1000 RPM and then cooled on ice for 5 minutes. 100 

μL of 50 mM NH4HCO3, pH 8.0 was added, and the samples were sonicated twice in the 

cup horn probe (filled with ice water) at 50% power for 30 seconds. Following processing, 

samples were stored at −80°C until the day of trypsin digestion.
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Preprocessing of Frozen Samples for Proteomics

Protein Extraction of Frozen Samples: Frozen tissues were placed in Covaris tissue bags 

(TT1, 520001) and cryo-pulverized using a cryoPREP CP-02 (Covaris). 1 mL of lysis buffer 

(25 mM Tris, 6 M Urea, 1 mM EDTA, 1 mM EGTA, 1 mM TCEP, 1% Sigma phosphatase 

inhibitor cocktail 3, 1% Sigma phosphatase inhibitor cocktail 2) was added to each sample, 

transferred to a microfuge tube, vortexed for 10–15 seconds and sonicated three times in 

a cup horn probe (filled with ice water) at 50% power for 30 seconds. The samples were 

stored in liquid nitrogen until the day of digestion.

Discovery Mass Spectrometry—The protocols below describe the tryptic digestion, 

tandem mass tag (TMT) labeling of peptides, peptide fractionation by basic reversed-

phase liquid chromatography, phosphopeptide enrichment using immobilized metal affinity 

chromatography, and LC-MS/MS performed for profiling 20 unique tumor samples in the 

FFPE Validation, 158 in the FFPE Discovery, and 64 in the Frozen Validation cohorts.

Trypsin Digestion: Protein concentration was quantified by Micro BCA Assay 

(ThermoFisher). 100 μg of protein of FFPE or 500 μg frozen tissue lysates (diluted to 2 

mg/mL in lysis buffer) was transferred to a deep-well plate for processing on an epMotion 

5075 liquid handler (Eppendorf, Enfield, CT). Lysates were reduced in 16.5 mM TCEP per 

mg protein for 30 minutes at 37°C with shaking, followed by alkylation with 36 mM IAM 

per mg protein in the dark at room temperature. Lysates were then diluted with 200 mM 

TRIS (pH 8.0), to a urea concentration of < 1M before Lys-C (Wako) was added to lysates 

at 1:50 (enzyme:protein) ratio by mass and incubated for 2 hours at 37°C with mixing at 

600 RPM (Thermomixer, Eppendorf). After 2 hours, trypsin (Promega) was added at 1:100 

enzyme:protein. Digestion was carried out overnight at 37°C with mixing at 600 RPM. 

After 16 hours, the reaction was quenched with formic acid (FA; final concentration 1% by 

volume).

Desalting: Samples were desalted using Oasis HLB 96-well plates (Waters Cat# 186000128 

for 500 μg aliquots and Cat# 186000309 for 100 μg aliquots) and a positive pressure 

manifold (Waters). The plate wells were washed with 3 × 400 μL of 50% MeCN/0.1% FA, 

and then equilibrated with 4 × 400 μL of 0.1% FA. The digests were applied to the wells, 

then washed with 4 × 400 μL 0.1% FA before being eluted drop by drop with 3 × 400 μL of 

50% MeCN/0.1% FA. The eluates were lyophilized, followed by storage at −80°C until use.

11-plex TMT Experimental Layout: The FFPE Validation cohort was analyzed in two 

TMT 11-plex groups, the FFPE Discovery was analyzed in 21 TMT 11-plex groups, and the 

Frozen was arranged in 8 TMT 11-plex groups. For each TMT 11-plex group, 10 individual 

tumors occupied the first 10 channels, and the 11th channel was a “Bridge Channel” (i.e., 

common reference sample, used for quantitative comparison across all the TMT 11-plex 

groups). The common reference sample consisted of a mixed of an equal amount of protein 

from each HGSOC sample in the experiment, except in the case of the FFPE Discovery 

experiment, where, due to sample limitations, 58 of the 158 (37%) samples were included 

in the common reference sample (its composition was checked to ensure that this subset 

was representative of the whole sample set in terms of collection site and tumor treatment 
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response). Replicate samples were randomly dispersed in the TMT 11-plex groups, with 

triplicates of five samples included in the FFPE Discovery experiment and triplicates of four 

samples in the Frozen Validation experiment. A mix of cell lysate was included in each TMT 

11-plex group of the FFPE Discovery and Frozen Validation experiments, and the common 

reference sample from the Frozen Validation cohort was also included in each TMT 11-plex 

group of the FFPE Discovery experiment. The composition and run order of each TMT 

group were randomized to avoid bias, ensuring equal distribution of tissue source site, tumor 

response, age of tumor block, and hemoglobin content across and within the TMT groups.

TMT Isobaric Labeling of Peptides: Individual trypsin digestion samples were labeled 

with the TMT11plex™ isobaric label reagent set (TMT; ThermoFisher Scientific, Cat# 

A34808). Desalted peptides were resuspended in 50 mM HEPES at 1 mg/mL based on 

starting protein mass. TMT reagents were resuspended in 257 μL MeCN and transferred to 

the peptide sample. Samples were incubated at room temperature for 1 hour with mixing. 

Labeling reactions were quenched by the addition of 50 μL of 5% hydroxylamine (Sigma) 

and incubated for 15 minutes at room temperature with mixing. The independent labeling 

reactions were then pooled together and lyophilized. The labeled peptides were desalted as 

above and then lyophilized and stored at −80°C.

Peptide Fractionation by Basic Reversed-Phase Liquid Chromatography 
(bRPLC): Labeled and mixed samples were fractionated by high-pH reverse phase (bRP) 

liquid chromatography. Frozen tissue samples were fractionated prior to IMAC enrichment. 

For the FFPE samples, the IMAC enrichment flow through was fractionated. Each sample 

was brought up in 0.5 mL mobile phase (A) and loaded onto a LC system consisting of an 

Agilent 1200 HPLC (Agilent, Santa Clara, CA) with mobile phases of 5 mM NH4HCO3, 

pH 10 (A) and 5 mM NH4HCO3 in 90% MeCN, pH 10 (B). The peptides were separated 

by a 4.6 mm × 250 mm Zorbax Extend- C18, 3.5 μm, column (Agilent Cat# 770953–902) 

over 96 minutes at a flow rate of 1.0 mL/min by the following timetable: hold 0% B for 

9 minutes, gradient from 0 to 10% B for 4 minutes, 10 to 28.5% B for 50 minutes, 28.5 

to 34% B for 5.5 minutes, 34 to 60% B for 13 minutes, hold at 60% B for 8.5 minutes, 

60 to 0% B for 1 minute, re-equilibrate at 0% B for 5 minutes. 1-minute fractions were 

collected from 0–96 minutes by the shortest path by row in a 1 mL deep well plate (Thermo 

Cat# 95040450). The high pH RP fractions were concatenated into 24 samples by every 

other plate column (e.g., sample 1 contained fractions from wells A1, C1, E1, etc.). For the 

frozen tissue samples, 95% of every 12th fraction of the 24 samples was combined (1,13; 

2,14; ...etc.) to generate 12 samples, which were dried down and stored at −80°C prior to 

phosphopeptide enrichment.

Immobilized Metal Affinity Chromatography (IMAC): IMAC enrichment was performed 

on a KingFisher (Thermo Scientific) platform using Ni-NTA-agarose beads (Qiagen Cat# 

36113) stripped with EDTA and incubated in a 10mM FeCl3 solution to prepare Fe3+-NTA-

agarose beads. For the frozen tissue samples, bRP fractions were reconstituted in 200 μL of 

0.1% trifluoroacetic acid (TFA; Sigma Cat# 302031) in 80% MeCN. For the FFPE tissue 

samples, unfractionated samples were reconstituted in 600 μL of 0.1% TFA in 80% MeCN 

and split into three aliquots. The samples were incubated for 30 minutes with 100 mL of 
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the 5% bead suspension while mixing at room temperature. After incubation, beads were 

washed 3 times with 300 μL of 0.1% TFA in 80% MeCN. Phosphorylated peptides were 

eluted from the beads using 200 μL of 70% MeCN, 1% ammonium hydroxide for 1 minute 

with agitation at room temperature. 30 μL of 20% FA was added to each sample, and the 

FFPE aliquots were pooled back to their original samples. The samples were dried down, 

re-suspended in 0.1% FA, 3% MeCN and frozen at −80°C until analysis. For the FFPE 

samples, the flow through of each aliquot was pooled back to their original samples, dried 

down and stored at −80°C prior to bRP fractionation.

Nano-Liquid Chromatography-Tandem Mass Spectrometry (nano LC-MS/
MS): Fractionated samples were analyzed by LC-MS/MS on an Easy-nLC 1000 (Thermo 

Scientific) coupled to an LTQ-Orbitrap Fusion mass spectrometer (Thermo Scientific) 

operated in positive ion mode. The LC system consisted of a fused-silica nanospray needle 

(PicoTip™ emitter, 50 mm ID × 20 cm, New Objective) packed in-house with ReproSil-Pur 

C18-AQ with mobile phases of 0.1% FA in water (A) and 0.1% FA in MeCN (B) and a flow 

rate of 300 nL/min. The peptide sample was diluted in 12 μL of 0.1% FA, 3% MeCN and 

5 μL was loaded onto the column. A spray voltage of 2200 V was applied to the nanospray 

tip. MS/MS analysis occurred over a 3 second cycle time consisting of 1 full scan MS 

from 350–2000 m/z at resolution 120,000 followed by data dependent MS/MS scans using 

HCD activation with 40% normalized collision energy of the most abundant ions. Selected 

ions were dynamically excluded for 20 seconds after a repeat count of 1. Global proteome 

samples were separated over 206 minutes with a gradient from 2 to 5% B for 2 minutes, 

5 to 28% B for 180 minutes, 28 to 50% B for 10 minutes, hold 50% B for 1 minute, 

50 to 90% B for 2 minutes, hold 90% B for 11 minutes. Phosphoproteome samples were 

separated over 176 minutes with a gradient from 2 to 5% B for 2 minutes, 5 to 28% B for 

150 minutes, 28 to 50% B for 10 minutes, hold 50% B for 1 minute, 50 to 90% B for 2 

minutes, hold 90% B for 11 minutes. The unfractionated phosphoproteome samples from the 

FFPE samples were analyzed by LC-MS/MS on an LTQ-Orbitrap Eclipse mass spectrometer 

(Thermo Scientific) operated in positive ion mode with the same LC system and setup as on 

the Fusion. MS/MS analysis occurred over a 1 second cycle time consisting of 1 full scan 

MS from 350–2000 m/z at resolution 120,000 followed by data dependent MS/MS scans 

using HCD activation with 38% normalized collision energy of the most abundant ions. 

Selected ions were dynamically excluded for 20 seconds after a repeat count of 1. Samples 

were separated over 162 minutes with a gradient from 4 to 9% B for 2 minutes, 9 to 25% B 

for 80 minutes, 25 to 44% B for 60 minutes, 44 to 63% B for 8 minutes, hold 63% B for 1 

minute, 63 to 90% B for 11 minutes.

Mass Spectrometry Data Analysis: Raw MS/MS spectra from the analysis were 

searched against the reviewed Human Universal Protein Resource (UniProt) sequence 

database release 2019_06 appended with an equal number of decoy sequences using 

MSFragger V3.0.95 For the analysis of whole proteome data, MS/MS spectra were 

searched using a precursor-ion mass tolerance of 10 ppm, allowing C12/C13 isotope 

errors (−1/0/1/2/3). MS and MS/MS mass calibration, MS/MS spectral deisotoping, and 

parameter optimization were enabled.140 Cysteine carbamidomethylation (+57.0215), lysine 

TMT labeling (+229.1629), and peptide N-terminal TMT labeling were specified as fixed 
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modifications. Methionine oxidation (+15.9949) was specified as a variable modification. 

The search was restricted to tryptic and semi-tryptic peptides, allowing up to two missed 

cleavage sites. For phosphopeptide enriched data, the set of variable modifications also 

included phosphorylation (+79.9663) of serine, threonine, and tyrosine residues.

The post-processing of the search results was done using the Philosopher toolkit 

version v3.2.8.94 MSFragger output files (in pepXML format) were processed using 

PeptideProphet96 (with the high–mass accuracy binning and semi-parametric mixture 

modeling options) to compute the posterior probability of correct identification for each 

peptide to spectrum match (PSM). In the phosphopeptide-enriched dataset, PeptideProphet 

files were additionally processed using PTMProphet97 to localize the phosphorylation sites. 

The resulting pepXML files from PeptideProphet (or PTMProphet) from all 25 TMT 11-

plex experiments were then processed together to assemble peptides into proteins (protein 

inference) and to create a combined file (in protXML format) of high confidence protein 

groups.

The combined protXML file and the individual PSM lists for each TMT 11-plex were 

further processed using the Philosopher filter command as follows. Each peptide was 

assigned either as a unique peptide to a particular protein group or set as a razor peptide 

to a single protein group with the most peptide evidence. The protein groups assembled 

by ProteinProphet141 were filtered to 1% protein-level False Discovery Rate (FDR) using 

the best peptide approach (allowing both unique and razor peptides) and applying the 

picked FDR target-decoy strategy. In each TMT 11-plex, the PSM lists were filtered using 

a sequential FDR strategy, retaining only those PSMs with PeptideProphet probability of 

0.9 or higher (which in these data corresponded to less than 1% PSM-level FDR) and 

mapped to proteins that also passed the global 1% protein-level FDR filter. For each PSM 

that passed these filters, the corresponding precursor ion MS1 intensity was extracted using 

the Philosopher label-free quantification module, using 10 ppm mass tolerance and 0.4 min 

retention time window for extracted ion chromatogram peak tracing.

For all PSMs corresponding to a TMT-labeled peptide, eleven TMT reporter ion intensities 

were extracted from the MS/MS scans (using 0.002 Da window). The precursor ion 

purity scores were calculated using the intensity of the sequenced precursor ion and that 

of other interfering ions observed in MS1 data (within a 0.7 Da isolation window). All 

supporting information for each PSM, including the accession numbers and names of the 

protein/gene selected based on the protein inference approach with razor peptide assignment 

and quantification information (MS1 precursor-ion intensity and the TMT reporter ion 

intensities), was summarized in the output PSM.tsv files, one file for each TMT 11-plex 

experiment.

To generate summary reports on different levels (gene, peptide, and protein for global and 

phosphopeptide enriched data; additional modification site report for phosphopeptide data), 

all PSM.tsv files were processed together using TMT-Integrator98 using default parameters 

described previously.55 In generating the site-level reports (phosphopeptide-enriched data), 

sites with PTMProphet computed localization probability equal or greater than 0.75 were 

considered as confidently localized.
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Quality Control Metrics for Peptide-level Data: Raw MS/MS spectra from the analysis 

were searched against the reviewed Human Universal Protein Resource (UniProt) sequence 

database release 2020_03_30 using MaxQuant/Andromeda.99 The search was performed 

in unspecific digestion mode, oxidized methionine set as a variable modification, and 

carbamidomethylated cysteine set as a static modification. Peptide MH+ mass tolerances 

were set at 20 ppm. The overall PSM-level FDR was set at≤1%.

Peptides were categorized into fully tryptic, semi-tryptic (either tryptic end), and non-tryptic. 

For the FFPE Discovery Cohort dataset, peptides were filtered to have a ratio in at least 

one sample. To calculate the non-tryptic ratio per sample, the median ratio of all non-tryptic 

peptides (n = 2877) was divided by the median ratio of all fully tryptic peptides (n = 

126952). To calculate the semi-tryptic ratio per sample, the median ratio of all semi-tryptic 

peptides (n = 21426) was divided by the median ratio of all fully tryptic peptides (n = 

126952). For the Frozen Discovery Cohort dataset, peptides were filtered to have a ratio 

in at least one sample. To calculate the non-tryptic ratio per sample, the median ratio of 

all non-tryptic peptides (n = 2190) was divided by the median ratio of all fully tryptic 

peptides (n = 114620). To calculate the semi-tryptic ratio per sample, the median ratio of 

all semi-tryptic peptides (n = 23257) was divided by the median ratio of all fully tryptic 

peptides (n = 114620). To calculate the missed cleavage ratio per sample, the median ratio 

of fully tryptic peptides with at least one internal K or R (that was not followed by P) was 

divided by the median ratio of fully tryptic peptides with no internal K or R (or those that 

are followed by P). To calculate the oxidation ratio, the median ratio of fully tryptic peptides 

that were identified to contain an oxidized M (regardless of site localization score) was 

divided by the median ratio of non-oxidized fully tryptic peptides. To calculate the c-term 

ratio per sample, the median ratio of all tryptic peptides with an K at the c-terminal was 

divided by the median ratio of all tryptic peptides with an R at the c-terminal.

Proteomics data quality assessment using peptide-level QC metrics: First, distribution 

of the number of peptides quantified per protein is shown in Figure S1G. In all the three 

study cohorts (Frozen, FFPE discovery, and FFPE validation), no more than 5% of the 

proteins were quantified by a single peptide. Proteomic data quality was assessed using 

peptide-level metrics derived from the raw LC-MS/MS data as described in the previous 

section (Figures S1D and S1H). No association was detected between these metrics and 

treatment response or sample storage time, but a substantial variation in the distribution of 

three metrics (semi-tryptic ends, C-terminal lysines, and missed cleavages) across sample 

source sites, possibly due to different biospecimen handling. Hence, to account for these 

variations, sample source sites have been included as covariates in all downstream analysis.

Preprocessing of Proteomics Data: For the global and phospho proteomics data, after 

removing the reference bridge samples from every TMT, we performed global normalization 

by aligning the sample median and scaling by median absolute deviation to remove any 

systematic variation across the samples.

Next, we performed outlier removal at the TMT group level. For every protein, we 

performed simple t-tests to compare samples in every TMT group with the remaining 

samples. If the data-points of this protein in one TMT-plex were found to be outliers, i.e., 
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significantly different from the other TMT-plex (p-value cutoff = 10−7), we replaced all 

data-points in the outlier TMT-plex by NA. In the FFPE Discovery data set, we removed 

1334 and 176 outlier data points from the gene level global proteomics and phosphosite-

proteomics data, respectively. Next, we filtered proteins based on the missing rate. We 

removed proteins that were observed in fewer than 50% of the sensitive or refractory 

samples. We applied batch correction on global and phospho-filtered normalized data to 

remove the technical difference (batch-effect) between different TMT-plexes. We used 

an R tool: ComBat to remove batch-effect.100 Finally, we performed imputation of the 

missing values using the tool DreamAI.142 We also quantified the number of proteins 

and phosphosites observed per sample in the batch-corrected filtered data based on FFPE 

discovery, FFPE validation and Frozen cohort (Table S1).

Note that the overall missing rate in the global proteomics data is quite low, as illustrated 

in Figure S1E. While we used “a missing rate <50% in either the sensitive or refractory 

group” as the filtering criterion, only 48 out of 8800 proteins had missing rate above 50% 

in the complete cohort, and the maximum missing rate is 52%. For the majority of the 

proteins (83%), the imputed data points were less than 10%. In the FFPE phospho data, as 

expected from archival samples, the missing rates were in general higher than that of the 

global proteomics data (Figure S1F). As mentioned in the “limitation of this study” section 

of the manuscript, the reliance on archival FFPE biospecimens results in a reduced ability to 

study post-translational modifications (compared with frozen biospecimens). Nevertheless, 

only 67 out of 2648 phosphosites required us to impute 50–54% of datapoints.

Alignment of proteomics data from Frozen samples to FFPE discovery samples: After 

we processed two data sets separately, we then aligned frozen samples to the protein 

intensities of FFPE discovery samples. Between frozen and FFPE cohorts, there are 29 

overlapping samples. In addition, there are 14 other FFPE-Frozen pairs of samples coming 

from different tumors (primary and metastasis) of the same patients. We thus utilized all 43 

common samples between these two experiments to align the two proteomic data sets. For 

each protein identified in both experiments, mean value and standard deviation of intensities 

among the 43 common samples were calculated from both experiments in the observed 

data sets before missing value imputation. We estimated a linear transform on the 43 frozen 

samples, in order to align the mean and SD intensities to those of the 43 FFPE discovery 

samples. And applying the same linear transform to the entire frozen sample experiment 

data, we obtained the aligned proteomics data of frozen samples to the FFPE discovery 

samples.

Proteomics data quality assessment using replicate samples: To assess reproducibility in 

TMT experiments, 5 replicate samples from the FFPE Discovery cohort were distributed 

across different TMT-plexes. We observed high correlation among global (R > 0.99) and 

phospho--proteomic (R > 0.975) profiles of the replicate samples (Figure S1B). The Frozen 

Validation global/phospho-proteomics experiments included a set of 4 replicate samples, and 

sample-wise correlations were similarly high (R > 0.99 for global; R > 0.98 for phospho-

proteomic data). For the 29 tumors with paired FFPE and frozen biospecimens, we also 

observed high correlation (R = 0.980 – 0.998) between the global and phospho--proteomic 
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profiles of the paired samples (Figure S1C). These replicate data (Table S1) demonstrate 

well controlled technical variations in the proteomic experiments.

Sample Labeling Check for Proteogenomic Profiles: While integration of the multiple 

omics data enhances our understanding about complex molecular mechanisms in PTRC, 

unintended errors in annotations and sample labels often occur in generation or management 

of large-scale data.143 Sample mislabeling includes swapping, shifting, or duplicating. 

Therefore, we performed a systematic quality control procedure to confirm whether the 

samples in RNAseq, CNV, global proteomics, and phosphor proteomics profiles are from 

the same individuals as annotated. We applied a pairwise alignment procedure144 using 

samples with the same labels between RNAseq vs CNV, RNAseq vs global, global and 

phosphor profiles. Each pairwise alignment was performed in following sequences: 1) Cis 

genes between two data profiles were identified based on correlation coefficient (top 1000 

positively correlated & Pearson correlation test FDR < 0.01); 2) The values of the selected 

cis genes were rank transformed in both profiles; 3) The sample similarity scores of samples 

by samples are estimated as correlation coefficients of the rank-transformed values; 4) If 

a sample is matched between two types of data, the sample similarity score is expected to 

be higher compared to the score with others which has null distribution with mean 0. If 

the sample similarity score of a sample is above the top 5% in both directions, the sample 

is determined as “self-aligned”. Or if the score is below the top 5% in either direction, 

the sample was called as “not-aligned”. Applying the approach to samples with the same 

labels, we confirmed that all samples were well aligned between RNAseq and CNV (111 

samples from the same individuals), RNAseq and global (120 samples), and global and 

phosphoproteomics (168 samples).

Targeted Mass Spectrometry—We performed a technical validation of the predictor 

model using an orthogonal assay based on targeted multiple reaction monitoring mass 

spectrometry (MRM-MS). We developed and characterized an MRM assay panel enabling 

quantification of 70 peptides representing 22 proteins in our predictor panel (Figure 3). 

This subset of 22 proteins was selected for assay development because their signals were 

sufficient for direct detection by mass spec, without antibody enrichment. We applied this 

70-plex assay to the 102 FFPE tumors in our study (all tumors with enough remaining 

sample). The protocols below describe the internal standard addition, tryptic digestion, and 

LC-MRM performed on 102 samples of the FFPE Discovery cohorts.

LC-MRM-MS assay development: Proteotypic peptides were empirically identified from 

the mass spectrometry-based datasets from the discovery experiments. Crude synthetic 

peptides were used to determine the optimum transitions (based on intensity and freedom 

from noise) and collision energies (to produce the most complete fragmentation and highest 

intensity) for MRM analysis. The optimized transition ions are reported in Table S1.

Trypsin Digestion: Protein concentration was quantified by Micro BCA Assay 

(ThermoFisher). 13.5 μg of protein of FFPE was transferred to a deep-well plate for 

processing on an epMotion 5075 liquid handler (Eppendorf, Enfield, CT). Lysates were 

reduced in ~20 mM TCEP per mg protein for 30 minutes at 37°C with shaking, followed 
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by alkylation with ~40 mM IAM per mg protein in the dark at room temperature. Lysates 

were then diluted 10x with 200 mM TRIS (pH 8.0), 400 fmol of stable isotope-containing 

synthetic peptide standards (Vivitide) were spiked into each sample, and Lys-C (Wako) was 

added to lysates at 1:35 (enzyme:protein) ratio by mass and incubated for 2 hours at 37°C 

with mixing at 600 RPM (Thermomixer, Eppendorf). After 2 hours, trypsin (Promega) was 

added at 1:70 enzyme:protein. Digestion was carried out overnight at 37°C with mixing 

at 600 RPM. After 16 hours, the reaction was quenched with formic acid (FA; final 

concentration 1% by volume).

Desalting: Samples were desalted using Oasis HLB 96-well plates (Waters Cat# 

186001828BA) and a positive pressure manifold (Waters). The plate wells were washed 

with 3 × 200 mL of 50% MeCN/0.1% FA, and then equilibrated with 4 × 200 mL of 0.1% 

FA. The digests were applied to the wells, then washed with 4 × 200 mL 0.1% FA before 

being eluted drop by drop with 3 × 200 mL of 50% MeCN/0.1% FA. The eluates were 

lyophilized, followed by storage at −80°C until use.

Nano-liquid chromatography-tandem mass spectrometry: Targeted LC-MRM-MS 

analysis of 20% of sample loaded onto an EvoTip Pure (EvoSep Cat #EV2011) was 

performed on an Evosep One LC system (EvoSep, Odense, Denmark) coupled to a 6500+ 

QTRAP mass spectrometer (Sciex, Foster City, CA). Mobile phases consisted of 0.1% FA 

in water (A) and 0.1% FA in MeCN (B), and the EvoSep was running the 30 Samples per 

Day method while connected to an 15 cm × 150 μm analytical column with 1.9 μm beads 

(Endurance OE. EvoSep Cat. #EV-1113) with the column temperature set to 45 °C. The 

column was connected to an OptiFlow Turbo V source (Sciex, Foster City, CA) operating 

in the Nano (< 10μL) configuration. The QTRAP was operated in positive ion MRM mode 

with a 3000 V ion spray voltage, curtain gas setting of 20, collision gas settings of 10, 350 

°C temperature, and ion source gas 1 set to 6. CE was set to optimized values for individual 

transitions, DP was set to 100, EP was set to 10, CXP was set to 6, Q1 and Q3 set to 

unit/unit resolution (0.7 Da), and a 0 ms settling time and a 3 ms pause between mass ranges 

were employed.

Fit-for-purpose assay validation: Performance figures of merit for the multiplexed 

LC-MRM-MS assay were determined using best practices in a fit-for-purpose method 

validation approach.145,146 Briefly, three experiments (described below) were performed 

to characterize the analytical performance of the assays: i) response curves, ii) repeatability, 

iii) stability.

Response curves: Response curves were used to characterize the linear range, LOD, 

LLOQ, and ULOQ. Curves were performed in both FFPE and frozen tissue protein 

lysate matrices. Synthetic unlabeled (“light”) crude peptides were also added at a constant 

concentration. Varying the heavy peptide amounts enables estimation of the linear range 

and detection limits directly in the background matrix of interest without interference from 

the endogenous peptides.145 Quantitative assays were characterized in background matrices 

consisting of a mix of protein lysates from 6 commercially available HGSOC FFPE tissues. 

Digestion was performed as described above. Reverse curves were prepared in triplicate by 
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varying SIS peptide concentration over 8 concentration points (5000, 1000, 200, 40, 16, 

6.4, 2.56, 1.024 fmol/sample). Blanks contained no SIS peptide. Light peptide was added 

at a constant concentration of ~400 fmol/sample. The response was measured by evaluating 

the heavy peptide signals relative to the light endogenous peptides. Linear regression was 

performed using a 1/x weighting on all points within the linear range, defined as those points 

such that the R2 > 0.98. The LOD was defined as the average of the blank measurements 

plus three times the standard deviation of the noise. The LLOQ was defined by the lowest 

point above the LOD in the linear range of the response with a CV < 20%. The ULOQ was 

defined as the highest concentration point of the response curve that was maintained in the 

linear range of the response.

Repeatability: Repeatability was determined using the same pooled lysate matrix used to 

generate the response curves. Heavy peptides spiked into the digest from 50 μg (FFPE tissue 

lysate) or 100 μg (frozen tissue lysate) aliquots at three different concentrations: “LoQC” 

(40 fmol per sample), “MedQC” (~400 fmol/sample) and “HiQC” (4000 fmol/sample). 

Light peptides were added at 400 fmol/sample. Complete process triplicates (including 

digestion, capture, and mass spectrometry) were prepared and analyzed on five independent 

days. Intra-assay variation was calculated as the mean CV obtained within each day. Inter-

assay variation was the mean CV calculated from the individual replicates across the five 

days.

Peptide stability: Stability of the enriched peptides was determined using the same pooled 

lysate matrix used to generate the response curves. Heavy peptides were spiked in at the 

medium concentration (400 fmol/sample). Light peptides were added at 400 fmol/sample. 

Complete process triplicates (including digestion, capture, and mass spectrometry) were 

prepared and analyzed after storage at 4°C in the autosampler for approximately 6 hours and 

24 hours. Other aliquots were analyzed following 2 freeze-thaws.

MRM mass spectrometry data analysis: MRM peak integration was performed by 

Skyline,122 and the integrations were manually inspected to ensure correct peak detection, 

absence of interferences, and accurate integration. Reported peak areas are the sum of the 

peak area and background area reported by Skyline. The sum of all transitions with no 

interferences was used for quantification. The individual transitions were used to confirm 

the specificity of the assay for the targeted analyte. Specificity was established by equivalent 

elution times and equivalent relative peak intensities for transitions for light and heavy 

peptides. Peak specificity between the light (or endogenous) and heavy (or standard) MRM 

signal was defined as the detection of ≥1 transition from the endogenous peptide exactly 

co-eluting with ≥2 transitions from the stable isotope-labeled peptide, with a ratio dot 

product > 0.9 as reported by Skyline. Integration areas of both the heavy and light peaks 

were compared to the LLOQ and ULOQ areas of the assay. Light endogenous areas below 

the LLOQ were reported as “LLOQ” and heavy standard areas below the LLOQ are reported 

as “NA”. Peptide levels were reported as the peak area ratio of the light and heavy peptides. 

Protein abundance levels were calculated using the averages peak area ratios of the peptides 

in the protein. Protein targets with < 20% of the measurements below LLOQ were not 

considered in further analysis (Table S3).
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Multiplexed IHC

Sample processing: Slide-mounted FFPE sections were dewaxed and stained on a Leica 

BOND Rx autostainer (Leica, Buffalo Grove, IL) using Leica Bond reagents for dewaxing 

(Dewax Solution), antigen retrieval and antibody stripping (Epitope Retrieval Solution 2) 

and rinsing after each step (Bond Wash Solution). A high stringency wash was performed 

after the secondary and tertiary applications using high-salt TBST solution (0.05M Tris, 

0.3M NaCl, and 0.1% Tween-20, pH 7.2–7.6).

Multiplexed IHC target panel: Details of antibodies for CD8, CD4, and CCR5 are 

provided in Table S6

Antigen retrieval and antibody stripping: Antigen retrieval and antibody stripping 

steps were performed at 100°C with all other steps at ambient temperature. Endogenous 

peroxidase was blocked with 3% H2O2 for 8 minutes followed by protein blocking with 

TCT buffer (0.05M Tris, 0.15M NaCl, 0.25% Casein, 0.1% Tween 20, pH 7.6 +/− 0.1) for 

30 minutes. The first primary antibody (position 1) was applied for 60 minutes followed by 

the secondary antibody application for 10 minutes and the application of the tertiary TSA-

amplification reagent (OPAL fluor, Akoya Biosciences, Menlo Park, CA) for 10 minutes. 

The primary and secondary antibodies were stripped with retrieval solution for 20 minutes 

before repeating the process with the second primary antibody (position 2) starting with a 

new application of 3% H2O2. The process was repeated until all positions were completed; 

however, there was no stripping step after the last position. Slides were removed from the 

autostainer and stained with Spectral DAPI (Akoya) for 5 minutes, rinsed for 5 minutes, 

and cover-slipped with Prolong Gold Antifade reagent (Invitrogen/Life Technologies, Grand 

Island, NY).

Image collection: Slides were cured for 24 hours at room temperature in the dark, then 

representative images from each slide were acquired on the Akoya PhenoImager HT 

Automated Imaging System. Images were spectrally unmixed using Akoya inForm software 

and exported as multi-image TIFF’s for use in the HALO Link image management system 

(Indica Labs, Corrales, NM).

Image analysis: Cellular analysis of the images was then performed with HALO image 

analysis software. After the cells were visualized based on nuclear and cytoplasmic stains, 

the software measured mean pixel fluorescence intensity in the applicable compartments 

of each cell (e.g., Ki67 in the nuclear compartment). A mean intensity threshold above 

background was used to determine positivity for each fluorochrome, thereby, defining cells 

as either positive or negative for each marker. The positive cell data was then used to define 

colocalized populations and to perform spatial analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Multiple Linear Regression Model for Association Tests—We performed a 

multiple linear regression model to test for the association of the individual gene/protein/

phosphosite with platinum response. Specifically, we considered the following model for 

testing the association:
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• gene/protein/phosphosite ~ response (platinum sensitive/platinum refractory) + 

tumor location + source site + age + neoadjuvant treatment status + tumor purity

For identifying the genes/proteins/phosphosites differing between platinum sensitive and 

platinum refractory samples, we tested for the regression coefficient of the factor platinum 

response conditional on other covariates and obtained the marginal p-values.

After adjusting for multiple hypothesis testing using Benjamini-Hochberg (BH) method, we 

obtained the adjusted p-values for each individual gene/protein/phosphosite. We consider 

a gene/protein/phosphosite significantly associated with treatment response if its adjusted 

p-value is < 0.1.

To define sensitive and refractory cases from the CPTAC-201619 cohort, we used the 

patients’ overall survival (OS) information. Specifically, we defined the sensitive patients 

as those with OS > 5.5 years and refractory cases to be those with OS < 1.5 years.

CNV, RNA and Protein Combined Analysis—We performed an association test to 

identify if any individual genes/proteins or copy number of genes is associated with sensitive 

or refractory response. We then combined the p-values from the association analysis based 

on protein, RNA and copy number data using a Fisher’s test and derived corrected p-values 

(FDR) after multiplicity correction. For 8590 genes observed in all three omics datasets: 

protein, RNA and CNV, 3600 genes showed consistent direction (either “up in sensitive” or 

“up in refractory”) in all three omics data. Out of 3600, 1962 genes were consistently “up 

in sensitive” based on protein, RNA and CNV; while 1638 genes were consistently “up in 

refractory” based on all three datasets. Out of 3600 genes, that showed consistent direction 

in all three datasets, 424 genes satisfy the “combined_FDR” < 0.1, out of which 303 genes 

were consistently “up in sensitive” and 121 genes were consistently “up in refractory” based 

on all three omics data. Out of these 424 genes, 53 were validated (marginal p-value < 

0.05) in at least one of the independent validation proteomics data sets including the Frozen 

validation, FFPE validation and CPTAC 201619 proteomics data (Table S1). Based on the 

Frozen cohort alone, 17 genes were validated, out of which 3 were “up in refractory” 

while 14 were “up in sensitive”. Based on the FFPE Validation cohort alone, 9 genes were 

validated, out of which 1 was “up in refractory” while 8 were “up in “sensitive”. Finally, 

out of the CPTAC2 cohort19,147 alone, 23 genes were validated, out of which 4 were “up in 

refractory” while 19 were “up in sensitive”.

iProFun-Based Cis Association Analysis—We used iProFun, an integrative analysis 

tool, to identify multi-omic molecular quantitative traits (QTs) perturbed by cis DNA-level 

variations.27 iProFun starts with separate regressions for different QTs and integrates their 

association summaries. We considered three regressions separately for gene expression, 

global protein and phosphoprotein. For each regression, we evaluated the cis-associations 

with three DNA-level variations (somatic mutation, CNV (dosage change) and LOH). 

We controlled age, tumor location and tumor purity as covariates for all regressions and 

controlled RNA quality control index for regression on gene expression. Most importantly, 

to understand how associations differ between sensitive and refractory tumors, we included 

the main effect of tumor response (sensitive vs. refractory) and its interactive effects with 
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three DNA-level alterations (tumor response * somatic mutation, tumor response * CNV, 

and tumor response * LOH) in each regression. For different data types, the number of 

genes and samples may be different, and we used all quality-controlled data available. 

In detail, we performed regression for 19605 genes in 106 samples for gene expression, 

8800 genes in 124 samples for protein, and 1278 genes (2648 phosphosites) in 124 

samples for phosphoprotein. As phosphoprotein was summarized at site level in the data, 

all phosphosites were considered in regression and the site most significantly associated 

with DNA-level variations and refractory tumors was used to indicate the strongest signals 

for each gene. We considered a total of 542 somatic mutations with mutation in at least 6 

subjects, and 19920 CNVs and 19269 LOHs with <= 50% missing rate.

The resulting association summary statistics were used in iProFun to call probabilities of 

belonging to each of the 23=8 possible configurations. This procedure borrowed information 

across data types to improve the estimation of association probabilities. For genes 

missing quantifications on certain data type(s) (e.g., phosphoprotein), iProFun calculates 

probabilities of belonging to each of the remaining configurations (e.g., 22=4). The resulting 

probabilities of associating with each QT was calculated by combining probabilities from 

relevant configurations. An association is identified in iProFun if (1) the empirical false 

discovery rate (eFDR) is <10%, (2) posterior probability is > 75% and (3) the association 

direction is consistent with directions of the same DNA-level variation on different data 

types if they satisfy (1) and (2). As the number of somatic mutations was small and 

association probabilities could not be accurately estimated, we used family-wise error rate 

(FWER) 10% to call significance directly from the association p-values (without borrowing 

information across data types).

TP53 Signatures—Previously published gene sets were used to develop the TP53 wild-

type and mutant signatures. For the wild-type TP53 signature, we used the previously 

identified core TP53 transcriptional program based on Andrysik et al.32 We focused on 

the key 31 genes with direct bounding and identified in all three cell line experiments 

(HCT116, MCF7, SJSA). For the mutant TP53 signature, we used the previously published 

analysis.29 The top 20 upregulated genes across all mutant TP53 cancers were selected for 

the signature. Using the GSVA package (method = “ggsea”) in R,148,123 we obtained the 

ssGSEA scores for the TP53 wild-type and TP53 mutant gene sets for all samples in the 

FFPE Discovery RNA-seq dataset (n = 106). Additionally, we obtained the ssGSEA scores 

for the TP53 wild-type and TP53 mutant gene sets for all samples in the FFPE Discovery 

proteomics dataset (n = 158).

We then performed a multiple linear regression model to test for the association of each 

TP53 signature with platinum response. Specifically, we considered the following model 

for testing the association: ssGSEA scores (WT or mutant) ~ platinum response + tumor 

location + source site + sample age + neoadjuvant treatment status + tumor purity.

Identification of Proteins/Pathways Associated with genomic abnormalities—
To understand the functional consequences of the genomic abnormality events, we evaluated 

the proteins and pathways associated with chr17-LOH, nTAI, BRCA1/2 mutation and total 

mutation burden (TMB). We started by regressing the protein level of each gene on these 
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somatic alterations, adjusting for each other, as well as patient age, tumor location and 

tumor purity. To ensure a fair comparison of association strength between binary (BRCA1/2 

mutation vs WT, chr17-LOH vs no chr17-LOH) and continuous predictors (nTAI and TMB), 

we dichotomized the nTAI (>15 v.s. <=15) and TMB (>100 vs <=100) into high vs low 

groups. For each genomic abnormality event, the resulting p-value for each gene was 

transformed into a significance score S for the association, such as S= signed log10(p-value), 

where the sign was determined by the direction of the regression coefficients. Pathway 

analysis was performed using these scores for 2923 pathways from KEGG, Hallmark, 

Reactome, DDR and DQ databases. For each pathway, we compared the significance scores 

of genes inside vs outside of the pathway, using Wilcoxon rank score test. We controlled 

the resulting pathway association p-values using the FDR BY procedure separately for each 

pathway database. We also calculated the averaged log fold change for each pathway by 

taking the mean value of the regression coefficients for all genes in the pathway.

Identification of Proteins/Pathways Associated with TP53 wide-type score—
Similarly, as running the functional consequences of the genomic abnormality events, we 

evaluated the proteins and pathways associated with TP53 wide-type score in samples with 

expression profiles. We started by regressing the protein level of each gene on the TP53 

wide-type score, adjusting for patient age, tumor location and tumor purity. The resulting 

p-values for each gene was transformed into a significance score S for the association, 

such as S= signed log10(p-value), where the sign was determined by the direction of the 

regression coefficients. For each of the 2923 pathways under investigation, we compared 

the significance scores of genes inside vs outside of the pathway, using Wilcoxon rank 

score test. We controlled the resulting p-values using FDR BY procedure separately for each 

pathway database. We also calculated the averaged log fold change for each pathway by 

taking the mean value of the regression coefficients for all genes in the pathway.

Identification of Refractory Tumor Associated proteins in subsets of tumors
—To understand how proteins are associated with refractory tumors in subsets of 

tumors characterized by different genomic abnormalities or TP53 activities, we performed 

association analysis as follows: Let X denote the binary indicator of TP53 wild-type score 

(high vs low), chr17-LOH (yes vs now), nTAI (high vs low), BRCA1/2 mutation (yes vs 

now) and high TMB (high vs low). We regress each protein Y on refractory tumors allowing 

different coefficients for X=0 vs 1, as such Y = beta_0 + beta_1 I(X==1)*Refractory 

+ beta_2 I(X==0)*Refractory + beta_3 covariates, where summary statistics on beta_1 

and beta_2 represent the association patterns in two subsets of the tumors (X=0 vs 1). 

The covariates include patient age, tumor location and tumor purity. Significance was 

claimed using 10% FDR. We also contrasted the −log10(p-values) for beta_1 and beta_2 

and annotated the significant genes to identify genes with different association patterns in 

different subsets of genes.

Prediction Model for Chemotherapy Response

Feature Selection: For building the prediction model, we first leveraged the information 

from our pre-clinical proteomics study based on cell line and PDX models and combined 

with literature to select pathways and gene sets associated with chemo-response. The 

Chowdhury et al. Page 38

Cell. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell line molecular profiles revealed extensive responses to carboplatin and differential 

responses between sensitive and resistant cells.42 A subset of these molecular differences 

was confirmed in PDX models using global proteomic profiling of 20 HGSOC patient-

derived xenograft models (10 platinum-sensitive, 10 platinum-refractory). Consistent with 

the cell line results, we found that both OXPHOS and fatty acid oxidation (FAO) pathways 

were increased in the global profiles of platinum refractory PDX tumors. Also, as a resource 

to the cancer research community, we built a comprehensive overview17 accompanied by a 

manually curated database of the >900 genes/proteins that were associated with platinum 

resistance over the last 30 years of literature. The database was annotated with possible 

pathways through which the curated genes were related to platinum resistance, types 

of evidence, and hyperlinks to literature sources. The searchable, downloadable database 

is available online at http://ptrc-ddr.cptac-data-view.org. Specifically, we leveraged the 

aforementioned manually curated sets of platinum relevant genes from 22 pathways based 

on 31 years of literature.17 We then identified a significant association between chemo-

resistance and activities of 3 metabolic pathways, Oxidative Phosphorylation, Adipogenesis, 

and Fatty Acid Metabolism, using both the ovarian cancer cell line and PDX proteomics data 

set.

Focusing on these 25 gene-sets/pathways, we searched for protein markers predictive of 

chemo response based on the global proteomics data of FFPE samples from 83 sensitive 

and 52 refractory HGSOC tumors (after removing the samples that were mixture of both 

primary and metastatic tumors and the samples that received neo-adjuvant therapy). The 

preprocessed data contained protein abundance measurement for 8800 unique genes, among 

which 1082 were from the 25 selected pathways/protein-sets. We then performed feature 

selection among these 1082 genes by aggregating results from multiple machine learning 

(ML) models trained to predict chemo-response. Specifically, for the 22 literature curated 

gene sets, which were of low dimension (50 or fewer genes in each set), we assessed the 

prediction performance of each set using either Elastic Net, RandomForest or XGBoost 

models through 5-fold cross validation (CV). For each pathway, we selected the ML model 

with the best CV performance and recorded the corresponding AUC. We then selected the 

pathway/function categories whose 95% confidence interval of AUC exceeded 0.6. Two 

out of the 22 gene sets, that correspond to the Hypoxia and NFKB pathways respectively, 

were selected using this criterion. We did not do additional feature selection within these 

two sets, as their sizes were small (33 genes in total). As to the three metabolic pathways, 

we considered the union of the three pathways (492 genes in total after combining the 

three-pathway members annotated in the KEGG, Hallmark, Reactome and Wiki pathway 

databases), and performed feature selection through random cross validation. Specifically, 

we generated 500 bootstrap (resampled without replacement) data sets of 80% sample 

size. On each of the 500 data sets, we fitted a prediction model using three machine 

learning (ML) methods. After deriving feature selection frequencies across the 500 models 

of each method, 35 out of the 492 genes had selection frequencies of 50% or higher by 

at least one of the three ML methods and were deemed as predictive features. This led to 

a combined predictive marker panel of 68 genes. On the other hand, among all the 8800 

genes in the FFPE global proteomic data, four markers showed significant association with 

chemo-response at genome-wide FDR level of 0.1 (one of them was already in the selected 
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list). In the end, we filtered away 8 protein markers not detected in the other proteomics data 

sets from human tumors such as the Frozen and FFPE validation datasets.

The final marker panel then consisted of 64 proteins: 33 from metabolic, 15 from Hypoxia, 

14 from NFKB (one protein belongs to both Hypoxia and NFKB), and 4 proteins with 

significant marginal association with chemo-response based on the proteomic data of the 

FFPE discovery cohort.

Prediction Model Building: Here we provide the details for building the ensemble 

prediction model F x . The input of F x  is the protein abundances of 64 protein markers in 

a tumor sample. The output of F x  is a score between 0 and 1, indicating the probability of 

the tumor to be refractory. The prediction function F x  takes the following form:

1
3F1(x) + 1

3F2(x) + 1
3F3(x)

where F1(x), F2(x) and F3(x) are the fitted prediction models based on the FFPE discovery 

data set using ElasticNet, Random Forest and XGBoost respectively. Below we describe the 

construction parameters and results for each of the three prediction models.

ElasticNe.: We constructed the ElasticNet model (linear additive model) based on the 

abundances of the selected 64 protein markers in the FFPE discovery data using the 

“cv.glmnet” function from the R package “glmnet”.43 The mixing parameter (weights 

between the l1 and l2 penalty) in ElasticNet was set to be 0.2. Other tuning parameters 

were selected based on cross-validation errors. The resulting model is based on 50 out of 64 

proteins.

Random Forest.: We fit the Random Forest prediction model using the R package 

“randomForest.”44 The total number of trees was set to be 1000. We obtained the 

“MeanDecreaseGini” values for each of the 64 proteins in the resulting model. The higher 

the “MeanDecreaseGini” values are, the bigger contribution the variables have towards 

predicting the refractory status.

XGBoost.: We fit the XGBoost model using the function “xgboost” from R package 

“xgboost”.45 The maximum number of boosting iterations was set to be 500. There were 

58 features selected in the final model. We obtained the gain or the fraction of contributions 

of each protein in the model.

Prediction Performance Evaluation: For the prediction performance evaluation based 

on FFPE discovery cohort global proteomics data we further removed the samples with 

neo-adjuvant therapy. Using the 83 sensitive and 52 refractory HGSOC tumors, we built 

a prediction model based on the 64 proteins using the ensemble of ElasticNet, RF, and 

XGBoost. We obtained the AUC using a five-fold cross validation. We then derived a 

prediction model using the same ensemble strategy based on the complete data set. We 

evaluated the performance of this prediction model using an independent validation cohort 

of Frozen Cohort tumors (±29 overlapping samples with the FFPE discovery cohort). Note 
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that from the Frozen cohort too we removed the samples with neo-adjuvant therapy and 

got 34 in the independent set and 27 in the overlapping set. Finally, we also evaluated the 

prediction performance of the 64 proteins in the FFPE Validation Cohort data of 20 tumors 

using the same ensemble strategy. In this case we used a three-fold cross validation to obtain 

the AUC. We calculated the 95% confidence interval for the AUCs by bootstrap approach. 

We also compared the AUCs of two ROCs using Delong’s test.

Prediction model based on the phospho-proteomic data: For prediction model building 

based on the phospho-proteomic data of the FFPE discovery cohort, we focused on the same 

three metabolic pathways42 and the 22 additional pathways from the literature curated list17 

that have been described before in the feature selection section. After removing the ischemia 

sites91 from the FFPE Discovery cohort phospho data we did the feature selection using 

the three machine learning models (described earlier) and selected 41 sites corresponding 

to the metabolic genes and 48 sites corresponding the to the platinum relevant genes in 

ERK, Fanconi, Hippo signaling and WNT signaling pathways. We evaluated the prediction 

performance of our model using the selected features in the FFPE Discovery data through 

5-fold cross-validation and obtained an AUC of 0.78. Out of the selected phosphosites, 

56 were observed in the FFPE validation phospho-proteomic data. We also did similar 

prediction performance evaluation in the FFPE validation phospho data through 3-fold 

cross-validation and obtained an AUC of 0.76 (Figures S3E and S3F).

Prediction model based on the MRM data: Using similar strategies, prediction models 

were fit based on MRM measurements of 22 proteins across 102 tumors. The resulting 

model was associated with an AUC of 0.76 (Figure S3G; cross-validation).

Pathway Enrichment Analysis using Wilcoxon Test—Pathway enrichment analysis 

was conducted to characterize the differences between platinum sensitive and platinum 

refractory samples, based on results from association tests (described in Multiple Linear 

Regression Model for Association Tests). Gene set enrichment was conducted across a 

collection of gene sets from MSigDB’s database (v 7.5.1) that includes: KEGG, Hallmark 

and Reactome. These collections were downloaded from http://software.broadinstitute.org/

gsea/msigdb/index.jsp.93 Along with these databases we also considered a literature curated 

database of platinum relevant pathways17 and a manually curated database of DDR 

pathways. Finally, we also considered a database of TGFβ and alternative end-joining 

(Alt-EJ) pathways.74 We performed a Wilcoxon test to compare the distribution of signed 

p-values (obtained from the linear model-based regression analysis) of the genes within the 

pathways to that of the remaining genes in the dataset. Gene sets with <5 member genes 

were excluded. We obtained the marginal p-values based on the Wilcoxon test for each 

individual pathway and obtained the adjusted p-values after multiplicity correction using the 

BH method. We consider a pathway to be significantly associated with platinum response 

if its adjusted p-value is < 0.1. We calculated the difference between the average of the 

signed p-values (from the linear regression model) of the genes within the pathway and that 

of the remaining genes in the dataset to determine the direction of the pathway. A positive 

difference indicates the pathway is upregulated in the sensitive tumors, while a negative 

value of this difference indicates that the pathway is upregulated in refractory tumors, given 

Chowdhury et al. Page 41

Cell. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp


that its adjusted p-value is significant (< 0.1). Finally, to help identify pathways distinctly 

associated with platinum response and to consolidate redundant pathway results, Sumer 

software was utilized with the default parameters.112

Identification of Proteomic Clusters Through Consensus Clustering—We 

identified distinct proteomics clusters among the ovarian tumors using outcome-guided 

clustering analysis. We first obtained the single sample gene set enrichment analysis 

(ssGSEA) score for the 150 significant pathways that showed differential expression 

between sensitive and refractory tumors based on FFPE Discovery Cohort global proteomics 

data (adjusted p-value < 0.01). To obtain the ssGSEA score we used the GSVA package 

(method = “ggsea”) in R.148,123 We then performed consensus clustering of the 150 pathway 

scores using the ConsensusClusterPlus package in R.107 Prior to clustering, the data matrix 

was scaled so that each pathway had a mean 0 and a standard deviation of 1 across 

samples. K-means clustering based on a Euclidean distance metric was conducted across 

100 repetitions for cluster numbers ranging from 2 through 7 using otherwise default 

parameters. Our clustering analysis identified 5 distinct subtypes of the 158 tumor samples.

For both the FFPE Discovery cohort and the Frozen Validation cohort, we obtained a 

detailed annotation of the sample storage time. While there is variation among sample 

storage time across different clusters, the distributions are widespread within each cluster 

and there are no consistent patterns between the FFPE Discovery and Frozen Validation 

cohorts. Thus, it is less likely that the differences between the clusters are driven by quality 

factors due to sample storage time.

Sensitivity Analysis of Proteomic Pathway Clusters—Additionally, we performed 

consensus clustering using the ssGSEA scores of 100 randomly chosen sets of 150 

pathways. We calculated the within/between cluster variance ratios for the original 150 

pathways and also for the randomly chosen 150 pathways in each replication. We average 

this ratio over the original 150 pathways and also the randomly chosen 150 pathways in each 

replication and thus obtain one within/between cluster variance ratio for each replication for 

the latter. On the other hand, we also perform consensus clustering using the ssGSEA scores 

of the most variable 150 pathways chosen from the pathway databases. We then calculate 

the average of the within/between cluster variance ratios for these variable 150 pathways. 

We observe that this ratio based on our original 150 pathways is much smaller than that 

of the most variable pathways, as well as the distribution of the 100 of those ratios based 

on randomly chosen pathways, indicating more perfect clustering based on our initial 150 

pathways (Figure 4C).

Calculating p value of CNV enrichment for clusters—To find regions with 

significantly different copy number among clusters, we first calculated the baseline copy 

number of the whole sample (weighted median of segments). Next, for each gene, we 

calculated a value we called C.dosage as “gene copy number” “baseline copy number”. 

After that, each gene was assigned a value as 1 if C.dosage > 0 (gene amplified), 0 if 

C.dosage = 0 (gene CNV not changed) or −1 if C.dosage < 0 (gene has a deleted copy). 

Then for each gene, we ran a statistical test (Wilcoxon signed- rank test) to compare the 

amount of gain/loss for each cluster versus all the other 4 clusters. Then we estimated the 
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boundary of significant amplification/deletion regions using the boundary of adjacent genes 

which were called significant. In the end, to calculate the significance of the found region 

(and not only genes in it), we performed the same analysis and assigned a 1,0,−1 value to 

each region for each patient (if a region has different segments with different copy numbers, 

then we assigned the copy number which covers the majority of that region). Then we 

perform the statistical test again for these values and report the P value.

Recapitulation of TCGA subtypes based on FFPE RNAseq data—We applied the 

established ovarian cancer molecular subtype classifier124 on the gene level RNAseq data of 

our FFPE discovery cohort, and evaluated the subtype-specific genes and pathways reported 

by TCGA20 respectively. We observed consistent up/down-regulation patterns for these 

genes/pathways as observed in the previous work (Figure S4G; Table S4). For example, 

transcription factors SOX11, HMGA2 and proliferation marker MCM2 were significantly 

upregulated in the proliferative (PRO) subtype. At the same time, the third (green) gene 

group, which were upregulated in the proliferative subtype compared to other subtypes, 

were significantly enriched in DNA replication related pathways (Table S4). Also, the 

mesenchymal subtype (MES) was associated with upregulation of genes such as FAP, 

ANGPTL1 and ANGPTL2 and ECM interaction related pathways, consistent with what is 

reported in Zhang et al.19 and Cancer Genome Atlas Research Network20

Also, performing similar consensus clustering using the ssGSEA scores of the same 150 

pathways based on the transcriptomic data of the FFPE Discovery Cohort did not reveal 

similar clusters (Figures S4F and S4H).

Comparison between protein based clustering v.s. protein-pathway based 
clustering—In contrast to pathway-based clustering, we also performed parallel clustering 

analysis using individual protein abundances (STAR Methods). First, we observed that based 

on our FFPE Discovery data, pathway-based analysis resulted in better separation of tumor 

clusters than the protein-based analysis. As illustrated in Figure S4E, the within/between 

variances (y-axis) for the clustering results based on the pathway activity scores (red) are 

significantly lower than that based on the protein abundances (blue). Second, the protein-

based result failed to reproduce across the validation datasets. As illustrated in Figure S5E, 

we observed sporadic correlations when comparing the protein abundance mean vector 

of each cluster in the FFPE Discovery and CPTAC-201619 cohorts. Our observation that 

pathway-based analysis results in more stable/meaningful molecular clusters vs gene-based 

analysis is consistent with recent literature.56

Validation of Proteomic Clusters in Independent Cohorts—For the three validation 

datasets we did similar consensus clustering. Firstly, ssGSEA scores for 150 pathways 

were calculated for the Frozen Validation Cohort proteomics dataset (n = 64), a previously 

published retrospective global proteomics dataset19 (n = 174) and a PDX global proteomic 

dataset42 (n = 20). After that, consensus clustering was applied to the pathway scores of each 

dataset (with cluster numbers set to be 5) as described in the previous section (identification 

of proteomic clusters through consensus clustering). Then, the concordance between the 

clustering results of these validation cohorts and that from the FFPE discovery cohort were 

evaluated from multiple aspects.
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Correlation among cluster mean vectors of different cohorts: The cohort from Zhang 

et al.19 contains adequate samples (n > 10) in each of the five clusters (Figure 5A). After 

calculating the average of the ssgsea scores of each of the 150 pathways in every cluster 

in the Zhang et al.19 dataset, we derived the Pearson correlation coefficients between 

these 150-pathway-score-cluster mean vectors and that of the FFPE Discovery cohort, 

and observed high concordance (Figure 5B). In the Frozen-independent Validation cohort 

(n=35), due to its relatively small sample size, only Cluster 1, 3, and 5 had adequate 

representation (n>5). Focusing on these three clusters, we obtained high correlations 

between the 150-pathway-score mean vectors in the Frozen Validation cohort and that of 

the FFPE Discovery cohort (Figure S5B).

tSNE visualization of cluster concordance between different cohorts: Using a tSNE 

(t-distributed stochastic neighbor embedding) dimensionality reduction analysis based on the 

combined 150-pathway-score matrices of both the cohort from Zhang et al.19 and the FFPE 

Discovery cohort, we observed a perfect overlay between the five clusters of the two cohorts 

(Figure 5C). Similarly, we performed tSNE dimensionality reduction analysis as above using 

the combined ssGSEA score matrices of the 150 pathways of both the Frozen-independent 

Validation and FFPE Discovery cohorts and observed a perfect overlay between the two 

cohort samples from clusters 1, 3, and 5 (Figure S5A).

A classification (PAM) based validation: In addition to the above investigation using 

unsupervised consensus clustering, we also validated the cluster results using supervised 

analysis. Using the nearest-shrunken-centroid classification method, PAM,149 we trained a 

classification model to predict cluster labels based on the 150-pathway-score matrix of the 

FFPE Discovery cohort global proteomic data. We then applied this classification method 

to the three validation cohorts to predict cluster labels. The results were like those from 

the unsupervised clustering analysis (Figure 5A), demonstrating the generalizability of these 

findings.

Specifically, a centroid shrinkage approach based on PAM149 was utilized. With the 

pamr.train function in the R package ‘pamr150‘, the model was trained using the pathway 

scores for the FFPE Discovery Cohort samples (n = 158) and their corresponding proteomic 

subtypes estimated using consensus clustering. Based on the lowest classification error, the 

model threshold was selected (threshold = 0) which resulted in all 150 pathways being 

informative for the predictor. The ssGSEA scores were aligned to the FFPE discovery 

dataset A  for the Frozen dataset B  using only the overlapping samples (n = 29). We 

calculated the mean μA, μB  and standard deviation sdA, sdB  for the two datasets across the 

29 samples. The aligned Frozen dataset was then calculated for all samples:

Bi = x − μB * sdA
sdB

+ μA

The ssGSEA scores were also aligned for the CPTAC 2016 dataset19 C . We calculated the 

mean μA, μC  and standard deviation sdA, sdC  for the two datasets across all samples. The 

aligned CPTAC 2016 dataset was then calculated for all samples:
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Ci = x − μC * sdA
sdC

+ μA

Using the pamr.predict function in the R package ‘pamr’, the model was then applied to 

the aligned pathway scores of each of the testing datasets Bi, Ci . The maximum posterior 

probability estimated from pamr was used to assign the proteomic subtype for each sample.

Identification of Proteomic Cluster Signatures—We performed association tests 

within each proteomic subtype to identify proteins associated with treatment response within 

the subtypes. Within each subtype we performed a multiple regression analysis based on the 

following model:

• protein ~ response (platinum sensitive/platinum refractory) + tumor location + 

source site + age + neoadjuvant treatment status + tumor purity

We tested for the regression coefficient corresponding to the factor response conditional on 

other covariates to identify proteins associated with treatment response within each subtype. 

We obtained the marginal p-values and the adjusted p-values after adjusting for multiple 

hypothesis testing using the BH method for each individual protein within each subtype. We 

consider a protein to be significantly associated with treatment response within a subtype if 

its adjusted p-value is < 0.1.

Tumor Purity, Stromal and Immune Scores—We utilized ESTIMATE104 to infer 

immune and stromal scores based on FFPE discovery global proteomic data. Tumor purity 

was inferred using TSNet106 based on proteomics data.

XDec—Deconvolution of bulk FFPE tumors was performed using XDec (https://

github.com/BRL-BCM/XDec). Stage 0 estimates the informative genes to model the 

constituent cell types based on single cell sequencing data. Raw data for HGSOC samples 

was downloaded from GEO (GSE15460063,102) and processed with R package ‘Seurat’.105 

Cell profiles were filtered to contain < 5% mitochondrial genes and unique gene counts < 

5000. Profiles from the 5 patients were combined and cell type labels were determined based 

on the original study.63,102 Due to sparsity, profiles of the same cell type were ordered based 

on total gene count and pseudobulk profiles were generated by summing every 5 profiles. 

In order to make it equal, the top 40 pseudo-bulk profiles for each cell type were used 

and normalized to match the highest coverage pseudo-bulk across all cell types. We then 

performed Student’s t-tests across the 9 cell types (adipose, B cells, endothelial, epithelial, 

fibroblast, macrophages, monocytes, natural killer cells, CD8 T cells) comparing the cell 

profiles from one cell type to all others. For those genes with a significant difference 

(p-value < 1e-10), the 25 most upregulated and 25 most downregulated genes were selected 

to represent each cell type. Genes that appeared in multiple cell types were excluded. This 

resulted in 326 genes of which 211 were detected in the FFPE Discovery cohort dataset and 

196 were detected in the Frozen Validation cohort dataset.

Stage 1 was performed on the FFPE Discovery cohort (n = 158) using the 211 informative 

genes modeling 4 cell types based on the stability criteria. The stability criteria is determined 
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by modeling the cell count from 3 to 10 cell types using three randomly chosen subsets of 

80% of the data. The cell type number showing the highest correlation across the estimated 

proportions across the 3 replicates is chosen for the model. Estimated constituent cell types 

were correlated to the processed single-cell profiles63,102 across the informative genes to 

determine the cell type identity. Stage 1 was also performed on the Frozen Validation cohort 

(n = 64) using the 196 informative genes and on the CPTAC 2016 retrospective dataset19 

(n = 174) using the 189 informative genes. Cell type proportions were compared (platinum 

refractory vs. platinum sensitive) using Student’s t-test and determined significant if p-value 

< 0.05.

BayesDebulk—We performed a multi-omic based deconvolution of bulk FFPE tumors 

based on the integration of global proteomic and RNAseq data via BayesDebulk.58 For this 

deconvolution, we considered immune, endothelial, adipose, epithelial and fibroblast cells. 

In order to estimate the fraction of endothelial, epithelial, adipose and fibroblast cells, we 

used the gene signature derived from the single cell study63,102 described above; while 

the LM22 signature matrix from Cibersort was considered in order to derive the list of 

cell-specific markers of immune cells.124 For BayesDeBulk estimation, 5000 Markov-Chain 

Monte Carlo (MCMC) iterations were considered. The estimated fractions were derived as 

the median of the MCMC iterations after discarding a burn-in of 1,000 iterations.

Co-expression Networks Based on Global Proteomic Abundance of FFPE 
Samples—We estimated co-expression networks capturing the associations between 

proteins in refractory and sensitive tumors. The two co-expression networks have been 

estimated via JRF,151 which can perform a simultaneous estimation of multiple networks 

to better capture the shared structure. In order to reduce the dimensionality of the protein 

space, first, proteins have been allocated into three different subsets based on the proteomic 

abundance across refractory/sensitive samples via K-means clustering. This clustering 

resulted in three different protein sets of size 2838, 4097 and 1865. Then, for each subset of 

proteins, a co-expression network was estimated via JRF for refractory and sensitive tumors. 

In order to adjust for tumor location in this analysis, a tumor location node was added to the 

network. In this way, the model accounted for tumor location when deriving the association 

across proteins. Significant edges have been identified using permutation techniques.151 

Only edges with a 0.1% FDR based on 30 permutations were considered as significant.

Single Cell Analysis—Raw data for HGSOC samples was downloaded from GEO 

(GSE15460063,102 and processed with R package ‘Seurat’.105 Cell profiles were filtered 

to contain < 5% mitochondrial genes and unique gene counts < 5000. Profiles from 

the 5 patients were merged using Seurat and cell type labels were determined based 

on the original study.63,102 Data was normalized using the function “Normalize-Data” 

(normalization.method = “LogNormalize”, scale.factor = 10000). Additionally, data was 

scaled using “ScaleData” using all genes as features.

In order to test each gene for cell type specificity, we used the “FindAllMarkers” function 

(only.pos = TRUE, min.pct = 0.1, thresh.-use = 0.25). Genes identified in the refractory 

co-expression network analysis were filtered to those that could be tested (minimum percent 

cell of cells expression > 10%, log2 fold change > 0.25) and resulted in an adjusted p-value 
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< 0.05. Average expression of the significant genes was calculated across all cell types 

for visualization. Genes not meeting any of those criteria were excluded from the z-score 

heatmap.

All single cell expression data (< 5% mitochondrial genes, unique gene counts < 5000) was 

used to visualize the expression of SLAMF6.

TGFβ Signature

Pathway number of genes FFPE discovery RNA FFPE discovery Protein

TGFβ 50 49 28

Alt-EJ 36 35 25

To test the significance of the linear trend we fitted a linear model regressing TGFβ/Alt-

EJ/β-Alt score on the subtypes adjusting for other covariates including tumor purity, tumor 

location, study sites etc. We also fitted another model regressing TGFβ/Alt-EJ/β-Alt score 

only on the covariates and then comparing the two models using an ANOVA test we 

obtained the significance of the subtypes. For the FFPE discovery data we used the subtype 

labeling from consensus clustering, while for the Frozen and CPTAC 201619 data we used 

the subtype labeling from the classification analysis performed on those datasets. In the table 

above we give the number of genes in TGFβ and Alt-EJ pathways that were observed in the 

FFPE discovery data.

ADDITIONAL RESOURCES

To facilitate ready exploration of the study results, we have developed a web portal with 

interactive visualizations of the results, known as ProTrack High Grade Serous Ovarian 

Cancer.152 Users can enter a gene list to generate an interactive heatmap, which includes 

clinical annotation, tumor clustering and classification tracks. For each gene, available multi-

omic data tracks are shown, including normalized protein abundance, RNA expression, 

phosphosites, and CNV measurements. Users can sort the generated heatmap by any track 

to explore trends of interest. The web portal also generates boxplots of the inputted gene 

list, stratified by the categorical feature of their choosing, including proteomic cluster or 

tumor grade. Additionally, users can view scatterplots and correlations of two genes across 

different -omics types. Users can also explore results for iProFun cascade events for any 

selected gene. Results can be downloaded and exported as .xlsx files. The web portal can be 

accessed at: http://ptrc.cptac-data-view.org/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A comprehensive proteogenomic analysis of 242 HGSOC tumors was 

performed

• A lack of Chr17-LOH was observed to be associated with refractoriness

• A 64-protein signature predicts refractoriness in multiple tumor cohorts

• Pathway-based clustering reveals 5 subtypes validated in independent cohorts
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Figure 1. Overview of multi-omics datasets
(A) Availability of the proteomic, phospho-proteomic, WGS, and RNA-seq data across the 

cohorts.

(B) OncoPrint of likely pathogenic genetic variants in sensitive and refractory tumors. Genes 

are ordered by mutation frequency in sensitive tumors. Chr17-LOH binary variable indicates 

whether more than 25% of Chr17 has LOH. nTAI denotes the number of chromosome arms 

with telomeric allelic imbalance.
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(C) Association between mutations in BRCA1/2 and tumor response. The p value is based 

on the chi-square test.

(D) Genomic regions with recurrent focal amplifications (left) and deletions (right) 

in sensitive (top) and refractory (bottom) tumors. The G score is proportional to 

−log(probability|background). Cytobands of the most significant peaks are annotated.

(E) Concordance of genes associated with refractoriness across global proteomic (y axis), 

phospho-proteomic (y axis), and RNA-seq data (x axis) (FFPE discovery cohort). Labeled 

genes/proteins/phosphosites are significantly associated with refractoriness (FDR < 0.1). 

Genes/proteins highlighted in red also showed association with refractoriness based on CNV 

data.

(F) Association between genes and refractoriness from the integrated CNV, RNA, and 

protein analysis (FFPE discovery cohort). Highlighted genes survivecombined FDR < 0.1 

(FFPE discovery cohort) and are validated (marginal p value < 0.05) using the proteomic 

data from R1 validation cohort.

(G) Protein, RNA, and copy-number levels for TAP1 in the FFPE discovery and validation 

cohorts. p values are determined by covariate-adjusted regressions(Table S1).

See also Figure S1.
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Figure 2. Association between treatment response and CNV-RNA/protein cis-regulations, 
chromosome-arm-level alterations, and TP53 signatures
(A) Genome-wide distributions of correlation coefficients between DNA copy-number 

variations and RNA levels (left), as well as RNA and protein abundances(right) of the same 

genes. p values are based on Wilcoxon Rank Sum test.

(B) Scatter plot showing the proportion of CNV-RNA/protein cascade genes in each 

pathway in sensitive (x axis) vs. refractory (y axis) tumors. Pathway sizeindicates the 

number of genes in the pathway.
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(C) Associations between refractoriness and chromosome losses, gains, and LOH. At the 

chromosome level, only Chr17-LOH is associated with refractoriness (FDR < 0.1).

(D) Association between Chr17-LOH and refractoriness. Among the 15% of samples 

without Ch17-LOH, more than 75% are refractory, whereas most sampleswith Chr17-LOH 

are sensitive (p value = 0.0046, Fisher’s Exact test).

(E) MSK-IMPACT cohort18 HGSOC samples stratified by Chr17-LOH status. The group 

enriched with Chr17-LOH samples shows a better survival than the group without Chr17-

LOH (p = 0.018, based on Cox regression model).

(F) Distributions of genomic features and treatment response.

(G and H) Samples with Chr17-LOH have significantly higher p53 protein abundance (p 

= 0.011, Wilcoxon Rank Sum test) and significantly lower TP53-WT activity scores (p = 

0.006, Wilcoxon Rank Sum test), vs. samples without Chr17-LOH.

(I) Refractory samples have higher TP53-WT activity scores (p = 0.0002, Wilcoxon Rank 

Sum test), vs. sensitive tumors.

(J) Results of the multivariate logistic regression model with refractory status as the response 

variable and genomic features as predictor variables.

(K) Associations (p values) between protein abundances and treatment response among 

tumors with (y axis) vs. without (x axis) Chr17-LOH.

(L) L1CAM protein abundances stratified by Chr17-LOH status and treatment response. p 

values are determined by covariate-adjusted regressions.

(M) Associations (p values) between protein abundances and refractoriness among tumors 

with high (y axis) vs. low (x axis) TP53-WT activity scores.

(N) TGM2 protein abundances stratified by TP53-WT activity scores and treatment 

responses. p values are determined by covariate-adjusted regressions.

See also Figure S2.
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Figure 3. Proteogenomics-based predictive models
(A) Association between genomic instability scores and chemo-response. p values are 

determined by Wilcoxon Rank Sum test.

(B) Forest plot of a multivariate logistic regression model predicting refractoriness based on 

HRD and genetic variables.

(C) ROC curves showing the prediction performance of models based on (1) BRCA1/2 

mutation status + clinical variables (patient age and tumor location) and (2) BRCA1/2 

mutation status + clinical variables + Chr17-LOH status.
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(D) Workflow and results for the proteomic prediction model: (D1) the initial candidate 

set of protein markers was the union of multiple information sources, including 4 proteins 

significantly associated with treatment response (based on the FFPE discovery cohort global 

proteomic data), protein pathways associated with treatment response (based on cell line and 

PDX models42), and platinum-response-relevant proteins curated from the literature.17 (D2) 

Feature selection was performed using non-linear machine learning models based on FFPE 

discovery cohort global proteomic data, and 64 proteins were selected. (D3) An ensemble 

prediction model based on the 64 protein markers was derived and tested in independent 

cohorts.

See also Figure S3.
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Figure 4. Pathway enrichment analysis shows diverse processes associated with refractoriness 
and reveals sample clusters
(A) Top pathways associated with treatment response (FDR < 0.1) (FFPE discovery cohort). 

The left barplot indicates the percentage of genes in each of the pathways overlapping with 

the literature-curated genes.17 The heatmap on the right indicates if the associations were 

also observed in the frozen validation, FFPE validation, and the CPTAC-201619 cohorts.

(B) Heatmap showing 5 clusters of tumors based on the 150 pathways associated with 

refractoriness. Color scale represents the ssGSEA pathway scores derived from global 

proteomic data. The bars on the left represent mean pathway ssGSEA scores of each cluster. 
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The bar on the right represents the correlation between proteomic- and transcriptomic-based 

pathway scores.

(C) The tumor clusters (in B) are not likely due to chance. Shown are the within/between 

variances for the proposed clustering result (blue line), that based on the 150 most variable 

pathways (green line), and that based on the 100 random sets of 150 pathways (gray 

histogram).

(D) Percentage of samples with Chr17-LOH among the 5 clusters, with significantly more 

frequent Chr17-LOH in tumors in clusters 1–3 than in clusters 4 and 5 (p = 0.020, Fisher’s 

Exact Test).

(E) Percentage of samples with gains/losses in Chr9p13.3 (791681–6199529) in the 5 

clusters. Deletions of this region in cluster 2 tumors is significantly lower than that in other 

samples (p value = 0.0003, Wilcoxon Rank Sum test).

(F) Percentage of samples with gains/losses in Chr1p (32013868–121575702) in the 5 

clusters. Deletions of this region in cluster 4 tumors is significantly lower thanthat in other 

samples (p value = 0.023, Wilcoxon Rank Sum test).

See also Figure S4.
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Figure 5. Validation of the proteomic clusters using independent cohorts
(A) Heatmaps showing proteomic ssGSEA scores of 150 pathways across the 5 clusters for 

the samples from the CPTAC-2016 cohort,19 frozen validation cohort, and PDX proteomic 

dataset.42

(B) Heatmap of the Pearson correlations between the average pathway scores of each cluster 

in the FFPE discovery cohort vs. the CPTAC-2016 study19 (based on consensus clustering). 

p values are based on R function cor.test.
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(C) Concordance among the 5 clusters in the FFPE discovery and the CPTAC-2016 

cohorts.19 Sample sizes of the clusters in FFPE discovery cohort are respectively 33, 31, 

38, 26, and 30; while those in CPTAC-201619 (based on consensus clustering) are 15, 43, 

47, 49, and 20.

(D) Protein abundances of 8 metabolic protein markers showing upregulation in cluster 3 vs. 

other clusters. The sample sizes of the 5 clusters in FFPE discovery cohort are 33, 31, 38, 

26, and 30. p values are based on Student’s t test.

(E) Protein abundances of 8 metabolic protein markers (as in D) showing upregulation in 

cluster 3 vs. other clusters in the CPTAC-2016 cohort.19 Sample sizes of the 5 clusters in 

the CPTAC-2016 cohort (based on PAM clustering) are 43, 28, 41, 26, and 36. p values are 

based on Student’s t tests.

(F) Protein abundances of 8 metabolic protein markers (as in D) showing upregulation in 

cluster 3 vs. other clusters based on MRM data. The sample sizes of the 5 clusters in FFPE 

discovery cohort for which MRM experiment was done are respectively 17, 27, 34, 15, and 

9. p values are based on R function cor.test.
(G) ROC showing the prediction performance of the 8 metabolic protein markers (as in D) 

based on the average abundance of their Z scores determined by MRM.

See also Figure S5.
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Figure 6. Tumor microenvironment landscape
(A) Heatmap illustrating cell-type compositions of the FFPE discovery cohort (n = 158). The 

first four sections display cell-type proportions estimated by XDec57 and BayesDebulk.58 

The fifth section includes the normalized global abundance of key immune cell markers. The 

last section illustrates ssGSEA pathway scores of pathways that corroborate the estimated 

cell-type composition.

(B) First two boxplots show the comparison of the estimated immune proportions by 

XDec57 among cluster 5 refractory and sensitive tumors. p values are based on Student’s 
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t tests. The remaining three boxplots show comparison of IHC staining levels of CD8, CD4, 

and CCR5 between refractory and sensitive tumors. p values based on two-sided Wilcoxon 

Rank Sum test.

(C) Comparison of the estimated proportions by BayesDebulk58 for several immune 

subtypes (CD8 T cells and M1 macrophages), and anti-PD1 (programmed cell death 1) 

response signature across all 5 clusters and treatment response status (FFPE discovery 

cohort). p values are based on two-sided Wilcoxon Rank Sum test. The sample sizes of the 

5 clusters stratified by response are cluster 1 (22S + 11R), cluster 2 (20S + 11R), cluster 3 

(16S + 22R), cluster 4 (13S + 13R), and cluster 5 (20S + 10R).

(D) Module abundance scores (averaged Z scores of proteins mapping to the network 

module) across different protein clusters and response groups in the FFPE discovery and 

frozen validation (non-overlapping) cohorts. p values are based on two-sided Wilcoxon Rank 

Sum test. Sample sizes of the 5 clusters stratified by response in FFPE discovery cohort are 

cluster 1 (22S + 11R), cluster 2 (20S + 11R), cluster 3 (16S + 22R), cluster 4 (13S + 13R), 

and cluster 5 (20S + 10R); sample sizes in the frozen validation (non-overlapping) cohort are 

cluster 1 (10S + 7R), cluster 3 (4S + 3R), and cluster 5 (7S + 3R).

(E) Evaluation of CD8, CD4, and CCR5 expression by fluorescent multiplex 

immunohistochemistry. A representative chemo-sensitive HGSOC (Ea) and chemo-

refractory (Eb) HGSOC were stained using the Akoya Opal Multiplex IHC assay. Tissues 

were counterstained offline with 4′,6-diamidino-2-phenylindole (DAPI) to identify the 

nuclei. Representative areas show CD4 (red), CD8 (green), CCR5 (cyan), and nuclei (blue).

See also Figure S6.
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Figure 7. Association of TGF-β, alt-EJ, and βAlt scores with treatment response and clusters
(A) TGF-β and alt-EJ scores are negatively correlated with each other across independent 

cohorts. p values are for testing the Pearson correlation between the two variables (R 

function cor.test).
(B) The TGF-β, alt-EJ, and βAlt scores are significantly correlated with proteomic clusters. 

The sample sizes of the 5 clusters are 33, 31, 38, 26, and 30. p values are derived from an 

ANOVA test based on regression analyses.

(C and D) SemiKR (semi-tryptic peptides) ratio, NonKR (non-tryptic peptides) ratio, and 

NonKR ECM-related ratio are elevated in clusters 4 and 5 in both the FFPE discovery (C) 

and the frozen validation (D) cohorts. Sample sizes of the 5 clusters in FFPE discovery 

cohort are 33, 31, 38, 26, and 30, while in the frozen validation cohort (based on PAM 
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clustering) are 28, 2, 9, 3, and 22. p values are derived from an ANOVA test based on 

regression analyses.

(E) Based on the RNA data, the TGF-β score is higher (p = 0.038, Student’s t test) in cluster 

4 refractory vs. sensitive tumors. The sample sizes of the 5 clusters in FFPE discovery 

cohort (based on the 106 samples in RNA data) stratified by response are cluster 1 (13S + 

6R), cluster 2 (20S + 10R), cluster 3 (13S + 17R), cluster 4 (9S + 11R), and cluster 5 (3S + 

4R).

(F) TGF-β score and EMT pathway ssGSEA scores are significantly higher in cluster 4 

refractory vs. cluster 4 sensitive tumors. p values are determined by Student’s t test. The 

sample size of cluster 4 stratified by response is (13S + 13R).

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Antibodies

CD8, Clone C8/144B DAKO Cat#M7103; RRID:AB_2075537

CD4, EP204 Cell 
Marque

Cat#104R-26; RRID:AB_1516770

CD68, Clone PG-M1 DAKO Cat#M0876; RRID:AB_2074844

CD14, EPR3653 Cell 
Marque

Cat#114R-14; RRID:AB_2827391

CCR5 Matthias 
Mack Lab

N/A

PanCK, Clone 
AE1/AE3

DAKO Cat#M3515; RRID:AB_2132885

Opal Polymer HRP 
Ms+Rb

Akoya 
Biosciences

Cat#ARH1001EA; RRID:AB_2890927

Biological samples

Fresh frozen tissue 
samples

See STAR 
Methods

N/A

Chemicals, peptides, and recombinant proteins

HEPES (pH8.0) Alfa Aesar Cat#J63002

Hydroxylamine Millipore 
Sigma

Cat#438227

TMT 11plex reagents Thermo 
Fisher 
Scientific

Cat#A34808

Stable isotope-labeled 
synthetic peptide 
standards

Vivitide N/A

Phosphatase Inhibitor 
Cocktail 2

Millipore 
Sigma

Cat#P5726

Phosphatase Inhibitor 
Cocktail 3

Millipore 
Sigma

Cat#P0044

Protease Inhibitor 
Cocktail

Millipore 
Sigma

Cat#P8340

Lys-C Wako 
Chemicals

Cat#129-02541

Sequencing grade 
modified trypsin

Promega Cat#V5113

Urea Millipore 
Sigma

Cat#U0631

Trizma base (Tris), pH 
8.0

Millipore 
Sigma

Cat#T2694

iodoacetamide (IAM) Millipore 
Sigma

Cat#A3221

EDTA Millipore 
Sigma

Cat#E7889

EGTA Bioworld Cat#40520008-1
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

phosphate buffered 
saline

Thermo 
Fisher 
Scientific

Cat#14190144

tris(2-
carboxyethyl)phosphine 
(TCEP)

Thermo 
Fisher 
Scientific

Cat#77720

Acetonitrile Fisher 
Chemical

Cat#A955-4

Water Fisher 
Chemical

Cat#W64

ammonium bicarbonate Millipore 
Sigma

Cat#A6141

ammonium hydroxide 
solution

Millipore 
Sigma

Cat#320145

Formic acid Millipore 
Sigma

Cat#1116701000

Trifluoroacetic Acid Millipore 
Sigma

Cat#302031

RapiGest SF Waters Cat#186001861

Bond Dewax Solution Leica Cat#AR9222

BOND Epitope 
Retrieval Solution 2

Leica Cat#AR9640

Wash Solution 10X 
Concentrate

Leica Cat#AR9590

tertiary TSA-
amplification reagent

Akoya 
Biosciences

Cat#FP1135

Spectral DAPI Akoya 
Biosciences

Cat#FP1490

Prolong Gold Antifade Invitrogen Cat#P36930

Ni-NTA Magnetic 
Agarose Beads

Qiagen Cat#36113

Critical commercial assays

Micro BCA protein 
assay

Thermo 
Fisher 
Scientific

Cat#23235

TruSeq RNA Sample 
Prep Kit

Illumina Cat#FC-122-1001

KAPA Library 
Preparation Kit

Roche Cat#KK8201

AllPrep DNA/RNA 
FFPE kit

Qiagen Cat#80234

QIAamp® DNA FFPE 
Tissue Kit

Qiagen Cat#56404

miRNeasy FFPE kit Qiagen Cat#217504

QIAsymphony DSP 
DNA Midi Kit

Qiagen Cat#937255

KAPA HyperPrep with 
RiboErase kit

Roche Cat#KK8561

KAPA Stranded RNA-
Seq with RiboErase kit

Roche Cat#KK8484
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Accel-NGS S2 DNA 
prep reagents

Swift 
Biosciences

Cat#210384

Fragment Analyzer 
RNA kit

Agilent Cat#DNF-471-1000

AllPrep DNA/RNA 
FFPE Kit

Qiagen Cat#80234

Kapa Biosystems 
library quantification 
kit

Roche Cat#KK4854

TapeStation 2200 
D1000 screentape

Agilent Cat#5067-5582

Deposited data

PTRC HGSOC 
FFPE Validation - 
Phosphoproteome

This paper Proteomic Data Commons:PDC000357

PTRC HGSOC FFPE 
Validation - Proteome

This paper Proteomic Data Commons:PDC000358

PTRC HGSOC 
FFPE Discovery - 
Phosphoproteome

This paper Proteomic Data Commons:PDC000359

PTRC HGSOC FFPE 
Discovery - Proteome

This paper Proteomic Data Commons:PDC000360

PTRC HGSOC 
Frozen Validation - 
Phosphoproteome

This paper Proteomic Data Commons:

PTRC HGSOC Frozen 
Validation - Proteome

This paper Proteomic Data Commons:PDC000362

PTRC HGSOC DNA 
sequencing

This paper dbGaP:phs003152.v1.p1

PTRC HGSOC RNA 
sequencing

This paper dbGaP:phs003152.v1.p1

ProTrack Data 
Portal: Processed 
proteogenomic dataset 
visualization

This paper http://ptrc.cptac-data-view.org/

Processed LC-MRM-
MS data

This paper https://www.dropbox.com/s/7zul3j1vyrxo40c/processed_data.zip?dl=0

Raw LC-MRM-MS 
data

This paper Panoramaweb:Paulovich_PTRC_HGSOC

H&E images This paper TCIA:doi.org/10.7937/6rda-p940

PhosphoSitePlus Hornbeck 
et al.152

https://www.phosphosite.org

MSK-IMPACT Nguyen et 
al.18

N/A

CPTAC 2016 Zhang et 
al.19

N/A

TCGA – GBM The Cancer 
Genomic 
Atlas 
Research 
Network87

https://portal.gdc.cancer.gov/

TCGA – LGG The Cancer 
Genomic 
Atlas 

https://portal.gdc.cancer.gov/
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Research 
Network147

TGFβ and Alternative 
end-joining pathways

Liu et al.74 https://pubmed.ncbi.nlm.nih.gov/33568520/

HGSOC RNAseq: 
GSE154600

Gene 
Expression 
Omnibus

https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/geo/query/acc.cgi?acc=GSE154600

LM22 signature matrix 
from Cibersort

Chen et 
al.88

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895181/
#:~:text=LM22%20is%20a%20signature%20matrix,NK%20cells%2C%20and%20myeloid%20subsets

UniProt 2019_06 reviewed 
Human 
Universal 
Protein 
Resource 
sequence 
database

https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2019_06/knowledgebase/

UniProt 2020_03_30 reviewed 
Human 
Universal 
Protein 
Resource 
sequence 
database

https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2020_03/knowledgebase/

TP53 transcriptional 
program

Andrysik et 
al.32

N/A

Mutant TP53 signature Donehower 
et al.29

N/A

Genes associated with 
platinum resistance

Huang et 
al.17

http://ptrc-ddr.cptac-data-view.org.

Phosphosites related to 
ischemia

Mertins et 
al.91,

N/A

MSigDB’s database (v 
7.5.1)

Liberzon et 
al.93

http://software.broadinstitute.org/gsea/msigdb/index.jsp

DDR pathway database Huang et 
al.17

http://ptrc-ddr.cptac-data-view.org

Software and algorithms

Github repository for 
code used for data 
analysis and figures for 
this paper

This paper https://github.com/WangLab-MSSM/CPTAC_Ovarian_Chemo_Response

HALO Tissue 
Classifier machine 
learning algorithm

Indica Labs https://indicalab.com/halo-ai/

Philosopher v3.2.8 Alexey 
Nesvizhskii 
Lab; da 
Veiga 
Leprevost 
et al.94

https://philosopher.nesvilab.org/

MSFragger v3.0 Alexey 
Nesvizhskii 
Lab; Kong 
et al.95

https://msfragger.nesvilab.org/

PeptideProphet Keller et 
al.96

http://peptideprophet.sourceforge.net/
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

PTMProphet Shteynberg 
et al.97

http://www.tppms.org/tools/ptm/

TMT-Integrator Djomehri 
et al.98

http://github.com/huiyinc/TMT-Integrator

MaxQuant/Andromeda Tyanova et 
al.99

http://maxquant.org

ComBat (v3.20.0) Johnson et 
al.100

https://bioconductor.org/packages/release/bioc/html/sva.html

DreamAI Pei Wang 
Lab

https://github.com/WangLab-MSSM/DreamAI

XDec Genboree https://github.com/BRL-BCM/XDec

TPO workflow Michigan 
Center for 
Translation
al 
Pathology

https://github.com/mctp/tpo

Bbduk and bbduk2 BBMap https://github.com/BioInfoTools/BBMap/tree/master/sh

BWA-mem Li and 
Durbin101

https://github.com/lh3/bwa

Seurat Stuart et 
al.102

https://github.com/satijalab/seurat/releases/tag/v3.0.0

BayesDebulk Petralia et 
al.58

https://www.biorxiv.org/content/10.1101/2021.06.25.449763v2

DAGBagM Chowdhury 
et al.103

https://www.biorxiv.org/content/10.1101/2020.10.26.349076v1

GISTIC2.0 Mermel et 
al.89

https://github.com/broadinstitute/gistic2/

iProFun Song et 
al.27

https://github.com/WangLab-MSSM/iProFun

ESTIMATE Yoshihara 
et al.104

https://bioinformatics.mdanderson.org/public-software/estimate/

Joint Random Forest Petralia et 
al.105

https://rdrr.io/cran/JRF/man/JRF.html

TSNet Petralia et 
al.106

https://github.com/WangLab-MSSM/TSNet

xCell Aran et 
al.90

http://xcell.ucsf.edu/

iCAVE Liluashvili 
et al.92

http://labs.icahn.mssm.edu/gumuslab/software

ConsensusClusterPlus Wilkerson 
and 
Hayes107

http://bioconductor.org/packages/release/bioc/html/CancerSubtypes.html

Strelka2 v2.9.3 Kim et 
al.108

https://github.com/Illumina/strelka

CNVkit v. 2.9.3 Talevich et 
al.109

https://github.com/etal/cnvkit

STAR v2.6.1d Dobin et 
al.110

https://github.com/alexdobin/STAR

GENCODE v27 GENCODE 
consortium

https://www.gencodegenes.org/human/release_27.html

RSEM v1.3.1 Li and 
Dewey111

https://github.com/deweylab/RSEM
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Sumer Savage et 
al.112

https://github.com/bzhanglab/sumer

TCGAbiolinks Colaprico 
et al.113

https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html

MoonlightR Colaprico 
et al.114

https://bioconductor.org/packages/release/bioc/html/MoonlightR.html

MuSiC Wang et 
al.115

https://github.com/xuranw/MuSiC

GATK Broad 
Institute

https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle

VEP McLaren et 
al.116

https://useast.ensembl.org/info/docs/tools/vep/index.html

vcfAnno Pedersen et 
al.117

https://github.com/brentp/vcfanno

CNVEX Michigan 
Center for 
Translation
al 
Pathology

https://github.com/mctp/cnvex

DNAscope Sentieon https://support.sentieon.com/versions/201911/manual/DNAscope_usage/dnascope/

Kallisto Bray et 
al.118

https://pachterlab.github.io/kallisto/download.html

Ascore v1.0.6858 Github https://github.com/PNNL-Comp-Mass-Spec/AScore

MASIC Monroe et 
al.119

https://github.com/PNNL-Comp-Mass-Spec/MASIC

MS-GF+ v9981 Kim and 
Pevzner120

https://github.com/MSGFPlus/msgfplus

mzRefinery Gibbons et 
al.121

https://pnnl-comp-mass-spec.github.io/MzRefinery

pamr Tibshirani 
lab

https://CRAN.R-project.org/package=pamr

XGBoost Chen and 
Guestrin45

https://cran.r-project.org/web/packages/xgboost/index.html

RandomForest Breiman44 https://cran.r-project.org/web/packages/randomForest/

glmnet Tibshirani 
lab

https://cran.r-project.org/web/packages/glmnet/

Skyline MacLean et 
al.122

https://skyline.ms/project/home/software/Skyline/begin.view

GSVA Hänzelman
n et al.123,

https://www.bioconductor.org/packages/release/bioc/html/GSVA.html

Ovarian cancer 
molecular subtype 
classifier

Chen et 
al.124

http://bioconductor.org/packages/release/bioc/html/consensusOV.html

Other

Glass slides Leica 
Biosystems

Cat#3800040

Tissue Bags Covaris Cat#TT1, 520001

10 mg Sep-Pak solid-
phase extraction

Waters Cat#186000128
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5 mg Sep-Pak solid-
phase extraction

Waters Cat#186000309

2 mg Sep-Pak solid-
phase extraction

Waters Cat#186001828BA

PicoTip™ emitter, 50 
μm ID × 20 cm

New 
Objective

Cat#FS360-50-15-N-20-C12

1 mL deep well plate Thermo 
Fisher 
Scientific

Cat#95040450

4.6 mm × 250 mm 
Zorbax Extend- C18, 
3.5 μm, column

Agilent Cat#770953-902

ReproSil-Pur, 120 Å, 
C18-AQ

Dr. Maisch Cat#r119.aq

EvoTip Pure EvoSep Cat#EV2011

Endurance OE, 15 cm × 
150 μm, 1.9 μm

EvoSep Cat#EV-1113

epMotion 5075 Eppendorf Cat#5075 900.157-13/0411

Agilent 1200 HPLC Agilent Cat#G2262-90010

KingFisher Flex Thermo 
Fisher 
Scientific

Cat#N13141

Easy-nLC 1000 Thermo 
Fisher 
Scientific

Cat#LC120

LTQ-Orbitrap Fusion 
mass spectrometer

Thermo 
Fisher 
Scientific

Cat#IQLAAEGAAPFADBMBCX

Evosep One LC EvoSep Cat#EV1000

6500+ QTRAP mass 
spectrometer

Sciex Cat#5039926

OptiFlow Turbo V 
source

Sciex Cat#5028138

Qubit 4 fluorometer Thermo 
Fisher 
Scientific

Cat#Q33238

Agilent Tapestation 
2200

Agilent Cat# 5067-5582

Illumina NovaSeq 6000 Illumina Cat#20012850

Beckman Coulter 
Biomek i7

Beckman 
Coulter

https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/
novaseq-6000-spec-sheet-m-gl-00271/novaseq-6000-spec-sheet-m-gl-00271.pdf

BOND Rx autostainer Leica Cat#21.2821

PhenoImager HT 
Automated Imaging 
System

Akoya 
Biosciences

Cat#CLS143455

Protrack data portal This paper http://pbt.cptac-data-view.org
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