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Abstract

Stochastic Games: Nash Equilibrium, Pareto Optimality, Price of Anarchy, and Learning

by

Renyuan Xu

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

Stochastic games with large populations are notoriously difficult to solve due to their in-
tractability and dimensionality. How to analyze game strategies under full information and
how to design efficient learning algorithms under partial or no information are among the key
questions that need to be answered in order to better understanding such complex stochastic
systems.

In this thesis, we provide some attempts to tackle these two questions.

First, we formulate and analyze an N -player stochastic game of the classical fuel follower
problem and its mean field game (MFG) counterpart. For the N -player game, we obtain the
Nash equilibrium (NE) explicitly by deriving and analyzing a system of Hamilton–Jacobi
Bellman (HJB) equations and by establishing the existence of a unique strong solution to
the associated Skorokhod problem on an unbounded polyhedron with an oblique reflection.
For the MFG, we derive a bang-bang type NE under some mild technical conditions and by
the viscosity solution approach. We also show that this solution is an ε-NE to the N -player

game, with ε = O
(√

1
N

)
. The N -player game and the MFG differ in that the NE for the

former is state dependent while the NE for the latter is a threshold-type bang-bang policy
where the threshold is state independent. Our analysis shows that the NE for a stationary
MFG may not be the NE for the corresponding MFG.

Second, we propose a class of stochastic N -player games and discuss its connection to the free
boundary problems, where both the associated fully nonlinear partial differential equations
(PDEs) and the boundaries separating the action and waiting regions are integral parts of
the problems. We show how “moving” boundaries come into play due to the game nature,
which distinguishes our results from the existing single-agent literature. We present explicit
NE by solving a sequence of Skorokhod problems. For the special case of resource allocation
problems, we show how players change their strategies based on different network structures
among players and resources, with insights from a sharing economy perspective.
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Third, we analyze the Pareto optimality (PO) solution for a class of N -player collaborative
games. This is achieved by connecting the collaborative game with an auxiliary central
controller problem. The main contributions to solving the auxiliary central controller prob-
lem are two-fold. First, we show the regularity W2,∞(RN) of the central controller’s value
function, which is the unique solution to a high-dimensional HJB equation with complex
gradient constraints. Second we show the optimal strategy is a sequence of Skorokhod prob-
lems, where the regularity of the boundary is W1,∞(RN). With some properties of the PO
solution, we then provide an upper bound on the Price of Anarchy (PoA) of this game, which
bridges the set of NEs and the PO solution. Some insights are also discussed when N = 2,
with explicit solutions and exact PoA values.

Fourth, motivated by the advertisement auction problem for online advertisements, we con-
sider the general problem of simultaneous learning and decision-making in a stochastic game
setting with a large population. We formulate this type of game with unknown rewards and
dynamics as a generalized mean field game (GMFG), incorporating action distributions. We
first analyze the existence of the solution to this GMFG and show that naively combining
Q-learning with the three-step fixed-point approach in classical MFGs yields unstable algo-
rithms. We then propose an alternating approximating Q-learning algorithm and establish
its convergence property and complexity result. The numerical performance of this new
algorithm on the repeated Ad auction problem shows superior computational efficiency.
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Chapter 1

Introduction

Game Theory is a branch of applied mathematics originally related to economic and political
problems. At the begining, John von Neumann and Oskar Morgenstern [181] studied human
behavior while making strategic decisions, with the assumption that these decisions were
based in rationality. Over the years, Game Theory has been studied and applied to other
areas such as ecology, biology, finance, traffic routing, sports, energy system, and social
networks.

Besides the wide applications, there is a growing literature on the theoretical side of
Game Theory. Examples include Nash equilibrium (NE) for competitive games versus Pareto
optimality (PO) for cooperative games; static games versus dynamic games; computational
methods with full information versus learning algorithms with partial information; games
with indistinguishable players versus games with major-minor players; games with symmetric
information versus games with asymmetric information; two-player zero-sum games versus
multi-agent nonzero-sum games.

In short, Game Theory is an important field of study that enables us to better understand
individual interactions and decision making. In this thesis, we study the connections and
the differences between a general class of N -player stochastic games and its mean field
counterpart when N →∞.

1.1 N-player Games

Let us consider the following general stochastic N-player game. Denote XXX t = (X1
t , · · · , XN

t )
as the joint dynamics and αααt = (α1

t , · · · , αNt ) as the joint controls from N -players. Assume
that the dynamics XXX t are governed by the following N -dimensional diffusion process:

dX i
t = bi(t,XXX t,αααt)dt+ σi(t,XXX t,αααt)dB

i
t + σ0B0

t , X i
0 = xi, (i = 1, · · · , N), (1.1.1)

where BBB := (B0, B1, · · · , BN) is a standard (N + 1)-dimensional Brownian motion on a
filtered probability space (Ω,F , {Ft}t≥0,P), with drift bbb := (b1, · · · , bN) and volatility σσσ :=
(σ0, σ1, · · · , σN) satisfying appropriate regularity conditions. Here (bi, σi) are deterministic
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functions: [0, T ]×RN×AN ↪→ R×R. B0 is the common noise that all players are exposed to.
This common noise can model the noise correlation among all players. Each player i’s control,
αit, is in the control set A with some well-defined conditions, for example, E[

∫ T
0
αitdt] <∞.

In the game, each player i tries to minimize the following pay-off function J i over her
control αi ∈ A :

J i(xxx;ααα) = E
[∫ T

0

hi(t,XXX t,αααt)dt+ gi(XXXT )

]
(1.1.2)

subject to (1.1.1). Here hi : [0, T ]×RN ×AN ↪→ R is the running cost function for player i.
Note that hi depends on the current statesXXX t and actions αααt of all players. gi : [0, T ]×RN ↪→
R is the terminal cost function for player i.

Open-loop, Closed-loop, or Feedback Strategies

Depending on the information structure available to the players, there are different types of
control strategies players can take. Examples include open-loop strategies (BBB[0,t]), closed-
loop strategies (XXX [0,t]), and closed-loop strategies in feedback forms (XXX t). It is important to
distinguish the open-loop and the closed-loop strategies because these two types of strategies
lead to very different outcomes for both single-agent problems and stochastic games (Sun,
Li, and Yong [174] and Carmona, Fouque, and Sun [42]).

Denote HBBBt := σ({B0
s , B

1
s , · · · , BN

s }s≤t) as the filtration generated by the noises from
the system (1.1.1). Similarly, denote FXXXt := σ({X1

s , · · · , XN
s }s≤t) as the filtration generated

by the state processes from the system (1.1.1). The open-loop control is adapted to the
filtration generated by HBBB, and is allowed to depend upon the initial position XXX0− = xxx;
that is, we have αit ∈ {HBBBt ∪ {xxx}}. Similarly, for closed-loop controls, αit ∈ HXXXt . This means
that controls are made based on the historical information of the state evolution. Among all
the closed-loop controls, the closed-loop control in feedback forms is the most popular one.
That is, αit only depends on the current state XtXtXt rather than the full history. In practice,
this strategy is easier to implement since it does not require machine memory to keep the
history information. This closed-loop control in feedback forms is often referred to as Markov
controls. See Carmona [43] for more discussion on these concepts.

Technically speaking, the existence of NE for open-loop control is equivalent to the ex-
istence of a coupled Forward-Backward Stochastic Differential Equation (FBSDE) system.
The existence of NE for closed-loop control is equivalent to the existence of a Hamilton–
Jacobi–Bellman (HJB) equation system (Sun, Li and Yong [174]).

Here we mention several references, among many, on the topic of stochastic games
with open-loop controls and closed-loop controls. For open-loop controls, Lacker and Za-
riphopoulou [130] study an N -player game and a mean field game (MFG) for optimal invest-
ment problem under relative performance criteria; Chiarolla, Ferrari, and Riedel [56] analyze
an N -firm stochastic irreversible investment problem under limited sources; Steg [171] invests
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an irreversible investment problem in oligopoly; Ferrari, Riedel, and Steg [80] solve the pub-
lic good contribution problem under uncertainty. For closed-loop controls, Huang, Malhame,
and Caines [104] derive the MFG approximation for the NE of N -player game; Bensoussan
and Frehse [22] study an N -player game with risk sensitive payoffs; Bardi and Priuli [11]
study an linear-quadratic N -player game and the corresponding MFG with ergodic pay-offs,
Bensoussan, Sung, Yam, and Yung [24] develop the analysis for linear-quadratic MFG on
finite time-horizon.

NE versus PO and the Price of Anarchy

There are various criteria used to measure the performance of strategies in stochastic games.
For instance, NE and PO provide two distinct views, with NE focusing on stability and
PO on efficiency. The Price of Anarchy (PoA) provides a bridge between NEs and PO and
quantifies how far NEs are from being efficient. For convenience, here we introduce NE, PO,
and PoA with Markov controls.

NE. Intuitively, NE is a set of strategies that no player will benefit from deviating from
this set of strategies. Therefore, it represents a stationary status of the game. Now, let us
introduce the formal definition of NE.

Definition 1 (NE). A tuple of admissible controls ααα∗ = (α1∗, . . . , αN∗) ∈ AN is a NE of the
stochastic game (1.1.2), if for any i = 1, . . . , N , XXX0 = xxx, and any α ∈ AN , the following
inequality holds,

J i (xxx;ααα∗) ≤ J i
(
xxx; (ααα−i∗, αi)

)
. (1.1.3)

Here strategies αi∗ and αi are deterministic functions of time t and XXX t = (X1
t , . . . , X

N
t ),

with the notation (xxx−i, yi) := (x1, · · · , xi−1, yi, xi+1, · · · , xN) for any xxx ∈ RN . J i (xxx;ααα∗) is
called the NE value associated with ααα∗.

(1.1.3) implies that ααα∗ is a NE if no player has the incentive to deviate from this tuple
of strategies. That is, conditioning on ααα−i∗, the optimal strategy for player i is to follow
strategy αi∗.

For open-loop strategies with finite-variational controls, NE has been studied by applying
a powerful first-order condition, which is a substitute in non-Markovian frameworks for the
HJB equation. We refer to Chiarolla, Ferrari, and Riedel [56] for the social planner problem
in a market with N firms and limited resources; to Steg [171] for a capital accumulation
game; and to Ferrari, Riedel, and Steg [80] for a public good contribution under uncertainty
game.

For closed-loop strategies with finite-variational controls, there are a number of papers
on non-zero-sum two-player games with singular controls. By treating one as a controller
and the other as a stopper, where the controller minimizes the finite variation process and
the stopper decides the optimal time to terminate the game, Karatzas and Li [119] prove the
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existence of an NE for the game via a BSDE approach. Hernandez-Hernandez, Simon, and
Zervos [99] provide an in-depth analysis of the smoothness of the value function and show that
the optimal strategy may not be unique when the controller enjoys a first-move advantage.
Kwon and Zhang [129] investigate a game of irreversible investment with singular controls
and strategic exit. They characterize a class of market perfect equilibria and identify a set
of conditions under which the outcome of the game may be unique despite the multiplicity
of the equilibria. De Angelis and Ferrari [68] establish the connection between singular
controls and optimal stopping times for a non-zero-sum two-player game. Bensoussan and
Frehse [21] consider an N -player game with regular controls and obtain the NE via the
maximum principle approach. The closest to our problem setting are those of Mannucci [145]
and Hamadene and Mu [96]. They consider the fuel follower problem in a finite-time horizon
with a bounded velocity and establish the existence of an NE of a two-player game. The
former analyzes a strongly coupled parabolic system and the latter uses the BSDE technique.

PO. PO is a game criterion to measure the efficiency of the system when players collaborate
to reach the social (global) optimality. This type of collaboration game can be found in social
welfare maximization (Bartor [15], Coleman [65], Stiglitz [172]), network resource allocation
(Teich, Wallenius, Wallenius, and Zionts [178], Lan, Kao, Chiang, and Sabharwal [135]); and
recommendation systems (Ribeiro, Lacerda, Veloso, and Ziviani [162]; and Ortega, Sánchez,
Bobadilla, and Gutierréz [156]).

Definition 2 (PO). ααα∗ ∈ AN with pay-off functions
(
J1, · · · , JN

)
is a PO if and only if

there does not exist ααα ∈ AN such that

J i (xxx;ααα) ≤ J i (xxx;ααα∗) for all i = 1, . . . , N,

and

J j (xxx;ααα) < J j (xxx;ααα∗) ,

for some j ∈ {1, . . . , N}. The strategies ξi∗ and ξi are deterministic functions of time t and
XXX t for all i = 1, 2, · · · , N .

PO can be solved by considering an auxiliary central controller with cost function 1
N

∑N
i=1 J

i.
The central controller can coordinate the controls from N players to reach her optimal so-
lution. This coordination forms a PO to the original N -player game. Normally, the central
controller problem corresponds to a coupled high-dimensional HJB system for which the
explicit solution is difficult to derive.

Compared to NE, PO is a less studied subject for N -player stochastic games with finite-
variational controls. For PO with two players, Aı̈d, Basei, and Pham [3] consider a game
between a firm and a consumer in an energy market, and Federico and Pham [78] solve the
irreversible investment problem where a social planner aims to control its capacity production
in order to fit optimally the random demand of a good. For PO in a general N -player game,
Ferrari, Riedel, and Steg [80] studies the public good contribution game among N agents.
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PoA. PoA was originally introduced to quantify the inefficiency of selfish behavior in rout-
ing games (Roughgarden and Tardos [164], Christodoulou and Koutsoupias [59, 58], and
Roughgarden [163]). The game-theoretical methods have found many applications involving
resource allocation (Altman and Basar [5], Zhu and Pavel [191], and Altman, Boulogne,
El-Azouzi, Jiménez, and Wynter [6]) and ranking competition (Bayraktar and Zhang [17]).

Denote N := {ααα∗ | ααα∗ is an NE strategy of game (1.1.2)} as the set of all NE strategies.
The inefficiency of an NE, compared to socially optimal behavior, is quantified by the so-
called Price of Anarchy (PoA).

Definition 3 (PoA).

PoA(ααα) =
supα∗α∗α∗∈N

(∑N
i=1 J

i(xxx;ααα∗)
)

∑N
i=1 J

i (xxx; α̃αα)
,

where α̃αα is the social optimality control policy from the central controller.

For static games, this has been studied in Delarue, Lacker, and Ramanan [133]. For the
class of continuous-time stochastic differential games, the PoA for MFG with unique NE has
been studied in Carmona, Graves, and Tan [49], Achdou and Lauriere [2], Graber [88] and
Cardaliaguet and Rainer [40].

Game under Resource Constraints

In practice, players make decisions with respect to various constraints. The resource limit is
one of the practical constraints to be considered. For example, resource stands for budget
in the investment problems (Björk, Davis, and Landén [26]), inventory in retailing markets
(Olivares and Cachon [155]), production level in energy systems (Dong, Huang, Cai, and
Liu [71]), computational power in cloud computing, active loads on smart power grids, and
communication speed in multimedia wireless networks (Gao, Lu, Sharma, Squillante, and
Bosman [83], Georgiadis, Neely, and Tassiulas [84], Levy, Nagarajarao, Pacifici, Spreitzer,
Tantawi, and Youssef [141], Samadi, Mohsenian-Rad, Schober, and Wong [165] and Xiao,
Song, and Chen [186]).

Game under resource constraints is an important subject. It is the common interest
for players to better understand their opponents’ behaviors and for mechanism designers to
build good platforms, especially when the resource constraints are changing over time.

1.2 Mean field Limit

For each player i (i = 1, 2, · · · , N), if the game dependency on other players only comes from

the empirical distribution µN,it :=

∑
j 6=i δXjt
N−1

, and each player is controlling an independent
Brownian motion, game (1.1.1)-(1.1.2) can be rewritten as (i = 1, · · · , N)
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J i(xxx;ααα) = E
[∫ T

0

hi(X i
t , α

i
t, µ

N,i
t )dt+ gi(µN,iT )

]
(1.2.1)

subject to

dX i
t = bi(X i

t , α
i
t, µ

N,i
t )dt+ σi(X i

t , α
i
t, µ

N,i
t )dBi

t, X i
0 = xi. (1.2.2)

Assume all players are identically distributed (bi = b, σi = σ, hi = h and gi = g). LetN →
∞. If µN,it converges, then game (1.2.1)-(1.2.2) becomes the following for a representative in
the MFG:

J(η;α) = E
[∫ T

0

h(Xµ,α
t , αt, µt)dt+ g(Xµ,α

T )

]
(1.2.3)

subject to

dXµ,α
t = b(Xµ,α

t , αt, µt)dt+ σ(Xµ,α
t , αt, µt)dBt, X0 ∼ η. (1.2.4)

Here η is the initial distribution of the population, α ∈ A is the control, and Xt is the
dynamics.

Definition 4 (NE for MFG). A pair consisting of a control policy and a population distri-
bution (α∗, µ∗) := ({α∗}0≤t≤T , {µ∗}0≤t≤T ) is an NE for MFG (1.2.3)-(1.2.4) if the following
conditions hold:

• (Single-player side): Fix µ∗, α∗ is optimal for the control problem: α∗ = arg maxα∈A J(η, α|µ∗)

• (Population side): µ∗t = Law(Xµ∗,α∗

t ). That is, µ∗t is the law of Xµ∗,α∗

t where Xµ∗,α∗

t is
under the control α∗.

The single-player side condition captures the optimality of α∗ when the population side
µ∗ is fixed. The population side condition ensures the “consistency” of the solution: it
guarantees that the state distribution flow of the single player matches the population state
distribution flow . A more intuitive way to understand the MFG is via a three-step fixed-
point perspective.

• Step 1 Single-agent optimization: Let the population distribution µ := {µt}0≤t≤T
be fixed. For a representative, MFG (1.2.3) becomes a single-agent control problem,
denoted as P (µ). Next, denote the optimal control and the controlled dynamics of

problem P (µ) as α′ and Xµ,α′

t , respectively. This procedure leads to a mapping Γ1 :
P(R) ↪→ A such that α′ = Γ1(µ).
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• Step 2 Consistency from population update: Since all players are identical in
the MFG, they will follow the optimal control α′, which leads to the update of the
population distribution

µ′t = Law(Xµ,α′

t ). (1.2.5)

This leads to the second mapping Γ2 : A ↪→ P(R) such that µ′ = Γ1(α′).

• Step 3 Fixed point: Denote Γ := Γ2 ◦ Γ1 : P(R) ↪→ P(R). Then a fixed point
population distribution µ∗ to the mapping Γ is an NE for MFG.

The theory of MFGs has enjoyed tremendous growth since the pioneering works of Huang,
Malhamé, and Caines [105] and Lasry and Lions [138]. The MFG provides a tractable
approach to the otherwise challenging N -player stochastic games.

Given the MFG formulation in (1.2.3)-(1.2.4), the natural questions that proceed are how
to solve the MFG, and when is the solution unique?

Existence.

In terms of existence of the solution, there are mainly three approaches: the PDE approach,
the probability approach, and the relaxed control approach.

PDE Approach. In the PDE approach, under some mild technical conditions, the MFG
solution can be described by a coupled system with a backward HJB equation describing the
conditional optimality of value function and a forward Kolmogorov equation describing the
evolution flow of population distribution.

First, the value function v(t, x) of problem P (µ) (defined in Step 1) under fixed population
distribution µ follows the following backward HJB equation:{

−∂tv(t, x)− supa[La,µtv(t, x) + h(x, µ, a)] = 0, on (0, T )× Rd,
v(T, x) = g(x, µT ),

(1.2.6)

where the generator La,µt is defined as

La,νφ(x, t) = b(x, ν, a)∂xφ(x, t) +
1

2
σ(x, ν, a)2φ2(t, x),

for all φ(x, t) ∈ C2,1(R× R+).
Second, if the optimal control is on the feedback form of α∗t = α̂(t,Xµ

t , α
∗), the population

distribution µt = Law(Xµ,α∗

t ) under the MFG control α∗, which is a fixed-point to the three-
step approach, satisfies the following Kolmogorov forward equation:{

∂tµt(x) = −∂x(b(x, ν, ˆα(t, x))µt(x)) + 1
2
∂2
x(σ(x, ν, ˆα(t, x))2µt(x))

µ0 = η.
(1.2.7)

There is an extensive study on the existence of the solution to the coupled system (1.2.6)-
(1.2.7) under various conditions (Guéant [90], Guéant, Lasry, and Lions [89] and Bardi [12]).
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Probability Approach. For the probability approach, which is also referred to as the
FBSDE approach, a stochastic (Pontryagin) maximum principle is applied, and the MFG is
reduced to a forward-backward SDE system of McKean-Vlasov type. Denote α̂(x, y, ν) =
arg maxa∈AH(x, y, ν, a) where the Hamiltonian is defined as H(x, y, ν, a) := b(x, ν, a)y +
h(x, ν, a). 

dXt = b(Xt, Yt, α̂(Xt, Yt, µt))dt+ σBt,
dYt = −∂xH(Xt, Yt, µt, α̂(Xt, Yt, µt))dt+ ZtdBt,
X0 ∼ η, YT = ∂xg(XT , µT ).

(1.2.8)

The existence of optimal control α̂(Xt, Yt, µt) can be proved under some standard differ-
entiability and convexity assumptions, where (Xt, Yt) follows the dynamics in (1.2.8).

This approach is explored by Carmona and Delarue [45, 46], Carmona, Delarue, and
Lachapelle [47] and Carmona and Lacker [50], among many others.

Relaxed Control Approach. In both PDE and probability approaches, a key difficulty
comes from the forward-backward nature of the problems. In these situations, a more
functional-analytic framework is employed in the relaxed control approach. With this ap-
proach, there is no need for precise analysis of the optimal feedback control, and the assump-
tions can be more relaxed. This method is first explored in the regular control (Lacker [132]),
and later generalized to the singular control (Fu and Horst [81]).

Uniqueness

There are mainly two sets of conditions that guarantee the uniqueness of the MFG solu-
tions: the monotonicity condition (Lasry and Lions [136], Guéant, Lasry, and Lions [89],
and Cardaliaguet, Delarue, Lasry, and Lions [41]) and a small product of certain Lipchitz
constants (Huang, Malhamé, and Caines [105], and Huang, Caines, and Malhamé [103]).
The monotonicity condition assumes that it is disadvantageous for players’ states to be close
to one another. A small product of certain Lipchitz constants, on the other hand, implies
small variations of the system, which guarantees the contraction mapping of the three-step
procedure in MFG derivation.

Several interesting questions have been raised recently on the reachability of the MFGs
when the uniqueness condition is violated : Which MFG is a limit of a sequence of N-player
games and which is not? What is the common property for the MFGs to be a limit of some
N -player games? For example, see Lacker [131], Nutz, Martin and Tan [152], Cecchin [55],
Delarue and Tchuendom [69].

Comparison between N-player Game and MFGs

However, except for the general result that the NE of an MFG is an ε-NE to the N -player
game (see, for instance Huang, Malhamé, and Caines [105] and Cardaliaguet, Delarue, Lasry,
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and Lions [41] for regular controls and Guo and Joon [93] for singular controls), there are
very limited results on comparing the NE of N -player games and MFGs. The exceptions
are Carmona, Fouque, and Sun [48] for systemic risks, Nutz and Zhang [153] for com-
petition, Lacker and Zariphopoulou [134] for portfolio management, and Bardi [10] for a
linear-quadratic problem. All these results, however, are with regular controls. For MFGs
with singular controls, notions of relaxed stochastic maximal principle or relaxed admissible
controls have been introduced to establish the existence of optimal controls; see, for instance,
Fu and Horst [81], Hu, Øksendal, and Sulem [102], and Zhang [190].

Approximations and Convergence

To justify the MFG system, one can use its solution to construct approximate equilibria for
the n-player games. There are two types of convergence.

The first type of convergence is in terms of εN -NE. Namely, a given mean field equilibrium
induces an approximated NE for a N -player game with an error term εN for a large N . For
instance, see Huang, Malhamé, and Caines [105] and Cardaliaguet, Delarue, Lasry, and
Lions [41] for regular controls, and Guo and Joon [93] for singular controls. Under different
sets of technical conditions, different orders can be shown for different types of mean field
models. For example, εN = O

(
N−1/(d+4)

)
in Carmona and Delarue [46] and εN = O

(
N−1/2

)
in Huang, Caines, and Malhamé [103].

Another convergence is on the N -player NEs to the mean field limit. This is a more
delicate subject. It has been shown that when MFG is not unique, not all MFG solutions
are a limit of N -player NE (Laker [131] and Nutz, Martin, and Tan [152]). Therefore, it is
important to study when MFG is meaningful and what are the sufficient conditions to apply.

Extension: Common Noise

MFG with common noise describes the scenario when each player faces not only her private
noise in the dynamics, but also the common noise that all players are exposed to. Mathe-
matically speaking, with the presence of common noise, the dynamics of each individual in
the N -player game can be written as

dX i
t = bi(X i

t , α
i
t, µ

N,i
t )dt+ σi(X i

t , α
i
t, µ

N,i
t )dBi

t + σ0(X i
t , α

i
t, µ

N,i
t )dB0

t , X i
0 = xi. (1.2.9)

Here, Bi
t is the private noise that drives the dynamics of player i. B0

t , independent from Bi
t,

is the common noise faced by all players (i = 1, 2, · · · , N). Let N →∞, each player controls
the following dynamics in the MFG regime:

dXµ,α
t = b(Xµ,α

t , αt, µt)dt+ σ(Xµ,α
t , αt, µt)dBt + σ0(Xµ,α

t , αt, µt)dB
0
t , X0 ∼ η. (1.2.10)

Here Bt and B0
t are independent, with Bt as the private noise and B0

t as the common noise.
On an intuitive level, the solution of MFG with common noise can be derived by dealing

with the conditional Law µ′ = Law(Xµ,α|B0) instead of the regular Law in (1.2.5).
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Carmona, Delarue, and Lacker [54] provide the first analysis of MFG problems with com-
mon noise and demonstrate existence and uniqueness. Huang, Jaimungal, and Nourian [106]
apply MFG with common noise to an optimal execution problem under competition.

Extension: MFG with Multiple Populations

When there are multiple populations in the system, for example a financial network with
large banks and small banks, the participants should not be treated equally. This leads to
the study of MFG with major-minor players (Carmona and Zhu [52], Nguyen, Luu, and
Huang [151] and Huang, Jaimungal, and Nourian [106]) or MFG with multiple populations
(Cirant [63] and Bauso, Pesenti, and Tolotti [16]). Another case worth noticing is MFG with
a mixture of competition and collaboration: the intra-population interaction is collaboration
and inter-population interaction is competition. This hierarchical game structure has been
studied in Bensoussan, Huang, and Laurière [23] and Miller and Pham [149].

1.3 Computation and Learning on MFGs

In practice, sometimes it is difficult for players to achieve the goal of reaching NE. There
are two main reasons. The first is due to the lack of computational resources when facing
complex systems, even when full information is available. The other major reason is when
limited information is available to each player. For example, in game (1.1.1), players may
have limited knowledge about the parameters b and σ.

To tackle the first challenge with full information, recent developments from the com-
putational front can equip players with an efficient computational method. For the second
challenge with partial information, the key is to design efficient reinforcement learning al-
gorithms to help players make decisions while interacting with the unknown system and
competing with other players. We will discuss several relevant studies in detail.

Computational Methods. Cardaliaguet and Hadikhanloo [39] introduce a learning pro-
cedure (similar to the Fictitious Play) for these games and show its convergence when the
MFG is potential and the model is fully observable. Carmona and Mathieu [51] provide a
deep-learning-based approach to the MFG solution.

Reinforcement Learning. There are many real-world problems involving a large num-
ber of players and unknown systems. Examples include online auction bidding (Gummadi,
Key, and Proutiere [91]), massive multi-player online role-playing games (Jeong, Kang, and
Kim [114]), high frequency trading (Lehalle and Mouzouni [140]), and the sharing economy
(Hamari, Sjöklint, and Ukkonen [97]). Under such circumstances with partial or unknown
information, there are some attempts to design a reinforcement learning algorithm to simul-
taneously learn the system and make decisions.
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On learning large population games with mean field approximations, Yang, Ye, Trivedi,
Xu, and Zha [187] focus on inverse reinforcement learning for MFGs without decision-making,
Yang, Luo, Li, Zhou, Zhang, and Wang [188] study an multi-agent reinforcement learning
(MARL) problem with a first-order mean field approximation term modeling the interaction
between one player and all the other finite players, and Kizilkale and Caines [125] and Yin,
Mehta, Meyn, and Shanbhag [189] consider model-based adaptive learning for MFGs in
specific models (e.g., linear-quadratic and oscillator games). More recently, Subramanian
and Mahajan [173] consider reinforcement learning in the classical MFG setting, propose
a policy-gradient based algorithm and analyze the so-called local NE. For learning large
population games without mean field approximation, see Kapoor [117] and Hernandez-Leal,
Kartal, and Taylor [100] and the references therein.

1.4 Motivation and Organization.

As introduced previously, N -player non-zero-sum stochastic games are notoriously difficult to
solve. The existence or solvability of the game solution can be translated into the existence
or solvability of an HJB system for closed-loop controls or FBSDE system for open-loop
controls. Normally, the existence of the high-dimensional highly coupled (stochastic) system
is hard to analyze, let alone the analytical solutions.

Recently there has been a surge of interest in MFGs, pioneered by the original develop-
ments around 2006 (Huang and Malhamé [104], Lasry and Lions [137, 136] and [139]). With
an ingenious aggregation approach, MFGs nicely reduce the complexity of N -player games
by focusing on N → ∞. Subsequent research, however, has focused largely on theoretical
questions of the existence and uniqueness of solutions for the equations governing the partic-
ular stochastic differential mean field games. Moreover, there are undesirable consequences
of the MFG aggregation approach, and a growing number of studies (Carmona, Fouque,
and Sun [42], Guo and Xu [94], Lacker and Zariphopoulou [130]) point to the risk of using
MFGs for analyzing N -player games. For instance, NEs of MFGs tend to collapse to that
of a single-player game, offering no or limited insight into the general solution structure of
N -player games.

Goal. This thesis takes one step back from the study of the existence and uniqueness of
different variations of MFGs. Indeed, the goal is to understand some fundamental questions
in game theory via the following four pairs of relationships:

1. 2-player games versus N-player games: What is the missing piece in the literature
that obstructs the solvability of the general N-player game compared with the solvable
2-player game?

2. N-player game versus MFG: When is MFG a good approximation to the N-player
game and when is it not? In what sense is MFG a good approximation? Under what
conditions is MFG not a good approximation to the N-player game?
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3. NE versus PO: NE is a concept of stable strategies under competition, whereas PO
is a notion of efficiency under collaboration. What is the relationship between NE and
PO? When an NE solution is not unique, how can we distinguish the NEs and what is
the proper criterion?

4. Computation versus Learning: In practice, players rarely follow the NE, either
because they simply do not know how to calculate it or they do not have full information
about the system. When players do not have full information, it is important to design
efficient algorithms for players to learn how to make decisions while inferring the system
and interacting with other players.

Organization. The rest of this thesis is organized as follows:
In Chapter 2, we formulate and analyze an N -player stochastic game of the classical

fuel follower problem and its MFG counterpart. For the N -player game, we obtain the NE
explicitly by deriving and analyzing a system of HJB equations and by establishing the
existence of a unique strong solution to the associated Skorokhod problem on an unbounded
polyhedron with an oblique reflection. For the MFG, we derive a bang-bang type NE under
some mild technical conditions and by the viscosity solution approach. We also show that

this solution is an ε-NE to the N -player game, with ε = O
(√

1
N

)
. The N-player game and

the MFG differ in that the NE for the former is state dependent while the NE for the latter
is threshold-type bang-bang policy where the threshold is state independent. Our analysis
shows that the NE for a stationary MFG may not be the NE for the corresponding MFG.
This is based on work with Professor Xin Guo (UC Berkeley).

In Chapter 3, we propose and analyze a class of stochastic N -player games with some
resource constraints. This class of games includes finite fuel stochastic games as a special
case. We first derive sufficient conditions for NE in the form of a verification theorem,
which reveals an essential game component regarding the interactions among players. It is
an analytical representation of the conditional optimality for NEs, largely missing in the
existing literature on stochastic games. The derivation of NEs involves first solving a multi-
dimensional free boundary problem and then a Skorokhod problem, where the boundary is
“moving” in the sense that it depends on both the changes of the system and the interaction
among players in the game. This is based on work with Professor Xin Guo (UC Berkeley)
and Dr. Wenpin Tang (UC Berkeley).

In Chapter 4, we analyze the PO solution for a class of N -player stochastic games. This is
achieved by connecting this collaborative game with an auxiliary central controller problem.
The main difficulties are two-fold. The first difficulty is showing the regularityW2,∞(RN) of
the central controller’s value function, which is the unique solution to a high-dimensional HJB
equation with complex gradient constraints. The second difficulty is showing the existence
of the unique optimal solution where the boundary of the reflection region is of W1,∞(RN).
With some properties of the PO solution, we provide an upper bound of the Price of Anarchy,
which bridges the set of NEs and the PO solution. Some insights are also discussed when
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N = 2, with explicit solutions and exact PoA values. This is based on work with Professor
Xin Guo (UC Berkeley).

In Chapter 5, we present a general mean field game (GMFG) framework for simultaneous
learning and decision-making in stochastic games with a large population. It first establishes
the existence of a unique NE to this GMFG, and explains that naively combining Q-learning
with the fixed-point approach in classical MFGs yields unstable algorithms. It then pro-
poses a Q-learning algorithm with Boltzmann policy (GMF-Q), with analysis of convergence
property and computational complexity. The experiments on repeated Ad auction problems
demonstrate that this GMF-Q algorithm is efficient and robust in terms of convergence and
learning accuracy. Moreover, its performance is superior in convergence, stability, and learn-
ing ability when compared with existing algorithms for multi-agent reinforcement learning.
This is based on work with Professor Xin Guo (UC Berkeley), Anran Hu (UC Berkeley),
and Junzi Zhang (Stanford University).
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Chapter 2

Stochastic Games for Fuel Followers
Problem: N versus MFG

2.1 Introduction

The classic fuel follower problem concerns controlling a single moving object on a real line
whose movement is modeled by a standard Brownian motion. The controller controls the
position of her object in a possibly non-continuous way, i.e., with singular controls. Her
objective is to minimize over an infinite-time horizon, the total amount of control and the
total L2 distance of the object to the origin, with a discount factor. The optimal control
derived by Beneš, Shepp, and Witsenhausen [20] is shown to be of a “bang-bang” type.
That is, there exists a threshold c such that when the object is within [−c, c], it will be
idling; and when it is outside [−c, c], the controller will apply the minimal push needed to
bring it back within [−c, c]. The controlled dynamics is thus a reflected Brownian motion,
with local times at c and −c as a result of the minimal push. This problem has a number
of generalizations; see, for example, Karatzas [118], Karatzas and Shreve [121], and Shreve
and Soner [168]. In particular, Karatzas [118] derives a similar bang-bang type optimal
control when the L2 distance is relaxed to a class of convex and symmetric functions; see
Figure 2.1. Due to its simplicity, the fuel follower problem has many applications and has
inspired a number of research topics, including reflected stochastic differential equations
and semimartingales, Skorokhod problems, and regularities of fully nonlinear PDEs with
gradient constraints. See, for instance, Harrison and Williams [98], Soner and Shreve [169],
Varadhan and Williams [179], Williams [185], Dai and Williams [66], Kruk [127], Atar and
Budhiraja [8], Budhiraja and Ross [30], Evans [76], and Hynd [107].

Our work. In this paper we formulate and analyze an N -player stochastic game of the fuel
follower problem and its Mean Field Game (MFG) counterpart. In the N -player game, there
are N controllers and N objects with each controller controlling one object. Each controller
minimizes her total amount of control and the total distance of her object to the center
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of the N objects. The interaction among the N controllers in the game is to ensure that
their own objects closely follow each other’s movement. We derive the Nash Equilibrium
(NE) explicitly (Theorem 9). This result is established in two main steps. The first step is
to derive and analyze a system of Hamilton–Jacobi–Bellman (HJB) equations for the value
functions and to establish a verification theorem (Theorem 7) for the game. After finding the
solution to the HJB system, the second step is to construct a feedback control via proving the
existence of a (unique strong) solution to an associated Skorokhod problem on an unbounded
polyhedron with an oblique reflection (Theorem 8). For the special case of N = 2, we exploit
the symmetric structure to obtain multiple NEs; see Figure 2.4.

We then consider the corresponding MFG with N →∞, where each controller minimizes
her total amount of control and the total distance of her object to the mean position of all
objects. Our approach to analyze this MFG is to study directly the two coupled PDEs, the
backward parabolic type HJB equation and the forward Kolmogorov equation. By further
exploiting the problem structure, we derive an NE which is of a bang-bang type (Theorem
11). The threshold of this bang-bang type NE is state-independent as in the classical fuel
follower problem. We finally discuss the relation between the N -player game and the MFG,
and show that this NE to the MFG game is an ε-NE to the N -player game (Theorem 18).

Our contribution. In general, there are essential technical difficulties in analyzing N -
player stochastic games. The underlying HJB system is high dimensional, the existence of
its solution is usually hard to analyze, and deriving explicit solutions is even more challenging.
Therefore it is in general infeasible to characterize the equilibrium. In the case of the singular
control, the HJB equation is even more complex, with additional gradient constraints coming
from possible jumps in the control. For MFGs with singular controls, the Hamiltonian for the
underlying stochastic control problem diverges and the classical stochastic maximal principle
fails. Moreover, due to the possible non-stationarity of the mean information process, the
associated HJB equation is parabolic despite the infinite-time horizon setting, making it even
more difficult to analyze the regularity of the value functions or to derive explicit solutions.

To the best of our knowledge, our work is the first to provide a complete characterization
of the NEs for both the N -player stochastic game and the MFG in a singular control setting.
Our explicit solutions are derived for a class of convex and symmetric functions, without
the usual linear-quadratic structure for MFGs with regular controls in Bardi [10], Bardi and
Priuli [11], Bensoussan, Sung, Yam, and Yung [24].

Moreover, explicit solutions derived in this paper make it possible to directly compare
the structural differences between the MFG and the N -player game. It provides useful
insights not only for analyzing general N -player games but also for proper formulations of
MFGs. Indeed, MFGs may be very different in nature from N -player games: in the fuel
follower problem, the MFG degenerates to a single-player game in the sense that its NE is
threshold-type bang-bang policy where the threshold is state independent (Proposition 15
and Proposition 16), while the NEs for the N -player game are state dependent (Theorem
9). The collapse of the MFG to the single player problem (Proposition 15) is a side effect by
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the aggregation in the MFG formulation: players become more anticipative when they are
assumed to be identical. Our analysis also shows that the NE for a stationary MFG may
not be the NE for the corresponding MFG (Remark 14.1).

There are also some noteworthy economic insights from our analysis. For instance, in the
N -player game, we show that when the number of players increases, it is more costly for each
player to keep track of other players before making decisions, as players will intervene more
frequently due to the increasing complexity of the game. Moreover, the bigger the discount
factor α, the less frequent players will intervene. (See Remarks 19.1 and 16.1).

Related work on stochastic games. There are a number of papers on non-zero-sum
two-player games with singular controls. By treating one as a controller and the other as a
stopper, where the controller minimizes the finite variation process and the stopper decides
the optimal time to terminate the game, Karatzas and Li [119] prove the existence of an NE
for the game via a BSDE approach. Hernandez-Hernandez, Simon, and Zervos [99] provide
an in-depth analysis of the smoothness of the value function and show that the optimal
strategy may not be unique when the controller enjoys a first-move advantage. Kwon and
Zhang [129] investigate a game of irreversible investment with singular controls and strategic
exit. They characterize a class of market perfect equilibria and identify a set of conditions
under which the outcome of the game may be unique despite the multiplicity of the equilibria.
De Angelis and Ferrari [68] establish the connection between singular controls and optimal
stopping times for a non-zero-sum two-player game. Bensoussan and Frehse [21] consider an
N -player game with regular controls and obtain the NE via the maximum principle approach.
The closest to our problem setting are those of Mannucci [145] and Hamadene and Mu [96].
They consider the fuel follower problem in a finite-time horizon with a bounded velocity,
and establish the existence of an NE of a two-player game. The former analyzes a strongly
coupled parabolic system and the latter uses the BSDE technique.

Related work on MFGs. The theory of MFGs has enjoyed tremendous growth since
the pioneering works of Huang, Malhamé, and Caines [105] and Lasry and Lions [138]. The
MFG provides a tractable approach to the otherwise challenging N -player stochastic games.
However, except for the general result that the NE of an MFG is an ε-Nash equilibrium
to the N -player game (see, for instance [105] and Cardaliaguet, Delarue, Lasry, and Lions
[41] for regular controls and Guo and Joon [93] for singular controls), there are very limited
results on comparing the NE of N -player games and MFGs. The exceptions are Carmona,
Fouque, and Sun [48] for systemic risks, Nutz and Zhang [153] for competition, Lacker and
Zariphopoulou [134] for portfolio management, and [10]. All these results, however, are with
regular controls. For MFGs with singular controls, notions of relaxed stochastic maximal
principle or relaxed admissible controls have been introduced to establish the existence of
optimal controls; see, for instance, Fu and Horst [81], Hu, Øksendal, and Sulem [102], and
Zhang [190].
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2.2 N-Player Fuel Follower Game

Preliminary: Single Player

The classic fuel follower problem is as follows. Consider a probability space (Ω,F , {Ft}t≥0,P)
with a standard Brownian motion {Bt}t≥0. The position of the object Xt is assumed to be

Xt = x+Bt + ξ+
t − ξ−t , X0− = x, (2.2.1)

where the pair of control (ξ+, ξ−) is a non-decreasing, càdlàg process. The goal of the
controller is to solve for the value function v(x) of the following optimization problem,

v(x) = inf
(ξ+,ξ−)∈U

E
∫ ∞

0

e−αt
[
h(Xt)dt+ dξ̌t

]
, (2.2.2)

where the admissible control set U is

U :=
{

(ξ+
t , ξ

−
t ) | ξ+

t and ξ−t are FXt−-progressively measurable, càdlàg, non-decreasing,

with E
[∫ ∞

0

e−αtdξ+
t

]
<∞,E

[∫ ∞
0

e−αtdξ−t

]
<∞, and ξ+

0− = ξ−0− = 0

}
.

Here α > 0 is a discount factor, {FXt}t≥0 is the natural filtration of {Xt}t≥0, and ξ̌t = ξ+
t +ξ−t

is the total accumulative amount of controls up to time t, called “fuel usage”, hence the term
fuel follower problem. In addition, under the assumption

A1: The function h : R → R is assumed to be convex, symmetric, twice differentiable,
with h(0) ≥ 0, h′′(x) decreasing on R+, and 0 < k < h′′(x) ≤ K for some constants
K > k > 0,

Problem (2.2.2) is solved (see [20] and [118]) by analyzing the associated HJB equation

min

{
1

2
vxx(x) + h(x)− αv(x), 1− vx(x), 1 + vx(x)

}
= 0, (2.2.3)

where vx and vxx are the first and second order derivatives of v with respect to x, respectively.
The optimal control {ξ∗+t , ξ∗−t }t≥0 is shown to be of a bang-bang type given by

ξ∗+t = max

{
0, max

0≤u≤t

{
−x−Bu + ξ∗−u − c

}}
,

ξ∗−t = max

{
0, max

0≤u≤t

{
x+Bu + ξ∗+u − c

}}
,

where the threshold c > 0 is the unique positive solution to

1√
2α

tanh
(
c
√

2α
)

=
p
′
1(c)− 1

p
′′
1(c)

, (2.2.4)
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with

p1(x) = E
[∫ ∞

0

e−αth(x+Bt)dt

]
=

1√
2α

(
e−x
√

2α

∫ x

−∞
h(z)ez

√
2αdz + ex

√
2α

∫ ∞
x

h(z)e−z
√

2αdz

)
.

The corresponding value function v(x) ∈ C2(R) is given by

v(x) =


−p′′1 (c) cosh(x

√
2α)

2α cosh(c
√

2α)
+ p1(x), 0 ≤ x ≤ c,

v(c) + (x− c), x ≥ c,
v(−x), x < 0.

(2.2.5)

In other words, it is optimal for the controller to apply a “minimal” push to keep the
object within [−c, c]. Mathematically, the controlled process is a Brownian motion reflected
at the boundaries c and −c. The minimal push corresponds to the local time of the Brownian
motion at c and −c. See Figure 2.1.

Figure 2.1: Optimal control of the single player problem

N-Player Fuel Follower Game

Now suppose there are N controllers, with each controller controlling one object. For sim-
plicity, let us call such a pair of controller and object a “player”. The game is for each player
to stay as close as possible to other players.

This N -player game can be formulated as follows. Let
(
X1
t , . . . , X

N
t

)
∈ RN be the

positions of players such that for i = 1, . . . , N ,

X i
t = xi +Bi

t + ξi,+t − ξ
i,−
t , (2.2.6)

with (X1
0−, · · · , XN

0−) = (x1, · · · , xN) =: xxx, where (B1
t , . . . , B

N
t ) is an N -dimensional standard

Brownian motion on RN . Let m
(N)
t =

∑N
i=1X

i
t

N
be the center of these N players at time t, with

m
(N)
0− =

∑N
i=1 x

i

N
. Let h(X i

t−m
(N)
t ) be the distance between player i and the centerm

(N)
t at time
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t. The goal of each player i is to minimize, over all admissible controls
(
ξ1, . . . , ξN

)
∈ SN ,

the following payoff function

J i(x1, . . . , xN ; ξ1, . . . , ξN) = E
∫ ∞

0

e−αit
[
h
(
X i
t − ρm

(N)
t

)
dt+ dξ̌it

]
, (N-player)

where ξ̌i = ξi,+ + ξi,−. Here the admissible control set SN is defined as

SN :=
{

(ξ1, . . . , ξN)
∣∣ ξj = (ξj,+, ξj,−) ∈ U jN ,P

(
dξjt (xxx)dξit(xxx) > 0

)
= 0,

for any t > 0,xxx ∈ RN , i, j ∈ {1, . . . , N} and i 6= j
}
,

(2.2.7)

with

U jN =
{

(ξj,+t , ξj,−t )
∣∣∣ ξj,+t and ξj,−t are F (X1

t−,...,X
N
t−)-progressively measurable, càdlàg, non-decreasing,

with E
[∫ ∞

0

e−αjtdξj,+t

]
<∞, E

[∫ ∞
0

e−αjtdξj,−t

]
<∞, ξj,+0− = 0, ξj,−0− = 0

}
,

where αj > 0 is the discount factor for player j and {F (X1
t ,...,X

N
t )}t≥0 is the natural filtration

of {(X1
t , . . . , X

N
t )}t≥0. The condition in Eqn. (4.2.1)

P
(
dξit(xxx)dξjt (xxx) > 0

)
= 0, for any xxx ∈ RN , t ≥ 0, i 6= j (2.2.8)

is to facilitate designing feasible control policies when controls involve jumps.

Remark 4.1. Mathematically, one may replace the running cost function h(X i
t − mN

t ) by
h(X i

t − ρmN
t + η), with ρ ≥ 0 indicating the strength of interactions among players as in

[103] and [105]. We choose to fix ρ = 1 and η = 0 for clearer model interpretations for the
fuel follower problem. Indeed, adding a scaling factor ρ and a constant η will not change
the derivation of solutions except for minor notational changes. In fact, as will be shown in
Section 2.2 and Appendix A.1, the construction of NEs will be simpler when ρ 6= 1.

Throughout the paper, unless otherwise specified, we will for simplicity and without loss
of generality α1 = · · · = αN = α. (See Section 3.7 for further sensitivity analysis with respect
to α.)

Solution to the N-Player Game

There are various criteria to measure the performance of strategies in stochastic games. For
instance, Pareto Optimality (PO) and Nash Equilibrium (NE) provide two distinct views,
with NE focusing on stability and PO on efficiency. An NE framework can be further defined
depending on the admissible strategies, resulting in open-loop NEs, closed-loop NEs, and
the Markovian NEs. See Carmona [43] for more discussions on these concepts.

In this paper, we will focus on the Markovian NE, also known as the closed-loop NE with
a feedback form, specified below.
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Definition 5. A tuple of admissible controls ξξξ∗ = (ξ1∗, . . . , ξN∗) ∈ SN is a Markovian NE of
the stochastic game (N-player), if for any i = 1, . . . , N , XXX0− = xxx, and any (ξξξ−i∗, ξi) ∈ SN ,
the following inequality holds,

J i (xxx;ξξξ∗) ≤ J i
(
xxx; (ξξξ−i∗, ξi)

)
.

Here strategies ξi∗ and ξi are deterministic functions of time t and XXX t = (X1
t , . . . , X

N
t ), with

the notation (xxx−i, yi) := (x1, · · · , xi−1, yi, xi+1, · · · , xN) for any xxx ∈ RN . J i (xxx;ξξξ∗) is called
the NE value associated with ξξξ∗.

NE Solutions

The NE solution will be derived in two steps. The first is to derive and analyze the associated
HJB system. A verification theorem which provides sufficient conditions for the NE values
will be presented, along with a solution to the HJB system. The second step is to construct
the corresponding NEs, by solving an associated Skorokhod problem.

NE and the HJB System

First,

Definition 6 (Action and waiting regions). Player i’s action region Ai is defined as

Ai :=
{
xxx ∈ RN

∣∣ dξi(xxx) 6= 0
}
,

and her waiting region is Wi = RN \ Ai. Denote A−i = ∪j 6=iAj and W−i = ∩j 6=iWj.

Next, a simple heuristic conditional argument via the Dynamic Programming Principle
leads to the following HJB system.

Given Ai ∩ Aj = ∅, for any i 6= j,

(HJB-N)


min

{
−αwi + h

(
N−1
N

(
xi −

∑
j 6=i x

j

N−1

))
+ 1

2

(∑N
j=1 w

i
xjxj

)
, 1− wixi , 1 + wixi

}
= 0,

for any xxx ∈ W−i,
wixj = 0, for any xxx ∈ Aj, for any j 6= i.

The derivation of (HJB-N) can be illustrated with the case of N = 2. In this case, if
(x1, x2) ∈ A2, ∆ξ2∗ 6= 0. By the definition of NE, player one is not expected to suffer a loss
as otherwise she will have incentives to take actions. Therefore, w1(x1, x2) = w1(x1, x2 +
∆ξ2∗,+ − ∆ξ2∗,−), letting ∆ξ2∗,± → 0, we have w1

x2 = 0 in A2. If (x1, x2) ∈ W2, ∆ξ2∗ = 0,
then the control problem for player one becomes a classical single player control problem.
Therefore, w1(x1, x2) satisfies

min

{
−αw1 + h

(
x1 − x2

2

)
+

1

2

(
w1
x1x1 + w1

x2x2

)
, 1− w1

x1 , 1 + w1
x1

}
= 0 in W2.
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Here −αw1 + h
(
x1−x2

2

)
+ 1

2

(
w1
x1x1 + w1

x2x2

)
= 0 corresponds to ∆ξ1∗ = 0, 1 − w1

x1 = 0

corresponds to ∆ξ1∗,+ > 0, and 1 +w1
x1 = 0 corresponds to ∆ξ1∗,− > 0. Finally, A1∩A2 = ∅

ensures Eqn. (2.2.8).

Based on the above HJB system, the following sufficient conditions for an NE can be
established.

Theorem 7 (Verification theorem). For any i = 1, . . . , N , suppose ξi∗ ∈ U iN and the corre-
sponding wi(.) = J i(.;ξξξ∗) satisfies the following

(i) ξξξ∗ := (ξ1∗, . . . , ξN∗) ∈ SN ,

(ii)

min

{
−αwi + h

(
N − 1

N

(
xi −

∑
j 6=i x

j

N − 1

))
+

1

2

N∑
j=1

wixjxj , 1− wixi , 1 + wixi

}
= 0,(2.2.9)

for any xxx ∈ W−i, and
wixj(xxx) = 0,

for any xxx ∈ Aj.

(iii) (Transversality Condition.) lim supT→∞ E[e−αTwi(XXXT )] = 0,

(iv) wi(xxx) ∈ C2(W−i),

(v) wixj(xxx) is bounded in W−i, for any j = 1, 2, · · · , N ,

(vi) there exists a convex function ui(xxx) ∈ C2(RN) such that ui(xxx) = wi(xxx) on W−i,

(vii) for any ξi ∈ UN such that (ξξξ−i∗, ξi) ∈ SN , the controlled dynamic (XXX−i∗t , X i
t) is inW−i

P-a.s. at any time t.

Then ξξξ∗ is an NE with value wi.

Proof. Given any ξi ∈ U iN such that (ξξξ−i∗, ξi) ∈ SN , fixing the control (ξi,+t , ξi,−t ) such that

X i
t = xi +Bi

t + ξi,+t − ξ
i,−
t ,

Xj∗
t = xj +Bj

t + ξj∗,+t − ξj∗,−t , j 6= i.
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Applying the Itô-Tanaka-Meyers formula (Theorem 14.3.2 in [64]) to e−αtui(XXX−i∗t , X i
t) yields

E
[
e−αTui(XXX−i∗T , X i

T )
]
− ui(x1, x2, . . . , xN)

= E

[∫ T

0

e−αt

(
1

2

N∑
j=1

uixjxj(XXX
−i∗
t , X i

t)− αui(XXX−i∗t , X i
t)

)
dt

]

+ E
[∫

[0,T )

e−αt
(
(uixi(XXX

−i∗
t , X i

t)dξ
i,+
t − uixi(XXX−i∗t , X i

t)dξ
i,−
t )
)]

+ E

[ ∑
0≤t<T

e−αt
(
∆ui

(
XXX−i∗t , X i

t

)
−∇ui

(
XXX−i∗t , X i

t

)
·∆(XXX−i∗t , X i

t)
)]

+ E
∫ T

0

e−αt

(
N∑
j=1

uixj(XXX
−i∗
t , X i

t)dB
j
t

)
.

Note that (vii) implies that with control (ξξξ−i∗, ξi) ∈ SN , (XXX−i∗t , X i
t) ∈ W−i, P-a.s.. By condi-

tions (v) and (vi), uixj is bounded onW−i for any 1 ≤ j ≤ N , therefore
∫ T

0
e−αt

(∑N
j=1 u

i
xj(XXX

−i∗
t , X i

t)dB
j
t

)
is square integrable, hence a uniformly integrable martingale. Now conditions (ii), (iv), (v),
and (vi) suggest

e−αTE[wi(XXX−i∗T , X i
T )] + E

∫ T

0

e−αt

[
h

(
N − 1

N

(
X i
t −

∑
j 6=iX

j∗
t

N − 1

))
dt+ dξ̌it

]
≥ wi(x1, . . . , xN).

Taking T →∞, the transversality condition (iii) implies

wi
(
x1, . . . , xN

)
≤ J i

(
x1, . . . , xN ;ξξξ−i∗t , ξit

)
, (2.2.10)

for any ξi such that
(
ξξξ−i∗t , ξit

)
∈ SN .

The next step is to solve the HJB system, with a focus on a threshold-type solution.
That is, there exists a constant cN > 0 (to be determined) such that the action region Ai
and the waiting Wi of player i can be decomposed into

Ai =
{
E−i ∪ E+

i

}
∩Qi, Wi = RN/Ai, (2.2.11)

where

E−i =

{(
x1, · · · , xN

)
∈ RN

∣∣∣∣∣ xi −
∑

j 6=i x
j

N − 1
≤ −cN

}
,

E+
i =

{(
x1, · · · , xN

)
∈ RN

∣∣∣∣∣ xi −
∑

j 6=i x
j

N − 1
≥ cN

}
,

(2.2.12)
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with the partition

Qi =

{
xxx ∈ RN

∣∣∣∣∣
∣∣∣∣∣xi −

∑
j 6=i x

j

N − 1

∣∣∣∣∣ ≥
∣∣∣∣∣xk −

∑
j 6=k x

j

N − 1

∣∣∣∣∣ , for any k < i;∣∣∣∣∣xi −
∑

j 6=i x
j

N − 1

∣∣∣∣∣ >
∣∣∣∣∣xk −

∑
j 6=k x

j

N − 1

∣∣∣∣∣ , for any k > i

}
.

Note the modification of the action region Ai by Qi is to avoid simultaneous jumps by
multiple players. By definition of Qi, in the event of multiple players in the “action region”,
the player who is the farthest away from the center intervenes first; in the event that multiple
players have the same largest distance to the center, the player with the biggest index
intervenes.

Now it is easy to check that

• ∪Ni=1Qi = RN , Qi is a convex cone for any i = 1, . . . , N ,

• Wi 6= ∅, for any i = 1, . . . , N ,

• Ai ∩ Aj = 0, for all i 6= j.

Now, a candidate function wi(xxx) ∈ C2(W−i) should satisfy the following three properties:

First, wi(xxx) is symmetric on xi =
∑
j 6=i x

j

N−1
such that

wixi

(
xxx−i,

∑
j 6=i x

j

N − 1

)
= 0. (2.2.13)

Second, if 0 ≤ xi −
∑
j 6=i x

j

N−1
< cN , then wi(xxx) solves

αwi(xxx) = h

(
N − 1

N

(
xi −

∑
j 6=i x

j

N − 1

))
+

1

2

N∑
j=1

wixj ,xj(xxx). (2.2.14)

Third, if xi−
∑
j 6=i x

j

N−1
≥ cN , then player i jumps by a distance of xi−

∑
j 6=i x

j

N−1
− cN . Combined,

wi(xxx) = xi −
∑

j 6=i x
j

N − 1
− cN + wi

(
xxx−i,

∑
j 6=i x

j

N − 1
+ cN

)
. (2.2.15)

The general solution satisfying both (2.2.14) and (2.2.13) is given by

wi(xxx) = B · cosh

(√
2(N − 1)α

N

(
xi −

∑
j 6=i x

j

N − 1

))
+ pN

(
xi −

∑
j 6=i x

j

N − 1

)
,
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with

pN(x) = E

[∫ ∞
0

e−αth

(
N − 1

N

(
x+

√
N

N − 1
Bt

))
dt

]
. (2.2.16)

Here pN(x) is a particular solution to (2.2.14) and derived from the cost of “doing nothing”,
and B is constant yet to be determined.

Now matching the values of wxi(xxx) and wxi,xi(xxx) along xi =
∑
j 6=i x

j

N−1
+ cN determines cN

and B: cN is the unique positive solution to

1√
2(N−1)α

N

tanh

(
c

√
2(N − 1)α

N

)
=
p′N(c)− 1

p′′N(c)
, (2.2.17)

and

B = − p′′N(cN)

2(N−1)α
N

cosh

(
cN

√
2(N−1)α

N

) .
Finally, define

ui(x1, . . . , xN) =



ui
(
x1, . . . ,

∑
j 6=i x

j

N−1
− cN , . . . , xN

)
− cN − xi +

∑
j 6=i x

j

N−1
, xxx ∈ E−i ,

−
p′′N (cN ) cosh

(√
2(N−1)α

N

(
xi−

∑
j 6=i x

j

N−1

))
2(N−1)α

N
cosh

(
cN

√
2(N−1)α

N

) + pN

(
xi −

∑
j 6=i x

j

N−1

)
,

xxx ∈ {E+
i ∪ E−i }c,

xi −
∑
j 6=i x

j

N−1
− cN + ui

(
x1, . . . ,

∑
j 6=i x

j

N−1
+ cN , . . . , x

N
)
, xxx ∈ E+

i .

Then it is easy to check that ui ∈ C2(RN) and the candidate solution wi satisfies (HJB-N)
and Theorem 7.

NE and the Skorokhod Problem (SP)

Given the NE solution to the N -player game, the corresponding NE can be constructed by
finding a solution to an associated SP on an unbounded polyhedron and with a constant
oblique reflection on each face.

First, define CW the common waiting regions of all players as

CW :=

{
xxx ∈ RN

∣∣∣∣∣
∣∣∣∣∣xi −

∑
j 6=i x

j

N − 1

∣∣∣∣∣ < cN , for any i = 1, . . . , N

}
(2.2.18)

=

{
xxx ∈ RN

∣∣∣∣∣ nnnj · xxx > −cN
√

N

N − 1
, for j = 1, . . . , 2N

}
= ∩Ni=1(E−i ∪ E+

i )c,
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with the normal direction of each face given by

nnni =

√
N − 1√
N

(
− 1

N − 1
, · · · ,− 1

N − 1
, 1,− 1

N − 1
, · · · ,− 1

N − 1

)
,

nnni+N = −nnni.
(2.2.19)

where 1 is in the ith position of
√

N
N−1

nnni. Note that CW is an unbounded polyhedron with

all of its 2N boundaries parallel to the direction (1, 1, · · · , 1).
For j = 1, · · · , 2N , define the 2N faces of CW

Fj = {xxx ∈ ∂CW | nnnj · xxx = −cN}, (2.2.20)

and
dddi = (0, · · · , 1, · · · , 0), dddi+N = −dddi, i = 1, . . . , N, (2.2.21)

such that dddj · nnnj =
√
N−1√
N
, where 1 is in the ith position of dddi.

Now, the NE of (N-player) can be fully characterized by the solution to the SP with the
data (xxx, CW , (ddd1, · · · , ddd2N), {BBBt}t≥0). (See Appendix A.1 for more background materials.)

Theorem 8. There exits a unique strong solution to SP with the data (xxx, CW , (ddd1, · · · , ddd2N), {BBBt}t≥0)
defined in (4.2.2) and (4.2.6). More precisely, the reflected process XXX∗t with XXX∗0 = xxx ∈ CW
is defined as

X i∗
t = xi +Bi

t +

∫ t

0

1{XXX∗s∈Fi}dη
i(s)−

∫ t

0

1{XXX∗s∈Fi+N}dη
i(s), i = 1, 2, · · · , N,

where ηj(t) is a non-decreasing process with ηj(0) = 0. Moreover, if xxx /∈ Fk ∩ Fj for any
k 6= j, k, j = 1, 2, · · · , 2N,

P(XXX∗t /∈ Fk ∩ Fj for any k 6= j, t ≥ 0) = 1. (2.2.22)

The idea to prove Theorem 8 is to show first the existence of a weak solution to the SP
and next the uniqueness of the strong solution to the SP. Then according to Corollary 3.23 in
Karatzas and Shreve [120] and Proposition 1 in Engelbert [75], there exists a unique strong
solution to the SP. The existence of a weak solution to the SP is straightforward, following
[66]. The uniqueness of a strong solution is established by extending the result of Dupuis
and Ishii [73] on a bounded polyhedron to an unbounded one, via the localization technique.
Moreover, the reflection vectors (ddd1, · · · , ddd2N) satisfy the skew symmetry condition for the
polyhedron CW according to [185], hence an additional localization argument shows that
(2.2.22) holds. The detailed proof is provided in Appendix A.1.



CHAPTER 2. STOCHASTIC GAMES FOR FUEL FOLLOWERS PROBLEM: N
VERSUS MFG 26

Extended Mapping to RN \ CW
Up to now the NE is derived when xxx ∈ CW . When xxx ∈ RN \ CW , the NE would be to jump
sequentially to some point x̂xx ∈ ∂CW , and afterwards continues according to the SP with
data (x̂xx, CW , (ddd1, · · · , ddd2N), {BBBt}t≥0) where x̂xx ∈ CW .

Algorithm 1 describes how players sequentially jump to CW . In order to show that this
algorithm is well defined, one needs to make sure that such jumps stop in finite steps or
converge to a limit point on x̂xx ∈ ∂CW , and that the total distance of such sequential jumps
is bounded. The detailed argument is given in Appendix A.2, with the illustration of Figure
A.1.

Algorithm 1 Policy: Sequential jumps when xxx /∈ CW .

1: procedure Sequential(xxx)
2: Define mapping,

i = π(yyy) when yyy ∈ Ai,
∅ = π(yyy) when yyy ∈ CW .

(2.2.23)

3: x̂xx← xxx, k ← 0
4: while π(x̂xx) 6= ∅ do

5: λ∗ ← arg min
{
λ > 0

∣∣∣ x̂xx+ λeeeπ(x̂xx) ∈ ∂E−π(x̂xx) or x̂xx− λeeeπ(x̂xx) ∈ ∂E+
π(x̂xx)

}
. ej is a

unit vector in RN with jth component to be 1
6: if x̂xx+ λ∗eeeπ(x̂xx) ∈ ∂E−π(x̂xx) then
7: ννν0 ← eeeπ(x̂xx)

8: else
9: ννν0 ← −eeeπ(x̂xx)

10: x̂xx← x̂xx+ λ∗ν0ν0ν0 . Control of player π(x̂xx)
11: xxxk ← x̂xx
12: k ← k + 1

13: return x̂xx, {xxxk} . x̂xx ∈ ∂CW

Note that this algorithm gives an ε-NE in finite steps. In the case that the starting point
is in the intersection of faces, a small perturbation in the algorithm and in the NE value will
recover the case of xxx ∈ CW . In summary,

Theorem 9 (NE for the N -player game). Under Assumption A1, a Markovian NE for
game (N-player) is given by

ξi∗,+t = ∆i∗,+
0 +

∫ t

0

1{XXX∗s∈Fi}dη
i(s),

ξi∗,−t = ∆i∗,−
0 +

∫ t

0

1{XXX∗s∈Fi+N}dη
i+N(s),

(2.2.24)
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where CW is given in (4.2.2), XXX∗t is the controlled dynamic withXXX∗0 = x̂xx = xxx+∆0∆0∆0
∗,+−∆0∆0∆0

∗,− ∈
CW , with ηj(t) =

∫ t
0
1{XXX∗s∈Fj}dη

j(s) and ηj(0) = 0 (j = 1, 2, · · · , 2N), the jumps at time 0
are

∆i∗,+
0 =

∑
k

1{xxxk∈Ai}
(
xik+1 − xik

)
+
,

∆i∗,−
0 =

∑
k

1{xxxk∈Ai}
(
xik − xik+1

)
+
,

(2.2.25)

with {xxxk} the sequence of jumps prescribed by Algorithm 1.
The corresponding NE value vi(x1, . . . , xN) := J i(x1, . . . , xN ;ξξξ∗) is given by

vi(x1, . . . , xN) =



vi
(
x1, . . . , xj−1,

∑
k 6=j x

k

N−1
− cN , xj+1, . . . , xN

)
,

xxx ∈ E−j ∩ Aj, for any j 6= i,

vi
(
x1, . . . ,

∑
j 6=i x

j

N−1
− cN , . . . , xN

)
− cN − xi +

∑
j 6=i x

j

N−1
,

xxx ∈ E−i ∩W−i,

−
p′′N (cN ) cosh

(√
2(N−1)α

N

(
xi−

∑
j 6=i x

j

N−1

))
2(N−1)α

N
cosh

(
cN

√
2(N−1)α

N

) + pN

(
xi −

∑
j 6=i x

j

N−1

)
,

xxx ∈ (E−i ∪ E+
i )c ∩W−i,

xi −
∑
j 6=i x

j

N−1
− cN + vi

(
x1, . . . ,

∑
j 6=i x

j

N−1
+ cN , . . . , x

N
)
,

xxx ∈ E+
i ∩W−i,

vi
(
x1, . . . , xj−1,

∑
k 6=j x

k

N−1
+ cN , x

j+1, . . . , xN
)
,

xxx ∈ E+
j ∩ Aj, for any j 6= i.

(2.2.26)

Here E+
i , E−i are given in (2.2.12), and Ai and Wi defined in (2.2.11).

Figure (2.2a) shows the region partition when N = 3. CW , the unbounded polytope, is
surrounded by the action regions Ai, i = 1, 2, 3. Figure (2.2b) shows the action region A1 of
player one and the common waiting region CW of all players.

(a) CW and Ai (i = 1, 2, 3) (b) A1 andW1, a bird’s-eye view
from (1, 1, 1) to (0, 0, 0)

Figure 2.2: Region partition when N = 3
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2.3 MFG for the Fuel Follower Problem

Take N identical, rational, and interchangeable players, whose initial positions are random
in RN . Let N → ∞, the MFG for the fuel follower problem is to find a closed-loop control
in feedback form of

v(x) = inf
(ξ+,ξ−)∈U∞

J(∞)(x; ξ+
t , ξ

−
t )

= inf
(ξ+,ξ−)∈U∞

E
∫ ∞

0

e−αt
[
h(Xt −mt)dt+ dξ̌t|X0− = x

]
,

such that dXt = dBt + dξ+
t − dξ−t ,

X0− ∼ µ0−, m0− =

∫
xµ0−(dx),

(2.3.1)

where µt = limN→∞

∑N
i=1 1{Xit}

N
is the distribution ofXt andmt = limN→∞

∑N
i=1X

i
t

N
=
∫
xµt(dx)

is the mean position of the population at time t, with µ0− symmetric around m0−.
Note that one could write an alternative MFG formulation with

ṽ(µ0−) := inf
(ξ+,ξ−)∈U∞

E
∫ ∞

0

e−αt
[
h(Xt −mt)dt+ dξ̌t

]
.

v(x) defined in (5.2.1) can be viewed as ṽ(µ0−|X0− = x) with X0− = x as some sample
drawn from µ0−. Clearly ṽ(µ0−) can be solved by analyzing v(x) as ṽ(µ0−) = Eµ0− [v(X0−)].
This connection is also explored in Section 2.2.2 of [134].

The admissible control set for MFG is

U∞ =
{

(ξ+
t , ξ

−
t ) | ξ+

t and ξ−t are F (Xt−,mt−)
t -progressively measurable, càdlàg, non-decreasing,

with E
[∫ ∞

0

e−αtdξ+
t

]
<∞, E

[∫ ∞
0

e−αtdξ−t

]
<∞, ξ+

0− = 0, ξ−0− = 0

}
.

NE Solution to the MFG

Definition 10 (NE to MFG (5.2.1)). An NE to the MFG (5.2.1) is a pair of Markovian
control (ξ∗,+t , ξ∗,−t )t≥0 and a mean function {m∗t}t≥0 such that

• v∗(x) = J(∞) (x; ξ∗,+, ξ∗,−|{µ∗t}t≥0) = minξ∈U∞ J(∞) (x; ξ+, ξ−|{µ∗t}t≥0),

• PX∗t = µ∗t , and m∗t =
∫
xPX∗t (dx) is the mean function of X∗t where X∗t is the controlled

dynamic under (ξ∗,+t , ξ∗,−t )t≥0.

v∗(x) is called the NE value of the MFG associated with ξ∗.
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Theorem 11 (NE to MFG (5.2.1)). There exists an NE to the MFG (5.2.1),

ξ∗,+t = max

{
0, max

0≤u≤t
{m0− − x−Bu + ξ∗,−u − c}

}
,

ξ∗,−t = max

{
0, max

0≤u≤t
{x−m0− +Bu + ξ∗,+u − c}

}
,

(2.3.2)

and the corresponding NE value is

v∗(x) =


−p′′1 (c

√
2α) cosh(x

√
2α)

2α cosh(c
√

2α)
+ p1(x−m0−), m0− ≤ x ≤ m0− + c,

v(m0− + c) + (x−m0− − c), x ≥ m0− + c,
v(m0− − x), x < m0−,

(2.3.3)

where c is the solution to (4.2.7).

The proof consists of three steps.

Step 1: Stochastic control problem.

Take the M1 topology for the Skorokhod space D([0,∞)) with a Wasserstein distance
W1([skorokhod1956, 81]). Fix a mean field measure {µt}t≥0 ∈ P1(D([0,∞))), with mt =∫
xµt(dx) and P1 the class of all probability measures with finite moment of first order. Then

(5.2.1) becomes the following time-dependent and state-dependent singular control problem,

v̂(s, x) = inf
ξ∈U∞

E
∫ ∞
s

e−α(t−s) [h(Xt −mt)dt+ dξ+
t + dξ−t

]
such that dXt = dBt + dξ+

t − dξ−t , Xs− = x, ms− = m.

(2.3.4)

The corresponding HJB equation for v̂(s, x) is

max

{
αv̂(s, x)− v̂t(s, x)− 1

2
v̂xx(s, x)− h(x−m),−1 + v̂x(s, x),−1− v̂x(s, x)

}
= 0.(2.3.5)

Note that (2.3.5) is a parabolic equation because of µt despite the infinite horizon. This is
different from the elliptic equation (2.2.3).

We will show that v̂(s, x) in (2.3.4) is a viscosity solution to HJB equation (2.3.5).
First, under a fixed {µt}t≥0, the following dynamic programming principle holds.

Dynamic programming principle (DPP). For all (s, x) ∈ R+ × R,

v̂(s, x) = inf
ξ∈U∞

E
[∫ θ

s

e−α(t−s) (h(Xt −mt)dt+ dξ̌t
)

+ e−α(θ−s)v(θ,Xθ)

]
(2.3.6)

for any θ ∈ T and θ ≥ s, with T the set of all {F (Xt,mt)}t≥0-stopping times. Here, we adopt
the convention that e−αθ(ω) = 0 when θ(ω) =∞. The proof of DPP (2.3.6) follows Guo and
Pham [92] by extending the state space from R to R+ × R.
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Definition 12 (Viscosity solution). v̂(t, x) is a continuous viscosity solution to (2.3.5) on
[0,∞)× R if

• Viscosity super-solution: for any (t0, x0) ∈ [0,∞) × R and for any function φ(t0, x0)
such that (t0, x0) is a local minimum of (v̂ − φ)(t, x) with v̂(t0, x0) = φ(t0, x0),

max

{
αφ(t0, x0)− φt(t0, x0)− 1

2
φx,x(t0, x0)− h(x0 −m),−1 + φx(t0, x0),−1− φx(t0, x0)

}
≥ 0.

• Viscosity sub-solution: for any (t0, x0) ∈ [0,∞)×R and for any function φ(t0, x0) such
that (t0, x0) is a local maximum of (v̂ − φ)(t, x) with v̂(t0, x0) = φ(t0, x0),

max

{
αφ(t0, x0)− φt(t0, x0)− 1

2
φx,x(t0, x0)− h(x0 −m),−1 + φx(t0, x0),−1− φx(t0, x0)

}
≤ 0.

Proposition 13. Assume that the value function v̂(t, x) of (2.3.4) is continuous with respect
to t. Then v̂(t, x) is a continuous viscosity solution of the HJB equation (2.3.5) on [s,∞)×R.
Moreover, v̂(t, x) is convex and differentiable in x, and for any x, y ∈ R,

v̂(s, x) ≤ v̂(s, y) + |x− y|. (2.3.7)

Proof. Since h is convex and the pay-off function E
[∫∞
s
e−α(t−s)h(Xt −mt)dt+ dξ+

t + dξ−t
]

in problem (2.3.4) is linear in control (ξ+, ξ−), the value function v̂(s, x) is convex in x. Since
v̂(s, x) is finite and convex on (−∞,∞), it is continuous in x. Moreover, consider a special
control,

ξ+
t − ξ−t =

{
0, t = s,
y − x, t ≥ s,

(2.3.8)

clearly v̂(s, x) ≤ v̂(s, y) + |y − x| .
We now prove that the value function is a viscosity solution of (2.3.5).

• Step A: Viscosity sub-solution.
For some (t0, x0) ∈ R+ × R and φ ∈ C1,2(R+ × R) such that v̂(t0, x0) = φ(t0, x0) and
φ(t0, x0) ≥ v̂(t0, x0) for (t, x) ∈ Bε(t0, x0). That is, v̂−φ has local maximum at (t0, x0).
Consider the following admissible control

ξ+
t =

{
0, t = t0,
η1, t ≥ t0,

(2.3.9)

ξ−t =

{
0, t = t0,
η2, t ≥ t0,

(2.3.10)
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where 0 ≤ η1, η2 ≤ ε. Define the exit time

τε = inf
{
t ≥ t0, Xt /∈ B̄ε(t0, x0)

}
. (2.3.11)

Notice that X has at most one jump at t = t0 and is continuous on [t0, t0 + τε). By the
DPP,

φ(t0, x0) = v̂(t0, x0) ≤ E
∫ t0+τε∧δ

t0

e−α(t−t0)
[
h(Xt −mt)dt+ dξ+

t + dξ−t
]

+ E
[
e−α(τε∧δ)φ(t0 + τε ∧ δ,Xt0+τε∧δ)

]
.

(2.3.12)

By Itô’s lemma,

E[e−α(τε∧δ)φ(t0 + τε ∧ δ,Xt0+τε∧δ)]

= φ(t0, x0) + E
[∫ t0+τε∧δ

t0

e−α(t−t0)(−αφ+ φt +
1

2
φx,x)(t,Xt)dt

]
+ E

[ ∑
t0≤t≤τε∧δ

e−αt(φ(t,Xt)− φ(t,Xt−))

]
.

(2.3.13)

Combining (2.3.12) and (2.3.13),

E
[∫ t0+τε∧δ

t0

e−α(t−t0)(αφ− φt −
1

2
φx,x − h)(t,Xt)dt

]
−E

[∫ t0+τε∧δ

t0

e−α(t−t0)(dξ+
t + dξ−t )

]
−E

[ ∑
t0≤t≤τε∧δ

e−αt(φ(t,Xt)− φ(t,Xt−))

]
≤ 0.

(2.3.14)

Now, setting η1 = η2 = 0 and letting δ → 0 leads to αφ− φt − 1
2
φx,x − h ≤ 0.

Next, let η2 = 0, and note that ξ+
t and Xt only jump at time t0 with a size η1, therefore

E
[∫ t0+τε∧δ

t0

e−α(t−t0)(αφ− φt −
1

2
φx,x − h)(t,Xt)dt

]
− η1 − φ(t0, x0 + η1) + φ(t0, x0) ≤ 0.

Now, taking δ → 0, dividing by η1, and letting η1 → 0 yields −1− φx ≤ 0. Similarly,
−1 + φx ≤ 0. That is, φ is the sub-solution to (2.3.5), so that

max

{
αφ(t0, x0)− φt(t0, x0)− 1

2
φx,x(t0, x0)− h(x0 −m),−1− φx(t0, x0),−1 + φx(t0, x0)

}
≤ 0.
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• Step B: Viscosity Super-solution.
This is established by a contradiction argument. Suppose otherwise, then there exists
(t0, x0), ε, δ > 0 φ ∈ C1,2(R+ × R) such that for any (t, x) ∈ B̄ε(t0, x0),{

αφ− 1
2
φx,x − h(x−m)− φt ≤ −δ,

−1 + δ ≤ φx ≤ 1− δ.
(2.3.15)

Given any admissible control (ξ+, ξ−) ∈ U∞, consider an exit time τε = inf{t ≥
0, Xt+t0 /∈ B̄ε(t0, x0)}, and apply Itô’s lemma to e−αtφ(t,Xt),

E
[
e−ατεφ(t0 + τε, Xt0+τε)

]
= φ(t0, x0) + E

[∫ t0+τε

t0

e−α(t−t0)(−αφ+ φt +
1

2
φx,x)(t,Xt)dt

]
+ E

[ ∑
t0≤t≤τε

e−αt(φ(t,Xt)− φ(t,Xt−))

]

+ E
[∫ t0+τε

t0

e−αtφ′(t,Xt)
((
dξ+

t

)c
+
(
dξ−t
)c)]

.

Notice that for any t0 ≤ t ≤ t0 + τε, (t,Xt) ∈ B̄ε(t0, x0). By the Taylor expansion and
∆Xt = ∆ξ+

t −∆ξ−t , clearly for any 0 ≤ t < τε:

φ(t,Xt)− φ(t,Xt−) = ∆Xt

∫ 1

0

φx(t,Xt + z∆Xt)dz

≥ (−1 + δ)(∆ξ+
t + ∆ξ−t ). (2.3.16)

Thus,

E[e−ατεφ(t0 + τε, Xt0+τε−)]

≥ φ(t0, x0) + E
[∫ t0+τε

t0

e−α(t−t0)(−h+ δ)(t,Xt)dt

]
+ (δ − 1)E

[∫ t0+τε−

t0

e−α(t−t0)(dξ+
t + dξ−t )

]
= φ(t0, x0) + E

[∫ t0+τε

t0

e−α(t−t0)
(
−h(Xt −mt)dt− dξ+

t − dξ−t
)]

+ E
[
e−ατε(∆ξ+

t0+τε + ∆ξ−t0+τε)] + δE[

∫ t0+τε

t0

e−αtdt

]
+ δE

[∫ t0+τε−

t0

e−α(t−t0)(dξ+
t + dξ−t )

]
.

(2.3.17)

By definition of τε, (t0 + τε−, Xt0+τε−) ∈ B̄ε(t0, x0) and (t0 + τε, Xt0+τε) is either on the
boundary ∂Bε(t0, x0) or out of B̄ε(t0, x0). However, there exists some random variable
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α ∈ [0, 1] such that,

xα = Xt0+τε− + α∆Xt0+τε

= Xt0+τε− + α(∆ξ+
t0+τε −∆ξ−t0+τε) ∈ ∂Bε(t0, x0).

Similar as in (2.3.16), we have

φ(t0 + τε, xα)− φ(t0 + τε, Xt0+τε−) ≥ α(−1 + δ)(∆ξ+
t0+τε + ∆ξ−t0+τε). (2.3.18)

Notice that Xt0+τε = xα + (1− α)(∆ξ+
t0+τε −∆ξ−t0+τε), and from (2.3.7),

v̂(t0 + τε, xα) ≤ v̂(t0 + τε, Xt0+τε) + (1− α)(∆ξ+
t0+τε + ∆ξ−t0+τε). (2.3.19)

Recalling φ(t0 + τε, xα) ≤ v̂(t0 + τε, xα), inequalities (2.3.18) and (2.3.19) imply

φ(t0 + τε, Xt0+τε−) ≤ v̂(t0 + τε, Xt0+τε) + (1− αδ)(∆ξ+
t0+τε + ∆ξ−t0+τε).

Plugging the above inequality into (2.3.17), by φ(t0, x0) = v̂(t0, x0),

Ee−ατε
[∫ t0+τε

t0

(
h(Xt −mt)dt+ dξ+

t + dξ−t
)

+ v̂(t0 + τε, Xt0+τε)

]
≥ v̂(t0, x0) + αδE

[
e−ατε(∆ξ+

t0+τε + ∆ξ−t0+τε)
]

+ δE
[∫ t0+τε

t0

e−αtdt

]
+ δE

[∫ t0+τε−

t0

e−α(t−t0)(dξ+
t + dξ−t )

]
.

(2.3.20)

There exists a constant g0 > 0 such that for any (ξ+, ξ−) ∈ U∞,

αE
[
e−ατε(∆ξ+

t0+τε + ∆ξ−t0+τε)
]

+ E
[∫ t0+τε

t0

e−αtdt

]
+ E

[∫ t0+τε−

t0

e−α(t−t0)(dξ+
t + dξ−t )

]
≥ g0.

Finally, taking the infimum over all admissible controls (ξ+, ξ−) ∈ U∞ in (2.3.20)
suggests

v̂(t0, x0) ≥ v̂(t0, x0) + δg0, (2.3.21)

which is a contradiction.

The differentiability with respect to x can be proved using the convexity of the value
function v̂(s, x) to (2.3.5). Since v̂(s, x) is convex, the left and right derivatives with respect
to x, v̂x−(t, x) and v̂x+(t, x) exist for any t ≥ s and x ∈ R. Also, v̂x−(t, x) ≤ v̂x+(t, x) by
convexity. We argue by contradiction and suppose there exists x0 ∈ R and t0 ≥ 0 such
that v̂x−(t0, x0) < v̂x+(t0, x0). Fix some q in (v̂x−(t0, x0), v̂x+(t0, x0)) and consider the test
function

φε(t, x) = v̂(t0, x0) + q(x− x0)− 1

2ε
(x− x0)2 − 1

2ε
(t− t0)2,
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with ε > 0. Then (t0, x0) is a local minimum of (v̂ − φε)(t, x) since v̂x−(t0, x0) < q =
φx(t0, x0) < v̂x+(t0, x0) and φt(t0, x0) = 0. Hence φ is a viscosity super-solution by definition.
That is,

max

{
αφ− φt −

1

2
φx,x − h(x0 −m),−1− φx,−1 + φx

}
≥ 0,

which leads to − 1
2ε

+ h(x0 −m)− αφ(t0, x0) ≥ 0. Taking ε > 0 sufficiently small leads to a
contradiction.

Proposition 14 (Optimal Control). Assume A1 and assume that v̂t(t, x) is continuous with
respect to t, the optimal control to (2.3.4) under a fixed {µt}t≥0 ∈ P1(D([0,∞))) is of the
form

dξ̂t =


mt + ct − x, v̂x(t, x) = 1,
0, |v̂x(t, x)| < 1,
mt − ct − x, v̂x(t, x) = −1,

(2.3.22)

where t ≥ 0, mt =
∫
xµt(dx), and ct = inf{x | v̂x(t, x) = 1} − mt = − sup{x | v̂x(t, x) =

−1}+mt.

Proof. By Proposition 13, v̂(t, x) is convex and differentiable in x, hence for any fixed t ∈
[0,∞), c1

t := inf{x | v̂x(t, x) = 1} − mt and c2
t := − sup{x | v̂x(t, x) = −1} + mt exist. By

the symmetry of Problem (5.2.1) under a fixed {mt}t≥0, v̂(t,mt + δ) = v̂(t,mt − δ) and
v̂x(t,mt + δ) = −v̂x(t,mt − δ) for any fixed t and any δ > 0, hence c1

t = c2
t , denoted as ct.

Because v̂(t, x) is convex in x and continuously differentiable in x and t, one can apply
the generalized Itô’s formula to v̂(t, x) with (2.3.22) and use a similar argument as the
verification theorem in [118] to obtain the optimality of (2.3.22).

Given the optimal control (2.3.22), define a mapping Γ1 : P1(D([0,∞))) → D([0,∞))
such that

Γ1 ({µt}t≥0) = {ξ̂ | {µt}t≥0}t≥0.

Step 2: Consistency.

Given Proposition 14 and a fixed flow {µt}t≥0, the optimal control (ξ̂+
t , ξ̂

−
t ) to (2.3.5) is a

bang-bang type and the controlled process X̂t is a reflected Brownian motion with two time-
dependent reflected boundaries mt + ct and mt− ct. mt + ct,mt− ct ∈ C([0,∞]) since v̂(t, x)
is continuous and differentiable. By Theorem 2.6 in Burdzy, Kang, and Ramanan [31], there
exists a unique solution, X̂t, to the SP with time varying domain {(t, x) | mt − ct ≤ x ≤
ct +mt} such that X̂t is a càdàg process. Furthermore, by Theorem 2.9 in Burdy, Chen, and
Sylvester [32], the Kolmogorov forward equation for µ̂t can be described as
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
pt(t, x)− 1

2
px,x(t, x) = 0, when |x−mt| < ct,

px(t, x) + 2(∂mt
∂t

+ ∂ct
∂t

)p(t, x) = 0, when x = mt + ct,
px(t, x)− 2(∂mt

∂t
− ∂ct

∂t
)p(t, x) = 0, when x = mt − ct,

(2.3.23)

with the initial distribution p(0, x) = µ̂0 ∈ P1(R), where

µ̂0(x) =


0, x < m0− − c0 or x > m0− + c0,
µ0−(x), |x−m0−| < c0,

µ0−(x) +
∫ m0−−c0−
−∞ µ0−(dx), x = m0− − c0,

µ0−(x) +
∫∞
m0−+c0+

µ0−(dx), x = m0− + c0.

(2.3.24)

By Theorem 2.9 in [32], given mt+ ct,mt− ct ∈ C([0,∞)), the Kolmogorov forward equation
(2.3.23) with the initial distribution p(0, x) := µ̂0(x) has a solution.

Step 3: Fixed point analysis. Denote µ̂t as the distribution of X̂t, obviously µ̂t ∈
P1(D([0,∞)). Consequently, define Γ2 : D([0,∞))→ P1(D([0,∞)) such that

Γ2

(
ξ̂(t, x|{µt}t≥0)

)
= {µ̂t}t≥0.

Now, define a mapping Γ : P1(D([0,∞))→ P1(D([0,∞)) such that

Γ({µt}t≥0) = Γ2 ◦ Γ1({µt}t≥0) = {µ̂}t≥0.

One can then update m′t, and have

dm′t = d

(∫
xp(t, dx)

)
(2.3.25)

=

[
1

2

∫
xpx,x(t, dx)

]
dt (2.3.26)

=
1

2
[xpx(t, x)|x=mt+ct − xpx(t, x)|x=mt−ct − p(t, x)|x=mt+ct + p(t, x)|x=mt−ct ]dt(2.3.27)

=
1

2

[(
−2

(
dmt

dt
+
dct
dt

)
x− 1

)
p(t, x)

∣∣∣∣
x=mt+ct

−
(

2

(
dmt

dt
− dct

dt

)
x− 1

)
p(t, x)

∣∣∣∣
x=mt−ct

]
dt (2.3.28)

(2.3.26) comes from (2.3.23), (2.3.27) is from integration by part, and (2.3.28) follows from
the boundary conditions. Since µ0− is symmetric around m0− and the optimal control
(2.3.22) is an odd function around mt for any t ≥ 0, the distribution p(t, x) is symmetric
around m0− for any t ≥ 0.
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(2.3.28) = −2

(
dmt

dt
mt +

dct
dt
ct

)
p(t,mt + ct)dt. (2.3.29)

Clearly mt = m0− is one solution to the fixed point equation (2.3.29). This fixed point to Γ
is an NE to the MFG (5.2.1) and the associated NE value is smooth in both x, t.

Remark 14.1. Note that solution mt (= m0−) is time independent and distribution indepen-
dent. Consequently v(t, x) is time independent and dct

dt
= 0. In fact, this time independent

property of the value function v(t, x) reduces the HJB equation (2.3.5) from a parabolic form
to an elliptic one. However, there might be time-dependent NE solution(s) with non-constant
mean position {mt}t≥0 for Eqn. (2.3.29). We are unable to verify the existence/nonexistence
of such solutions.

On a related note, if instead a stationary MFG (SMFG) is specified by replacing h(Xt −
mt) with h(Xt − limt→∞mt), the associated HJB equation (2.3.5) will also be elliptic. (See
Appendix A.4 for more precise definition of the SMFG formulation.) In this case, one can
use the same approach to derive infinitely many NEs of the bang-bang type, with the controlled
dynamics reflected at m − c and m + c for any constant m. Note however, the NE for the
SMFG when m 6= m0− is not an NE for the MFG (5.2.1).

2.4 Relation between the N-player game and the

MFG

Convergence of Game Values

First, from Theorem 9, one can see, with the detailed proof given in Appendix A.3,

Proposition 15. Given cN the unique solution to (4.2.4) and c > 0 the unique solution to
(4.2.7),

lim
N→∞

cN = c.

When h(x) = x2, cN is a decreasing function of N .

Remark 15.1. It is no surprise from our earlier analysis that MFGs are different in nature
from N-player games. For instance, the MFG degenerates to a single-player game in the
sense that its NE is threshold-type bang-bang policy where the threshold is state independent
while the NEs for the N-player game are state dependent. Nevertheless, it is still somewhat
unexpected to see the total collapse of the MFG to the single player problem from the above
proposition. This could be a result of over aggregation in the MFG formulation: players
become more anticipative when they are assumed to be identical.
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Next, denote vi(N) as the NE value of player i in the N -player game. By (2.2.26), when
x1 = · · · = xN = x,

vi(N)(x, x, · · · , x) =
−p′′N(cN)

2(N−1)α
N

cosh

(
cN

√
2(N−1)α

N

) + pN(0). (2.4.1)

In particular, vi(N)(x, x, · · · , x) is independent of x. Moreover, from Proposition 15 and the

smoothness of PN(x), it is easy to verify that
limN→∞ p

′′
N(cN) = p′′N(c),

limN→∞
1

2(N−1)α
N

cosh

(
cN

√
2(N−1)α

N

) = 1

2α cosh(c
√

2α)
,

limN→∞ pN(0) = p1(0).

That is,

Proposition 16. For any x ∈ R, limN→∞ v
i
(N)(x, x, · · · , x) = v∗(x), where v∗ is the NE

value of player i in MFG (5.2.1) with µ0− = δ(x).

Figure 2.3 shows the convergence of vi(N)(x, x, · · · , x) with h = x2 and with different
choices of α. The MFG is illustrated by the dashed red horizontal line.

(a) α = 0.2 (b) α = 2 (c) α = 20

Figure 2.3: Convergence of vN with different discount factors

Remark 16.1. Figure 2.3 indicates that vN is an increasing function of N given any fixed
decay parameter α. This implies that when the number of players increases, it is more
costly for players to keep track of other players before making decisions. Meanwhile, v∗(x)
being a decreasing function of α indicates that the bigger the α, the less frequent players will
intervene.

Approximating the N-player Game by the MFG

One can further show that the NE of MFG given in (2.3.2) is an ε-NE for the game in
(N-player).
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Definition 17 (ε-NE). For the game (N-player) with an initial distribution µ0−, a control
vector ξξξ = (ξ1, . . . , ξN) is called its ε-NE, if for any i = 1, . . . , N and any control ξi

′
such

that
(
ξξξ−i, ξi

′)
=
(
ξ1, . . . , ξi−1, ξi

′
, ξi+1, . . . , ξN

)
∈ SN ,

E
[
J i(N) (XXX0−;ξξξ)

]
≤ E

[
J i(N)

(
XXX0−;

(
ξξξ−i, ξi

′
))]

+ ε. (2.4.2)

Here X i
0− (i = 1, 2, · · · , N) are independent samples from distribution µ0−, and SN is defined

in (4.2.1).

Theorem 18 (ε-NE of the N -player game). Let ξ∗ be the NE of MFG given in (2.3.2), then

it is an ε-NE of the game (N-player), with ε = O
(

1√
N

)
.

Proof. Given the game (N-player) with m0− =
∫
xµ0−(dx) ∈ R, assume that each player i

in the N -player game takes the control (ξi∗,+t , ξi∗,−t ) according to the NE of the MFG such
that

ξi∗,+t = max

{
0, max

0≤u≤t

{
m0− −X i

0− −Bi
u + ξi∗,−u − c

}}
,

ξi∗,−t = max

{
0, max

0≤u≤t

{
X i

0− −m0− +Bi
u + ξi∗,+u − c

}}
.

(2.4.3)

To see that ξξξ∗ =
(
ξ1∗, . . . , ξN∗

)
∈ SN , define

CWmfg =
{
xxx ∈ RN

∣∣ |xi −m0−| < c for i = 1, 2, · · · , N
}
,

E−mfg,i =
{
xxx ∈ RN

∣∣ xi −m0− ≤ −c
}
,

E+
mfg,i =

{
xxx ∈ RN

∣∣ xi −m0− ≥ c
}
,

with the partition

Qmfg,i =
{
xxx ∈ RN

∣∣ ∣∣xi −m0−
∣∣ ≥ ∣∣xk −m0−

∣∣ , for any k < i;∣∣xi −m0−
∣∣ > ∣∣xk −m0−

∣∣ , for any k > i
}
.

Then the control in (2.4.3) corresponds to the action region Amfg,i =
{
E−mfg,i ∪ E

+
mfg,i

}
∩

Qmfg,i. The independence of {B1
t , . . . , B

N
t } and the continuity of {X1∗

t , . . . , X
N∗
t }t>0 imply

that for any t ≥ 0 P (Πi=1,...,Ndξ
i∗
t = 0) = 1.

Suppose that only one player, and without loss of generality, player one, deviates her
control ηt = (η+

t , η
−
t ) from all the other players such that (ξξξ−i∗, η) ∈ SN . Let X̂1

t be the new
position of player one under control (η+

t , η
−
t ) with initial value X1

0−. Then
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h

(
X̂1
t −

1

N

(
X̂1
t +

∑
j=2,...,N

Xj
t

))

= h

(
X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

)
+ h′

(
X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

)(∑
j=2,...,N X

j
t

N
− N − 1

N
m0−

)

+
h′′(Ut)

2

(∑
j=2,...,N X

j
t

N
− N − 1

N
m0−

)2

,

where Ut is a process between
(
X̂1
t − 1

N
X̂1
t − N−1

N
m0−

)
and

(
X̂1
t − 1

N

(
X̂1
t +

∑N
j=2X

j
t

))
.

By Assumption A1,

h

(
X̂1
t −

1

N

(
X̂1
t +

∑
j=2,...,N

Xj
t

))

≤ h

(
X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

)
+ h′

(
X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

)(∑N
j=2X

j
t

N
− N − 1

N
m0−

)

+
K

2

(∑N
j=2X

j
t

N
− N − 1

N
m0−

)2

≤ h

(
X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

)
+K

∣∣∣∣X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

∣∣∣∣ ·
∣∣∣∣∣
∑N

j=2X
j
t

N
− N − 1

N
m0−

∣∣∣∣∣
+
K

2

(∑N
j=2X

j
t

N
− N − 1

N
m0−

)2

.

Similarly,

h

(
X̂1
t −

1

N

(
X̂1
t +

∑
j=2,...,N

Xj
t

))

≥ h

(
X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

)
−K

∣∣∣∣X̂1
t −

1

N
X̂1
t −

N − 1

N
m0−

∣∣∣∣ ·
∣∣∣∣∣
∑N

j=2X
j
t

N
− N − 1

N
m0−

∣∣∣∣∣
−K

2

(∑N
j=2X

j
t

N
− N − 1

N
m0−

)2

.

Moreover, under the control (2.4.3), Xj
t (j = 2, 3, · · · , N) are independent and identically

distributed and |Xj
t −m0−| ≤ c a.s.. Therefore,

E

(∑N
j=2X

j
t

N
− N − 1

N
m0−

)2

=

∑N
j=1 V ar(X

j
t )

N2
≤ c2

N
= O(

1

N
),
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and

E

∣∣∣∣∣
∑N

j=2X
j
t

N
− N − 1

N
m0−

∣∣∣∣∣ ≤
E

(∑N
j=2 X

j
t

N
− N − 1

N
m0−

)2
1/2

= O(
1√
N

).

Therefore by the boundedness of Xj
t (j = 2, 3, · · · , N) and by the Fubini Theorem,

E
∫ ∞

0

e−αt

(∑N
j=2X

j
t

N
− N − 1

N
m0−

)2

dt =

∫ ∞
0

e−αtE

(∑N
j=2X

j
t

N
− N − 1

N
m0−

)2

dt = O

(
1

N

)
.

Similarly, when X̂1
t is under the threshold-type control,

E
∫ ∞

0

e−αt
∣∣∣∣X̂1

t −
1

N
X̂1
t −

N − 1

N
m0−

∣∣∣∣ ·
∣∣∣∣∣
∑N

j=2X
j
t

N
− N − 1

N
m0−

∣∣∣∣∣ dt = O(
1√
N

). (2.4.4)

Now, to minimize the following payoff function

E
∫ ∞
s

e−αt

[
h

(
X̂1
t −

1

N
X̂1
t −

1

N

N∑
j=2

Xj
t

)
dt+ dη+

t + dη−t

]

= E
∫ ∞
s

e−αt
[
h

(
N − 1

N
X̂1
t −

N − 1

N
m0−

)
dt+ dη+

t + dη−t

]
+O

(
1√
N

)
. (2.4.5)

is equivalent to solving the original fuel follower problem (2.2.2) with a modified running
cost h(N−1

N
(· −m0−)). Since the value function for (2.2.2) is of a linear growth,

(2.4.5) ≥ E
∫ ∞
s

e−αt
[
h

(
N − 1

N
(X̂1

t −m0−)

)
dt+ dη1∗,+

t + dη1∗,−
t

]
+O

(
1√
N

)
(2.4.6)

= E
[
v∗(X1

0−)
]

+O

(
1

N

)
+O

(
1√
N

)
(2.4.7)

where v∗(x) is defined in (2.3.3) and the expectation in (2.4.7) is with respect to the initial
distribution µ0−. The above analysis holds for any (η+

t , η
−
t ) ∈ U iN such that (ξξξ−i∗, η) ∈ SN .

Hence the conclusion.

2.5 Discussions

Multiple Explicit NEs for N = 2

When N = 2, h is symmetric with h(X1
t − m

(2)
t ) = h(X2

t − m
(2)
t ) = h

(
X1
t−X2

t

2

)
. This

symmetry simplifies significantly the solution structure and allows for the construction of
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multiple NEs. Indeed, given the partition Qi in (2.2.13) for N = 2, Q1 = 0, Q2 = R2, one
can write the NE and their corresponding values explicitly.

ξ2∗
t = (ξ2∗,+

t , ξ2∗,−
t )

=

(
max

{
0, max

0≤u≤t
{−x2 + x1 −B2

u +B1
u + ξ2∗,−

u − c2}
}
,

max

{
0, max

0≤u≤t
{x2 − x1 +B2

u −B1
u + ξ2∗,+

u − c2}
})

,

ξ1∗
t =

(
ξ1∗,+
t , ξ1∗,−

t

)
= (0, 0),

(2.5.1)

where c2 > 0 is the unique positive solution of

1√
α

tanh
(√

αx
)

=
p′2(x)− 1

p′′2(x)
, (2.5.2)

with

p2(x) = E

[∫ ∞
0

e−αth

(
x

2
+

√
2Bt

2

)
dt

]
.

And the NE values are

v2(x1, x2) =


v2(x1, x1 − c2)− c2 − x2 + x1, x2 − x1 ≤ −c2,

−p′′2 (c2) cosh(
√
α(x2−x1))

α cosh(c2
√
α)

+ p2(x2 − x1), |x2 − x1| < c2,

x2 − x1 − c2 + v2(x1, x1 + c2), x2 − x1 ≥ c2,

(2.5.3)

and

v1(x1, x2) =


v1(x1, x1 + c2), x1 − x2 ≤ −c2,

−p′′2 (c2) cosh(
√
α(x1−x2))

α cosh(c2
√
α)

+ p2(x1 − x2), |x2 − x1| < c2,

v1(x1, x1 − c2), x1 − x2 ≥ c2.

(2.5.4)

There is in fact more than one NE. For instance, in addition to the above constructed NE,
labeled as Case 1, there are more NEs, including

Case 2: A1 = {(x1, x2) | x1 − x2 > c2 or x1 − x2 < −c2} and A2 = ∅,

Case 3: A1 = {(x1, x2) | x1 − x2 < −c2} and A2 = {(x1, x2) | x1 − x2 > c2},

Case 4: A1 = {(x1, x2) | x1 − x2 > c2} and A2 = {(x1, x2) | x1 − x2 < −c2}.
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In Case 4, clearly

ξ1∗
t = −max

{
0, max

0≤u≤t

{
0, x1 − x2 +B1

u −B2
u − ξ2∗

u − c2

}}
,

ξ2∗
t = −max

{
0, max

0≤u≤t

{
0, x2 − x1 +B2

u −B1
u − ξ1∗

u − c2

}}
,

and the associated NE values are

v1(x1, x2) =


v1(x1, x1 + c2), x1 − x2 ≤ −c2,

−p
′′
2 (c2) cosh(

√
α(x1−x2))

α cosh(c2
√
α)

+ p2(x1 − x2), |x1 − x2| < c2,

x1 − x2 − c2 + v1(x2 + c2, x
2), x1 − x2 ≥ c2,

and

v2(x1, x2) =


v2(x2 + c2, x

2), x2 − x1 ≤ −c2,

−p
′′
2 (c2) cosh(

√
α(x2−x1))

α cosh(c2
√
α)

+ p2(x2 − x1), |x2 − x1| < c2,

x2 − x1 − c2 + v2(x1, x1 + c2), x2 − x1 ≥ c2.

Figure 2.4 illustrates all four NEs.

Figure 2.4: Four NEs when N = 2
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With Varying α

Proposition 19. When h(x) = x2 and α ≥ 2−
1
3
N−1
N

, cN increases with respect to α.

The proposition follows from simple calculations. Take h(x) = x2,
p′N (x)−1

p′′N (x)
= x − αk2N

2

with kN = N
N−1

> 1. Rewrite fN as fN(x, α) =
√
kN√
2α

tanh
(√

2α√
kN
x
)
− x +

k2Nα

2
. Then ∂fN

∂x
=

− tanh2
(√

2α√
kN
x
)

and ∂fN
∂α

= x
2α

(
1− tanh2

(√
2α√
kN
x
))
−

√
kN

2α
√

2α
tanh

(√
2α√
kN
x
)

+
k2N
2
. One can

verify that ∂fN
∂x

< 0 for any α and ∂fN
∂α

> 0 when α > 2−
1
3k−1

N . Hence ∂cN
∂α

> 0 when

α > 2−
1
3k−1

N follows from the chain rule and from f(cN(α), α) = 0 for any N .
Figure 2.5, illustrates the convergence of cN with different discount factor α. The value

of c is shown in the red dash line.

(a) α = 0.2 (b) α = 2 (c) α = 20

Figure 2.5: Convergence of cN with different discount factors

Remark 19.1. Figure 2.5 indicates that cN is a decreasing function of N for any given
discount factor α. This implies that players will intervene more frequently with more players
in the game. Meanwhile, c being a decreasing function of α indicates that the bigger the α,
the less frequent players will intervene. These are consistent with Figure 2.3.

It is worth noting that the analysis for α1 = · · · = αN = α can be easily extended
to the cases when αi’s are different. The exact forms of the NEs, however, may be more
complicated, as illustrated in the case of N = 2 below.

When N = 2, denote αi as the discount parameter for player i (i = 1, 2). Denote c
(i)
2 > 0

as the unique solution of

1
√
αi

tanh (
√
αix) =

p′2(x, αi)− 1

p′′2(x, αi)
, (2.5.5)

with

p2(x, αi) = E

[∫ ∞
0

e−αith

(
x

2
+

√
2Bt

2

)
dt

]
.
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Corollary 19.1 (N = 2 with α1 6= α2). Assume A1 for game (N-player). If α2 > α1 >

2−
4
3 , then c

(2)
2 > c

(1)
2 . The following controls

ξ2∗,+
t = 1{

x2−x1<−c(2)2

} (−c(2)
2 − x2 + x1

)
,

ξ2∗,−
t = 1{

x2−x1>c(2)2

} (c(2)
2 − x2 + x1

)
,

and

ξ1∗,+
t = max

{
0, max

0≤u≤t
{x2 +B2

u + ξ2∗,+
0 − ξ2∗,−

0 − x1 −B1
u + ξ1∗,−

u − c(1)
2 }
}
,

ξ1∗,−
t = max

{
0, max

0≤u≤t
{−x2 −B2

u − ξ
2∗,+
0 + ξ2∗,−

0 + x1 +B1
u + ξ1∗,+

u − c(1)
2 }
}
.

give a Markovian NE. The corresponding NE values are

v1(x1, x2) =



v1(x1, x1 + c
(2)
2 ) x1 − x2 ≤ −c(2)

2 ,

v1(x2 − c(1)
2 , x2) + x2 − x1 − c(1)

2 , −c(2)
2 ≤ x1 − x2 ≤ −c(1)

2 ,

−p
′′
2 (c

(1)
2 ) cosh(

√
α(x1−x2))

α cosh
(
c
(1)
2

√
α
) + p2(x1 − x2), |x1 − x2| ≤ c

(1)
2 ,

x1 − x2 − c(1)
2 + v1(x2 + c

(1)
2 , x2), c

(1)
2 ≤ x1 − x2 ≤ c

(2)
2 ,

v1(x1, x1 − c(2)
2 ) x1 − x2 ≥ c

(2)
2 ,

(2.5.6)

and

v2(x1, x2) =



v2(x1, x1 − c(2)
2 )+x1 − x2 − c(2)

2 , x2 − x1 ≤ −c(2)
2 ,

v2(x2 + c
(1)
2 , x2) −c(2)

2 ≤ x2 − x1 ≤ −c(1)
2 ,

−p
′′
2 (c

(1)
2 ) cosh(

√
α(x2−x1))

α cosh
(
c
(1)
2

√
α
) + p2(x2 − x1), |x2 − x1| ≤ c

(1)
2 ,

v2(x2 − c(1)
2 , x2) c

(1)
2 ≤ x2 − x1 ≤ c

(2)
2 ,

x2 − x1 − c(2)
2 + v2(x1, x1 + c

(2)
2 ), x2 − x1 ≥ c

(2)
2 .

(2.5.7)

Figure 2.6 shows the NE defined in Corollary 19.1.
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Figure 2.6: N=2 with different α values
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Chapter 3

Stochastic Game with Resource
Constraints

3.1 Introduction

N -player non-zero-sum stochastic games are notoriously hard. Recently there has been a
surge of interest on Mean Field Games (MFGs), pioneered by [104, 137, 136, 139]. With an
ingenious aggregation approach, MFGs nicely reduce the complexity of N -player games by
focusing on N →∞. However, there are undesirable consequences of the MFG aggregation
approach and a growing number of studies [42, 94, 130] point to the risk of using MFGs for
analyzing N -player games. For instance, Nash equilibria (NEs) of MFGs tend to collapse to
that of a single-player game, offering no or limited insight into the general solution structure
of N -player games.

Motivated by the need for a more in-depth study of N -player stochastic games, in this
work we formulate and analyze a classical of stochastic N -player games that originated from
the classic finite fuel problem. There are many reasons to consider this type of games.
Firstly, the finite fuel problem is one of the landmarks in stochastic control theory and a
game formulation is natural [14, 19, 28, 74, 113, 122, 123]. Secondly, its simple yet insightful
solution structures have had a wide range of applications including economics and finance
[7, 56, 67, 143], operations research [60, 61, 95, 127], and queuing theory [126], in addition
to the theory of stochastic controls [8, 29, 30, 57, 62, 76, 98, 168, 169, 66, 179, 184]. Thirdly,
there is no prior work analyzing its stochastic game counterpart except for the special case of
N = 2 and without the fuel constraint [68, 94, 96, 99, 119, 129, 145]. We hope that analyzing
this game can shed more light on the fundamental differences between control problems and
stochastic games and thus provide useful insights into the intrinsic difficulty of the latter.

The stochastic game presented in this paper goes as follows. There are N players whose
dynamicsXXX t = (X1

t , · · · , XN
t ) are governed by the following N -dimensional diffusion process:

dX i
t = bi(XXX t−)dt+ σiσiσi(XXX t−)dBBB(t) + dξi+t − dξi−t , X i

0− = xi, (i = 1, · · · , N), (3.1.1)
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where BBB := (B1, · · · , BN) is a standard N -dimensional Brownian motion in a filtered prob-
ability space (Ω,F , {Ft}t≥0,P), with drift bbb := (b1, · · · , bN) and covariance matrix σσσ :=
(σ1σ1σ1, · · · ,σNσNσN) satisfying appropriate regularity conditions. Player i’s control, ξi = (ξi+, ξi−),
is a pair of non-decreasing and càdlàg processes, and of finite variation. Each player has
access to some or all of M types of resources. Players interact through their objective func-
tions hi(X1

t , · · · , XN
t ), as well as their shared resources that are the “fuels” of their control.

The accessibility of these resources to players and how these resources are consumed by their
respective players are governed by a matrix AAA := (aij)i,j ∈ RN×M . The goal of the game is
for player i to minimize

E
∫ ∞

0

e−αthi(X1
t , · · · , XN

t )dt.

over appropriate admissible game strategies, which are specified in Section 3.2. When M = 1
andAAA = [1, 1, · · · , 1]T ∈ RN×1, this is a pooling gameCpCpCp corresponding to the N -player finite
fuel game where the N players share a fixed amount of the same resource. When M = N
and AAA = INININ , this is an N -player game CdCdCd where each player has her individual fixed amount
of resource. In general, this matrix AAA describes the network structure of the N -player game.
Note that this N -player game cannot be simply analyzed with an MFG approach as the
network structure would collapse if an aggregation approach was applied.

We will analyze the NEs of this stochastic game. We first derive sufficient conditions
for the NE policy in the form of a verification theorem (Theorem 22), which reveals an
essential game element regarding the interactions among players. This is the Hamilton–
Jacobi–Bellman (HJB) representation of the conditional optimality for NE in a stochastic
game. To understand the structural properties of the NEs, we proceed further to analyze this
stochastic game in terms of the game values, the NE strategies, and the controlled dynamics.
Mathematically, the analysis involves first solving a multi-dimensional free boundary problem
and then a Skorokhod problem with a moving boundary. The boundary is “moving” in that
it moves in response to both the changes of the system and the control strategies of other
players. The analytical solution is derived by first exploring the two special games CpCpCp and
CdCdCd. Analyzing these two types of games provides key insights into the solution structure of
the general game. Finally, we reformulate the NE strategies in the form of controlled rank-
dependent stochastic differential equations (SDEs), and compare game values with games
CpCpCp and CdCdCd.

Main contributions. (i) In the verification theorem for N -player games, we obtain the
form of the HJB equations for general stochastic games with singular controls. Unlike all
previous analysis that focused on two-player games, we show that in addition to the standard
HJBs that correspond to stochastic control problems, there is an essential term that is unique
to stochastic games. This term represents the interactions among players, especially the
ones who are active and those who are waiting. This critical term was missing in two-player
stochastic games and was simply (mis)understood as a regularity condition (Remark 21.1).
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(ii) The structural difference between games and control problems is further revealed in the
explicit solution to the NEs for N -player games. In a Markovian control problem, a free
boundary depends on the state of the system; in stochastic games, however, the “face” of
the boundary moves based on the action of herself and interaction among players in the
game (Figure 3.4). Note that this free boundary for stochastic games with an infinite time
horizon moves in a different sense from the one in [57] for finite time control problems
where the boundary is time dependent. Rather it moves due to changes of the system and
the competition in the game.
(iii) This difference is further highlighted in the framework of controlled rank-dependent
SDEs. To the best of our knowledges, this is the first time a stochastic game is explicitly
connected with rank-dependent SDEs in a more general form. This new form of rank-
dependent SDEs presents a fresh class of yet-to-be studied SDEs (Section 3.7).
(iv) Finally, stochastic games considered in this paper are resource allocation games. Re-
source allocation problems have a wide range of applications including cloud computing,
smart power grid control, and multimedia wireless networks [83, 84, 141, 165, 186]. However,
the existing literature has been unsuccessful in analyzing the resource allocation problem in
the setting of stochastic games. Besides the technical contributions, our analysis provides a
useful economic insight: in a stochastic game of resource allocations, sharing has lower cost
than dividing and pooling yields the lowest cost for each player.

Related work. There are several papers on non-zero-sum games with singular controls [68,
94, 96, 99, 119, 129, 145]. All of these works are games without the fuel constraint and thus
are built on one-dimensional stochastic control problems. Furthermore, except for [94], all of
these papers are restricted to the case of N = 2. Most importantly, because of the restricted
problem setting, none of these works managed to discover the critical structural difference
between stochastic games and controls. We believe our work is the first to complete the
mathematical analysis on an N -player stochastic game based on an original two-dimensional
control problem.

There has been some works on reflected SDEs in time-dependent or state-dependent
domains. Reflected Brownian motion in smooth time-dependent domains with normal re-
flection was considered by [34, 33] via the heat equation. The one-dimensional case was
also studied by [35] through the Skorokhod problem. Later, [144, 154] give the construction
of reflected SDEs in non-smooth time-dependent domains with oblique reflection. There is
some work, i.e. [36, 170, 183], on Brownian motion reflected on another Brownian motion,
motivated by the study of the Brownian web. However, none of these works involve controls.
[25] considers reflected SDEs in the orthant Rd

+ and focuses on the viscosity solution analysis.
In our work the controlled dynamics and the “moving” free boundary are recast in the

framework of controlled rank-dependent SDEs. The rank-dependent SDEs without controls
arise in the “Up the River” problem [4] and in stochastic portfolio theory [79], including
the well-studied Atlas model for the ergodicity and sample path properties [9, 108, 109, 110,
157, 166, 167] and for the hydrodynamic limit and fluctuations of the Atlas model [37, 70,
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177]. Compared to the well-known rank-dependent SDEs, rank-dependent SDEs with an
additional control component has not been studied before. We establish the existence of the
solution by directly constructing a reflected diffusion process. (See Section 3.7 for further
discussions.)

Notations and organization. Throughout the paper, we denote vectors/matrices by
bold case letters, e.g., xxx and XXX. The transpose of a real vector xxx is denoted as xxxT . For a
vector xxx, ‖xxx‖ denotes its l2 norm. For a matrix XXX, ‖XXX‖ denotes its spectral norm.

The paper is organized as follows. Section 3.2 presents the mathematical formulation
of the N -player game. Section 3.3 provides verification theorem for sufficient conditions of
the NE of the game and the existence of Skorokhod problem for NE strategies. Section 3.4
studies game CpCpCp and Section 3.5 studies game CdCdCd. With the insight from these two games,
Section 3.6 analyzes the general N -player game CCC. Section 3.7 compares games CpCpCp, CdCdCd and
CCC, discusses the game values and their economic implications, and unifies their corresponding
controlled dynamics in the framework of the controlled rank-dependent SDEs.

3.2 Problem Setup

Now we present the mathematical formulation for the stochastic N -player game.

Controlled dynamics. Let (X i
t)t≥0 be the position of player i, 1 ≤ i ≤ N . In the absence

of controls, XXX t = (X1
t , · · · , XN

t ) is governed by the stochastic differential equation (SDE):

dXXX t = bbb(XXX t)dt+ σσσ(XXX t)dBBB(t), XXX0− = (x1, · · · , xN), (3.2.1)

where BBB := (B1, · · · , BN) is a standard N -dimensional Brownian motion in a filtered prob-
ability space (Ω,F , {Ft}t≥0,P), with the drift bbb(·) := (b1(·), · · · , bN(·)) and the covariance
matrix σσσ(·) := (σij(·))1≤i,j≤N . To ensure the existence and uniqueness of the SDE, bbb(·) and
σσσ(·) are assumed to satisfy the usual global Lipschitz condition and linear growth condition:

H1. There exists a constant L1 > 0 and L2 > 0 such that

‖bbb(xxx)− bbb(yyy)‖+ ‖σσσ(xxx)− σσσ(yyy)‖ ≤ L1‖xxx− yyy‖,
‖bbb(xxx)‖+ ‖σσσ(xxx)‖ ≤ L2 (1 + ‖xxx‖) ,

for all xxx,yyy ∈ RN .

Assumption H1 ensures the existence of a strong solution to (4.1.1) and the solution is
square-integrable [124, Theorem 2.9 in Chapter 5]. Here and throughout the rest of the
paper, the infinitesimal generator L is

L :=
∑
i

bi(xxx)
∂

∂xi
+

1

2

∑
i,j

(σσσ(xxx)σσσ(xxx)T )i,j
∂2

∂xi∂xj
, (3.2.2)
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where σσσ(xxx)σσσ(xxx)T is assumed to be positive-definite for every xxx ∈ RN . See [124, Chapter 5],
or [111, Chapter IV] for background on SDEs.

If a control is applied to X i
t , then X i

t evolves as

dX i
t = bi(XXX t−)dt+ σσσi(XXX t−)dBBB(t) + dξi+t − dξi−t , X i

0− = xi, (3.2.3)

where σσσi is the ith row of the covariance matrix σσσ. Here the control (ξi+, ξi−) is a pair of
non-decreasing and càdlàg processes, and of finite variation. In other words, (ξi+, ξi−) is the
minimum decomposition of the finite variation process ξi such that ξi := ξi+ − ξi−.

Game objective. The game is for player i to minimize, for all (ξi+, ξi−) in an appropriate
admissible control set, over an infinite time horizon, the following objective function,

E
∫ ∞

0

e−αthi(X1
t , · · · , XN

t )dt. (3.2.4)

Here α > 0 is a constant discount factor. In this game, players interact through their
respective objective functions hi(xxx) : RN → R+, which are assumed to be

H2. twice differentiable, with k ≤ ||∇2hi(xxx)|| ≤ K for some K > k > 0.

For example, hi(xxx) = h(xi −
∑N
j=1 x

j

N
) is a distance function between the position of player i

and the center of all players.
Note that in the objective function (3.2.4), there is no cost of control. With this formula-

tion, the explicit solution structure of the NE for game (3.2.4) is clean. It is entirely possible
to consider an N-player game with additional cost of control. For instance, one might study
the game formulation of [122] with a proportional cost of control. We conjecture that the
solution structure would be similar although the analysis will be more involved. This will
be an interesting problem for future analysis.

Admissible control policies. The admissible control set SN(xxx,yyy) for this N -player game
is given by

SN(xxx,yyy) :=

{
ξξξ : ξi ∈ U iN for 1 ≤ i ≤ N,

N∑
i=1

∫ ∞
0

aijY
j
t−∑M

k=1 aikY
k
t−
dξ̌it ≤ yj, 1 ≤ j ≤M,

P
(
∆ξit (XXX t−,YYY t−) ∆ξkt (XXX t−,YYY t−) 6= 0

)
= 0 for all t ≥ 0 and i 6= k

}
,

(3.2.5)

where

U iN :=
{

(ξ+, ξ−) : ξ+ and ξ− are FXt−Xt−Xt−,Yt−Yt−Yt−-progressively measurable,

càdlàg, non-decreasing, with ξ+
0− = ξ−0− = 0

}
,
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with FXt−,Yt−Xt−,Yt−Xt−,Yt− := σ
(
∪s<t FXs,YsXs,YsXs,Ys

)
the filtrations of (XXX,YYY ) up to time t−, and

Y j
t = yj −

N∑
i=1

∫ t

0

aijY
j
s−∑M

k=1 aikY
k
s−
dξ̌is ∈ R+ and Y j

0− = yj, (3.2.6)

with aij = 0 or 1 for 1 ≤ i ≤ N and 1 ≤ j ≤ M ,
∑M

j=1 aij > 0 for all i = 1, · · · , N , and∑N
i=1 aij > 0 for all j = 1, · · · ,M . Moreover,

ξ̌it := ξi+t + ξi−t , (3.2.7)

is the accumulative amount of controls/resources consumed by player i up to time t.
The non-decreasing and càdlàg processes (ξi+, ξi−) ∈ U iN can be decomposed in the

differential form,

dξi±t = d(ξi±t )c + ∆ξi±t , (3.2.8)

where d(ξi±t )c is the continuous part and ∆ξi±t := ξi±t − ξi±t− is the jump part of dξi±t .
Here is the intuition for SN(xxx,yyy). In this game, each player i will make a decision

based on the current positions of all players and the available resources. In addition to this
adaptedness constraint, the admissible control set SN(xxx,yyy) specifies the resource allocation
policy for each player. For M different types of resources, define AAA := (aij)i,j ∈ RN×M to
be the adjacent matrix with aij = 0 or 1. Then AAA describes the relationship between the
players and the types of available resources, with aij = 1 meaning that resource of type j is
available to player i, and aij = 0 meaning that resource of type j is inaccessible to player

i. The condition
∑M

j=1 aij > 0 for all i = 1, · · · , N implies that each player i has access to

at least one resource, and the condition
∑N

i=1 aij > 0 for all j = 1, · · · ,M indicates that
each resource j is available to at least one player. Moreover, when player i would like to
exercise control, she will consume resources proportionally to all the resources available to
her. She will stop consuming once all the available resources hit level zero. This results in
the form of the integrand in the expression of (3.2.6). Note that the denominator is always
no smaller than the numerator hence the integrand is well-defined with the convention 0

0
= 0.

See Figure 3.1 for illustration.

(a) Relationship. (b) Resource allocation policy.

Figure 3.1: Example of adjacent matrix AAA, relationship between the players and resources
when N = 4 and M = 6.
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Take an example of N = 4, M = 6, with the matrix AAA defined as

AAA =


1, 1, 0, 0, 0, 0
0, 0, 1, 0, 1, 0
0, 0, 0, 0, 0, 1
0, 0, 0, 1, 0, 0

 ,
(Figure 3.1a). The resource allocation policy is illustrated in Figure 3.1b, with the amount
of available resource y1 and y2 of type one and two respectively. When player one wishes to
apply controls of amount ∆, say ∆ ≤ y1 +y2, she will consume resources randomly from type
one and two. So player one will take ∆ y1

y1+y2
from resource one and ∆ y2

y1+y2
from resource two.

Finally, the condition P(∆ξit∆ξ
k
t 6= 0) = 0 for all t ≥ 0 and i 6= k excludes the possibility of

simultaneous jumps of any two out of N players, which facilitates designing feasible control
policies when controls involve jumps. This condition is not a restriction, and instead should
be interpreted as a regularization. See also [13, 94, 129]. Indeed, when there are multiple
players who would like to jump at the same time, one can simply design a proper order, for
instance by indexing the players and their jump orders, so that they will move sequentially.

Game formulation. Let ξξξ := (ξ1, · · · , ξN) be the controls from the players. Let xxx :=
(x1, · · · , xN) and yyy := (y1, · · · , yM). Then the stochastic game is for each player i to minimize

J i(xxx,yyy;ξξξ) := E
∫ ∞

0

e−αthi(XXX t)dt, (3.2.9)

subject to the dynamics in (3.2.3) and (3.2.6) with the constraint in (3.2.5). There are two
special games of particular interest. One is a game where all players pool their resources
such that

N∑
i=1

∫ ∞
0

dξ̌is < y <∞. (3.2.10)

When N = 1, this is a single player game corresponding to the finite fuel control problem
which is well studied in [19, 122]. We call this game a pooling game CpCpCp. Clearly in terms of
the adjacent matrix AAA, this corresponds to M = 1, and AAA = [1, 1, · · · , 1]T ∈ RN×1. Another
is a game where players divide the resource up front such that∫ ∞

0

dξ̌is < yi, (3.2.11)

where yi is the total amount of controls that player i can exercise. This game is called CdCdCd,
with M = N , and AAA = INININ . Finally, we refer the game with a general matrix AAA as game CCC.
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3.3 NE Game Solution: Verification Theorem and

Skorokhod Problem

Verification Theorem

We will analyze the N -player game under the criterion of Markovian NE. See [44] for various
concepts of NE of differential games. Recall the definition of a Markovian NE of N -player
games.

Definition 20. A tuple of admissible controls ξξξ∗ := (ξ1∗, · · · ξN∗) is a Markovian NE of the
N-player game (3.2.9), if for each ξi such that (ξξξ−i∗, ξi) ∈ SN(xxx,yyy),

J i (xxx,yyy;ξξξ∗) ≤ J i
(
xxx,yyy;

(
ξξξ−i∗, ξi

))
,

where ξξξ−i∗ = (ξ1∗, · · · , ξi−1∗, ξi+1∗, · · · , ξN∗) and (ξξξ−i∗, ξi) = (ξ1∗, · · · , ξi−1∗, ξi, ξi+1∗, · · · , ξN∗).
Here the strategies ξi∗ and ξi are functions of time t, XXX t = (X1

t , · · · , XN
t ), and YYY t =

(Y 1
t , · · · , Y M

t ), with XXX0− = xxx and YYY 0− = yyy. Controls that give Markovian NEs are called the
Markovian Nash Equilibrium Points (MNEPs). The associated value function J i (xxx,yyy;ξξξ∗)
(i = 1, 2, · · · , N) is called the game value.

We first derive heuristically the associated HJB equations for the game (3.2.9). To this
end, we start with some notations of region partitions for each player.

Definition 21 (Action and waiting regions). The ith player’s action region is

Ai := {(xxx,yyy) ∈ RN × RM
+ : dξi(xxx,yyy) 6= 0},

and its waiting region is Wi := (RN × RM
+ ) \ Ai. Let A−i := ∪j 6=iAj, and W−i := ∩j 6=iWj.

Now the HJB is heuristically derived as follows. When Aj ∩ Ai = ∅ for all i 6= j
and (xxx,yyy) ∈ W−i, ∆ξj∗ = 0 for j 6= i. Thus the game for player i becomes a classical
control problem with three choices: ∆ξi∗ = 0, ∆ξi∗,+ > 0, and ∆ξi∗,− > 0. The case
∆ξi∗ = 0 implies, by simple stochastic calculus, −αvi +hi (xxx) +Lvi = 0, the case ∆ξi∗,+ > 0

corresponds to −
∑M

j=1
aijy

j∑M
k=1 aiky

k
viyj + vixi = 0, and the case ∆ξi∗,− > 0 corresponds to

−
∑M

j=1
aijy

j∑M
k=1 aiky

k
viyj − vixi = 0. 1 One of the three choices will be optimal. In short, we have

for (xxx,yyy) ∈ W−i,

min

{
−αvi + hi (xxx) + Lvi,−

M∑
j=1

aijy
j∑M

k=1 aiky
k
viyj + vixi ,−

M∑
j=1

aijy
j∑M

k=1 aiky
k
viyj − vixi

}
= 0,

(3.3.1)
Since each player i can only control xi and the resources that are available to her, the above
equation is minimizing over (xi, yyy).

1We adopt the convention 0
0 = 0.
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When (xxx,yyy) ∈ Aj, player j will control. Denote the amount of control by player j as
(∆ξj∗,+,∆ξj∗,−). When Aj ∩ Ai = ∅ for all i 6= j, we should have,

vi(xxx,yyy) = vi

(
xxx−j, xj + ∆ξj∗,+ −∆ξj∗,−, yyy −

(
aj1y

1∑M
k=1 ajky

k
, · · · , ajNy

N∑M
k=1 ajky

k

)
(∆ξj∗,+ + ∆ξj∗,−)

)
.

This leads to

min

{
−

M∑
k=1

ajky
k∑M

s=1 ajsy
s
viyk + vixj ,−

M∑
k=1

ajky
k∑M

s=1 ajsy
s
viyk − v

i
xj

}
= 0. (3.3.2)

By letting ∆ξj∗,± → 0, (3.3.1) describe the behavior in W i and near boundary ∂Wi.

Moreover, we can show that (3.3.1) is consistent with the jump behaviors inAi: −
∑M

j=1
aijy

j∑M
k=1 aiky

k
viyj±

vixi = 0 has a linear solution vi(xxx) = a
(
±xi +

∑M
j=1 aijy

j
)

+ b for some a, b ∈ R. And it is

easy to check that ∀
∑M

k=1 aiky
k ≥ ∆ > 0,

aijy
j − aijy

j∑M
k=1 aiky

k
∆∑M

k=1 aiky
k −∆

=
aijy

j∑M
k=1 aiky

k
,

which means the allocation policy (jump direction) outside the waiting region is linear.
Hence the dynamics in (3.2.6) satisfies the HJB equation in Ai. The consistency property
also holds for (3.3.2).

Remark 21.1. Note that when N = 2, the above equation corresponds to the continuity
condition of game values. For general N-player games, it is a mathematical description of
interactions between the player in control and those who are not. It guarantees that all players
control optimally so that they sequentially push the underlying dynamics until reaching the
common waiting region. This is consistent with the intuition that NE is conditionally optimal
for each player.

Remark 21.2. Under the ‘no simultaneous jump’ assumption in (3.2.5), there are only two
gradient terms in (3.3.1) corresponding to the actions from player i. If one removes this ‘no
simultaneous jump’ assumption, there will be 3N − 1 terms for gradient constraints, making
the problem intractable. Similar analysis holds for (3.3.2).

Next we present a verification theorem which gives sufficient conditions of an MNEP.

Theorem 22 (Verification theorem). Assume H1-H2. Further assume that Aj ∩ Ai = ∅
for all i 6= j. For each i = 1, · · · , N , suppose that the ith player’s strategy ξi∗ ∈ U iN satisfies
the following conditions

(i) ξξξ∗ := (ξ1∗, · · · , ξN∗) ∈ SN(xxx,yyy),
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(ii) vi(·) = J i(·;ξξξ∗) satisfies the HJB equation (3.3.1) for (xxx,yyy) ∈ W−i,

(iii) vi(xxx,yyy) satisfies the transversality condition

lim sup
T→∞

e−αTEvi (XXXT ,YYY T ) = 0, (3.3.3)

for any (XXX t,YYY t) under admissible controls.

(iv) vi(xxx,yyy) ∈ C2(W−i) and vi is convex for all (xxx,yyy) ∈ W−i,

(v) vixj is bounded in W−i for each j = 1, 2, · · · , N ,

(vi) for any ξi ∈ U iN such that (ξξξ−i∗, ξi) ∈ SN(xxx,yyy),

P((XXX−i∗t , X i
t ,YYY t) ∈ W−i) = 1 for all t ≥ 0,

where (XXX−i∗t , X i
t ,YYY t) is under (ξξξ−i∗, ξi).

(vii) vi(·) satisfies the equation (3.3.2) when (xxx,yyy) ∈ Aj,

then ξξξ∗ is an MNEP with value function vi.

Proof of Theorem 22. It suffices to prove that for each i = 1, · · · , N ,

J i(xxx,yyy;ξξξ∗) ≤ J i(xxx,yyy; (ξξξ−i∗, ξi)),

for all (ξξξ−i∗, ξi) ∈ SN(xxx,yyy).
Recall (4.1.1) and (3.2.6). From condition (vi), under control (ξξξ−i∗, ξi) ∈ SN(xxx,yyy),

(XXX−i∗t , X i
t ,YYY t) ∈ W−i a.s.. Applying Itô-Meyer’s formula [148, Theorem 21] to e−αtvi(XXX−i∗t , X i

t ,YYY t)
yields

E[e−αTvi(XXX−i∗T , X i
T ,YYY T )]− vi(xxx,yyy)

= E
∫ T

0

e−αt
(
Lvi − αvi

)
dt+ E

∫ T

0

e−αt
N∑
j=1

vixjdB
j
t

+
N∑

j=1,j 6=i

E
∫

[0,T )

e−αt(vixjdξ
j∗,+
t − vixjdξ

j∗,−
t )−

N∑
j=1,j 6=i

E
∫

[0,T )

e−αt
M∑
k=1

ajkY
k
t−∑M

s=1 ajsY
s
t−

(
viykdξ

j∗,+
t + viykdξ

j∗,−
t

)
+ E

∫
[0,T )

e−αt(vixidξ
i,+
t − vixidξ

i,−
t )− E

∫
[0,T )

e−αt
M∑
k=1

aijY
k
t−∑M

s=1 aisY
s
t−

(
viykdξ

i,+
t + viykdξ

i,−
t

)
+ E

∑
0≤t<T

e−αt

(
∆vi −

M∑
j=1

vixj∆X
j
t −

M∑
k=1

viyk∆Y
k
t

)
.

Note that condition (v) implies that
∫ T

0
e−αt

∑N
j=1 v

i
xjdB

j
t is a uniformly integrable mar-

tingale.
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The convexity condition in (iv) implies E
∑

0≤t<T e
−αt(∆vi−vixi∆X i

t−
∑M

j=1 v
i
yj∆Y

j
t ) ≥ 0.

Given condition (ii), we see that vi(xxx) satisfies the HJB equation (3.3.1) on Ai. Therefore

E
∫

[0,T )

e−αt(vixidξ
i,+
t − vixidξ

i,−
t )− E

∫
[0,T )

e−αt
M∑
k=1

aijY
k
t−∑M

s=1 aisY
s
t−

(
viykdξ

i,+
t + viykdξ

i,−
t

)
= E

∫
[0,T )

e−αt

[
vixi −

M∑
k=1

aijY
k
t−∑M

s=1 aisY
s
t−
viyk

]
dξi,+t + E

∫
[0,T )

e−αt

[
−vixi −

M∑
k=1

aijY
k
t−∑M

s=1 aisY
s
t−
viyk

]
dξi,−t ≥ 0.

For each j 6= i, almost surely, we have dξj∗t 6= 0 only when (XXX t,YYY t) ∈ ∂W−i ∩ ∂Aj. Along
with the condition (vii),

E
∫

[0,T )

e−αt(vixjdξ
j,+
t − vixjdξ

j,−
t )− E

∫
[0,T )

e−αt
M∑
k=1

ajkY
k
t−∑M

s=1 ajsY
s
t−

(
viykdξ

j,+
t + viykdξ

j,−
t

)
= E

∫
[0,T )

e−αt

[
vixj −

M∑
k=1

ajkY
k
t−∑M

s=1 ajsY
s
t−
viyk

]
dξj∗,+t +

[
−vixj −

M∑
k=1

ajkY
k
t−∑M

s=1 ajsY
s
t−
viyk

]
dξj∗,−t = 0.

Condition (ii) also implies Lvi − αvi ≥ h. Combining all of the above,

e−αTEvi(XXX−i∗T , X i
T ,YYY T ) + E

∫ T

0

e−αth
(
XXX−i∗t , X i

t

)
dt ≥ vi(xxx,yyy). (3.3.4)

By letting T →∞, the inequality (3.3.4) and condition (iii) lead to the desirable inequality.
Along with condition (vii), the equality holds with value vi(xxx,yyy).

Remark 22.1. Note that, unlike the usual stochastic control problem which requires C2

regularity in the whole space RN , in the N-player game (3.2.9), the minimum regularity
needed is C2 in W−i. This is due to the game nature and interactions among players.

Suppose the game value vi (i = 1, 2, · · · , N) that satisfies the verification theorem (The-
orem 22) are given, the next step is to construct the corresponding NE strategies. This is
by solving a Skorokhod problem, introduced in the next subsection.

Skorokhod Problem

Let G = ∩i∈IGi be a nonempty domain in Rn+m, where I is a nonempty finite index set
and for each i ∈ I, Gi is a nonempty domain in Rn+m. For simplicity, we assume that
I = {1, 2, · · · , I}, with |I| = I. For each i ∈ I, let nnni : Rn+m → Rn+m be the unit normal
vector field on ∂Gi that points into Gi. And denote rrri(·) : Rn+m → Rn+m as the reflection
direction on ∂Gi. Fix bbb ∈ Rn and σσσ ∈ Rn×n as the drift and covariance of the diffusion
process without reflection. Let ν denote a probability measure on (G,B(G)), where B(G) is
the Borel σ-algebra on G.
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A Skorokhod problem is to find a reflected diffusion process in G such that the initial
distribution follows ν, the diffusion parameters are (bbb,σσσ), and the reflection direction is rrri on
face ∂Gi. For each reflection direction rrri (i ∈ I), denote rrr+

i := (ri,1, · · · , ri,n) as the vector
of the first n components of rrri and denote rrr−i := (ri,n+1, · · · , ri,n+m) as the vector of the next
m components of rrri. Note that r−i,k = ri,k+n by the usual index rule (k = 1, · · · ,m).

Definition 23 (Constrained semimartingale reflecting Brownian motion). A constrained
semimartingale reflecting Brownian motion (SRBM) associated with the data (G,bbb,σσσ, {rrri}Ii=1, ν)
is an {Ft}-adapted, n-dimensional processXXX defined on some filtered probability space (Ω,F , {Ft},P)
such that:

(i) P-a.s., XXX t = WWW t +
∑

i∈I
∫

[0,t)
rrr+
i (XXXs,YYY s)dη

i
s for all t ≥ 0,

(ii) under P, WWW t is an n-dimensional Ft-Brownian motion with drift vector bbb, covari-
ance matrix σσσ and initial distribution ν,

(iii) dY j
t =

∑
i∈I
∫

[0,t)
rrr−i,j(XXX t,YYY t)dη

i
t and Y j

t ≥ 0 for j = 1, 2, · · · ,m,

(iv) for each i ∈ I, ηi is a one-dimensional process such that P-a.s.,

(a) ηi0 = 0,

(b) ηi is continuous and nondecreasing,

(c) ηit =
∫

(0,t]
1{Ws∈∂Gi∩∂G}dη

i
s for all t ≥ 0,

(v) P-a.s., (XXX t,YYY t) has continuous paths and (XXX t,YYY t) ∈ G for all t ≥ 0,

Remark 23.1. Specific to the stochastic game in this paper, XXX t is the controlled diffusion
process and YYY t is the resource levels. The domain G restricts the dynamics of both XXX t and
YYY t. Note that the constrained SRBM is slightly different from the standard SRBM (see Kang
and Williams [116]) in the sense that the reflection domain depends on both the diffusion
process XXX t and the resource process YYY t.

For each (xxx,yyy) ∈ Rn+m, let I(xxx,yyy) = {i ∈ I : (xxx,yyy) ∈ ∂Gi}. Let Uε(S) denote the
closed set {(xxx,yyy) ∈ Rn+m : dist((xxx,yyy), S) ≤ ε} for any ε > 0 and S ⊂ Rn+m. If S = ∅, set
Uε(S) = ∅ for any ε > 0. We propose the following assumptions on domain G and reflection
directions {rrri, i ∈ I}:

A1. G is the nonempty domain in Rn+m such that

G = ∩i∈IGi, (3.3.5)

where for each i ∈ I, Gi is a nonempty domain in Rn+m, Gi 6= Rm+n and the
boundary ∂Gi is C1.
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A2. For each ε ∈ (0, 1) there exists R(ε) > 0 such that for each i ∈ I, (xxx,yyy) ∈ ∂Gi∩∂G
and (xxx′, yyy′) ∈ G satisfying ‖(xxx,yyy)− (xxx′, yyy′)‖ < R(ε), we have

〈nnni(xxx,yyy), (xxx′, yyy′)− (xxx,yyy)〉 ≥ −ε‖(xxx,yyy)− (xxx′, yyy′)‖.

A3. The function D : [0,∞)→ [0,∞] is such that D(0) = 0 and

D(ε) = sup
I0∈I,I0 6=∅

sup {dist ((xxx,yyy),∩i∈I0(∂Gi ∩ ∂G)) : (xxx,yyy) ∈ ∩i∈I0Uε(∂Gi ∩ ∂G)} ,

for ε > 0 satisfies D(ε)→ 0 as ε→ 0.

A4. There is a constant L > 0 such that for each i ∈ I, rrri(·) is a uniformly Lips-
chitz continuous function from Rn+m into Rn+m with Lipschitz constant L and
‖rrri(xxx,yyy)‖ = 1 for each (xxx,yyy) ∈ Rn+m.

A5. There is a constant a ∈ (0, 1), and vector valued function ccc(·) = (c1(·), · · · , cI(·))
and ddd(·) = (d1(·), · · · , dI(·)) from ∂G into RI

+ such that for each (xxx,yyy) ∈ ∂G,

(i)
∑

i∈I(xxx,yyy) ci(xxx,yyy) = 1,

min
k∈I(xxx,yyy)

〈 ∑
i∈I(xxx,yyy)

ci(xxx,yyy)nnni(xxx,yyy), rrrk(xxx,yyy)

〉
≥ a,

(ii)
∑

i∈I(xxx,yyy) di(xxx,yyy) = 1,

min
k∈I(xxx,yyy)

〈 ∑
i∈I(xxx,yyy)

di(xxx,yyy)rrri(xxx,yyy),nnnk(xxx,yyy)

〉
≥ a.

Theorem 24. Given assumptions A1-A5. Then there exists a constrained SRBM associated
with the data (G,bbb,σσσ, {rrri, i ∈ I}, ν).

The proof of Theorem 24 is adapted from Kang and Williams [116, Theorem 5.1] and
combined with [116, Theorem 4.3]. More precisely, we construct a sequence of approximation
(random walks) to the constrained SRBM and use the invariance principle to establish the
weak convergence. The main difference is that the constrained SRMB problem in this paper
depends not only on the diffusion process XXX t but also on a degenerate process YYY t indicating
the remaining resource levels. The detailed proof of Theorem 24 is provided in Appendix
B.1.

Now, denote (XXX∗t ,YYY
∗
t ) as a solution to the Skorokhod problem (G,bbb,σσσ, {rrri, i ∈ I}, ν).

If the initial position is in the interior of G, it is not hard to show that P((XXX∗t ,YYY
∗
t ) ∈

∂Gi ∩ ∂Gj for i 6= j, t ≥ 0) = 0. The proof follows the same line as in Williams [184].
In the next three sections, we solve explicitly the game CCC, based on sufficient conditions

in the above verification theorem. We will first analyze games CpCpCp and CdCdCd to gain insight into
the solution structure. For general bbb and σσσ, explicit solution is almost impossible. Therefore
we consider the following bbb, σσσ, with a general hhh for the rest of this paper. That is, we assume
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H1′. bi = 0, i = 1, 2, · · · , N, and σσσ = IIIN .

Moreover, we assume that hi(xxx) := h

(
xi −

∑N
j=1 x

j

N

)
, such that

H2′. h is convex, symmetric, h(0) ≥ 0, h′′ is non-increasing and k ≤ h′′ ≤ K for some
0 < k < K.

3.4 Nash Equilibrium for Game CpCpCp

This section analyzes the Markovian NE of game CpCpCp. Section 3.4 derives the solution to
the HJB equations. Section 3.4 constructs the controlled process from the HJB solution.
Section 3.4 derives the NE for the game CpCpCp and specifies the NE for the two-player game
with h(x) = x2. Recall that in game CpCpCp, AAA = [1, 1, · · · , 1]T ∈ RN×1, and

Yt = y −
N∑
i=1

ξ̌it and Y0− = y. (3.4.1)

Solving HJB equations

Define

x̃i := xi −
∑

j 6=i x
j

N − 1
for 1 ≤ i ≤ N, (3.4.2)

to be the relative position from xi to the center of (xj)j 6=i. For game CpCpCp, if Ai ∩Aj = ∅, the
HJB system simplifies to

(HJB-Cp)


min

{
−αvi + h

(
N − 1

N
x̃i
)

+
1

2

N∑
j=1

vixjxj ,−viy + vixi ,−viy − vixi

}
= 0,

for (xxx, y) ∈ W−i,
min

{
−viy + vixj ,−viy − vixj

}
= 0, for (xxx, y) ∈ Aj, j 6= i.

Now we look for a threshold function fN : R → R with fN(−x) = fN(x) such that the
action region Ai and the waiting region Wi of the ith player are defined by

Ai := (E+
i ∪ E−i ) ∩Qi and Wi := (RN × R+) \ Ai, (3.4.3)

where

E+
i :=

{
(xxx, y) ∈ RN × R+ : x̃i ≥ f−1

N (y)
}

and E−i :=
{

(xxx, y) ∈ RN × R+ : x̃i ≤ −f−1
N (y)

}
,

(3.4.4)
and

Qi := {(xxx, y) ∈ RN × R+ : |x̃i| ≥ |x̃k| for k < i, |x̃i| > |x̃k| for k > i}.
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Note here the partition {Qi}1≤i≤N is introduced to avoid simultaneous jumps by multiple
players so that Ai ∩Aj = ∅. The key idea of designing the partition is that if several players
are in E+

i ∪ E−i , the player who is the farthest away from the center controls. If ties occur,
the player with the largest index controls. It is easy to see that Wi 6= ∅ for 1 ≤ i ≤ N , and
Ai ∩ Aj = ∅ for i 6= j.

We seek a solution vi(xxx, y) ∈ C2(W−i) such that if |x̃i| < f−1
N (y), it is of the form,

vi(xxx, y) = pN(x̃i) + AN(y) cosh

(
x̃i
√

2(N − 1)α

N

)
, (3.4.5)

where

pN(x) := E
∫ ∞

0

e−αth

(
N − 1

N
x+

√
N − 1

N
Bt

)
dt, (3.4.6)

with Bt being a one-dimensional Brownian motion. Note that pN(x̃i) is a solution to −αvi+
h(N−1

N
x̃i)+ 1

2

∑N
j=1 v

i
xjxj = 0, which corresponds to the waiting region, and cosh(

√
2(N−1)α

N
x̃i)

is a solution to −αvi + 1
2

∑N
j=1 v

i
xjxj = 0. If there is no resource, then vi(xxx, y) = pN(x̃i), so

AN(0) = 0. The smooth-fit principle states that, along the boundary y = fN(x̃i) between
the continuation set W and the action set Ai, vi has certain regularity properties across
the hyperplane. Now applying the smooth-fit principle, we get vixixi = viyy = −vixiy at the

boundary y = fN(x̃i) with x̃i > 0. This follows from vxi+vy = 0 and we expect vi ∈ C2(W−i).
A
′

N(fN) = −p′N cosh

(
x

√
2(N − 1)α

N

)
+ p

′′

N

√
N

2(N − 1)α
sinh

(
x

√
2(N − 1)α

N

)
,

AN(fN) = p
′

N

√
N

2(N − 1)α
sinh

(
x

√
2(N − 1)α

N

)
− p′′N

N

2(N − 1)α
cosh

(
x

√
2(N − 1)α

N

)
.

As a consequence,

f ′N(x) =
p
′
N − N

2(N−1)α
p
′′′
N

p
′′
N

√
N

2(N−1)α
tanh

(
x
√

2(N−1)α
N

)
− p′N

, (3.4.7)

and

AN(y) = p
′

N

√
N

2(N − 1)α
sinh

(
x

√
2(N − 1)α

N

)
−p′′N

N

2(N − 1)α
cosh

(
x

√
2(N − 1)α

N

)∣∣∣∣∣
x=f−1

N (y)

.

(3.4.8)
Moreover, the curve y = fN(x) intersects {x > 0} at x0 such that AN(fN(x0)) = 0. That is,
under Assumptions H1′-H2′, x0 is the unique positive root of√

2(N − 1)α

N
tanh

(
z

√
2(N − 1)α

N

)
=
p
′′
N(z)

p
′
N(z)

. (3.4.9)
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The proof of the unique positive root of (3.4.9) is provided in Appendix B.3.
Specializing to the case h(x) = x2, we get

psqN (x) =

(
N − 1

N

)2
x2

α
+
N − 1

Nα2
, (3.4.10)

f sqN (x) =

∫ |x|∧c√ N
2(N−1)α

c
√

N
2(N−1)α

(
1

z

√
N

2(N − 1)α
tanh

(
z

√
2(N − 1)α

N

)
− 1

)−1

dz, (3.4.11)

where c is the unique positive root of z tanh z = 1, and

AsqN (y) = − N

N − 1
α2(cosh z − z sinh(z))

∣∣∣∣∣
z=f−1

N (y)
√

2(N−1)α
N

. (3.4.12)

Controlled dynamics

Given the candidate solution to (HJB-Cp), we derive the corresponding NEP by showing the
existence of a weak solution (XXX t, Yt) to a Skorokhod problem with an unbounded domain,
where the boundary of the domain depends on both the diffusion termXXX t and the degenerate
term YYY t.

To start, let

WNE : = {(xxx, y) ∈ RN+1 : |x̃i| < f−1
N (y) for 1 ≤ i ≤ N}

=

{
(xxx, y) ∈ RN+1 : nnni · xxx > −

√
N − 1

N
f−1
N (y) for 1 ≤ i ≤ 2N

}
(3.4.13)

= ∩Ni=1

(
E−i ∪ E+

i

)c
.

The normal direction of each face is given by (i = 1, 2, · · · , N)

nnni = ci

(
− 1

N − 1
, · · · ,− 1

N − 1
, 1,− 1

N − 1
, · · · ,− 1

N − 1
, (f−1

N )′(y)

)
,

nnni+N = ci+N

(
1

N − 1
, · · · , 1

N − 1
,−1,

1

N − 1
, · · · , 1

N − 1
, (f−1

N )′(y)

)
,

with the ith component to be ±1. ci and cN+i are normalizing constants such that ‖nnni‖ =
‖nnnN+i‖ = 1.

Note thatWNE is an unbounded domain in RN+1 with 2N boundaries. For i = 1, 2, · · · , N ,
define the 2N faces of WNE

Fi = {(xxx, y) ∈ ∂WNE | (xxx, y) ∈ ∂E+
i },

Fi+N = {(xxx, y) ∈ ∂WNE | (xxx, y) ∈ ∂E−i }.
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Denote the reflection direction on each face as

rrri = c′i (0 · · · ,−1, · · · 0,−1) ,

rrrN+i = c′N+i (0 · · · , 1, · · · 0,−1) ,

with the ith component to be ±1. c′i and c′N+i are normalizing constants such that ‖rrri‖ =
‖rrrN+i‖ = 1. NE strategy is defined as follows.

Case 1: (XXX0−, Y0−) = (xxx, y) ∈ WNE. One can check that WNE defined in (3.4.13) and
{rrri}2N

i=1 defined above satisfies assumptions A1-A5. According to Theorem 24, there exists
a weak solution to the Skorokhod problem with data

(
WNE, {rrri}2N

i=1, bbb,σσσ,xxx ∈ WNE

)
. (See

Appendix B.2 for the satisfiability of A1-A5.)

Case 2: (XXX0−, Y0−) = (xxx, y) /∈ WNE, that is, there exists i ∈ {1, · · · , N} such that
(XXX0−, Y0−) ∈ Ai. We show that the controlled process (XXX,Y ) jumps sequentially to a
point (x̂xx, ŷ) ∈ WNE for some 0 ≤ ŷ < y, and then follows the solution to the Skorokhod
problem starting at (x̂xx, ŷ) ∈ WNE. In this case, the jumps will either stop in finite steps, or
converge to a limit point (x̂xx, ŷ) ∈ WNE for 0 ≤ ŷ < y.

For each k ≥ 1, let xxxk = (x1
k, · · · , xNk ) be the positions, and yk be the remaining resource

after the kth jump. If (xxxk, yk) ∈ Ai, then the ith player will jump until XXX hits ∂E+
i ∪ ∂E−i .

Suppose that the jumps do not stop in finite steps. At the kth step, let x
(1)
k ≤ · · · ≤ x

(N)
k be

the order statistics of xxxk. Note that only the player with position x
(1)
k or x

(N)
k intervenes. Then

(x
(1)
k )k≥0 is non-decreasing and bounded from above by x

(N)
0 , therefore (x

(1)
k )k≥0 converges,

and so does (x
(N)
k )k≥0. Hence (xxxk)k≥0 converges. Since (yk)k≥0 is decreasing and bounded

below by 0, it converges to some point ŷ. Now suppose that (xxxk, yk)→ (x̂xx, ŷ) /∈ ∂WNE. Let
i∗ ∈ {1, · · · , N} such that x̂xx ∈ Ai∗ . For k sufficiently large, we have |xxxk − x̂xx| < ε and by the
triangle inequality,∣∣∣∣∣xi∗k −

∑
j 6=i∗ x

j
k

N − 1

∣∣∣∣∣ ≥ max
1≤i≤N

{∣∣∣∣∣x̂ik −
∑

j 6=i x̂
j
k

N − 1

∣∣∣∣∣− f−1
N (ŷ)

}
− 2ε.

Thus the ith∗ player should jump at least

(
max1≤i≤N

{∣∣∣∣x̂ik − ∑
j 6=i x̂

j
k

N−1

∣∣∣∣− f−1
N (ŷ)

}
− 2ε

)
∧ ŷ in

the (k + 1)th step. It suffices to take ε sufficiently small to get a contradiction.
In summary, the controlled process inherits a rich structure from the candidate solution.

• If starting at a point in the common waiting region of all N players, then the controlled
process is a reflected Brownian motion with an evolving free boundary.

• If staring at a point outside the common waiting region, then the controlled process
follows rank-dependent dynamics with a moving origin.
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NE for the N-player game

Combining the results in Sections 3.4 and 3.4, and based on the verification theorem devel-
oped in Section 3.3, we have the following theorem of the NE for the N -player game (3.2.9)
with constraint (3.4.1).

Theorem 25 (NE for the N -player game CpCpCp). Assume H1′-H2′. Let vi : RN ×R+ → R be
defined by

vi(xxx, y) =



pN(x̃i) + AN(y) cosh

(
x̃i
√

2(N−1)α
N

)
if (xxx, y) ∈ W−i ∩Wi,

vi
(
xxx−i, xi+ +

∑
k 6=i x

k

N−1
, fN(xi+)

)
if (xxx, y) ∈ W−i ∩ E+

i ,

vi
(
xxx−i,

∑
k 6=i x

k

N−1
− xi−, fN(xi−)

)
if (xxx, y) ∈ W−i ∩ E−i ,

vi
(
xxx−j, xj+ +

∑
k 6=j x

k

N−1
, fN(xj+)

)
if (xxx, y) ∈ Aj ∩ E+

j for j 6= i,

vi
(
xxx−j,

∑
k 6=j x

k

N−1
− xj−, fN(xj−)

)
if (xxx, y) ∈ Aj ∩ E−j for j 6= i,

(3.4.14)

where

• Ai and Wi are given in (3.4.3), and E±i is given in (3.4.4) with fN(·) defined by
(3.4.7)-(3.4.9),

• x̃i is defined by (3.4.2), and AN(·) is defined by (3.4.8),

• xi+ is the unique positive root of z− fN(z) = x̃i− y, and xi− is the unique negative root
of z + fN(z) = x̃i + y.

Then vi is the game value associated with an MNEP ξξξ∗ = (ξ1∗, · · · , ξN∗). That is,

vi(xxx, y) = J iCp(xxx, y;ξξξ∗).

Moreover, the controlled process (XXX∗, Y ∗) under ξξξ∗ is given in Section 3.4.

Proof. Now we check that conditions (i)-(vii) in Theorem 22 are satisfied.

(i) Based on the analysis in Section 3.4, when (xxx, y) ∈ WNE, the NE strategy is a solution
to the Skorokhod problem specified in Case 2, which is a continuous process. When
(xxx, y) /∈ WNE, the sequential push specified in Case 1 satisfies the “no simultaneous
jump” condition.

(ii) Solution (3.4.14) satisfies the derivation in Section 3.4 and hence satisfies the HJB in
W−i.

(iii) Since ‖∇2vi‖ ≤ K, and the control ξξξ ∈ SN(xxx, y) has finite variations, the transversality
condition (iii) is satisfied.
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(iv) Solution (3.4.14) satisfies the smooth-fit principle in Section 3.4, therefore, vi ∈ C2(W−i).

vi is convex in W−i since pN(x̃i) + AN(y) cosh

(
x̃i
√

2(N−1)α
N

)
is convex.

(v) Since f−1
N is non-increasing, in W−i, x̃i ≤ f−1

N (y) ≤ f−1
N (0) < ∞. This implies that x̃i

is bounded in W−i. By the definition of AN(y) in (3.4.5), AN(y) is bounded in W−i.
Hence vixj is bounded in W−i by definition (3.4.8).

(vi) By the construction of Case 1 and Case 2, when (xxx, y) /∈ W−i, there is a sequential push
at time 0 to move the joint position to some point (x̂xx, ŷ) ∈ ∂W−i. when (xxx, y) ∈ W−i,
(ξξξ−i∗, , ξi) forms a solution to the Skorokhod problem in ∩j 6=i(E−j ∪E+

j )c. It is easy to
verify that ∩j 6=i(E−j ∪ E+

j )c ⊂ W−i and the Skorokhod problem with ∩j 6=i(E−j ∪ E+
j )c

has a weak solution. Therefore condition (vi) is satisfied.

(vii) Since vi has the same value before and after player j’s control, equation (3.3.2) is
trivially satisfied.

To illustrate, we specialize Theorem 25 to the case N = 2 and h(x) = x2. In this case,
we can also construct the strong solution of NE strategies.

Corollary 25.1 (NE for the two-player game CpCpCp). Assume H1′-H2′. The following controls
ξ1∗,+
t = 0,

ξ1∗,−
t = 0,

ξ2∗,+
t = max

{
0,max0≤s≤t{0, x1 − x2 +B1

s −B2
s − ξ2∗,+

s + ξ2∗,−
s − (f sq2 )−1(y − ξ2∗,+

s − ξ2∗,−
s )}

}
,

ξ2∗,−
t = max

{
0,max0≤u≤t{0, x2 − x1 +B2

s −B1
s + ξ2∗,+

s − ξ2∗,−
s − (f sq2 )−1(y − ξ2∗,+

s − ξ2∗,−
s )}

}
,

give an MNEP for the two-player game (3.2.9) with (3.4.1) and h(x) = x2, where (f sq2 )−1

is defined in (3.4.11). Moreover, let v1 and v2 be the associated values of the above MNEP
(ξ1∗, ξ2∗), then

v1(x1, x2, y) =


(x1−x2)2

4α
+ 1

2α2 + A(y) cosh ((x1 − x2)
√
α) if |x1 − x2| ≤ (f sq2 )−1(y),

v1(x1, x1 + x2
+, f2(x2

+)) if x1 ≤ x2 − (f sq2 )−1(y),

v1(x1, x1 − x2
−, f2(x2

−)) if x1 ≥ x2 + (f sq2 )−1(y),
(3.4.15)

and

v2(x1, x2, y) =


(x2−x1)2

4α
+ 1

2α2 + A(y) cosh ((x2 − x1)
√
α) if |x2 − x1| ≤ (f sq2 )−1(y),

v2(x1, x1 − x2
−, f2(x2

−)) if x2 ≤ x1 − (f sq2 )−1(y),

v2(x1, x1 + x2
+, f2(x2

+))) if x2 ≥ x1 + (f sq2 )−1(y),
(3.4.16)
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where
A(y) = −2α2(cosh(z)− z sinh(z))|z=√α(fsq2 )

−1
(y), (3.4.17)

and x2
+ is the unique root of z−f sq2 (z) = x1−y, and x2

− is the unique root of z+f sq2 (z) = x1+y.

Note that under partition {Qi}i=1,2, we have A1 = ∅, hence (ξ1∗,+, ξ1∗,−) = (0, 0).

(a) No control from player one. (b) Control from player two.

Figure 3.2: Case CpCpCp: MNEP when N = 2.

3.5 Nash Equilibrium for Game CdCdCd

In this section, we study the MNEP of the N -player game CdCdCd. That is A = INININ ∈ RN×N , and

Y i
t = yi − ξ̌it with Y i

0− = yi. (3.5.1)

Recall that the major difference between game CpCpCp and game CdCdCd is that, in the former
all N players share a fixed amount of the same resource, while in the latter each player
has her own individual fixed resource constraint. This difference is reflected in (HJB −Cp)
and (HJB − Cd) in terms of their dimensionality, and in each player’s control based on
the remaining resources. In particular, (HJB − Cp) and the state space (xxx, y) of CpCpCp are of
dimension N + 1, whereas (HJB−Cd) and the state space (xxx,yyy) of CdCdCd are of dimension 2N .
Moreover, in game CpCpCp, the gradient constraint is −viy ± vixi for player i. In contrast, in game
CdCdCd, each player controls her own resource level, the gradient constraint becomes −viyi ± vixi
for player i. So if Ai ∩ Aj = ∅, the HJB equation for vi(xxx,yyy) in game CCCd is as follows.

(HJB-Cd)


min

{
−αvi + h

(
N − 1

N
x̃i
)

+
1

2

N∑
j=1

vixjxj ,−viyi + vixi ,−viyi − vixi

}
= 0,

for (xxx,yyy) ∈ W−i,

min
{
−viyj + vixj ,−viyj − vixj

}
= 0, for (xxx,yyy) ∈ Aj, j 6= i.

Note that the control policy of the ith player only depends on (xxx, yi) in W−i. As seen
in Section 3.4, for the controlled process of type CpCpCp, upon hitting the boundary of the
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polyhedron, the polyhedron will expand in all directions. While for the controlled process of
type CdCdCd, only one direction of the the polyhedron will move once hit.

To proceed, similar to Section 3.4, define the action region Ai∈ RN × RN
+ and the waiting

region Wi of the ith player by

Ai := (E+
i ∪ E−i ) ∩Qi and Wi := RN × RN

+ \ Ai, (3.5.2)

where

Qi :=
{

(xxx,yyy) ∈ RN × RN
+ : |x̃i| − f−1

N (yi) ≥ |x̃k| − f−1
N (yk) for k < i,

|x̃i| − f−1
N (yi) > |x̃k| − f−1

N (yk) for k > i
}
,

and

E+
i :=

{
(xxx,yyy) ∈ RN × RN

+ : x̃i ≥ f−1
N (yi)

}
and E−i :=

{
(xxx,yyy) ∈ RN × RN

+ : x̃i ≤ −f−1
N (yi)

}
.

(3.5.3)
Recall the definition of the threshold function fN(·) from (3.4.7)-(3.4.9), we now investigate
control of player i which only depends on (xxx, yi) in W−i. That is, for |x̃i| < f−1

N (yi),

vi(xxx,yyy) = pN(x̃i) + AN(yi) cosh

(
x̃i
√

2(N − 1)α

N

)
, (3.5.4)

is a solution to (HJB-Cd), where pN(·) is defined by (3.4.6), and AN(·) defined by (3.4.8).
The next step is to construct the controlled process (XXX,YYY ) corresponding to the HJB

solution (3.5.4). Let

WNE : = {(xxx,yyy) ∈ RN × RN
+ : |x̃i| < f−1

N (yi) for 1 ≤ i ≤ N}
= ∩Ni=1

(
E−i ∪ E+

i

)c
. (3.5.5)

The normal direction on each face is given by

nnni = ci

(
1

N − 1
, · · · , 1

N − 1
− 1,

1

N − 1
· · · , 1

N − 1
; 0, · · · , 0, (f−1

N )′
(
yi
)
, 0, · · · , 0

)
,

nnnN+i = cN+i

(
− 1

N − 1
, · · · ,− 1

N − 1
, 1,− 1

N − 1
, · · · ,− 1

N − 1
; 0, · · · , 0, (f−1

N )′
(
yi
)
, 0, · · · , 0

)
,

with the ith component to be ±1 and the (N + i)th component to be (f−1
N )′(yi). ci and

cN+i are normalizing constants such that ‖nnni‖ = ‖nnnN+i‖ = 1.
Note thatWNE is an unbounded domain in R2N with 2N boundaries. For i = 1, 2, · · · , N ,

define the 2N faces of WNE

Fi = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E+
i },

Fi+N = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E−i }.
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Denote the reflection direction on each face as

rrri = c′i (0 · · · , 0,−1, 0, · · · 0; 0, · · · , 0,−1, 0, · · · , 0) ,

rrrN+i = c′N+i (0 · · · , 0, 1, 0, · · · 0; 0, · · · , 0,−1, 0, · · · , 0) ,

with the ith component to be ±1 and the (N + i)th component to be 1. c′i and c′N+i are
normalizing constants such that ‖rrri‖ = ‖rrrN+i‖ = 1.

The NE strategy is defined as follows.

Case 1: (XXX0−,YYY 0−) = (xxx,yyy) ∈ WNE. One can check that WNE defined in (3.5.5) and
{rrri}2N

i=1 defined above satisfies assumptions A1-A5. Therefore, there exists a weak solution
to the Skorokhod problem with data

(
WNE, {rrri}2N

i=1, bbb,σσσ,xxx ∈ WNE

)
. (See Appendix B.2 for

the satisfiability of A1-A5.)

Case 2: (XXX0−,YYY 0−) = (xxx,yyy) /∈ WNE. There exists i ∈ {1, · · · , N} such that (XXX0−,YYY 0−) ∈
Ai. For each k ≥ 1, let xxxk = (x1

k, · · · , xNk ) be the positions, and yyyk = (y1
k, · · · , yNk ) be the

resource remaining after the kth control. If (xxxk, yyyk) ∈ Ai, then the ith player will control
until XXX hits ∂E+

i ∪ ∂E−i . The argument in Section 3.4 shows that the controlled process
XXX controls sequentially to a point (x̂xx, ŷyy) ∈ WNE for 000 ≤ ŷ̂ŷy ≤ yyy. Then (XXX,YYY ) follows the
solution to the Skorokhod problem starting at (x̂xx, ŷyy).

In summary, the NE for the N -player game (3.2.9) with constraint CdCdCd is stated as follows.

Theorem 26 (NE for the N -player game CdCdCd). Assume H1′-H2′. Let vi : RN ×RN
+ → R be

defined by

vi(xxx,yyy) =



pN(x̃i) + AN(yi) cosh

(
x̃i
√

2(N−1)α
N

)
if (xxx,yyy) ∈ W−i ∩Wi,

vi
(
xxx−i, xi+ +

∑
k 6=i x

k

N−1
, fN(xi+)

)
if (xxx,yyy) ∈ W−i ∩ E+

i ,

vi
(
xxx−i,

∑
k 6=i x

k

N−1
− xi−, fN(xi−)

)
if (xxx,yyy) ∈ W−i ∩ E−i ,

vi
(
xxx−j, xj+ +

∑
k 6=j x

k

N−1
, yi
)

if (xxx,yyy) ∈ Aj ∩ E+
j for j 6= i,

vi
(
xxx−j,

∑
k 6=j x

k

N−1
− xj−, yi

)
if (xxx,yyy) ∈ Aj ∩ E−j for j 6= i,

(3.5.6)

where

• Ai and Wi are given in (3.5.2), and E±i is given in (3.5.3) with fN(·) defined by
(3.4.7)-(3.4.9),

• x̃i is defined by (3.4.2), and AN(·) is defined by (3.4.8),

• xi+ is the unique positive root of z− fN(z) = x̃i− y, and xi− is the unique negative root
of z + fN(z) = x̃i + y.
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Then vi is the game value associated with an MNEP ξξξ∗ = (ξ1∗, · · · , ξN∗). That is,

vi(xxx,yyy) = J iCd(xxx,yyy;ξξξ∗).

Moreover, the controlled process (XXX∗,YYY ∗) under ξξξ∗ is given in this section:

Case 1 if (xxx,yyy) ∈ WNE, and

Case 2 if (xxx,yyy) /∈ WNE.

Theorem 26 can be verified in a similar way as Theorem 25. Specializing to the two-player
game with h(x) = x2, we have the following result.

Corollary 26.1 (NE for N = 2 for game CdCdCd). Assume H1′-H2′. The following controls

ξ1∗,+
t := ∆ξ1∗,+

0 +

∫ t∧τ1

0

1{XXX∗s∈F1(Y 1∗
s )}1{Y 1∗

s >Y 2∗
s }dη

1
s ,

ξ1∗,−
t := ∆ξ1∗,−

0 +

∫ t∧τ1

0

1{XXX∗s∈F3(Y 1∗
s )}1{Y 1∗

s >Y 2∗
s }dη

3
s ,

Y 1∗
t := y1 − ξ̂1∗

t , τ1 := inf{t ≥ 0 : Y 1∗
t = 0},

ξ2∗,+
t := ∆ξ2∗,+

0 +

∫ t∧τ2

0

1{XXX∗s∈F2(Y 2∗
s )}1{Y 2∗

s ≥Y 1∗
s }dη

2
s ,

ξ2∗,−
t := ∆ξ2∗,−

0 +

∫ t∧τ2

0

1{XXX∗t∈F4(Y 2∗
s )}1{Y 2∗

s ≥Y 1∗
s }dη

4
s ,

Y 2∗
t := y2 − ξ̂2∗

t , τ2 := inf{t ≥ 0 : Y 2∗
t = 0},

(3.5.7)

give an MNEP for the two-player game CdCdCd with h(x) = x2, where

• F1(y) = F4(y) =
{

(x1, x2) : x1 − x2 = −(f sq2 )−1(y)
}

,

• F2(y) = F3(y) =
{

(x1, x2) : x1 − x2 = (f sq2 )−1(y)
}

,

• ηi∗t are non-decreasing processes with ηi∗0− = 0 (i = 1, 2, 3, 4),

•
∆ξ2∗,+

0 =

{
x2
−, if y2 ≥ y1 and x2 ≤ x1 − (f sq2 )−1(y2),

x2
−, if y2 < y1 and x2 ≤ x1

+ − (f sq2 )−1(y2),

∆ξ2∗,−
0 =

{
x2

+, if y2 ≥ y1 and x2 ≥ x1 − (f sq2 )−1(y2),

x2
+, if y2 < y1 and x2 ≥ x1

− − (f sq2 )−1(y2),

∆ξ1∗,+
0 =

{
x1
−, if y1 > y2 and x1 ≤ x2 − (f sq2 )−1(y1),

x1
−, if y1 < y2 and x1 ≤ x2

+ − (f sq2 )−1(y1),
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∆ξ1∗,−
0 =

{
x1

+, if y1 > y2 and x1 ≥ x2 − (f sq2 )−1(y1),

x1
+, if y1 < y2 and x1 ≥ x2

− − (f sq2 )−1(y1),

• xi+ is the unique root of z−f sq2 (z) = xj−y, xi− is the unique root of z+f sq2 (z) = xj+y,
with f sq2 (·) is given by (3.4.11). (i, j = 1, 2 and i 6= j).

Moreover, let v1 and v2 be the corresponding values of the above MNEP (ξ1∗, ξ2∗). Then if
y1 > y2,

v1(x1, x2, y1) =


(x1−x2)2

4α
+ 1

2α2 + A(y1) cosh ((x1 − x2)
√
α) if |x1 − x2| ≤ (f sq2 )−1(y1),

v1(x1
−, x

2 − x1
−, f

sq
2 (x1

−)) if x1 ≤ x2 − (f sq2 )−1(y1),

v1(x1
+, x

2 + x1
+, f

sq
2 (x1

+)) if x1 ≥ x2 + (f sq2 )−1(y1),

v2(x1, x2, y2) =


(x2−x1)2

4α
+ 1

2α2 + A(y2) cosh ((x2 − x1)
√
α) if |x2 − x1| ≤ (f sq2 )−1(y2),

v2(x1
+, x

2, y2) if x2 ≤ x1 − (f sq2 )−1(y2),

v2(x1
−, x

2, y2) if x2 ≥ x1 + (f sq2 )−1(y2);
(3.5.8)

and if y1 ≤ y2,

v1(x1, x2, y1) =


(x1−x2)2

4α
+ 1

2α2 + A(y1) cosh ((x1 − x2)
√
α) if |x1 − x2| ≤ (f sq2 )−1(y1),

v1(x1, x2
+, y

1) if x1 ≤ x2 − (f sq2 )−1(y1),

v1(x1, x2
−, y

1) if x1 ≥ x2 + (f sq2 )−1(y1),

v2(x1, x2, y2) =


(x2−x1)2

4α
+ 1

2α2 + A(y2) cosh ((x2 − x1)
√
α) if |x2 − x1| ≤ (f sq2 )−1(y2),

v2(x1, x1 + x2
+, f

sq
2 (x2

+)) if x2 ≤ x1 − (f sq2 )−1(y2),

v2(x1, x1 − x2
−, f

sq
2 (x2

−)) if x2 ≥ x1 + (f sq2 )−1(y2),
(3.5.9)

where A(·) is given by (3.4.17).

Comparison of Corollary 25.1 and Corollary 26.1. Consider N = 2 and h(x) = x2.
In game CpCpCp, only player two controls the two separating hyperplanes whereas player one does
nothing, see Figure 3.2. In gameCpCpCp, player one controls the two separating hyperplanes when
y1 > y2 and she does nothing when y2 ≥ y1. See Figure 3.3.
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(a) y1 ≤ y2: no control from player one. (b) y1 > y2: player one controls.

(c) y1 ≤ y2: player two controls. (d) y1 > y2: no control from player two.

Figure 3.3: Case CdCdCd: MNEP when N = 2.

3.6 Nash Equilibrium for game CCC

In the previous two sections, we have dealt with two special games CpCpCp and CdCdCd. Analysis of
these two games provides important insight into the solution structure of the general game
CCC. Namely, the NE strategy depends on the positions of players and their remaining resource
levels. With these two special cases in mind, now recall that in game CCC,

dY j
t = −

N∑
i=1

aijY
j
t−∑M

k=1 aikY
k
t−
dξ̌it and Y j

0− = yj≥ 0. (3.6.1)

For the HJB equation (HJB−C), the gradient constraint is more complicated than the
two special cases CpCpCp and CdCdCd. When Ai ∩ Aj = ∅,

(HJB-C)



min

{
− αvi + h+

1

2

N∑
j=1

vixjxj ,−
M∑
j=1

aijy
j∑M

k=1 aiky
k
viyj + vixi ,−

M∑
j=1

aijy
j∑M

k=1 aiky
k
viyj − v

i
xi

}
= 0,

for (xxx,yyy) ∈ W−i,

min
{
−
∑M

k=1
ajky

k∑M
s=1 ajsy

s
vi
yk

+ vi
xj
,−
∑M

k=1
ajky

k∑M
s=1 ajsy

s
vi
yk
− vi

xj

}
= 0,

for (xxx,yyy) ∈ Aj , j 6= i.



CHAPTER 3. STOCHASTIC GAME WITH RESOURCE CONSTRAINTS 71

In particular, if AAA = [1, 1, · · · , 1]T ∈ RN×1, then (HJB − C) becomes (HJB − Cp); and if
AAA = INININ , then it is (HJB − Cd).

Similar to Section 3.4, define the action region Ai∈ RN × RM+ and the waiting region Wi of the
ith player by

Ai := (E+
i ∪ E

−
i ) ∩Qi and Wi := RN × RN+ \ Ai, (3.6.2)

where

Qi :=

(xxx,yyy) ∈ RN × RM+ : |x̃i| − f−1
N

 M∑
j=1

aijy
j

 ≥ |x̃k| − f−1
N

 M∑
j=1

akjy
j

 for k < i,

|x̃i| − f−1
N

 M∑
j=1

aijy
j

 > |x̃k| − f−1
N

 M∑
j=1

akjy
j

 for k > i

 ,

and

E+
i :=

(xxx,yyy) ∈ RN × RM+ : x̃i ≥ f−1
N

 M∑
j=1

aijy
j

 and E−i :=

(xxx,yyy) ∈ RN × RM+ : x̃i ≤ −f−1
N

 M∑
j=1

aijy
j

 .

(3.6.3)
From the analysis in Sections 3.4 and 3.5, and the “guess” that the control policy of player i only
depends on (xxx,

∑M
j=1 aijy

j) when in W−i, we get for |x̃i| < f−1
N (
∑M

j=1 aijy
j),

vi(xxx,yyy) = pN (x̃i) +AN

 M∑
j=1

aijy
j

 cosh

(
x̃i
√

2(N − 1)α

N

)
, (3.6.4)

is a solution to (HJB-C), where pN (·) is defined by (3.4.6), and AN (·) defined by (3.4.8).
The next step is to construct the controlled process (XXX,YYY ) corresponding to the HJB solution

(3.6.4).

WNE : =

(xxx,yyy) ∈ RN × RM+ : |x̃i| < f−1
N

 M∑
j=1

aijy
j

 for 1 ≤ i ≤ N


= ∩Ni=1

(
E−i ∪ E

+
i

)c
. (3.6.5)

The normal direction on each face is given by

nnni = ci

 1

N − 1
, · · · ,−1, · · · , 1

N − 1
; (f−1

N )′

 M∑
j=1

aijy
j

 ai1, · · · , (f−1
N )′

 M∑
j=1

aijy
j

 aiM

 ,

nnnN+i = cN+i

− 1

N − 1
, · · · , 1, · · · ,− 1

N − 1
; (f−1

N )′

 M∑
j=1

aijy
j

 ai1, · · · , (f−1
N )′

 M∑
j=1

aijy
j

 aiM

 ,
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with the ith component being ±1, and ci and cN+i the normalizing constants such that ‖nnni‖ =
‖nnnN+i‖ = 1.

Note that WNE is an unbounded domain in R2N with 2N boundaries. For i = 1, 2, · · · , N ,
define the 2N faces of WNE

Fi = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E+
i },

Fi+N = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E−i }.

Denote the reflection direction on each face as

rrri = c′i

(
0 · · · ,−1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

rrrN+i = c′N+i

(
0 · · · , 1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

with the ith component to be ±1. c′i and c′N+i are normalizing constants such that ‖rrri‖ = ‖rrrN+i‖ =
1.

NE strategy is defined as follows.

Case 1: (XXX0−,YYY 0−) = (xxx,yyy) ∈ WNE . One can check that WNE defined in (3.6.5) and {rrri}2Ni=1

defined above satisfies assumptions A1-A5. Therefore, there exists a weak solution to the Sko-
rokhod problem with data

(
WNE , {rrri}2Ni=1, bbb,σσσ,xxx ∈ WNE

)
. (See Appendix B.2 for the satisfiability

of A1-A5.)

Case 2: (XXX0−,YYY 0−) = (xxx,yyy) ∈ WNE . There exists i ∈ {1, · · · , N} such that (XXX0−,YYY 0−) ∈
Ai. For each k ≥ 1, let xxxk = (x1

k, · · · , xNk ) be the positions, and yyyk = (y1
k, · · · , yMk ) be the

remaining resource level after the kth jump. If (xxxk, yyyk) ∈ Ai, then the ith player will jump until
XXX hits ∂E+

i ∪ ∂E
−
i . The argument in Section 3.4 shows that the controlled process (XXX,YYY ) jumps

sequentially to a point (x̂xx, ŷyy) ∈ WNE for 000 ≤ ŷyy ≤ yyy. Then (XXX,YYY ) follows the solution to the
Skorokhod problem starting at (x̂xx, ŷyy).

The NE for the N -player game (3.2.9) with constraint CCC is stated as follows.

Theorem 27 (NE for the N -player game CCC). Assume H1′-H2′. Let vi : RN ×RM+ → R be defined
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by

vi(xxx,yyy) =



pN (x̃i) +AN (
∑M

j=1 aijy
j) cosh

(
x̃i
√

2(N−1)α
N

)
if (xxx,yyy) ∈ W−i ∩Wi,

vi
(
xxx−i, xi+ +

∑
k 6=i x

k

N−1 , fN (xi+)

)
if (xxx,yyy) ∈ W−i ∩ E+

i ,

vi
(
xxx−i,

∑
k 6=i x

k

N−1 − xi−, fN (xi−)

)
if (xxx,yyy) ∈ W−i ∩ E−i ,

vi
(
xxx−j , xj+ +

∑
k 6=j x

k

N−1 , yi
)

if (xxx,yyy) ∈ Aj ∩ E+
j for j 6= i,

vi
(
xxx−j ,

∑
k 6=j x

k

N−1 − xj−, yi
)

if (xxx,yyy) ∈ Aj ∩ E−j for j 6= i,

(3.6.6)
where

• Ai and Wi are given in (3.6.2), and E±i is given in (3.6.3) with fN (·) defined by (3.4.7)-
(3.4.9),

• x̃i is defined by (3.4.2), and AN (·) defined by (3.4.8),

• xi+ is the unique positive root of z − fN (z) = x̃i −
∑M

j=1 aijy
j, and xi− is the unique negative

root of z + fN (z) = x̃i +
∑M

j=1 aijy
j.

Then vi is the value associated with a MNEP ξξξ∗ = (ξ1∗, · · · , ξN∗). That is,

vi(xxx,yyy) = J iC(xxx,yyy;ξξξ∗).

Moreover, the controlled process (XXX∗,YYY ∗) under ξξξ∗ is a solution to a Skorokhod problem as described
in Case 1 if (xxx,yyy) ∈ WNE, and described as Case 2 if (xxx,yyy) /∈ WNE.

Remark 27.1. Since each player makes decisions based on the total available resource and is
indifferent to the resource identity, we assume the boundary in the smooth-fit principle satisfies
AN (y1, · · · , yM ) = AN (

∑M
j=1 aijy

j) for player i. Note that the value function depends on yyy only

through
∑

j aijy
j. Therefore if we denote ṽi(xxx, z) := vi(xxx,yyy) and z =

∑N
j=1 aijy

j, it is easy to verify

that
∑M

j=1
aijy

j∑M
k=1 aiky

k
vi
yj

=
∑M

j=1
aijy

j∑M
k=1 aiky

k
aij ṽ

i
z = ṽiz. Hence the calculation is reduced to that for

Theorem 25.

3.7 Comparing Games CpCpCp, CdCdCd and CCC

In this section, we compare the games CpCpCp, CdCdCd and CCC. We will first compare their game values
and discuss their economic implications. We will then discuss their difference in terms of the NEP.
Finally, we discuss their perspective NEs in the framework of controlled rank-dependent SDEs.

To make the games comparable, let us assume y =
∑N

j=1 y
j . Let us also consider a special

sharing game CsCsCs which can be connected with both CdCdCd and CpCpCp:

CsCsCs: M = N and aii = 1 for i = 1, 2, · · · , N .



CHAPTER 3. STOCHASTIC GAME WITH RESOURCE CONSTRAINTS 74

Pooling, Dividing, and Sharing

Denote the game value and waiting region for each player i as viCp and WCp
i respectively for game

CpCpCp. Similar notations are defined for CdCdCd and CsCsCs.

Comparing game values.

Proposition 28 (Game values comparison). Assume H1′-H2′. For each (xxx,yyy) ∈ RN × RN+ , if

(xxx, y) ∈ WCp
i , and (xxx,yyy) ∈ WCd

i ∩W
Cs
i , then,

viCp(xxx, y) ≤ viCs(xxx, y) ≤ viCd(xxx,yyy), i = 1, 2, · · · , N.

Proof. The comparison is by direct computation. Indeed, recall that in caseCpCpCp, when (xxx, y) ∈ WCp
i ,

viCp(xxx, y) = pN (x̃i) +AN (y) cosh

(
x̃i
√

2(N − 1)α

N

)
,

for i = 1, 2, · · · , N , where x̃i is defined in (3.4.2) and AN is defined in (3.4.8).
Similarly, in case CdCdCd, when (xxx,yyy) ∈ WCd

i ,

viCd(xxx,yyy) = pN (x̃i) +AN (yi) cosh

(
x̃i
√

2(N − 1)α

N

)
,

for each i = 1, 2, · · · , N . And, in case CsCsCs, when (xxx,yyy) ∈ WCs
i ,

viCs(xxx,yyy) = pN (x̃i) +AN

 N∑
j=1

aijy
j

 cosh

(
x̃i
√

2(N − 1)α

N

)
,

for each i = 1, 2, · · · , N . By elementary calculations,

A′N (y) < 0.

Therefore, when y =
∑N

j=1 y
j , (xxx, y) ∈ WCp

i , and (xxx,yyy) ∈ WCd
i ∩W

Cs
i ,

viCp(xxx, y) ≤ viCs(xxx, y) ≤ viCd(xxx,yyy).

The first inequality holds because y =
∑N

i=1 y
i ≥

∑N
i=1 aijy

j and the equality holds if and only
if aij = 1 for each j = 1, 2, · · · , N . The second inequality holds because aii = 1 and the equality
holds if and only if aij = 0 for each j 6= i.

This result has a clear economic interpretation. In a stochastic game where players have the
options to share resources, versus the possibility to divide resources in advance, sharing will have
lower cost than dividing. Pooling yields the lowest cost for each player.
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(a) CpCpCp (b) CdCdCd
(c) CCC

Figure 3.4: Comparison of projected evolving boundaries for CpCpCp, CdCdCd, CCC when N = 3.

Define the projected common waiting region

WNE(yyy) :=

xxx ∈ RN : |x̃i| < f−1
N

 M∑
j=1

aijy
j

 for 1 ≤ i ≤ N

 ,

for any fixed resource level yyy. Then WNE(yyy) is a polyhedron with 2N boundary faces. Figure 3.4a
shows a pooling game CpCpCp. After one player exercises controls, all the faces of the boundary move.
Figure 3.4b corresponds to a dividing game CdCdCd. After player i exercises controls, her faces of Fi
and Fi+N move. Here i = 1, N = 3. For a sharing game CCC, shown in Figure 3.4c, after one player
exercises her controls, the faces of the players who are connected with her will move, while the faces
for other players remain unchanged. Here i = 2 and player 2 and 3 are connected.

NEs for the games and controlled rank-dependent SDEs

In the previous sections, the controlled dynamics is constructed directly via the reflected Brownian
motion. This class of SDEs can also be cast in the framework of rank-dependent SDEs. Indeed,
the controlled dynamics of NE in the action regions of the N -player can be written as a controlled
rank-dependent SDEs:

dXi
t =

N∑
j=1

1F i(XXXt,YYY t)=F (j)(XXXt,YYY t)

(
δjdt+ σjdB

j
t + dξj,+t − dξj,−t

)
,

dY j
t = −

N∑
i=1

aijY
j
s−∑M

j=1 aijY
j
s−
dξ̌is,
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with (ξi,+, ξi,−) the controls, F i : RN × RM+ → R a rank function depending on both XXX and YYY ,
F (1) ≤ · · · ≤ F (N) the order statistics of (F i)1≤i≤N , and δi ∈ R, σi ≥ 0.

In game CpCpCp, the controlled dynamics in the action regions satisfies the SDEs with F iCp(xxx,yyy) =

|xi −
∑
j 6=i x

j

N−1 |, δi = 0 and σi = 0 for each i = 1, · · ·N , and

ξi,± = 0 for each i = 1, · · · , N − 1 and ξN,± 6= 0.

In game CdCdCd,

F iCd(xxx,yyy) =

∣∣∣∣∣xi −
∑

j 6=i x
j

N − 1
− f−1

N (yi)

∣∣∣∣∣.
For the general game CCC, the controlled process in the action regions is governed by the rank-

dependent dynamics with F iC(xxx,yyy) = |xi −
∑
j 6=i x

j

N−1 − f−1
N (
∑M

j=1 aijy
j)| where fN is a threshold

function defined in (3.4.7)-(3.4.9), and δi, σi and ξi,± satisfy the same condition as before.
Note that the special case without controls, i.e., F i(xxx,yyy) = xi and ξi,± = 0, corresponds to

the rank-dependent SDEs. In particular, the rank-dependent SDEs with δ1 = 1, δ2 = · · · δN = 0
is known as the Atlas model. To the best of our knowledge, rank-dependent SDEs with additional
controls or a general rank function F i has not been studied before. There are various aspects
including uniqueness and sample path properties that await further investigation and we leave
them to interested readers.
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Chapter 4

Pareto Optimality and Price of
Anarchy

4.1 Pareto Optimality (PO)

In this section, we introduce a class of N -player game, the definition of Pareto optimality and its
connection to a auxiliary central controller problem.

Mathematical Formulation

Let us first define the N -player game.

Controlled dynamics. Let (Xi
t)t≥0 ∈ R denote the location of player i, 1 ≤ i ≤ N . In the

absence of controls, XXXt = (X1
t , . . . , X

N
t ) ∈ RN follows a stochastic differential equation (SDE):

dXXXt = µµµdt+ σσσdBBBt, XXX0 = (x1, . . . , xN ), (4.1.1)

where BBB := (B1, . . . , BN ) ∈ RN is a standard N -dimensional Brownian motion in a filtered prob-
ability space (Ω,F , {Ft}t≥0,P), with a drift µµµ := (µ1, . . . , µN ) and a covariance matrix σσσ :=
(σij)1≤i,j≤N . Here µi, σij are constants.

If player i applies controls (of a finite variation type) ξit to Xi
t , then Xi

t evolves as

dXi
t = µidt+ σσσi · dBBBt + dξit, Xi

0− = xi, i = 1, . . . , N,

where σσσi is the ith row of the covariance matrix σσσ. Assume the diffusion matrix σσσσσσT is positive
definite and there exists a > 0 such that σσσσσσT > aI, where I ∈ RN×N is the identity matrix.

Denoting the pair of non-decreasing and càdlàg processes (ξi+, ξi−) as the minimum decom-
position of the finite variational process ξi := (ξit)t≥0 such that ξi := ξi+ − ξi−, then the above
controlled dynamics can be written as

dXi
t = µidt+ σσσi · dBBBt + dξi,+t − dξi,−t , Xi

0− = xi, (4.1.2)
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Note that the non-decreasing and càdlàg processes ξi+ and ξi− can be further decomposed in a
differential form,

dξi±t = d(ξi±t )c + ∆ξi±t ,

with d(ξi±t )c the continuous and ∆ξi±t := ξi±t − ξ
i±
t− the jump part of dξi±t .

Game objective. The game is for player i to minimize, among all (ξi+, ξi−) from an appropriate
admissible control set U iN (to be specified below), over an infinite time horizon, the following
objective function,

J i(xxx;ξξξ) = E
∫ ∞

0
e−αt

[
hi(XXXt)dt+K+

i dξ
i,+
t +K−i dξ

i,−
t

]
, (N-player)

Here α > 0 is a constant discount factor.
In this game, players interact through their respective objective functions hi(xxx) : RN → R+.

For example, hi(xxx) = h

(
xi − ρ

∑N
j=1 x

j

N

)
, with h a general distance function and ρ ∈ [0, 1], is a

game where players aim to stay as close as possible to each other during the game.

Admissible control U iN . The admissible control set for player i is of a Markovian type and
defined as

U iN =
{

(ξi,+t , ξi,−t ) | ξi,+t and ξi,−t are F (X1,...,XN )
t− -progressively measurable, càdlàg non-decreasing,

with E
[∫ ∞

0
e−αtdξi,+t

]
<∞,E

[∫ ∞
0

e−αtdξi,−t

]
<∞, ξi,+0− = 0, ξi,−0− = 0

}
,

(4.1.3)

with FXXXt− := σ
(
∪s<tFXXXs

)
the filtration generated by XXX up to time t−.

PO and the Auxiliary Central Controller Problem

In this Section, we will analyze the game (N-player) in the sense of PO. Recall that

Definition 29 (PO). Given game (N-player), ξξξ∗ ∈ UN := (U1
N , · · · ,UNN ) with pay-off functions(

J1 (xxx;ξξξ∗) , . . . , JN (xxx;ξξξ∗)
)

is a PO if and only if there does not exist ξξξ ∈ UN such that

J i (xxx;ξξξ) ≤ J i (xxx;ξξξ∗) for all i = 1, . . . , N,

and

J j (xxx;ξξξ) < J j (xxx;ξξξ∗) ,

for some j ∈ {1, . . . , N}. Here the strategies ξi∗ and ξi are deterministic functions of time t and
XXXt (with XXX0− = xxx) for all i = 1, 2, · · · , N .
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We will derive PO by analyzing an associated N -dimensional stochastic control problem, called
the central controller problem.

Mathematically, the central controller problem is the following minimization problem

v(xxx) = min
ξξξ∈UN

J(xxx;ξξξ), (4.1.4)

with ξξξ ∈ UN , subject to the dynamics (4.1.2) with the pay-off function J(xxx;ξξξ) defined as the
weighted average pay-off function of all players such that

J(xxx;ξξξ) =
N∑
i=1

αiJ i(xxx,ξξξ)

= E
∫ ∞

0
e−αt

[
H(XXXt)dt+

N∑
i=1

αiK+
i dξ

i,+
t +

N∑
i=1

αiK−i dξ
i,−
t

]
.

Here H(xxx) =
∑N

i=1 αih
i(xxx) is the weighted running cost with αi > 0 and

∑N
i=1 αi = 1. Note that

when αi = 1
N (i = 1, 2, · · · , N), the central controller treats all players equally, often adopted in

the social welfare optimization problem.
This type of control problem (4.1.4) has been analyzed in [147] where the optimal control is

shown to be the limit of a sequence of control problems of bounded velocity with an increasing
upper bound on the velocity. In this paper, we will study the regularity of the value function
and the property of optimal control. This property of optimal control is critical fr analyzing the
property of PO and its comparison with NEs in the context of Price of Anarchy (Section 4.2).
The regularity of a similar yet simpler N -dimensional control problem has been studied in [128].
The gradient constraint in their problem is ∇v(xxx), which is easier to analyze compared to our case
(defined in (4.1.7)).

Firstly, we have

Theorem 30. The optimal control of problem (4.1.4) is a PO to the game (N-player).

Proof. Given the payoff function J i defined as in (N-player), v(xxx) the value function of the “central
controller” which is defined as in (4.1.4), and ξξξ∗ := (ξ1∗, . . . , ξN∗) the optimal control to problem
(4.1.4). Then for any ξξξ := (ξ1, . . . , ξN ) ∈ UN ,

N∑
i=1

αiJ i(xxx;ξξξ) ≥ v(xxx), (4.1.5)

where value v(xxx) is reached when player i takes the control ξi∗t (i = 1, 2, . . . , N).
If there is another ξξξ′ := (ξ1′ , . . . , ξN

′
) ∈ UN and k ∈ {1, . . . , N} such that

Jk(xxx; ξ1′ , . . . , ξN
′
) < Jk(xxx; ξ1∗, . . . , ξN∗),

then given αi > 0 for all i, there must exists j ∈ {1, . . . , N} such that

J j(xxx; ξ1′ , . . . , ξN
′
) > J j(xxx; ξ1∗, . . . , ξN∗).

Hence the control ξξξ∗ is a PO by definition.
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Next, we establish the existence of PO, with some technical assumptions which ensure the
well-definedness of the game (N-player).

Assumptions. There exist C > c > 0 such that H(xxx) and hi(xxx) (i = 1, 2, · · · , N) satisfy the
following conditions.

A1. ∀xxx ∈ RN , 0 ≤ H(xxx) ≤ C(1 + ‖xxx‖2).

A2. ∀xxx,xxx′ ∈ RN , |H(xxx)−H(xxx′)| ≤ C(1 + ‖xxx‖+ ‖xxx′‖)‖xxx− xxx′‖.

A3. H(xxx) ∈ C2,1(RN ), H is convex, with 0 < c ≤ ∂2H(xxx)
∂z2

≤ C for all unit direction z ∈ RN .

Besides A1-A3, We need another two assumptions to insure the existence of a unique PO
solution. Assumption A4 (specified later) describes the regularity of central controller’s value
function. Assumption A5 (specified later) describes the existence of a Lipchitz mapping for initial
jumps. Now,

Theorem 31 (PO Solution). Under Assumptions A1-A5, there exists a unique solution to the
N -player game (N-player) and the dynamics under optimal control is a solution to a Skorokhod
problem. Moreover, fix any weight ααα ∈ {bbb | bbb ∈ RN++ and

∑N
i=1 bi = 1}, the optimal control to the

N -player game (N-player) will provide a PO solution. The set of POs forms a Pareto frontier
parameterized by ααα.

Now we provide the proof of Theorem 31.

Derivation of PO via Analyzing the Central Controller Problem.

To prove Theorem 31, it suffices to establish the existence and uniqueness of solution to the central
control problem (4.1.4), along with some characterizations of the optimal policy. We will first
establish the regularity properties of the value function v(xxx) in Section 4.1. We will then establish
the optimal control associated v(xxx) in Sections 4.1 and 4.1.

Regularities analysis

First, by the Dynamic Programming Principle (DPP), the Hamilton-Jacobi-Bellman (HJB) equa-
tion associated with (4.1.4) is

max{αu− Lu−H(xxx), β(∇u)− 1} = 0, (4.1.6)

with the operator

L =
1

2

N∑
i=1

σσσi · σσσj ∂2

∂xi∂xj
+

N∑
i=1

µi
∂

∂xi
,

and

β(qqq) = max
1≤i≤N

[(
qi

K+
i

)+

∨
(
qi

K−i

)−]
, (4.1.7)
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where qqq := (q1, · · · , qN ), (a)+ = max{0, a} and (a)− = max{0,−a} for any a ∈ R. Note that
operator β is well defined as K±i > 0 for all i = 1, 2, · · · , N .

Next, define the waiting region C as

C = {xxx | β(∇v(xxx)) < 1} . (4.1.8)

Clearly, under Assumptions A3, C is bounded. Moreover,

Proposition 32. Under Assumptions A1-A3, v(xxx) ∈ C4,α(C) and v(xxx) is strictly convex in C.

Proof. Let B be any open ball such that B̄ ∈ C. By Theorem 6.13 in [86], the Dirichlet problem in
B,

{
αṽ − Lṽ = H(xxx), ∀x ∈ B,
ṽ = v, ∀x ∈ ∂B, (4.1.9)

has a solution ṽ ∈ C0(B̄) ∩ C2,α(B). In particular, ṽ − v ∈ W2,∞(B), therefore by (4.1.9), ṽ − v ∈
W1,2

0 (B). By Theorem 8.9 of [86], v = ṽ in B, thus v ∈ C2,α(B). By Theorem 6.17 of [86],
v ∈ C4,α(B) thus v ∈ C4,α(C) for all α ∈ (0, 1).

Theorem 33 (Regularity of v(xxx)). Under Assumptions A1- A3, the value function v(xxx) to the
control problem is the unique W2,∞

loc (RN ) solution to (4.1.6). Moreover, there exists K > 0 such
that

(i) 0 ≤ v(xxx) ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN ,

(ii) |v(xxx)− v(xxx′)| ≤ K(1 + ‖xxx‖+ ‖xxx′‖)‖xxx− xxx′‖, ∀xxx,xxx′ ∈ RN ,

(iii) 0 ≤ ∂2

∂z2
v(xxx) ≤ K for any second order directional derivative ∂2

∂z2
.

Remark 33.1. Note that this regularity property v(x) ∈ W2,∞
loc (RN ) is essential for the existence

and uniqueness of the optimal control, indeed, it is needed for the Skorokhod solution.

Proof. We will prove Theorem 33 in five steps. For simplicity, K and k will be used for generic
positive constants which may represent different constants for different estimates.

Step (i). First, v(xxx) ≥ 0 is clear by the non-negativity of H(xxx). Moreover, by the property
that σσσσσσT ≥ a I, it follows from a known estimate and martingale argument [146, (2.15)] that the
solution {X̃XXt}t≥0 := {xxx+µµµt+ σσσBBBt}t≥0 with ξξξ = 000 satisfying

E
∫ ∞

0
e−αt‖X̃XXt‖2dt ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN

for some constant K > 0. By Assumption A2, there exists some constant K > 0 such that

v(xxx) ≤ J(xxx,000) ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN .

Thus (i) is established.
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Step (ii). For each fixed xxx ∈ RN , let

Uxxx = {ξξξ ∈ U : J(xxx,ξξξ) ≤ J(xxx; 000)}. (4.1.10)

By Assumption A2,

E
∫ ∞

0
e−αt‖XXXt‖2dt ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN , ξξξ ∈ Uxxx. (4.1.11)

For ξξξ ∈ Uxxx, it is easy to verify that

E
∫ ∞

0
e−αt‖ξξξt‖2dt ≤ K(1 + ‖xxx‖2), (4.1.12)

and

|v(xxx)− v(xxx′)| ≤ sup
{
|J(xxx;ξξξ)− J(xxx′;ξξξ)| : ξξξ ∈ Uxxx ∪ Uxxx′

}
, ∀xxx,xxx′ ∈ RN .

Meanwhile,

|J(xxx;ξξξ)− J(xxx′;ξξξ)| ≤ E
∫ ∞

0
e−αt|H(XXXxxx

t )−H(XXXxxx′
t )|dt.

Statement (ii) for v follows from this by using Assumption A3, the facts that XXXxxx
t −XXXxxx′

t = xxx−xxx′,
and that for any ξξξ ∈ Uxxx ∪ Uxxx′ ,

E
∫ ∞

0
e−αt‖XXXxxx

t ‖dt ≤ K(1 + ‖xxx‖+ ‖xxx′‖), (4.1.13)

E
∫ ∞

0
e−αt‖XXXxxx′

t ‖dt ≤ K(1 + ‖xxx‖+ ‖xxx′‖).

In fact, if ξξξ ∈ Uxxx, (4.1.13) follows immediately from (4.1.12) by the Hölder inequality. Meanwhile,
if ξξξ ∈ Uxxx′ , (4.1.13) holds beacause

‖XXXxxx
t ‖ ≤ ‖XXXxxx′

t ‖+ ‖xxx− xxx′‖ ≤ ‖XXXxxx′
t ‖+ ‖xxx‖+ ‖xxx′‖.

Step (iii). For i = 1, 2, · · · , N , let ∆ixxx := (0, · · · , 0,∆xi, 0, · · · , 0) be the N-dimensional row
vector with the i-th entry being ∆xi. For any function F : RN → R, define the second difference
of F in the xi direction by

δ2
i F (xxx) = F (xxx+ ∆ixxx) + F (xxx−∆ixxx)− 2F (xxx). (4.1.14)

It is easy to check that

δ2
i v(xxx) ≤ sup{δ2

i J (xxx;ξξξ) : ξξξ ∈ Uxxx}. (4.1.15)

Since H ∈ C2(RN ), for xxx ∈ RN ,

δ2
iH(xxx) = (∆xi)2

∫ 1

0

∫ λ

−λ

∂2H

∂(xi)2
(x1, . . . , xi + µ∆xi, . . . , xN )dµdλ. (4.1.16)
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By Assumption A3,

δ2
iH(xxx) ≤ K(∆xi)2

∫ 1

0

∫ λ

−λ
dµdλ = (∆xi)2K. (4.1.17)

Hence

0 ≤ δ2
i v(xxx) ≤ K(∆xi)2, xxx ∈ RN , |∆xi| ≤ 1. (4.1.18)

To prove the lower bound of (4.1.18), it suffices to prove the convexity of v, which follows from
the joint convexity of J(xxx;ξξξ) in the following sense:

J(θxxx+ (1− θ)xxx′) ≤ θJ(xxx;ξξξ) + (1− θ)J(xxx′;ξξξ′), (4.1.19)

for any xxx,xxx′ ∈ RN and any ξξξ, ξξξ′ ∈ U . The convexity of J in (xxx;ξξξ) is then obvious since XXXxxx
t depends

linearly on (xxx,ξξξ) and the set U and the function H are both convex.

Step (iv). To prove v ∈ W2,∞
loc , let B be any open ball and let ψ ∈ C∞0 (RN ) be any test function

with a support contained in B. Since (∆xi)−2δ2
i v(xxx) is bounded on B for |∆xi| ≤ 1, there is

a sequence ηk → 0+ as k → ∞ such that, denoting by gk the result of replacing ∆xi by ηk in
(∆xi)−2δ2

i v(xxx), we have gk → Q weakly in Lp(B) for some p with 1 < p < ∞. It is then easy to
see that ∫

RN
ψ(xxx)Q(xxx)dxxx =

∫
RN

∂2ψ

∂xixi
v(xxx)dxxx, ∀ψ ∈ C∞0 (B). (4.1.20)

Here Q = ∂2v
∂xixi

is the generalized derivative. The existence and local boundedness of mixed second
order generalized derivatives are now immediate: for k = 1, 2, . . . , N , let eeek denote the unit vector
in the direction of the positive xk axis. For any fixed i 6= j with 1 ≤ i, j ≤ N , let yyy be a new
coordinate whose axis points in the

eeei+eeej√
2

direction, then ∂2v
∂xi∂xj

= ∂2v
∂yyy2
− 1

2( ∂2v
∂xixi

+ ∂2v
∂xjxj

).

Step (v). To show that v is the unique solution to HJB, we proceed by a contradiction argument.
Suppose v1 and v2 are two non-negative solutions. Let y0 be the point where v2 attains its minimum
value. Given δ > 0, define

φδ(xxx) := v1(xxx)− v2(xxx)− δ‖xxx− yyy0‖2, ∀xxx ∈ RN .

The function φδ attains its maximum at some xδ ∈ RN and

0 = ∇φδ(xxxδ) = ∇v1(xxx)−∇v2(xxx)− 2δ(xxxδ − yyy0). (4.1.21)

This leads to

∇v1(xxxδ) = ∇v2(xxxδ) + 2δ(xxxδ − yyy0).

Consequently,

1 ≥ β(∇v1(xxxδ)) = β(∇v2(xxxδ) + 2δ(xxxδ − yyy0)).
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Since y0 is the minimal point of v2, we have

∇v2(xxxδ) · (xxxδ − yyy0) ≥ 0.

This means that either β(∆v2(xxxδ)) < 1, or for any i ∈ arg maxβ(∇v2(xxxδ)), (xxxδ−yyy0)i = 0. Suppose
the latter, then by (4.1.21), we have

0 = Div1(xxxδ)−Div2(xxxδ)− 2δ(xxxδ − yyy0)i.

Hence

Div1(xxxδ) = Div2(xxxδ) = 0,

for i ∈ arg maxβ(∇v2(xxxδ)). This implies β(∆v2(xxxδ)) < 1. Meanwhile from (4.1.6), we know

∆v2(xxxδ) = v2(xxxδ)−H(xxxδ).

By Bony’s maximum principle ([142]),

0 ≥ lim inf essxxx→xxxδ∆φδ(xxx)

= lim inf essxxx→xxxδ∆v1(xxx)−∆v2(xxx)− 4δ

≥ v1(xxxδ)− v2(xxxδ)− 4δ.

It follows that for any xxx ∈ RN ,

v1(xxx)− v2(xxx) = φδ(xxx) + δ‖xxx− yyy0‖2 ≤ φδ(xxxδ) + δ‖xxx− yyy0‖2 ≤ δ(4 + ‖xxx− yyy0‖2).

Letting δ → 0, we have v1(xxx) ≤ v2(xxx). Similarly, we have v2(xxx) ≤ v1(xxx).
Finally given the regularity of the value function, the existence of PO strategy to (4.1.4) is

straightforward according to [147].

PO strategy when xxx ∈ C

In the floowing, we will present a complete characterization of the PO strategy. We first derive the
PO strategies when the initial position xxx is in the closure of non-action region C. We then discuss
the PO strategies when xxx is not in C.

When the initial position xxx ∈ C, the optimal control can be constructed as the limit of a sequence
of ε-optimal policies via an appropriate Skorokhod problem with piece-wise C1 boundaries and the
corresponding controlled dynamics are N-dimensional reflected diffusion processes on a bounded
region. Recall,

Definition 34 (Skorokhod Problem). Let G be an open domain in RN with S = ∂G. Let xxx ∈ Ḡ
and let rrr be a unit vector field defined on S. That is, for each xxx ∈ S, |rrr(xxx)| = 1, pointing inside G
(in particular, nontangential to S), we say that a continuous process

ξξξt =

∫ t

0
NNN sdηs, (4.1.22)

with ηt =
∨

[0,t] ξξξ, is a solution to a Skorokhod problem with data (BBBt, G,rrr,xxx) if
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(a) |NNN t| = 1, ηt is continuous and nondecreasing;

(b) the process XXXt = xxx+µµµt+ σσσσσσTBBBt +
∫ t

0 NNN sdηs satisfies XXXt ∈ Ḡ, 0 ≤ t <∞, a.s;

(c) for every 0 ≤ t <∞,

ηt =

∫ t

0
1(XXXs∈∂G,NNNs=rrr(XXXs))dηs.

To ensure the existence of a unique PO, we assume the value function v has the following
property on C.

A4. The Hessian matrix of v, ∇2v, is diagonal-dominated in C:

vxixi(xxx)>

∣∣∣∣∣∣
∑
j 6=i

vxixj (xxx)

∣∣∣∣∣∣ ,∀i,= 1, 2, · · · , N and xxx ∈ C. (4.1.23)

Assumption A4 implies that the diagonal dominates in the row/column of Hessian matrix ∇2v.
A similar assumption is used in [87, Assumption 3] to ensure the existence of a unique NE.

Theorem 35 (Optimal Policy). Assume that xxx ∈ C. Under Assumptions A1- A4, the unique
optimal control to problem (4.1.4) exits. The optimal control ξξξ∗ is a solution of a Skorokhod problem
such that XXX∗t ∈ C .

Proof of Theorem 35 consists of several steps. The first step is to construct the ε-optimal
policies by considering a piece-wise smooth (NNN ε, ξξξε) to the Skorokhod problem in a regions with
piece-wise C1 boundaries. The second step is to show the convergence of (NNN ε, ξξξε)ε>0 to the desired
optimal control.

Step 1: Skorokhod problem with piece-wise smooth boundary. We first construct
an approximation Cε of C that has piecewise C1 boundaries. Clearly, if ∂C itself is C2, the Cε = C.

Let φε(x) ∈ C∞(RN ,R+) be such that φε(xxx) = 0 for |xxx| ≥ ε and∫
RN

φε(xxx)dxxx = 1. (4.1.24)

Since v(xxx) ∈ W2,∞
loc (RN ), consider a regularization of v(xxx) via φε, such that

vε(xxx) = φε ∗ v(xxx). (4.1.25)

Because v, ∇v, D2v are bounded on BR(0), with C̄ ⊂ BR−1(0), thus Hε, vε are bounded uniformly
on C̄ for ε < 1, and

vε → v, ∇vε → ∇v, Hε → H uniformly in C̄.
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Therefore, for any εk > 0, there exists δk > 0 such that δk ≤ εk and for all δ ∈ [0, δk], ‖∇vε−∇v‖L1 <
εk. Take a sequence {εk}k such that εk > 0 and non-increasing with limk→∞ εk = 0. Denote
wδk(xxx) = β(∇vδk(xxx)) and Cεk := {xxx | wδk(xxx) < 1− 2εk} = ∩2N

j=1G
εk
j , where i = 1, 2, · · · , N ,

Gεki = {xxx | vδk
xi

(xxx) < 1− 2εk},

Gεki+N = {xxx | vδk
xi

(xxx) > −1 + 2εk}.

Since ‖∇vδk − ∇v‖L1 < εk, we have Cεk ⊂ C. Also notice that ∂Gεkj ∩ Cεk ∈ C2 because vδk is
smooth. Now, let us take any ε from the sequence {εk}k.

Define the vector field γj on each face Gεj as

γi = −eeei,
γi+N = eeei,

for i = 1, 2, · · · , N , where eeei = (0, · · · , 0, 1, 0, · · · , 0) with the ith component to be 1. Then define
the directions of reflection by

rε(xxx) =

 ∑
j∈Iε(xxx)

αjγj(xxx)

∣∣∣∣∣∣ αi ≥ 0 and

∣∣∣∣∣∣
∑

j∈Iε(xxx)

αjγj(xxx)

∣∣∣∣∣∣ = 1

 . (4.1.26)

When ε = 0, denote I(xxx) := I0(xxx) and r(xxx) := r0(xxx) for the index set and reflection cone of region
C, respectively.

Define the normal direction on face Gεj as nj (j = 1, 2, · · · , 2N):

ni = − ∇vxi
‖∇vxi‖2

,

ni+N =
∇vxi
‖∇vxi‖2

, i = 1, 2, · · · , N.

nj is well-defined under Assumption A3. Under Assumption A4, ni · γi =
vxixi
‖∇vxi‖2

> 0 and

ni+N · γi+N =
vxixi
‖∇vxi‖2

> 0. Moreover, at each point xxx ∈ Sε, there exists γ ∈ rε(xxx) pointing into

Cε. This is because

• There is no xxx ∈ ∂Cε such that i, i+N ∈ Iε(xxx) for all i = 1, 2, · · · , N . This implies |Iε(xxx)| ≤ N
for all xxx ∈ ∂Cε.

• For any xxx ∈ ∂Cε, there exists αj ≥ 0 for j ∈ Iε(xxx),〈 ∑
j∈Iε(xxx)

αjγj(x), nk(x)

〉
> 0 (4.1.27)

for k ∈ Iε(xxx).

• Taking αj = 1 for j ∈ Iε(xxx), A4 implies (4.1.27) holds.
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Along with Assumption A4, the following condition ((3.8) in Dupuis and Ishii [72]) holds: the
existence of scalars bj ≥ 0 j ∈ Iε(xxx), such that

bj 〈γj(xxx), nj(xxx)〉 >
∑

k∈Iε(xxx)\{i}

bk |〈γk(xxx), nk(xxx)〉|

Therefore, by Theorem 4.8 in [72], there exists a solution to the SP with (XXXt, Cε, rε(·),xxx).

Step 2. ε-optimal ploicy. Now we need to show that the solution to the Skorokhod problem
with data(xxx+µµµt+ σσσdBBBt, Cε, rrrε,xxx) is an ε-optimal policy of the control problem (4.1.4) with

ξξξεt =

∫ t

0
NNN ε
s · dηεs, (4.1.28)

and NNN ε(xxx) = rrrε(xxx) on Sε. To see this, denote XXXε
t = xxx +

∫ t
0 µµµ(XXXs)ds +

∫ t
0 σσσ(XXXs)dBBBs + ξξξεt, where ξξξεt

is defined in (4.1.28). Then,

v(xxx) = Ex
∫ ∞

0
e−αt [H(XXXε

t)dt+∇v(XXXε
t) ·NNN ε

tdηηη
ε
t]

= Exxx
∫ ∞

0
e−αt

[
H(XXXε

t)dt+ (1− 2ε)
[
(NNN ε

t)
+ ·K+K+K+ + (NNN ε

t)
− ·K−K−K−

]
dηεt
]

= Exxx
∫ ∞

0
e−αt

[
H(XXXε

t)dt+
[
(NNN ε

t)
+ ·K+K+K+ + (NNN ε

t)
− ·K−K−K−

]
dηεt
]

−2εExxx
∫ ∞

0
e−αt

[
(NNN ε

t)
+ ·K+K+K+ + (NNN ε

t)
− ·K−K−K−

]
dηεt

≥ Exxx
∫ ∞

0
e−αt

[
H(XXXε

t)dt+
[
(NNN ε

t)
+ ·K+K+K+ + (NNN ε

t)
− ·K−K−K−

]
dηεt
]

−2εKmaxExxx
∫ ∞

0
e−αtdηεt

where NNN ε(xxx) = γγγε(xxx) on Sε and Kmax = max1≤i≤N{K+
i ,K

−
i }.

Moreover, there exists constant C > 0 such that Exxx
[∫∞

0 e−αtdηεt
]
≤ C for all ε < 1

2 . Hence

v(xxx) ≥ J(xxx;ξξξεt)− 2εCKmax.

When εk → 0, we have J(xxx;ξξξεt)→ v(xxx) .

Step 3: Existence and uniqueness of optimal control. Now we show that If J(xxx;ξξξε)→
v(xxx) as ε→ 0, then ξεt (ω) converges in measure mT . Here mT is a measure on ([0, T ]×Ω,B[0, T ]×F).
Furthermore, there exists an unique optimal policy ξξξ∗ which is the limit of a subsequence of {ξξξε}ε.

The existence follows with an appropriate modification of Theorem 4.5 and Corollary 4.11 in
[147], as below. From [147], if (NNN εk , ξξξεk) is a sequence of εk−optimal policies for xxx and limk→∞ εk →
0 , then one can extract a subsequence εk′ such that

ξξξ
εk′
t =

∫ t

0
NNN
εk′
s dη

εk′
s → ξξξ∗t (4.1.29)
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for Leb× P almost all (t, ω), where Leb is the Lebesgue measure on [0,∞).
From the analysis in Step 1 and Step 2, we know there exits a sequence of εk−optimal policy

and εk → 0 when k →∞. Therefore, the optimal control exists.
Let

A =
{
ω |XXXεk′

t (ω) ∈ Cεk′ for all 0 ≤ t <∞ and all k′ ≥ 0
}
.

By definition (4.1.28), P (A) = 1. Also define

B =
{
ω |XXXεk′

t →XXXt a.e. Leb on [0,∞)
}
.

Then by (4.1.29), P (B) = 1. For all ω ∈ A ∩B, since C is closed,

XXXt(ω) ∈ C Leb a.e. on [0,∞)

It remains to show the uniqueness of optimal control. This can be proved by a contradiction
argument. Suppose there are two optimal controls {ξξξ∗}t≥0 and {ξξξ∗∗}t≥0 such that ξξξ∗ 6= ξξξ∗∗ almost

surely. Let {XXX∗t }t≥0 and {XXX∗∗t }t≥0 be the corresponding trajectories. Let ξξξt =
ξξξ∗t+ξξξ∗∗t

2 and XXXt =
XXX∗t+XXX∗∗t

2 . Then

v(xxx)− J(xxx;ξξξt) =
(J(xxx;ξξξ∗) + J(xxx;ξξξ∗∗))

2
− J(x;ξξξ)

≥ E
∫ ∞

0
e−αt

H(XXX∗t +H(XXX∗∗t ))

2
−H

(
XXX∗t +XXX∗∗t

2

)
dt > 0.

It is easy to check that H(xxx+H(yyy))
2 −H(xxx+yyy

2 ) > 0 if xxx 6= yyy by Assumption A1. Therefore we have
v(xxx) > J(xxx;ξξξ), which contradicts the optimality of {ξξξ∗}t≥0 and {ξξξ∗∗}t≥0. Hence the optimal control
is unique.

Theorem 36. When xxx ∈ C̄, under conditions A1 - A4, the optimal policy defined in (4.1.29) acts
only on ∂C, and its push direction ϑ(xxx) is in r(xxx).

Proof of Theorem 36. Recall the definition of smooth function φε in (4.1.24) and the smooth version
of value function vε in (4.1.25). Let Hε(xxx) = φε ∗H(xxx). From the HJB Equation (4.1.6),

αv − Lv ≤ H, γ(∇v) ≤ 1 in RN ,

and

αvε − Lvε ≤ Hε, γ(∇vε) ≤ 1 in RN . (4.1.30)

Let T > 0 and apply the Meyer’s version of Itô’s formula (Theorem 14.3.2 in [64]) to e−αtvε(xxx),

Exxx
[
e−αT vε(XXXT )

]
= vε(xxx) + Exxx

∫ T

0
e−αT (Lvε − αvε) (XXXt)dt

+ Exxx
∫ T

0
e−αT∇vε(XXXt) ·NNN tdηt

+ Exxx
∫ T

0

∑
0≤t<T

e−αt(vε(XXXt)− vε(XXXt−)−∇vε(XXXt)(ηt − ηt−)),
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where the last term comes from the jumps of XXXt. By (4.1.30),

Exxx
[
e−αT vε(XXXT )

]
+ Exxx

∫ T

0
e−αTHε(XXXt)dt− Exxx

∫ T

0
e−αT∇vε(XXXt) ·NNN tdηt

+Exxx
∫ T

0

∑
0≤t<T

e−αt(vε(XXXt)− vε(XXXt−)−∇vε(XXXt)(ηt − ηt−)) ≥ vε(xxx),
(4.1.31)

as XXXt ∈ C̄ for all t ≥ 0 a.s. and C is bounded. Because v, ∇v, D2v are bounded on BR(0), with
C̄ ⊂ BR−1(0), thus Hε, vε are bounded uniformly on C̄ for ε < 1, and

vε → v, ∇vε → ∇v, Hε → H uniformly in C̄.

On the other hand for ∀xxx ∈ C,

v(xxx) = Exxx
∫ ∞

0
e−αt

[
H(XXXt)dt+

[
(NNN∗t )

+ ·KKK+ + (NNN∗t )
− ·KKK−

]
dη∗t
]
, (4.1.32)

where XXX∗t = xxx+BBBt + ξ∗t with ξ∗t :=
∫ t

0 NNN
∗
sdη
∗
s the optimal control. In particular,

Ex
∫ ∞

0
e−αtdη∗t <∞, (4.1.33)

which leads to

Exxx
∫ T

0
e−αt

[
(NNN∗t )

+ ·KKK+ + (NNN∗t )
− ·KKK−

]
dη∗t <∞.

Thus, by the bounded convergence theorem, we get from (4.1.31)

Exxx
[
e−αT v(XXXT )

]
+ Ex

∫ T

0
e−αTH(Xt)dt− Exxx

∫ T

0
e−αT∇v(XXXt) ·NNN tdηt

+Exxx
∫ T

0

∑
0≤t<T

e−αt(v(XXXt)− vε(XXXt−)−∇v(XXXt)(ηt − ηt−)) ≥ v(xxx).
(4.1.34)

The last term on the left-hand side is nonpositive because of convexity of v, hence

Exxx
[
e−αT v(XXXT )

]
+ Exxx

∫ T

0
e−αTH(XXXt)dt− Exxx

∫ T

0
e−αT∇v(XXXt) ·NNN tdηt ≥ v(xxx).

Letting T →∞, by the boundedness of XXX∗t , γ(∇v) ≤ 1, |NNN∗t | = 1, (4.1.39), and (4.1.32), we have

0 ≥ Exxx
∫ ∞

0
e−αt

[[
∇v(XXX∗t ) +KKK+ · (NNN∗t )+

]
dηt +

[
∇v(XXX∗t )−KKK− · (NNN∗t )−

]
dηt
]
.

Given γ(∇v) ≤ 1, we have

−K−i ≤ vxi(xxx) ≤ K+
i , ∀x ∈ RN and i = 1, 2, · · · , N.

Hence

0 ≥ Exxx
∫ ∞

0
e−αt

[[
∇v(XXX∗t ) +KKK+ · (NNN∗t )+

]
dηt +

[
∇v(XXX∗t )−KKK− · (NNN∗t )−

]
dηt
]
≥ 0.

This implies dη∗t = 0 when γ(∇v(XXX∗t )) < 1 a.e. t. Also, when dη∗t 6= 0, NNN∗t (xxx) ∈ r(xxx) for xxx ∈ S a.e.
t ∈ [0,∞), where the reflection cone r(xxx) is defined in (4.1.26).
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PO when xxx /∈ C

When xxx /∈ C, the optimal policy is to jump immediately to some point x̂ ∈ C and then follows
the optimal policy in C. In order to define directions of optimal jumps, we start by assuming the
existence of a certain map that projects points in RN onto C in a way that is compatible with the
directions of reflection r(·).

We will need the following assumption so that the refection field of the Skorokhod problem is
extendable to the RN plane (Dupuis and Ishii [72]). Note that A5 follows from conditions A1-A3
when N = 2.

A5. There is a map π : RN → C satisfying π(xxx) = xxx for all xxx ∈ C and πε(xxx)− xxx ∈ r(π(xxx)).

Theorem 37. Under conditions A1-A3, and A5, for any xxx /∈ C, there exists an optimal policy π
such that π(xxx) ∈ ∂C at time 0 and

v(xxx) = v(π(xxx)) + ‖xxx− π(xxx)‖.

Proof. Define l(yyy) =
∑

i li(yi) where

li(yi) =

{
K−i yi if yi ≥ 0,
−K+

i yi if yi < 0.
(4.1.35)

Notice that l(yyy) is a convex function and

li(yi) = max
−K+

i ≤k≤K
−
i

{kyi} = max{−K+
i yi,K

−
i yi} for yi ∈ R.

Define uε(xxx) = v(x̂xxε) + l(xxx − x̂xxε), uε(xxx) correspond to the policy that push xxx to x̂xxε ∈ Sε when
xxxxxxxxx ∈ RN \ C̄ and keep to play optimal policy in C̄ afterwards.

Here we define two linear approximations which are the both lower bound and upper bound of
the value function v(xxx), respectively.

For xxx 6∈ C define

u1(xxx) = v(π(xxx)) +∇v(π(xxx))(xxx− π(xxx)),

u2(xxx) = v(π(xxx)) + l(xxx− π(xxx)). (4.1.36)

Notice that u2(xxx) ≥ v(xxx) because it corresponds to a sub-optimal strategy. Meanwhile, u1(xxx) ≤ v(xxx)
because of convexity. Thus,

u1(xxx) ≤ v(xxx) ≤ u2(xxx). (4.1.37)

Our next step is to show u1(xxx) = u2(xxx).
By Assumption A5, we can rewrite u1 and u2 in (4.1.36) by the following expressions,

u1(xxx) = v(π(xxx)) +∇v(π(xxx)) · d(π(xxx))‖xxx− π(xxx)‖,
u2(xxx) = v(π(xxx)) +KKK(π(xxx)) · d(π(xxx))‖xxx− π(xxx)‖.

where d(π(xxx)) ∈ r(π(xxx)), KKK(xxx) = (K1, · · · ,KN )(xxx) and

Ki(xxx) = K+
i 1(∇v(xxx) > 0) +K−i 1(∇v(xxx) < 0).

Therefore u1(xxx) = u2(xxx).
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McKean-Vlasov Approximation for PO

In this section, we connect the PO of a class of N -player games with an appropriate McKean-Vlasov
(MKV) control problem. We show that the PO can be approximated by the solution of this MKV

problem with an error ε =
(

1√
N

)
.

Here we restrict the N-player game to a symmetric case as law of large number (LLN) works
for a large population with homogeneous individuals and with weak interactions, as in the case for
mean-field games.

To start, define

J i(xxx;ξξξ) = E
∫ ∞

0
e−αt

[
h(Xi

t , X̄XX
−i
t )dt+K+dξi,+t +K−dξi,−t

]
, (N-player′)

with
dXi

t = µdt+ σdBi
t + dξi,+t − dξi,−t , and Xi

0− = xi.

Here x̄−i =
∑

j 6=i β
i,jxj is the weighted average of all players’ positions other than player i, with∑

j 6=i β
i,j = 1 and βi,j ≥ 0 (i, j = 1, 2, · · · , N). In the objective function (N-player′), player i

interacts with other players only through the mean term X̄XX
−i
t . And all players share the same

model specification: µ, σ, h, K+ and K−. For simplicity, assume βi,j = 1
N−1 for all 1 ≤ i 6= j ≤ N .

By the symmetry of problem (N-player′), it is easy to check that PXi∗
t

= P
Xj∗
t

for any 1 ≤ i 6=
j ≤ N and t ≥ 0 where Xi∗

t and Xj∗
t are dynamics of player i and j under PO.

Denote ∇ih(x1, x2) = ∂xihy(x
1, x2) and ∇2

ijh(x1, x2) = ∂2
xixj

h(x1, x2) for i, j = 1, 2. Further

assume that there exists a constant K̃ > 0 such that

|∇2h(x1, x2)| ≤ K̃(|x1|+ |x2|).

Letting N →∞, the corresponding MKV problem becomes

u(PZ) := inf
(ξ+,ξ−)∈U

JMV (ξ+
t , ξ

−
t )

:= inf
(ξ+,ξ−)∈U

E
∫ ∞

0
e−αt

[
h (Xt,E[Xt]) dt+K+dξ+

t +K−dξ−t
]
,

such that dXt = µdt+ σdBt + dξ+
t − dξ

−
t , PX0− = PZ ∈ P(R),

(4.1.38)

for any Z ∈ L2(R). Here P(R) is the probability measure on R. The admissible control set U is
defined as

U =

{
(ξ+
t , ξ

−
t )

∣∣∣∣ ξ+
t and ξ−t are F

(Xt−,PXt− )

t -progressively measurable, càdlàg, non-decreasing,

with E
[∫ ∞

0
e−αtdξ+

t

]
<∞, E

[∫ ∞
0

e−αtdξ−t

]
<∞, ξ+

0− = 0, ξ−0− = 0

}
.

Moreover h : R → R+ is assumed to be convex, symmetric, non-negative, and there exist C0 >
c0 > 0 such that c0 ≤ ‖∇h‖2 ≤ C0.

The difference between (N-player′) and (5.2.1) is the running cost term. In (N-player′), the
second component of the running cost is X̄−it . In contrast, the second component of the running
cost is E[Xt] in (5.2.1).
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Theorem 38 (MKV Approximation for PO). Denote ξξξ∗ := (ξ1∗, · · · , ξN∗) as the PO solution to
(N-player). In addition, denote ξ̄ξξ := (ξ̄1, . . . , ξ̄N ) as the solution to the MKV control problem
(5.2.1). Assume A1-A4. Assume further there exists a constant cN such that the PO solution
{XXX∗t }t≥0 satisfies ∫ ∞

0
e−αtE

(
Xi∗
t − E[Xi∗

t ]
) (
Xj∗
t − E[Xj∗

t ]
)
dt ≤ c2

N , (4.1.39)

for any i 6= j, and there exists a constant CN such that a.e.∣∣Xi∗
t

∣∣ ≤ CN . (4.1.40)

Then∣∣∣∣∣ 1

N

N∑
i=1

EXXX0−J
i (XXX0−;ξξξ∗)− 1

N

N∑
i=1

EXXX0−J
i
(
XXX0−; ξ̄ξξ

)∣∣∣∣∣ = O

(
cN +

CN
N

+ CN

√
CN
N

+ cN

)
.

Proof. Assume XXXt is the dynamics under controls ξξξt such that PXi
t

= P
Xj
t

( i 6= j and t ≥ 0) and

(4.1.39)-(4.1.40) are satisfied.
It is easy to check that under Assumptions (4.1.39) and (4.1.40), PO solution satisfies above

conditions.
By the Taylor’s expansion,

h
(
X1
t , X

−i
t

)
= h

(
X1
t ,E[X1

t ]
)

+∇2h
(
X1
t ,E[X1

t ]
)∑N

j=1

(
Xj
t − E[Xj

t ]
)

N


+∇2

22

h(X1
t , Ut)

2

∑N
j=1

(
Xj
t − E[Xj

t ]
)

N

2

,

where Ut ∈ [min{ 1
N

∑N
j=1X

j
t ,E[X1

t ]},max{ 1
N

∑N
j=1X

j
t ,E[X1

t ]}]. That is, Ut is a process between
1
N

∑N
j=1X

j
t and E[X1

t ].
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Moreover,

h
(
X1
t , X

−i
t

)
= h

(
X1
t ,E[X1

t ]
)

+∇2h
(
X1
t ,E[X1

t ]
)∑N

j=1

(
Xj
t − E[Xj

t ]
)

N


+∇2

22

h(X1
t , Ut)

2

∑N
j=1

(
Xj
t − E[Xj

t ]
)

N

2

≤ h
(
X1
t ,E[X1

t ]
)

+ 2K̃CN

∣∣∣∣∣∣
∑N

j=1

(
Xj
t − E[Xj

t ]
)

N

∣∣∣∣∣∣
+
K

2

∑N
j=1

(
Xj
t − E[Xj

t ]
)

N

2

Similarly,

h
(
X1
t , X

−i
t

)
≥ h

(
X1
t ,E[X1

t ]
)
−2K̃CN

∣∣∣∣∣∣
∑N

j=1

(
Xj
t − E[Xj

t ]
)

N

∣∣∣∣∣∣
−K

2

∑N
j=1

(
Xj
t − E[Xj

t ]
)

N

2

.

Since

E

∑N
j=1

(
Xj
t − E[Xj

t ]
)

N

2

=
E
[
X1
t − E[X1

t ]
]2

N
+
N − 1

N
E
[(
X1
t − E[X1

t ]
) (
X2
t − E[X2

t ]
)]

and

E

∣∣∣∣∣∣
∑N

j=1

(
Xj
t − E[Xj

t ]
)

N

∣∣∣∣∣∣ ≤
E
∑N

j=1

(
Xj
t − E[Xj

t ]
)

N

2


1/2

Now, by assumptions (4.1.39)-(4.1.40), solving the central controller problem (4.1.4) is equiva-
lent to solving the following problem,

1

N

N∑
i=1

(
E
∫ ∞
s

e−αt
[
h
(
Xi
t − ρE[Xi

t ]
)
dt+Kdξi,+t +Kdξi,−t

])
+O

(
cN +

CN
N

+ CN

√
CN
N

+ cN

)
,

which is a decentralized problem of MKV-type for each individual player.
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Remark 38.1. (4.1.39) implies that the long-run discounted correlation between Xj∗
t and Xi∗

t are
bounded by cN , where XXX∗t is the dynamics under PO control in game (N-player). If cN → 0 as
N → ∞, there is a weak correlation among players when the number of players is large. This
assumption is common for for MKV problems, see [53, 47] for example.

Remark 38.2. Denote CN as the non-action region of PO solution for ( N-player). When
support(Z) ⊂ CN for all N , cN = 1√

N
.

4.2 PO vs NE via Price of Anarchy (PoA)

In this section, we compare PO and NE under the notion of Price of Anarchy (PoA). For sake

of comparison, we specify K+
i = K−i = 1, hi(xxx) = h

(
xi − ρ

∑N
j=1 x

i

N

)
, 0 < ρ < 1, µi = 0 and

σσσi = (0, · · · , 0, 1, 0, · · · , 0) ∈ RN with the ith component to be 1. The distance function h ≥ 0 is

assumed to be symmetric, convex and there exists 0 < c < C such that c ≤ h′′ ≤ C and c
C ≥

ρ2

N−1 .
We denote this game specification as (N-player-a).

To start, let us recall the notion of NE, a stable solution under competition.

NE

Definition 39 (Markovian NE). A tuple of admissible controls ξξξ∗ = (ξ1∗, · · · , ξN∗) is a Markovian
NE of the stochastic game N-player if for any i = 1, 2, · · · , N , XXX0− = xxx, and any (ξξξ−i∗, ξi) ∈ SN ,
the following inequality holds,

J i(xxx;ξξξ∗) ≤ J i(xxx; (ξξξ−i∗, ξi)).

Here strategies ξi∗ and ξi are functions of time t and state XXXt = (X1
t · · · , XN

t ), with the nota-
tion (xxx−i, yi) := (x1, · · · , xi−1, yi, xi+1, · · · , xN ) for any xxx ∈ RN . J i(xxx;ξξξ∗) is called the NE value
associated with ξξξ∗.

NE solution. Here the admissible control set SN for the NE solution is defined as

SN :=
{

(ξ1, . . . , ξN )
∣∣∣ ξi = (ξi,+, ξi,−) ∈ U iN ,P

(
∆ξit(xxx)∆ξjt (xxx) > 0

)
= 0,

for any t > 0,xxx ∈ RN , i, j ∈ {1, . . . , N} and i 6= j
}
,

(4.2.1)

with

U iN =
{

(ξi,+t , ξi,−t )
∣∣∣ ξi,+t and ξi,−t are F (X1

t−,...,X
N
t−)-progressively measurable, càdlàg, non-decreasing,

with E
[∫ ∞

0
e−αtdξi,+t

]
<∞, E

[∫ ∞
0

e−αtdξi,−t

]
<∞, ξi,+0− = 0, ξi,−0− = 0

}
,

where α > 0 is the discount factor for player j and {F (X1
t ,...,X

N
t )}t≥0 is the natural filtration of

{(X1
t , . . . , X

N
t )}t≥0.

Following the approach in ([94]) for the case of ρ = 1, we can show that deriving NEs is reduced
to solving a Skorokhod problem and
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Theorem 40 (NE.). When the starting position xxx ∈ CW, NE of game (N-player) is a solution
to the Skorokhod problem with data (BBBt, CW, {dddj}2Nj=1,xxx), where

CW :=

{
xxx ∈ RN

∣∣∣∣∣
∣∣∣∣∣xi − ρ

∑
j 6=i x

j

N − 1

∣∣∣∣∣ < cN , for any i = 1, . . . , N

}
(4.2.2)

=

{
xxx ∈ RN

∣∣∣∣∣ nnnj · xxx > −cN
√

N

N − 1
, for j = 1, . . . , 2N

}
= ∩Ni=1(E−i ∪ E

+
i )c.

The normal direction of each face is given by

nnni =

√
N − 1√
N

(
−ρ 1

N − 1
, · · · ,−ρ 1

N − 1
, 1,−ρ 1

N − 1
, · · · ,−ρ 1

N − 1

)
,

nnni+N = −nnni,
(4.2.3)

where 1 is in the ith position of
√

N
N−1nnni. Here the threshold cN is the unique positive solution to

1√
2(N−1)α

N

tanh

(
c

√
2(N − 1)α

N

)
=
p′N (c)− 1

p′′N (c)
, (4.2.4)

with

pN (x) = E

∫ ∞
0

e−αt

(
N − ρ
N

x+

√
N − 1

N
+

(1− ρ)2

N
Bt

)2

dt

 . (4.2.5)

Finally, the reflection directions are given by

dddi = (0, · · · , 1, · · · , 0), dddi+N = −dddi, i = 1, . . . , N, (4.2.6)

Property of CW. Note that since matrix

N =


1 − ρ

N−1 − ρ
N−1 · · · − ρ

N−1

− ρ
N−1 1 − ρ

N−1 · · · − ρ
N−1

...
...

...
. . .

...
− ρ
N−1 − ρ

N−1 − ρ
N−1 · · · 1


has full-rank when ρ ∈ [0, 1), it is easy to check that CW is a bounded polyhedron with 2N faces.

This property is useful for analyzing the PoA.
To avoid simultaneous jumps, one could impose the players to jump sequentially if π (defined

in Assumption A5) involves jumps from multiple players, in both NE and PO policies. For more
technical details, one is refered to [94].
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PoA

Definition 41 (PoA).

PoA(xxx) =
supξ∗ξ∗ξ∗∈N

(∑N
i=1 J

i(xxx;ξξξ∗)
)

∑N
i=1 J

i
(
xxx; ξ̃ξξ
) ,

where ξ̃ξξ is the solution to the central controller’s problem (4.1.4), and

N :=
{
ξξξ∗ | ξξξ∗is NE strategy of game (J i, Xt

i, ξi)Ni=1

}
is the set of all NE strategies.

Note that by definition PoA(xxx) ≥ 1. Furthermore, the smaller the value of the PoA, the more
efficient the strategy.

For the N -player game (N-player-a) with 0 ≤ ρ < 1, we have

Theorem 42 (Upper bound on PoA). For game N-player-a,

PoA(xxx) ≤
N(cN + c)2 + α

∑N
i=1 u(xi)

Nc̃2
N

,

for xxx ∈ CW, where CW is defined in (4.2.2), c̃N = Diam(C), the threshold cN > 0 is the unique
positive solution to (4.2.4) with pN (x) defined in (4.2.5). The threshold c > 0 is the unique positive
solution to

1√
2α

tanh
(
c
√

2α
)

=
p
′
1(c)− 1

p
′′
1(c)

, (4.2.7)

with

p1(x) = E
[∫ ∞

0
e−αth(x+Bt)dt

]
=

1√
2α

(
e−x
√

2α

∫ x

−∞
h(z)ez

√
2αdz + ex

√
2α

∫ ∞
x

h(z)e−z
√

2αdz

)
.

Finally

u(x) =


−p
′′
1 (c) cosh(x

√
2α)

2α cosh(c
√

2α)
+ p1(x), 0 ≤ x ≤ c,

v(c) + (x− c), x ≥ c,
v(−x), x < 0.

(4.2.8)

Proof. In order to bound the PoA, we first start with two common properties of the NE strategies

for game (N-player-a). First, given Theorem 40, we have
∣∣∣Xi∗

t − ρXXX
−i∗
t

∣∣∣ ≤ cN almost surely for

every t ≥ 0.
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Next, denote ξi] as the following decentrlized strategy:

ξi],+t = max

{
0, max

0≤s≤t

{
−xi −Bi

s + ξi],−t − c
}}

, (4.2.9)

ξi],−t = max

{
0, max

0≤s≤t

{
xi +Bi

s + ξi],+t − c
}}

, (4.2.10)

which is the optimal control of the single agent problem with constant c is defined in (4.2.7). Define
a matrix

Ñ =


1 − ρ

N−1 − ρ
N−1 · · · − ρ

N−1

− ρ
N−1 1 − ρ

N−1 · · · − ρ
N−1

...
...

...
. . .

...
0 0 1 · · · 0

− ρ
N−1 − ρ

N−1 − ρ
N−1 · · · 1

 ,
where the i-th row are all zeros except for the (i, i) component to be 1. Since matrix N has full-rank

when ρ ∈ [0, 1), we know (XXX−i∗t , Xi]
t )t≥0 is on a bounded region for all i = 1, 2, · · · , N . Moreover,

we have
∣∣∣Xi]

t − ρXXX
−i∗
t

∣∣∣ ≤ cN + c almost surely.

Therefore,

J i(xxx, ξi∗|ξ−i∗ξ−i∗ξ−i∗) ≤ J i(xxx, ξi]|ξ−i∗ξ−i∗ξ−i∗)

= E
∫ ∞

0
e−αt

(Xi]
t − ρ

∑
j 6=iX

j∗
t

N − 1

)2

dt+ dξi],+t + dξi],−t


≤ E

∫ ∞
0

e−αt
[[

(cN + c)2 +
(
Xi]
t

)2
]
dt+ dξi],+t + dξi],−t

]
=

1

α
(cN + c)2 + u(xi),

with u defined in (4.2.8).
Therefore,

sup
ξ∗ξ∗ξ∗∈N

(
N∑
i=1

J i(xxx;ξξξ∗)

)
≤ N(cN + c)2 +

N∑
i=1

u(xi)

Meanwhile, denote ξ̃ξξ as the PO described in Theorem 35 and X̃XXt as the controlled dynamics under
ξξξ. From Theorem 35, X̃XXt ∈ C almost surely. Therefore there exists a constant c̃N such that∣∣∣∣X̃i

t − ρX̃XX
−i
t

∣∣∣∣ ≤ c̃N almost surely.

Hence we have PoA ≤ N 1
α

(cN+c)2+
∑N
i=1 u(xi)

N 1
α
c̃2N

, where c̃N = Diam(C) .

Corollary 42.1. In the degenerate case of N = 2 with ρ = 1. That is, h1(xxx) = h2(xxx) = h
(
x1−x2

2

)
.

Assume K±1 = k1 > 0 and K±2 = k2 > 0, and WLOG k2 > k1 > 0. Then
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PoA(x1, x2) =
v1(x1, x2) + v2(x1, x2)

2ṽ(x1, x2)
,

where v1, v2 are the NE values such that

v1(x1, x2) =



v1(x1, x1 + c̃
(2)
2 ) x1 − x2 ≤ −c̃(2)

2 ,

v1(x2 − c̃(1)
2 , x2) + k1

(
x2 − x1 − c̃(1)

2

)
, −c̃(2)

2 ≤ x1 − x2 ≤ −c̃(1)
2 ,

−p
′′
1 (c

(1)
2 ) cosh(

√
α(x1−x2))

α cosh
(
c̃
(1)
2

√
α
) + p1(x1 − x2), |x1 − x2| ≤ c(1)

2 ,

v1(x2 + c̃
(1)
2 , x2) + k1

(
x1 − x2 − c̃(1)

2

)
, c̃

(1)
2 ≤ x1 − x2 ≤ c̃(2)

2 ,

v1(x1, x1 − c̃(2)
2 ), x1 − x2 ≥ c̃(2)

2 ,

(4.2.11)

v2(x1, x2) =



v2(x1, x1 − c̃(2)
2 )+k2

(
x1 − x2 − c̃(2)

2

)
, x2 − x1 ≤ −c̃(2)

2 ,

v2(x2 + c̃
(1)
2 , x2) −c̃(2)

2 ≤ x2 − x1 ≤ −c̃(1)
2 ,

−p
′′
1 (c̃

(1)
2 ) cosh(

√
α(x2−x1))

α cosh
(
c
(1)
2

√
α
) + p1(x2 − x1), |x2 − x1| ≤ c̃(1)

2 ,

v2(x2 − c̃(1)
2 , x2), c̃

(1)
2 ≤ x2 − x1 ≤ c̃(2)

2 ,

v2(x1, x1 + c̃
(2)
2 ) + k2

(
x2 − x1 − c̃(2)

2

)
, x2 − x1 ≥ c̃(2)

2 ,

(4.2.12)

and ṽ is the value function of the central controller for game (N-player-a) such that

ṽ(x1, x2) =


−p′′1 (c̃1) cosh(x

√
α)

α cosh(c̃1
√
α)

+ p1(x1 − x2), 0 ≤ x1 − x2 ≤ c̃1,

v(c̃1) + k1
2 (x− c̃1), x1 − x− 2 ≥ c̃1,

v(−x1,−x2), x1 − x2 < 0.

(4.2.13)

Here c̃
(2)
2 > c̃

(1)
2 > c̃1, with c̃

(2)
2 > c̃

(1)
2 , c̃

(i)
2 > 0 the unique solutions of

1√
α

tanh
(√
αx
)

=
p′1(x)− ki
p′′1(x)

, (4.2.14)

and c̃1 the unique solution to

1√
α
tanh

(√
αx
)

=
p
′
1(x)− k1

2

p
′′
1(x)

. (4.2.15)

Proof. Simple analysis confirms that the thresholds c̃
(1)
2 for player one and c̃

(2)
2 for player two

defined in (4.2.15) are unique under bang-bang type of controls. Given the unique thresholds c̃
(1)
2

and c̃
(2)
2 , there are multiple NEs. Player one and player two can coordinate the jumps in region{

(x1, x2) | |x1 − x2| > c̃
(2)
2

}
. See for example,

ξ2∗,+
t = 1{x2−x1<−c}

(
−c− x2 + x1

)
, (4.2.16)

ξ2∗,−
t = 1{x2−x1>c}

(
c− x2 + x1

)
, (4.2.17)
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and

ξ1∗,+
t = max

{
0, max

0≤u≤t
{x2 +B2

u + ξ2∗,+
0 − ξ2∗,−

0 − x1 −B1
u + ξ1∗,−

u − c}
}
,

ξ1∗,−
t = max

{
0, max

0≤u≤t
{−x2 −B2

u − ξ
2∗,+
0 + ξ2∗,−

0 + x1 +B1
u + ξ1∗,+

u − c}
}
,

is an NE solution for any c ≥ c̃(2)
2 . When player two is in charge of region

{
(x1, x2) | |x1 − x2| > c̃

(2)
2

}
(c = c̃

(2)
2 ), the cost J1+J2 is the highest since it is more expensive for player two to control. There-

fore, the “worst” NE given by

ξ2∗,+
t = 1{

x2−x1<−c̃(2)2

} (−c̃(2)
2 − x

2 + x1
)
, (4.2.18)

ξ2∗,−
t = 1{

x2−x1>c̃(2)2

} (c̃(2)
2 − x

2 + x1
)
, (4.2.19)

and

ξ1∗,+
t = max

{
0, max

0≤u≤t
{x2 +B2

u + ξ2∗,+
0 − ξ2∗,−

0 − x1 −B1
u + ξ1∗,−

u − c̃(1)
2 }
}
,

ξ1∗,−
t = max

{
0, max

0≤u≤t
{−x2 −B2

u − ξ
2∗,+
0 + ξ2∗,−

0 + x1 +B1
u + ξ1∗,+

u − c̃(1)
2 }
}
.

The associate value functions v1 and v2 for player one and player two are defined in (4.2.11)-(4.2.12),
respectively. In summary,

v1(x1, x2) + v2(x1, x2) = sup
(φ1,φ2)∈N

J1(x1, x2, (φ1, φ2)) + J2(x1, x2, (φ1, φ2)),

where N is the set of all admissible NE policies. Meanwhile, the central controller is facing the
following optimization problem:

V (x1, x2) = min
(ξ1,ξ2)∈U2

J1(x1, x2, ξ1, ξ2) + J2(x1, x2, ξ1, ξ2)

= min
(ξ1,ξ2)∈U2

E
[∫ ∞

0
e−αt

(
h

(
X1
t −X2

t

2

)
dt+ dξ1,+

t + dξ1,−
t + dξ2,+

t + dξ2,−
t

)]
(4.2.20)

subject to

dX1
t = dB1

t + dξ1,+
t − dξ1,−

t

dX2
t = dB2

t + dξ2,+
t − dξ2,−

t (4.2.21)

Problem (4.2.20)-(4.2.21) is equivalent to the following problem (4.2.22)-(4.2.23) since ξ1,+
t and ξ2,−

t

(ξ1,−
t and ξ2,+

t ) are equivalent controls to the central controller; and B1
t +B2

t ∼
√

2Bt, where Bt is
a standard Brownian motion.

V (x1, x2) = min
ξ∈U1

E
[∫ ∞

0
e−αt

(
h

(
Xt

2

)
dt+ dξ+

t + dξ−t

)]
(4.2.22)
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subject to

dXt =
√

2dBt + dξ+
t − dξ

−
t . (4.2.23)

By solving the one-dimensional control problem (4.2.22)-(4.2.23), one can see the following control
yields the PO for the game:

ξξξ1∗
t = (ξ1∗,+

t , ξ1∗,−
t ),

ξξξ2∗
t = (ξ2∗,+

t , ξ2∗,−
t ) = (0, 0),

(4.2.24)

where

ξ1∗,+
t = max

{
0, max

0≤u≤t

{
−(x2 − x1)−B2

u +B1
u + ξ1∗,−

u − c̃1

}}
,

ξ1∗,−
t = max

{
0, max

0≤u≤t

{
x2 − x1 +B2

u −B1
u + ξ1∗,+

u − c̃1

}}
,

(a) Worst NE policies: five regions correspond-
ing to five different actions: two action regions
from player two, two action regions from player
one, and a common non-action region in the
middle.

(b) PO policies

Figure 4.1: Worst NE versus PO in PoA.

There are some insights from the analysis of PoA.

c̃
(1)
2 versus c̃

(2)
2 . When the cost of controls is different for player one and player two (k1 6= k2),

the threshold is also different
(
c̃

(1)
2 6= c̃

(2)
2

)
. One can show that a bigger cost of control implies a

bigger threshold. See Figure 4.1a. Intuition: when control is expensive, player is more reluctant to
control, resulting in a larger non-action region.
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PO vs NE via PoA. Due to the particular form of the cost function h, PoA only depends
on the relative distance |x1 − x2|. One can show that when k1 6= k2, PoA→ max{k1,k2}

min{k1,k2} when

|x1 − x2| → ∞. This also suggests that the worst NE is asymptotically efficient when two players
are further away from each other. Figure 4.2 shows the asymptotic limit of PoA being 2 with
α = 1, k1 = 1 and k2 = 2.

Since the central controller for PO has the freedom to coordinate player one and player two.
She will always choose the player with the cheaper cost (player one) to control and let the other
player (player two) do nothing. This is societally optimal, hence PO is efficient via the centralized
coordination.

See Figure 4.3 for a special case when two players are symmetric (k1 = k2 and α = 1). In this

case, c̃
(1)
2 6= c̃

(2)
2 . It is equally optimal for the central controller to pick player 1 or 2. Moreover, at

the free boundary between the action and the non-action regions of the worst NE, PoA reaches the
largest value (two peaks in Figure 4.3b). Reason: by the NE policy player one frequently exercises
controls where by the PO policy there is no control. This leads to the least efficiency of the worst
NE.

(a) PO versus Worst NE in game values (b) PoA

Figure 4.2: Worst NE versus PO in PoA (in game values).
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(a) PO versus Worst NE in game values (b) PoA

Figure 4.3: Worst NE versus PO in PoA (in game values).
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Chapter 5

Learning Mean Field Game

5.1 Introduction

Motivating example. This paper is motivated by the following Ad auction problem for an
advertiser. An Ad auction is a stochastic game on an Ad exchange platform among a large number
of players, the advertisers. In between the time a web user requests a page and the time the page
is displayed, usually within a millisecond, a Vickrey-type of second-best-price auction is run to
incentivize interested advertisers to bid for an Ad slot to display advertisement. Each advertiser
has limited information before each bid: first, her own valuation for a slot depends on an unknown
conversion of clicks for the item; secondly, she, should she win the bid, only knows the reward after
the user’s activities on the website are finished. In addition, she has a budget constraint in this
repeated auction.

The question is, how should she bid in this online sequential repeated game when there is a large
population of bidders competing on the Ad platform, with unknown distributions of the conversion
of clicks and rewards?

Besides the Ad auction, there are many real-world problems involving a large number of players
and unknown systems. Examples include massive multi-player online role-playing games [114], high
frequency tradings [140], and the sharing economy [97].

Our work. Motivated by these problems, we consider a general framework of simultaneous
learning and decision-making in stochastic games with a large population. We formulate a general
mean-field-game (GMFG) with incorporation of action distributions, and with unknown rewards
and dynamics. This general framework can also be viewed as a generalized version of MFGs of
McKean-Vlasov type [1], which is a different paradigm from the classical MFG. It is also beyond
the scope of the existing Q-learning framework for Markov decision problem (MDP) with unknown
distributions, as MDP is technically equivalent to a single player stochastic game.

On the theory front, this general framework differs from all existing MFGs. We establish under
appropriate technical conditions, the existence and uniqueness of the Nash equilibrium (NE) to this
GMFG. On the computational front, we show that naively combining Q-learning with the three-step
fixed-point approach in classical MFGs yields unstable algorithms. We then propose a Q-learning
algorithm with Boltzmann policy (GMF-Q), establish its convergence property and analyze its
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computational complexity. Finally, we apply this GMF-Q algorithm to the Ad auction problem,
where this GMF-Q algorithm demonstrates its efficiency and robustness in terms of convergence
and learning. Moreover, its performance is superior, when compared with existing algorithms for
multi-agent reinforcement learning for convergence, stability, and learning accuracy.

Related works. On learning large population games with mean-field approximations, [187]
focuses on inverse reinforcement learning for MFGs without decision making, [188] studies an MARL
problem with a first-order mean-field approximation term modeling the interaction between one
player and all the other finite players, and [125] and [189] consider model-based adaptive learning
for MFGs in specific models (e.g., linear-quadratic and oscillator games). More recently, [173]
considers reinforcement learning in the classical MFG setting, and proposes a policy-gradient based
algorithm and analyzes the so-called local NE. For learning large population games without mean-
field approximation, see [117, 100] and the references therein.

In the specific topic of learning auctions with a large number of advertisers, [38] and [115] explore
reinforcement learning techniques to search for social optimal solutions with real-word data, and
[112] uses MFGs to model the auction system with unknown conversion of clicks within a Bayesian
framework.

However, none of these works consider the problem of simultaneous learning and decision-
making in a general MFG framework. Neither do they establish the existence and uniqueness of the
NE, nor do they present model-free learning algorithms with complexity analysis and convergence
to the NE.

5.2 Framework of General MFG (GMFG)

Background: Classical N-player Markovian Game and MFG

Let us first recall the classical N -player game. There are N players in a game. At each step t, the
state of player i (= 1, 2, · · · , N) is sit ∈ S ⊆ Rd and she takes an action ait ∈ A ⊆ Rp. Here d, p
are positive integers, and S and A are compact (for example, finite) state space and action space,
respectively. Given the current state profile of N -players st = (s1

t , . . . , s
N
t ) ∈ SN and the action ait,

player i will receive a reward ri(st, a
i
t) and her state will change to sit+1 according to a transition

probability function P i(st, a
i
t).

A Markovian game further restricts the admissible policy/control for player i to be of the form
ait = πit(s

t). That is, πit : SN → P(A) maps each state profile s ∈ SN to a randomized action, with
P(X ) the space of probability measures on space X . The accumulated reward (a.k.a. the value
function) for player i, given the initial state profile s and the policy profile sequence πππ := {πππt}∞t=0

with πππt = (π1
t , . . . , π

N
t ), is then defined as

V i(s,πππ) := E

[ ∞∑
t=0

γtri(st, a
i
t)
∣∣∣s0 = s

]
, (5.2.1)

where γ ∈ (0, 1) is the discount factor, ait ∼ πit(s
t), and sit+1 ∼ P i(st, a

i
t). The goal of each player

is to maximize her value function over all admissible policy sequences.
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In general, this type of stochastic N -player game is notoriously hard to analyze, especially
when N is large. Mean field game (MFG), pioneered by [105] and [138], provides an ingenious
and tractable aggregation approach to approximate the otherwise challenging N -player stochastic
games. The basic idea for an MFG goes as follows. Assume all players are identical, indistin-
guishable and interchangeable, when N → ∞, one can view the limit of other players’ states

s−it = (s1
t , . . . , s

i−1
t , si+1

t , . . . , sNt ) as a population state distribution µt := limN→∞

∑N
j=1,j 6=i 1(sjt )

N .
Due to the homogeneity of the players, one can then focus on a single (representative) player. That
is, in an MFG, one may consider instead the following optimization problem,

maximizeπππ V (s,πππ,µµµ) := E
[ ∞∑
t=0

γtr(st, at, µt)|s0 = s

]
subject to st+1 ∼ P (st, at, µt), at ∼ πt(st, µt),

where πππ := {πt}∞t=0 denotes the policy sequence and µµµ := {µt}∞t=0 the distribution flow. In this
MFG setting, at time t, after the representative player chooses her action at according to some
policy πt, she will receive reward r(st, at, µt) and her state will evolve under a controlled stochastic
dynamics of a mean-field type P (·|st, at, µt). Here the policy πt depends on both the current state
st and the current population state distribution µt such that π : S × P(S)→ P(A).

General MFG (GMFG)

In the classical MFG setting, the reward and the dynamic for each player are known. They depend
only on st the state of the player, at the action of this particular player, and µt the population
state distribution. In contrast, in the motivating auction example, the reward and the dynamic are
unknown; they rely on the actions of all players, as well as on st and µt.

We therefore define the following general MFG (GMFG) framework. At time t, after the
representative player chooses her action at according to some policy π : S ×P(S)→ P(A), she will
receive a reward r(st, at,Lt) and her state will evolve according to P (·|st, at,Lt), where r and P
are possibly unknown. The objective of the player is to solve the following control problem:

maximizeπππ V (s,πππ,LLL) := E
[ ∞∑
t=0

γtr(st, at,Lt)|s0 = s

]
subject to st+1 ∼ P (st, at,Lt), at ∼ πt(st, µt).

(GMFG)

Here, LLL := {Lt}∞t=0, with Lt = Pst,at ∈ P(S × A) the joint distribution of the state and the action
(i.e., the population state-action pair). Lt has marginal distributions αt for the population action
and µt for the population state.

In this framework, we adopt the well-known Nash Equilibrium (NE) for analyzing stochastic
games.

Definition 43 (NE for GMFGs). In (GMFG), a player-population profile (πππ?,LLL?) := ({π?t }∞t=0, {L?t }∞t=0)
is called an NE if

1. (Single player side) Fix LLL?, for any policy sequence πππ := {πt}∞t=0 and any initial state s ∈ S,

V (s,πππ?,LLL?) ≥ V (s,πππ,LLL?) . (5.2.2)
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2. (Population side) Pst,at = L?t for all t ≥ 0, where {st, at}∞t=0 is the dynamics under the policy
sequence πππ? starting from s0 ∼ µ?0, with at ∼ π?t (st, µ

?
t ), st+1 ∼ P (·|st, at,L?t ), and µ?t being

the population state marginal of L?t .

The single player side condition captures the optimality of πππ?, when the population side is
fixed. The population side condition ensures the “consistency” of the solution: it guarantees that
the state and action distribution flow of the single player does match the population state and
action sequence LLL?.

Example: GMFG for the Repeated Auction

Now, consider the repeated Vickrey auction with a budget constraint in Section 5.1. Take a
representative advertiser in the auction. Denote st ∈ {0, 1, 2, · · · , smax} as the budget of this player
at time t, where smax ∈ N+ is the maximum budget allowed on the Ad exchange with a unit
bidding price. Denote at as the bid price submitted by this player and αt as the bidding/(action)
distribution of the population. The reward for this advertiser with bid at and budget st is

rt = IwMt =1

[
(vt − aMt )− (1 + ρ)Ist<aMt (aMt − st)

]
. (5.2.3)

Here wMt takes values 1 and 0, with wMt = 1 meaning this player winning the bid and 0 otherwise.
The probability of winning the bid would depend on M , the index for the game intensity, and αt.
(See discussion on M in Appendix C.8.) The conversion of clicks at time t is vt and follows an
unknown distribution. aMt is the value of the second largest bid at time t, taking values from 0 to
smax, and depends on both M and Lt. Should the player win the bid, the reward rt consists of two
parts, corresponding to the two terms in (5.2.3). The first term is the profit of wining the auction,
as the winner only needs to pay for the second best bid aM in a Vickrey auction. The second term
is the penalty of overshooting if the payment exceeds her budget, with a penalty rate ρ. At each
time t, the budget dynamics st follows,

st+1 =


st, wMt 6= 1,
st − aMt , wMt = 1 and aMt ≤ st,
0, wMt = 1 and aMt > st.

That is, if this player does not win the bid, the budget will remain the same. If she wins and has
enough money to pay, her budget will decrease from st to st − aMt . However, if she wins but does
not have enough money, her budget will be 0 after the payment and there will be a penalty in the
reward function. Note that in this game, both the rewards rt and the dynamics st are unknown a
priori.

In practice, one often modifies the dynamics of st+1 with a non-negative random budget fulfill-
ment ∆(st+1) after the auction clearing [91], such that

ŝt+1 = st+1 + ∆(st+1). (5.2.4)

One may see some particular choices of ∆(st+1) in the experiment section (Section 5.5).
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5.3 Solution for GMFGs

We now establish the existence and uniqueness of the NE to (GMFG), by generalizing the classical
fixed-point approach for MFGs to this GMFG setting. (See [105] and [138] for the classical case).
It consists of three steps.

Step A. Fix LLL := {Lt}∞t=0, (GMFG) becomes the classical optimization problem. Indeed, with
LLL fixed, the population state distribution sequence µµµ := {µt}∞t=0 is also fixed, hence the space of
admissible policies is reduced to the single-player case. Solving (GMFG) is now reduced to finding
a policy sequence π?t,LLL ∈ Π := {π |π : S → P(A)} over all admissible πππLLL = {πt,LLL}∞t=0, to maximize

V (s,πππLLL,LLL) := E
[ ∞∑
t=0

γtr(st, at,Lt)|s0 = s

]
,

subject to st+1 ∼ P (st, at,Lt), at ∼ πt,LLL(st).

Notice that with LLL fixed, one can safely suppress the dependency on µt in the admissible policies.
Moreover, given this fixed LLL sequence and the solution πππ?LLL := {π?t,LLL}∞t=0, one can define a mapping
from the fixed population distribution sequence LLL to an arbitrarily chosen optimal randomized
policy sequence. That is,

Γ1 : {P(S ×A)}∞t=0 → {Π}∞t=0,

such that πππ?LLL = Γ1(LLL). Note that this πππ?LLL sequence satisfies the single player side condition in
Definition 43 for the population state-action pair sequence LLL. That is, V

(
s,πππ?LLL,LLL

)
≥ V (s,πππ,LLL) ,

for any policy sequence πππ = {πt}∞t=0 and any initial state s ∈ S.
As in the classical MFG literature [105], a feedback regularity (FR) condition is needed for the

analysis of Step A.

Assumption 1. There exists a constant d1 ≥ 0, such that for any LLL,LLL′ ∈ {P(S ×A)}∞t=0,

D(Γ1(LLL),Γ1(LLL′)) ≤ d1W1(LLL,LLL′), (5.3.1)

where

D(πππ,πππ′) := sup
s∈S
W1(πππ(s),πππ′(s)) = sup

s∈S
sup
t∈N

W1(πt(s), π
′
t(s)),

W1(LLL,LLL′) := sup
t∈N

W1(Lt,L′t),
(5.3.2)

and W1 is the `1-Wasserstein distance between probability measures [85, 180, 160].

Step B. Based on the analysis in Step A and πππ?LLL = {π?t,LLL}∞t=0, update the initial sequence LLL to
LLL′ following the controlled dynamics P (·|st, at,Lt).

Accordingly, for any admissible policy sequence πππ ∈ {Π}∞t=0 and a joint population state-action
pair sequence LLL ∈ {P(S×A)}∞t=0, define a mapping Γ2 : {Π}∞t=0×{P(S×A)}∞t=0 → {P(S×A)}∞t=0

as follows:

Γ2(πππ,LLL) := L̂̂L̂L = {Pst,at}∞t=0, (5.3.3)

where st+1 ∼ µtP (·|·, at,Lt), at ∼ πt(st), s0 ∼ µ0, and µt is the population state marginal of Lt.
One needs a standard assumption in this step.
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Assumption 2. There exist constants d2, d3 ≥ 0, such that for any admissible policy sequences
πππ,πππ1,πππ2 and joint distribution sequences LLL,LLL1,LLL2,

W1(Γ2(πππ1,LLL),Γ2(πππ2,LLL)) ≤ d2D(πππ1,πππ2), (5.3.4)

W1(Γ2(πππ,LLL1),Γ2(πππ,LLL2)) ≤ d3W1(LLL1,LLL2). (5.3.5)

Assumption 2 can be reduced to Lipschitz continuity and boundedness of the transition dynam-
ics P . (See the Appendix for more details.)

Step C. Repeat Step A and Step B until LLL′ matches LLL.
This step is to take care of the population side condition. To ensure the convergence of the

combined step A and step B, it suffices if Γ : {P(S × A)}∞t=0 → {P(S × A)}∞t=0 is a contractive
mapping under the W1 distance, with Γ(LLL) := Γ2(Γ1(LLL),LLL). Then by the Banach fixed point
theorem and the completeness of the related metric spaces, there exists a unique NE to the GMFG.

In summary, we have

Theorem 44 (Existence and Uniqueness of GMFG solution). Given Assumptions 1 and 2, and
assume d1d2 + d3 < 1. Then there exists a unique NE to (GMFG).

5.4 RL Algorithms for GMFGs

In this section, we design the computational algorithm for the GMFG. Since the reward and transi-
tion distributions are unknown, this is simultaneously learning the system and finding the NE of the
game. We will focus on the case with finite state and action spaces, i.e., |S|, |A| <∞. We will look
for stationary (time independent) NEs. Accordingly, we abbreviate πππ := {π}∞t=0 and LLL : {L}∞t=0 as
π and L, respectively. This stationarity property enables developing appropriate time-independent
Q-learning algorithm, suitable for an infinite time horizon game. Modification from the GMFG
framework to this special stationary setting is straightforward, and is left in the Appendix.

The algorithm consists of two steps, parallel to Step A and Step B in Section 5.3.

Step 1: Q-learning with stability for fixed L. With L fixed, it becomes a standard
learning problem for an infinite horizon MDP. We will focus on the Q-learning algorithm [175, 161].

The Q-learning algorithm approximates the value iteration by stochastic approximation. At
each step with the state s and an action a, the system reaches state s′ according to the controlled
dynamics and the Q-function is updated according to

QL(s, a)← (1− βt(s, a))QL(s, a) + βt(s, a) [r(s, a,L) + γmaxãQL(s′, ã)
]
, (5.4.1)

where the step size βt(s, a) can be chosen as ([77])

βt(s, a) =

{
|#(s, a, t) + 1|−h, (s, a) = (st, at),

0, otherwise.
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with h ∈ (1/2, 1). Here #(s, a, t) is the number of times up to time t that one visits the pair
(s, a). The algorithm then proceeds to choose action a′ based on QL with appropriate exploration
strategies, including the ε-greedy strategy.

After obtaining the approximate Q̂?L, in order to retrieve an approximately optimal policy, it
would be natural to define an argmax-e operator so that actions with equal maximum Q-values
would have equal probabilities to be selected. Unfortunately, the discontinuity and sensitivity
of argmax-e could lead to an unstable algorithm (see Figure 5.4 for the corresponding naive
Algorithm 3 in Appendix). 1

Instead, we consider a Boltzmann policy based on the operator softmaxc : Rn → Rn, defined
as

softmaxc(x)i =
exp(cxi)∑n
j=1 exp(cxj)

. (5.4.2)

This operator is smooth and close to the argmax-e (see Lemma 56 in the Appendix). Moreover
even though Boltzmann policies are not optimal, the difference between the Boltzmann and the
optimal one can always be controlled by choosing the hyper-parameter c appropriately in the
softmax operator (5.4.2).

Step 2: error control in updating L. Given the sub-optimality of the Boltzmann policy, one
needs to characterize the difference between the optimal policy and the non-optimal ones. In par-
ticular, one can define the action gap between the best action and the second best action in terms
of the Q-value as δs(L) := maxa′∈AQ

?
L(s, a′) − maxa/∈argmaxa∈AQ

?
L(s,a)Q

?
L(s, a) > 0. Action gap

is important for approximation algorithms [18], and are closely related to the problem-dependent
bounds for regret analysis in reinforcement learning and multi-armed bandits, and advantage learn-
ing algorithms including A2C [150].

The problem is: in order for the learning algorithm to converge in terms of L (Theorem 45),
one needs to ensure a definite differentiation between the optimal policy and the sub-optimal ones.
This is problematic as the infimum of δs(L) over an infinite number of L can be 0. To address this,
the population distribution at step k, say Lk, needs to be projected to a finite grid, called ε-net.
The relation between the ε-net and action gaps is as follows:

For any ε > 0, there exist a positive function φ(ε) and an ε-net Sε := {L(1), . . . ,L(Nε)} ⊆ P(S×A),
with the properties that mini=1,...,Nε dTV (L,L(i)) ≤ ε for any L ∈ P(S×A), and that maxa′∈AQ

?
L(i)(s, a

′)−
Q?L(i)(s, a) ≥ φ(ε) for any i = 1, . . . , Nε, s ∈ S, and any a /∈ argmaxa∈AQ

?
L(i)(s, a).

Here the existence of ε-nets is trivial due to the compactness of the probability simplex P(S×A),
and the existence of φ(ε) comes from the finiteness of the action set A.

In practice, φ(ε) often takes the form of Dεα with D > 0 and the exponent α > 0 characterizing
the decay rate of the action gaps, and Sε takes a uniform grid with appropriate grid sizes.

Finally, to enable Q-learning, it is assumed that one has access to a population simulator (See
[159, 182]). That is, for any policy π ∈ Π, given the current state s ∈ S, for any population

1argmax-e is not continuous: Let x = (1, 1), then argmax-e(x) = (1/2, 1/2). For any ε > 0, let
y = (1, 1− ε), then argmax-e(y) = (1, 0).
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distribution L, one can obtain the next state s′ ∼ P (·|s, π(s, µ),L), a reward r = r(s, π(s, µ),L),
and the next population distribution L′ = Ps′,π(s′,µ). For brevity, we denote the simulator as
(s′, r,L′) = G(s, π,L). Here µ is the state marginal distribution of L.

In summary, we propose the following Algorithm 2.

Algorithm 2 Q-learning for GMFGs (GMF-Q)

1: Input: Initial L0, tolerance ε > 0.
2: for k = 0, 1, · · · do
3: Perform Q-learning for Tk iterations to find the approximate Q-function Q̂?

k(s, a) =
Q̂?
Lk(s, a) of an MDP with dynamics PLk(s

′|s, a) and rewards rLk(s, a).

4: Compute πk ∈ Π with πk(s) = softmaxc(Q̂
?
k(s, ·)).

5: Sample s ∼ µk, where µk is the population state marginal of Lk, and obtain L̃k+1

from G(s, πk,Lk).
6: Find Lk+1 = ProjSε(L̃k+1)

Here ProjSε(L) = argminL(1),...,L(Nε)dTV (L(i),L). See Lemma 57 and Theorem 45 for details
about the choices of hyper-parameters c and Tk.

In the special case when the rewards rL and transition dynamics P (·|s, a,L) are known, one can
replace the Q-learning step in the above Algorithm 2 by a value iteration, resulting in the GMF-V
Algorithm 4 in the Appendix.

We next show the convergence of this GMF-Q algorithm (Algorithm 2) to an ε-Nash of (GMFG),
with complexity analysis.

Theorem 45 (Convergence and complexity of GMF-Q). Assume the same conditions in Theorem
44 and Lemma 57 in the Appendix. For any tolerances ε, δ > 0, set δk = δ/Kε,η, εk = (k+1)−(1+η)

for some η ∈ (0, 1] (k = 0, . . . ,Kε,η−1), Tk = TMLk (δk, εk) (defined in Lemma 57 in the Appendix)

and c = log(1/ε)
φ(ε) . Then with probability at least 1− 2δ, W1(LKε,η ,L?) ≤ Cε.

Moreover, the total number of iterations T =
∑Kε,η−1

k=0 TMLk (δk, εk) is bounded by

T = O

(
K

1+ 4
h

ε,η (log(Kε,η/δ))
2

1−h+ 2
h

+3

)
. (5.4.3)

Here Kε,η :=
⌈
2 max

{
(ηε)−1/η, logd(ε/max{diam(S)diam(A), 1}) + 1)

}⌉
is the number of outer it-

erations, h is the step-size exponent in Q-learning (defined in Lemma 57 in the Appendix), and the
constant C is independent of δ, ε and η.

The proof of Theorem 45 in the Appendix depends on the Lipschitz continuity of the softmax
operator [82], the closeness between softmax and the argmax-e (Lemma 56 in the Appendix), and
the complexity of Q-learning for the MDP (Lemma 57 in the Appendix). Lemma 57 also provides
guidance on how to choose the number of inner iterations Tk in Algorithm 2.



CHAPTER 5. LEARNING MEAN FIELD GAME 111

Table 5.1: Q-table with TGMF-V
k = 5000.

TGMF-Q
k 1000 3000 5000 10000
∆Q 0.21263 0.1294 0.10258 0.0989

5.5 Experiment: Repeated Auction Game

In this section, we report the performance of the proposed GMF-Q Algorithm. The objectives of
the experiments include 1) testing the convergence, stability, and learning ability of GMF-Q in
the GMFG setting, and 2) comparing GMF-Q with existing multi-agent reinforcement learning
algorithms, including IL algorithm and MF-Q algorithm.

We take the GMFG framework for the repeated auction game from Section 5.2. Here each
advertiser learns to bid in the auction with a budget constraint.

Parameters. The model parameters are set as: |S| = |A| = 10, the overbidding penalty ρ = 0.2,
the distributions of the conversion rate v ∼ uniform[4], and the competition intensity index M = 5.
The random fulfillment is chosen as: if s < smax, ∆(s) = 1 with probability 1

2 and ∆(s) = 0 with
probability 1

2 ; if s = smax, ∆(s) = 0.
The algorithm parameters are (unless otherwise specified): the temperature parameter c = 4.0,

the discount factor γ = 0.8, the parameter h from Lemma 57 in the Appendix being h = 0.87, and
the baseline inner iteration being 2000. Recall that for GMF-Q, both v and the dynamics of P for
s are unknown a priori. The 90%-confidence intervals are calculated with 20 sample paths.

Performance evaluation in the GMFG setting. Our experiment shows that the GMF-Q
Algorithm is efficient and robust, and learns well.

Convergence and stability of GMF-Q. GMF-Q is efficient and robust. First, GMF-Q
converges after about 10 outer iterations; secondly, as the number of inner iterations increases, the
error decreases (Figure 5.2); and finally, the convergence is robust with respect to both the change
of number of states and the initial population distribution (Figure 5.3).

In contrast, the Naive algorithm does not converge even with 10000 inner iterations, and the
joint distribution Lt keeps fluctuating (Figure 5.4).

Learning accuracy of GMF-Q. GMF-Q learns well. Its learning accuracy is tested against
its special form GMF-V (Appendix C.7), with the latter assuming a known distribution of conver-
sation rate v and the dynamics P for the budget s. The relative L2 distance between the Q-tables

of these two algorithms is ∆Q :=
‖QGMF-V−QGMF-Q‖2

‖QGMF-V‖2 = 0.098879. This implies that GMF-Q learns
the true GMFG solution with 90-percent accuracy with 10000 inner iterations.

The heatmap in Figure 5.1a is the Q-table for GMF-Q Algorithm after 20 outer iterations.
Within each outer iteration, there are TGMF-Q

k = 10000 inner iterations. The heatmap in Figure 5.1b
is the Q-table for GMF-Q Algorithm after 20 outer iterations. Within each outer iteration, there
are TGMF-V

k = 5000 inner iterations.
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Figure 5.2: Convergence with different num-
ber of inner iterations.
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ber of states.

(a) GMF-Q.
(b) GMF-V.

Figure 5.1: Q-tables: GMF-Q vs. GMF-V.
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Figure 5.4: Fluctuations of Naive Algorithm (30 sample paths).
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(a) |S| = |A| = 10, N = 20.

0 10000 20000 30000 40000 50000 60000 70000 80000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c(
)

MF-Q
IL
GMF-Q

(b) |S| = |A| = 20, N = 20.

0 10000 20000 30000 40000 50000 60000 70000 80000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c(
)

MF-Q
IL
GMF-Q

(c) |S| = |A| = 10, N = 40.

Figure 5.5: Learning accuracy based on C(πππ).

Comparison with existing algorithms for N-player games. To test the effectiveness
of GMF-Q for approximating N -player games, we next compare GMF-Q with IL algorithm and
MF-Q algorithm. IL algorithm [176] considers N independent players and each player solves a
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decentralized reinforcement learning problem ignoring other players in the system. The MF-Q
algorithm [188] extends the NASH-Q Learning algorithm for the N -player game introduced in

[101], adds the aggregate actions (āaa−i =
∑
j 6=i aj
N−1 ) from the opponents, and works for the class of

games where the interactions are only through the average actions of N players.

Performance metric. We adopt the following metric to measure the difference between a
given policy π and an NE (here ε0 > 0 is a safeguard, and is taken as 0.1 in the experiments):

C(πππ) =
1

N |S|N
∑N

i=1

∑
sss∈SN

maxπi Vi(sss, (πππ
−i, πi))− Vi(sss,πππ)

|maxπi Vi(sss, (πππ
−i, πi))|+ ε0

.

Clearly C(πππ) ≥ 0, and C(πππ∗) = 0 if and only if πππ∗ is an NE. Policy arg maxπi Vi(sss, (πππ
−i, πi)) is

called the best response to πππ−i. A similar metric without normalization has been adopted in [158].
Our experiment (Figure 5.5) shows that GMF-Q is superior in terms of convergence rate,

accuracy, and stability for approximating an N -player game: GMF-Q converges faster than IL and
MF-Q, with the smallest error, and with the lowest variance, as ε-net improves the stability.

For instance, when N = 20, IL Algorithm converges with the largest error 0.220. The error
from MF-Q is 0.101, smaller than IL but still bigger than the error from GMF-Q. The GMF-Q
converges with the lowest error 0.065. Moreover, as N increases, the error of GMF-Q deceases while
the errors of both MF-Q and IL increase significantly. As |S| and |A| increase, GMF-Q is robust
with respect to this increase of dimensionality, while both MF-Q and IL clearly suffer from the
increase of the dimensionality with decreased convergence rate and accuracy. Therefore, GMF-Q
is more scalable than IL and MF-Q, when the system is complex and the number of players N is
large.

5.6 Conclusion

This paper builds a GMFG framework for simultaneous learning and decision-making, establishes
the existence and uniqueness of NE, and proposes a Q-learning algorithm GMF-Q with convergence
and complexity analysis. Experiments demonstrate superior performance of GMF-Q.
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[51] René Carmona and Mathieu Laurière. “Convergence Analysis of Machine Learning
Algorithms for the Numerical Solution of Mean Field Control and Games: I–The
Ergodic Case”. In: arXiv preprint arXiv:1907.05980 (2019).

[52] Rene Carmona and Xiuneng Zhu. “A probabilistic approach to mean field games
with major and minor players”. In: The Annals of Applied Probability 26.3 (2016),
pp. 1535–1580.
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[147] José-Luis Menaldi and Michael I Taksar. “Optimal correction problem of a multidi-
mensional stochastic system”. In: Automatica 25.2 (1989), pp. 223–232.

[148] P. A. Meyer. “Martingales locales changement de variables, formules exponentielles”.
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Appendix A

Chapter 2

A.1 The Skorokhod Problem (SP)

First, some notation for a general polyhedron G.
Take a fixed integer l (l ≥ 1), let JJJ = {1, 2, · · · , l}. Given an l−dimensional vector bbb =

(b1, · · · , bl) and N -dimensional unit vectors {nnnj , j ∈ JJJ}, a polyhedron G is defined by

G = {xxx ∈ RN | nnnj · xxx > bj for any j ∈ JJJ}.

Assume the faces Fj = {xxx ∈ Ḡ | nnnj · xxx = bj} (j ∈ JJJ) are of dimension N − 1.
Next, take another set of N−dimensional vectors {dddj , j ∈ JJJ}, we can define the SP problem on

a polyhedron with oblique reflections (d1d1d1, · · · , dldldl), in both the strong sense and the weak sense.

Definition 46 (Strong solution to SP). Given a polyhedron G, a vector field (d1d1d1, · · · , dldldl), and
xxx ∈ G. Given an N -dimensional Brownian motion {BBBt}t≥0 on the probability space (Ω,F ,Pxxx), a
strong solution to the SP with the data (xxx,G, (d1d1d1, · · · , dldldl), {Bt}t≥0) is an FBt -adapted process XXXt

such that

(a) XXXt = xxx+BBBt + ηηηtD, with D =

ddd1

· · ·
dddl

 ∈ Rl×N ,

(b) XXXt has a continuous path in G,

(c) XXXt ∈ G, for any t ≥ 0 a.s.,

(d) ηj0 = 0, ηjt is continuous and nondecreasing, ηjt increases only when XXXt is on the face Fj.
That is,

ηjt =

∫ t

0
1{XXXs∈∂Fj}dη

j
s,

(e) the reflection direction γ(xxx) := dddj , if xxx ∈ Fj for j ∈ JJJ.
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Definition 47 (Weak solution to SP). Given a polyhedron G, a vector field (d1d1d1, · · · , dldldl), and xxx ∈ Ḡ.
A weak solution to the SP with the data (xxx,G, (d1d1d1, · · · , dldldl)) is an adapted N -dimensional process
XXXt defined on some probability space (Ω,F ,Pxxx) such that

(a) XXXt = WWW t +ηηηtD, with D =

ddd1

· · ·
dddl

 ∈ Rl×N and WWW an N -dimensional Brownian motion under

Pxxx, with XXX0 = xxx, Pxxx-a.s.,

(b) XXXt has a continuous path in G, Pxxx-a.s.,

(c) ηj0 = 0, ηjt is continuous and nondecreasing, ηj(t) can increase only when XXXt is on the face
Fj. That is,

ηjt =

∫ t

0
1{XXXs∈∂Fj}dη

j
s,

(d) the reflection direction γ(xxx) := dddj , if xxx ∈ Fj for j ∈ JJJ.

Now the proof of Theorem 8 follows from the following two lemmas.

Lemma 48 (Existence of the weak solution to SP). Fix xxx ∈ CW. There exists a weak solution to
the SP with the data (CW, (ddd1, · · · , ddd2N ),xxx) with dddj (j = 1, 2, · · · , 2N) defined in (4.2.6) and CW
defined in (4.2.2). It is a semimartingale reflected Brownian motion (SRBM) starting from xxx.

In fact, this weak solution is unique in a weak sense, see [66].

Proof of Lemma 48. Following the notation in [66], define the maximal set to characterize the
points on ∂CW as follows. Take J = {1, 2, · · · , 2N} the index set of the 2N faces of CW. For each
∅ 6= KKK ⊂ J, define FK = ∩j∈KFj . Let F∅ = CW. A set KKK ⊂ JJJ is maximal if K 6= ∅, FK 6= ∅,
and FK 6= FK̃ for any K̃ ⊃ K such that K̃ 6= K. Now, it suffices to show that for each maximal
KKK ⊂ JJJ ,

(S.a) there is a positive linear combination ddd =
∑

j∈KKK ajdddj (aj > 0, ∀j ∈ KKK) of the {dddj , j ∈ KKK}
such that nnnj · ddd > 0 for any j ∈KKK;

(S.b) there is a positive linear combination nnn =
∑

j∈KKK cjnnnj (cj > 0, ∀j ∈ KKK) of the {nnnj , j ∈ KKK}
such that dddj ·nnn > 0 for any j ∈KKK.

Let us first show that for any maximal KKK, |KKK| ≤ N − 1. To see this claim, denote

Nmat :=


nnn1

nnn2
...

nnn2N

 =

√
N − 1√
N



1 − 1
N−1 − 1

N−1 . . . − 1
N−1

− 1
N−1 1 − 1

N−1 . . . − 1
N−1

...
...

...
. . .

...
− 1
N−1 − 1

N−1 − 1
N−1 . . . 1

−1 1
N−1

1
N−1 . . . 1

N−1
1

N−1 −1 1
N−1 . . . 1

N−1
...

...
...

. . .
...

1
N−1

1
N−1

1
N−1 . . . −1


∈ R2N×N .
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It follows from some calculations that det(Nmat) = N − 1, implying that for any KKK ⊂ JJJ with
|KKK| = N , ∩Fj∈KKK = ∅. Moreover, for any maximal KKK, |KKK| ≤ N − 1. Now checking the conditions
(S.a) and (S.b) for any maximal KKK reduces to checking these conditions for the maximal KKK with
|KKK| = N − 1.

Note that for any i = 1, · · · , N , Fi and FN+i are parallel faces such that Fi ∩ FN+i = ∅, there
is no maximal KKK for which both i ∈KKK and N + i ∈KKK. Thus, take any KKK = {i1, · · · , iN−1}, where
ik ∈ {k,N + k} for k = 1, 2, · · · , N − 1. Denote m as the number of indexes in KKK which is strictly
smaller than N , then N − 1−m is the number of indexes in KKK that are greater than N .

To check (S.a), define nnn =
∑N−1

k=1 nnnik , then for any k ∈ {1, 2, · · · , N − 1},

nnn · dddik =

√
N − 1√
N

[
1 +

1

N − 1

[
111(ik≤N)(N − 2m) + 111(ik>N)(−N+2m+ 2)

]]
> 0.

To check (S.b), define d =
∑N−1

k=1 dik , then for any k ∈ {1, 2, · · · , N − 1},

ddd ·nnnik =

√
N − 1√
N

[
1 +

1

N − 1

[
111(ik≤N)(N − 2m) + 111(ik>N)(−N+2m+ 2)

]]
> 0.

Next, the uniqueness of solution in the strong sense is established by the localization technique.
That is, construct a sequence of bounded region Wk (k ∈ N+) such that

W1 ⊂ W2 ⊂ · · · ⊂ CW,

where Wk satisfies the condition in [73]. Then define a sequence of stopping times associated with
Wk (k ∈ N+) and extend the strong uniqueness result on bounded regions in [73].

Lemma 49 (Uniqueness of the strong solution to SP). Given a probability space (Ω,F ,P), suppose
there are two strong solutions XXX∗t and XXX∗′t to the SP with the data (xxx, CW, (ddd1, · · · , ddd2N ), {BBBt}t≥0)
with dddi (i = 1 · · · , 2N) defined in (4.2.6). Then

Pxxx
(
XXX∗t = XXX∗′t ; 0 ≤ t <∞

)
= 1.

Proof of Lemma 49. First, the uniqueness on a bounded region. To this end, define the bounded

regionWk = CW∩
{
xxx
∣∣∣ ∣∣∣∑N

i=1 xi

∣∣∣ < k
}

for k ∈ N+. Clearly,Wk ⊆ Wk+1 ⊆ CW and CW = ∪kWk.

Define the boundaries of Wk as

∂Wk = ∪2N
i=1F

(k)
i ∪ F (k)

2N+1 ∪ F
(k)
2N+2,

where F
(k)
i = Fi ∩ Wk for i = 1, . . . , 2N , F

(k)
2N+1 = Wk ∩ {xxx |

∑N
i=1 xi = k}, and F

(k)
2N+2 =

Wk ∩ {xxx |
∑N

i=1 xi = −k}. Define the reflection direction γ(l)(·) on ∂Wk as

γ(k)(xxx) =


ddd2N+1 = nnn2N+1 = 1√

N
(−1,−1, . . . ,−1), xxx ∈ F (k)

2N+1,

ddd2N+2 = nnn2N+2 = 1√
N

(1, 1, . . . , 1), xxx ∈ F (k)
2N+2,

dddi, xxx ∈ F (k)
i , for i = 1, 2, · · · , 2N.

(A.1.1)
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For xxx ∈ ∂Wk, define Ik(xxx) :=
{
i : xxx ∈ F (k)

i

}
as the index set of xxx. Following [73], we will show

that, for each xxx ∈ ∂Wk, there exists bi ≥ 0, i ∈ Ik(xxx), such that

bidddi ·nnni >
∑

j∈Ik(xxx)\{i}

bj |dddj ·nnni|. (S.c)

Define bi = 1 for any i = 1, 2, · · · , 2N + 2. It is sufficient to verify (S.c) for xxx ∈ ∂Wk such that
|Ik(xxx)| = N . In this case, either 2N + 1 ∈ Ik(xxx) or 2N + 2 ∈ Ik(xxx). Take any i0 ∈ Ik(xxx) \ {2N +
1, 2N + 2},

|nnni0 · dddi0 | =

√
N − 1√
N

,

|nnni0 · dddj | =

√
N − 1√
N

1

N − 1
, for j ∈ Ik(xxx) \ {2N + 1, 2N + 2, i0},

|nnni0 · dddj | = 0, for j ∈ {2N + 1, 2N + 2}.

Hence (S.c) holds with dddi0 ·nnni0 =
√
N−1√
N

and
∑

j∈Ik(xxx)\{i0} |dddj ·nnni0 | =
√
N−1√
N

N−2
N−1 . By [73], there exists

a unique strong solution (XXXk
t , ηηη

k)t≥0 to the SP with the data (xxx,Wk, (ddd1, · · · , ddd2N+2), {BBBt}t≥0) such
that xxx ∈ Wk.

Now, let (XXXk′
t , ηηη

k′) be the strong solution to the SP with the data (xxx′,Wk, (ddd1, · · · , ddd2N+2), {BBB′t}t≥0).
Then by [73], there exists a constant Ck <∞ such that for any 0 ≤ t ≤ T ,

E
(

sup
0≤s≤t

‖XXXk
s −XXXk′

s |2
)
≤ Ck

{
‖xxx− xxx′‖2 +

∫ t

0
E
(

sup
0≤u≤s

‖BBBs −BBB′s‖2
)
ds

}
. (A.1.2)

To finish the proof, now suppose that there are two strong solutions (XXX∗t , ηηη
∗)t≥0 and (XXX∗′t , ηηη

∗′)t≥0

to the SP with the data (xxx, CW, (ddd1, · · · , ddd2N ), {BBBt}t≥0), with dddi (i = 1, 2, · · · , 2N) defined in (4.2.6)
and XXX∗0 = XXX∗′0 = xxx ∈ CW. Suppose there exists M := M(xxx) such that xxx ∈ Wk for k ≥ M . Define

τk = inf{t : XXX∗t ∈ F
(k)
2N+1 ∪ F

(k)
2N+2} and τ ′k = inf{t : XXX∗′t ∈ F

(k)
2N+1 ∪ F

(k)
2N+2}. Then the uniqueness of

the strong solution to SP with the data (xxx,Wk, γ
(k), {BBBt}t≥0) implies that for k ≥M ,

Pxxx
(
XXX∗t = XXX∗′t , t ≤ τk

)
= 1, (A.1.3)

Pxxx
(
τk = τ ′k

)
= 1.

By the continuity of the probability measure,

Pxxx
(
XXX∗t = XXX∗t

′, t ≤ τk, k →∞
)

= lim
k→∞

Pxxx
(
XXX∗t = XXX∗′t , t ≤ τk

)
= 1. (A.1.4)

Now it remains to show limk→∞ τk =∞ a.s.. Suppose otherwise, then there exists τ∗ = τ∗(ω) <∞
such that limk→∞ τk = τ∗ pathwise. Therefore,

Pxxx

( ∣∣∣∣∣
N∑
i=1

Xi∗
τ∗

∣∣∣∣∣ =∞

)
= Pxxx

( ∣∣∣∣∣
N∑
i=1

xi +Bi
τ∗ + ηi∗τ∗ − ηN+i∗

τ∗

∣∣∣∣∣ =∞

)
= 1,

which implies, from the bounded variation property of {ηηη∗}t≥0, Pxxx
(∣∣∣∑N

i=1B
i
τ∗

∣∣∣ =∞
)

= 1. This

contradicts with the property of Brownian motion, thus limk→∞ τk =∞ a.s..
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A.2 Well-posedness of Algorithm 1

If xxx = (x1, · · · , xN ) /∈ CW, then there exists an i such that xxx ∈ Ai. For any k > 1, denote the point
after the k-th jump as xxxk = (x1

k, . . . , x
N
k ). In step k + 1, if xxxk ∈ Ai, player i will apply a minimal

push to reach the boundary ∂E−i ∪ ∂E
+
i .

If the jumps do not stop in finite steps, an argument by contradiction will show that they
converge to x̂xx ∈ ∂CW. Let us first show that {xxxk}k≥1 converges. At each step k ≥ 1, denote

x
(1)
k ≤ · · · ≤ x

(N)
k as the ordered points of x1

k, . . . , x
N
k . At each step k, only the player with position

x
(1)
k or x

(N)
k will jump. Therefore {x(1)

k }k≥1 is a non-decreasing sequence with an upper bound

maxi≤N x
i. Hence the limit exists, denoted as x

(1)
∗ . Similarly, the bounded non-increasing sequence

x
(N)
k has a limit, denoted as x

(N)
∗ . Then by the sandwich argument, {xxxk}k≥1 converges.

Next, denote the distance dik = |xik−
∑
i6=j x

j
k

N−1 |. By definition of Ai, the player with the biggest dik
will jump in step k+ 1. Suppose x̂xx = limk→∞xxxk /∈ ∂CW, then there exists an m ∈ {1, . . . , N} such

that x̂xx ∈ Am. Denote the distance ∆ = |x̂m−
∑
j 6=m x̂j

N−1 |−cN = maxi=1,2,··· ,N{|x̂i−
∑
j 6=i x̂

j

N−1 |}−cN > 0.

Given ε > 0 so that ε < ∆
8N and CW ∩ Bε(x̂xx) = ∅, there exists a sufficiently large K > 0 such that

for any k′ > K, xxxk′ ∈ Bε(x̂xx). That is,
∑N

i=1 |xik′ − x̂i|2 ≤ ε2. By the triangle inequality,∣∣∣∣∣xmk′ −
∑

j 6=m x
j
k′

N − 1

∣∣∣∣∣− cN ≥

∣∣∣∣∣x̂m −
∑

j 6=m x̂
j

N − 1

∣∣∣∣∣− cN −
∣∣∣∣∣
(
xmk′ −

∑
j 6=m x

j
k′

N − 1

)
−

(
x̂m −

∑
j 6=m x̂

j

N − 1

)∣∣∣∣∣
≥

∣∣∣∣∣x̂m −
∑

j 6=m x̂
j

N − 1

∣∣∣∣∣− cN − |xmk′ − x̂m| − 1

N − 1

∑
j 6=m

∣∣∣xjk′ − x̂j∣∣∣
≥ ∆− 2ε ≥ 4N − 1

4N
∆ > 2ε.

Thus in step k′ + 1, the player should jump at a minimum distance of 4N−1
4N ∆, which is strictly

greater than 2ε when N > 1. Therefore xxxk′+1 /∈ Bε(x̂xx), which is a contradiction. Hence x̂xx =
limk→∞xxxk ∈ ∂CW.

To see that the total distance of sequential jumps is bounded, rewrite dik in the form of dik =

N−1
N

∣∣xik − x̄k∣∣, where x̄k =
∑N
j=1 x

j
k

N . Clearly, in step k + 1, either the player with value x
(1)
k or the

player with value x
(N)
k will jump. By the monotonicity property of {x(N)

k }k and {x(1)
k }k, the total

distance of jumps is bounded pointwise.
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Figure A.1: Sequential jumps at time 0

A.3 Proof of Proposition 15

Proof. First, denote for N ≥ 2,

fN (x) =
1√

2(N−1)α
N

tanh

(
x

√
2(N − 1)α

N

)
−
p′N (x)− 1

p′′N (x)
,

and

f1(x) =
1√
2α

tanh
(
x
√

2α
)
− p′1(x)− 1

p′′1(x)
.

Then there exists a unique c > 0 such that f1(c) = 0 and there exists a unique cN > 0 such that

fN (cN ) = 0 for N ≥ 2. Denote m1(x) =
p′1(x)−1
p′′1 (x)

and mN (x) =
p′N (x)−1

p′′N (x)
. There exists c̃N > 0 such

that m′N (x) ≥ 1 on (c̃N ,∞) with 0 < c̃N < cN < ∞ for N ≥ 2. And there exists c̃ > 0 such that
m′1(x) ≥ 1 on (c̃,∞) with 0 < c̃ < c <∞. Now 0 < tanh′(x) = 1− tanh2(x) < 1 for any x ∈ (0,∞),
therefore f ′N (x) < 0 on (cN ,∞) for N ≥ 2 and f ′1(x) < 0 on (c,∞). Since fN converges to f1

pointwise, for any ε > 0, there exists an Nε such that for any n ≥ Nε, |fn(c)| = |fn(c)− f1(c)| ≤ ε.
By the uniqueness of the zeros for each function fN , cN → c as N →∞.

Secondly, when h = x2, fN reduces to

fN (x) =
1√

2(N−1)α
N

tanh

(√
2(N − 1)α

N
x

)
− x+

α

2
(
N−1
N

)2 ,
with fN (cN ) = 0. Therefore, ∂cN

∂N = −∂fN
∂N ·

1
∂fN
∂cN

with ∂fN
∂cN

= − tanh2

(√
2(N−1)α

N x

)
< 0, the

conclusion follows after simple computations.
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A.4 Stationary Mean Field Games (SMFGs)

SMFG for (5.2.1). An SMFG version of (5.2.1) can be formulated as the follows.

v∞(x) = inf
(ξ+,ξ−)∈U∞

J(∞)(x; ξ+
t , ξ

−
t )

= inf
(ξ+,ξ−)∈U∞

E
∫ ∞

0
e−αt

[
h(Xt −m∞)dt+ dξi,+t + dξi,−t

∣∣∣X0− = x
]
,

such that Xt = Bt + ξ+
t − ξ

−
t + x,

µ0− = µ, X0− ∼ µ, m0− = m =

∫
xµ0−(dx),

(A.4.1)

where

• µt = limN→∞

∑N
i=1 δXit
N is the distribution of Xt,

• mt = limN→∞
∑N
i=1X

i
t

N is the mean position of the population at time t,

• m∞ = limt→∞mt is the limiting mean position if it exists.

The admissible control set for SMFG is U∞ as defined in Section 2.3. SMFG is a game with the
long-term mean-field aggregation.

Definition 50 (NE to SMFG (A.4.1)). An NE to the SMFG (A.4.1) is a pair of Markovian control
(ξ∗,+t , ξ∗,−t )t≥0 and a limiting mean position m∗ such that

• v∗(x) = J(∞) (x; ξ∗,+, ξ∗,−|m∗) = minξ∈U∞ J(∞) (x; ξ+, ξ−|m∗),

• m∗ = limt→∞ E[X∗t ] where X∗t is the controlled dynamic under (ξ∗,+t , ξ∗,−t )t≥0.

v∗(x) is called the NE value of the SMFG associated with ξ∗.
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Appendix B

Chapter 3

B.1 Sketch proof of Theorem 24

Proof. By assumption A5(ii), for each (xxx,yyy) ∈ ∂G, there is ddd(xxx,yyy) ∈ RI+ such that

∑
i∈I(xxx,yyy)

di(xxx,yyy) = 1, and min
j∈I(xxx,yyy)

〈 ∑
i∈∈I(xxx,yyy)

di(xxx,yyy)rrri(xxx,yyy),nnnj(xxx,yyy)

〉
≥ a. (B.1.1)

By (B.1.1), [116, Lemma 2.1] and the fact that nnni is continuous on ∂Gi for each i ∈ I, we have
that for each (xxx,yyy) ∈ ∂G, there is rxxx,yyy ∈ (0, δ) such that for each (xxx′, yyy′) ∈ Brxxx,yyy(xxx,yyy) ∩ ∂G,

l(xxx′, yyy′) ⊂ l(xxx,yyy), (B.1.2)

and

min
j∈I(xxx,yyy)

〈 ∑
i∈I(xxx,yyy)

di(xxx,yyy)rrri(xxx,yyy),nnnj(xxx
′, yyy′)

〉
≥ a

2
. (B.1.3)

Since ∂Gi is C1, for each (xxx,yyy) ∈ ∂G, there is m(xxx,yyy) > 0 and rxxx,yyy ∈ (0, δ) (rxxx,yyy can be chosen
even smaller if necessary) such that for each (xxx′, yyy′) ∈ Brxxx,yyy(xxx,yyy) ∩ ∂G, (B.1.2)-(B.1.3) hold and

(xxx′, yyy′) + λ
∑

i∈I(xxx,yyy)

di(xxx,yyy)rrri(xxx,yyy) ∈ G for all λ ∈ (0,m(xxx,yyy)). (B.1.4)

Let Bo
rxxx,yyy(xxx,yyy) denote the interior of the closed ball Brxxx,yyy(xxx,yyy). There exists a countable set

{(xxxk, yyyk)} such that ∂G ∈ ∪kBrxxxk,yyyk and {(xxxk, yyyk)} ∩ BN (0) is a finite set for each integer N ≥ 1.
We can further choose the set {(xxxk, yyyk)} to be minimal in the sense that for each strict subset C of

{xxxk, yyyk}, {Brxxx,yyy : (xxx,yyy) ∈ C} does not cover ∂G. Let Dk =
(
Brxxxk,yyyk

)
\
(
∪k−1
i=1Brxxxi,yyyi

)
∩ ∂G for each

k. Then Dk 6= ∅ for each k, {Dk} is a partition of ∂G, and for each (xxx,yyy) ∈ ∂G there is a unique
index i(xxx,yyy) such that (xxx,yyy) ∈ Di(xxx,yyy). For each i(xxx,yyy) ∈ Rn+m, let

(x̄xx, ȳyy) =

{
(xxx,yyy), if (xxx,yyy) /∈ ∂G,
(xxxi(xxx,yyy), yyyi(xxx,yyy)), if (xxx,yyy) ∈ ∂G.
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Note that for all (xxx,yyy) ∈ Rn+m,

‖(xxx,yyy)− (x̄xx, ȳyy)‖ < δ. (B.1.5)

For each i ∈ l and (xxx,yyy) ∈ Rn+m, let

rrrδi (xxx,yyy) = rrri(x̄xx, ȳyy). (B.1.6)

We construct (XXXδ,YYY δ) as follows. LetWWW be defined on some filtered probability space (Ω,F , {Ft},P)
be a d-dimensional {Ft}-Brownian motion with drift bbb and covariance matrix σσσ such that WWW is con-
tinuous almost surely and W0 has distribution ν. Let τ1 := inf{t ≥ 0 : WWW t ∈ ∂G} and

XXXδ
t = WWW t, ηηηδt = 0, and YYY δ

t = 0, for 0 ≤ t < τ1.

Note that XXXδ
τ1− exists on {τ1 < ∞} since WWW has continuous paths and in the case that τ1 = 0,

XXXδ
0− = WWW 0. On {τ1 <∞}, define

ηi,δτ1 =


0, i /∈ l

(
XXXδ
τ1−,YYY

δ
τ1−

)
,

di

(
XXXδ
τ1−,YYY

δ
τ1−

)(m
(
XXXδ
τ1−

,YYY δτ1−

)
2 ∧ δ

)
, i ∈ l

(
XXXδ
τ1−,YYY

δ
τ1−

)
,

XXXδ
τ1 = XXXτ1 +

m
(
XXXδ
τ1−,YYY

δ
τ1−

)
2

∧ δ


 ∑
i∈l
(
XXXδ
τ1−

,YYY δτ1−

) di
(
XXXδ
τ1−,YYY

δ
τ1−

)
rrr+,δ
i (XXXδ

τ1−,YYY
δ
τ1−)

 ,

and

Y j,δ
τ1 = Y j,δ

τ1− +
∑
i∈l

r−,δij

(
XXXδ
τ1−,YYY

δ
τ1−

)(
ηi,δτ1 − η

i,δ
τ1−

)
for j = 1, 2, · · ·m.

So XXXδ, ηηηδ and YYY δ have been defined on [0, τ1) and at τ1 on {τ1 <∞}, such that

(i) XXXδ
t = WWW t +

∑
i∈l rrr

+,δ
i (XXXδ

0−)ηi,δ0 +
∑

i∈l
∫

(0,t] rrr
+,δ
i (XXXδ

s−,YYY
δ
s−)dηi,δs and

YYY δ
t =

∑
i∈l rrr

−,δ
i (YYY δ

0−)ηi,δ0 +
∑

i∈l
∫

(0,t] rrr
−,δ
i (XXXδ

s−,YYY
δ
s−)dηi,δs for all t ∈ [0, τ1] ∩ [0,∞),

where XXXδ
0− = WWW 0 and YYY δ

0− = 0.

(ii) (XXXδ
t ,YYY

δ
t ) ∈ G

(iii) for i ∈ l,

(a) ηi,δ ≥ 0,

(b) ηi,δ is nondecreasing on [0, τ1] ∩ [0,∞),

(c) ηi,δ = ηi,δ0 +
∫

(0,t] 1{(XXXδ
s,YYY

δ
s)∈U2δ(∂G∩∂Gi)}dη

i,δ
s for t ∈ [0, τ1] ∩ [0,∞),

(iv) ‖∆ηηηδt‖ = ‖ηηηδt − ηηηδt−‖ ≤ δ for t ∈ [0, τ1] ∩ [0,∞), where where ηηηδ0− = 000.



APPENDIX B. CHAPTER 3 138

Proceeding by induction, we assume that for some n ≥ 2, τ1 ≤ · · · ≤ τn−1 have been defined, and
(XXXδ,YYY δ, ηηηδ) has been defined on [0, τt−1) and at τt−1 on {τt−1 < ∞}, such that (i) − (iv) above
hold with τn−1 in place of τ1. Then we define τn = ∞ on {τn−1 = ∞} and on {τn−1 < ∞} we
define

τn = inf{t ≥ τn−1 :
(
XXXδ
τn−1

+WWW t −WWW τn−1 ,YYY
δ
τn−1

)
∈ ∂G}.

Note that between τn−1 and τn, the resource level YYY δ
t remains constant while Xδ

t behaves like
a Brownian motion.

For τn−1 ≤ t < τn, let

ηηηδt = ηηηδτn−1
,

YYY δ
t = YYY δ

τn−1
,

XXXδ
t = XXXδ

τn−1
+WWW t −WWW τn−1 .

On {τn <∞}, let

ηi,δτn =


ηi,δτn−1 , i /∈ l

(
XXXδ
τn−,YYY

δ
τn−

)
,

di

(
XXXδ
τn−1−,YYY

δ
τn−1−

)(m
(
XXXδ
τn−1− ,YYY

δ
τn−1−

)
2 ∧ δ

)
, i ∈ l

(
XXXδ
τn−,YYY

δ
τn−

)
,

XXXδ
τn = XXXτn− +

m
(
XXXδ
τn−,YYY

δ
τn−

)
2

∧ δ


 ∑
i∈l
(
XXXδ
τn−,YYY

δ
τn−

) di
(
XXXδ
τn−,YYY

δ
τn−

)
rrr+,δ
i (XXXδ

τn−,YYY
δ
τn−)

 ,

and

Y j,δ
τn = Y j,δ

τn− +
∑
i∈l

r−,δij

(
XXXδ
τn−,YYY

δ
τn−

)(
ηi,δτn − η

i,δ
τn−

)
for j = 1, 2, · · ·m.

In this way, XXXδ, ηηηδ and YYY δ have been defined on [0, τn) and at τn on {τn <∞} such that (i)-(iv)
hold with τn in place of τ1. By construction {τn}∞n=1 is a nondecreasing sequence of stopping times.
Let τ = limn→∞ τn. On {τ =∞}, the construction of (XXXδ, ηηηδ,YYY δ) is complete. A similar argument
in [116, Theorem 5.1] shows that {τ <∞} = ∅.

Consider a sequence of sufficiently small δ’s, denoted by {δn}, such that δn ↓ 0 as n→∞. For
each δn, let (XXXδn ,YYY δn , ηηηδ

n
) be the tuple constructed as above for the same diffusion process WWW

with drift bbb and covariance matrix σσσ. Assumption 4.1 in [116] is satisfied with αn = 0, βn = 0 and

and 2δn in place of δn. Denote WWWn = WWW +
∑

i∈l rrr
+,δn

i (XXXδn
0−,YYY

δn
0−)ηi,δ

n

0 . Consequently, {ZZZδn}∞n=1 :=
{(WWW δn ,XXXδn ,YYY δn , ηηηδ

n
)}∞n=1 is C-tight and any weak limit pointZZZ of this sequence satisfies conditions

(i), (iii), (iv) and (v) and in Definition 23 with Ft = σ(ZZZs : 0 ≤ s ≤ t), t ≥ 0.
It is straightforward that WWWn converges to Brownian motion with drift bbb in D. In addition,

MMM δn := {WWW δn
t −WWW δn

0 −bbbt, t ≥ 0} = {WWW t−WWW 0−bbbt, t ≥ 0} is a martingale with respect to WWW which
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(XXXδn ,YYY δn , ηηηδ
n
) is adapted to. Therefore MMM δn is a martingale with respect to (WWW δn ,XXXδn ,YYY δn , ηηηδ

n
))

and it is also uniformly integrable.
Hence by Proposition 4.1 in [116], any weak limit point of {ZZZδn}∞n=1 is an extended constrained

SRBM with data (G,bbb,σσσ, {rrri, i ∈ l}, ν).

B.2 Satisfiability for Assumptions A1-A5

Take n = N , m = M and I = 2N in Definition 23. We then check the satisfiability for Assumptions
A1-A5 for game CCC. CpCpCp and CdCdCd are two special cases.

A1

Assumption A1 is trivially satisfied by definition. We write

G = ∩2N
j=1Gj ,

where

Gi =

(xxx,yyy) ∈ RN+M
∣∣ x̃i ≤ f−1

N

 M∑
j=1

aijy
j

 ,

GN+i =

(xxx,yyy) ∈ RN+M
∣∣ x̃i ≥ −f−1

N

 M∑
j=1

aijy
j

 ,

for i = 1, 2, · · · , N . The boundary of Gi is smooth since f−1
N is smooth.

A2

Assumption A2 is satisfied since f−1
N is smooth and decreasing. It satisfies the uniform exterior

cone condition. At any boundary point (xxx0, yyy0) ∈ ∂Gj , we can put a truncated closed right circular
cone V(xxx0,yyy0) satisfying V(xxx0,yyy0) ∩ Ḡ = {(xxx0, yyy0)}.

A3

Assumption A3 can be shown by contradiction. The proof is inspired from that of [116, Lemma
(A.2)] which is for bounded region with tightness argument. We modify the proof via a shifting
argument.

Suppose that Assumption A3 does not hold. Then, since there are only finite many l0 ∈ l,
l0 6= ∅, there is an ε > 0, a nonempty set l0 ⊂ l, a sequence {εn} ⊂ (0,∞) with εn → 0 as
n → ∞, a sequence {(xxxn, yyyn)} ⊂ RN+M such that for each n, (xxxn, yyyn) ∈ ∩j∈l0Uεn(∂Gj ∩ ∂G) and
dist((xxxn, yyyn),∩j∈l0(∂Gj ∩ ∂G)) ≥ ε.

By exploiting the special structure of region G, dist((xxx,yyy),∩j∈l0(∂Gj ∩ ∂G)) = dist((xxx −
a1, yyy),∩j∈l0(∂Gj ∩ ∂G)) for any a ∈ R and (xxx,yyy) ∈ RN+M . Here 1 ∈ RN is a vector with all
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ones. Intuitively, this is because for any fixed yyy, the projection of G onto xxx-space is a polyhedron
unbounded along the directions of 111 ∈ RN . This is consistent with the model where we only look
at the relative distance between positions.

Therefore, for each (xxxn, yyyn), there exists an ∈ R such that ‖xxxn−an1‖ ≤ 1. Denote x̃xxn = xxxn−an1.
Hence (x̃xxn, yyyn) is a bounded sequence in RN+M and dist((x̃xxn, yyyn),∩j∈l0(∂Gj ∩ ∂G)) ≥ ε. WLOG,
we may assume that (x̃xxn, yyyn) → (xxx,yyy) as n → ∞ for some (xxx,yyy) ∈ RN+M . It follows that
(xxx,yyy) ∈ ∩j∈l0(∂Gj ∩ ∂G), since for each j ∈ l0,

dist((xxx,yyy), ∂Gj ∩∂G) ≤ ‖(x̃xxn, yyyn)− (xxx,yyy)‖+dist((x̃xxn, yyyn), ∂Gj ∩∂G) ≤ ‖(x̃xxn, yyyn)− (xxx,yyy)‖+ εn → 0,

as n → ∞. This contradicts with the fact that (x̃xxn, yyyn) → (xxx,yyy) and dist((x̃xxn, yyyn),∩j∈l0(∂Gj ∩
∂G)) ≥ ε.

A4

Recall that for i = 1, 2, · · · , N ,

rrri = c′i

(
0 · · · ,−1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

rrrN+i = c′N+i

(
0 · · · , 1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

where c′j is a normalizing constant such that ‖rrrj‖ = 1 (j = 1, 2, · · · , 2N).
On each face j = 1, 2, · · · , 2N , rrrj is a function of yyy, which is bounded. Moreover, rrrj is smooth

and Dyyyrrrj is bounded. Therefore, rrrj(·) is uniformly Lipschitz continuous function. Note that when
the adjacent matrix A = {akj}1≤k,j≤N is an identity matrix or matrix with all ones, rrri is constant
on ∂Gi for all i ∈ l.

A5

Denote g := f−1
N . First we show that g is a non-negative decreasing function on [0, y] where

y :=
∑M

j=1 y
j is the total resource.

Recall that

f ′N (x) =
p′N −

N
2(N−1)αp

′′′
N

p′′N

√
N

2(N−1)α tanh

(
x

√
2(N−1)α

N

)
− p′N

.

We claim that f ′N (x) < 0 when x ≥ 0 and limx↓0 f
′
N (x) = −∞. Since h′(x) ≥ 0 and h′′′(x) ≤ 0 for

x ≥ 0 , we have p′N −
N

2(N−1)αp
′′′
N ≥ 0 for x ≥ 0. Denote q(x) = p′′N

√
N

2(N−1)α tanh

(
x

√
2(N−1)α

N

)
−

p′N . It is easy to check that q(0) = 0. Moreover, q′(x) = p′′′N

√
N

2(N−1)α tanh

(
x

√
2(N−1)α

N

)
+

p′′N
1

cosh2

(
x
√

2(N−1)α
N

) − p′′N < 0 for x > 0 and q′(x) = 0 for x = 0. This is because h′′′ ≤ 0
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(x ≥ 0), cosh(x) ≥ 1 (x ≥ 0), and cosh(x) = 1 if and only if x = 0. Moreover, given the fact that
limx↓0 fN (x) =∞, f ′N (x) is not bounded as x ↓ 0, we have limx↓0 f

′
N (x) = −∞.

Combining all above, f ′N (x) < 0 for x ≥ 0. Therefore, there exists 0 < k̃(y) < K̃(y) <∞ such
that −∞ < −K̃(y) < f ′N (z) < −k̃(y) < 0 when z ∈ [x, x]. Here x = g(y) > 0 and x = g(0). Note
that g′(·) = 1

f ′(f−1(·)) , therefore − 1
k̃(y)
≤ g′(w) ≤ − 1

K̃(y)
when w ∈ [0, y]. Now let k(y) := 1

K̃(y)
and

K(y) := 1
k̃(y)

.

Next, Recall that

nnni = ci

 1

N − 1
, · · · ,−1, · · · , 1

N − 1
; g′

 M∑
j=1

aijy
j

 ai1, · · · , g′
 M∑
j=1

aijy
j

 aiM

 ,

rrri = c′i

(
0 · · · ,−1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

nnnN+i = cN+i

− 1

N − 1
, · · · , 1, · · · ,− 1

N − 1
; g′

 M∑
j=1

aijy
j

 ai1, · · · , g′
 M∑
j=1

aijy
j

 aiM

 ,

rrrN+i = c′N+i

(
0 · · · , 1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

where ±1 is on the i-th position. Obviously all the latter M components in nnnj and rrrj are non-
positive (1 ≤ j ≤ 2N).

By simple calculation, we have 1√
N
N−1

+K(y)N
≤ cj ≤ 1√

N
N−1

+ε
and

√
N
N+1 ≤ c′j ≤ 1√

2
for all

1 ≤ j ≤ N . Similar to the definition of rrr+
j and rrr−j , denote nnn+

j as the first N components in nnnj and

nnn−j as the latter M components in nnnj .
Since face i and N + i are parallel to each other (i = 1, 2, · · · , N), there are at most N faces

intersecting with each other. It suffices to consider (xxx,yyy) such that |I((xxx,yyy))| = N . For these points,
consider ci = 1

N and di = 1
N (i = 1, 2, · · · , N). Therefore, for i∗ ∈ {i,N + i} with i = 1, 2, · · · , N ,〈∑N

i=1nnni∗
N

,rrri∗

〉
≥ 1

N
〈nnn−i∗, rrr

−
i∗〉 =

1

N
c′i∗ci∗〈nnn−i∗, rrr

−
i∗〉 = −c′i∗ci∗g′

 M∑
j=1

aijy
j

 ≥ 1√
N+1
N−1 + (N + 1)K(y)

k(y).

Similarly, for i∗ ∈ {i,N + i} with i = 1, 2, · · · , N ,〈∑N
i=1 rrri∗
N

,ni∗

〉
≥ 1

N
〈nnn−i∗, rrr

−
i∗〉 =

1

N
〈nnn−i∗, rrr

−
i∗〉 = −c′i∗ci∗g′

 M∑
j=1

aijy
j

 ≥ 1√
N+1
N−1 + (N + 1)K(y)

k(y).
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B.3 The unique positive root to (3.4.9)

Define q(z) =
p′′N (z)

p′N (z)
where pN (x) is defined in (3.4.6). Note that

q(0) =
p′′N (0)

p′N (0)
=

E
∫∞

0 e−αth′′
(√

N−1
N Bt

)
dt

E
∫∞

0 e−αth′
(√

N−1
N Bt

)
dt

.

Under Assumption H2′, p′N (0) = 0, k
α < p′′N (0) < K

α , and

q′(z) =
p′′′N (z)p′N (z)− (p′′N (z))2

(p′N (z))2
.

Moreover, Assumption H2′ implies that h′′′(z) ≤ 0 and h′(z) ≥ 0 for z ≥ 0. Therefore, q(0) = ∞
and q′(z) ≤ 0. Furthermore, since k ≤ h′′ ≤ K and h′ ≥ kx + c for some constant c, we have
limx→∞ q(x) = 0.

On the other hand, define f(x) =

√
2(N−1)α

N tanh

(
z

√
2(N−1)α

N

)
. It is easy to check that

f(0) = 0, f ′(x) > 0 for x ≥ 0, and limx→∞ f(x) =

√
2(N−1)α

N . Therefore, f(x) = q(x) has a unique
positive solution.
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Appendix C

Chapter 5

C.1 Distance Metrics and Completeness

This section reviews some basic properties of the Wasserstein distance. It then proves that the
metrics defined in the main text are indeed distance functions and define complete metric spaces.

`1-Wasserstein distance and dual representation. The `1 Wasserstein distance over
P(X ) for X ⊆ Rk is defined as

W1(ν, ν ′) := inf
M∈M(ν,ν′)

∫
X×X

‖x− y‖2dM(x, y). (C.1.1)

whereM(ν, ν ′) is the set of all measures (couplings) on X ×X , with marginals ν and ν ′ on the two
components, respectively.

The Kantorovich duality theorem enables the following equivalent dual representation of W1:

W1(ν, ν ′) = sup
‖f‖L≤1

∣∣∣∣∫
X
fdν −

∫
X
fdν ′

∣∣∣∣ , (C.1.2)

where the supremum is taken over all 1-Lipschitz functions f , i.e., f satisfying |f(x) − f(y)| ≤
‖x− y‖2 for all x, y ∈ X .

The Wasserstein distance W1 can also be related to the total variation distance via the following
inequalities [85]:

dmin(X )dTV (ν, ν ′) ≤W1(ν, ν ′) ≤ diam(X )dTV (ν, ν ′), (C.1.3)

where dmin(X ) = minx 6=y∈X ‖x− y‖2, which is guaranteed to be positive when X is finite.
When S and A are compact, for any compact subset X ⊆ Rk, and for any ν, ν ′ ∈ P(X ),

W1(ν, ν ′) ≤ diam(X )dTV (ν, ν ′) ≤ diam(X ) < ∞, where diam(X ) = supx,y∈X ‖x − y‖2 and dTV is
the total variation distance. Moreover, one can verify

Lemma 51. Both D and W1 are distance functions, and they are finite for any input distribution
pairs. In addition, both ({Π}∞t=0, D) and ({P(S ×A)}∞t=0,W1) are complete metric spaces.
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These facts enable the usage of Banach fixed-point mapping theorem for the proof of existence
and uniqueness (Theorems 44 and 53).

Proof of Lemma 51. It is known that for any compact set X ⊆ Rk, (P(X ),W1) defines a complete
metric space [27]. Since W1(ν, ν ′) ≤ diam(X ) is uniformly bounded for any ν, ν ′ ∈ P(X ), we
know that W1(LLL,LLL′) ≤ diam(X ) and D(πππ,π′π′π′) ≤ diam(X ) as well, so they are both finite for any
input distribution pairs. It is clear that they are distance functions based on the fact that W1 is a
distance function.

Finally, we show the completeness of the two metric spaces ({Π}∞t=0, D) and ({P(S×A)}∞t=0,W1).
Take ({Π}∞t=0, D) for example. Suppose that πππk is a Cauchy sequence in ({Π}∞t=0, D). Then for any
ε > 0, there exists a positive integer N , such that for any m, n ≥ N ,

D(πππn,πππm) ≤ ε =⇒W1(πnt (s), πmt (s)) ≤ ε for any s ∈ S, t ∈ N, (C.1.4)

which implies that πkt (s) forms a Cauchy sequence in (P(A),W1), and hence by the completeness
of (P(A),W1), πkt (s) converges to some πt(s) ∈ P(A). As a result, πππn → πππ ∈ {Π}∞t=0 under metric
D, which shows that ({Π}∞t=0, D) is complete.

The completeness of ({P(S ×A)}∞t=0,W1) can be proved similarly.

The same argument for Lemma 51 shows that both D and W1 are distance functions and are
finite for any input distribution pairs, with both (Π, D) and (P(S ×A),W1) again complete metric
spaces.

C.2 Existence and Uniqueness for Stationary NE of

GMFGs

Definition 52 (Stationary NE for GMFGs). In (GMFG), a player-population profile (π?, L?) is
called a stationary NE if

1. (Single player side) For any policy π and any initial state s ∈ S,

V (s, π?,L?) ≥ V (s, π,L?) . (C.2.1)

2. (Population side) Pst,at = L? for all t ≥ 0, where {st, at}∞t=0 is the dynamics under the
policy π? starting from s0 ∼ µ?, with at ∼ π?(st, µ

?), st+1 ∼ P (·|st, at,L?), and µ? being the
population state marginal of L?.

The existence and uniqueness of the NE to (GMFG) in the stationary setting can be established
by modifying appropriately the same fixed-point approach for the GMFG in the main text.

Step 1. Fix L, the GMFG becomes the classical optimization problem. That is, solving (GMFG)
is now reduced to finding a policy π?L ∈ Π := {π |π : S → P(A)} to maximize

V (s, πL,L) := E
[ ∞∑
t=0

γtr(st, at,L)|s0 = s

]
,

subject to st+1 ∼ P (st, at,L), at ∼ πL(st).
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Now given this fixed L and the solution π?L to the above optimization problem, one can again define

Γ1 : P(S ×A)→ Π,

such that π?L = Γ1(L). Note that this π?L satisfies the single player side condition for the population
state-action pair L,

V (s, π?L,L) ≥ V (s, π,L) , (C.2.2)

for any policy π and any initial state s ∈ S.
Accordingly, a similar feedback regularity (FR) condition is needed in this step.

Assumption 3. There exists a constant d1 ≥ 0, such that for any L,L′ ∈ P(S ×A),

D(Γ1(L),Γ1(L′)) ≤ d1W1(L,L′), (C.2.3)

where

D(π, π′) := sup
s∈S

W1(π(s), π′(s)), (C.2.4)

and W1 is the `1-Wasserstein distance (a.k.a. earth mover distance) between probability measures.

Step 2. Based on the analysis of Step 1 and π?L, update the initial L to L′ following the controlled
dynamics P (·|st, at,L).

Accordingly, define a mapping Γ2 : Π× P(S ×A)→ P(S ×A) as follows:

Γ2(π,L) := L̂ = Ps1,a1 , (C.2.5)

where a1 ∼ π(s1), s1 ∼ µP (·|·, a0,L), a0 ∼ π(s0), s0 ∼ µ, and µ is the population state marginal of
L.

One also needs a similar assumption in this step.

Assumption 4. There exist constants d2, d3 ≥ 0, such that for any admissible policies π, π1, π2

and joint distributions L,L1,L2,

W1(Γ2(π1,L),Γ2(π2,L)) ≤ d2D(π1, π2), (C.2.6)

W1(Γ2(π,L1),Γ2(π,L2)) ≤ d3W1(L1,L2). (C.2.7)

Step 3. Repeat until L′ matches L.
This step is to ensure the population side condition. To ensure the convergence of the combined

step one and step two, it suffices if Γ : P(S × A) → P(S × A) with Γ(L) := Γ2(Γ1(L),L) is a
contractive mapping (under the W1 distance).

Similar to the proof of Theorem 44, again by the Banach fixed point theorem and the com-
pleteness of the related metric spaces, there exists a unique stationary NE of the GMFG. That
is,

Theorem 53 (Existence and Uniqueness of stationary MFG solution). Given Assumptions 3 and
4, and assume d1d2 + d3 < 1. Then there exists a unique stationary NE to (GMFG).
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C.3 Additional Comments on Assumptions

As mentioned in the main text, the single player side Assumption 1 and its counterpart Assumption
3 for the stationary version correspond to the feedback regularity (FR) condition in the classical
MFG literature. Here we add some comments on the population side Assumption 2 and its sta-
tionary version Assumption 4. For simplicity and clarity, let us consider the stationary case with
finite state and action spaces. Then we have the following result.

Lemma 54. Suppose that maxs,a,L,s′ P (s′|s, a,L) ≤ c1, and that P (s′|s, a, ·) is c2-Lipschitz in W1,
i.e.,

|P (s′|s, a,L1)− P (s′|s, a,L2)| ≤ c2W1(L1,L2). (C.3.1)

Then in Assumption 4, d2 and d3 can be chosen as

d2 =
2diam(S)diam(A)|S|c1

dmin(A)
(C.3.2)

and d3 = diam(S)diam(A)c2
2 , respectively.

Lemma 54 provides an explicit characterization of the population side assumptions based only
on the boundedness and Lipschitz properties of the transition dynamics P . In particular, c1 becomes
smaller when the transition dynamics becomes more diverse and the state space becomes larger.

Proof. (Lemma 54) We begin by noticing that L′ = Γ2(π,L) can be expanded and computed as
follows:

µ′(s′) =
∑

s∈S,a∈A
µ(s)P (s′|s, a,L)π(s, a), L′(s′, a′) = µ′(s′)π(s′, a′), (C.3.3)

where µ is the state marginal distribution of L.
Now by the inequalities (C.1.3), we have

W1(Γ2(π1,L),Γ2(π2,L)) ≤ diam(S ×A)dTV (Γ2(π1,L),Γ2(π2,L))

=
diam(S ×A)

2

∑
s′∈S,a′∈A

∣∣∣∣∣∣
∑

s∈S,a∈A
µ(s)P (s′|s, a,L)

(
π1(s, a)π1(s′, a′)− π2(s, a)π2(s′, a′)

)∣∣∣∣∣∣
≤diam(S ×A)

2
max
s,a,L,s′

P (s′|s, a,L)
∑

s,a,s′,a′

µ(s)(π1(s, a) + π2(s, a))|π1(s′, a′)− π2(s′, a′)|

≤diam(S ×A)

2
max
s,a,L,s′

P (s′|s, a,L)
∑
s′,a′

|π1(s′, a′)− π2(s′, a′)| · (1 + 1)

=2diam(S ×A) max
s,a,L,s′

P (s′|s, a,L)
∑
s′

dTV (π1(s′), π2(s′))

≤
2diam(S ×A) maxs,a,L,s′ P (s′|s, a,L)|S|

dmin(A)
D(π1, π2) =

2diam(S)diam(A)|S|c1

dmin(A)
D(π1, π2).

(C.3.4)
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Similarly, we have

W1(Γ2(π,L1),Γ2(π,L2)) ≤ diam(S ×A)dTV (Γ2(π,L1),Γ2(π,L2))

=
diam(S ×A)

2

∑
s′∈S,a′∈A

∣∣∣∣∣∣
∑

s∈S,a∈A
µ(s)π(s, a)π(s′, a′)

(
P (s′|s, a,L1)− P (s′|s, a,L2)

)∣∣∣∣∣∣
≤diam(S ×A)

2

∑
s,a,s′,a′

µ(s)π(s, a)π(s′, a′)
∣∣P (s′|s, a,L1)− P (s′|s, a,L2)

∣∣
≤diam(S)diam(A)c2

2
.

(C.3.5)

This completes the proof.

C.4 Proof of Theorems 44 and 53

For notational simplicity, we only present the proof for the stationary case (Theorem 53). The
proof of Theorems 44 is the same with appropriate notational changes.

First by Definition 52 and the definitions of Γi (i = 1, 2), (π,L) is a stationary NE iff L =
Γ(L) = Γ2(Γ1(L),L) and π = Γ1(L), where Γ(L) = Γ2(Γ1(L),L). This indicates that for any
L1,L2 ∈ P(S ×A),

W1(Γ(L1),Γ(L2)) = W1(Γ2(Γ1(L1),L1),Γ2(Γ1(L2),L2))

≤W1(Γ2(Γ1(L1),L1),Γ2(Γ1(L2),L1)) +W1(Γ2(Γ1(L2),L1),Γ2(Γ1(L2),L2))

≤ (d1d2 + d3)W1(L1,L2).

(C.4.1)

And since d1d2 + d3 ∈ [0, 1), by the Banach fixed-point theorem, we conclude that there exists a
unique fixed-point of Γ, or equivalently, a unique stationary MFG solution to (GMFG).

C.5 Proof of Theorem 45

The proof of Theorem 45 relies on the following lemmas.

Lemma 55 ([82]). The softmax function is c-Lipschitz, i.e., ‖softmaxc(x) − softmaxc(y)‖2 ≤
c‖x− y‖2 for any x, y ∈ Rn.

Notice that for a finite set X ⊆ Rk and any two (discrete) distributions ν, ν ′ over X , we have

W1(ν, ν ′) ≤ diam(X )dTV (ν, ν ′) =
diam(X )

2
‖ν − ν ′‖1 ≤

diam(X )

2
‖ν − ν ′‖2, (C.5.1)

where in computing the `1-norm, ν, ν ′ are viewed as vectors of length |X |.
Hence Lemma 55 implies that for any x, y ∈ R|X |, when softmaxc(x) and softmaxc(y) are

viewed as probability distributions over X , we have

W1(softmaxc(x), softmaxc(y)) ≤ diam(X )c

2
‖x− y‖2 ≤

diam(X )
√
|X |c

2
‖x− y‖∞.
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Lemma 56. The distance between the softmax and the argmax mapping is bounded by

‖softmaxc(x)− argmax-e(x)‖2 ≤ 2n exp(−cδ),

where δ = xmax −maxxj<xmax xj, xmax = maxi=1,...,n xi, and δ :=∞ when all xj are equal.

Similar to Lemma 55, Lemma 56 implies that for any x ∈ R|X |, viewing softmaxc(x) as
probability distributions over X leads to

W1(softmaxc(x),argmax-e(x)) ≤ diam(X )|X | exp(−cδ).

Proof of Lemma 56. Without loss of generality, assume that x1 = x2 = · · · = xm = maxi=1,...,n xi =
x? > xj for all m < j ≤ n. Then

argmax-e(x)i =

{
1
m , i ≤ m,
0, otherwise.

softmaxc(x)i =


ecx

?

mecx?+
∑n
j=m+1 e

cxj , i ≤ m,
ecxi

mecx?+
∑n
j=m+1 e

cxj , otherwise.

Therefore

‖softmaxc(x)− argmax-e(x)‖2 ≤ ‖softmaxc(x)− argmax-e(x)‖1

=m

(
1

m
− ecx

?

mecx? +
∑n

j=m+1 e
cxj

)
+

∑n
i=m+1 e

cxi

mecx? +
∑n

j=m+1 e
cxj

=
2
∑n

i=m+1 e
cxi

mecx? +
∑n

i=m+1 e
cxi

=
2
∑n

i=m+1 e
−cδi

m+
∑n

i=m+1 e
−cδi

≤ 2

m

n∑
i=m+1

e−cδi ≤ 2(n−m)

m
e−cδ ≤ 2ne−cδ,

with δi = xi − x?.

Lemma 57 ([77]). For an MDP, say M, suppose that the Q-learning algorithm takes step-sizes

βt(s, a) =

{
|#(s, a, t) + 1|−h, (s, a) = (st, at),

0, otherwise.

with h ∈ (1/2, 1). Here #(s, a, t) is the number of times up to time t that one visits the state-
action pair (s, a). Also suppose that the covering time of the state-action pairs is bounded by L with
probability at least 1 − p for some p ∈ (0, 1). Then ‖QTM(δ,ε) −Q?‖∞ ≤ ε with probability at least
1− 2δ. Here QT is the T -th update in Q-learning, and Q? is the (optimal) Q-function, given that

TM(δ,ε) = Ω

(L logp(δ)

β
log

Vmax

ε

) 1
1−h

+

(L logp(δ)
)1+3h

V 2
max log

(
|S||A|Vmax

δβε

)
β2ε2


1
h

 ,

where β = (1− γ)/2, Vmax = Rmax/(1− γ), and Rmax is an upper bound on the extreme difference
between the expected rewards, i.e., maxs,a,µ r(s, a, µ)−mins,a,µ r(s, a, µ) ≤ Rmax.



APPENDIX C. CHAPTER 5 149

Here the covering time L of a state-action pair sequence is defined to be the number of steps
needed to visit all state-action pairs starting from any arbitrary state-action pair, and TM(δ, ε)
is the number of inner iterations Tk set in Algorithm 2. This will guarantee the convergence in
Theorem 45. Also notice that the l∞ norm above is defined in an element-wise sense, i.e., for
M ∈ R|S|×|A|, we have ‖M‖∞ = maxs∈S,a∈A |M(s, a)|.

Proof of Theorem 45. Define Γ̂k1(L) := softmaxc

(
Q̂?Lk

)
. In the following, π = softmaxc(QL) is

understood as the policy π with π(s) = softmaxc(QL(s, ·)). Let L? be the population state-action
pair in a stationary NE of (GMFG). Then πk = Γ̂k1(Lk). Denoting d := d1d2 + d3, we see

W1(L̃k+1,L?) = W1(Γ2(πk,Lk),Γ2(Γ1(L?),L?))
≤W1(Γ2(Γ1(Lk),Lk),Γ2(Γ1(L?),L?)) +W1(Γ2(Γ1(Lk),Lk),Γ2(Γ̂k1(Lk),Lk))
≤W1(Γ(Lk),Γ(L?)) + d2D(Γ1(Lk), Γ̂k1(Lk))
≤(d1d2 + d3)W1(Lk,L?) + d2D(argmax-e(Q?Lk), softmaxc(Q̂

?
Lk))

≤dW1(Lk,L?) + d2D(softmaxc(Q̂
?
Lk), softmaxc(Q

?
Lk))

+ d2D(argmax-e(Q?Lk), softmaxc(Q
?
Lk))

≤dW1(Lk,L?) +
cd2diam(A)

√
|A|

2
‖Q̂?µk −Q

?
µk
‖∞

+ d2D(argmax-e(Q?Lk), softmaxc(Q
?
Lk)).

Then since Lk ∈ Sε by the projection step, Lemma 56, and Lemma 57 with the choice of Tk =
TMµ(δk, εk)), we have, with probability at least 1− 2δk,

W1(L̃k+1,L?) ≤ dW1(Lk,L?) +
cd2diam(A)

√
|A|

2
εk + d2diam(A)|A|e−cφ(ε). (C.5.2)

Finally, it is clear that with probability at least 1− 2δk,

W1(Lk+1,L?) ≤W1(L̃k+1,L?) +W1(L̃k+1,ProjSε(L̃k+1))

≤ dW1(Lk,L?) +
cd2diam(A)

√
|A|

2
εk + d2diam(A)|A|e−cφ(ε) + ε.

By telescoping, this implies that with probability at least 1− 2
∑K−1

k=0 δk,

W1(LK ,L?) ≤dKW1(L0,L?) +
cd2diam(A)

√
|A|

2

K−1∑
k=0

dK−kεk

+
(d2diam(A)|A|e−cφ(ε) + ε)(1− dK)

1− d
.

(C.5.3)

Since εk is summable, hence supk≥0 εk <∞),
∑K−1

k=0 dK−kεk ≤
supk≥0 εk

1− d
db(K−1)/2c+

∑∞
k=d(K−1)/2e εk.
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Now plugging in K = Kε,η, with the choice of δk and c = log(1/ε)
φ(ε) , and noticing that d ∈ [0, 1),

it is clear that with probability at least 1− 2δ,

W1(LKε,η ,L?) ≤dKε,ηW1(L0,L?)

+
cd2diam(A)

√
|A|

2

supk≥0 εk

1− d
db(Kε,η−1)/2c +

∞∑
k=d(Kε,η−1)/2e

εk


+

(d2diam(A)|A|+ 1)ε

1− d
.

(C.5.4)

Setting εk = (k + 1)−(1+η), then when Kε,η ≥ 2(logd ε+ 1),

supk≥0 εk

1− d
db(Kε,η−1)/2c ≤ ε

1− d
.

Similarly, when Kε,η ≥ 2(ηε)−1/η,
∑∞

k=
⌈
Kε,η−1

2

⌉ εk ≤ ε.
Finally, when Kε,η ≥ logd(ε/(diam(S)diam(A))), dKε,ηW1(L0,L?) ≤ ε, since W1(L0,L?) ≤

diam(S ×A)= diam(S)diam(A).
In summary, if Kε,η = d2 max{(ηε)−1/η, logd(ε/max{diam(S)diam(A), 1}) + 1}e, then with

probability at least 1− 2δ,

W1(LKε,η ,L?) ≤

(
1 +

cd2diam(A)
√
|A|(2− d)

2(1− d)
+

(d2diam(A)|A|+ 1)

1− d

)
ε = O(ε).

Finally, plugging in εk and δk into TML(δk, εk), and noticing that k ≥ Kε,η and
∑Kε,η−1

k=0 (k +

1)α ≤ Kα+1
ε,η

α+1 , it is immediate that

T = O

(log(Kε,η/δ))
1

1−h Kε,η (logKε,η)
1

1−h + (log(Kε,η/δ))
1
h

+3 K
1+

2(1+η)
h

ε,η

1 + 2(1+η)
h

(log(Kε,η/δ))
1
h

 .

By further relaxing η to 1 and merging the terms, (5.4.3) follows.

C.6 Naive Algorithm

The Naive iterative algorithm (Algorithm 3) is to replace Step A in the three-step fixed-point
approach of GMFGs with Q-learning iterations. The limitation of this Naive algorithm has been
discussed in the main text (Step 1, Section 5.4) and empirically verified in Section 5.5 (Figure 5.4).

C.7 GMF-V

GMF-V, briefly mentioned in Section 5.4, is the value-iteration version of our main algorithm GMF-
Q. GMF-V applies to the GMFG setting with fully known transition dynamics P and rewards r.
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Algorithm 3 Alternating Q-learning for GMFGs (Naive)

1: Input: Initial population state-action pair L0

2: for k = 0, 1, · · · do
3: Perform Q-learning to find the Q-function Q?

k(s, a) = Q?
Lk

(s, a) of an MDP with
dynamics PLk(s

′|s, a) and rewards rLk(s, a).
4: Solve πk ∈ Π with πk(s) = argmax-e (Q?

k(s, ·)).
5: Sample s ∼ µk, where µk is the population state marginal of Lk, and obtain Lk+1

from G(s, πk, Lk).

Algorithm 4 Value Iteration for GMFGs (GMF-V)

1: Input: Initial L0, tolerance ε > 0.
2: for k = 0, 1, · · · do
3: Perform value iteration for Tk iterations to find the approximate Q-function QLk and

value function VLk :
4: for t = 1, 2, · · · , Tk do
5: for all s ∈ S and s ∈ A do
6: QLk(s, a)← E[r(s, a, Lk)] + γ

∑
s′ P (s′|s, a, Lk)VLk(s′)

7: VLk(s)← maxaQLk(s, a)

8: Compute a policy πk ∈ Π:
9: πk(s) = softmaxc(QLk(s, ·)).

10: Sample s ∼ µk, where µk is the population state marginal of Lk, and obtain L̃k+1

from G(s, πk, Lk).
11: Find Lk+1 = ProjSε(L̃k+1)

C.8 More Details for the Experiments

Competition Intensity Index M .

In the experiment, the competition index M is interpreted and implemented as the number of se-
lected players in each auction competition. That is, in each round, M − 1 players will be randomly
selected from the population to compete with the representative advertiser for the auction. There-
fore, the population distribution Lt, the winner indicator wMt , and second-best price aMt all depend
on M . This parameter M is also referred to as the auction thickness in the auction literature
[112].

Adjustment for Algorithm MF-Q.

For MF-Q, [188] assumes all N players have a joint state s. In the auction experiment, we make the
following adjustment for MF-Q for computational efficiency and model comparability: each player

i makes decision based on her own private state and table Qi is a functional of si, ai and
∑
j 6=i a

j

N−1 .




