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Trypanosome Transmission Dynamics in Tsetse

Serap Aksoy, Brian L. Weiss, and Geoff M. Attardo

Abstract

Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes. Tsetse undergo viviparous 

reproductive biology, and depend on their obligate endosymbiont (genus Wigglesworthia) for the 

maintenance of fecundity and immune system development. Trypanosomes establish infections in 

the midgut and salivary glands of the fly. Tsetse’s resistance to trypanosome infection increases as 

a function of age. Among the factors that mediate resistance to parasites are antimicrobial peptides 

(AMPs) produced by the Immune deficiency (Imd) signaling pathway, peptidoglycan recognition 

protein (PGRP) LB, tsetse-EP protein and the integrity of the midgut peritrophic matrix (PM) 

barrier. The presence of obligate Wigglesworthia during larval development is essential for adult 

immune system maturation and PM development. Thus, Wigglesworthia prominently influences 

the vector competency of it’s tsetse host.

1. Tsetse Disease Vectors

1.1 Tsetse (Diptera: Glossinidae)

The genus Glossina contains 22 species within 3 subgenera; the fusca, palpalis, and 

morsitans species groups [1]. While all tsetse species are disease vectors, their ability to 

transmit pathogenic African trypanosomes varies, with the palpalis group including the most 

prolific human disease vector species. The different species complexes occupy varying 

ecological niches. Morsitans group taxa are adapted to relatively dry savannah habitats. 

Conversely, palpalis group flies tend to inhabit riverine and lacustrine habitats while the 

majority of fusca group flies can be found mainly in moist West African forests [2]. The 

host-specificity of the different species groups also vary, with the palpalis group flies 

displaying strong anthrophilic tendencies, while the others are more zoophilic in preference.

1.2 Trypanosomiasis

Two trypanosome species, Trypanosoma brucei rhodesiense and T. b. gambiense, are the 

causative agents of Human African trypanosomiasis (HAT). Trypanosoma b. rhodesiense 

occurs east of the Rift valley and causes acute human disease that is rapidly fatal if not 

properly treated. Trypanosoma b. gambiense occurs in west/central Africa, and infection 

with this parasite causes a chronic disease that results in eventual death if left untreated [3]. 

In addition to HAT, a non-human animal form of the disease called Animal African 
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Trypanosomiasis (AAT; commonly referred to as nagana) is caused by T. b. brucei and the 

related trypanosomatids, T. congolense and T. vivax. AAT severely reduces the availability 

of meat and milk products in large regions of Africa by excluding cattle rearing from ten 

million square kilometers of grazable land [4]. This widely impacts land use practices by 

reducing the availability of animal labor for plowing and placing constraints on the use of 

mixed agriculture [5]. The Programme on African Animal Trypanosomiasis (PAAT) 

estimates that AAT causes approximately 3 million cattle deaths per year and requires 

farmers to administer approximately 35 million doses of costly trypanocidal drugs [6]. 

Economic losses in cattle production are estimated at US$ 1–1.2 billion and total 

agricultural losses caused by AAT are estimated at US$ 4.75 billion per year [7].

Trypanosomes were determined to cause HAT over a century ago, and since this time, 

several epidemics have plagued the African continent [8]. After the devastating epidemics 

that occurred between 1920–1940 subsided, HAT control programs in endemic countries 

were gradually eliminated during the post-independent 1960s. Regretfully, a steep rise in 

disease incidence occurred during the following 40 years. Estimating the true burden of 

HAT is difficult, as the disease afflicts the poorest and most neglected populations that live 

in remote and rural settings located beyond the reach of health care systems [9]. In 2008, 

mortality associated with HAT ranked ninth out of 25 among human infectious and parasitic 

diseases in Africa [10]. After intense international interventions, HAT cases in Africa have 

recently dropped below 10,000 for the first time in 50 years, signaling a possible end to the 

latest epidemic cycle as a major public health crisis [11].

1.3 Trypanosomiasis Control

HAT and AAT are both fatal if left untreated. Chemotherapy is expensive [12], and current 

treatments for late stage disease are complicated [13,14]. Mammalian vaccines are not 

available due to the antigenic variation capacity of trypanosomes. Active surveillance and 

treatment of patients are essential for effective disease control, but such programs can be too 

expensive to operate at times of low endemicity. Traps and targets can reduce local tsetse 

populations and thus disease transmission. However, they are not widely explored for HAT 

control due to problems in implementation and lack of effective attractants to improve their 

efficacy, particularly for human disease-transmitting tsetse species [15]. New genetic 

approaches that aim to reduce tsetse’s vector competence by blocking parasite transmission 

through the tsetse fly vector are of interest [16].

2. Unique Aspects of Tsetse Biology

Multiple aspects of tsetse’s physiology differentiate them from other insects. These 

distinctions include a diet consisting exclusively of vertebrate blood, the utilization of 

proline rather than sugars as an energy source, the nourishment and birthing of live offspring 

(viviparous reproduction) and their essential relationship with an obligate symbiont 

(Wigglesworthia) to maintain fecundity and for development of the immune system.
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2.1 Viviparous Reproduction

Tsetse’s mode of reproduction is one of the fly’s most dramatic biological adaptations [17]. 

Rather than laying eggs, tsetse develop a single offspring per reproductive cycle, which is 

carried and nourished by the mother throughout embryonic and larval development. Female 

flies are limited to a maximum of 8–10 progeny due to the time and nutrient intensive nature 

of this process. Females birth fully developed larvae that burrow into the ground, pupate, 

spend ~30 days undergoing metamorphosis and eclose as adults. Nutritional requirements 

for larval and pupal development are supplied by the mother [18]. Each gonotrophic cycle a 

single egg is fertilized and undergoes embryonic development within the mother’s uterus. 

Embryos hatch into larva that undergo three developmental instars also within the uterus 

[19]. Nutrients are provided to the developing larva via a specialized accessory gland termed 

the milk gland that empties its secretions into the uterus (Figure 1). The milk constituents 

fulfill a variety of functions, including provision of amino acids, lipid emulsification, iron 

transport, assisting larval digestion and immunity [20–23]. Tsetse’s obligate symbiont 

Wigglesworthia is also transmitted to the feeding offspring via maternal milk [24,25] and 

colonizes the larval milk gland and gut bacteriome organs [26]. Interestingly, during each 

lactation cycle, transcription of the major milk proteins is tightly regulated by a transcription 

factor, LadyBird Late [27,28]. Each reproductive cycle generates significant oxidative stress 

for the mother, yet tsetse females can produce offspring for almost their entire lifespan. This 

is accomplished in part by mitigating oxidative stress with antioxidant enzymes during and 

after pregnancy to prevent oxidative damage [29].

2.2 Tsetse Symbiosis for Nutrient Supplementation

The diet of both the male and female tsetse is restricted to a single food resource: vertebrate 

blood. To supplement their diet, tsetse harbor the enteric endosymbiont, Wigglesworthia, 

which is a member of γ-proteobacteria. In tsetse’s gut, Wigglesworthia lives intracellularly 

in bacteriocytes that collectively form the bacteriome organ in the fly’s anterior midgut 

(Figure 1; [30]). The tsetse-Wigglesworthia symbiosis is ancient, as reflected in the 

concordant evolutionary history shared between organisms [31]. Although Wigglesworthia’s 

genome is dramatically reduced in size (about 700 kb; [32,33]), the bacterium has retained 

the ability to synthesize a plethora of B vitamins. Studies that utilize different antibiotic 

supplementation regimens to remove specific symbionts result in different fecundity 

outcomes. Fertile adults that received ampicillin-supplemented diets, which clears 

extracellular bacteria only, were not impaired in fecundity but gave birth to progeny that 

were free of Wigglesworthia [34]. In contrast, adults that received tetracycline-supplemented 

blood meals, which clears both intracellular and extracellular bacteria, became 

reproductively sterile likely due to the elimination of bacteriome-localized Wigglesworthia 

[34,35]. This sterility was partially recovered by supplementing the blood diet of these flies 

with micronutrients, particularly B vitamins [36] and yeast extract [37]. Wigglesworthia 

produced vitamin metabolites play a crucial role in proline homeostasis, and this amino acid 

is tsetse’s single energy source [38]. The Wigglesworthia produced co-factor pyridoxal 

phosphate (the active form of vitamin B6) is an essential co-factor for alanine-glyoxylate 

aminotransferase (AGAT), which catalyzes the conversion of alanine to proline in tsetse’s 

fat body. In the absence of AGAT (or Wigglesworthia), females are unable to maintain 
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proline homeostasis and their fecundity decreases [38]. Interestingly, trypanosomes also 

utilize proline as their sole source of energy during their development in the tsetse host. 

Thus, Wigglesworthia produced vitamins are also indirectly essential for trypanosome 

fitness in tsetse [38] and may also play a yet unknown role in fly immunity.

2.3 Tsetse Symbiosis and Immune System Maturation

Wigglesworthia also exhibits an essential role in host immune functionality. Tsetse that 

undergo intrauterine larval development in the absence of obligate Wigglesworthia 

(GmmWgm−) present a severely compromised cellular immune system during adulthood. 

Specifically, GmmWgm− flies present a highly depleted population of hemocytes and loss of 

phagocytosis and melanization functions [39]. The immuno-compromised phenotype 

exhibited by GmmWgm− can be partially reversed when their moms are fed a diet 

supplemented with Wigglesworthia cell extracts [40]. As such, Wigglesworthia-derived 

molecule(s) may play a role to induce the maturation of cellular immune system during 

larvagenesis. Alternatively, the presence of Wigglesworthia (or its products) in pregnant 

females may induce a signaling cascade that stimulates immune system development in 

intrauterine larvae.

3. Tsetse-Trypanosome Biology

3.1 Trypanosome Transmission Dynamics in Tsetse

To survive in tsetse’s midgut, mammalian bloodstream form (BSF) adapted to survival in 

the midgut radically transform their metabolism [41] so that within several hours viable 

procyclic form trypanosomes (PF) that express a new surface coat (procyclin) become 

visible in the midgut and divide exponentially [42]. At around three days post infection, in a 

high proportion of the flies, the parasites are eliminated likely through the actions of host 

immunity proteins including antimicrobial peptides (AMPs) produced by the Immune 

deficiency (Imd) signaling pathway [43–45], Peptidoglycan Recognition Protein (PGRP)-LB 

[46] and tsetse-EP protein [47]. In susceptible flies, PF parasites continue to replicate, cross 

the chitinous gut peritrophic matrix (PM) that separates the gut lumen (the “endoperitropic 

space”) and its contents from immuno-reactive epithelial cells, and establish infections in the 

ectoperitrophic space of the midgut (Figure 1). Subsequently, PF parasites differentiate into 

epimastigote forms (EP) and accumulate around the proventriculus organ (Figure 1). In a 

proportion of flies, the EP parasites (T. brucei complex) depart the proventriculus, enter the 

foregut and invade the salivary glands (SG) of the fly through the mouthparts. In the salivary 

gland lumen, the EP parasites mature into mammalian infective metacyclic forms for 

transmission to the next mammalian host in fly saliva. A recent study that compared normal 

and parasitized SG transcriptomes revealed that transcripts for the most abundant putative 

secreted SG proteins with anti-hemostatic functions present in saliva were significantly 

reduced upon infection [48]. In contrast, expression of putative host proteins associated with 

immunity, stress, cell division and tissue remodeling were enriched in infected SG 

suggesting that parasite infections induce host immune and stress response(s) that likely 

results in tissue renewal [48]. The same study also identified novel parasite surface proteins 

that are expressed uniquely in the metacyclic stage of the parasite. Future characterization of 
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the metacyclic proteins can reveal new candidate molecules that can be targeted for parasite 

control.

The host gut immune environment [43,45] as well as its nutritional status at the time of 

parasite acquisition [49] play important roles in determining the efficiency of parasite 

infection establishment. Tsetse’s symbiotic microfauna also contribute to the fly’s parasite 

resistance phenotype [50].

3.2 Wigglesworthia Mediates Trypanosome Infection Outcomes in Tsetse

Replication of Wigglesworthia cells, and/or Wigglesworthia cell death, results in the release 

of peptidoglycan (PGN) into tsetse’s bacteriome environment. PGN is a potent inducer of 

the fly’s immune deficiency (IMD) signaling pathway, the end products of which are 

bacteria-damaging antimicrobial peptides (AMPs) [51]. To evade destructive tsetse immune 

responses, Wigglesworthia induces expression of the secreted host protein, PGRP-LB in the 

fly’s bacteriome organ [51]. Through its amidase activity, PGRP-LB degrades 

Wigglesworthia released PGN to prevent the expression of host immune effectors and 

thereby protects the tsetse-Wigglesworthia symbiosis [51]. Interestingly, PGRP-LB also 

exhibits anti-trypanosomal activity and can act as the first line of defense against 

trypanosome infection establishment [46]. Female tsetse that harbor trypanosome infections 

in their gut display heightened immunity, which in turn decreases host fecundity [52]. This 

phenotype is characterized by lengthened gonotrophic cycles and thus decreased cumulative 

reproductive output. Thus, in addition to stimulating host immune system development and 

providing vitamins absent from vertebrate blood, Wigglesworthia also protects its host from 

fecundity-reducing parasite infections.

3.3 Role of PM for Trypanosome Establishment

Tsetse’s gut is lined by a chitinous, sleeve-like PM structure that acts as a biophysical 

barrier that regulates pathogen infection outcomes, prevents pore forming microbial toxins 

from damaging midgut epithelial cells and alters the temporal kinetics of host immune 

responses [53–55].

Adult tsetse (≥ 8 days post-eclosion) that have fed multiple times are highly refractory to 

infection with trypanosomes. Conversely, newly eclosed adults (referred to as ‘teneral’) are 

highly susceptible to infection when their first blood meal contains infectious parasites [56]. 

Similarly, adults that are starved are also highly susceptible to infection [49]. The structural 

integrity of tsetse’s PM increases as a function of adult age post-pupal eclosion, and the 

higher parasite susceptibility presented by young adults has been largely attributed to the 

absence of a robust PM at this stage of host development [57,58]. In comparison to their 

wild-type counterparts, adult Wigglesworthia-free (GmmWgm−) flies (progeny of females 

receiving ampicillin-supplemented blood diet) are highly susceptible to trypanosome 

infection [34,51]. This phenotype may result from the fact that GmmWgm− individuals house 

a structurally compromised PM [59]. The absence of a robust PM significantly alters the 

dynamics of trypanosome infection establishment. Specifically, in the wild-type 

environment, tsetse’s immunoreactive midgut epithelium does not detect parasites until after 

they have completed differentiation to PF forms (~ 12 hours post-ingestion) and 
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circumvented the PM midgut barrier (~ 2–3 days post-ingestion). However, in GmmWgm− 

gut, mammalian blood stream form (BSF) trypanosomes are detected by midgut cells 

immediately following ingestion. Early detection of BSF parasites by tsetse’s midgut 

epithelium results in a dysfunctional immune response that is most conspicuously 

characterized by the absence of induced attacin expression [60]. This gene, which is 

normally up-regulated following trypanosome challenge [59], encodes a potent trypanocidal 

AMP [43,44,60]. Experimental elimination of tsetse’s PM through a gene silencing strategy 

renders normally resistant adults susceptible to parasitism [60]. These findings imply that 

tsetse’s PM is not a physical impediment to infection establishment, but instead serves as a 

barrier that regulates the fly’s ability to immunologically detect and respond to the presence 

of these microbes. Additionally, tsetse’s immune system may differentially recognize 

distinct parasite forms and react less antagonistic against PF trypanosomes that have 

established successful midgut infections.

4. Conclusion

Tsetse vector African trypanosomes, which are the causative agents of deadly HAT and 

AAT. Tsetse give birth to live young and depend on obligate endosymbionts for the 

maintenance of fecundity and immune system development. Particularly the indirect 

contributions of obligate symbionts for gut PM development mediates parasite 

establishment. Recent technological advances in high-throughout sequencing methodologies 

and functional genomics have allowed us to obtain the whole genome sequence of the tsetse 

host [61] and better understand the molecular mechanisms that underlie tsetse’s unusual 

physiological characteristics. This information can now be exploited to develop novel 

control strategies aimed at reducing tsetse’s reproductive output and/or the fly’s competence 

as a vector of pathogenic trypanosomes. Towards this end a paratransgenic gene expression 

system has been developed using tsetse’s commensal symbiont Sodalis [16]. Expression of 

trypanocidal products in the gut in the symbiotic bacteria can modify the gut environment to 

reduce parasite transmission.
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Highlights

1. We describe tripartite interactions between tsetse, trypanosome and symbionts

2. Tsetse undergo intrauterine larvagenesis and lactate (viviparous reproduction)

3. Fecundity relies on obligate symbiont for diet supplementation and proline 

synthesis

4. Symbiont presence during larval growth influences adult immune and gut 

development

5. Gut peritrophic matrix barrier integrity affects trypanosome transmission 

dynamics
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Figure 1. 
Diagrammatic Representation of the Interactions between Tsetse, Trypanosomes and the 

Obligate Symbiont Wigglesworthia. This figure represents the life cycle and metamorphosis 

of trypanosomes within the tsetse beginning with their introduction via an infective blood 

meal, followed by their escape from the peritrophic matrix into the endoperitrophic space 

and subsequent invasion of the salivary glands for transfer to a vertebrate host. The diagram 

also illustrates the localization of the obligate endosymbiont Wigglesworthia in tsetse’s 

bacteriome in the anterior midgut as well as its transmission into tsetse’s intrauterine larva in 

milk secretions. The viviparous reproductive physiology is depicted with an intrauterine 

larva and the large network of milk gland tubules that provide nutrients.
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