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Transport reduction by shear flows in dynamical models
Eun-jin Kima) and P. H. Diamond
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

T. S. Hahm
Princeton Plasma Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543

(Received 13 April 2004; accepted 23 June 2004; published online 8 September 2004)

The reduction in the transport of particles and heat by a strong mean shear flow is studied, in the
context of interchange and ion-temperature gradient turbulence models. Compared to passive scalar
transport, a stronger reduction in the transport (scaling with the shearing rate ! as "!−3 ln !)
results from a severe reduction in the amplitude of turbulent velocity in both models. However, the
cross phase is only modestly reduced, as in the scalar field case. These results are in qualitative
agreement with the results from both gyrokinetic and gyrofluid simulations of toroidal
ion-temperature gradient turbulence [Lin et al., Phys. Rev. Lett. 83, 3645 (1999); Falchetto and
Ottaviani, Phys. Rev. Lett. 92, 025002 (2004)], but contradict recent claims in some literature,
highlighting the importance of the detailed properties of the flow in determining the overall transport
level. © 2004 American Institute of Physics. [DOI: 10.1063/1.1783315]

I. INTRODUCTION

The suppression of anomalous transport by shear flows
plays an integral role in the formation of transport barriers
[such as the low-to-high confinement !L-H" transition and
internal transport barriers] in magnetically confined
plasmas.1 In particular, predictive modeling of L-H transition
requires a quantitative information as to exactly how much
of the transport of interest is reduced for a given shear
strength. Recent experimental measurements, prior to and
after the L-H transition, seem to suggest a strong suppression
of particle or heat transport, with scaling "!−# where 1.6
$#$4.8.2,3 Despite these experimental measurements and
computational studies,4 concrete theoretical work on the pre-
diction of such scalings, beyond the simple passive scalar
model,5,6 is still lacking. Such a theoretical work will be
extremely useful to understand basic physical mechanism
leading to a particular scaling, by disentangling the complex-
ity of different physical effects in a real system, thereby iden-
tifying key effects that are most pertinent to transport sup-
pression. For instance, whether the reduction in the transport
is mainly due to the reduction in turbulence amplitude, or
due to the reduction in the cross phase, in principle, can, and
should, be predicted.

One of the most intriguing questions regarding shear
suppression is whether there is a universal scaling of trans-
port with shear strength ! in the limit of strong shear, which
is independent of the details of turbulence. If it were the
case, this universal scaling could easily be obtained through
the study of any turbulence model, the simplest of which is,
obviously, passive scalar fields that are advected by a given
random turbulent flow and a shear flow. However, our pre-
vious study5 indicated that the predicted suppression of sca-
lar field transport !"!−1" is too weak to be consistent with
experimental measurements. This is not surprising in view of

the limitation of the passive scalar model within which the
random turbulent flow is arbitrary prescribed. In addition, it
was pointed out that the exact scaling depends on the prop-
erties of the random turbulent flows, such as the magnitude
of their correlation time %c relative to the shearing time !%!

=!−1".5 The origin of this dependence can be traced back to
identifying the dominant source of irreversibility, which is
necessary for a nontrivial flux. Furthermore, the amplitude of
the velocity is also arbitrarily fixed in the passive scalar
model. In short, the dynamics of the flow is one of the miss-
ing ingredients in the passive scalar model, which, however,
can be critical to determining transport levels.

The purpose of the paper is to study transport reduction
in realistic situations where a turbulent flow (electric poten-
tial gradient) evolves dynamically. As simple dynamical
models, we shall consider interchange and simple ion-
temperature gradient (ITG) turbulence models to study the
transport of particle and heat, respectively. The analysis shall
be limited to the strong shear case where the shearing rate
exceeds the nonlinear decorrelation rate of turbulence. This
will justify quasilinear analysis that is used. In order to sim-
plify the analysis, a free energy source in both models will be
treated as a part of random noise. As a consequence, the
saturation level of turbulence amplitude is essentially set by
the noise and dissipation.

The principal conclusions of this paper are as follows
(see Table I).

(i) A strong reduction in the transport of particles (from
interchange turbulence) and heat (from ITG turbu-
lence) results from a severe reduction in the amplitude
of velocity in both models. The very strong transport
scaling with respect to the shearing rate !"!−3ln !"
offers an explanation of some experimental results
that the ion heat transport gets reduced to the level of
neoclassical value due to the E&B shear1 without a
need to invoke an ad hoc, but popular, turbulence

a)Present address: Department of Applied Mathematics, University of Shef-
field, Sheffield, S3 7RH, U.K.
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quenching rule involving the linear growth rate.
(ii) On the other hand, the reduction in cross phase is very

weak !"!−1/6ln !". This prediction is much closer to
the recent results from ITG simulations,7 where no
relevant variation of the cross phase is observed, than
to the results from a previous simulation4 and the
claims of a very strong reduction in Ref. 6.

(iii) A mean flow is generated through Reynolds stress
(i.e., inverse cascade) while this Reynolds stress driv-
ing itself is reduced by shear as its amplitude becomes
large.

The remainder of the paper is organized as follows. Sec-
tion II presents the particle transport in interchange turbu-
lence model. The reduction in heat transport by shear flows
in ITG is discussed in Sec. III. Section IV contains our con-
clusion and discussions.

II. PARTICLE TRANSPORT IN INTERCHANGE
TURBULENCE MODEL

To study particle transport in the strong shear limit, we
assume cold ions and consider the quasilinear evolution of
flutelike perturbations of particle density n and vorticity !
=" &v in a two-dimensional (2D) plane, which are subject
to a given (poloidal) shear flow U0!x"ŷ !U0=−x!" and ef-
fective gravity g=gx̂ (due to magnetic curvature, etc.):

!tn + U0!yn = − vx!xN0 + D"2n + f , !1"

!t' + U0!y' = − g!yn/N0 + ("2' . !2"

Here, u=v+U0!x"ŷ is the total velocity with v
=−!c /B0"")& ẑ and N=N0!x"+n is the total density where
N0!x" and n are the mean background density and fluctua-
tion; x and y represent the local radial and poloidal direc-
tions, respectively, perpendicular to a magnetic field B=B0ẑ;
D and ( capture the coherent nonlinear interaction (i.e.,
“eddy diffusivity and viscosity”) as well as molecular dissi-
pation while f represents a noise due to incoherent nonlinear
interaction and external particle source. Within this model,
density is simply advected by a turbulent flow !v" and a
given shear flow U0!x"ŷ, similar to passive scalar field, while
the flow !v" is dynamically determined. As is well known, in
the absence of shear flow and dissipation, this system is lin-
early unstable when the effective gravity acts against the
background density gradient [i.e., g!!xN0"*0], with a linear
growth rate +g=#!−!xN0 /N0"g.

Before proceeding to see how the shear flow reduces
transport and turbulence amplitude, we shall first examine

how it alters the linear instability. We incorporate the main
shearing effect nonperturbatively by following a particle tra-
jectory along which radial wave number kx linearly increases
in time [i.e., kx!t"=kx!0"+kyt!]. For simplicity, this can be
achieved by using the Gabor8 and Fourier transforms (GFT)
in the x and y directions, respectively: GFT$,!x , t"%
= ,̂!k ,x , t"=&dx! f!'x−x! ' "eikx!x−x!"&dy! eikyy!,!x! , t". Here,
f!x" is a function at scale -, filtering out the information on
scales larger than -, with - lying between characteristic
scales for fluctuations and mean flows. Using the Gabor
transform in the radial !x" direction only is sufficient to cap-
ture shearing effect that depends on x !U0=−x!" and also to
describe turbulence, which is radially localized around reso-
nant surfaces (due to magnetic shear). Under this GFT, Eqs.
(1) and (2) are rewritten as

!Dt + ikyU0"n̂ = − v̂x!xN0 − D!kx
2 + ky

2"n̂ + f̂ , !3"

!Dt + ikyU0"'̂ = − !g/N0"ikyn̂ − (!kx
2 + ky

2"'̂ , !4"

where Dt=!t+ky!!kx is the total time derivative and !
=−!xU0 is assumed to be positive, without loss of generality.
Note that Dtkx=ky!, by the eikonal equations. In the case
D=(= f =0, the coupled equations can be easily solved in the
long time limit (i.e., for large R=kx /ky=!t) to obtain the
solution '̂(R#, where

# = 1
2 $1 ± !1 + 4+g

2/!2"1/2% . !5"

Note that the power law in R=kx /ky (instead of the usual
exponential) for '̂ is due to the wind-up of the phase by the
shear flow. In the strong shear limit !+g /!.1", #(1
+ !+g /!"2, −!+g /!"2. Thus, shearing softens the exponential
behavior (of both linearly unstable and stable modes) to lin-
ear behavior, on account of the eikonal phase wind-up in-
duced by the shear flow. Note that these modes may not be
eigenmodes because of the presence of a shear flow,9 and
also that shearing does not stabilize the unstable mode com-
pletely. However, if growth to nonlinearity occurs rapidly
enough for non-eigenmode perturbations, the details of their
origin are irrelevant.

To obtain the scaling of various correlation functions
()nvx*, )n2*, )vx

2*, and )vxvy*) with shearing rate, we further
simplify the analysis by assuming D=( and by treating the
source of free energy vx!xN0 in Eq. (1) as a part of the noise
f . Under these assumptions, the solutions for n̂ and '̂ are
immediately obtained as

n̂!k,x,t" = +
−/

t

dt1d2k1ĝ!k,t;k1,t1" f̂!k1,x,t1" , !6"

v̂x!k,x,t" = , gN0-+−/

t

dt1d2k1!t − t1"
ky
2

k2

&ĝ!k,t;k1,t1" f̂!k1,x,t1" , !7"

with the Green’s function ĝ given by

TABLE I. Summary of scalings.

% f*%! % f0%!

)nvx*, )pvx* !−2 ln ! !−3 ln !

)n2*, )p2* !−2/3 !−5/3

)vx
2* !−3 !−4

)vxvy* −!−3 ln ! −!−4 ln !

cos 1 !−1/6 ln ! !−1/6 ln !
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ĝ!k,t:k1,t1" = 1„kx − k1x − ky!!t − t1"…1!ky − k1y"

&exp.− iU0k1y!t − t1"/exp0− D,ky2t + kx
3

3!ky
-1

&exp0D,k1y2 t1 + k1x
3

3!k1y
-1 . !8"

Various correlation functions now simply follow from Eqs.
(6)–(8) for a noise with a given statistics:

) f̂!k1,x,t1" f̂!k2,x,t2"* ( !22"21!k1 + k2",̃!k2,t2 − t1" ,
!9"

where ,̃ is the Fourier transform of ,!r , t"2)f!x , t1"f!x
+r , t2"*.

Since the noise originates from the incoherent nonlinear
interaction and free energy source as well as external
sources, it is reasonable to assume that its correlation time % f
is shorter than the nonlinear decorrelation time %D=1/Dk2.
And since we are interested in the strong shear limit such
that %!.%D, depending on the ordering between % f and %!,
we have the following two possibilities: (i) % f.%!.%D and
(ii) %!.% f.%D. The first case (i) corresponds to a noise with
a short !1" correlation time, where the irreversibility leading
to nontrivial transport is largely due to the noise randomness.
In this case, the effect of shear is minimal as the noise field
changes before the shearing can act. In comparison, in the
second case (ii), the overlap of resonant layers is the main
source of the irreversibility, and coherent shearing over time
t*% f gives a stronger effect of the shear flow. In the follow-
ing, the various correlation functions shall be presented in
these two cases in the long time limit (i.e., as t→/) when
f!k" is dominated by modes with kx.ky.

In the first case (i) where % f.%!, we approximate the
noise correlation function ,̃!k , t1− t2"=% f1!t1− t2",!k". Then,
straightforward algebra gives us the following results to
leading order in 32Dk1

2 /!.1:

)nvx* (
% f

!22"2!2
g
N0
+ d2k1,!k1"ln 3−1/3 " !−2 ln ! ,

!10"

)n2* (
% f

!22"2!+ d2k1,!k1"
1
3

4,13-, 323
-1/3 " !−2/3,

!11"

)vx
2* (

% f
!22"2!3, gN0-

2+ d2k1,!k1"
2

4
" !−3, !12"

)vxvy* ( −
% f

!22"2!3, gN0-
2+ d2k1,!k1"ln 3−1/3

" −!−3 ln ! , !13"

where 4!x" is Gamma function. The amplitude of density
(11) has the same scaling !!−2/3" as the amplitude of passive
scalar field 5 with 1-correlated random velocity,5 as it should
be. However, the density flux in Eq. (10), which is propor-

tional to !−2ln !, is reduced much more than the passive
scalar field flux )5vx*"!0. It is because the velocity ampli-
tude )vx

2*"!−3 is severely reduced by shearing [see Eq. (12)]
in this dynamical model. Thus, as noted previously, here the
reduction in the velocity amplitude is the most important
factor which lowers the overall transport. In contrast, the
cross phase 1= )nvx* /#)n2*)vx

2*"!−1/6ln ! is only weakly
reduced by strong shear, with only a slight difference from
the passive scalar field case !)5vx* /#)52*)vx

2*"!1/6". This
result is in a sharp contrast to Ref. 6. Note that the diver-
gence of )n2* as 3→0 is a consequence of the transport of
density from large to small scales. Finally, Eq. (13) repre-
sents the Reynolds stress )vxvy*=−(T!xx)0, which drives a
mean flow as !t!!xx)0"=−!x)vxvy*=!x!(T!xx)0". Here, (T is
the turbulent viscosity and )0 is the mean electric potential
!!=−!xU0=−!xx)0". That is, the turbulent viscosity is nega-
tive with its value (T"−!−4ln!! /Dk2", representing the gen-
eration of a mean flow by the inverse cascade (e.g., see Ref.
10). In addition, this also shows that Reynolds stress driving
for the mean flow itself is reduced as shearing becomes
strong because of the damping of turbulence.11 Note here
that the momentum flux does not include an additional con-
tribution from mean density gradient since that latter was
treated as a part of noise f .

In the second case (ii) where the noise has a finite cor-
relation time % f !6%!", we assume, for simplicity, that it has
Lorenzian frequency spectrum centered at frequency 'k with
spread +k=1/% f*! as ,̃!k , t1− t2"=&−/

/ d' exp$−i'!t2
− t1"%,!k"+k / $!'−'k"2++k

2%. Omitting intermediate steps,
which turn out to be quite involved in this case, we here
present final results only to leading order in 3=Dk1

2 /!.1:

)nvx* (
1
2!3

g
N0
+ d2k1,!k1"1!'̄k + k1yx"ln 3−1/3

" !−3 ln ! , !14"

)n2* (
1
2!2+ d2k1,!k1"1!'̄k + k1yx"

1
3

4,13-,33-1/3
" !−5/3, !15"

)vx
2* (

1
162!4, gN0-

2+ d2k1,!k1".$e#Ei!− #"

+ e−#Ei!#"%2 + 22e−2'#'/ !16"

(
1

42!4, gN0-
2+ d2k1,!k1"$C + ln'#'%2 " !−4, !17"

)vxvy* ( −
1
8!4, gN0-

2+ d2k1,!k1"$41!'̄k

+ k1yx"ln 3−1/3 + ln'#'% " −!−4ln ! . !18"

Here, '̄k='k /!, +̄k=+k /!, 21!'̄k+k1yx"=lim+̄k→0+̄k / $!'̄k
+k1yx"2+ +̄k

2%, #= '̄k+k1yx− i+̄k, Ei!x" is the exponential inte-
gral, and C=0.577 25 is the Euler’s constant. Note that the
last term in Eq. (16) should be replaced by 0 when #=0.
Since the exponential integral Ei!±#" in Eq. (16) becomes
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large for small argument #, Ei!±#" was expanded for small #
as Ei!±#"(C+ln'#'+O!#" to obtain Eqs. (17) and (18).
1!'̄k+k1yx" appearing in Eqs. (14), (15), and (18) explicitly
shows the resonance effect where Doppler shifted frequency
vanishes locally (i.e., 'k−U0k1y=0). It is amusing to see that
the resonance effect is regularized by dissipation in these
three cases in Eqs. (14), (15), and (18), which diverge as
D!"3"→0. In contrast, the resonance is replaced by a loga-
rithmic singularity as 'k−U0k1y→0 for radial velocity am-
plitude in Eq. (17), where the divergence can now be regu-
larized by the finite spread of noise frequency spectrum +k
!0Dk2". This logarithmic singularity seems to originate from
the resonance broadening in the presence of shear flow, as
the latter keeps generating finer radial scales (i.e., large kx),
thereby causing time-transient (i.e., nonmodal) behavior. For
a given ', the radial velocity vx is very vulnerable to this
transient effect (i.e., the increase in kx) since v̂x"'̂ /k2
( '̂ /kx

2.
Compared to the short correlated noise, all the correla-

tion functions in Eqs. (14), (15), (17), and (18) are reduced
by one more power of !. The stronger effect of shear flow is
expected due to its coherent shearing over time t*% f, as
previously noted. However, a similar trend still persists in
this case. First, severe reduction in the velocity amplitude
!)vx

2*"!−4" is largely responsible for strong reduction in the
particle transport )nvx*"!−3ln !. Note that this reduction is
stronger than that for the passive scalar transport by a ran-
dom velocity with finite frequency spectrum (i.e., )5vx*
"!−1). Second, the cross phase 1= )nvx* /#)n2*)vx

2* has the
same weak scaling "!−1/6ln ! with !. Finally, turbulent
viscosity from Reynolds stress is again negative with (T
"−!−5 ln!! /Dk2", indicating the generation of mean flow
from turbulence. These results are summarized in Table I.

III. HEAT TRANSPORT IN ITG TURBULENCE
MODEL

The interchange turbulence model, despite its simplicity,
revealed the importance of dynamical properties of the flow
in determining the transport level. That is, the flow under-
goes amplitude suppression due to mean flow shearing, lead-
ing to a stronger reduction in the particle flux !)nvx*", down
to !"!−3 ln !". While the exact scaling of the transport with
shearing rate will certainly depend on the precise details of
the turbulence model and also the quantity that is trans-
ported, it may yet be possible that the variation in scalings is
rather small among different models, so long as they contain
the same essential physical effects. If this were the case, the
identification of the latter will be of great interest. One of
such properties in our interchange model [Eqs. (3) and (4)] is
that the flow is driven by density gradients coupled to unfa-
vorable magnetic curvature, while the latter by a random
noise in addition to mean density gradient. A similar dynam-
ics of a flow (thus, having similar scaling for transport) may
be found in other models. As an example, we now consider
heat transport in a simple ITG turbulence in 2D slab geom-
etry, which is driven by pressure gradient !!xp0" in a region
with a unfavorable magnetic curvature $!!xp0"!!xB0"*0%:

!!t + u · " "p = − vx!xp0 + 5"2p + f , !19"

!!t + u · " "!1 − "2") = − vB!yp − ("2"2) . !20"

Here, a flat density profile is assumed, for simplicity. p0 and
p are mean and fluctuating components of pressure; vB
"−!xB0 represents the effective force due to magnetic curva-
ture; ( and 5 are viscosity and thermal diffusivity, respec-
tively; and f is the external pressure source. The free energy
source in this model is the background pressure gradient
term vx!xp0, equivalent to vx!xN0 in the interchange turbu-
lence. Thus, by treating this free energy source, as well as
incoherent nonlinear interaction, as a part of the total noise f ,
this ITG turbulence model becomes almost isomorphic to the
interchange model upon changing (a) p→n and (b) !1
−"2")→', with a difference in v in the two models: e.g.,
v̂x=−iky$!1+k2")̂% / !1+k2" in ITG [which would correspond
to iky'̂ / !1+k2" in interchange turbulence], while v̂x
= iky'̂ /k2 in the interchange model. This difference arises
from the enhanced inertia in the ITG model due to adiabatic
electrons. It can, however, be shown that in the limit %!

.%D, this difference can be absorbed in parameters such as
D, 'k, and +k, without altering the overall scaling with shear-
ing rate. Note that ("2!1−"2")(−("2"2) because of fine
radial scale (large kx) generated by shearing. Therefore, the
scalings of )pvx*, )p2*, )vx

2*, and )vxvy* with ! in ITG are
similar to those of )nvx*, )n2*, )vx

2*, and )vxvy* in interchange
turbulence. Note also that the turbulent viscosity in ITG
should include an additional pressure driving (besides the
Reynolds stress) due to pressure perturbation.

IV. CONCLUSION

We have studied the reduction in particle and heat trans-
port by a mean shear flow in interchange and ITG turbulence
models, respectively. In contrast to scalar field transport, tur-
bulent flow (or electric potential) evolves dynamically, sub-
ject to shearing by a mean shear flow in both models. We
have shown that a strong reduction in the transport of par-
ticles (from interchange turbulence) and heat (from ITG tur-
bulence) results from a severe reduction in the amplitude of
velocity in both models. The very strong transport scaling
with respect to the shearing rate !"!−3ln !" offers an expla-
nation of some experimental results that the ion heat trans-
port gets reduced to the level of neoclassical value due to the
E&B shear1 without a need to invoke an ad hoc, but popu-
lar, turbulence quenching rule involving the linear growth
rate. The scaling !−3ln ! of the flux is much stronger than
that in the passive scalar field case !)5vx*"!−1".5 Interest-
ingly, this also indicates the possibility of non-power-law
scaling with !.

However, the reduction in cross phase is very weak !1
"!−1/6ln !". That is, in this calculation, the transport is
predicted to be suppressed mainly through the reduction in
the amplitude of turbulence, especially, that of the velocity.
This prediction is in semiquantitative agreement with the re-
cent results from gyrofluid simulations of toroidal ITG
turbulence7 where no relevant variation of the cross phase is
observed. It is worthwhile to note that the same conclusion
can also be drawn12 from the gyrokinetic simulations of tor-
oidal ITG turbulence where a remarkable proportionality be-
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tween ion heat transport and fluctuation intensity is observed
to be maintained during the bursting phase.13 Our results
disagree with results from a previous computational study4
and the claims of a very strong reduction in Ref. 6.

We speculate that the suppression of the amplitude of
turbulent flow in our models, which in turn significantly re-
duces heat and particle transport, is likely to be a generic
result, independent of the details of turbulence model. How-
ever, the exact scaling of the flux with shearing rate may
vary with specific models. For instance, for edge turbulence,
the heat conduction along magnetic field lines is expected to
be high due to high collisionality (i.e., low temperature).
Thus, the reduction in heat transport by shearing is likely to
be weaker than that in particle transport, and this will give
different scalings of heat and particle fluxes with shearing
rate. Note also that a stronger reduction in the velocity am-
plitude than the density (temperature) in interchange (ITG)
turbulence may be due to our treatment of the free energy
source as a part of the random noise which drives the density
(temperature) fluctuation, only. As a result, a direct coupling
between the flow and density (heat) is lost, and a random
noise acts only on density (heat). Thus, while this assump-
tion is useful to understand the essential physics in the sim-
plest level, it will be certainly interesting to study these mod-
els in a more self-consistent way.

Other important ingredients, which are yet missing in
these dynamical models, are (1) the effect of zonal flow
shearing and (2) the effect of shearing on intermittent trans-
port. Throughout the discussion in the paper, shearing was
taken to be coherent over the time interval of interest, with
shear flows being implicitly assumed to be mean E&B
flows. It is now, however, well known that in addition to this
mean E&B flow, shearing by self-generated zonal flows,
with complex spatial structure and finite time correlation %ZF,
is very effective in regulating turbulence.13 They are likely to
play a more important role before the L-H transition than a
mean flow is, thereby possibly triggering the transition be-
fore the mean flow shearing (due to steepened pressure pro-
file) becomes dominant and maintains the plasma in the H
mode after the L-H transition.14,15 Thus, it is interesting to
study the shearing effect of zonal flows. Of particular interest
is the scaling of transport as %ZF /%! varies.

16 Second, in the

case where transport in L mode is dominated by intermittent
transport, associated with coherent structures (e.g., streamers
and blobs),17 the effect of shearing on coherent structures
themselves should be examined. Note that the evolution of
the gradient of vorticity may depend on both strain and vor-
ticity, with the possibility of vorticity inhibiting the genera-
tion of vorticity gradient.18 These issues are under investiga-
tion and will be addressed in future papers.
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