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1 OVERVIEW

Caltrans collects traffic data for many monitoring and control applications and the ultimate goal

of the traffic surveillance system is to provide accurate data to these high level applications.  The

surveillance system includes data measurement, averaging and verification algorithms.  This

report presents improvements to many elements of the surveillance system.  First, section 2

addresses many shortcomings in average speed estimation at single loop detectors, as well as

other sensors that estimate speed from average flow and occupancy.  At the root of these

problems is the fact that the conventional estimation methodology assumes a fixed vehicle

length.  It is shown that this assumption does not hold for many samples, both because the true

average vehicle length can change throughout the day and because a given sample may not be

representative of an average sample.  Next, section 3 presents a more accurate method to

estimate velocity at single loop detectors.  It is shown that this method approaches the accuracy

of velocity measurements from dual loop detectors.  This new approach does not eliminate the

benefit of dual loops, section 4 presents a new method to estimate link travel time from

measurements recorded at a dual loop detector.  The estimates are very close to the true travel

times and it is shown that when estimation errors do occur, they can usually be identified.

Finally, experience by Caltrans shows that there is a need to develop and deploy more

sophisticated error detection and data verification algorithms.  Section 5 presents eight new

detector validation tests using data on individual vehicles, i.e., event data.
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2 IMPROVED VELOCITY ESTIMATION USING SINGLE LOOP DETECTORS

2.1 Introduction

Loop detectors are the preeminent vehicle detector for freeway traffic surveillance.  They are

frequently deployed as single detectors, i.e., one loop per lane per detector station.  Although

single loops have been used for decades, debate continues on how to interpret the measurements

and how to calibrate the detectors.  In conventional practice, the single loop measurements are

very noisy and many researchers have sought sophisticated filtering methods, e.g., Mikhalkin et

al. (1972), Pushkar et al. (1994), and Dailey (1999).  Unfortunately, most of the preceding efforts

focused on complicated models without explicitly identifying the sources of error.  The earlier

works also lose sight of the end goal: to produce an algorithm that can be deployed on a simple

processor, such as a Model 170 controller.

This section provides a new perspective by clarifying the source of several errors and suggesting

ways to reduce the impacts.  The body of this work emphasizes velocity estimation, but it has

implications for tests of detector data quality as well.  The first subsection reviews the state of

the practice for parameter measurement and estimation from single loop detectors.  The next

subsection illustrates how conventional practice may be susceptible to changes in the vehicle

population throughout the day as well as errors due to sample size.  The section continues by

developing an algorithm to overcome these problems.  Finally, the discussion shows how the

work has implications for tests of detector data quality and elucidates the findings of an earlier

study that concluded that single loop velocity estimates are biased.

2.2 Parameter Measurement and Estimation

Conventional single loop detectors are capable of measuring flow, the number of vehicles that

pass the detector during a fixed sample period, and occupancy, the percentage of the given
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sample period that the detector is "occupied" by vehicles.  For each lane, these two parameters

are defined as:

q
n

Tk
k= (2-1A)

θk

j
j J

t

T
k= ∈

∑
(2-1B)

where the subscript "k" indicates the given sample, subscript "j" indicates vehicle specific

parameters and

qk  = flow during sample k

θk  = occupancy during sample k

nk  = number of vehicles that pass the detector during sample k

T  = sampling period

Jk  = set of all vehicles that pass the detector during sample k

t j  = vehicle j's on time.

Two interdependent vehicle parameters are of interest for estimating mean sample velocity:

vehicle velocity and vehicle length.  The relationship between these two parameters for a vehicle

passing over a loop detector is simply:

L L L v tj j
v

j
s

j j= + = ⋅ (2-2)

where

Lj  = vehicle j's effective length as "seen" by the detector

Lj
v  = vehicle j's true length

Lj
s  = length of detector's sensitivity region for vehicle j

vj  = vehicle j's velocity
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The length of the detector's sensitivity region typically depends on many variables such as the

vehicle's position in the lane, height of the vehicle's underframe, and the amount of ferrous metal

in the vehicle.  It is difficult to separate this length from the vehicle's true length using loop

detector data, so for the rest of this document "length" will refer to the sum of these two lengths,

often referred to as the effective vehicle length.

From equations 2-1 and 2-2,

θk
j

jj J
k

k

j

jj JT

L

v
q

n

L

v
k k

= = ⋅
∈ ∈
∑ ∑1 1

(2-3A)

assuming that individual vehicle lengths and velocities are uncorrelated,

θk
k k

k

q L

v
≈ ⋅

(2-3B)

where

Lk  = arithmetic mean vehicle length for sample k

vk  = harmonic mean vehicle velocity for sample k, often referred to as the space mean

speed.

In other words,

v
q L

k
k k

k

≈ ⋅
θ

(2-4)

Equation 2-4 shows the relationship between mean velocity and mean length, but these two

parameters can not be measured independently at a single loop.  Typically, an operating agency

will use one of two approaches to address this problem.  In the first case, Lk  is simply set to a

constant value, L̂ , and Equation 2-5 is used to estimate vk :
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ˆ
ˆ
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k
k

k
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θ

(2-5)

There are many site specific variables that can influence the mean vehicle length, such as the

percentage of long vehicles in the lane and the detector's sensitivity.  So, other operating

agencies assume a fixed free flow velocity and reversing the assignment in Equation 2-5,

estimate L̂  each day during periods when traffic over the detector is almost certain to be free

flowing.  Then, L̂  is held fixed during the remainder of the day and the velocity estimation

progresses using Equation 2-5 directly.

2.3 Analysis

Some of the site specific variables are corrected with a daily estimate of L̂ , but other factors are

not addressed, such as the possibility that the percentage of long vehicles may change during the

day or the simple fact that a sample with few vehicles (i.e., low flow) may not have a

representative sample of vehicle lengths.  For this study, we examine 24 hours of detector

actuations, sampled at 60 Hz, for each lane at a detector station on Interstate-80 in Berkeley,

California.  The data come from dual loop detectors.  In this configuration, it is possible to

measure true vehicle velocities by dividing the loop separation by the difference in arrival times

at each loop.  Finally, Lk  is calculated using Equation 2-4 by assuming absolute equality.

Figure 2-1A illustrates the time series evolution of Lk  for the eastbound traffic with T = 15min .

Following Caltrans convention, lanes are numbered starting at the inside and increasing outward.

The legend indicates the total number of vehicles in each lane during the day.  Including the

westbound data (not shown), the observed values of Lk  range from 19 feet to 51 feet and almost

all lanes exhibit a strong temporal dependency.  Figure 2-1B-C show the corresponding nk  and

vk , respectively.
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When an operating agency estimates L̂ , they typically sample the value during early morning

hours.  As one would expect, these hours are free flowing for this example; however, they also

correspond to the highest values of Lk  and lowest values of qk .  Thus, if L̂  were estimated

strictly during the early morning, estimates of velocity from Equation 2-5 would be too high

throughout the remainder of the day.  Since the phenomena depend on site specific factors, the

figures indicate the need for an improved method of estimating L̂  on-line.

Figure 2-2 shows the cumulative distribution of Lk  for the eastbound lanes using four different

sampling periods.  Although Lane 1 shows little variance due to a truck restriction, the other

lanes exhibit a large variance.  So no single value of L̂  will be representative of all samples and a

value of L̂  estimated using one value of T  might not be valid for another value of T .

The primary source of this variance comes from the fact that the vehicles observed during a

given sample may not be "typical".  Figure 2-3 shows the observed distribution of individual

vehicle lengths for the eastbound traffic.  Approximately 85 percent of the vehicles are between

15 and 22 feet, but some are as long as 80 feet or roughly four times the median length.  When

nk  is small, i.e., low flow, a long vehicle can skew θk  simply because it takes more time for the

long vehicle to pass the detector.

In accordance with the law of large numbers, the sample distribution should become more

representative of the entire population as nk  increases, which in turn, increases with qk  and T .

Figure 2-4 illustrates this phenomena using the eastbound data from all lanes for three values

of T .  The top half of the figure shows Lk  during free flow conditions, vk  > 50 mph, while the

lower half shows Lk  during congestion, vk  < 50 mph.  In parts A and D, where T = 30sec, the

maximum number of vehicles per sample is so small that the observations fall into distinct

columns, i.e., the first column contains observations with only one vehicle, the second column

contains observations with only two vehicles, and so on.  Notice that for each T , the range of Lk
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decreases as qk  increases; also note that in this data set, the lowest flows are only observed

during free flow conditions.

2.3.1 Improving the Length Estimates

As previously noted, a single loop detector can not measure vk  directly and estimates of L̂  may

be biased by the time of day.  To overcome these problems, L̂  is estimated during periods when

the traffic should be free flowing.  Rather than choosing a period of the day a priori, the data are

used to make the distinction.  Empirically, free flow conditions correspond to low occupancies

and Equation 2-3B explicitly shows that θk  is inversely proportional to vk .  For this study, a

sample is considered free flowing if

θ θk threshold< (2-6)

where θthreshold  was set to 10 percent.  The value was chosen so that most free flow samples

would be selected, but low enough to ensure that very few (if any) congested samples are

selected.  In practice, this threshold could be set from a plot of flow versus occupancy.  To

account for samples with high θk  due to free flowing trucks, for T = 30sec, a sample is also

considered free flowing if at least half of the 10 preceding samples satisfy Equation 2-6.  Next,

L̂ v mean
qff

k

k

= ⋅






θ ∀ ∈k K (2-7)

where

vff  = assumed fixed free flow velocity, set to 60 mph for this study

K  = set of all free flow samples with qk > 0 and θk > 0  in the given lane during the 24

hour study.
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The resulting L̂  for the eastbound traffic are shown in Table 2-1.  Using these values and

Equation 2-5 to calculate v̂k , Figure 2-5 shows v̂k  versus vk  over entire 24 hour study.  The solid

line in each plot indicates where the estimated values equal the measured values.  Note that v̂k

ranges between 20 mph and 120 mph for samples with vk  > 50 mph.  In other words, the

estimate is very noisy when the traffic is free flowing.  The noise is primarily due to the variance

in Lk  at low flow (recall from Equations 2-4 and 2-5, ˆ ˆv v L Lk k k≈ ⋅ ).  Finally, consider the

congested observations, vk  < 50 mph.  In each lane the observations are roughly collinear and the

guess of vff  serves as a scaling factor, increasing or decreasing the slope of the congested data.

In lane 1, the guess of vff  was too low and the estimated velocities are lower than the measured

velocities, while in lanes 3 and 4, the opposite is true.  This error is included in the plots because

it can not be eliminated from single loop detector data without additional detectors.

The analysis is repeated with T = 5min  to reduce the estimate noise.  Now, however, a sample is

only considered free flowing if it satisfies Equation 2-6 or the preceding sample satisfied

Equation 2-6.  Once more the resulting L̂  are shown in Table 2-1, while Figure 2-6 shows v̂k

versus vk  for T = 5min .  Even with the longer sampling period, the estimates are still noisy

when the traffic is free flowing.

To illustrate the effects of different values of vff  or L̂ , consider the percent error in v̂k  relative to

vk  over the entire day for various fixed values of L̂ .  Figure 2-7 shows contour plots of the

percent error as L̂  ranges between 16 and 32 feet for two different lanes when T = 30sec and

T = 5min .  For example, when L̂  = 19 feet in Figure 2-7A, approximately 70 percent of the

estimated velocities are within 5 percent of the measured values.  Comparing the top plot to the

bottom plot in either lane, the longer sampling period increases nk  and thus, reduces the error.

Notice that the optimal value of L̂  appears to depend on T  in the right-hand plots (lane 5

westbound), reaffirming the fact that L̂  estimated at one value of T  may not be valid for another
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value of T .  The figure also shows that performance is relatively stable for length estimates

within a few feet of the optimal value.

2.3.2 Improving the Velocity Estimates

Free flow velocity estimates are poor during low flow, but from an operational standpoint, it is

sufficient to know that traffic is free flowing during these conditions.  This supposition is

implicit with on-line estimation of L̂ .  Once more, exploiting the fact that free flow, low flow

samples are characterized by low occupancy, the estimated velocity can be set to a constant

value, v̂ vk ff=  when θ θk threshold< .  Rewriting Equation 2-5 to include this constraint:

ˆ

ˆ
,

,
v

q L

v
k

k

k
k threshold

ff k threshold

=
⋅ ≥

<






θ

θ θ

θ θ
(2-8)

To illustrate the benefits of this constraint, return to the data in Figure 2-6.  Recalculating v̂k

using Equation 2-8 with θthreshold = 10%, the new relationships are shown in Figure 2-8.  Notice

that almost all of the noise has been eliminated from the estimates corresponding to samples with

vk  > 50 mph.  Figure 2-9 compares the time series v̂k  from Equation 2-5, v̂k  from Equation 2-8,

and vk .  In this figure, one can see that Equation 2-8 removed many erroneous velocity

estimates, particularly during the early morning.  Applying Equation 2-8 to the 30 second data

yields similar results, as shown in Figure 2-10.

2.4 Implementation

The analysis for T = 30sec used a moving average to identify free flow periods with high θk ,

but a moving average is memory intensive.  In contrast, exponential filtering can accomplish the

same goal with almost no data storage.  The following pseudo-code can be used to implement the

method presented above:
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if θk > 0  and qk > 0

if θk < 10% or u > 0 1.

ˆ ˆL v mean
q

r L rff
k

k

= ⋅






⋅ + ⋅ −( )θ
1

v̂ vk ff=

u p u p= ⋅ + ⋅ −( )1 1

else

ˆ
ˆ

v
q L

k
k

k

= ⋅
θ

u p u p= ⋅ + ⋅ −( )0 1

end

end

where

r  = filtering factor with a time constant on the order of a week (to minimize the time of

day dependency illustrated in Figure 2-1A), e.g., r = 1 20000 for T = 30sec and

r = 1 2000 for T = 5min .

p  = filtering factor with a time constant on the order of 5 minutes, e.g., p = 0 2.  for

T = 30sec and p = 1 for T = 5min .

u  = an indicator variable used in conjunction with p to determine whether preceding

samples were free flowing.

Rather than using a static assignment of L̂ , as in Equation 2-7, the algorithm uses an exponential

filter to dynamically update L̂ .  This pseudo-code is presented to show that the method can be

implemented easily, but it is left to future research to determine the optimal implementation.
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2.5 Discussion

2.5.1 Implications Beyond Single Loop Velocity Estimates

The impact of this work to single loop detectors is straightforward, but this work has

implications for dual loop detectors as well.  Earlier studies have developed automated tests of

detector data quality, e.g., Jacobson et al. (1990), Cleghorn et al. (1991), and Nihan (1997).

Their goal is to eliminate erroneous measurements due to transient problems or component

failures.  Similar systems often go undocumented in the literature because they are either

designed in-house by an operating agency or a consulting firm (see Chen and May, 1987, for

examples).  Most of these data quality tests can be expressed using the following constraint to

bound good dual loop data:

v
q L q v q L q v

k
k k k k

k

k k k k

k

∈
⋅ ( ) ⋅ ( )









min max, ,
,

, ,θ
θ

θ
θ

(2-9A)

where Lmin  and Lmax  are lower and upper bounds, respectively, that may depend on qk , vk  or θk .

Naturally, this constraint reduces to the following for single loop detector data:

ˆ
,

,
,min maxv

q L q q L q
k

k k k

k

k k k

k

∈
⋅ ( ) ⋅ ( )









θ
θ

θ
θ

(2-9B)

Some of these tests fail to accommodate the fact that the variance in Lk  increases as qk

decreases.  The author recently identified such a system currently in use by a large operating

agency.  In particular, the agency applied Equation 2-9A, using fixed values of Lmin  and Lmax , to

dual loop data.  The test discarded almost all early morning observations from the agency's 400

detector stations simply because the constraint is too restrictive during low occupancy

conditions.
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2.5.2 Previous Research in the Context of the new Analysis

There has been some confusion in the discipline since Hall and Persaud (1989) concluded that,

for a fixed value of L̂ , Equation 2-5 does not hold over an extended range of occupancies.  Their

paper examined the "g-factor" which is simply the inverse of L̂ , and the analysis used,

g
Lk

= 1
(2-10)

Roughly summarizing their plots of g versus occupancy: g decreases by a factor of two from one

percent to five percent occupancy, remains constant over the range of five percent to 40 percent

occupancy, and then drops by an order of magnitude from 40 percent to 80 percent occupancy.

To reduce errors due to vehicle lengths, they selected lanes with truck restrictions.  In an attempt

to reproduce these results, Figure 2-11A shows the g-factor versus occupancy for lane 1

eastbound.  The g-factor does not exhibit the predicted occupancy dependence.  There is one

difference, however, the earlier study used occupancy expressed in integer percent.  After

truncating percent occupancy to integer values and recalculating g, Figure 2-11B shows the new

g-factor versus integer percent occupancy.  This plot exhibits the non-linearity at low

occupancies predicted by Hall and Persaud, but it does not show the drop in g at high occupancy.

Finally, using time mean speed1 rather than space mean speed and the truncated occupancy to

calculate g, Figure 2-11C follows the predictions from the earlier study.  Figure 2-12 compares

the various methods of calculating the g-factor.  It shows mean g-factor over one percent ranges

up to 35 percent occupancy and then over five percent ranges through 50 percent occupancy.

Note that by using time mean speed without truncating occupancy, the g-factor follows the

predictions for high occupancy but it does not follow the predictions for low occupancy.

                                                  

1 The arithmetic mean of each samples' vehicle velocities.
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These figures clearly show that subtle differences in aggregation can lead to significant

differences in parameter relationships.  The tools and data necessary for this detailed analysis

were not available to researchers when Hall and Persaud published their work.  Although their

diagnosis seems to be incorrect, Hall and Persaud correctly identified a significant problem with

conventional velocity estimation.  An operating agency should expect to encounter similar

round-off errors at low occupancy if they use truncated occupancy to estimate L̂  and this error

will propagate to all subsequent velocity estimates.  In the course of their analysis, Hall and

Persaud assumed the operating agency was measuring space mean speed when in fact it appears

that the agency was measuring time mean speed.  This measurement error would explain their

results at high occupancy.  To prevent such oversights in the future, researchers should learn the

subtle details of the data measurement and aggregation procedures underlying their detector data.

One must remember that loop detectors, as well as most other vehicle detectors, are not precision

instruments.  To keep the detectors affordable, they are typically designed to meet existing

operational needs with minimal excess performance.  Finally, recall that the results in Figure

2-12 represent a lane with a truck restriction.  As shown earlier in this section, when trucks are

present, the large range of possible vehicle lengths will reduce the accuracy of velocity estimates

from single loops.

2.6 Conclusions

The significance of this work to single loop detectors is straightforward.  Figure 2-7 shows that

no single estimate of L̂  is appropriate for all samples; but fortunately, for most samples, it is

sufficient for the estimate to be within a few feet of the optimal value.  Significant errors occur at

low flows, however, since the variance in Lk  increases as qk  decreases.  This variance degrades

the velocity estimation because Lk  is less likely to be average, as shown in Figure 2-4.

Exploiting the fact that the low flow free flow samples are characterized by low occupancy, this

section has shown that it is possible to identify these conditions and simply report that traffic is
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free flowing (Figures 2-9 and 2-10).  This section has presented improved methods for estimating

L̂  and v̂k  incorporating these findings.  Unlike many preceding works, the approach is simple

enough that it can be implemented on existing traffic controllers that have limited processing

power, such as a Model 170 controller.  Although the implementation is fairly simple, this work

has wide ranging implications for practitioners and researchers.  For example, the discussion

shows how the work is applicable to automated tests of detector data quality, both from dual and

single loop detectors.  Then, the section closes by refuting an earlier study, showing that in the

presence of a truck restriction, the use of a single estimate L̂  in Equation 2-5 is indeed valid over

an extended range of occupancies provided care is taken to measure the right parameters and

prevent round-off errors.
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Figure 2-6, Estimated velocity versus measured velocity, eastbound traffic, T = 5 min, (A) lane 1, (B) 
lane 2, (C) lane 3, (D) lane 4.
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Figure 2-7, Contour plot showing the cumulative distribution of percent error in estimated velocity as a function of M, 
(A)-(B) T = 30 sec, (C)-(D) T = 5 min, for (A) & (C) lane 1 eastbound, (B) & (D) lane 5 westbound.
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Figure 2-8, Estimated velocity after identifying low occupancy samples versus measured velocity, 
eastbound traffic, T = 5 min, (A) lane 1, (B) lane 2, (C) lane 3, (D) lane 4.
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Figure 2-9, (A) Estimated velocity before identifying low occupancy samples, U, eastbound traffic, T = 
5 min and the corresponding (B) estimates after identifying low occupancy samples,  (C) 
measured velocities, V.
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Figure 2-10,(A) Estimated velocity before identifying low occupancy samples, U, westbound lane 3, T = 
30 sec and the corresponding (B) estimates after identifying low occupancy samples,  (C) 
measured velocities, V.
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Figure 2-11, (A) The g-factor versus occupancy, T = 30 seconds, lane 1 eastbound, (B) with occupancy 
rounded down to integer values, (C) using time mean speed and rounded occupancy.
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Table 2-1, The resulting estimates of L̂  for the eastbound traffic

Lane
L̂  (feet)

T = 30 sec
L̂  (feet)

T = 5 min

1 16.8 16.9
2 19.6 19.9
3 21.3 22.0
4 21.8 22.8
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3 ESTIMATING MEDIAN VELOCITY INSTEAD OF MEAN VELOCITY AT SINGLE

LOOP DETECTORS

3.1 Introduction

Section 2 has shown a fundamental shortcoming with conventional estimates of velocity from

single loop detectors.  These estimates presume a "mean vehicle length"2 that applies to all

samples, but section 2 has shown that this assumption breaks down because a given sample may

not be representative of the "average vehicle".  In addition to loop detectors, there are many non-

intrusive vehicle detectors that rely on the same principles.

As previously noted, many researchers have investigated techniques to reduce the influence of

long vehicles, e.g., Mikhalkin et al. (1972), Pushkar et al. (1994), Dailey (1999), Wang and

Nihan (2000) and section 2 above.  All of these studies used aggregate flow (q) and occupancy

(occ) to estimate mean velocity.  Rather than manipulating aggregate data, this section examines

new aggregation methods to reduce the estimation errors.

The first subsection reviews the state of the practice and the related shortcomings of

conventional velocity estimation from single loop detectors.  The second subsection proposes an

alternative method for estimating velocity.  The next subsection contrasts the new approach

against conventional estimates.  The final subsection shows how the new approach can be used

to estimate individual vehicle lengths from single loop detectors.

                                                  

2 Throughout this document, "length" refers to the "effective vehicle length" as seen by the detectors.
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3.2 Conventional Velocity Estimation

Provided that vehicle lengths and vehicle velocities are uncorrelated, as shown in section 2 and

elsewhere, harmonic mean velocity (mean v) and arithmetic mean vehicle length (L) for a given

sample are related by the following equation:

mean v
q L

occ
 ≈ ⋅

(3-1)

However, these two variables cannot be measured independently at a single loop.  Typically, an

operating agency will set L to a constant value and use Equation 3-1 to estimate velocity from

single loop measurements.  But this approach fails to account for the fact that the percentage of

long vehicles may change during the day or the simple fact that a sample may not include

"typical" vehicle lengths.  Particularly during low flow, when the number of vehicles in a sample

is small, a long vehicle can skew occupancy simply because it takes more time for that vehicle to

pass the detector.  For example, section 2 showed that approximately 85 percent of the individual

vehicle lengths observed at one detector station were between 15 and 22 feet, but some vehicles

were as long as 85 feet, or roughly four times the median length.

In accordance with the law of large numbers, the sample distribution should become more

representative of the entire population as the sample size increases, which in turn, increases with

flow.  Figure 3-1 shows a detail from Figure 2-4 that illustrates this phenomena using two

common sampling periods (T).  In part A, T=30 sec and the maximum number of vehicles per

sample is so small that the observations fall into distinct columns, i.e., the first column contains

observations with only one vehicle, the second column contains observations with only two

vehicles, and so on.  Notice that for both values of T, the range of L is inversely proportional to

q.
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3.3 Alternative Parameters

For this study, we examine 24 hours of detector actuations, sampled at 60 Hz, from a dual loop

detector station in the Berkeley Highway Laboratory (Coifman et al., 2000).  In the dual loop

configuration it is possible to measure true vehicle velocities from the quotient of the loop

separation and the difference in a vehicle's arrival time at each loop.  While an individual

vehicle's length is simply the product of its measured velocity and on time, i.e., the amount of

time that the vehicle occupies the detector.  The subject detector station includes five lanes in

each direction.  In an attempt to capture the temporal changes in observed vehicle lengths, the

data were arbitrarily subdivided into non-overlapping, three hour long segments by lane.  The

two distributions shown in Figure 3-2 represent the "best" distribution (lowest vehicle length

variance, at 8.16 ft2) and "worst" distribution (highest vehicle length variance, at 217 ft2)

observed across the 80 subsets.  Removing the temporal component, consider a sample of N

vehicles drawn at random from the "worst" distribution.  Intuitively, the sample mean vehicle

length is likely to be biased towards long vehicles because of the extended tail.  The median

vehicle length, however, should be less sensitive to the outliers.  This hypothesis was verified

using Monte Carlo simulation.  The simulation consisted of 10,000 samples of N vehicles from

each distribution, where N was set to 10, 50, 100, 500 and 1000 vehicles, and the sample mean

and median were calculated.  Table 3-1 summarizes the 99 percent confidence intervals for the

mean and median lengths.  The mean length confidence interval was significantly worse than the

median length under all conditions.  In fact, the results show that the range of the confidence

interval for the median length of N vehicles is roughly proportional to that of the mean length for

10·N vehicles in this set.  If we continue to assume that individual vehicle length and velocity

are uncorrelated, then the simulation results lead to the following postulate:

median v
L

median on time
 

  
≈ (3-2)

where the value of L may differ from that used in Equation 3-1.
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3.4 Estimating Velocity

For both Equations 3-1 and 3-2, with a fixed L, one can consider the function on the right hand

side as an estimate of the variable on the left hand side.  Using the entire day's worth of data

from each lane and setting the sample size to N consecutive vehicles in a given lane, Figures 3-3

and 3-4 show scatter plots of the estimates versus the corresponding measurements for two

different values of N.  In each figure, the left and right plots come from the same samples and L

is assumed to be 20 feet in all plots.  The choice of a different L would simply scale the estimates

vertically, proportional to L/20.  In both figures, the mean velocity estimate is much noisier than

the median velocity estimate.  Notice that the median velocity and its estimate tend to fall into

discrete columns and rows, respectively, due to the resolution of the 60 Hz measurements.  With

N=10, the mean estimate is subject to errors from long vehicles throughout all traffic conditions,

as highlighted with the circles in Figure 3-3.  At larger N, Figure 3-4, the error is only evident

during free flow conditions.  This bias is due to the fact that trucks represent a larger percentage

of the vehicle fleet in the early morning hours, a period when there was no observed congestion.

To quantify these errors, we define the Measure of Variance (MOV) and Measure of Bias

(MOB) over n samples as follows:

MOV
x x

n

i i
i

n

=
−( )

=
∑ * ˆ

2

1 (3-3)

MOB
x x

n

i i
i

n

=
−( )

=
∑ * ˆ

1 (3-4)

where xi
*  is the true value of the given variable for the i-th sample and x̂i  is the corresponding

estimate.  The resulting MOV and MOB for the velocity estimates from five different sample

sizes are shown in the first few columns of Table 3-2.  In each case, the MOV for the median

velocity estimator is approximately one third of that for the mean velocity estimator.  Of course,
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the MOV is sensitive to the choice of L.  So the analysis is repeated in the latter columns with L

selected such that MOB=0 for the given sample size and estimator.  This latter analysis reflects

the performance when the unbiased L is used with the subject data set.

The estimates thus far are based on samples of a fixed number of vehicles.  But the fixed number

sampling is not very informative if the freeway is blocked or flow drops for some other reason.

So in practice, it is better to sample over fixed time periods.  Fixed time sampling has the added

benefit that all samples can be synchronized at a detector station and thus, requires less

computational and communications overhead.  It is important, nonetheless, to ensure that the

sample period is large enough to ensure a sufficient number of vehicles in a sample during any

period when surveillance is desired.  Looking at Figure 3-3 and Table 3-2, N=10 vehicles

appears to provide satisfactory results for the median estimate, but this sample size is a little low

for the mean estimate.  With T=30 seconds, this criteria would require q>1200 veh/hr throughout

the entire day.  Applying this sampling period to the data results in very poor performance by

both estimation techniques (see Table 3-2).  On the other hand, if T=5 minutes, the criteria only

requires q>120 veh/hr.  Repeating the preceding analysis with T=5 minutes yields Figures 3-5

and 3-6.  In Figure 3-5, one can see significant errors in the mean estimate and few errors in the

median estimate.  The corresponding statistics are reported in Table 3-2 and the performance

appears to be on the order of fixed samples with N=10 vehicles for this data set.  Figure 3-6

shows that the flow is quite low at this site for at least four hours in the early morning and it is

above 1200 veh/hr for only about half of the day.  The reader should also note that this location

sees a relatively large volume of traffic, with an average of approximately 25,000

vehicles/lane/day.  Most other locations will have a lower average daily flow, reaffirming the

need for longer sample periods.

Although T=5 minutes appears to provide sufficient sample size, the long delay between

measurement updates may be undesirable.  Fortunately, many applications only need a single



Coifman

3-6

estimate of velocity for a given detector station or link.  To keep N high while reducing T, one

can sample across multiple lanes before estimating velocity.  In particular, setting T=30 seconds

and sampling individual vehicle measurements across the four outside lanes in a given direction

yields Figure 3-7 and the final row of statistics in Table 3-2.  Note that the inside lane was

excluded because it is a high occupancy vehicle (HOV) lane in both directions

Finally, one could extend this work to design a hybrid sampling criteria for each lane, one that

only uses the N most recent vehicles provided they pass during the preceding T time period.  If

this criterion is not met, only use those vehicles that pass during the time period.  The reporting

rate can be faster than T, e.g., N=10, T=5min and report the most recent observations every 30

sec.

3.4.1 Discussion

The various sampling criteria were used to illustrate the fact that Equation 3-2 performs better

than conventional estimates from Equation 3-1 no matter how the vehicles are sampled.  It is

worth noting that Courage et al. (1976) used simulation to conduct a detailed analysis of

conventional velocity estimates under various sampling criteria.  In the present study, L = 20 ft

and T = 5 min give satisfactory results.  Of course the required accuracy and sampling period

depend on the application.  Due to the limited number of detector stations that provide individual

vehicle data, the authors have not been able to apply the work to other locations.  An operating

agency interested in experimenting with this methodology might want to start with these settings,

examine the resulting estimates over several days and then adjust as needed.

Figure 3-8A compares the true median velocity to space mean speed in a typical lane using five

minute samples, while Figure 3-8B compares the corresponding estimates.  Obviously the

median velocity and space mean speed differ slightly for most samples.  Although there is no

direct relationship between the two metrics, they are both measures for the center of the sample.
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In contrast to conventional practice, the new estimate significantly reduces the velocity

estimation errors when it is not possible to control for a wide range of vehicle lengths.  Repeating

the preceding analysis using Equation 3-2 as an estimate of space mean speed, rather than

median velocity, yields Table 3-3.  Except for N≥500, Tables 3-2 and 3-3 clearly show that the

MOV from Equation 3-1 is larger than the MOV from Equation 3-2 when both methods are used

to estimate space mean speed.  The increasing MOV at large N in Table 3-3 should not be

surprising.  As the sample size increases, it is more likely that the prevailing velocity will change

significantly during the observation period, thus, allowing for a greater difference between the

true mean and median velocities.

Of course the use of Equation 3-1 is based on the assumption that individual vehicle velocities

and lengths are uncorrelated.  In the event that vehicle length and velocity are inversely

proportional, as is frequently the case in free flow traffic, a long vehicle will spend more time

over the detector and the associated on time will be larger.  This increase will impact the

occupancy measurement (which is proportional to the mean on time) more than the median on

time.  Thus, the performance of Equation 3-1 would be expected to degrade worse than the

performance of Equation 3-2 under these conditions.

Of course the median estimates might degrade in the presence of high truck volumes.  To address

this fact, Equation 3-2 could be modified to select a different percentile from the observed

distribution of on times, e.g., the 25th percentile rather than the median.  Additional information

could also be used, such as the presence of truck restrictions in specific lanes or slightly more

complicated models that exclude low flow conditions, e.g., section 2.  Finally, note that heavy

truck flows would likely have a greater impact on the conventional estimates from Equation 1.

3.5 Estimating Vehicle Lengths

Assuming the loop detector is functioning properly, a given measured on time is simply a

function of the vehicle's length and velocity.  During free flow conditions the vehicle velocities
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typically fall in a small range and during congested conditions the difference between successive

vehicles' velocities is usually small.  If one assumes that all of the vehicles in a sample are

traveling near the median velocity, one can use Equation 3-2 in conjunction with measured on

times to estimate individual vehicle lengths with the following equation,

ˆ ˆl v onj i j= ⋅ (3-5)

where

l̂ j  = estimated vehicle length for the j-th vehicle in the i-th sample

v̂i  = estimated median velocity for the i-th sample

onj  = measured on time for the j-th vehicle in the i-th sample.

Of course the number of vehicles per sample must be small enough for the velocity assumption

to hold and one must control for low velocity conditions, when acceleration becomes non-

negligible during the sample.  Using N=10 and restricting the analysis to all samples with v̂i >20

mph, the average error in l̂ j  is less than six percent for the 210,000 vehicles in the data set that

satisfy the velocity constraint.  The length estimates can be improved further by calculating the

median velocity for the N vehicles centered on the subject vehicle, but this approach requires the

observation of subsequent vehicles and it is more computationally intensive.

3.6 Conclusions

Many researchers have sought better estimates of velocity from single loop detectors.  The

earlier works have emphasized techniques to reduce the bias from long vehicles in mean velocity

estimates.  This section has taken a different approach, it uses a new aggregation methodology to

estimate median velocity and it was shown that the estimate is less sensitive to the presence of

long vehicles.  This fact leads to the added benefit that the assumed value of L is less sensitive to

site-specific characteristics of the traffic flow.  As shown in Tables 3-2 and 3-3, the new
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methodology significantly reduces velocity estimation errors at single loop detectors when it is

not possible to control for a wide range of vehicle lengths.

It may seem intuitive that the median is less sensitive to outliers than the mean, but it does not

appear that this fact has previously been employed for estimating velocity from single loops.

Although the median is less sensitive to outliers, it is still necessary to observe several vehicles

in a given sample to reduce the impact of long vehicles and it is not advisable to estimate

velocity with short sample periods during low flow conditions.  To this end, two methods for

increasing N while keeping T low were proposed.  The first approach combined data from

multiple lanes before estimating velocity and yielded satisfactory results on the experimental

data set.  The second approach would use a hybrid sampling criteria to switch between fixed

number of vehicles and fixed time sampling.  Finally, the discussion anticipated potential

problems with heavy truck flows and suggested several possible solutions to reduce these

impacts.
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Figure 3-1, Observed average effective length versus flow for five lanes at one detector 
station, over one day, sampled at (A) T = 30 sec, (B) T = 5 min.
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Figure 3-2, Observed distributions of individual effective vehicle lengths in a single lane for 
three hour periods. (A) lowest variance or "best" case, (B) highest variance or 
"worst" case.



 

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

mean v (mph)

20
*q

/o
cc

/5
28

0 
(m

ph
)

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

median v (mph)

20
/(

m
ed

ia
n 

on
)/

52
80

 (
m

ph
)

(A) (B)

Figure 3-3, This figure uses real traffic data to compare estimated versus measured (A) mean 
velocity (B) median velocity for 24,640 samples of 10 vehicles each. Note that the 
circles were added to the same locations in both plots to highlight the differences.
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Figure 3-4, Now using samples of 100 vehicles each, this figure compares estimated versus 
measured (A) mean velocity (B) median velocity for 2,460 samples. Again, the 
circles were added to the same locations in both plots to highlight the differences.
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Figure 3-5, Moving to a fixed sample period of 5 minutes, this figure compares estimated 
versus measured (A) mean velocity (B) median velocity for 2,870 samples. Again, 
the circles were added to the same locations in each plot to highlight differences.
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Figure 3-6, Range of observed sample sizes (light region) and median sample size (solid 
line) across five adjacent lanes for the data shown in the previous figure (A) 
northbound lanes, (B) southbound lanes.
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Figure 3-7, Finally, using a fixed sample period of 30 seconds and combining data over four lanes, 
this figure shows estimated versus measured (A) mean velocity (B) median velocity for 
5,760 samples. Once more, the circles highlight the differences between the plots.
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Figure 3-8, (A) Observed mean and median velocity for five minute samples in a single lane. 
(B) Corresponding estimates from Equations 1 and 2.
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Table 3-1, 

upper bound lower bound difference upper bound lower bound difference
N=10 veh 25.07 16.65 8.42 21.82 18.45 3.37
N=50 veh 21.78 18.75 3.03 20.77 20.00 0.77
N=100 veh 21.27 19.16 2.11 20.00 20.00 0.00
N=500 veh 20.59 19.71 0.88 20.00 20.00 0.00
N=1000 veh 20.45 19.82 0.63 20.00 20.00 0.00

N=10 veh 40.77 19.03 21.74 27.69 19.23 8.46
N=50 veh 32.07 21.42 10.65 21.74 20.00 1.74
N=100 veh 30.23 22.62 7.61 21.67 20.00 1.67
N=500 veh 27.89 24.42 3.47 21.54 20.00 1.54
N=1000 veh 27.34 24.88 2.46 21.45 20.00 1.45

Confidence intervals for mean and median effective vehicle length from Monte Carlo simulation 
for various sample sizes from the "best" and "worst" observed distributions.

for mean for median
99 percent confidence intervals of vehicle length (ft)
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Table 3-2,

sampling 
criteria

number of 
samples

for 
mean v

for 
median v

for 
mean v

for 
median v

for 
mean v

for 
median v

for 
mean v

for 
median v

N=10 veh 24640 26.63 7.22 2.44 1.03 21.62 6.15 20.96 20.39
N=50 veh 4920 17.10 5.58 2.71 1.09 9.36 4.28 21.08 20.42
N=100 veh 2460 15.48 5.38 2.74 1.11 7.31 4.04 21.09 20.42
N=500 veh 490 13.99 4.92 2.77 1.00 5.37 3.84 21.12 20.38
N=1000 veh 235 13.54 5.09 2.78 1.05 4.77 3.86 21.13 20.40
T=30 sec 28750 63.69 29.23 2.82 1.35 60.94 28.48 21.08 20.50
T=5 min 2870 34.36 7.02 3.59 1.03 22.37 5.96 21.39 20.38
T=30 sec and 
combining 4 
lanes

5760 47.39 8.73 4.02 0.98 33.12 7.85 21.59 20.36

Measure of Variance (MOV) and Measure of Bias (MOB) for estimated mean and median 
velocity using different sampling criteria on the same set of vehicle measurements. Note 
that these data come from real observations rather than simulation.

L set to 20 feet L set to eliminate bias

MOV (mph)2
MOB (mph) MOV (mph)2

L (ft)



Table 3-3,

sampling 
criteria MOV (mph)2

MOB (mph) MOV (mph)2
L (ft)

N=10 veh 6.99 0.88 6.02 20.34
N=50 veh 5.37 0.58 4.68 20.22
N=100 veh 5.22 0.43 4.73 20.16
N=500 veh 6.47 0.06 6.43 20.02
N=1000 veh 10.87 -0.34 11.04 19.87
T=30 sec 28.68 1.18 27.97 20.44
T=5 min 6.52 0.42 6.12 20.15
T=30 sec and 
combining 4 
lanes

8.19 0.50 7.80 20.19

Measure of Variance (MOV) and Measure of Bias (MOB) when using Equation 
2 as an estimate of space mean speed.

L set to 20 feet L set to eliminate bias
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4 ESTIMATING TRAVEL TIMES AND VEHICLE TRAJECTORIES ON FREEWAYS

USING DUAL LOOP DETECTORS

4.1 Introduction

A recent report from Caltrans noted that, "rapid changes in link travel time represent perhaps the

most robust and deterministic indicator of an incident [and] link travel time ... is perhaps the

most important parameter for ATIS functions such as congestion routing." (Palen, 1997)  Similar

views have lead the Federal Highway Administration and several states to develop and deploy

new detector technologies capable of collecting true travel time data over extended freeway

links, e.g., Balke et al., 1995, Coifman, 1998, Huang and Russell, 1997, Sun et al., 1999.

The emphasis on new technology to measure travel time is partially due to a misunderstanding of

how to interpret vehicle travel times.  For example, Sun et al. used conventional average velocity

sampled at a detector station over fixed time periods as a base case in their analysis.  The authors

found that link travel times differed significantly from the quotient of local velocity and the link

distance.  But this result is not surprising, since the link travel time for a vehicle reflects traffic

conditions averaged over a fixed distance and a variable amount of time, while the detector data

only reflects traffic conditions averaged over a fixed time period at a single point in space.

In contrast to the naive approach of generalizing point measurements over an entire link, this

section will show that judicious application of traffic flow theory can yield accurate link travel

time estimates from point data.  In particular, Lighthill and Whitham (1955) postulated that

signals propagate through the traffic stream in a predictable manner and that a single curve in the

flow versus density plane defines the set of stationary traffic states.  When the state transitions

from one point on the curve to another, the resulting signal should propagate through the traffic

stream at a velocity equal to the slope of the line between the two points.  Building off of this

earlier work, Newell (1993) proposed a simplified flow density relationship, as shown in Figure



Coifman

4-2

4-1.  Provided the traffic state remains on one leg of the triangle, all signals should propagate at

the same velocity: uF for free flow or uC for congested conditions.  Windover and Cassidy (2000)

have verified empirically that this simplification is reasonably accurate.  If a freeway link does

not contain a source of delay, such as a recurring bottleneck or an incident, then all of the signals

that influence a vehicle's travel time must pass at least one end of the link at a known velocity.

If we postulate that traffic velocity, v, over time, t, and space, x, has the functional form

v x t f x u t,( ) = + ⋅( ) (4-1)

where u is either uF or uC.  Then, the level sets of function f are straight lines and thus, v is

completely determined by observing this parameter over time at a single point in space, i.e., at a

detector station.  The evolution of vehicle trajectories in the time-space plane are defined by the

differential equation

dx

dt
v x t= ( ), (4-2)

and vehicle's link travel time is simply the time it takes the corresponding trajectory to propagate

across the link, i.e., from one detector station to the next.

Using this postulate, the remainder of this section develops a methodology to estimate link travel

times by integrating the signals that pass a dual loop detector, without deploying new hardware

or combining data from multiple locations.  The estimation method should be beneficial for

traveler information applications, where travel time is considered more informative to users than

average velocity.  One could also view the estimation method as providing "expected travel

times" without an incident.  Used in conjunction with one of the new technologies capable of

measuring the true vehicle travel times, a significant deviation between the expected and

measured travel times would be indicative of congestion.  Then, historical trends could be used

to differentiate between recurring congestion and an incident.  If a travel time estimation system
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is deployed for real time traffic control, the system could also prove beneficial for planning

applications such as quantifying congestion or model calibration.  This last point is an important

task for the traditional four-step planning process as well as the on-going Travel Model

Improvement Program, which seeks to replace the process with microsimulation models.  For

example, the TRANSIMS designers at Los Alamos National Labs note that "The most important

result of a transportation microsimulation in [the planning] context should be the delays..."

(Nagel et al., 1998).  Finally, in the process of developing the estimation method, this section

will also show how it can be used to estimate vehicle trajectories over a freeway link, which in

turn could be useful for quantifying vehicle emissions and other applications.

4.2 Travel time estimation

A dual loop detector station is capable of recording vehicle velocities and arrival times at a single

point in space.  We use this information to define a chord in the time-space plane, where a chord

is simply a straight line with a slope equal to a vehicle's measured velocity and passes the

location of the detector at the instant the vehicle passes.  Figure 4-2A shows a single chord for a

detector at zero distance and Figure 4-2B adds the next 13 chords recorded at the detector.

Empirically, the chords provide a rough approximation of vehicle trajectories for a short distance

downstream of the detector, but the approximation quickly breaks down, as evidenced by the

intersection of several cords in Figure 4-2B.  Assuming that individual vehicle measurements

represent discrete observations from a slowly varying traffic state at the detector location, the

changing state can be approximated by discrete samples equal to the vehicle headways.  During

congested conditions, i.e., the right hand leg of the curve in Figure 4-1, the transition between

one discrete state and another should propagate at uC.  In other words, a vehicle passage

represents an observed signal.  These signals are shown with dashed lines in Figure 4-2C, where

each chord is truncated as soon as it reaches the next observed signal.  Figure 4-3 shows the
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relationships between uC, vehicle velocity, vj, headway, hj, travel time, τj, and distance traveled,

xj, for j-th truncated chord.  It is a simple exercise to show that,

τ j
j

j C

h

v u
=

+1
(4-3)

x vj j j= ⋅τ (4-4)

Because all signals are assumed to travel at the same speed, the parameters from Figure 4-3 are

the same for any vehicle passing through a given band between two signals.  Connecting the

truncated cords end-to-end yields an estimated trajectory, shown in Figure 4-2D, for the vehicle

from part A.  In practice, one need only add up successive xj's until the total exceeds the link

distance.  The sum of the corresponding τj's yields a travel time estimate.  To enumerate the steps

in this estimation, first, measure hj and vj then calculate xj and τj using Equations 4-3 and 4-4.

For the k-th vehicle, find the largest Nk such that,

d xj
j k

k Nk

≥
=

+

∑ (4-5)

where d is the length of the link and Nk+1 represents an estimate of the number of vehicles that

pass the detector while the k-th vehicle traverses the link.  Typically the link distance will exceed

the sum of xj's by some percentage of the next xj, so a better estimate of travel time will include

the corresponding τj, weighted by the same percentage.  More formally, calculate a weight, p, as

follows,

p

x x d

x

k N j
j k

k N

k N

k

k

k

=
+







−+ +

=

+

+ +

∑1

1

(4-6)

Finally, calculate the estimated travel time, Tk,
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T pk k N j
j k

k N

k

k

= ⋅ ++ +
=

+

∑τ τ1 (4-7)

Another improvement comes by recognizing that hj occurs between vehicle observations.  So the

harmonic mean of two successive velocity measurements, vj and vj+1, should be more

representative of conditions during the j-th band than either velocity measurement taken alone.

The remainder of this section uses this improvement.  It is a simple extension to show that

rotating Figures 4-2 and 4-3 by 180 degrees, the methodology can also be applied to traffic

upstream of a detector.  Lastly, to estimate the k-th vehicle trajectory, one only need calculate the

cumulative sum at each j from Equations 4-5 and 4-7.

4.2.1 A Short Example

This example applies the travel time estimation methodology during congested conditions, over

an 1,800 foot long freeway link that does not contain any ramps.  Dual loop detector stations

bound the link on either end (see Coifman et al., 2000 for more information).  In this

configuration, each detector station can be used to generate an independent estimate of travel

time over the link.  Before making this estimate, one must settle on a value of uC.  Examining a

different freeway, Windover, 1998 found uC had a small variance from signal to signal and most

signals during congested conditions traveled between 12 mph and 16 mph.  The velocity range

was manually verified at the subject link by comparing extrema points in time series flow and

occupancy at either end of the link.  A constant value of 14 mph is assumed for uC throughout the

rest of the section.

Examining a single lane, the solid line in Figure 4-4A shows the estimated travel times from the

upstream detector.  Using concurrent video to visually match every vehicle that stayed in the lane

between the two stations, the points show the corresponding ground truth travel times.  This

process is repeated in Figure 4-4B at the downstream station.  For the sake of comparison

throughout this section, all plots of travel time are shown relative to vehicle arrival times at
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downstream station.  The performance of each detector station is summarized on the left-hand

side of Table 4-1.  Both estimates were, on average, within 10 percent of the true value while the

corresponding naive link travel time estimates, presented in the center of the table, have an

average error on the order of 25 percent.

Although the travel time estimation is not perfect, it is still quite good considering the fact that it

is based on data from a single point in space.  Looking closer at the data, Figure 4-5 shows a

detail of the estimated trajectories implicit in the upstream travel time estimation.  In this plot,

the upstream detector is at zero feet and the downstream detector is at 1,800 feet.  A total of 137

trajectories are shown, of which, 106 pass the downstream detector during the five minute

period.  The trajectories are not exact, e.g., no effort has been made to account for potential

variance in uC or the presence of lane change maneuvers, but the simple fact that they provide a

good estimate of true travel time over an extended distance suggests that they are a good

approximation.  As further motivation, consider Figure 4-6.  The methodology was used to

estimate vehicle trajectories one half mile upstream and one half mile downstream of a detector

station using data from the I-880 Field Experiment (Skabardonis et al., 1996), while the bold

lines show actual probe vehicle trajectories over the same segment.

The trajectory approximations could be useful for planning applications or emissions modeling.

For example, emissions are typically estimated using vehicle miles traveled, average velocity,

average flow, or more recently, using point detectors capable of measuring instantaneous

emissions from individual vehicles.  But none of these methods are capable of capturing the

effects of vehicle dynamics.  As a result, significant factors contributing to vehicle emissions,

such as acceleration, often go unmeasured (Holemen and Neimeier, 1998).  On the other hand, a

vehicle's dynamics are implicit in its trajectory and when used in conjunction with calibrated

vehicle emissions (e.g., West et al., 1999), this work could allow for real time estimates of
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emissions along an entire freeway.  Future research will examine the accuracy of the trajectory

estimates in terms of such applications.

4.2.2 Extending to Free Flow Conditions - a Long Example

During free flow traffic conditions, signals travel downstream with the vehicles and the

transitions shown in Figure 4-2C should correspond to individual chords.  Or, if we continue the

assumption of constant signal velocities, they should now travel downstream at uF.  By

erroneously assuming that free flow signals travel against the direction of travel with velocity uC

and treating the data the same way as congested periods, the travel time estimate will be based on

the wrong set of vehicle observations.  But, free flow traffic is characterized by approximately

constant velocity over time and space.  So the vehicles selected with uC should have similar

velocities to the correct set of vehicles and any resulting errors in the travel time estimate should

be negligible.

Putting this hypothesis to the test, consider 24 hours of data between the same detector stations

used in the previous example.  This time, however, we arbitrarily present one of the lanes in the

opposite direction.  The two parts of Figure 4-7 show the estimated travel times from each

detector station with a solid line.  Manually generating ground truth matches for this long data

set would be prohibitively time consuming.  Instead, two vehicle reidentification algorithms are

employed.  For a given downstream measurement, each algorithm searches the upstream

observations for the measurement that corresponds to the same vehicle (Coifman and Cassidy,

2001, Coifman, 2001).  The resulting travel times for the matched vehicles are shown with points

in each plot.  As predicted, the estimation methodology performed quite well during free flow

conditions, when the true travel time was on the order of 20 seconds.

Figure 4-8A shows a detail of the congested measurements.  Again, the estimation method

appears to follow the measured values while Figures 4-8B-C show the corresponding naive link

travel time estimate using the local average velocity sampled every 30 seconds.  As expected, the
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fixed time samples do not provide a good estimator of link travel time, with some samples being

over eight times too large.

4.2.3 Applying the methodology to conventional traffic data

The large errors from the naive estimate are due to the simple fact that a single 30 second sample

at one point in space can not capture the travel time experienced by a vehicle traversing a link.

Although the proposed methodology promises greater accuracy, most operating agencies would

have to upgrade their hardware and/or software in the field to estimate travel time based on

individual vehicle measurements.  But the use of vehicle headways was chosen out of

convenience.  If a surveillance system only reports samples over fixed time periods and care is

taken to measure space mean speed accurately, then the preceding theory is still valid and one

can apply the estimation methodology to these data using a constant h, equal to the sampling

period.  In this scenario, the estimation methodology combines data from several fixed time

samples rather than from individual vehicle measurements.  The results for the short example

using a 30 second sampling period are reported on the right hand side of Table 4-1.  Note that the

error is still less than half of that from the naive estimate.

4.2.4 Limitations

The estimation methodology assumes that all signals travel through the entire freeway link.  This

assumption fails when a queue partially covers a link.  Unfortunately, the end of a queue can not

be tracked using data from a single detector station.3  Figure 4-9 shows two examples of this

                                                  

3 Daganzo (1997) presents a method to estimate the end of a queue between two detector stations using data from

both stations.  Used in conjunction with the present work, it could lead to better travel time and trajectory estimates;

however, such work is beyond the scope of this paper, which focuses on extracting information from a single

detector station.
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failure.  In each case, traffic over the downstream station is congested while vehicles at the

upstream station are free flowing.  Comparing the top and bottom halves of this figure, we see

the upstream detector underestimates the travel time and the downstream overestimates it during

these periods.  Of course these errors would be reversed when the upstream end of the segment is

queued while the downstream is free flowing.  In any event, the periods where the method breaks

down typically represent a small percentage of the day and as illustrated in this figure, they can

be identified by differing estimates from either end of the link.  Provided the estimates are

transmitted to a central location, such as a Traffic Management Center, such comparisons would

be easy to conduct.

Finally, one may have to assume a different flow-density relationship to apply this method at

other locations.  This modification could be as easy as calibrating the value of uC, but if need be,

one could extend the work to any flow density relationship in which flow is a strictly decreasing

function of density in the congested regime.

4.3 Conclusions

Link travel time is considered to be more informative to users than flow, velocity, or occupancy

measured at a point detector.  This section has employed basic traffic flow theory to estimate link

travel time using point detector data.  Rather than simply measuring local velocity over fixed

sample periods, the approach presented herein could be used to increase the "information"

available from dual loop detectors and other vehicle detectors.  The accuracy of the method lends

further evidence that the linear approximation of flow density relationship is reasonable during

congestion, supporting the work of Newell, Cassidy and others.

Since the method uses observations from a single point in space, changes in the traffic stream

may be overrepresented or underrepresented, as illustrated in Figure 4-9.  Because it is possible

to estimate link travel time from either end of the link, the periods when the method breaks down

can be identified easily.  In contrast, vehicle reidentification techniques using data from more
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than one detector station actually measure conditions over the link.  Combining measured and

estimated travel times, it should be possible to produce a robust incident detection system by

looking for periods where the two approaches differ; perhaps even enabling incident detection

during congested conditions.  Naturally, such a system would have to account for recurring

bottlenecks as well as normal queue growth and decay.  To this end, future research will seek to

extend the estimation methodology to inhomogeneous freeway links and improve performance

during periods when a queue partially covers a link.

Although the estimation method is not perfect, it is surprisingly accurate for an approach that

uses data from a single point in space.  The estimated vehicle trajectories constructed en route,

e.g., Figure 4-5, could be useful for applications such as quantifying vehicle emissions due to

start/stop cycles on congested freeways.
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Figure 4-1, Triangular flow density relationship showing the signal velocity during free flow, 
uF, and congestion, uC.
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Figure 4-2, Time space diagram showing, (A) the chord for a vehicle passing the origin at 748 sec, (B) chords for subsequent vehicles, 
(C) truncated chords, (D) estimated trajectory and travel time for the vehicle in part A.
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Figure 4-3, Schematic showing the relationships between signal velocity, uC, vehicle 
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Figure 4-4, (A) Measured travel times (dots) and estimated from the upstream detector data 

(line), (B) repeated for the downstream detector data.
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Figure 4-5, Detail from the estimated vehicle trajectories implicit in the travel time estimates 
of Figure 4A
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zero distance) and measured probe vehicle trajectories (shown with bold lines) 
for the same period.
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Figure 4-7, Measured travel times (dots) and estimated (line) from detector data over 24 
hours, (A) upstream estimate (B) downstream estimate.
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Figure 4-8, (A) Detail from Figure 7B, (B) the corresponding naive estimates taking the 

distance between detectors divided by 30 second average velocity downstream, 
(C) part B repeated with a larger vertical scale.
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Figure 4-9, Examples where the estimation technique fails, (A)-(B) Details from Figure 7A 
and (C)-(D) corresponding details from Figure 7B.
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average error 
(percent)

7 9.8 26.4 27.9 11.5 10.1

bias (sec) 0.6 -4.4 -0.2 -0.1 -2.8 -4.2

a Mean ground truth travel time is 77 seconds for this data set

Table 4-1,  Travel time estimation accuracy for the short example a

Proposed estimate using      
30 second samples

upstream downstream upstream downstream upstream downstream

Proposed estimate using 
measured headways naive estimate
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5 EVENT-DATA BASED TRAFFIC DETECTOR VALIDATION TESTS

5.1 Introduction

Inductive loop detectors have been the preeminent vehicle detectors for the past several decades

and most traffic surveillance applications depend on these detectors.  Many operating agencies

use specialized loop testers to assess the quality of the wiring (Kell et al., 1990, Ingram, 1976),

but these tools bypass the controller and loop sensors; thus, they do not analyze the entire

detector circuit, nor do they analyze the circuit in operation.  To this end, most operating

agencies employ simple heuristics such as, "Do the loop sensor indicator lights come on as a

vehicle passes?" or simply, "Do the time series 30 second average flow and occupancy seem

reasonable to the eye?"  Such tests are typically employed when the loops are installed or when

the quality of data coming from the detector station is questionable.  These heuristics will catch

severe errors and help diagnose them, but other problems can easily go unnoticed.

Many practitioners and some researchers (e.g., Jacobson et al., 1990, Cleghorn et al., 1991,

Nihan, 1997), have worked to automate the latter heuristic by rephrasing the question, "Are the

time series 30 second average flow and occupancy within statistical tolerance?"  These systems

often go undocumented in the literature because they are either designed in-house by an

operating agency (see Chen and May, 1987 for examples) or were developed by a consulting

firm using proprietary information.  Because these automated systems only use aggregated data,

they must accept a large sample variance and potentially miss problems altogether.  For example,

the systems have to tolerate a variable percentage of long vehicles in the sample population.  As

the percentage of long vehicles increases, the occupancy/flow ratio should increase simply

because a long vehicle occupies the detector for more time compared to a shorter vehicle

traveling at the same velocity (see section 2 for examples).
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Chen and May (1987) developed a new approach for verifying detector data using event data,

i.e., individual vehicle actuations.  Their methodology examines the distribution of vehicles' on-

time, i.e., the time the detector is occupied by a vehicle.  Unlike conventional aggregate

measures, their approach is sensitive to errors such as "pulse breakups", where a single vehicle

registers multiple actuations because the sensor output flickers off and back on.

Coifman (1999) went a step further and compared the measured on-times from each loop in a

dual loop detector on a vehicle by vehicle basis.  At free flow velocities the on-times from the

two loops should be virtually identical, even allowing for hard decelerations, regardless of

vehicle length.  Many hardware and software errors will cause the two on-times to differ.  At

lower velocities, vehicle acceleration can cause the two on-times to differ even though both

loops are functioning properly and thus, congested periods were excluded from the analysis.

This section presents several new detector validation tests that employ event data to identify

detector errors both at single loops and dual loop detectors.  The tests are presented in terms of

evaluating loop sensor units and detector validation, e.g., "if the data pass the test then the sensor

can be trusted."  The data are analyzed off-line, but the tests are simple enough that they could be

implemented in real-time to identify detector errors in real time and most of them could be used

to actively clean incoming data from a traffic surveillance system.

After presenting the basic data collection and measurement, this section presents eight different

detector validation tests.  Five of these tests can be applied to single loop detectors or non-

invasive sensors that aggregate data using similar techniques, while all of the tests can be applied

to dual loop detectors.
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5.2 The data

The work uses event data collected from dual loop detector stations in the Berkeley Highway

Laboratory along Interstate-80, north of Oakland, CA to demonstrate the tests (Coifman et al.,

2000).  The following five sensor units are evaluated in this study,

Peek GP5 revision E (GP5-E),

Peek GP5 revision G (GP5-G),

Peek GP6 revision C (GP6),

Eberle Design Inc. LM222 (EDI),

Intersection Development Corporation Model 222 (IDC).

Except where noted, the study uses 24 hours of data from one dual loop detector for each sensor

unit.  The date and detector were chosen at random, but all of the loop detector stations were

evaluated thoroughly to identify and exclude any hardware problems.  Table 5-1 summarizes the

number of vehicles observed in each of these data sets, aggregated into three velocity ranges.  To

correct for any measurement errors, the exact criteria used to determine which velocity range a

vehicle falls in is described in subsection 5.3.1.

Table 5-1 Number of vehicles in each sample

Data file # veh > 45mph # veh 20-45 mph # veh < 20mph Total # veh
EDI 20251 4697 2309 27257
GP6 20362 1320 2636 24318

GP5-G 19802 2254 292 22348
IDC 20711 3096 2155 25962

GP5-E 18825 5083 2147 26055

5.2.1 Vehicle measurements

This research used conventional model 170 controllers to collect the event data at 60 Hz.  The

process is illustrated in Figure 5-1A, a time-space diagram depicting a vehicle passing over a

dual loop detector.  The controller normally records four transitions, i.e., the turn-on and turn-off
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times at each of the loops, as shown in Figure 5-1B.  Integral to these measurements is the

process of matching pulses between the paired loops.  For this study, each pulse at the second

loop is matched to the most recent pulse at the first loop that preceded it.  When the dual loop

detector is operating properly, two successive pulses rarely come from one loop without an

intervening pulse on the other loop (the loops are typically spaced close enough to ensure that

one vehicle will actuate both loops before the next vehicle actuates the upstream loop).  The

error detection strategy is sensitive to unmatched pulses and it will detect when this assumption

breaks down.

After matching pulses between loops, the following parameters are calculated for each vehicle:

dual loop traversal time via the rising edges, TTr, dual loop traversal time via the falling edges,

TTf, total on-time at the first loop, OT1, and total on-time at the second loop, OT2, as indicated in

Figure 5-1.  These data yield two measured of individual vehicle velocity:

Vr = (loop separation) / TTr (5-1)

Vf = (loop separation) / TTf (5-2)

and these measurements are used calculate two measurements of effective vehicle length,

L1 = OT1 * Vr (5-3)

L2 = OT2 * Vf (5-4)

In the case of single loop detector tests, the work uses the second loop in the dual loop detector

and estimates velocity using the median of 11 OT2 measurements centered on the given vehicle

(see section 3),

Vest = 20 feet / median(OT2) (5-5)

and then, these estimated velocities can be used to estimate effective vehicle length,

Lest = OT2 * Vest (5-6)
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Finally, whether using both loops or a single loop, the vehicle headway, H, is measured from the

difference between on2 from two consecutive vehicles.

5.3 Traffic Detector Validation tests

5.3.1 Individual vehicle velocity versus moving median velocity test

As the title suggests, this test compares individual vehicle velocity against the median of 11

velocity measurements centered on the given vehicle.  If the velocity of the vehicle deviates from

the median by more than a preset threshold, (set to 20 mph in this analysis), the individual

velocity measurement is considered erroneous.

When these errors are encountered, it could result in the vehicle being classified in an incorrect

velocity range.  So the moving median of Vr is used to select the velocity range in all of the

tables.  To illustrate the power of this filter, Figure 5-2 compares the measured velocities and the

moving median velocities from the GP5-G sensor, the worst case observed in our data sets.  As

can be seen from the figure, the median velocities filter out much of the noise from the raw data.

In real-time analysis, one may not be able to afford the lag time necessary to observe all of the

following vehicles, so the research also considered a moving restricted to observations that

preceded the current vehicle.  As expected, performance was not as good as the results presented

here, but it still proved beneficial.

Tables 5-2A and 5-2B present the statistics after applying this test to each day of data from the

different sensor units using velocity from the rising and falling edge, respectively.  For reference,

the results are ranked from 1 (best) to 5 (worst) in each table.  The falling edge from the GP5-G

sensor unit stands out as clearly being poorer than the other sensors.  As noted in section 3,

Equation 5-5 is an estimate of median velocity, so the comparison can be repeated using the

measured velocity across loops and the estimated velocity from a single loop, i.e., the test checks

whether the on-times are consistent with the measured velocities.  These results are presented in
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Tables 5-2C and 5-2D, for the subject data sets and they are similar to Tables 5-2A and 5-2B.

One notable difference is that the EDI sensor shows slightly diminished performance when using

the estimates and this result is consistent with the outcome of later tests that will be presented.

Finally, although not shown here, the test can be repeated using estimated data from the other

detector.

Table 5-2A Percentage of vehicles passing the median velocity test using Vr versus
moving_median(Vr)

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 99.8% 100.0% 99.9% 99.8% 2
GP6 99.9% 100.0% 100.0% 99.9% 1

GP5-G 99.8% 99.8% 100.0% 99.8% 2
IDC 99.9% 100.0% 100.0% 99.9% 1

GP5-E 99.9% 100.0% 100.0% 99.9% 1

Table 5-2B Percentage of vehicles passing the median velocity test using Vf versus
moving_median(Vf)

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 98.7% 99.7% 99.8% 99.0% 4
GP6 99.9% 100.0% 100.0% 99.9% 1

GP5-G 78.7% 95.1% 100.0% 80.9% 5
IDC 99.7% 100.0% 100.0% 99.8% 2

GP5-E 99.2% 99.9% 100.0% 99.4% 3

Table 5-2C Percentage of vehicles passing the median velocity test using Vr versus Vest

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 92.7% 100.0% 99.8% 94.4% 5
GP6 99.6% 94.6% 100.0% 99.3% 3

GP5-G 99.0% 98.2% 99.7% 98.9% 4
IDC 99.7% 98.3% 99.8% 99.4% 1

GP5-E 99.6% 96.8% 99.7% 99.3% 2
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Table 5-2D Percentage of vehicles passing the median velocity test using Vf versus Vest

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 95.1% 99.7% 99.7% 96.1% 4
GP6 99.6% 94.9% 100.0% 99.2% 2

GP5-G 78.2% 90.4% 99.7% 80.2% 5
IDC 99.1% 98.5% 99.8% 99.0% 3

GP5-E 99.4% 97.0% 99.7% 99.2% 1

5.3.2 Headway versus on-time test

Figure 5-3A shows the measured H versus OT2 from the GP6 data.  These data were grouped

into free flow and congested groups based on Vr > 45 mph.  Relatively short on-times and

occasional long headways characterize the free flow data, while occasional long on-times

characterize the congested data.  After reviewing many such plots, we defined two regions of the

headway on-time plane that should contain all free flow observations or all congested

observations, as shown in Figure 5-3B.  The free flow region is bounded by OT2 < 0.3 sec and H

> 8 sec, while the congested region is bounded by OT2 > 1.3 sec.  Of course most observations

under either condition will fall somewhere between these two regions.

This traffic flow characterization can be utilized in detecting certain errors at single loop

detectors, e.g., if a measurement falls in the free flow region but Vest < 45 mph or conversely if a

measurement falls in the congested region but Vest > 45 mph.  Table 5-3 summarizes the results

of this test applied to each of the data sets.  Very few errors were found for these sets, but as

noted previously, the detector hardware was verified to be in full functioning order before the

tests were applied.  Finally, one could modify this test to use measured velocity at dual loop

detectors.
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Table 5-3 Percentage of vehicles passing the headway on-time test

Data File % FF
median_vel & FF

region in
h-o plane

% FF
median_vel &

Cong. Region in
h-o plane

% Cong.
Median_vel & FF

region in
h-o plane

% Cong.
Median_vel &
Cong region in

h-o plane

Rank

EDI 5.1% 0.0% 0.0% 0.9% 5
GP6 5.4% 0.0% 0.0% 2.2% 1

GP5-G 6.9% 0.0% 0.0% 0.5% 2
IDC 5.4% 0.0% 0.0% 1.6% 4

GP5-E 5.1% 0.0% 0.0% 2.1% 3

5.3.3 Feasible range of vehicle lengths test

There exists some finite range of feasible vehicle lengths and this research assumes feasible

effective vehicle lengths to range between 10 ft and 90 ft.  If a measured vehicle length falls

outside of this range, it would indicate a detector error.  The test can be applied to estimated or

measured lengths, thereby providing a test for both single and dual loop detectors.  If the

individual length is too short, it may be indicative of pulse break-ups, a sensor set to pulse mode

rather than presence mode, or similar errors.  On the other hand, if the individual length is too

long, it may be due to the detector sticking on after the passing of the vehicle.

Tables 5-4A through 5-4C present the statistics after applying this test to each data set using L1,

L2, and Lest, respectively.  As with the previous test, very few errors were found in these sets, but

they should be able to identify chronic errors.  As with Tables 5-2C and 5-2D, the EDI does

demonstrate slightly worse performance than the other sensors.

Table 5-4A Percentage of vehicles passing the feasible length test using L1

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 98.1% 98.7% 98.1% 98.2% 5
GP6 99.7% 99.7% 100.0% 99.8% 2

GP5-G 99.9% 99.9% 99.3% 99.9% 1
IDC 99.8% 99.7% 99.9% 99.8% 3

GP5-E 99.7% 99.7% 99.8% 99.7% 4



Coifman

5-9

Table 5-4B Percentage of vehicles passing the feasible length test using L2

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 97.4% 98.2% 98.0% 97.5% 5
GP6 99.7% 99.7% 100.0% 99.7% 2

GP5-G 98.8% 99.2% 99.7% 98.9% 4
IDC 99.8% 99.8% 99.9% 99.8% 1

GP5-E 99.6% 99.8% 99.9% 99.6% 3

Table 5-4C Percentage of vehicles passing the feasible length test using Lest

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 99.1% 99.3% 98.0% 99.1% 5
GP6 99.6% 99.6% 99.5% 99.6% 1

GP5-G 99.6% 99.6% 99.0% 99.6% 2
IDC 99.5% 99.7% 98.6% 99.4% 4

GP5-E 99.5% 99.5% 99.3% 99.5% 3

5.3.4 Feasible range of headway and on-time tests

As with vehicle length, there are physical limits on feasible headways and on-times.  These

parameters can be used to detect chronic errors at single and dual loop detectors.  This research

assumes a minimum feasible headway of 0.75 sec and minimum on-time of 0.16 sec.  During

free flow conditions, one can also apply a maximum feasible on-time.  An 80 ft vehicle traveling

at 45 mph should have an on-time of approximately 1.2 sec.  Adding an error margin of 0.1 sec,

a detector observing many free flow vehicles with on-times greater than 1.3 sec would be

suspect.

Tables 5-5A through 5-5D present the statistics after applying these tests to each data set.  The

EDI has more short headways and on-times than the other sensors.  Coifman (1999) has already

found that these sensor units are prone to flicker.
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Table 5-5A Percentage of vehicles with H > 0.75 sec.

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 92.1% 99.2% 100.0% 94.0% 5
GP6 96.6% 98.6% 100.0% 97.1% 2

GP5-G 96.3% 99.0% 100.0% 96.6% 3
IDC 94.9% 99.6% 100.0% 95.9% 4

GP5-E 96.2% 99.5% 100.0% 97.2% 1

Table 5-5B Percentage of vehicles with OT2 > 0.16 sec.

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 74.8% 99.5% 99.7% 81.2% 5
GP6 97.6% 99.7% 100.0% 97.9% 1

GP5-G 95.4% 99.9% 100.0% 95.9% 3
IDC 96.8% 99.9% 100.0% 97.4% 2

GP5-E 93.6% 99.7% 100.0% 95.3% 4

Table 5-5C Percentage of vehicles with H > 0.75 sec and OT2 > 0.16 sec.

Data File % acceptable
(> 45 mph)

% acceptable
(20-45 mph)

% acceptable
(< 20 mph)

% acceptable
all vehs. Rank

EDI 68.0% 98.7% 99.7% 76.0% 4
GP6 94.3% 98.4% 100.0% 95.2% 1

GP5-G 91.9% 98.9% 100.0% 92.7% 3
IDC 91.9% 99.5% 100.0% 93.4% 2

GP5-E 90.2% 99.3% 100.0% 92.7% 3

Table 5-5D Percentage of free flow vehicles with OT2 < 1.3 sec.

Data File % acceptable
(> 45 mph) Rank

EDI 100.0% 1
GP6 100.0% 1

GP5-G 99.9% 2
IDC 100.0% 1

GP5-E 100.0% 1

5.3.5 Length differences and ratios at dual loop detectors

Coifman (1999) used the difference between OT1 and OT2 to assess the performance of a dual

loop detector during free flow condition.  These tests were constrained by the fact that at lower

velocities, acceleration can cause an on-time difference even though the loop detectors are
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functioning properly.  Unfortunately, this constraint precludes the earlier test from identifying

errors that only occur during congested conditions.  In response to this limitation, this new test

uses the difference between L1 and L2 to control for velocity and extend the test into congested

conditions.  Of course some errors may be correlated to vehicle length as well, so a second

version of the test is used to normalize for length, i.e., (L1 - L2) / (L1 + L2).  If the sensors are

functioning properly, these differences should be close to zero.

Table 5-6A summarizes the results for L1 - L2.  To facilitate collection and analysis, the data were

aggregated into bins by 0.5 ft, so the central bin represents a range of +/- 3 in, and the central

three bins span +/- 9 in.  Similarly, Table 5-6B summarizes the results for (L1 - L2) / (L1 + L2)

aggregated into bins of size 0.003.  Thus, the central bin represents a range of +/- 0.0015 and the

central three bins span +/- 0.0045.  In both tables and all velocity ranges, the GP5-G performs the

worst out of all of the sensors.  These results are consistent with the results during free flow

found in Coifman (1999).  Also note that the EDI sensor performs almost as bad as the GP5-G in

the second test but not the first, indicating a vehicle length bias in the EDI's errors.

Table 5-6A Percentage of vehicles passing the L1˚-˚L2 test.

% central bin % central 3 binsData
File >

45mph
20-

45mph
<

20mph
>

45mph
20-

45mph
<

20mph

% central
bin

all vehs

% central
3 bins

all vehs
Rank

EDI 70.7% 84.5% 66.9% 92.7% 95.8% 88.4% 72.8% 92.9% 4
GP6 89.9% 93.1% 87.8% 94.4% 95.5% 93.2% 89.9% 94.3% 1

GP5-G 62.1% 50.7% 63.5% 72.5% 69.2% 87.2% 60.8% 72.2% 5
IDC 88.6% 92.6% 85.4% 94.0% 95.5% 93.1% 88.8% 94.1% 2

GP5-E 85.4% 90.2% 83.9% 92.1% 94.2% 92.9% 86.2% 92.5% 3

Table 5-6B Percentage of vehicles passing the (L1˚-˚L2)˚/˚(L1˚+ L̊2) test.

% central bin % central 3 binsData
File >

45mph
20-

45mph
<

20mph
>

45mph
20-

45mph
<

20mph

% central
bin

all vehs

% central
3 bins

all vehs
Rank

EDI 51.9% 36.4% 22.1% 60.2% 67.6% 51.8% 46.8% 60.8% 4
GP6 72.7% 77.8% 67.7% 87.9% 92.0% 85.4% 72.5% 87.8% 1

GP5-G 40.3% 27.8% 28.8% 56.1% 45.0% 56.9% 38.7% 54.8% 5
IDC 71.1% 75.4% 63.2% 86.2% 91.3% 83.2% 70.9% 86.6% 2

GP5-E 58.4% 62.5% 51.2% 78.6% 86.6% 78.2% 58.6% 80.1% 3
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5.3.6 Cumulative distribution of vehicle lengths

It may not be feasible to calculate the vehicle length differences in Tables 5-6A and 5-6B, either

due to limited processing power in the controller or when working with single loop detectors.  In

these cases, it is possible to calculate the cumulative distribution function (CDF) of the measured

or estimated lengths, and summarized by the deciles of the distribution.  Of course the CDF will

capture site specific phenomena, such as the percentage of large trucks, so it is not feasible to

specify a universally "good" range for this distribution.  But it is possible to compare the CDF

measured one day with that measured during the same time period on the next day.  Thereby

allowing an agency to detect sudden changes in detector performance.  It is also possible to

compare the CDF from one detector station to that at the next detector station on the roadway to

control for day to day variance.  Figure 5-4A illustrates such a comparison using L1.  This plot

shows the daily CDF of L1 in a single lane, over five days at one detector station and seven days

in the same lane at a second detector station, 1/3 mi away.  All of these data were recorded with a

GP5-E sensor unit except for one of the days at the second station, which were recorded using an

EDI sensor unit.  Aside from some variability in the percentage of long vehicles, all of the curves

from the GP5-E sensors fall on top of each other.  The curve from the EDI sensor is distinct from

the other curves and indicates that the sensor is recording many more "short vehicles".  As

mentioned previously, these sensors tend to flicker and the short length measurements are simply

due to detector errors.  This plot shows that one can compare across days and nearby locations

reliably.  The process is repeated using the corresponding estimated lengths in Figure 5-4B.  This

time, however, the curves only show the deciles.  Unfortunately, the problem with the EDI cards

impact both the on-time and the median on-time.  Since the estimate is proportional to the former

and inversely proportional to the latter, the problem is less pronounced in this plot, but it is still

evident.
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5.3.7 Loss of a loop in a dual loop detector

One loop in a dual loop detector may stick on or stick off while the other loop continues

working.  It is a simple test to count the number of pulses at one loop since the last pulse at the

other loop and quickly identify when these errors occur.  For example, if the controller sees five

pulses at the second loop since the last pulse at the first loop, it could respond by resetting the

sensor card, sending an alarm, and/or treating the remaining loop in the dual loop as a single loop

detector.

5.3.8 Counting the number of consecutive congested samples

This test is intended for single and dual loop detectors.  It takes samples of 10 consecutive

vehicles and applies Equation 5-5 to estimate the velocity.  The test assumes that traffic becomes

congested whenever this estimate drops below 40 mph for four consecutive samples, the last of

which is explicitly marked as being congested.  The four samples are used to eliminate transient

errors due to an unusually large number of long vehicles during free flow conditions.  The test

then assumes that traffic remains congested until it sees a single sample of 50 mph.  The higher

threshold is used to prevent frequent transitions when the true velocity is near the threshold

velocity.  The test keeps track of how many congested samples precede each free flow sample.

Based on the criteria, one would expect that most free flow samples would be preceded by

another free flow sample, i.e., zero congested samples, but some will be preceded by many

congested samples.  To quantify this test, the distribution is calculated, e.g., Figure 5-5.  There

should be few free flow samples that are preceded by few congested samples, if this is not

usually the case, then it would be indicative of a detector error.

5.4 Conclusions

This section has presented eight detector validation tests using event data.  Five of these tests can

be applied to single loop detectors.  Some of the tests are quite simple, such as the loss of a loop
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in a dual loop detector, while other tests are more involved, such as the length differences at dual

loops, which extends our earlier work with dual loop detectors to non-free flow conditions.

In most cases, the tests were presented without explicit criteria to distinguish between good and

bad sensors.  This deliberate omission is due both to the fact that such parameters depend on the

required accuracy from the loop detectors, and because the event data used in this study are

uncommon.  The authors know of only a few locations where such data have been collected,

making it difficult to provide universal guidelines for deploying such tests.  The section provides

enough guidance to assist a practitioner in assessing the usefulness of a given test and the first

steps toward implementing it if it appears promising.  As such, additional calibration may be

necessary, but it should not be difficult to conduct.

The tests were used to contrast the performance of different sensor models and most of the tests

have been presented using 24 hr blocks of data.  In practice, they can also be used to identify

permanent and transient hardware problems in other components of the detection system, e.g.,

cross talk between loops or a short in the lead wires that only materializes in the rain.  For

operational implementation, the tests could be applied hourly or after a fixed number of vehicles

pass.  Some of the tests can even be used to clean up erroneous measurements, such as the

individual vehicle velocity versus moving median test, which was used to replace transient errors

with median values from adjacent measurements.  Other tests, such as the feasible length test,

could be used to exclude individual vehicle measurement errors from aggregate parameter

calculations such as flow and occupancy.
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Figure 5-1 One vehicle passing over a dual loop detector, (A) the two detection zones and the
vehicle trajectory as shown in the time space plane. The height of the vehicle’s
trajectory reflects the non-zero vehicle length. (B) The associated turn-on and turn-
off transitions at each detector.
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Figure 5-2         (A) Individual Vf from the GP5-G, (B) moving median of the data from part A.
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Figure 5-3         (A) Measured H versus OT2 from the GP6 data using Vr > 45 mph to identify the free
flow data, (B) regions of the headway on-time in which measurements should all be
free flow or all non-free flow, i.e., congested.
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Figure 5-4 Five days of data from one detector station and six days of data from another station
1/3 mile away, both using GP5-E sensor units. Also one day from the second station
an EDI sensor unit, (A) Cumulative Distribution of L1, (B) deciles of Lest
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Figure 5-5 (A) Estimated traffic state (high = free flow, low = congested) and measured velocity,
(B) distribution of the number of congested samples preceding each free flow sample.
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