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Coifman

1 OVERVIEW

Caltrans collects traffic data for many monitoring and control applications and the ultimate goal
of the traffic surveillance system isto provide accurate data to these high level applications. The
surveillance system includes data measurement, averaging and verification algorithms. This
report presents improvements to many elements of the surveillance system. First, section 2
addresses many shortcomings in average speed estimation at single loop detectors, aswell as
other sensors that estimate speed from average flow and occupancy. At the root of these
problemsis the fact that the conventional estimation methodology assumes a fixed vehicle
length. It is shown that this assumption does not hold for many samples, both because the true
average vehicle length can change throughout the day and because a given sample may not be
representative of an average sample. Next, section 3 presents a more accurate method to
estimate velocity at single loop detectors. It is shown that this method approaches the accuracy
of velocity measurements from dual loop detectors. This new approach does not eliminate the
benefit of dual loops, section 4 presents a new method to estimate link travel time from
measurements recorded at adual loop detector. The estimates are very close to the true travel
times and it is shown that when estimation errors do occur, they can usually be identified.
Finally, experience by Caltrans shows that there is a need to develop and deploy more
sophisticated error detection and data verification algorithms. Section 5 presents eight new

detector validation tests using data on individual vehicles, i.e., event data.
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2 IMPROVED VELOCITY ESTIMATION USING SINGLE LOOP DETECTORS

2.1 Introduction

L oop detectors are the preeminent vehicle detector for freeway traffic surveillance. They are
frequently deployed as single detectors, i.e., one loop per lane per detector station. Although
single loops have been used for decades, debate continues on how to interpret the measurements
and how to calibrate the detectors. In conventional practice, the single loop measurements are
very noisy and many researchers have sought sophisticated filtering methods, e.g., Mikhalkin et
a. (1972), Pushkar et al. (1994), and Dailey (1999). Unfortunately, most of the preceding efforts
focused on complicated models without explicitly identifying the sources of error. The earlier
works also lose sight of the end goal: to produce an agorithm that can be deployed on asimple

processor, such asaModel 170 controller.

This section provides a new perspective by clarifying the source of several errors and suggesting
ways to reduce the impacts. The body of this work emphasizes velocity estimation, but it has
implications for tests of detector data quality aswell. The first subsection reviews the state of
the practice for parameter measurement and estimation from single loop detectors. The next
subsection illustrates how conventional practice may be susceptible to changesin the vehicle
population throughout the day as well as errors due to sample size. The section continues by
developing an agorithm to overcome these problems. Finaly, the discussion shows how the
work has implications for tests of detector data quality and elucidates the findings of an earlier

study that concluded that single loop velocity estimates are biased.

2.2 Parameter Measurement and Estimation

Conventional single loop detectors are capable of measuring flow, the number of vehicles that

pass the detector during a fixed sample period, and occupancy, the percentage of the given
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sample period that the detector is "occupied" by vehicles. For each lane, these two parameters

are defined as;
n
ac = ?k (2-1A)
t
6, == 2-1B
= (2-1B)

where the subscript "k" indicates the given sample, subscript "j" indicates vehicle specific
parameters and

g, = flow during sample k

6, = occupancy during sample k

n, = number of vehicles that pass the detector during sample k

T = sampling period

J, = set of al vehiclesthat pass the detector during sample k

t, = vehiclej'son time.
Two interdependent vehicle parameters are of interest for estimating mean sample velocity:

vehicle velocity and vehicle length. The relationship between these two parameters for a vehicle

passing over aloop detector is ssmply:

L =L+ =v [ (2-2)

where

L; = vehicle]'s effective length as "seen” by the detector

L; = vehiclej'struelength

L; = length of detector's sensitivity region for vehiclej
v, = vehiclej's velocity

2-2



Coifman

The length of the detector's sensitivity region typically depends on many variables such as the
vehicle's position in the lane, height of the vehicle's underframe, and the amount of ferrous metal
in the vehicle. Itisdifficult to separate this length from the vehicle's true length using loop
detector data, so for the rest of this document "length” will refer to the sum of these two lengths,

often referred to as the effective vehicle length.

From equations 2-1 and 2-2,

L. L.
kalz_l:qu]; _ (2-3A)
Ti&Vv N3V
assuming that individual vehicle lengths and velocities are uncorrel ated,
g, ~ I L (2-3B)
Vk

where

L, = arithmetic mean vehicle length for sample k
V, = harmonic mean vehicle velocity for sample k, often referred to as the space mean

Speed.

In other words,

o _ g [0,
V== 2-4
) (2-4)
Equation 2-4 shows the relationship between mean velocity and mean length, but these two
parameters can not be measured independently at asingle loop. Typically, an operating agency

will use one of two approaches to address this problem. In thefirst case, L, issimply settoa

constant value, L, and Equation 2-5 is used to estimate v,
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(2-5)

There are many site specific variables that can influence the mean vehicle length, such asthe
percentage of long vehiclesin the lane and the detector's sensitivity. So, other operating
agencies assume afixed free flow velocity and reversing the assignment in Equation 2-5,
estimate L each day during periods when traffic over the detector is almost certain to be free
flowing. Then, L isheld fixed during the remainder of the day and the velocity estimation

progresses using Equation 2-5 directly.

2.3 Analysis

Some of the site specific variables are corrected with a daily estimate of L, but other factors are
not addressed, such as the possibility that the percentage of long vehicles may change during the
day or the ssimple fact that a sample with few vehicles (i.e., low flow) may not have a
representative sample of vehicle lengths. For this study, we examine 24 hours of detector
actuations, sampled at 60 Hz, for each lane at a detector station on Interstate-80 in Berkeley,
Cdlifornia. The data come from dual loop detectors. In this configuration, it is possible to
measure true vehicle velocities by dividing the loop separation by the difference in arrival times

at each loop. Finally, L, is calculated using Equation 2-4 by assuming absolute equality.

Figure 2-1A illustrates the time series evolution of L, for the eastbound traffic with T = 15min.

Following Caltrans convention, lanes are numbered starting at the inside and increasing outward.
The legend indicates the total number of vehiclesin each lane during the day. Including the

westbound data (not shown), the observed values of L, range from 19 feet to 51 feet and almost
all lanes exhibit a strong temporal dependency. Figure 2-1B-C show the corresponding n, and

V., respectively.
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When an operating agency estimates L, they typically sample the value during early morning
hours. Asone would expect, these hours are free flowing for this example; however, they aso

correspond to the highest values of L, and lowest valuesof . Thus, if L were estimated

strictly during the early morning, estimates of velocity from Equation 2-5 would be too high
throughout the remainder of the day. Since the phenomena depend on site specific factors, the

figures indicate the need for an improved method of estimating L on-line.

Figure 2-2 shows the cumulative distribution of L, for the eastbound lanes using four different

sampling periods. Although Lane 1 shows little variance due to atruck restriction, the other
lanes exhibit alarge variance. So no single value of L will be representative of all samplesand a

valueof L estimated us ng one value of T might not be valid for another valueof T.

The primary source of this variance comes from the fact that the vehicles observed during a
given sample may not be "typical". Figure 2-3 shows the observed distribution of individual
vehicle lengths for the eastbound traffic. Approximately 85 percent of the vehicles are between
15 and 22 feet, but some are aslong as 80 feet or roughly four times the median length. When

n issmall, i.e, low flow, along vehicle can skew 6, simply because it takes more time for the

long vehicle to pass the detector.

In accordance with the law of large numbers, the sample distribution should become more

representative of the entire population as n, increases, which in turn, increases with ¢, and T.

Figure 2-4 illustrates this phenomena using the eastbound data from all lanes for three values

of T. Thetop half of the figure shows L, during free flow conditions, v, > 50 mph, while the
lower half shows L, during congestion, V, <50 mph. In parts A and D, where T = 30sec, the

maximum number of vehicles per sampleis so small that the observations fall into distinct
columns, i.e., the first column contains observations with only one vehicle, the second column

contains observations with only two vehicles, and so on. Notice that for each T, therange of L,
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decreases as g, increases; also note that in this data set, the lowest flows are only observed

during free flow conditions.

2.3.1 Improvingthe Length Estimates
As previoudly noted, a single loop detector can not measure V, directly and estimates of L may

be biased by the time of day. To overcome these problems, L is estimated during periods when
the traffic should be free flowing. Rather than choosing a period of the day a priori, the data are
used to make the distinction. Empirically, free flow conditions correspond to low occupancies

and Equation 2-3B explicitly showsthat 8, isinversely proportional to v, . For thisstudy, a

sample is considered free flowing if

ek < ethreshold (2'6)

where 6, .44 Was set to 10 percent. The value was chosen so that most free flow samples

would be selected, but low enough to ensure that very few (if any) congested samples are
selected. In practice, thisthreshold could be set from a plot of flow versus occupancy. To

account for samples with high 8, dueto free flowing trucks, for T = 30sec, asampleisalso

considered free flowing if at least half of the 10 preceding samples satisfy Equation 2-6. Next,

L=v, mneangl%émm K (2-7)
Kk

where

v, = assumed fixed free flow velocity, set to 60 mph for this study
K = set of all free flow sampleswith g, > 0 and 6, > 0 in the given lane during the 24

hour study.
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The resulting L for the eastbound traffic are shown in Table 2-1. Usi ng these values and

Equation 2-5 to calculate V, , Figure 2-5 shows V, versus Vv, over entire 24 hour study. The solid
line in each plot indicates where the estimated values equal the measured values. Note that v,
ranges between 20 mph and 120 mph for samples with v, > 50 mph. In other words, the
estimate is very noisy when the traffic is free flowing. The noiseis primarily due to the variance
in L, at low flow (recall from Equations 2-4 and 2-5, Y, =V, EI:/ L,). Finaly, consider the
congested observations, v, <50 mph. In each lane the observations are roughly collinear and the
guess of v, serves asascaling factor, increasing or decreasing the slope of the congested data.

In lane 1, the guess of v, was too low and the estimated velocities are lower than the measured

velocities, while in lanes 3 and 4, the oppositeistrue. Thiserror isincluded in the plots because

it can not be eliminated from single loop detector data without additional detectors.

The analysisisrepeated with T = 5min to reduce the estimate noise. Now, however, asampleis
only considered free flowing if it satisfies Equation 2-6 or the preceding sample satisfied

Equation 2-6. Once more the resulting L are shown in Table 2-1, while Figure 2-6 shows V,
versus Vv, for T =5min. Even with the longer sampling period, the estimates are still noisy

when the traffic is free flowing.

To illustrate the effects of different values of v, or L, consider the percent error in v, relativeto
V, over the entire day for various fixed values of L. Fi gure 2-7 shows contour plots of the

percent error as L ranges between 16 and 32 feet for two different laneswhen T = 30sec and
T =5min. For example, when L =19 feetin Figure 2-7A, approximately 70 percent of the
estimated velocities are within 5 percent of the measured values. Comparing the top plot to the
bottom plot in either lane, the longer sampling period increases n, and thus, reduces the error.
Notice that the optimal value of L appearsto depend on T in the right-hand plots (lane 5

westbound), reaffirming the fact that L estimated at onevalueof T may not be valid for another
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value of T. Thefigure also shows that performanceis relatively stable for length estimates

within afew feet of the optimal value.

2.3.2 ImprovingtheVelocity Estimates

Free flow velocity estimates are poor during low flow, but from an operational standpoint, it is
sufficient to know that traffic is free flowing during these conditions. This supposition is
implicit with on-line estimation of L. Oncemore, exploiting the fact that free flow, low flow
samples are characterized by low occupancy, the estimated velocity can be set to a constant

value, V, = v, when 6, < 6,, .., Rewriting Equation 2-5 to include this constraint:

Qo
0 = %7' P C — (2-8)

E Vie, Bk < Biresnoia
To illustrate the benefits of this constraint, return to the datain Figure 2-6. Recalculating v,
using Equation 2-8 with 6,, 4,4 = 10%, the new relationships are shown in Figure 2-8. Notice
that aimost all of the noise has been eliminated from the estimates corresponding to samples with
vV, > 50 mph. Figure 2-9 compares the time series v, from Equation 2-5, v, from Equation 2-8,
and V. Inthisfigure, one can see that Equation 2-8 removed many erroneous vel ocity

estimates, particularly during the early morning. Applying Equation 2-8 to the 30 second data

yields similar results, as shown in Figure 2-10.

2.4 Implementation
Theanalysisfor T = 30sec used a moving average to identify free flow periods with high 6,,

but amoving average is memory intensive. In contrast, exponential filtering can accomplish the
same goal with almost no data storage. The following pseudo-code can be used to implement the

method presented above:
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if 6, >0and g, >0
if 6, <10%or u>0.1

A

L=v, l]nean?l%gﬁi +LL-r)
Kk

A~

V, = Vg

u=1Cp+ulll-p)
else

vk=q59kEL

u=00Cp+ulll-p)
end

where

I = filtering factor with atime constant on the order of aweek (to minimize the time of

day dependency illustrated in Figure 2-1A), e.g., r =1/20000 for T = 30sec and

r =1/2000 for T = 5min.

p = filtering factor with atime constant on the order of 5 minutes, e.g., p = 0.2 for

T=30secand p=1for T =5min.

u = anindicator variable used in conjunction with p to determine whether preceding

samples were free flowing.

Rather than using a static assignment of L, asin Equation 2-7, the algorithm uses an exponential

filter to dynamically update L. This pseudo-code is presented to show that the method can be

implemented easily, but it is left to future research to determine the optimal implementation.
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2.5 Discussion

2.5.1 Implications Beyond Single Loop Velocity Estimates

The impact of thiswork to single loop detectorsis straightforward, but this work has
implications for dual loop detectors aswell. Earlier studies have devel oped automated tests of
detector data quality, e.g., Jacobson et al. (1990), Cleghorn et al. (1991), and Nihan (1997).
Thelir goal isto eliminate erroneous measurements due to transient problems or component
failures. Similar systems often go undocumented in the literature because they are either
designed in-house by an operating agency or a consulting firm (see Chen and May, 1987, for
examples). Most of these data quality tests can be expressed using the following constraint to
bound good dual loop data:

\_/k D E:]k |:I‘min(qk7\7k’9k) ’ qk D‘max(qw\_/k’ek)g

(2-9A)
O 6, 6,

where L, and L, arelower and upper bounds, respectively, that may depend on g, V, or 6,.

Naturally, this constraint reduces to the following for single loop detector data:

" E:]k D‘min(qk19k) ’ O D‘maX(qk’ek)g

v, (2-9B)
‘ O 6, 6,

Some of these tests fail to accommodate the fact that the variancein L, increases as g,

decreases. The author recently identified such a system currently in use by alarge operating
agency. In particular, the agency applied Equation 2-9A, using fixed valuesof L, and L, tO
dual loop data. The test discarded ailmost all early morning observations from the agency's 400
detector stations ssimply because the constraint is too restrictive during low occupancy

conditions.
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2.5.2 Previous Research in the Context of the new Analysis

There has been some confusion in the discipline since Hall and Persaud (1989) concluded that,
for afixed value of L, Equation 2-5 does not hold over an extended range of occupancies. Their

paper examined the "g-factor" which is simply the inverse of L, and the analysis used,

'_\

g= T (2-10)
Roughly summarizing their plots of g versus occupancy: g decreases by afactor of two from one
percent to five percent occupancy, remains constant over the range of five percent to 40 percent
occupancy, and then drops by an order of magnitude from 40 percent to 80 percent occupancy.
To reduce errors due to vehicle lengths, they selected lanes with truck restrictions. 1n an attempt
to reproduce these results, Figure 2-11A shows the g-factor versus occupancy for lane 1
eastbound. The g-factor does not exhibit the predicted occupancy dependence. Thereisone
difference, however, the earlier study used occupancy expressed in integer percent. After
truncating percent occupancy to integer values and recalculating g, Figure 2-11B shows the new
g-factor versus integer percent occupancy. This plot exhibits the non-linearity at low
occupancies predicted by Hall and Persaud, but it does not show the drop in g at high occupancy.
Finally, using time mean speed' rather than space mean speed and the truncated occupancy to
calculate g, Figure 2-11C follows the predictions from the earlier study. Figure 2-12 compares
the various methods of calculating the g-factor. It shows mean g-factor over one percent ranges
up to 35 percent occupancy and then over five percent ranges through 50 percent occupancy.

Note that by using time mean speed without truncating occupancy, the g-factor follows the

predictions for high occupancy but it does not follow the predictions for low occupancy.

! The arithmetic mean of each samples vehicle velocities.

2-11



Coifman

These figures clearly show that subtle differences in aggregation can lead to significant
differences in parameter relationships. The tools and data necessary for this detailed analysis
were not available to researchers when Hall and Persaud published their work. Although their
diagnosis seemsto be incorrect, Hall and Persaud correctly identified a significant problem with
conventional velocity estimation. An operating agency should expect to encounter similar
round-off errors at low occupancy if they use truncated occupancy to estimate L and this error
will propagate to al subsequent velocity estimates. In the course of their analysis, Hall and
Persaud assumed the operating agency was measuring space mean speed when in fact it appears
that the agency was measuring time mean speed. This measurement error would explain their
results at high occupancy. To prevent such oversightsin the future, researchers should learn the
subtle details of the data measurement and aggregation procedures underlying their detector data.
One must remember that 1oop detectors, as well as most other vehicle detectors, are not precision
instruments. To keep the detectors affordable, they are typically designed to meet existing
operational needs with minimal excess performance. Finally, recall that the resultsin Figure
2-12 represent alane with atruck restriction. Asshown earlier in this section, when trucks are
present, the large range of possible vehicle lengths will reduce the accuracy of velocity estimates

from single loops.

2.6 Conclusions

The significance of this work to single loop detectorsis straightforward. Figure 2-7 shows that
no single estimate of Lis appropriate for all samples; but fortunately, for most samples, it is
sufficient for the estimate to be within afew feet of the optimal value. Significant errors occur at
low flows, however, since the variancein L, increases as g, decreases. This variance degrades

the velocity estimation because L, islesslikely to be average, as shown in Figure 2-4.

Exploiting the fact that the low flow free flow samples are characterized by low occupancy, this
section has shown that it is possible to identify these conditions and simply report that trafficis
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free flowing (Figures 2-9 and 2-10). This section has presented improved methods for estimating
L and v, incorporating these findings. Unlike many preceding works, the approach is simple
enough that it can be implemented on existing traffic controllers that have limited processing
power, such asaModel 170 controller. Although the implementation isfairly ssmple, this work
has wide ranging implications for practitioners and researchers. For example, the discussion
shows how the work is applicable to automated tests of detector data quality, both from dual and
single loop detectors. Then, the section closes by refuting an earlier study, showing that in the
presence of atruck restriction, the use of asingle estimate L in Equation 2-5 isindeed valid over
an extended range of occupancies provided care is taken to measure the right parameters and

prevent round-off errors.
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Figure 2-1, (A) True Zk by lane as a function of time for the eastbound lanes on a single day, 7" =15
minutes, and the corresponding (B) number of vehicles per sample (C) measured velocities.
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Figure 2-2, Cumulative distribution of the true Zk over 24 hours for the eastbound traffic, (A) lane 1 (B) lane 2 (C) lane 3 (D) lane 4.
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Figure 2-3, (A) Cumulative distribution of individual vehicle lengths, L;, for the eastbound lanes, (B)
detail of part A.
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Figure 2-4, Ek versus flow, g,, for the eastbound traffic: (A)-(C) during free flow, v, > 50 mph and (D)-(F) congestion, v, <50 mph;
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Figure 2-5, Estimated velocity versus measured velocity, eastbound traffic, 7 = 30 sec, (A) lane 1, (B)
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Figure 2-6, Estimated velocity versus measured velocity, eastbound traffic, 7 =5 min, (A) lane 1, (B)
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Figure 2-7, Contour plot showing the cumulative distribution of percent error in estimated velocity as a function of ﬁ,
(A)-(B) T =30 sec, (C)-(D) T =5 min, for (A) & (C) lane 1 eastbound, (B) & (D) lane 5 westbound.
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Figure 2-8, Estimated velocity after identifying low occupancy samples versus measured velocity,
eastbound traffic, T =5 min, (A) lane 1, (B) lane 2, (C) lane 3, (D) lane 4.
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Figure 2-9, (A) Estimated velocity before identifying low occupancy samples, v, , eastbound traffic, T =

5 min and the corresponding (B) estimates after identifying low occupancy samples, (C)
A) measured velocities, v, .
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Figure 2-10, (A) Estimated velocity before identifying low occupancy samples, v, , westbound lane 3, T' =

30 sec and the corresponding (B) estimates after identifying low occupancy samples, (C)
A) measured velocities, v, .
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Figure 2-11, (A) The g-factor versus occupancy, T = 30 seconds, lane 1 eastbound, (B) with occupancy
rounded down to integer values, (C) using time mean speed and rounded occupancy.
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Figure 2-12,Mean g-factor calculated various ways versus occupancy, 7T = 30 seconds, for
eastbound lane 1. (A) The aggregation method used by Hall and Persaud shown with

"X"'s contrasted against the method advocated by this work, (B) the results from two
additional aggregation methods.
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Table 2-1, The resulting estimates of L for the eastbound traffic

L (feet) L (feet)
Lane T =30sec T=5min
1 16.8 16.9
2 19.6 19.9
3 21.3 22.0
4 21.8 22.8
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3 ESTIMATING MEDIAN VELOCITY INSTEAD OF MEAN VELOCITY AT SINGLE
LOOP DETECTORS

3.1 Introduction

Section 2 has shown a fundamental shortcoming with conventional estimates of velocity from

single loop detectors. These estimates presume a "mean vehicle length?

that appliesto all
samples, but section 2 has shown that this assumption breaks down because a given sample may
not be representative of the "average vehicle". In addition to loop detectors, there are many non-

intrusive vehicle detectors that rely on the same principles.

As previously noted, many researchers have investigated techniques to reduce the influence of
long vehicles, e.g., Mikhalkin et a. (1972), Pushkar et al. (1994), Dailey (1999), Wang and
Nihan (2000) and section 2 above. All of these studies used aggregate flow (q) and occupancy
(occ) to estimate mean velocity. Rather than manipulating aggregate data, this section examines

new aggregation methods to reduce the estimation errors.

The first subsection reviews the state of the practice and the related shortcomings of
conventional velocity estimation from single loop detectors. The second subsection proposes an
aternative method for estimating velocity. The next subsection contrasts the new approach
against conventional estimates. The final subsection shows how the new approach can be used

to estimate individual vehicle lengths from single loop detectors.

2 Throughout this document, "length” refers to the "effective vehicle length" as seen by the detectors.
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3.2 Conventional Velocity Estimation

Provided that vehicle lengths and vehicle velocities are uncorrel ated, as shown in section 2 and
elsewhere, harmonic mean velocity (mean v) and arithmetic mean vehicle length (L) for agiven

sample are related by the following equation:

mean v = alL (3-1)

occ

However, these two variables cannot be measured independently at asingle loop. Typically, an
operating agency will set L to a constant value and use Equation 3-1 to estimate velocity from
single loop measurements. But this approach fails to account for the fact that the percentage of
long vehicles may change during the day or the simple fact that a sample may not include
"typical" vehiclelengths. Particularly during low flow, when the number of vehiclesin asample
issmall, along vehicle can skew occupancy simply because it takes more time for that vehicle to
pass the detector. For example, section 2 showed that approximately 85 percent of the individual
vehicle lengths observed at one detector station were between 15 and 22 feet, but some vehicles

were aslong as 85 feet, or roughly four times the median length.

In accordance with the law of large numbers, the sample distribution should become more
representative of the entire population as the sample size increases, which in turn, increases with
flow. Figure 3-1 shows adetail from Figure 2-4 that illustrates this phenomena using two
common sampling periods (T). In part A, T=30 sec and the maximum number of vehicles per
sample is so small that the observations fall into distinct columns, i.e., the first column contains
observations with only one vehicle, the second column contains observations with only two

vehicles, and so on. Notice that for both values of T, the range of L isinversely proportional to

g.
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3.3 Alternative Parameters

For this study, we examine 24 hours of detector actuations, sampled at 60 Hz, from a dual 1oop
detector station in the Berkeley Highway Laboratory (Coifman et a., 2000). In the dual loop
configuration it is possible to measure true vehicle velocities from the quotient of the loop
separation and the difference in avehicle's arrival time at each loop. While an individual
vehicle's length is ssimply the product of its measured velocity and on time, i.e., the amount of
time that the vehicle occupies the detector. The subject detector station includes five lanesin
each direction. In an attempt to capture the temporal changesin observed vehicle lengths, the
datawere arbitrarily subdivided into non-overlapping, three hour long segments by lane. The
two distributions shown in Figure 3-2 represent the "best” distribution (lowest vehicle length
variance, at 8.16 ft?) and "worst" distribution (highest vehicle length variance, at 217 ft?)
observed across the 80 subsets. Removing the temporal component, consider a sample of N
vehicles drawn at random from the "worst" distribution. Intuitively, the sample mean vehicle
length islikely to be biased towards long vehicles because of the extended tail. The median
vehicle length, however, should be less sensitive to the outliers. This hypothesis was verified
using Monte Carlo simulation. The simulation consisted of 10,000 samples of N vehicles from
each distribution, where N was set to 10, 50, 100, 500 and 1000 vehicles, and the sample mean
and median were calculated. Table 3-1 summarizes the 99 percent confidence intervals for the
mean and median lengths. The mean length confidence interval was significantly worse than the
median length under all conditions. In fact, the results show that the range of the confidence
interval for the median length of N vehiclesis roughly proportional to that of the mean length for
10- N vehiclesinthisset. If we continue to assume that individual vehicle length and velocity

are uncorrelated, then the simulation results lead to the following postul ate:

medianv = : L : (3-2)
median on time

where the value of L may differ from that used in Equation 3-1.
3-3
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3.4 Estimating Velocity

For both Equations 3-1 and 3-2, with afixed L, one can consider the function on the right hand
side as an estimate of the variable on the left hand side. Using the entire day's worth of data
from each lane and setting the sample size to N consecutive vehiclesin a given lane, Figures 3-3
and 3-4 show scatter plots of the estimates versus the corresponding measurements for two
different values of N. In each figure, the left and right plots come from the same samples and L
isassumed to be 20 feet in al plots. The choice of adifferent L would simply scale the estimates
vertically, proportional to L/20. In both figures, the mean velocity estimate is much noisier than
the median velocity estimate. Notice that the median velocity and its estimate tend to fall into
discrete columns and rows, respectively, due to the resolution of the 60 Hz measurements. With
N=10, the mean estimate is subject to errors from long vehicles throughout all traffic conditions,
as highlighted with the circlesin Figure 3-3. At larger N, Figure 3-4, the error isonly evident
during free flow conditions. This biasis due to the fact that trucks represent a larger percentage
of the vehicle fleet in the early morning hours, a period when there was no observed congestion.
To quantify these errors, we define the Measure of Variance (MOV) and Measure of Bias

(MOB) over n samples asfollows:

(x -x)
MoV = (3-3)
> (x -%)
MOB == (3-4)

where x isthe true value of the given variable for the i-th sample and X, is the corresponding

estimate. The resulting MOV and MOB for the velocity estimates from five different sample
sizes are shown in the first few columns of Table 3-2. In each case, the MOV for the median

velocity estimator is approximately one third of that for the mean velocity estimator. Of course,
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the MOV is sensitive to the choice of L. So the analysisis repeated in the latter columns with L
selected such that MOB=0 for the given sample size and estimator. Thislatter analysis reflects

the performance when the unbiased L is used with the subject data set.

The estimates thus far are based on samples of afixed number of vehicles. But the fixed number
sampling is not very informative if the freeway is blocked or flow drops for some other reason.
Soin practice, it is better to sample over fixed time periods. Fixed time sampling has the added
benefit that all samples can be synchronized at a detector station and thus, requires less
computational and communications overhead. It isimportant, nonetheless, to ensure that the
sample period is large enough to ensure a sufficient number of vehiclesin a sample during any
period when surveillance is desired. Looking at Figure 3-3 and Table 3-2, N=10 vehicles
appears to provide satisfactory results for the median estimate, but this sample sizeisalittle low
for the mean estimate. With T=30 seconds, this criteriawould require g>1200 veh/hr throughout
the entire day. Applying this sampling period to the dataresults in very poor performance by
both estimation techniques (see Table 3-2). On the other hand, if T=5 minutes, the criteriaonly
requires g>120 veh/hr. Repeating the preceding analysis with T=5 minutes yields Figures 3-5
and 3-6. In Figure 3-5, one can see significant errorsin the mean estimate and few errorsin the
median estimate. The corresponding statistics are reported in Table 3-2 and the performance
appears to be on the order of fixed samples with N=10 vehiclesfor this data set. Figure 3-6
shows that the flow is quite low at this site for at least four hoursin the early morning and it is
above 1200 veh/hr for only about half of the day. The reader should also note that thislocation
sees arelatively large volume of traffic, with an average of approximately 25,000
vehicles/lane/day. Most other locations will have alower average daily flow, reaffirming the

need for longer sample periods.

Although T=5 minutes appears to provide sufficient sample size, the long delay between

measurement updates may be undesirable. Fortunately, many applications only need asingle
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estimate of velocity for a given detector station or link. To keep N high while reducing T, one
can sample across multiple lanes before estimating velocity. In particular, setting T=30 seconds
and sampling individual vehicle measurements across the four outside lanesin agiven direction
yields Figure 3-7 and the final row of statisticsin Table 3-2. Note that the inside lane was

excluded because it is a high occupancy vehicle (HOV) lane in both directions

Finally, one could extend this work to design a hybrid sampling criteriafor each lane, one that
only uses the N most recent vehicles provided they pass during the preceding T time period. If
this criterion is not met, only use those vehicles that pass during the time period. The reporting
rate can be faster than T, e.g., N=10, T=5min and report the most recent observations every 30

SeC.

3.4.1 Discussion

The various sampling criteriawere used to illustrate the fact that Equation 3-2 performs better
than conventional estimates from Equation 3-1 no matter how the vehicles are sampled. Itis
worth noting that Courage et al. (1976) used simulation to conduct a detailed analysis of
conventional velocity estimates under various sampling criteria. 1n the present study, L = 20 ft
and T = 5 min give satisfactory results. Of course the required accuracy and sampling period
depend on the application. Due to the limited number of detector stations that provide individual
vehicle data, the authors have not been able to apply the work to other locations. An operating
agency interested in experimenting with this methodology might want to start with these settings,

examine the resulting estimates over several days and then adjust as needed.

Figure 3-8A compares the true median velocity to space mean speed in atypical lane using five
minute samples, while Figure 3-8B compares the corresponding estimates. Obviously the
median velocity and space mean speed differ dlightly for most samples. Although thereisno

direct relationship between the two metrics, they are both measures for the center of the sample.
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In contrast to conventional practice, the new estimate significantly reduces the velocity
estimation errors when it is not possible to control for awide range of vehicle lengths. Repeating
the preceding analysis using Equation 3-2 as an estimate of space mean speed, rather than
median velocity, yields Table 3-3. Except for N>500, Tables 3-2 and 3-3 clearly show that the
MOV from Equation 3-1 islarger than the MOV from Equation 3-2 when both methods are used
to estimate space mean speed. Theincreasing MOV at large N in Table 3-3 should not be
surprising. Asthe sample sizeincreases, it is more likely that the prevailing velocity will change
significantly during the observation period, thus, allowing for a greater difference between the

true mean and median vel ocities.

Of course the use of Equation 3-1 is based on the assumption that individual vehicle velocities
and lengths are uncorrelated. 1n the event that vehicle length and velocity are inversely
proportional, asis frequently the case in free flow traffic, along vehicle will spend more time
over the detector and the associated on time will be larger. Thisincrease will impact the
occupancy measurement (which is proportional to the mean on time) more than the median on
time. Thus, the performance of Equation 3-1 would be expected to degrade worse than the

performance of Equation 3-2 under these conditions.

Of course the median estimates might degrade in the presence of high truck volumes. To address
thisfact, Equation 3-2 could be modified to select a different percentile from the observed
distribution of on times, e.g., the 25th percentile rather than the median. Additiona information
could also be used, such as the presence of truck restrictions in specific lanes or sightly more
complicated models that exclude low flow conditions, e.g., section 2. Finally, note that heavy

truck flows would likely have a greater impact on the conventional estimates from Equation 1.

3.5 Estimating Vehicle Lengths

Assuming the loop detector is functioning properly, a given measured ontimeissimply a

function of the vehicle's length and velocity. During free flow conditions the vehicle velocities
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typicaly fal in asmall range and during congested conditions the difference between successive
vehicles velocitiesis usually small. If one assumesthat all of the vehiclesin asample are
traveling near the median velocity, one can use Equation 3-2 in conjunction with measured on

times to estimate individual vehicle lengths with the following equation,

A

|. :\7i [on. (3'5)

J J

where

A

|, = estimated vehicle length for the j-th vehicle in thei-th sample
V. = estimated median velocity for the i-th sample
on; = measured on time for the j-th vehicle in the i-th sample.

Of course the number of vehicles per sample must be small enough for the velocity assumption
to hold and one must control for low velocity conditions, when accel eration becomes non-
negligible during the sample. Using N=10 and restricting the analysis to all samples with v,>20

mph, the average error in ﬂ islessthan six percent for the 210,000 vehiclesin the data set that

satisfy the velocity constraint. The length estimates can be improved further by calculating the
median velocity for the N vehicles centered on the subject vehicle, but this approach requires the

observation of subsequent vehicles and it is more computationally intensive.

3.6 Conclusions

Many researchers have sought better estimates of velocity from single loop detectors. The
earlier works have emphasized techniques to reduce the bias from long vehicles in mean velocity
estimates. This section has taken a different approach, it uses a new aggregation methodology to
estimate median velocity and it was shown that the estimate is less sensitive to the presence of
long vehicles. Thisfact leads to the added benefit that the assumed value of L isless sensitive to

site-specific characteristics of the traffic flow. Asshown in Tables 3-2 and 3-3, the new
3-8
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methodology significantly reduces velocity estimation errors at single loop detectorswhen it is

not possible to control for awide range of vehicle lengths.

It may seem intuitive that the median is less sensitive to outliers than the mean, but it does not
appear that this fact has previously been employed for estimating velocity from single loops.
Although the median is less sensitive to outliers, it is still necessary to observe severa vehicles
in a given sample to reduce the impact of long vehicles and it is not advisable to estimate
velocity with short sample periods during low flow conditions. To this end, two methods for
increasing N while keeping T low were proposed. The first approach combined data from
multiple lanes before estimating velocity and yielded satisfactory results on the experimental
dataset. The second approach would use a hybrid sampling criteriato switch between fixed
number of vehicles and fixed time sampling. Finaly, the discussion anticipated potential
problems with heavy truck flows and suggested several possible solutions to reduce these

impacts.



(A) : : - (B)

80 | T=30sec 80| T=5 min
70-%2‘ 707
i
60r;! 60|
tsi..
050-:.'...
= [efiit-
—1 40+ Si:'!.:: .
i | is
30'! HH (Y
i ilid
20-i H“lhini..
10
0 ' ' ' 0 ' ' '
0 1000 2000 3000 0 1000 2000 3000
flow (veh/hr) flow (veh/hr)

Figure 3-1, Observed average effective length versus flow for five lanes at one detector
station, over one day, sampled at (A) T = 30 sec, (B) T =5 min.
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Figure 3-2, Observed distributions of individual effective vehicle lengths in a single lane for
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Figure 3-3, This figure uses real traffic data to compare estimated versus measured (A) mean
velocity (B) median velocity for 24,640 samples of 10 vehicles each. Note that the
circles were added to the same locations in both plots to highlight the differences.
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circles were added to the same locations in both plots to highlight the differences.
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the circles were added to the same locations in each plot to highlight differences.
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Table 3-1, Confidence intervals for mean and median effective vehicle length from Monte Carlo simulation
for various sample sizes from the "best" and "worst" observed distributions.

99 percent confidence intervals of vehicle length (ft)
for mean for median
upper bound lower bound difference | upper bound lower bound difference

S N=10 veh 25.07 16.65 8.42 21.82 18.45 3.37
g2 5 N=50 veh 21.78 18.75 3.03 20.77 20.00 0.77
§ 2 .:g N=100 veh 21.27 19.16 2.11 20.00 20.00 0.00
©  N=500 veh 20.59 19.71 0.88 20.00 20.00 0.00
© N=1000 veh 20.45 19.82 0.63 20.00 20.00 0.00
« N=10 veh 40.77 19.03 21.74 27.69 19.23 8.46
c @ -% N=50 veh 32.07 21.42 10.65 21.74 20.00 1.74
S o 2 N=100 veh 30.23 22.62 7.61 21.67 20.00 1.67
= F ® N=500 veh 27.89 24.42 3.47 21.54 20.00 1.54
©  N=1000 veh 27.34 24.88 2.46 21.45 20.00 1.45




Table 3-2,

L set to 20 feet

Measure of Variance (MOV) and Measure of Bias (MOB) for estimated mean and median
velocity using different sampling criteria on the same set of vehicle measurements. Note
that these data come from real observations rather than simulation.

L set to eliminate bias

MOV (mph)? MOB (mph) MOV (mph)? L (ft)
sampling number of for for for for for for for for
criteria samples || mean v median v| mean v median v|| mean v median v| mean v median v
N=10 veh 24640| 26.63 7.22 2.44 1.03|| 21.62 6.15| 20.96 20.39
N=50 veh 4920[ 17.10 5.58 2.71 1.09 9.36 4.28| 21.08 20.42
N=100 veh 2460|| 15.48 5.38 2.74 1.11 7.31 4.04] 21.09 20.42
N=500 veh 490\ 13.99 4.92 2.77 1.00 5.37 3.84| 21.12 20.38
N=1000 veh 235| 13.54 5.09 2.78 1.05 4.77 3.86] 21.13 20.40
T=30 sec 28750/ 63.69 29.23 2.82 1.35|| 60.94 28.48| 21.08 20.50
T=5 min 2870| 34.36 7.02 3.59 1.03| 22.37 5.96|] 21.39 20.38
T=30 sec and 5760| 47.39 8.73 4.02 0.98|| 33.12 7.85| 21.59 20.36
combining 4

lanes




Table 3-3, Measure of Variance (MOV) and Measure of Bias (MOB) when using Equation

2 as an estimate of space mean speed.

L set to 20 feet L set to eliminate bias

sampling
criteria MOV (mph)2 MOB (mph) MOV (mph)2 L (ft)
N=10 veh 6.99 0.88 6.02 20.34
N=50 veh 5.37 0.58 4.68 20.22
N=100 veh 5.22 0.43 4.73 20.16
N=500 veh 6.47 0.06 6.43 20.02
N=1000 veh 10.87 -0.34 11.04 19.87
T=30 sec 28.68 1.18 27.97 20.44
T=5 min 6.52 0.42 6.12 20.15
T=30 sec and 8.19 0.50 7.80 20.19
combining 4

lanes
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4 ESTIMATING TRAVEL TIMES AND VEHICLE TRAJECTORIES ON FREEWAY S
USING DUAL LOOP DETECTORS

4.1 Introduction

A recent report from Caltrans noted that, "rapid changesin link travel time represent perhaps the
most robust and deterministic indicator of an incident [and] link travel time ... is perhaps the
most important parameter for ATIS functions such as congestion routing." (Palen, 1997) Similar
views have lead the Federal Highway Administration and severa statesto develop and deploy
new detector technologies capable of collecting true travel time data over extended freeway

links, e.g., Balke et al., 1995, Coifman, 1998, Huang and Russell, 1997, Sun et a., 1999.

The emphasis on new technology to measure travel timeis partially due to a misunderstanding of
how to interpret vehicle travel times. For example, Sun et al. used conventional average velocity
sampled at a detector station over fixed time periods as a base case in their analysis. The authors
found that link travel times differed significantly from the quotient of local velocity and the link
distance. But thisresult isnot surprising, since the link travel time for avehicle reflects traffic
conditions averaged over afixed distance and a variable amount of time, while the detector data

only reflects traffic conditions averaged over afixed time period at a single point in space.

In contrast to the naive approach of generalizing point measurements over an entire link, this
section will show that judicious application of traffic flow theory can yield accurate link travel
time estimates from point data. 1n particular, Lighthill and Whitham (1955) postul ated that
signals propagate through the traffic stream in a predictable manner and that a single curvein the
flow versus density plane defines the set of stationary traffic states. When the state transitions
from one point on the curve to another, the resulting signal should propagate through the traffic
stream at avelocity equal to the slope of the line between the two points. Building off of this

earlier work, Newell (1993) proposed a simplified flow density relationship, as shown in Figure

4-1
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4-1. Provided the traffic state remains on one leg of the triangle, all signals should propagate at
the same velocity: u for free flow or u. for congested conditions. Windover and Cassidy (2000)
have verified empirically that this ssmplification is reasonably accurate. If afreeway link does
not contain a source of delay, such as arecurring bottleneck or an incident, then al of the signals

that influence a vehicle's travel time must pass at least one end of the link at a known velocity.
If we postulate that traffic velocity, v, over time, t, and space, X, has the functional form

v(x,t) = f(x +u ) (4-1)

where u is either u- or u.. Then, thelevel sets of function f are straight lines and thus, v is
completely determined by observing this parameter over time at asingle point in space, i.e., a a
detector station. The evolution of vehicle trgjectories in the time-space plane are defined by the

differential equation
dx
— = V(X t 4-2
o =) @2)
and vehicleslink travel timeis simply the time it takes the corresponding trajectory to propagate

acrossthelink, i.e., from one detector station to the next.

Using this postulate, the remainder of this section develops a methodology to estimate link travel
times by integrating the signals that pass a dual loop detector, without deploying new hardware
or combining data from multiple locations. The estimation method should be beneficial for
traveler information applications, where travel time is considered more informative to users than
average velocity. One could also view the estimation method as providing "expected travel
times" without an incident. Used in conjunction with one of the new technologies capable of
measuring the true vehicle travel times, a significant deviation between the expected and
measured travel times would be indicative of congestion. Then, historical trends could be used

to differentiate between recurring congestion and an incident. If atravel time estimation system

4-2
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isdeployed for real time traffic control, the system could also prove beneficial for planning
applications such as quantifying congestion or model calibration. Thislast point is an important
task for the traditional four-step planning process as well as the on-going Travel Model
Improvement Program, which seeks to replace the process with microsimulation models. For
example, the TRANSIMS designers at Los Alamos National Labs note that "The most important
result of atransportation microsimulation in [the planning] context should be the delays..."
(Nagel et d., 1998). Finaly, in the process of developing the estimation method, this section
will a'so show how it can be used to estimate vehicle trgjectories over afreeway link, whichin

turn could be useful for quantifying vehicle emissions and other applications.

4.2 Travel time estimation

A dual loop detector station is capable of recording vehicle velocities and arrival times at asingle
point in space. We use thisinformation to define a chord in the time-space plane, where a chord
issimply a straight line with a slope equal to a vehicle's measured velocity and passes the
location of the detector at the instant the vehicle passes. Figure 4-2A shows asingle chord for a
detector at zero distance and Figure 4-2B adds the next 13 chords recorded at the detector.
Empirically, the chords provide a rough approximation of vehicle trgectories for a short distance
downstream of the detector, but the approximation quickly breaks down, as evidenced by the
intersection of several cordsin Figure 4-2B. Assuming that individual vehicle measurements
represent discrete observations from a slowly varying traffic state at the detector location, the
changing state can be approximated by discrete samples equal to the vehicle headways. During
congested conditions, i.e., the right hand leg of the curve in Figure 4-1, the transition between
one discrete state and another should propagate at u.. In other words, a vehicle passage
represents an observed signal. These signals are shown with dashed linesin Figure 4-2C, where

each chord is truncated as soon as it reaches the next observed signal. Figure 4-3 shows the
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relationships between U, vehicle velocity, v;, headway, h;, travel time, T;, and distance traveled,

X;, for j-th truncated chord. It isasimple exercise to show that,

h
T, = —1 (4-3)
1+v; /u.
X =V [T (4-4)

Because all signals are assumed to travel at the same speed, the parameters from Figure 4-3 are
the same for any vehicle passing through a given band between two signals. Connecting the
truncated cords end-to-end yields an estimated trgjectory, shown in Figure 4-2D, for the vehicle
from part A. In practice, one need only add up successive x;'s until the total exceedsthe link
distance. The sum of the corresponding 1;'syields atravel time estimate. To enumerate the steps
in this estimation, first, measure h, and v, then calculate x; and T, using Equations 4-3 and 4-4.

For the k-th vehicle, find the largest N, such that,

k+ N,

dz 3 X (4-5)

where d isthe length of the link and N, +1 represents an estimate of the number of vehicles that
pass the detector while the k-th vehicle traverses the link. Typically the link distance will exceed
the sum of x;'s by some percentage of the next x;, so a better estimate of travel time will include
the corresponding T;, weighted by the same percentage. More formally, calculate aweight, p, as
follows,

k+N,

O O
k+N, +1 + X0~ d
p= i ’Z d (4-6)

Xk+Nk +1

Finally, calculate the estimated travel time, T,,
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k+N,

Tk =p H-k+Nk +1 + T, (4'7)
2.7

Another improvement comes by recognizing that h; occurs between vehicle observations. So the
harmonic mean of two successive velocity measurements, v; and v,,;, should be more
representative of conditions during the j-th band than either velocity measurement taken alone.
The remainder of this section uses thisimprovement. It isasimple extension to show that
rotating Figures 4-2 and 4-3 by 180 degrees, the methodology can also be applied to traffic
upstream of a detector. Lastly, to estimate the k-th vehicle trgectory, one only need calculate the

cumulative sum at each j from Equations 4-5 and 4-7.

42.1 A Short Example

This example applies the travel time estimation methodol ogy during congested conditions, over
an 1,800 foot long freeway link that does not contain any ramps. Dual loop detector stations
bound the link on either end (see Coifman et al., 2000 for more information). In this
configuration, each detector station can be used to generate an independent estimate of travel
time over the link. Before making this estimate, one must settle on avalue of u.. Examining a
different freeway, Windover, 1998 found u. had a small variance from signal to signal and most
signals during congested conditions travel ed between 12 mph and 16 mph. The velocity range
was manually verified at the subject link by comparing extrema points in time series flow and
occupancy at either end of thelink. A constant value of 14 mph is assumed for u. throughout the

rest of the section.

Examining asingle lane, the solid line in Figure 4-4A shows the estimated travel times from the
upstream detector. Using concurrent video to visually match every vehicle that stayed in the lane
between the two stations, the points show the corresponding ground truth travel times. This
process s repeated in Figure 4-4B at the downstream station. For the sake of comparison

throughout this section, al plots of travel time are shown relative to vehicle arrival times at
4-5
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downstream station. The performance of each detector station is summarized on the left-hand
side of Table 4-1. Both estimates were, on average, within 10 percent of the true value while the
corresponding naive link travel time estimates, presented in the center of the table, have an

average error on the order of 25 percent.

Although the travel time estimation is not perfect, it is still quite good considering the fact that it
is based on datafrom asingle point in space. Looking closer at the data, Figure 4-5 shows a
detail of the estimated trajectories implicit in the upstream travel time estimation. In this plot,
the upstream detector is at zero feet and the downstream detector isat 1,800 feet. A total of 137
trgjectories are shown, of which, 106 pass the downstream detector during the five minute
period. The trgectories are not exact, e.g., no effort has been made to account for potential
variance in u. or the presence of lane change maneuvers, but the ssmple fact that they provide a
good estimate of true travel time over an extended distance suggests that they are agood
approximation. As further motivation, consider Figure 4-6. The methodology was used to
estimate vehicle trgectories one half mile upstream and one half mile downstream of a detector
station using data from the 1-880 Field Experiment (Skabardonis et a., 1996), while the bold

lines show actual probe vehicle trgjectories over the same segment.

The trgjectory approximations could be useful for planning applications or emissions modeling.
For example, emissions are typically estimated using vehicle miles traveled, average velocity,
average flow, or more recently, using point detectors capable of measuring instantaneous
emissions from individual vehicles. But none of these methods are capable of capturing the
effects of vehicle dynamics. Asaresult, significant factors contributing to vehicle emissions,
such as acceleration, often go unmeasured (Holemen and Neimeier, 1998). On the other hand, a
vehicle's dynamics are implicit in its trgjectory and when used in conjunction with calibrated

vehicle emissions (e.g., West et a., 1999), thiswork could allow for real time estimates of
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emissions along an entire freeway. Future research will examine the accuracy of the trgjectory

estimates in terms of such applications.

4.2.2 Extendingto Free Flow Conditions - a Long Example

During free flow traffic conditions, signals travel downstream with the vehicles and the
transitions shown in Figure 4-2C should correspond to individual chords. Or, if we continue the
assumption of constant signal velocities, they should now travel downstream at u-. By
erroneously assuming that free flow signals travel against the direction of travel with velocity u.
and treating the data the same way as congested periods, the travel time estimate will be based on
the wrong set of vehicle observations. But, free flow traffic is characterized by approximately
constant velocity over time and space. So the vehicles selected with u. should have similar
velocitiesto the correct set of vehicles and any resulting errorsin the travel time estimate should

be negligible.

Putting this hypothesis to the test, consider 24 hours of data between the same detector stations
used in the previous example. Thistime, however, we arbitrarily present one of the lanesin the
opposite direction. The two parts of Figure 4-7 show the estimated travel times from each
detector station with asolid line. Manually generating ground truth matches for this long data
set would be prohibitively time consuming. Instead, two vehicle reidentification algorithms are
employed. For agiven downstream measurement, each algorithm searches the upstream
observations for the measurement that corresponds to the same vehicle (Coifman and Cassidy,
2001, Coifman, 2001). Theresulting travel times for the matched vehicles are shown with points
in each plot. As predicted, the estimation methodology performed quite well during free flow

conditions, when the true travel time was on the order of 20 seconds.

Figure 4-8A shows a detail of the congested measurements. Again, the estimation method
appearsto follow the measured values while Figures 4-8B-C show the corresponding naive link

travel time estimate using the local average velocity sampled every 30 seconds. As expected, the
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fixed time samples do not provide a good estimator of link travel time, with some samples being

over eight timestoo large.

4.2.3 Applying the methodology to conventional traffic data

The large errors from the naive estimate are due to the simple fact that a single 30 second sample
at one point in space can not capture the travel time experienced by avehicle traversing alink.
Although the proposed methodology promises greater accuracy, most operating agencies would
have to upgrade their hardware and/or software in the field to estimate travel time based on
individual vehicle measurements. But the use of vehicle headways was chosen out of
convenience. If asurveillance system only reports samples over fixed time periods and careis
taken to measure space mean speed accurately, then the preceding theory is still valid and one
can apply the estimation methodology to these data using a constant h, equal to the sampling
period. Inthisscenario, the estimation methodology combines data from several fixed time
samples rather than from individual vehicle measurements. The results for the short example
using a 30 second sampling period are reported on the right hand side of Table 4-1. Note that the

error is still less than half of that from the naive estimate.

424 Limitations

The estimation methodology assumes that all signals travel through the entire freeway link. This
assumption fails when a queue partialy coversalink. Unfortunately, the end of a queue can not

be tracked using data from a single detector station.®> Figure 4-9 shows two examples of this

% Daganzo (1997) presents amethod to estimate the end of a queue between two detector stations using data from
both stations. Used in conjunction with the present work, it could lead to better travel time and trajectory estimates,
however, such work is beyond the scope of this paper, which focuses on extracting information from a single

detector station.
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failure. In each case, traffic over the downstream station is congested while vehicles at the
upstream station are free flowing. Comparing the top and bottom halves of thisfigure, we see
the upstream detector underestimates the travel time and the downstream overestimates it during
these periods. Of course these errors would be reversed when the upstream end of the segment is
gueued while the downstream is free flowing. 1n any event, the periods where the method breaks
down typically represent asmall percentage of the day and as illustrated in this figure, they can
be identified by differing estimates from either end of the link. Provided the estimates are
transmitted to a central location, such as a Traffic Management Center, such comparisons would

be easy to conduct.

Finally, one may have to assume a different flow-density relationship to apply this method at
other locations. This modification could be as easy as calibrating the value of u., but if need be,
one could extend the work to any flow density relationship in which flow isastrictly decreasing

function of density in the congested regime.

4.3 Conclusions

Link travel timeis considered to be more informative to users than flow, velocity, or occupancy
measured at a point detector. This section has employed basic traffic flow theory to estimate link
travel time using point detector data. Rather than simply measuring local velocity over fixed
sampl e periods, the approach presented herein could be used to increase the "information”
available from dual loop detectors and other vehicle detectors. The accuracy of the method lends
further evidence that the linear approximation of flow density relationship is reasonable during

congestion, supporting the work of Newell, Cassidy and others.

Since the method uses observations from a single point in space, changes in the traffic stream
may be overrepresented or underrepresented, asillustrated in Figure 4-9. Becauseit is possible
to estimate link travel time from either end of the link, the periods when the method breaks down

can beidentified easily. In contrast, vehicle reidentification techniques using data from more
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than one detector station actually measure conditions over the link. Combining measured and
estimated travel times, it should be possible to produce a robust incident detection system by
looking for periods where the two approaches differ; perhaps even enabling incident detection
during congested conditions. Naturally, such a system would have to account for recurring
bottlenecks as well as normal queue growth and decay. To this end, future research will seek to
extend the estimation methodology to inhomogeneous freeway links and improve performance

during periods when a queue partialy coversalink.

Although the estimation method is not perfect, it is surprisingly accurate for an approach that
uses data from a single point in space. The estimated vehicle trgectories constructed en route,
e.g., Figure 4-5, could be useful for applications such as quantifying vehicle emissions due to

start/stop cycles on congested freeways.
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Figure 4-1, Triangular flow density relationship showing the signal velocity during free flow,

Ug, and congestion, uc.
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Figure 4-2, Time space diagram showing, (A) the chord for a vehicle passing the origin at 748 sec, (B) chords for subsequent vehicles,
(C) truncated chords, (D) estimated trajectory and travel time for the vehicle in part A.
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Figure 4-3, Schematic showing the relationships between signal velocity,dJ vehicle
velocity, v;, headway, h;, travel time, T;, and distance traveled, X;, for a vehicle

passing through band j.
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Figure 4-4, (A) Measured travel times (dots) and estimated from the upstream detector data
(line), (B) repeated for the downstream detector data.
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4-5, Detail from the estimated vehicle trajectories implicit in the travel time est
of Figure 4A
16:27

re
16:26 16:28 16:29 16:30
time of day (hh:mm)



Figure 4-6, Estimated trajectories over one mile using data from a single detector station (at
zero distance) and measured probe vehicle trajectories (shown with bold lines)
for the same period.
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Figure 4-7, Measured travel times (dots) and estimated (line) from detector data over 24
hours, (A) upstream estimate (B) downstream estimate.
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Figure 4-8, (A) Detail from Figure 7B, (B) the corresponding naive estimates taking the
distance between detectors divided by 30 second average velocity downstream,
(C) part B repeated with a larger vertical scale.
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Figure 4-9, Examples where the estimation technique fails, (A)-(B) Details from Figure 7A
and (C)-(D) corresponding details from Figure 7B.
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Table 4-1, Travel time estimation accuracy for the short

Proposed estimate using
measured headways

naive estimate

examplée'

Proposed estimate using
30 second samples

upstream downstream upstream downstream upstream downstream
average error 7 9.8 26.4 27.9 11.5 10.1
(percent)
bias (sec) 0.6 -4.4 -0.2 -0.1 -2.8 -4.2

& Mean ground truth travel time is 77 seconds for this data set
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5 EVENT-DATA BASED TRAFFIC DETECTOR VALIDATION TESTS

5.1 Introduction

Inductive loop detectors have been the preeminent vehicle detectors for the past several decades
and most traffic surveillance applications depend on these detectors. Many operating agencies
use specialized loop testers to assess the quality of the wiring (Kell et al., 1990, Ingram, 1976),
but these tools bypass the controller and loop sensors; thus, they do not analyze the entire
detector circuit, nor do they analyze the circuit in operation. To this end, most operating
agencies employ simple heuristics such as, "Do the loop sensor indicator lights come on asa
vehicle passes?' or simply, "Do the time series 30 second average flow and occupancy seem
reasonable to the eye?' Such tests are typically employed when the loops are installed or when
the quality of data coming from the detector station is questionable. These heuristics will catch

severe errors and help diagnose them, but other problems can easily go unnoticed.

Many practitioners and some researchers (e.g., Jacobson et al., 1990, Cleghorn et al., 1991,
Nihan, 1997), have worked to automate the latter heuristic by rephrasing the question, "Are the

time series 30 second average flow and occupancy within statistical tolerance?' These systems

often go undocumented in the literature because they are either designed in-house by an
operating agency (see Chen and May, 1987 for examples) or were developed by a consulting
firm using proprietary information. Because these automated systems only use aggregated data,
they must accept alarge sample variance and potentially miss problems altogether. For example,
the systems have to tolerate a variable percentage of long vehiclesin the sample population. As
the percentage of long vehicles increases, the occupancy/flow ratio should increase smply
because along vehicle occupies the detector for more time compared to a shorter vehicle

traveling at the same velocity (see section 2 for examples).
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Chen and May (1987) developed a new approach for verifying detector data using event data,
i.e., individual vehicle actuations. Their methodology examines the distribution of vehicles on-
time, i.e., the time the detector is occupied by avehicle. Unlike conventional aggregate
measures, their approach is sensitive to errors such as "pulse breakups', where a single vehicle

registers multiple actuations because the sensor output flickers off and back on.

Coifman (1999) went a step further and compared the measured on-times from each loop in a
dual loop detector on a vehicle by vehicle basis. At free flow velocities the on-times from the
two loops should be virtually identical, even allowing for hard decelerations, regardless of
vehicle length. Many hardware and software errors will cause the two on-timesto differ. At
lower velocities, vehicle acceleration can cause the two on-times to differ even though both

loops are functioning properly and thus, congested periods were excluded from the analysis.

This section presents several new detector validation tests that employ event data to identify
detector errors both at single loops and dual loop detectors. The tests are presented in terms of
evaluating loop sensor units and detector validation, e.g., "if the data pass the test then the sensor
can betrusted." The data are analyzed off-line, but the tests are simple enough that they could be
implemented in real-time to identify detector errorsin real time and most of them could be used

to actively clean incoming data from atraffic surveillance system.

After presenting the basic data collection and measurement, this section presents eight different
detector validation tests. Five of these tests can be applied to single loop detectors or non-
invasive sensors that aggregate data using similar techniques, while all of the tests can be applied

to dual loop detectors.
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5.2 Thedata

The work uses event data collected from dual loop detector stations in the Berkeley Highway
Laboratory along Interstate-80, north of Oakland, CA to demonstrate the tests (Coifman et al .,

2000). The following five sensor units are evaluated in this study,
Peek GP5 revision E (GP5-E),
Peek GP5 revision G (GP5-G),
Peek GP6 revision C (GP6),
Eberle Design Inc. LM222 (EDI),
Intersection Development Corporation Model 222 (IDC).

Except where noted, the study uses 24 hours of data from one dual loop detector for each sensor
unit. The date and detector were chosen at random, but all of the loop detector stations were
evaluated thoroughly to identify and exclude any hardware problems. Table 5-1 summarizes the
number of vehicles observed in each of these data sets, aggregated into three velocity ranges. To
correct for any measurement errors, the exact criteria used to determine which velocity range a

vehiclefalsin isdescribed in subsection 5.3.1.

Table 5-1 Number of vehicles in each sample
Data file # veh > 45mph # veh 20-45 mph # veh < 20mph Total # veh
EDI 20251 4697 2309 27257
GP6 20362 1320 2636 24318
GP5-G 19802 2254 292 22348
IDC 20711 3096 2155 25962
GP5-E 18825 5083 2147 26055

5.2.1 Vehicle measurements

This research used conventional model 170 controllers to collect the event dataat 60 Hz. The
processisillustrated in Figure 5-1A, atime-space diagram depicting a vehicle passing over a

dual loop detector. The controller normally records four transitions, i.e., the turn-on and turn-off
5-3
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times at each of the loops, as shown in Figure 5-1B. Integral to these measurementsisthe
process of matching pulses between the paired loops. For this study, each pulse at the second
loop is matched to the most recent pulse at the first loop that preceded it. When the dual 1oop
detector is operating properly, two successive pulses rarely come from one loop without an
intervening pulse on the other loop (the loops are typically spaced close enough to ensure that
one vehicle will actuate both loops before the next vehicle actuates the upstream loop). The
error detection strategy is sensitive to unmatched pulses and it will detect when this assumption

breaks down.

After matching pul ses between loops, the following parameters are calculated for each vehicle:
dual loop traversal time viatherising edges, TT,, dual loop traversal time viathe falling edges,
TT,, total on-time at the first loop, OT,, and total on-time at the second loop, OT,, asindicated in

Figure 5-1. These datayield two measured of individual vehicle velocity:
V, = (loop separation) / TT, (5-1)
V; = (loop separation) / TT; (5-2)
and these measurements are used cal culate two measurements of effective vehicle length,
L,=OT,* V. (5-3)
L, =0T, * V, (5-4)

In the case of single loop detector tests, the work uses the second loop in the dual loop detector
and estimates velocity using the median of 11 OT, measurements centered on the given vehicle

(see section 3),
V4 = 20 feet / median(OT,) (5-5)
and then, these estimated vel ocities can be used to estimate effective vehicle length,

Lo = OT,* Vg (5-6)
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Finally, whether using both loops or asingle loop, the vehicle headway, H, is measured from the

difference between on, from two consecutive vehicles.

5.3 Traffic Detector Validation tests

5.3.1 Individual vehicle velocity ver sus moving median velocity test

Asthetitle suggests, this test compares individual vehicle velocity against the median of 11
velocity measurements centered on the given vehicle. If the velocity of the vehicle deviates from
the median by more than a preset threshold, (set to 20 mph in this analysis), the individual

velocity measurement is considered erroneous.

When these errors are encountered, it could result in the vehicle being classified in an incorrect
velocity range. So the moving median of V, is used to select the velocity rangein all of the
tables. Toillustrate the power of thisfilter, Figure 5-2 compares the measured velocities and the
moving median velocities from the GP5-G sensor, the worst case observed in our datasets. As
can be seen from the figure, the median velocities filter out much of the noise from the raw data.
In real-time analysis, one may not be able to afford the lag time necessary to observe al of the
following vehicles, so the research also considered a moving restricted to observations that
preceded the current vehicle. As expected, performance was not as good as the results presented

here, but it still proved beneficial.

Tables 5-2A and 5-2B present the statistics after applying this test to each day of data from the
different sensor units using velocity from the rising and falling edge, respectively. For reference,
the results are ranked from 1 (best) to 5 (worst) in each table. The falling edge from the GP5-G
sensor unit stands out as clearly being poorer than the other sensors. Asnoted in section 3,
Equation 5-5 is an estimate of median velocity, so the comparison can be repeated using the
measured velocity across loops and the estimated velocity from asingle loop, i.e., the test checks

whether the on-times are consistent with the measured velocities. These results are presented in
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Tables 5-2C and 5-2D, for the subject data sets and they are similar to Tables 5-2A and 5-2B.
One notable difference is that the EDI sensor shows slightly diminished performance when using
the estimates and this result is consistent with the outcome of later tests that will be presented.

Finally, athough not shown here, the test can be repeated using estimated data from the other

detector.
Table 5-2A Percentage of vehicles passing the median velocity test using V, versus
moving_median(V,)
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 99.8% 100.0% 99.9% 99.8% 2
GP6 99.9% 100.0% 100.0% 99.9% 1
GP5-G 99.8% 99.8% 100.0% 99.8% 2
IDC 99.9% 100.0% 100.0% 99.9% 1
GP5-E 99.9% 100.0% 100.0% 99.9% 1
Table 5-2B Percentage of vehicles passing the median velocity test using V; versus
moving_median(V))
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 98.7% 99.7% 99.8% 99.0% 4
GP6 99.9% 100.0% 100.0% 99.9% 1
GP5-G 78.7% 95.1% 100.0% 80.9% 5
IDC 99.7% 100.0% 100.0% 99.8% 2
GP5-E 99.2% 99.9% 100.0% 99.4% 3
Table 5-2C Percentage of vehicles passing the median velocity test using V, versus Ve,
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 92.7% 100.0% 99.8% 94.4% 5
GP6 99.6% 94.6% 100.0% 99.3% 3
GP5-G 99.0% 98.2% 99.7% 98.9% 4
IDC 99.7% 98.3% 99.8% 99.4% 1
GP5-E 99.6% 96.8% 99.7% 99.3% 2
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Table 5-2D Percentage of vehicles passing the median velocity test using V;versus Vg
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 95.1% 99.7% 99.7% 96.1% 4
GP6 99.6% 94.9% 100.0% 99.2% 2
GP5-G 78.2% 90.4% 99.7% 80.2% 5
IDC 99.1% 98.5% 99.8% 99.0% 3
GP5-E 99.4% 97.0% 99.7% 99.2% 1

5.3.2 Headway versuson-timetest

Figure 5-3A shows the measured H versus OT, from the GP6 data. These datawere grouped
into free flow and congested groups based on V, > 45 mph. Relatively short on-times and
occasional long headways characterize the free flow data, while occasional long on-times
characterize the congested data. After reviewing many such plots, we defined two regions of the
headway on-time plane that should contain al free flow observations or al congested
observations, as shown in Figure 5-3B. The free flow region is bounded by OT, < 0.3 sec and H
> 8 sec, while the congested region is bounded by OT, > 1.3 sec. Of course most observations

under either condition will fall somewhere between these two regions.

Thistraffic flow characterization can be utilized in detecting certain errors at single loop
detectors, e.g., if ameasurement fallsin the free flow region but V4 < 45 mph or conversely if a
measurement falls in the congested region but V., > 45 mph. Table 5-3 summarizes the results
of thistest applied to each of the data sets. Very few errors were found for these sets, but as
noted previously, the detector hardware was verified to be in full functioning order before the
testswere applied. Finally, one could modify this test to use measured velocity at dual loop

detectors.
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Table 5-3 Percentage of vehicles passing the headway on-time test
Data File % FF % FF % Cong. % Cong.
median_vel & FF median_vel & Median_vel & FF Median_vel & Rank
region in Cong. Region in region in Cong region in

h-o plane h-o plane h-o plane h-o plane
EDI 5.1% 0.0% 0.0% 0.9% 5
GP6 5.4% 0.0% 0.0% 2.2% 1
GP5-G 6.9% 0.0% 0.0% 0.5% 2
IDC 5.4% 0.0% 0.0% 1.6% 4
GP5-E 5.1% 0.0% 0.0% 2.1% 3

5.3.3 Feasblerange of vehiclelengthstest

There exists some finite range of feasible vehicle lengths and this research assumes feasible
effective vehicle lengths to range between 10 ft and 90 ft. If ameasured vehicle length falls
outside of thisrange, it would indicate a detector error. The test can be applied to estimated or
measured lengths, thereby providing atest for both single and dual loop detectors. If the
individual length istoo short, it may be indicative of pulse break-ups, a sensor set to pulse mode
rather than presence mode, or similar errors. On the other hand, if the individual length istoo

long, it may be due to the detector sticking on after the passing of the vehicle.

Tables 5-4A through 5-4C present the statistics after applying this test to each data set using L,,
L,, and L, respectively. Aswith the previoustest, very few errors were found in these sets, but

they should be able to identify chronic errors. Aswith Tables 5-2C and 5-2D, the EDI does

demonstrate slightly worse performance than the other sensors.

Table 5-4A Percentage of vehicles passing the feasible length test using L,
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 98.1% 98.7% 98.1% 98.2% 5
GP6 99.7% 99.7% 100.0% 99.8% 2
GP5-G 99.9% 99.9% 99.3% 99.9% 1
IDC 99.8% 99.7% 99.9% 99.8% 3
GP5-E 99.7% 99.7% 99.8% 99.7% 4
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Table 5-4B Percentage of vehicles passing the feasible length test using L,
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 97.4% 98.2% 98.0% 97.5% 5
GP6 99.7% 99.7% 100.0% 99.7% 2
GP5-G 98.8% 99.2% 99.7% 98.9% 4
IDC 99.8% 99.8% 99.9% 99.8% 1
GP5-E 99.6% 99.8% 99.9% 99.6% 3
Table 5-4C Percentage of vehicles passing the feasible length test using L.
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 99.1% 99.3% 98.0% 99.1% 5
GP6 99.6% 99.6% 99.5% 99.6% 1
GP5-G 99.6% 99.6% 99.0% 99.6% 2
IDC 99.5% 99.7% 98.6% 99.4% 4
GP5-E 99.5% 99.5% 99.3% 99.5% 3

5.3.4 Feasblerangeof headway and on-timetests

Aswith vehicle length, there are physical limits on feasible headways and on-times. These
parameters can be used to detect chronic errors at single and dual loop detectors. Thisresearch
assumes a minimum feasible headway of 0.75 sec and minimum on-time of 0.16 sec. During
free flow conditions, one can also apply a maximum feasible on-time. An 80 ft vehicle traveling
at 45 mph should have an on-time of approximately 1.2 sec. Adding an error margin of 0.1 sec,
a detector observing many free flow vehicles with on-times greater than 1.3 sec would be

suspect.

Tables 5-5A through 5-5D present the statistics after applying these tests to each data set. The
EDI has more short headways and on-times than the other sensors. Coifman (1999) has already

found that these sensor units are prone to flicker.
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Table 5-5A Percentage of vehicles with H > 0.75 sec.
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 92.1% 99.2% 100.0% 94.0% 5
GP6 96.6% 98.6% 100.0% 97.1% 2
GP5-G 96.3% 99.0% 100.0% 96.6% 3
IDC 94.9% 99.6% 100.0% 95.9% 4
GP5-E 96.2% 99.5% 100.0% 97.2% 1
Table 5-5B Percentage of vehicles with OT, > 0.16 sec.
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 74.8% 99.5% 99.7% 81.2% 5
GP6 97.6% 99.7% 100.0% 97.9% 1
GP5-G 95.4% 99.9% 100.0% 95.9% 3
IDC 96.8% 99.9% 100.0% 97.4% 2
GP5-E 93.6% 99.7% 100.0% 95.3% 4
Table 5-5C Percentage of vehicles with H > 0.75 sec and OT, > 0.16 sec.
Data File % acceptable % acceptable % acceptable % acceptable
(> 45 mph) (20-45 mph) (< 20 mph) all vehs. Rank
EDI 68.0% 98.7% 99.7% 76.0% 4
GP6 94.3% 98.4% 100.0% 95.2% 1
GP5-G 91.9% 98.9% 100.0% 92.7% 3
IDC 91.9% 99.5% 100.0% 93.4% 2
GP5-E 90.2% 99.3% 100.0% 92.7% 3
Table 5-5D Percentage of free flow vehicles with OT, < 1.3 sec.

5.35 Length differencesand ratios at dual loop detectors

Coifman (1999) used the difference between OT, and OT, to assess the performance of a dual

loop detector during free flow condition. These tests were constrained by the fact that at lower

Data File % acceptable
(> 45 mph) Rank
EDI 100.0% 1
GP6 100.0% 1
GP5-G 99.9% 2
IDC 100.0% 1
GP5-E 100.0% 1

velocities, acceleration can cause an on-time difference even though the loop detectors are
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functioning properly. Unfortunately, this constraint precludes the earlier test from identifying

errors that only occur during congested conditions. In response to this limitation, this new test

uses the difference between L, and L, to control for velocity and extend the test into congested

conditions. Of course some errors may be correlated to vehicle length as well, so a second

version of the test isused to normalize for length, i.e., (L, - L,) / (L, + L,). If the sensors are

functioning properly, these differences should be close to zero.

Table 5-6A summarizesthe resultsfor L, - L,. To facilitate collection and analysis, the datawere

aggregated into bins by 0.5 ft, so the central bin represents arange of +/- 3 in, and the central

three bins span +/- 9in. Similarly, Table 5-6B summarizestheresultsfor (L, - L,) / (L, + L))

aggregated into bins of size 0.003. Thus, the central bin represents a range of +/- 0.0015 and the

central three bins span +/- 0.0045. In both tables and all velocity ranges, the GP5-G performs the

worst out of all of the sensors. These results are consistent with the results during free flow

found in Coifman (1999). Also note that the EDI sensor performs almost as bad as the GP5-G in

the second test but not the first, indicating a vehicle length biasin the EDI's errors.

Table 5-6A Percentage of vehicles passing the L;°-°Ltest.
Data % central bin % central 3 bins % central % central
File > 20- < > 20- < bin 3 bins Rank
45mph | 45mph | 20mph | 45mph | 45mph | 20mph all vehs all vehs
EDI 70.7% | 84.5% | 66.9% | 92.7% | 95.8% | 88.4% 72.8% 92.9% 4
GP6 89.9% | 93.1% | 87.8% | 94.4% | 955% | 93.2% 89.9% 94.3% 1
GP5-G 62.1% | 50.7% | 63.5% | 72.5% | 69.2% | 87.2% 60.8% 72.2% 5
IDC 88.6% | 92.6% | 85.4% | 94.0% | 955% | 93.1% 88.8% 94.1% 2
GP5-E 85.4% | 90.2% | 83.9% | 921% | 94.2% | 92.9% 86.2% 92.5% 3
Table 5-6B Percentage of vehicles passing the (L;°-°L)°/°L;"+L>) test.
Data % central bin % central 3 bins % central % central
File > 20- < > 20- < bin 3 bins Rank
45mph | 45mph | 20mph | 45mph | 45mph | 20mph all vehs all vehs
EDI 51.9% | 36.4% | 221% | 60.2% | 67.6% | 51.8% 46.8% 60.8% 4
GP6 72.7% | 77.8% | 67.7% | 87.9% | 92.0% | 85.4% 72.5% 87.8% 1
GP5-G 40.3% | 27.8% | 28.8% | 56.1% | 45.0% | 56.9% 38.7% 54.8% 5
IDC 71.1% | 75.4% | 63.2% | 86.2% | 91.3% | 83.2% 70.9% 86.6% 2
GP5-E 58.4% | 62.5% | 51.2% | 78.6% | 86.6% | 78.2% 58.6% 80.1% 3
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5.3.6 Cumulativedistribution of vehiclelengths

It may not be feasible to calculate the vehicle length differences in Tables 5-6A and 5-6B, either
due to limited processing power in the controller or when working with single loop detectors. In
these cases, it is possible to calculate the cumulative distribution function (CDF) of the measured
or estimated lengths, and summarized by the deciles of the distribution. Of course the CDF will
capture site specific phenomena, such as the percentage of large trucks, so it is not feasible to
specify auniversally "good" range for this distribution. But it is possible to compare the CDF
measured one day with that measured during the same time period on the next day. Thereby
allowing an agency to detect sudden changes in detector performance. It isalso possible to
compare the CDF from one detector station to that at the next detector station on the roadway to
control for day to day variance. Figure 5-4A illustrates such acomparisonusing L,. This plot
showsthe daily CDF of L, in asingle lane, over five days at one detector station and seven days
in the same lane at a second detector station, 1/3 mi away. All of these data were recorded with a
GP5-E sensor unit except for one of the days at the second station, which were recorded using an
EDI sensor unit. Aside from some variability in the percentage of long vehicles, all of the curves
from the GP5-E sensorsfall on top of each other. The curve from the EDI sensor is distinct from
the other curves and indicates that the sensor is recording many more "short vehicles'. As
mentioned previoudly, these sensors tend to flicker and the short length measurements are simply
due to detector errors. This plot shows that one can compare across days and nearby locations
reliably. The processis repeated using the corresponding estimated lengthsin Figure 5-4B. This
time, however, the curves only show the deciles. Unfortunately, the problem with the EDI cards
impact both the on-time and the median on-time. Since the estimate is proportional to the former
and inversely proportional to the latter, the problem is less pronounced in this plot, but it is still

evident.
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5.3.7 Lossof aloopin adual loop detector

Oneloop in adual loop detector may stick on or stick off while the other loop continues
working. Itisasmpletest to count the number of pulses at one loop since the last pulse at the
other loop and quickly identify when these errors occur. For example, if the controller seesfive
pulses at the second loop since the last pulse at the first loop, it could respond by resetting the
sensor card, sending an alarm, and/or treating the remaining loop in the dual loop as a single loop

detector.

5.3.8 Countingthe number of consecutive congested samples

Thistest isintended for single and dual loop detectors. It takes samples of 10 consecutive
vehicles and applies Equation 5-5 to estimate the velocity. The test assumes that traffic becomes
congested whenever this estimate drops below 40 mph for four consecutive samples, the last of
which is explicitly marked as being congested. The four samples are used to eliminate transient
errors due to an unusually large number of long vehicles during free flow conditions. The test
then assumes that traffic remains congested until it sees a single sample of 50 mph. The higher
threshold is used to prevent frequent transitions when the true velocity is near the threshold
velocity. Thetest keegpstrack of how many congested samples precede each free flow sample.
Based on the criteria, one would expect that most free flow samples would be preceded by
another free flow sample, i.e., zero congested samples, but some will be preceded by many
congested samples. To quantify thistest, the distribution is calculated, e.g., Figure 5-5. There
should be few free flow samples that are preceded by few congested samples, if thisis not

usually the case, then it would be indicative of a detector error.

5.4 Conclusions

This section has presented eight detector validation tests using event data. Five of these tests can

be applied to single loop detectors. Some of the tests are quite ssmple, such as the loss of aloop
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in adual loop detector, while other tests are more involved, such as the length differences at dual

loops, which extends our earlier work with dual loop detectors to non-free flow conditions.

In most cases, the tests were presented without explicit criteria to distinguish between good and
bad sensors. This deliberate omission is due both to the fact that such parameters depend on the
required accuracy from the loop detectors, and because the event data used in this study are
uncommon. The authors know of only afew locations where such data have been collected,
making it difficult to provide universal guidelines for deploying such tests. The section provides
enough guidance to assist a practitioner in assessing the usefulness of a given test and the first
steps toward implementing it if it appears promising. As such, additional calibration may be

necessary, but it should not be difficult to conduct.

The tests were used to contrast the performance of different sensor models and most of the tests
have been presented using 24 hr blocks of data. In practice, they can also be used to identify
permanent and transient hardware problems in other components of the detection system, e.g.,
cross talk between loops or a short in the lead wires that only materializesin therain. For
operational implementation, the tests could be applied hourly or after afixed number of vehicles
pass. Some of the tests can even be used to clean up erroneous measurements, such as the
individual vehicle velocity versus moving median test, which was used to replace transient errors
with median values from adjacent measurements. Other tests, such as the feasible length test,
could be used to exclude individual vehicle measurement errors from aggregate parameter

calculations such as flow and occupancy.
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Figure 5-1 One vehicle passing over a dual loop detector, (A) the two detection zones and the

z

distance

(B)

A

vehicle trajectory as shown in the time space plane. The height of the vehicle’s
trajectory reflects the non-zero vehicle length. (B) The associated turn-on and turn-
off transitions at each detector.
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Figure 5-2
(A)

(A) Individual V', from the GP5-G, (B) moving median of the data from part A.
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Figure 5-3 (A) Measured H versus OT, from the GP6 data using V, > 45 mph to identify the free
flow data, (B) regions of the headway on-time in which measurements should all be
free flow or all non-free flow, i.e., congested.
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Figure 5-4 Five days of data from one detector station and six days of data from another station
1/3 mile away, both using GP5-E sensor units. Also one day from the second station
an EDI sensor unit, (A) Cumulative Distribution of L;, (B) deciles of L,
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Figure 5-5 (A) Estimated traffic state (high = free flow, low = congested) and measured velocity,
(B) distribution of the number of congested samples preceding each free flow sample.
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