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Abstract

System for Efficient Big Data Analytics

by

Boyuan Feng

Big data analytics enjoy increasingly wide applications in the real world enabled by

the development of model, data, and hardware. However, the development of these three

components usually shows a significant imbalance. While there are many new models

and data, commercialized hardware usually provides only limited support. My research

mitigates this gap by building systems for efficient big data analytics that stitch model,

data, and hardware together. In particular, we find that given specialized hardware

with limited compute primitives, system optimizations are the keys to generalizing such

specialized hardware and efficiently supporting diverse model and data workload.

This thesis discusses systems for efficient big data analytics under three aspects.

The first aspect introduces hardware-aware kernel tuning. Based on limited hardware

compute primitives, my research builds more middle-level libraries to efficiently support

diverse big data analytic workloads. The second aspect proposes runtime systems for

efficient neural network inference. While larger neural networks are used for general

workload, a specialized workload is usually observed in a specific scenario. My research

builds runtime systems to automatically detect the scenario information during runtime

and exploit such information for efficient big data analytics. The third aspect is to build

secure deep learning frameworks to efficiently support diverse workloads such as zero-

knowledge neural networks and neural network verification. My research abstracts the

key computing patterns in secure deep learning and automatically optimizes diverse NN

operators with framework supports.
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Chapter 1

Introduction

1.1 Motivation

Big data analytics are changing the landscape of many real-world applications thanks

to its human-level accuracy. This success is powered by the advancement of diverse model

designs and large-scale datasets. For example, convolutional neural networks (CNNs)

[1, 2] achieve human-level performance on image recognition and power self-driving cars

in Waymo [3] and TuSimple [4]. Transformers [5, 6] achieve state-of-the-art performance

on many natural language processing (NLP) tasks and have been widely deployed for hate

speech detection in Facebook [7] and question answering in Alex [8]. Recent advancement

also includes secure deep learning [9, 10, 11, 12, 13] to protect the privacy and improve

the robustness of neural networks.

Despite its wide deployment, big data analytics usually come with high latency and

energy consumption due to two reasons. The first reason is that models in big data

analytics usually involve intensive computation and memory access. VggNet-16 has 30

giga floating-point operations (GFLOPs) when processing a single image. This lead to

1.4-second latency and 3.6W energy consumption which can drain the power of a large
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Introduction Chapter 1

smartphone battery (e.g., 2.7-Ah battecy in iPhoneX [14]) in 2 hours. The second reason

is that models designed for different tasks usually show significantly different computing

patterns, which makes it challenging to efficiently map the high-level algorithmic design

to low-level hardware backends. Convolutional neural networks are usually composed

by dense matrix-matrix multiplications while graph neural networks incorporate sparse

graph computation. Recent secure models such as zero-knowledge neural networks involve

specialized security computation (e.g., circuit computation) which is significantly different

from plaintext models.

Many hardwares, such as GPUs, have been developed to efficiently support big data

analytics by improving computation and memory access performance. GPUs are first

developed to efficiently animate graphics especially various video games in 1970s [15].

During 2000s, GPUs are introduced to accelerate neural networks especially the shallow

models with two fully connected layers [16, 17, 18, 19]. Since then, many hardware

efforts in modern GPUs have been made to efficiently support big data analytics, such as

Tensor Cores [20] to accelerate tensor computation and mobile GPUs (e.g., Jetson Nano

[21]) to facilitate big data analytics on edge devices. However, there is still a large gap

between the limited hardware supports and the diverse computing patterns in big data

analytics. For example, many quantized models have been designed with 2-bit or 3-bit

computation [22, 23, 24], while Tensor Cores on Ampere architecture provides limited

precision supports (e.g., 1-bit and 4-bit computation).

My research builds systems to efficiently support diverse model and data workload

with commercialized hardware that only has limited compute primitives. The key feature

is to characterize the computing patterns in diverse big data analytics and build systems

to efficiently support such computing patterns. In this thesis, I will show how my research

efficiently supports big data analytics from three perspectives. The first perspective is

hardware-aware kernel tuning, which builds more middle-level libraries for diverse work-
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load based on limited hardware compute primitives (chapter 2, chapter 3). The second

perspective is runtime system for efficient NN inference, which identifies workload char-

acteristics during runtime and automatically specializes NNs to reduce latency and energy

consumption (chapter 4). The third perspective is secure deep learning framework which

abstracts the key computing patterns from diverse secure deep learning workloads and

automatically optimizes such computing patterns with framework supports (chapter 5,

chapter 6, chapter 7).

1.2 Overview of the Dissertation

1.2.1 Hardware-aware Kernel Tuning

Many hardwares have been designed to accelerate big data analytics especially by

supporting tensor computation. Tensor Core from NVIDIA GPUs is one of the most

popular machine learning accelerators and has been widely adopted across various do-

mains such as deep learning, high-resolution climate simulation, earthquake simulation,

and bioinformatics [25]. Comparing with CUDA Cores, Tensor Cores achieve 4× to

8× higher throughput on NVIDIA A100 GPUs. To exploit this increased throughput,

PyTorch uses Tensor Cores as the default compute primitive when available [26].

While Tensor Cores have been successfully deployed in many domains, there is still

a large gap between the limited hardware compute primitives and the diverse model

designs. Different from previous CUDA Cores with scalar computation, Tensor Cores

only support tensor computation (e.g., multiplying two input matrices of shape 8 × 16

and 16 × 8 to generate an output matrix of shape 8 × 8) and a limited set of precision

(e.g., int1, int4, and fp16). However, models for diverse big data analytics usually show

significantly different computing patterns, which makes it challenging to exploit Tensor

3
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Cores. My research fills this gap by building middle-level libraries that efficiently map

diverse workload towards the limited hardware compute primitives.

We start our exploration with APNN-TC [27] (chapter 2) that accelerates arbitrary-

precision neural networks on Tensor Cores. Arbitrary-precision neural network [22, 23,

24] is an important category of fast and efficient neural networks that replaces high-

precision data (e.g., fp32) in neural networks with low-precision quantized representation

(e.g., int2). It finds its strengths in the minimum modification of the original model

architecture, lower memory consumption, and potentially better runtime performance.

While quantized neural networks usually require arbitrary precisions (e.g., 1-bit weight

and 2-bit activations), Tensor Cores only support a limited range of precisions (e.g., int1

and int4) and limits the potential performance benefits.

To tackle this problem, we propose APNN-TC to support arbitrary precision neural

networks with the limited precisions on Tensor Cores. We learn that the key is to develop

an AP-BIT algorithmic emulation design to support arbitrary-precision computation and

an efficient AP-Layer kernel implementation to achieve high performance for individual

NN layers. We further propose an efficient APNN design to minimize data movement

across NN layers. Our experiments show that APNN-TC can achieve up to 3.78× speedup

over CUTLASS kernels and 3.08× speedup over CUBLAS kernels.

We further develop EGEMM-TC [28] (chapter 3) to accelerate scientific computing on

Tensor Cores with extended precision. In NVIDIA Volta and Turing achitectures, Tensor

Cores achieve high performance with half-precision matrix inputs tailored towards deep

learning workloads, based on the fact that deep learning workloads are usually robust

to low-precision computation [29, 30, 31]. Since GEneral Matrix-Matrix multiplication

(GEMM) is also one essential building block of many scientific computing applications,

we expect to bring this performance benefits to scientific computing domain. However,

many scientific computing applications (e.g., kNN and kMeans in large-scale physical
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simulations [32] and mathematical computations [33]) are rather sensitive to computation

precision for generating valid results. Such a restriction on precision prevents them from

exploiting powerful Tensor Cores to improve performance.

To tackle this problem, we design Emulated GEMM on Tensor Cores (EGEMM-

TC) to accelerate GEMM-based scientific computing on Tensor Cores with both high

performance and extended-precision computation. Our key insight is that exploiting

high-precision intermediate results from hardware computation can effectively mitigate

the emulation overhead. Evaluation shows that EGEMM-TC achieves 3.13× and 11.18×

speedup on average over single-precision kernels on CUDA Cores from cuBLAS and

CUDA-SDK, respectively. On a set of GEMM-based scientific computing application,

EGEMM-TC also achieves 1.8× speedup on average compared to hand-tuned code on

CUDA Cores.

1.2.2 Runtime system for efficient NN inference

Another important technique for accelerating big data analytics is automatically de-

tecting and exploiting the runtime information to reduce energy consumption while still

achieving the desired accuracy. One typical runtime information in big data analytics

is the temporal locality in video streams. Considering a video stream collected from a

continuous camera feed, it is common that only a small number of classes keep appearing

in a large number of consecutive frames. For example, in a film scenario, only a small

number of people would come to the master shots frequently, generally lasting for a few

minutes, and another group of people will not appear until the scenario has changed.

We turn such an abstract concept, temporal locality, into something concrete and

measurable, class skew. To fully exploit the class skews, we build Palleon [34] (chapter 4),

a runtime system that dynamically adapts and selects a CNN model with the least energy
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consumption based on the automatically detected class skews, while still achieving the

desired accuracy. Extensive experiments confirm the effectiveness of Palleon and show

that it could achieve up to 6.7× energy saving and 7.9× latency reduction while achieving

an equivalent or better accuracy.

1.2.3 Secure deep learning frameworks

Secure deep learning frameworks are important to efficiently support models with

diverse computing patterns. Early neural networks usually involve with only standard

tensor computations such as matrix-matrix multiplication for convolution layers and can

be accelerated with vendor libraries such as cuBLAS and CUTLASS. However, recent

private and secure models show significantly different computing patterns and usually can

hardly be accelerated with existing vendor libraries. For example, zero-knowledge neural

network requires circuit computation that is intrinsic to the zero-knowledge proof security

scheme, which are significantly different from standard tensor computation. Accelerating

these private and secure models usually requires both expertise from the machine learning

domain and the security domain, making it challenging to optimize the performance. My

research builds secure deep learning frameworks to automatically accelerate these secure

and private models by efficiently supporting diverse computing patterns.

We first develop ZEN [35] (chapter 5) to generate efficient verifiable, zero-knowledge

neural network (zkNN) inference schemes. We generate two zkNN schemes: ZENacc

and ZENinfer. Used in combination, these verifiable computation schemes ensure both

the privacy of the sensitive user data as well as the confidentiality of the neural network

models. We further propose two kinds of optimizations to efficiently map neural networks

to the zero-knowledge proof security schemes. Evaluation shows that ZEN produces

verifiable neural network inference schemes with 5.43× to 22.19× (15.35× on average)

6



Introduction Chapter 1

less R1CS constraints.

Then, we develop ZENO (chapter 6) to significantly reduce the latency of zkNN in-

ference schemes. Different from ZEN that reduces the number of constraints, ZENO

focuses on system optimizations to further reduce latency. We observe that system opti-

mizations play an important role in reducing the latency of zkNNs while the computation

complexity of zero-knowledge proofs is proportional to the number of constraints in the-

ory. Our key insight is to exploit the high-level privacy and tensor semantics to reduce

the cost of low-level zero-knowledge circuit computation. Evaluation shows that, based

on the same security schemes from ZEN, ZENO can achieve 8.5× end-to-end speedup

over state-of-the-art zkSNARK systems.

Finally, we build an efficient framework, Faith (chapter 7), to accelerate transformer

verification on GPUs. Transformer verification is an important technique to formally

verify the robustness of a transformer against adversarial attacks [11, 9, 10, 36]. How-

ever, transformer verification contains intensive bound-centric computation, which are

significantly different from tensor computation in standard neural networks and lead to

high latency. To tackle this problem, we build Faith (chapter 7), the first efficient frame-

work to optimize the performance of transformer verification on GPUs. We propose a set

of verification tailored system optimizations. In particular, we design a semantic-aware

computation graph transformation to identify and exploit novel fusion opportunities for

transformer verification, a verifier-specialized kernel crafter to effectively map transformer

verification kernels to GPU backends, and an expert-guided autotuning to incorporate

a set of expert knowledge on modern GPU architecture to guide large design space ex-

ploration. Extensive experiments show that Faith achieves up to 3.4× speedup (2.6× on

average) over state-of-the-art frameworks.

7



Chapter 2

APNN-TC: Accelerating

Arbitrary-Precision Neural Networks

on Tensor Cores

In this chapter, we present APNN-TC to accelerate Arbitrary-Precision Neural Networks

(APNN) on Tensor Cores (this work [27] has been published in SC 2021). Over the years,

accelerating neural networks with quantization has been widely studied. Unfortunately,

prior efforts with diverse precisions (e.g., 1-bit weights and 2-bit activations) are usually

restricted by limited precision support on GPUs (e.g., int1 and int4). To break such

restrictions, we introduce the first framework, APNN-TC, to fully exploit quantization

benefits on Ampere GPU Tensor Cores. Specifically, APNN-TC first incorporates a

novel emulation algorithm to support arbitrary short bit-width computation with int1

compute primitives and XOR/AND Boolean operations. Second, APNN-TC integrates

arbitrary precision layer designs to efficiently map our emulation algorithm to Tensor

Cores with novel batching strategies and specialized memory organization. Third, APNN-

TC embodies a novel arbitrary precision NN design to minimize memory access across

8
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layers and further improve performance. Extensive evaluations show that APNN-TC

can achieve significant speedup over CUTLASS kernels and various NN models, such as

ResNet and VGG.

2.1 Problem Statement

Over the recent years, demands to improve the performance of deep neural networks

(DNNs) have never been satisfied. Prior work approaches faster and more efficient DNNs

from different aspects, such as model pruning [37, 38, 39, 40], kernel factorization [41, 42,

43, 44], and data quantization [45, 46]. Among those efforts, quantization-based DNN

acceleration [47, 45, 46] finds its strengths in minimum modification of the original model

architecture, lower memory consumption, and better runtime performance.

To accelerate quantized DNNs, many specialized cores have been introduced to sup-

port low-precision dense matrix-matrix multiplications, such as Tensor Processing Units

(TPUs) [48], Neural Network Processors (NNPs) [49], and GPU Tensor Cores [50]. For

example, NVIDIA introduces Tensor Cores in Volta architecture [51] that support FP16

matrix-matrix multiplication. In Turing architecture, NVIDIA extends architecture sup-

port for more precisions (e.g., int1 and int4) and bit-level operations (e.g., XOR) [52].

Recently in the Ampere architecture, we find there is additional support for more pre-

cision and bit-level operations (e.g., AND). However, these specialized cores still support

a limited range of precisions with only architecture-level efforts, while quantized DNNs

usually require arbitrary precisions (e.g., 1-bit weight and 2-bit activations). In this

chapter, our key question is whether we can support arbitrary precision neural networks

with the limited precisions on Tensor Cores.

We identify two major challenges in accelerating arbitrary precision DNNs on Ampere

GPU Tensor Cores.
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Lack of mathematical emulation design. To support arbitrary precisions (e.g.,

int1 weights and int2 activations), one naive approach is to represent these low-precision

values with the supported high-precision values (e.g., int4). However, this approach in-

troduces extra overhead and prevents efficient quantized DNNs on Tensor Cores. Another

approach is to emulate with int1 compute primitives. However, with int1 precision,

Tensor Cores only support two bit-level operations (i.e., XOR and AND) and mathemati-

cal emulation designs are required to support multiplication and addition in quantized

DNNs. Moreover, quantized DNNs may have diverse input data (e.g., -1/+1 or 0/1),

where different data may require different emulation designs.

Lack of efficient implementation for arbitrary precision NN layers. To

accelerate APNN on Tensor Cores, we need to efficiently map arbitrary precision NN

layers to Tensor Cores with specialized compute primitives and memory architectures.

Existing works on accelerating binary neural networks simply split NN layers into small

matrix tiles (e.g., 8 × 8) to match Tensor Core compute primitives and improve the

parallelism. However, naively borrowing these strategies fails to exploit the data locality

during NN layer computation especially for our emulation workload. Moreover, arbitrary

precision computation usually computes at the bit-level (e.g., int3 or int5) while existing

hardware devices such as CPUs and GPUs usually operate at the word or byte level.

Specialized bit operations and data organization are required to support efficient bit-

level computation and avoid uncoalesced memory access.

Lack of efficient NN framework designs. One standard approach to build quan-

tized neural networks is to stack a sequence of NN layers, such as a convolution layer

followed by a pooling layer and a quantization layer. However, this approach ignores

the data reuse opportunity across NN layers and leads to unnecessary memory overhead.

For example, on NNs with n 2-bit activations, there are two semantic equivalent im-

plementations – quantization after reading 32-bit activations from the previous layer or

10
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APNN-TC AP-Layer Design(§ )
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AP-NN Design 
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Memory-efficient
Bit Compression

Channel-major 
Data Organization

Input-Aware
Padding Design

Minimal-traffic
Dataflow

Semantic-aware
Kernel FusionPerformance Analysis (§ )

Figure 2.1: The overview of APNN framework.

quantization to 2-bit ones before writing to global memory for the next layer. While these

two implementations provide the same semantic, the former requires memory access of

32n bits while the latter only requires memory access of 2n bits.

2.2 Overview of Proposed Solution

To this end, we propose APNN-TC to accelerate Arbitrary Precision Neural Networks

on Ampere GPU Tensor Cores, as illustrated in Figure 2.1. First, we propose an AP-

BIT emulation design to support arbitrary-precision computation with 1-bit compute

primitives. Our AP-BIT algorithm can adaptively select operators (e.g., XOR or AND)

to support diverse input data (e.g., -1/1 or 0/1). Second, we build efficient AP-Layer

design including an arbitrary-precision matrix-matrix multiplication (APMM) layer for

fully connected layers and an arbitrary-precision convolution (APConv) layer for convo-

lution layers. We propose a set of memory and computation designs (e.g., batch-based

double caching and channel-major data organization) to fully exploit Tensor Core com-

putation and minimize memory access. We also incorporate a performance analysis to

automatically tune the hyper-parameters in APMM and APConv. Third, we propose

11
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an efficient APNN design to improve the performance at the framework level. It in-

cludes a minimal-traffic dataflow to support various precisions over APNN layers and a

semantic-aware kernel fusion to minimize the data movement across layers.

Extensive experiments show that APNN-TC can achieve up to 3.78× speedup over

CUTLASS kernels and 3.08× speedup over CUBLAS kernels. APNN-TC can also con-

sistently outperform NNs implemented with built-in int8, half, or single precision. For

example, with 2-bit weights and 8-bit activations, APNN-TC can achieve more than 4×

latency reduction and 3× higher throughput than the single-precision NN with only 2%

accuracy drop.

2.3 Related Works

2.3.1 APNN algorithm designs

Arbitrary precision (lower than INT8) neural network (APNN) algorithms have been

widely studied [53, 52, 54, 22, 24, 23, 55, 56, 57] to fully explore the spectrum of NN

performance and NN accuracy and cater to diverse application requirements. In addition

to widely supported precisions on modern GPUs (e.g., int1, int4, and int8), these

APNNs usually utilize more diverse precisions such as int2, int3, and int5. APNNs

may also have different precisions for weights and activations (e.g., 1-bit weights and 2-bit

activations). Comparing with INT8 quantized neural networks, APNNs provide better

performance and memory efficiency at the cost of (slightly) degraded accuracy. Popular

APNNs include DoReFa-Net [22] for 1-bit weights and 2-bit activations, LQ-Nets [24] for

1-4 bits, HAQ [23] for 1-8 bits, OLAccel [55] for 4 bits, BSTC [56] and TCBNN [52] for

1 bits. In this chapter, we follow LQ-Nets [24] that starts from a full-precision NN and

adopts the quantization error minimization (QEM) strategy to generate quantized NNs.

12
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2.3.2 APNN Hardware Supports

While many APNN algorithms have been designed, the hardware supports are still

limited. One direction is to build FPGA and ASIC based implementations [23, 55]

to demonstrate the performance benefits of APNNs. However, these implementations

usually require specialized hardware designs to support arbitrary-precision computation

and cannot be applied to GPUs. Another direction is to utilize built-in precisions on

GPUs for quantized neural networks. Taking the most famous Pytorch [58] framework

as an example, it supports FP32, FP16, and BF16 models on GPUs and int8 quantization

on x86 CPUs with AVX2 support. Recently, BSTC [56] and BTC [52] accelerates binary

neural networks on GPUs by exploiting the int1 compute primitive. However, existing

works can only build on the limited precision supported on GPUs (e.g., int1, int4, and

int8) and cannot fully exploit the performance benefits from APNNs. In this chapter,

we build the first generalized framework to accelerate arbitrary-precision neural networks

on Ampere GPU Tensor Cores.

2.3.3 Tensor Cores

Tensor Cores are specialized cores for accelerating neural networks in terms of matrix-

matrix multiplications. Tensor Cores are introduced in recent NVIDIA GPUs since Volta

architecture [59]. Different from CUDA Cores that compute scalar values with individual

threads, Tensor Cores compute at the matrix level with all threads in a warp [60]. For

example, the 1-bit Tensor Core compute primitive takes two int1 input matrices A and

B of shape 8× 128 and generates an int32 output matrix C of shape 8× 8 [52]. In Volta

architecture, Tensor Cores support only half-precision computation [61]. To support more

quantized neural networks, Tensor Cores add more precisions including int1, int4, and

int8 in Turing architecture [62]. Regarding int1 precision, Tensor Cores support only
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XOR logical operation in Turing architecture and recently add AND logical operation in

Ampere architecture [63]. Despite these hardware efforts on supporting more precisions,

arbitrary precisions are still not supported. This is the first work to support arbitrary

precision computation on Ampere GPU Tensor Cores with int1 precision and support

for both XOR and AND operations.

2.4 AP-Bit Emulation Design

In this section, we design an AP-BIT emulation on Tensor Cores to support arbitrary-

precision computation. We first design an AP-Bit operation template that supports

arbitrary-precision computation with 1-bit compute primitive on Tensor Cores. Then,

we propose a data adaptive operator selection to automatically support various input

data (e.g., -1/+1 and 0/1) with bitwise XOR and AND on Tensor Cores. Here, we focus on

the algorithm design on small matrices (i.e., input matrices of 8×128 and output matrix

of 8 × 8) that can fit directly on Tensor Core compute primitives. We will discuss the

efficient computation of large matrices in the next section.

2.4.1 AP-Bit Operation Template Design

The AP-Bit operation template takes a matrix W with p-bit elements and a matrix

X with q-bit elements, and computes with 1-bit operations on Tensor Cores to generate a

32-bit output matrix Y = WX. Our key observation is that each arbitrary-bit scalar digit

can be decomposed to a sequence of 1-bit scalar digits and the arbitrary computation

can be conducted with only 1-bit operations and shift operations. Formally, to support

scalar-level arbitrary precision computation wx of a 1-bit weight w and a 2-bit feature

x = x(1)x(0) with w, x(i) ∈ int1, we can first decompose 1-bit values x(1) and x(0) from
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Figure 2.2: Illustration of AP-Bit Operation Template with 1-bit weight W and 2-bit
feature X, which can be generalized to arbitrary weight bits and feature bits. Note
that X(0) and X(1) in the dashed box are batched into a single large matrix during
computation, which will be discussed in Section 2.5.1.

the 2-bit feature x as:

x(1) = (x≫ 1)&1, x(0) = (x≫ 0)&1

Suppose we have an 1-bit operation OP (a, b) (e.g., the bmma API of Tensor Cores) that

takes 1-bit inputs and generate 32-bit outputs, we can compute wx as

wx = OP (w, x(1)) ∗ 2 +OP (w, x(0))

We illustrate our AP-Bit operation template in Figure 2.2. Here, we focus on a 1-bit

weight matrix W of shape 8×128 and a 2-bit feature matrix X of shape 8×128 to illustrate

our algorithm design. A naive approach is to use 4-bit integers to represent each 1-bit

element wi,j and 2-bit element xi,j, and then use the int4 compute primitive on Tensor

Cores. However, this approach would lead to unnecessary memory and computation

overhead. Instead, we propose to exploit the int1 compute primitive on Tensor Cores

to support arbitrary-precision computation by dynamically adjusting the memory and

computation requirement. In particular, the first step is to conduct bit decomposition
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by splitting a 2-bit xi,j to two 1-bit elements x
(0)
i,j and x

(0)
i,j :

x
(1)
i,j = (xi,j ≫ 1)&1, x

(0)
i,j = (xi,j ≫ 0)&1

These 1-bit elements are then packed into 1-bit matrix X0 and X(1). The second step is

to conduct batch-based Tensor Core computation on these 1-bit matrices with the

bmma API and generate 32-bit output matrices

Y (0) = bmma(W,X(0)), Y (1) = bmma(W,X(1))

These matrices can be computed directly with the bmma API since all of them have the

shape of 8 × 128. We also note that Tensor Core primitives for int1, int4, and int8

generate 32-bit output matrices to accumulate a large number of bit-operation outputs

and avoid overflow. The third step is to conduct bit combination and generate the

final output matrix Y

Yi,j = Y
(1)
i,j ∗ 2 + Y

(0)
i,j (2.1)

Here, Yi,j, Y
(1)
i,j and Y

(0)
i,j refer to the (i, j)th scalar elements of matrix Y , Y (1) and Y (0),

respectively. For notation simplicity, we abbreviate Equation 2.1 as Y = Y (1) ∗ 2 + Y (0)

in the following sections to represent the scalar multiplication and elementwise addition.

We note that Y = WX mathematically.

It is not hard to see that this computation can be generalized to matrices with

arbitrary bits p and q. Formally, given a p-bit weight matrix W and a q-bit weight

matrix X, we can first decompose into 1-bit matrices W (s), s ∈ {0, 1, ..., p − 1} and

X(t), t ∈ {0, 1, ..., q − 1}. For each element, we have

w
(s)
i,j = (wi,j ≫ s)&1, x

(t)
i,j = (xi,j ≫ t)&1 (2.2)

Then, we compute the bmma API for pq times for each combination of s and t:

Y (s,t) = bmma(W (s), X(t))
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Finally, we conduct bit combination to generate the 32-bit output matrix Y :

Y =

p−1∑
s=0

q−1∑
t=0

Y (s,t) ∗ 2s+t

Cost Analysis. The cost of arbitrary-precision computation comes from three parts:

bit decomposition, tensor core computation, and bit combination. Given a p-bit weight

matrix and a q-bit data matrix of shape n × n, bit decomposition shows complexity of

O((p + q)n2) since we need O(pn2) operations to split each p-bit element from A into

p 1-bit elements and another O(qn2) operations to split each q-bit element from B into

q 1-bit elements. The bit combination shows complexity of O(pqn2), since we have pq

matrices Y (s,t) of shape n×n and need to add elementwisely. This overhead is negligible

compared with the O(n3) complexity in the Tensor Core computation. Note that only

1-bit compute primitives are used for this expensive matrix-matrix multiplication, which

significantly reduces the overall latency.

2.4.2 Data Adaptive Operator Selection

While we compute with bit-0 and bit-1 in arbitrary-precision computation, these

two values may actually encode diverse values. For example, the 1-bit weight matrix

in neural networks may encode −1 and 1, instead of 0 and 1, in order to improve the

accuracy of neural networks. In this case, bit-0 indicates the value −1 and bit-1 indicates

the value 1. To support this diversity in the encoded data, we introduce data adaptive

operator selection by adopting different bit operations in Tensor Cores (i.e., XOR and

AND). In particular, we support three cases, where we first conduct bit operations and

then accumulate with popc (i.e., population count [64] that counts the number of set

bits). The Case-I is that both W and X encode 0 and 1, where we choose logical AND

operation. For example, given a 1-bit vector W = [0, 1] and a 1-bit vector X = [1, 1], we
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use AND operation to compute as

WX = popc(AND([0, 1], [1, 1])) = popc([0, 1]) = 1

The Case-II is that both W and X encodes −1 and +1, where we select logical XOR

operation. For example, given two 1-bit vectors W = [−1, 1] and X = [1, 1], we first map

−1 to 0 and compute as

WX = n− 2 ∗ popc(XOR([0, 1], [1, 1])) = n− 2 ∗ popc([0, 1]) = 0

Here, n(=2) is the length of the vector.

The Case-III is that W encodes−1 and +1, while X encodes 0 and 1. For example, we

may need to compute the multiplication of two 1-bit vectors W = [−1, 1] and X = [1, 0].

This case happens frequently in neural networks with a 1-bit weight matrix W and a

q-bit feature matrix X with q > 1. In this case, naively adopting XOR or AND does not

work, since there are three values −1, 0, and 1 that cannot be easily encoded with 1 bit.

To this end, we incorporate a linear transformation on W and compute with only AND

operation. Our key observation is that W can be transformed into a vector with only 0

and 1 by adding a constant vector J2 = [1, 1]:

Ŵ =
W + J2

2
= [0, 1]

Then, we compute ŴX = 0 with AND operation as Case-I. Finally, we recover the value

WX by another linear transformation:

WX = 2ŴX − J2X = 2 ∗ 0− 1 = −1

Note that J2 is a constant vector that can be cached in Tensor Core fragment and does

not introduce extra memory overhead.
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2.5 Arbitrary Precision Layer Design

In this section, we propose the Arbitrary-Precision Matrix Multiplication (APMM)

for fully connected layers and Arbitrary-Precision Convolution (APConv) for convolution

layers.

2.5.1 Arbitrary-Precision Matrix Multiplication

Arbitrary-Precision Matrix Multiplication (APMM) takes the decomposed 1-bit weight

matrix W (s), s ∈ {0, ..., p−1}, the decomposed 1-bit feature matrix X(t), t ∈ {0, ..., q−1},

and computes output matrix Y =
∑p−1

s=0

∑q−1
t=0 Y

(s,t) ∗ 2s+t. By default, APMM generates

32-bit output to avoid data overflow for large matrices and match the 32-bit output in

Tensor Core compute primitives. APMM also supports arbitrary-precision output (e.g.,

int2) when APMM is used as a hidden layer in neural networks (NNs) and the output

is consumed by the next APMM-based NN layer.

Considering that APMM essentially computes an arbitrary precision GEneral Matrix-

Matrix multiplication (GEMM) kernel with multiple Binary Matrix-MAtrix multiplica-

tion (BMMA) kernels, one naive strategy is to build upon existing BMMA kernels [52, 56].

In particular, we can use existing BMMA kernels to multiply each pair of W (s) and X(t)

and accumulate W (s)X(t) to the output matrix Y . However, this approach shows sig-

nificant inefficiency due to two reasons. First, this approach ignores the data reuse

opportunity since the same weight matrix tile from W (s) can be multiplied with different

feature matrix tiles from Xt1 and Xt2. Second, this approach requires extra communica-

tion across BMMA kernels, such that reducing W (s)X(t) into Y leads to significant global

memory access. We show our efficient APMM design in Figure 2.3. It includes a batch-

based double caching to facilitate the data reuse and a memory-efficient bit combination

to accelerate the accumulation and optionally generate the arbitrary-precision output.
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Here, we illustrate the design with 1-bit W and 2-bit X for notation simplicity while

arbitrary-precision W and X are supported.

(a) Batch-based Double Caching. Batch-based double caching exploits two GPU

memory hierarchies (i.e., shared memory and fragment located in registers) to cache

matrix tiles and facilitate data reuse in APMM computation, as illustrated in Figure

2.3(a). Considering the limited size of shared memory and fragment, we tile weight

matrices W (s) and feature matrices X(t) such that these tiles can be cached in GPU

memory hierarchies. Formally, given W (s) of shape M ×K and X(t) of shape N ×K, we

first tile W (s) along the M dimension into block matrix tiles of shape bm × bk. Similarly,

we tile X(t) along the N dimension into block matrix tiles of shape bn × bk. Here, each

GPU block will multiply one pair of block matrix tiles and generate an output matrix tile

of shape bm × bn. Considering that Tensor Cores compute at the warp level, we further

tile W (s) into warp matrix tiles of shape wm×wk and Xs into wn×wk such that each warp

computes an output tile of shape wm×wn. To match with the 8× 8× 128 bmma compute

primitive of Tensor Cores, each warp will slide along wm, wn, and K dimension during
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computation. Note that these tiling sizes have a significant impact on the performance,

which will be analyzed in Section 2.5.3.

Batch-based double caching first adopts a batch strategy to improve inter-thread

parallelism and achieve high performance. Existing works on binary neural networks

[56, 52] report that the GEMM size in NN workload is usually small (e.g., 512 × 512)

and use small matrix tiling sizes (e.g., 32× 32) to improve the inter-thread parallelism.

However, this approach leads to low intra-thread parallelism and prevents data reuse.

Instead, our batch strategy virtually transforms multiple small BMMAs into a large

BMMA. In particular, given W (s), s ∈ {1, ..., p − 1} of shape M × K and X(t), t ∈

{1, ..., q − 1} of shape N ×K, we batch these small matrices into WB of shape pM ×K

and XB of shape qN ×K and compute using a single large BMMA. Here, we implement

a “virtual" batch strategy during the data loading procedure by dynamically deciding the

global memory address of the corresponding matrix tile such that no additional memory

movement is involved.

Batch-based double caching then exploits two GPU memory hierarchies to facilitate

data reuse at different levels. The first level is shared memory caching to reuse matrix

tiles from W (s) and X(t). Here, a naive strategy is that each warp independently loads a

weight tile and a feature tile for computation. However, we observe that the same weight

tile may be multiplied with feature tiles from different 1-bit feature matrices X(0) and

X(1), as illustrated in Figure 2.3(a). To this end, our design requires all warps to first

collaboratively load bm × bk weight data and bn × bk feature data from global memory

to shared memory. Then, each warp fetches its own matrix tiles from shared memory.

In this way, we can significantly reduce global memory access by exploiting fast shared

memory.

The second level is fragment caching to continuously store output tiles in the same

Tensor Core fragment. Since Tensor Core compute primitives require to accumulate in
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32-bit Tensor Core fragments, the output tiles usually consume a large memory space

compared with the 1-bit input data. Moving output tiles between shared memory and

Tensor Core fragment may lead to heavy shared memory access. Moreover, existing

dissecting works [62, 61] reveal that fragment is composed of registers and one GPU

block of 8 warps can provide up to 256 KB Fragment, which is much larger than shared

memory. To this end, as iterating through the K dimension during computation, we

continuously use multiple fragments to cache output tiles of shape bm × bn for reducing

shared memory access and caching more feature and weight tiles in shared memory.

(b) Memory-efficient Bit Combination. Bit combination consumes 32-bit BMMA

outputs Y (s,t) ∈ int32M×N and generates 32-bit APMM outputs Y ∈ int32M×N as

Y =
∑p−1

s=0

∑q−1
t=0 Y

(s,t) ∗ 2s+t. ‘Bit combination can also generate arbitrary precision out-

put when it is utilized as a NN hidden layer and its output is consumed by the next

NN layer. Overall, bit combination takes only O(pqMN) computation complexity, which

is significantly lower than the computation complexity of GEMM operations. However,

there are two potential memory bottlenecks in bit combination, which have a significant

performance impact. The first one is global memory access when reducing 32-bit BMMA

outputs to 32-bit APMM outputs. In a naive implementation that independently con-

ducts BMMA and bit combination, bit combination usually introduces similar latency

as the BMMA kernel. The main reason is that, while Tensor Cores provide significantly

higher computation throughput than CUDA Cores, the global memory bandwidth re-

mains the same. The second one is the shared memory access when converting 32-bit

APMM outputs to arbitrary-precision outputs. In this procedure, we usually need to

pack low-bit values (e.g., 2-bit) in registers from different threads to a single memory-

aligned value (e.g., 32-bit) before storing to global memory. Relying on shared memory

for data exchange across threads may lead to heavy shared memory access.

Memory-efficient bit combination includes two novel designs to mitigate memory over-
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head. The first design includes a semantic-aware workload allocation and an in-shared-

memory reduction. In particular, at the data loading phase of BMMA, we load feature

tiles and weight tiles of the same spatial location such that their multiplication outputs

can be reduced directly. As illustrated in Figure 2.3, instead of loading a bn × bk feature

tile of X(0) or X(1), we load two 0.5bn×bk feature tiles of both X(0) and X(1) with the same

matrix index. In this way, we can reduce WX(1) and WX(0) directly in shared memory

and mitigate global memory access while not degrading the BMMA performance.

The second design incorporates an element-wise routine and an inter-thread commu-

nication to pack low-bit values and mitigate shared memory overhead. The element-wise

routine is a user-defined interface to provide diverse support of quantization and batch

normalization across NN layers. This routine applies to individual 32-bit reduced values

in registers. Given a 32-bit value in a register, this routine may quantize it into a p-bit

value that is still stored in the 32-bit register with the first 32 − p bits as zeros. This

routine also includes bit decomposition (Equation 2.2) that splits this p-bit value in a

register to 1-bit values in p registers. After that, we use a __ballot_sync API to enable

inter-thread communication and directly pack the 1-bit values across threads into 32-bit

values that can be stored to the global memory.

2.5.2 Arbitrary-Precision Convolution (APConv)

APConv takes the decomposed 1-bit weight matrix W (s) of shape Cout×Cin×K×K,

the decomposed 1-bit feature matrix X(t) of shape BS × Cin × Height × Width, and

generates output matrix Y . Here, Cout is the number of output channels, Cin is the

number of input channels, K is the kernel size, BS is the batch size. Existing works

on bit-level convolution usually adopt a direct convolution design [56, 52] to improve

the GPU utilization. However, these methods ignore the data reuse opportunity and
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Figure 2.4: Illustration of Channel Major Data Organization (NPHWC). P indicates
the number of bits. Ichw indicates the image pixel at the c-th channel, h-th height,
and w-th width.

introduce heavy global memory access. In addition, APConv on a p-bit weight and a

q-bit feature usually has pq times workload than the BConv on the same weight and

feature size, which can easily contribute to high GPU utilization. To this end, APConv

incorporates the batch-based double caching design as APMM to mitigate the global

memory access. However, there are still two key challenges that distinguish APConv

from APMM. The first is the data organization where naively reading the K×K feature

map may easily lead to un-coalesced memory access. The second is the data padding

where simply padding zeros may lead to erroneous results. To tackle these challenges,

we propose channel-major data organization and input-aware padding design.

(a) Channel-Major Data Organization. Channel-major data organization trans-

forms un-coalesced and unaligned memory access to a coalesced and aligned one for

improving performance. Traditional data organization for 32-bit convolution usually em-

ploys a NCHW design, as illustrated in Figure 2.4(a). However, naively borrowing this

design to APConv leads to un-aligned and un-coalesced memory access due to two rea-
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sons. First, multiple P -bit (e.g., 3-bit) elements usually cannot be packed into an aligned

32-bit element, which is required for valid GPU reads and writes. Using a 32-bit element

to store a P -bit element will introduce extra memory overhead. Second, convolution op-

erations usually read only K continuous elements (or KP bits) due to the K ×K kernel

size, which may lead to un-coalesced memory access.

We design a channel-major data organization as illustrated in Figure 2.4(b). There are

two key design choices. First, we split a P -bit feature matrix into P 1-bit feature matrices

and store each 1-bit feature matrix consecutively. In this way, we can provide aligned

memory access for each 1-bit feature matrix and support arbitrary precision P . Second,

we consecutively store all channels of elements with the same spatial location. Since

convolution layers usually have 128C,C ∈ N channels, this usually leads to coalesced

memory access during computation.

(b) Input-aware Padding Design. Input-aware padding design adaptively adjusts

padding values according to input values. As mentioned in Section 2.4.2, when the weight

W encodes −1 and 1 with 0 and 1, we cannot naively padding 0 since 0 represents −1.

We propose three padding strategies according to the input data. First, when both

weight and feature encode 0 and 1, we simply pad zeros for features. In this case, padding

0 for features will only add extra 0’s for arbitrary weight values, which does not change

the computation result. Second, when both weight and feature encode −1 and 1, we

pad 1 for features and use an extra counter flag to track the number of 0’s when the

convolution weight moves outside the input image frame. We will subtract counter to

amend the corresponding convolution results. Third, when weight encodes −1 and 1 and

feature encodes 0 and 1, we pad 0 to features and do not change the convolution results.
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2.5.3 Performance Analysis

In our APNN-TC kernel design, there are six tuning knobs – the block tiling sizes

bm, bn, bk, and the warp tiling sizes wm, wn, wk. These tiling sizes bring a trade-

off between the Thread-Level Parallelism (TLP) and the Instruction Level Parallelism

(ILP), especially the compute intensity (CI). Here, we focus on block tiling sizes, since

we empirically observe that utilizing 8 warps per block and splitting the block workload

evenly across warps provide the best performance (i.e., wm = bm/4, wn = bn/2, wk =

bk). In this subsection, we first analyze the performance impact of individual tuning

knobs. Then, we propose an autotuning strategy to maximize the performance. Since

APMM and APConv share the same batch-based double caching strategy, we use the

same autotuning strategy for these two kernels.

Performance Model TLP refers to the thread-level parallelism in terms of the num-

ber of threads in use. Intuitively, larger TLP can improve GPU utilization and kernel

performance [65, 66]. Formally, given a p-bit weight matrix of shape M × K, a q-bit

feature matrix of shape K ×N and the matrix tiling size bm× bn, we define the TLP as

TLP =
pM × qN

bm × bn
(2.3)

We ignore the number of threads for each block since it is a constant in our evaluation.

Intuitively, smaller bm × bn may improve TLP, which suggests a small bm × bn especially

for small matrices.

Compute intensity (CI) refers to the ratio of computation over memory access on

each thread block. We aim to improve CI for two reasons. First, a higher CI indicates

less memory access and better performance. While the amount of computation remains

the same, the amount of memory access may be reduced significantly by data reusing

and hyper-parameter tuning. Second, a higher CI on a thread block provides more
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opportunities for latency hiding. Formally, for a matrix tile, we compute the amount

of global memory access as bm × bk + bn × bk when reading a bm × bk weight tile and a

bm × bk feature tile. We compute the amount of computation as 2 × bm × bn × bk from

the matrix-matrix multiplication. Finally, we compute CI as

CI =
2× bm × bn
bm + bn

(2.4)

Note that CI can be increased when bm and bn are increased. We also observe that CI

is independent of bk such that we can use smaller bk to leave space for larger bm and bn,

especially when the shared memory size is a limiting factor. In our evaluation, we fix bk

as 128 by default.

Auto-tuning During APNN-TC kernel design, there is a large search space on the

complex interaction between matrix size (M , N , and K), weight bit p, feature bit q,

and block tiling size bm and bn. Note that the selected parameters may also be different

on various GPUs according to computation and memory capabilities. To this end, we

propose a heuristic algorithm to provide a faster search procedure in this large search

space. Formally, given the matrix size M , N , K, the weight bit p, the feature bit

q, the algorithm selects bm, bn ∈ {16, 32, 64, 128} in two steps. First, we compute the

TLP of each combination of bm and bn. We put these combinations in a priority queue,

where a higher TLP leads to a high priority. Second, we pop individual combinations

in the priority queue. We stick to the first combination with the highest TLP if its

TLP is already smaller than a threshold T . Otherwise, we continuously pop and select

combinations in the priority queue to improve CI while ensuring TLP is larger than T .

We empirically set T as 64 in our evaluation. Note that different block tiling sizes share

the same data layout such that there is no overhead when consecutively executing two

layers with different block tiling sizes.
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2.6 Arbitrary Precision Neural Network Design

In this section, we introduce our Arbitrary Precision Neural Network (APNN) design.

We first introduce a minimal-traffic dataflow on supporting various precisions across

layers in APNN. Then, we incorporate a semantic-aware kernel fusion to minimize the

memory access across layers.

2.6.1 Minimal-Traffic Dataflow

Given an int8 RGB image, APNN computes a sequence of NN layers with p-bit

weights and q-bit activations and finally generates an int32 output logits. Here, all

intermediate layers compute at arbitrary precision by taking a p-bit weights and q-bit ac-

tivations and generate 32-bit outputs. Note that the int1 Tensor Core compute primitive

can only generate int32 outputs and an extra quantization layer is required to quantizing

into q-bit activations for the next layer. For performance consideration, during the ini-

tialization of an APNN, we quantize all weights before the model inference computation.

To effectively maintain and transfer arbitrary-bit data, we pack the data bit-by-bit for

both weight and feature map, following the data organization discussed in Section 2.5.2.

The input layer and the output layer have different precisions from the intermediate

layers. As is the common practice with int8 image inputs, the input layer requires an

extra quantization layer that quantizes 8-bit inputs into q-bit activations. The output of

the input layer will also be the quantized arbitrary-bit feature map serving as the input

for the following intermediate layers. In the output layer, Tensor Core computation

results will be directly used for the final softmax logits computation. Thus, we do not

apply quantization after the output layer.
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2.6.2 Semantic-aware Kernel Fusion

Besides APMM and APConv discussed previously, there are still multiple important

layers in APNN, including quantization, Batch Normalization (BN), pooling, and ReLU.

Given all scalars xi,j in the ith layer, quantization element-wisely converts int32 values

xi,j to q-bit values yi,j:

yi,j = ⌊(xi,j − zi)/si⌋

Here, zi is a 32-bit scalar zero-point, si is the scaling scalar, and ⌊·⌋ is the floor function.

BN [67] is another major component in NNs for tackling the covariate shift problem and

facilitating NN training:

yi,j =
xi,j − E[xi,∗]√
V ar[xi,∗ + ϵ]

· γj + βj (2.5)

where E and V ar are expectation and variance across the batch, γj and βj are two learned

parameters. Pooling splits the feature map spatially into k×k grids and generates 1 scalar

output for each grid by computing the average or the maximum value in each grid. ReLU

takes individual input values xi,j and generates output values yi,j = max(xi,j, 0).

While these operations have linear time complexity to the size of feature maps and

consume significantly less computation than APConv and APMM kernels, these oper-

ations may still introduce heavy latency due to the expensive memory access. Indeed,

while Tensor Cores provides significantly improved computation capability, Tensor Cores

share the same memory bandwidth with CUDA Cores on GPUs. Moreover, we observe

that these values are usually computed element-wisely and do not require heavy commu-

nication across GPU threads. We propose a semantic-aware kernel fusion to minimize

memory access. We first fuse APMM/APConv with its following quantization, BN,

pooling, and ReLU kernels into a single kernel to minimize the global memory access. In

particular, these following layers can be seamlessly applied once the convolution results

become available at the shared memory. This can improve the computation intensity for
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individual convolution kernels meanwhile reducing the global memory access from invok-

ing an additional batch normalization kernel. Second, considering that these following

layers usually compute at scalar level, we can further reduce shared memory access by

directly reusing values in registers [68]. For example, when a APMM layer is followed

by a BN layer, a quantization layer, and a ReLU layer, we directly compute the output

scalar as

⌊max(
xi,j − E[xi,∗]√
V ar[xi,∗ + ϵ]

· γj + βj − zi, 0)/si⌋

Note that we only need to load a scalar once to a register and avoids unnecessary shared

memory access.

2.7 Evaluation

In this section, we evaluate APNN-TC under diverse precisions and show the benefits

of arbitrary-precision computation in performance and accuracy.

We evaluate on both Nvidia RTX 3090 and Nvidia Tesla A100. The RTX3090 GPU

is in a ubuntu 16.04 system with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 64 GB

DDR3 DRAM, gcc-7.5.0, and using CUDA-11.1, CUTLASS-2.5, and CUBLAS-11.1. The

A100 GPU is in a Linux 3.10.0 system with AMD EPYC 7742 64-core CPU, 1TB DDR4,

gcc-9.1.0, and using CUDA-11.1, CUTLASS-2.5, and cuBLAS-11.3. All results reported

are the average of 200 times execution.

2.7.1 APLayer Evaluation

APMM Performance We compare our APMM designs with NVIDIA implementa-

tions of low-bit gemm (i.e., int1, int4, and int8) that are accelerated by Tensor Cores.

For int8, we compare with cublas implementation, namely cublass-gemm-int8. Since

30



APNN-TC: Accelerating Arbitrary-Precision Neural Networks on Tensor Cores Chapter 2

int1 and int4 are not supported in cublas, we compare with cutlass implementation,

namely cutlass-gemm-int1 and cutlass-gemm-int4. Following popular settings in NNs, we

compute matrix multiplication of a matrix with shape B ×K and a matrix with shape

K × N , where B = 64 is a popular batch size and K = N ∈ {128, 256, ..., 1024} covers

typical fully connected layer dimensions. According to the precision of our APMM kernel,

we name it APMM-wxay, where x indicates the weight bit and y indicates the activation

bit. For example, APMM-w1a2 indicates 1-bit weights and 2-bit activations. While our

APMM is general to support arbitrary precision, we show 8 popular bit combinations due

to page limits. If both weight bits and activation bits are less than 4 (e.g., w1a2, w1a3,

w1a4, w2a2), we compare it against cutlass-gemm-int4. If either weight bits or activation

bits are larger than 4, we compare it against cublas-gemm-int8. For each matrix size, we

show a speedup of cutlass-gemm-int1 against cutlass-gemm-int4 and cublas-gemm-int8

as the performance benefit when sticking to binary neural networks [56, 52]. Since Ten-

sor Core compute primitive supports only 32-bit outputs, all gemm kernels take low-bit

input (e.g., int1, int4, and int8) and generate 32-bit outputs.

Figure 2.7 shows the results of APMM on RTX 3090. We compare APMM with

cutlass-gemm-int4 in Figure 2.7(a) and cublas-gemm-int8 in Figure 2.7(b). Overall, we

have three major observations. First, APMM can usually achieve significant speedup

over baselines. For example, APMM-w1a2 can achieve up to 2.35× speedup over cutlass-

gemm-int4, while APMM-w5a1 can achieve up to 3× speedup over cublas-gemm-int8.

This result demonstrates the performance benefits of emulating arbitrary-precision with

int1 compute primitives over sticking to int4 or int8 compute primitives. Second,

APMMs with various weight and activation bits usually show similar performance on

small matrices. For example, APMM-w1a2, APMM-w1a3, APMM-w1a4, and APMM-

w2a2 achieves almost the same speedup when N=128 and N=256, even if these kernels

have different computation overhead (e.g., 2× from APMM-w1a2 and 4× from APMM-
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Figure 2.5: APConv Performance on RTX 3090.

w2a2). This benefit comes from our batch-based double caching (Section 2.5.1(a)), where

individual small BMMAs are batched into a large BMMA and computed simultaneously.

Surprisingly, our arbitrary precision computation can even outperform cutlass-gemm-int1

in such cases due to the improved GPU utilization. Third, we observe a smaller speedup

over cublas-gemm-int8 on large matrix sizes, when peak int1 performance is achieved.

Our investigation shows that, on RTX 3090, cutlass-gemm-int1 is only 5.9× faster than

cublas-gemm-int8, such that emulation is slower than built-in int8 compute primitives on

large matrices when peak int1 performance is achieved (e.g., 64×1024×1024 for APMM-

w2a8). We argue that NN workload can still benefit significantly from our APMM since

the fully connected layers in NNs usually have small matrix sizes (e.g., 1 × 512 × 512

in ResNet-18). We also show the results of APMM on A100 in Figure 2.8 with similar

observations.

APConv Performance We compare APConv designs with NVIDIA implementations

of low-bit convolution that are accelerated by Tensor Cores. Since cublas does not sup-

port int1, int4, AND int8 convolution, we use kernels from cutlass. We name these

kernels as cutlass-conv-int1, cutlass-conv-int4, and cutlass-conv-int8. Similar to APMM,
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Figure 2.6: APConv Performance on A100.
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Figure 2.7: APMM Performance on RTX 3090.

we evaluate 8 types of precision with the name APConv-wxay. Since convolution ker-

nels have much more hyperparameters than matrix-multiplication kernels, we show the

performance under various input and output channels while fixing the input size as 16

(medium feature size), filter size as 3 (most frequently used), stride as 1 (most frequently

used), and batch as 1 (for inference).

Figure 2.5 and 2.6 show the speedup of APConv on RTX 3090 and A100, respec-

tively. APConv can achieve 3.78× speedup over cutlass-conv-int4 and 3.08× speedup

over cutlass-conv-int8. This result shows the significant performance benefit from emu-

lating arbitrary precision with int1 over utilizing int4 or int8. Similar to APMM, we

33



APNN-TC: Accelerating Arbitrary-Precision Neural Networks on Tensor Cores Chapter 2

0

1

2

128 256 384 512 640 768 896 1024

Sp
e

e
d

u
p

Matrix Size

APMM-w1a2 APMM-w1a3

APMM-w1a4 APMM-w2a2

cutlass-gemm-int1 cutlass-gemm-int4

(a) Over CUTLASS-GEMM-INT4.

0

1

2

3

4

128 256 384 512 640 768 896 1024

Sp
e

e
d

u
p

Matrix Size

APMM-w5a1 APMM-w1a8

APMM-w6a2 APMM-w2a8

cutlass-gemm-int1 cublas-gemm-int8

(b) Over CUBLAS-GEMM-INT8.

Figure 2.8: APMM Performance on A100.

Table 2.1: APNN Evaluation Setting. We list the dataset, network, input size, output
size, and the model accuracy under precisions of BNN (i.e., int1), w1a2 (i.e., 1-bit
weights with 2-bit activations), and single-precision floating point.

Dataset Network Input Size Output Size Binary w1a2 Single
ImageNet AlexNet [69] 224x224x3 1000 46.1% 55.7% 57.0%
ImageNet VGG-Variant [70] 224x224x3 1000 53.4% 68.8% 69.8%
ImageNet ResNet-18 [2] 224x224x3 1000 51.2% 62.6% 69.6%

also observe a smaller speedup over cutlass-conv-int8 on larges channels due to the limi-

tation of peak int1 performance. Since RTX3090 and A100 provide similar performance,

we will focus on RTX3090 in the following evaluations.

2.7.2 APNN Evaluation

In this section, we evaluate the overall APNN performance on three mainstream neural

network models with ImageNet dataset. The details of our evaluated NN models and

their corresponding binarized neural network, low-bit (1-bit weight with 2-bit activation),

single-precision accuracy precision are listed in Table 2.1.

We consider two types of configurations for evaluation. In the first setting, we focus

on a specific low-bit configuration (1-bit weights and 2-bit activations, i.e., w1a2) across

different neural network models. We choose several baselines including neural networks
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Table 2.2: APNN Inference Performance on NVIDIA Ampere RTX3090 GPU. Note
that latency is measured under a batch of 8 images, throughput is measured under a
batch of 128.

ImageNet-AlexNet ImageNet-VGG_Variant ImageNet-ResNet18
Schemes 8 Latency Throughput 8 Latency Throughput 8 Latency Throughput

CUTLASS-Single 4.43ms 2.89×104fps 25.24ms 3.89×102fps 60.96ms 1.51×102fps
CUTLASS-Half-TC 3.79ms 3.38×104fps 24.19ms 4.67×102fps 57.33ms 1.89×103fps
CUTLASS-INT8-TC 13.10ms 9.77×103fps 25.77ms 6.52×102fps 57.09ms 2.85×103fps

BNN 0.69ms 1.37×104fps 2.17ms 3.91×103fps 0.68ms 1.89×104fps
APNN-w1a2 0.36ms 2.85×104fps 1.66ms 5.32×103fps 0.64ms 1.70×104fps

built with single-precision floating-point implementation from CUTLASS [71] running on

CUDA Cores, half-precision implementation from CUTLASS running on Tensor Cores,

INT8 precision implementation from CUTLASS running on Tensor Cores, and the 1-bit

binarized neural network running on Tensor Cores based on the state-of-the-art design

from [52]. As shown in Table 2.2, our APNN design running on Tensor Cores can achieve

a significant speedup compared with CUTLASS INT8, half and single precision imple-

mentations. This indicates the practical usage of our APNN design in latency-sensitive

applications. Meanwhile, on large batch sizes for throughput performance evaluation, our

APNN design also demonstrates its high throughput advantage over these “standardized”

bit (e.g., 8-bit and half) precision baselines. Compared with the 1-bit binarized neural

network running on Tensor Cores, our APNN design would demonstrate its significant

accuracy improvement (an average 11.67%) as listed in Table 2.1. This can demonstrate

the application of our APNN design in some application settings, where the BNN model

accuracy performance fails to meet the demands. Overall, from the study, we can see

that using our APNN design for arbitrary-bit precision computation is a potential way

for balancing NN model accuracy and runtime performance.

In the second setting, we shift our focus towards model runtime performance tradeoff

on the VGG network. We select several low-bit settings for comparison, including the

1-bit weight with 2-bit activation, 2-bit weight with 2-bit activation, and 2-bit weight

with 8-bit activation. As shown in Table 2.3, APNN-TC significantly reduces latency
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Table 2.3: Case Study: APNN of VGG on ImageNet.

Scheme 8 Latency (ms) Throughput (fps)
Float 25.24 3.89×102
Half 24.19 4.66×102
INT8 25.77 6.52×102
BNN 2.17 3.91×103

APNN-w1a2 1.66 5.32×103
APNN-w2a2 3.08 2.59×103
APNN-w2a8 14.14 5.65×102

and improves throughput for w1a2 and w2a2 than INT8 which shows that APNN-TC

can bring benefits for many arbitrary-precision computations. Comparing with INT8,

APNN-TC with w2a8 shows lower throughput since we need to compute 16 (=2*8) 1-bit

matrices to emulate arbitrary-precision computation, which require more computation

than w1a2 with 2 1-bit matrices and w2a2 with 4 1-bit matrices. This also matches the

performance on individual kernels (e.g., Figure 5, 6, 7, 8). This result indicates that

APNN-TC can bring benefits for latency-sensitive applications.

2.7.3 Additional Studies

We perform several additional studies in this subsection, including the latency break-

down from individual NN layers and the benefit from kernel fusion. We show results

from RTX 3090 and skip results from A100 since we observe similar trend on these two

GPUs.

Latency Breakdown. Figure 2.9 illustrates the percentage breakdown of the latency

for the inference of 8 images over three NNs on RTX-3090 GPU. Clearly, the first layer

introduces the most delay since the input feature size for this layer is significantly larger

than other layers. This percentage can be as high as 80.4% for AlexNet and 47.5% for

VGG_Variant. On other layers, we observe a roughly balanced latency.

Benefits from Kernel Fusion. Figure 2.10 investigates the performance benefits

36



APNN-TC: Accelerating Arbitrary-Precision Neural Networks on Tensor Cores Chapter 2

Figure 2.9: Per-layer latency breakdown of APNN models.
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Figure 2.10: Speedup from APNN Kernel Fusion.

from fusing APConv-w1a2, pooling, and quantization into one kernel. Specifically, in

the "w/o Fusion" implementation, we implement three global functions for APConv-

w1a2 with 32-bit output, 2 × 2 pooling, and quantizing into 2-bit outputs, respectively.

Here, each function read and write data to the global memory. In the "w/ Fusion"

implementation, we conduct the same workload in a single kernel. Overall, we observe

a latency reduction of 1.77× on average. The main reason is that, in "w/ Fusion", data

across APConv, pooling, and quantization can be cached in shared memory and global

memory access is significantly reduced.

Overhead from bit combination and bit decomposition. We show the overhead

from bit combination and bit decomposition in Figure 2.11. We profile the overhead on
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Figure 2.11: Overhead from bit combination and bit decomposition, relative to TC
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Figure 2.12: Comparing APMM and CUTLASS-GEMM.

APConv designs following the same setting as Section 2.7.1. We show results from

APConv-w1a2 since we observe similar overhead across bit settings. On average, we

empirically observe 1.16% overhead from bit combination and another 2.02% overhead

from bit decomposition, compared to only TC computation. The main reason is that bit

combination and bit decomposition introduce only quadratic time complexity, which is

significantly smaller than the cubic time complexity from TC computation. Due to this

difference in time complexity, the overhead from bit combination decreases from 2.4% to

0.12% as the channel size increases from 128 to 1024. We also observe similar trend for

bit decomposition.

Comparing APMM and cutlass GEM under the same bits. Figure 2.12
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Table 2.4: Raw latency of a typical fully-connected layer with batch size M = 64,
input dimension K = 1024, and output dimension N = 1024. Unit: microsecond.

w1a2 w1a3 w1a4 w2a2 cutlass-gemm-int4 cutlass-gemm-int1
6.67 6.81 7.06 7.15 15.61 7.92

shows the performance comparison between APMM and cutlass-gemm when using the

same bits. Overall, we observe that APMM-w4a4 can achieve 1.3× speedup over cutlass-

gemm-int4. The main reason is that APMM-w4a4 can achieve better parallelism by

using 16 int1 computations to emulate 1 int4 computation and achieving better GPU

utilization, especially for small matrix sizes. We note that this speedup of APMM-

w4a4 over cutlass-gemm-int4 decreases as the matrix size increases where more int1

computation resources are required for emulation. We also observe that APMM-w1a1

can achieve 1.35× speedup over cutlass-gemm-int1. This shows the benefit from our

kernel-level optimizations.

Raw latency of a typical fully-connected layer. Table 2.4 shows the raw latency

of a typical fully-connected layer with batch size M = 64, input dimension K = 1024,

and output dimension N = 1024. Overall, we observe that we require only around 7

microsecond for such a layer. Comparing with cutlass-gemm-int4, we can achieve 2.27×

speedup on average by using arbitrary-precision computation. We also note that the

arbitrary-precision computation is even slightly faster than the cutlass-gemm-int1, which

matches the result in Section 2.7.1.

2.8 Discussion

Practical usage of APNN. Arbitrary-precision neural networks have been widely

studied to provide diverse tradeoffs between precision and efficiency [53, 52, 54, 22, 24,

23, 55, 56]. While arbitrary-precision may slightly reduce the precision, it shows merit in
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many practical usages such as smart sensors [72, 73, 74], mask detection [75], and intel-

ligent agriculture [76]. In these usages, when a certain accuracy bar is surpassed, other

essential metrics such as real-time processing and resource consumption are more impor-

tant. For example, BinaryCoP [75] utilizes low-power binary neural networks to detect

facial-mask wear at entrances to corporate buildings and airports. Another example is

XpulpNN [76] that uses quantized neural network on energy-efficient IoT devices.

Generality to other NNs. This paper reports the results of APNN-TC on two most

time-consuming kernels, GEMM and Convolution, from the computer vision domain and

showcases the performance on popular vision models (e.g., AlexNet, VGG, and ResNet).

Yet, we expect that APNN-TC applies to NNs from various domains such as natural

language processing (NLP). Intuitively, APNN-TC accelerates GEMM and dot products

which is the building block of many NLP NNs [5, 77, 78], such as the attention layer and

the feed-forward layer.

Generality to other processors. APNN-TC utilizes population count (i.e., popc())

and two logical operations (i.e., XOR and AND) to support arbitrary-precision computa-

tion on Nvidia GPUs. Considering the wide support for popc() and logical operations,

APNN-TC can be easily adapted to diverse processors. For example, AMD GPUs [79]

supports population count (i.e. popcnt() on AMD GPUs) and logical operations (e.g.,

bitwise XOR). Xeon phi [80] also supports population count and logical operations.
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Chapter 3

Accelerating Scientific Computing on

Tensor Cores with Extended Precision

In this chapter, we present EGEMM-TC for accelerating scientific computing on Tensor

Cores with extended precision (this work [28] has been published in PPoPP 2021). Nvidia

Tensor Cores achieve high performance with half-precision matrix inputs tailored towards

deep learning workloads. However, this limits the application of Tensor Cores especially

in the area of scientific computing with high precision requirements. To tackle this prob-

lem, we build Emulated GEMM on Tensor Cores (EGEMM-TC) to extend the usage of

Tensor Cores to accelerate scientific computing applications without compromising the

precision requirements. First, EGEMM-TC employs an extendable workflow of hardware

profiling and operation design to generate a lightweight emulation algorithm on Tensor

Cores with extended-precision. Second, EGEMM-TC exploits a set of Tensor Core kernel

optimizations to achieve high performance, including the highly-efficient tensorization to

exploit the Tensor Core memory architecture and the instruction-level optimizations to

coordinate the emulation computation and memory access. Third, EGEMM-TC incorpo-

rates a hardware-aware analytic model to offer large flexibility for automatic performance
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tuning across various scientific computing workloads and input datasets. Extensive eval-

uations show that EGEMM-TC can achieve on average 3.13× and 11.18× speedup over

the cuBLAS kernels and the CUDA-SDK kernels on CUDA Cores, respectively. Our case

study on several scientific computing applications further confirms that EGEMM-TC can

generalize the usage of Tensor Cores and achieve about 1.8× speedup compared to the

hand-tuned, highly-optimized implementations running on CUDA Cores.

3.1 Problem Statement

Recently, many specialized cores and hardware accelerators have been built to speed

up the general matrix multiply (GEMM) in deep learning applications. These specialized

cores typically exploit low-precision matrix computation (e.g., half-precision) to achieve

high performance, based on the fact that deep learning workloads involve many matrix

operations and are usually robust to low-precision computation [29, 30, 31]. One example

is the Tensor Core on Nvidia Volta GPUs that conduct half-precision matrix-matrix

computation, achieving 8× higher throughput over the CUDA Cores [81]. Since GEMM

is also one essential building block of many scientific computing applications, we will

bring this performance benefit to the scientific computing domain. For example, GEMM

operations take 85% and 67% of the total time in popular implementations of kNN [82]

and kMeans [83], respectively. We refer to these applications as GEMM-based scientific

computing. However, many scientific computing applications (e.g., kNN and kMeans

in large-scale physical simulations [32] and mathematical computations [33]) are rather

sensitive to computation precision to generate valid results. Such a restriction on precision

prevents them from exploiting powerful Tensor Cores for performance enhancement.

Several approaches have been proposed for extended-precision computation [87, 88,

86, 89] on limited-precision hardware, which utilizes multiple low-precision computing
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Table 3.1: Precision Specifications. Unit: Number of Bits.

Data Type Sign Exponent Mantissa
Half-Precision [84] 1 5 10

Single-Precision [84] 1 8 23
Markidis-Precision [85] 1 5 20

Extended-Precision [86] 1 5 21
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Figure 3.1: Overview of EGEMM-TC.

instructions to emulate a single extended-precision computing instruction. Table 3.1

summarizes these precision types. For example, the popular extended-precision tech-

nique, Dekker [86], can utilize 16 half-precision instructions for an extended-precision

instruction. One key problem is that these techniques are developed and optimized on

CPUs. It requires a significant amount of manual effort to transfer them to Tensor Cores

without hurting performance. In particular, Dekker [86] requires serialized execution of

the 16 instructions, leading to high overhead. Considering that half-precision computa-

tion on Tensor Cores is only 8× faster than single-precision computation on CUDA Cores,

this 16× overhead can easily make emulation inappropriate. Markidis [85] proposes a

simple algorithm for emulation on Tensor Cores but utilizes a truncate-based strategy

with 1-bit precision loss. It fails to achieve extended-precision and shows high overhead.
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3.2 Overview of Proposed Solution

In this chapter, we design Emulated GEMM on Tensor Cores (EGEMM-TC) to ac-

celerate GEMM-based scientific computing on Tensor Cores with both high performance

and extended-precision computation. We identify several key challenges in the design and

the development of EGEMM-TC. First, Tensor Cores require half-precision input ma-

trices, leading to degraded computing precision. Naively borrowing existing emulation

algorithms may lead to unsatisfactory performance. Second, the newly designed Tensor

Cores bring new computing primitives and memory hierarchies, leading to unexplored op-

timizations. While Tensor Cores provide high computation performance, memory access

speed remains the same as previous CUDA Cores and can easily become the bottleneck.

Third, there is a large hyper-parameter design space on mapping scientific computing to-

wards Tensor Cores. Experimenting with new hyper-parameters usually requires manual

implementation [90, 91, 92], making the trial-and-error strategy not suitable.

To this end, we propose three techniques to tackle the above challenges, as shown in

Figure 3.1. First, EGEMM-TC contains a lightweight emulation algorithm design with

only 4 Tensor Core instructions. It achieves both extended-precision and low overhead by

exploiting high-precision intermediate computation results. Second, EGEMM-TC utilizes

a set of Tensor Core kernel optimizations that efficiently tensorize the emulation workload

towards Tensor Cores with low memory overhead. EGEMM-TC also includes SASS-

level optimizations for fully exploiting the instruction-level latency hiding opportunities

and the register caching capability. Third, EGEMM-TC incorporates a hardware-aware

analytic model to automatically explore the design space and reduce manual effort.

We evaluate EGEMM-TC on Tesla T4 and Nvidia RTX 6000. It achieves 3.13× and

11.18× speedup on average over single-precision kernels on CUDA Cores from cuBLAS

and CUDA-SDK, respectively. On a set of GEMM-based scientific computing applica-
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tions, our approach achieves 1.8× speedup on average compared to hand-tuned code on

CUDA Cores.

3.3 Background and Related Work

In this section, we discuss the background and the related work on Tensor Cores and

emulation algorithms.

3.3.1 Tensor Cores

Tensor Core Computing and Memory Hierarchy. Different from scalar-scalar

computation on CUDA Cores, Tensor Cores provide a matrix-matrix compute primitive.

In particular, Tensor Cores support the compute primitive of D = A× B + C, where A

and B are required to be half-precision matrices, C and D can be configured to be half-

precision or single-precision matrices. Before calling Tensor Cores, all registers in a warp

need to collaboratively store these matrices into a new memory hierarchy Fragment [29],

which allows data sharing across registers. This intra-warp sharing provides opportunities

for fragment-based memory optimizations. Existing work [93, 94] reveals that Fragment

is implemented as registers, from the perspective of hardware implementation.

Tensor Core Programming Interface. There are two popular programming interfaces

for Tensor Cores — CUDA [95] and SASS [96, 97, 93, 94]. CUDA provides C-style

APIs and enjoys the widest usage since it is easier to program. However, it provides

only limited control over the hardware and cannot exploit the computing and memory

capability. SASS provides assembly-style instructions that run natively on NVIDIA GPU

hardware [96, 97, 93]. SASS is usually utilized by vendor experts in high-performance

libraries (e.g., Nvidia’s cuBLAS [98]). In this chapter, we will study the insight of Tensor

Core related SASS instructions and propose a set of SASS-level optimizations to support
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Figure 3.2: Illustration of the generalized emulation design workflow. It first uses
(a) precision profiling to validate the precision of the intermediate results. Then, it
uses (b) emulation design to generate a lightweight emulation algorithm based on the
profiled precision from (a).

high-performance GEMM-based scientific computing on Tensor Cores.

High-performance Computing on Tensor Cores. Some research efforts have been

devoted towards accelerating high-performance computing workloads with Tensor Cores.

Yan [99] utilizes Tensor Cores to accelerate half-precision GEMM. Dakkak [100] accel-

erates half-precision scan on Tensor Cores by transforming scan to a GEMM workload.

While showing performance improvement by utilizing Tensor Cores, these works focus

on half-precision computation and fail to support extended-precision computation. By

contrast, EGEMM-TC accelerates GEMM-based scientific computing on Tensor Cores

with extended-precision and high performance.

3.3.2 Emulation Algorithms

There have been several emulation algorithms [87, 88, 86, 89, 101] that improve com-

putation precision on low-precision hardware (e.g., IoT devices) and may be extended to

Tensor Cores. One traditional emulation algorithm, Dekker [86], utilizes 16 half-precision

instructions to emulate an extended-precision instruction. One recent work, Markidis

[85], proposes a simple algorithm for emulation on Tensor Cores but utilizes a truncate-

based strategy with 1-bit precision loss. By contrast, EGEMM-TC enjoys a lightweight

emulation algorithm with 4 instructions, whose overhead is much reduced from Dekker.
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EGEMM-TC also employs a round-split algorithm that achieves higher precision by 1

extra mantissa bits, compared to Markidis [85]. In addition, EGEMM-TC achieves high

performance by tailoring towards the Tensor Core architecture and incorporating a set

of Tensor Core kernel optimizations.

3.4 Emulation Algorithm Design

As discussed in previous sections, existing emulation algorithms usually introduce

high computation overhead. These algorithms assume that the hardware has the same

input and output precision, thus utilizing a large number of low-precision instructions

in the emulation. However, specialized cores usually have higher output precision than

the input precision. For example, Tensor Cores require the input precision to be half-

precision, while allowing the output precision to be single-precision. Moreover, modern

specialized cores usually fuse multiplication and addition (e.g., D = A×B+C), where in-

termediate results A×B may also have higher precision than the input precision. Our key

insight is that exploiting high-precision intermediate results from hardware computation

can effectively mitigate the emulation overhead.

To this end, we first propose an extendable workflow to generate a lightweight emu-

lation algorithm. Then, we showcase this workflow on the Tensor Cores and generate a

Tensor-Core-specific emulation algorithm. Note that the workflow can be generally ap-

plied towards various accelerators and specialized cores. Here, we will focus on improving

the precision of small matrices (i.e., 16× 16) that directly fit into the Tensor Core com-

pute primitive and leave the performance consideration and large matrix tensorization

to the next section.
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3.4.1 Generalized Emulation Design Workflow

The emulation design workflow contains a precision profiling and an emulation design,

as illustrated in Figure 3.2.

In precision profiling, the main idea is to simulate the computation results on the

CPU and compare it bit-wisely with the specialized core results. In particular, we first

generate a set of probing compute primitives with diverse intermediate precisions. Then,

we evaluate the probing compute primitives on CPUs to get the corresponding results.

Since current CPUs usually support a large range of precisions, we can get the ground-

truth computation results of the probing compute primitives. Finally, we can get the

computation results on the specialized cores as the ground truth, and compare it bitwisely

with the CPU results. We repeat this procedure for a large number of randomized high-

precision inputs. The "correct" probing compute primitive is identified if its value is

bitwisely same with the specialized core results for all the tested inputs.

In emulation design, given the target-precision input, we first utilize a data split tech-

nique to split the target-precision input into several low-precision inputs following the

hardware precision requirement and use each split input for specialized core computa-

tion. Then, we utilize a data combination technique to combine the intermediate results

and generate the target-precision outputs. In the data combination technique, we will

utilize the profiled intermediate precision to achieve the minimized overhead. We will

provide concrete code snippets and emulation algorithms on Tensor Cores in the following

sections.

3.4.2 Emulation Algorithm on Tensor Cores

In this section, we show our emulation algorithm on Tensor Cores. While it exploits

the profiling on Nvidia Tensor Cores to mitigate emulation overhead, its correctness
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can be easily verified on other specialized cores with our generalized emulation design

workflow. When the precision is the same or higher, we can apply the same emulation

algorithm as described below to achieve extended-precision computation. When the

precision is lower (e.g., half-precision), we may refer to Dekker [86], which assumes the

hardware computation precision to be half-precision and emulates extended-precision

computation at the cost of low performance.

Precision Profiling on Tensor Cores In this section, we showcase the precision pro-

filing on Tensor Cores. Nvidia officially documents its specialized core compute primitive

as A × B + C, where the matrix A and B are half-precision, C and D can be either

half-precision or single-precision. However, the operation precision during the matrix

multiplication A × B is not officially documented. Without clear profiling, there are

multiple probing compute primitives. One is that A × B is conducted in half-precision,

which is the same as the data type of A and B. The other is that the half-precision

matrices A and B are first converted to single-precision and A × B is conducted with

single-precision or the extended-precision. Operation precision is important for the de-

sign and implementation of the emulation algorithm. Assuming both the operation and

data are half-precision, Dekker shows that 16 instructions are required to emulate a

single-precision instruction, which leads to high overhead.

We use the following code (Figure 3.3) for profiling the operation precision in Ten-

sor Cores. We randomly initialize the Tensor Core input matrices with half-precision

data and use the wmma::mma_sync() CUDA API to call the specialized core compute

primitive for computing d_TC. As reference values, we compute two probing compute

primitives d_HALF and d_FLOAT of the above mentioned two possible operation pre-

cisions on CUDA Cores. Finally, we compare d_TC with d_HALF and d_FLOAT in a

bit-wise manner. We randomly generate 10, 000 groups of data and empirically observe
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Figure 3.3: Code Snippet for Tensor-Core Precision Profiling.
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Figure 3.4: Illustration of Round Split Algorithms

that all d_TC s are identical to d_FLOAT bit-wisely up to 21 mantissa bits, which is

required by the extended-precision computation. Thus we assume that the operation in

Tensor Cores natively supports extended-precision and the only precision loss comes from

the half-precision data type of A and B, enables our lightweight emulation algorithm.

Algorithm 1 Lightweight GEMM Emulation Design.
1: function Emulation(D, A, B, C)
2: Alo, Ahi = Round-Split(A)
3: Blo, Bhi = Round-Split(B)
4: ▷ Tensor Core natively supports single-precision C and D
5: D = wmma::mma_sync(Alo, Blo, C)
6: D = wmma::mma_sync(Alo, Bhi, D)
7: D = wmma::mma_sync(Ahi, Blo, D)
8: D = wmma::mma_sync(Ahi, Bhi, D)
9: end function
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Emulation Design on Tensor Cores In this section, we showcase the emulation

design on Tensor Cores, especially the data split and the data combination. Based on the

profiling results, we propose a 4-instruction emulation operation for enabling extended-

precision computation on Tensor Cores with 21 mantissa bits. Algorithm 1 summarizes

our emulation algorithm. For simplicity, we illustrate with small matrices that match

with the Tensor Core computing primitives of shape 16× 16 and leave the large-matrix

computation to the following sections. Our emulation algorithm takes single-precision

matrices A, B, C, and D as the inputs and generates the outputs as D = A×B+C with

extended-precision. The key idea is to first split single-precision matrices A and B into

half-precision matrix Alo, Ahi, Blo and Bhi. Then we can compute on Tensor Cores and

accumulate the intermediate results for data combination. Since Tensor Cores natively

supports the single-precision C and D, we do not need to conduct data split on these two

matrices.

There are multiple approaches for data split. One approach is truncate-split from

Markidis [85], as illustrated in Figure 3.4(a). It truncates the single-precision data x to

be half-precision xhi and uses the xlo to store the remaining value x − xhi. While this

approach is simple to implement, it supports only 20-bit mantissa from the two 10-bit

mantissa of the half-precision data.

Instead, we propose a round-split approach as illustrated in Figure 3.4(b). Besides

the two 10-bit mantissa, we encode an additional s bit in the sign bit (1-bit) from xlo. For

a positive x, the sign-bit of xlo from truncate-split is always 0, but it may be 0 or 1 when

round-split is conducted. In particular, for a positive x, we check the 21-th mantissa

bit s and, if s is positive, we add 1 to the 10-th mantissa bits for xhi and recompute

the xlo. While the round-split method introduces extra overhead, it only needs to be

conducted once on every matrix element with time complexity O(N2). This overhead is

significantly less than the matrix multiplication time complexity O(N3) and introduces
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negligible overhead in emulation. To fully exploit GPU capability, EGEMM-TC conducts

data split on CUDA Cores and computes the GEMM on Tensor Cores.

Emulation Overhead. Our emulation algorithm introduces 4× computation overhead,

which is significantly small than the Dekker [86] method with 16× overhead. A naive

implementation may also introduce 4× memory overhead when independently reading

the split matrices for each computation instruction. However, this memory overhead

can be reduced to 2× when the data reuse is carefully designed. We leave this memory

optimization to Section 3.5.

3.5 Tensor-Core-Centric Tensorization

EGEMM-TC has a carefully designed tensorization to efficiently map the GEMM-

based scientific computing to Tensor Cores that require specialized matrix inputs. While

our tensorization shares some similarities with existing ones, there are two challenges to

be addressed before fully exploiting the Tensor Core computing capability. First, existing

techniques usually independently assign tasks to individual warps, failing to exploit the

collaboration cross warps and within warps. Second, Tensor Cores provide a new memory

architecture of fragment (FRAG), which is composed of registers across threads within

a warp. This FRAG provides intra-warp caching opportunities that have not been well

explored. To this end, we provide two novel optimizations.

Tensorization and Warp Collaboration Different from previous CUDA Cores on

the scalar level, Tensor Cores computes at the matrix level, requiring the tensorization

design. Matching with the GPU hierarchy, our tensorization recursively divides the

matrices into sub-matrices and assign them to GPU blocks, warps, and threads, in a

hierarchy-style. Formally, given input matrices A, B, and C, of shape (m, k), (k, n),
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Figure 3.5: Warp Collaboration Illustration. During data loading phase, all warps
collaboratively loads all data fragments. During computation phase, a data fragment
may be used by multiple warps, indicated by the colors.

(m,n), respectively, we split these matrices into block matrices of size (bm, bk), (bk, bn),

and (bm, bn). During execution, each GPU block computes a block matrix of C based

on the corresponding block matrices of A and B. Here, the sizes of block matrices are

typically larger than the Tensor Core compute primitive size, requiring further dividing

the block matrices to warp matrices with size (wm, wk), (wk, wn), and (wm, wn). These

warp matrices will be assigned to individual warps for Tensor Core execution, where warp

matrices will be further divided to TC matrices for matching the Tensor Core compute

primitives with size tm,tn and tk.

EGEMM-TC split the workload into two phases and adopts a warp collaboration

strategy as illustrated in Figure 3.5. The main difference from previous CUDA Cores

is that Tensor Cores require 32 threads in a warp to collaboratively load matrices into

the FRAG memory architecture and jointly compute the matrix multiplication and ad-

dition. Catering to the Tensor Core property, we assign different thread organization

(threadDim.x, threadDim.y) to the same warp during these two phases. During the

computation phase, we utilize the default (32,1) thread layout for collaboratively calling
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Table 3.2: Memory access on each GPU warp in GEMM workload. We skip the
memory access of Ahi, Blo, and Bhi, since these matrices have similar memory access
as the Alo.

Type Size w/o FRAG Caching w/ FRAG Caching
Alo 2wmwk 4wkwm · wk/tk 2wmwk

C 4wmwn 4wmwn · wk/tk 4wmwn

Tensor Cores, as required by the CUDA programming guide [95]. During the data load-

ing phase, we reorganize the warp threads to 2D layout for assigning non-overlapping

memory access workload to each thread. For example, when loading a 16 × 16 block of

data, it is much easier to program with the 16 × 2 thread configuration than with the

default 32× 1 one.

Intra-Warp FRAG Caching. Data caching is an effective strategy to reduce the

memory overhead in the GEMM-based workload. Existing techniques usually utilize

shared memory to cache a portion of the matrices A, B, and C but ignore the FRAG

caching opportunity. We name it as the w/o FRAG caching strategy. With this strategy,

data is still loaded multiple times from the shared memory to the register. Table 3.2

summarizes the memory access on a single GPU warp. When a warp matrix C of shape

(wm, wn) are assigned to a GPU warp and stored in the shared memory, the memory

access between shared memory and FRAG/register is

4tntm ·
wk

tk
· wm

tm
· wn

tn
= 4wmwn ·

wk

tk
(3.1)

where the warp matrix C is divided into wm/tm · wn/tn TC matrices, wk/tk times data

loading when iterating over the k-dimension, and each single-precision data requires 4

bytes. Similarly, we can compute the memory access of the warp matrix Alo as 2 ∗

2wkwm · wk/tk, where the first 2 comes from the emulation algorithm where Alo is used

for two times. We observe that the memory access in the w/o FRAG caching strategy is

significantly larger than the data size of Alo and C, leading to extra memory overhead.
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Figure 3.6: Illustration of Register-Enhanced Instruction Scheduling for Latency Hiding.

Instead, we propose an intra-warp FRAG caching strategy, that effectively mitigates

the memory overhead. The key observations are: 1) FRAG allows registers from multiple

threads within a warp to collaboratively access a TC matrix, making it possible to reuse

matrix data within warps; 2) FRAG has 256 KB which is much larger than the 64KB

shared memory. EGEMM-TC will track whether a TC matrix has been stored in the

FRAG and skip the data loading when possible. In particular, the TC matrix C is cached

in FRAG during the whole computation and the Alo is read once to the FRAG. In total,

this strategy leads to 4wmwn + 4 ∗ 2wmwn bytes consumption in register/FRAG. While

this strategy may increase the register pressure, we will carefully select hyperparameters

to avoid register spilling in Section 3.7.

3.6 Instruction-Level Optimizations

In this section, we propose two instruction-level optimizations to fully exploit Tensor

Core computing capability and memory hierarchies.
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3.6.1 Register-Enhanced Instruction Scheduling for Latency Hid-

ing

The first optimization at the SASS level is a register-enhanced instruction scheduling

for latency hiding. While latency hiding has been discussed in existing works [102, 103]

and can be implemented at the CUDA-level (e.g., with streams), EGEMM-TC has two

distinguishing designs. First, to mitigate the limitation on the shared memory size (e.g.,

64 KB per SM on Tesla T4), EGEMM-TC intentionally utilizes registers (e.g., with

256 KB per SM on Tesla T4) to exploiting more latency hiding opportunities. Second,

EGEMM-TC supports fine-grained data access latency hiding at the instruction-level by

breaking down the KB-level data access into a sequence of Byte-level data access and

interleaving with individual Tensor Core computation instructions.

On the SASS instructions, we utilize 4 instructions that are widely used in many

generations of Nvidia GPUs [96, 97, 93, 94]. In particular, we use the LDS instruction

to load data from shared memory to registers, the LDG instruction for loading data

from global memory to registers, the STS instruction for storing data from registers to

shared memory, and the HMMA instruction for computation on Tensor Cores. Note that

existing works [90, 92] demystify that the memory instructions (e.g., LDS, LDG, and

STS ) are executed sequentially and cannot be further paralleled.

Figure 3.6 illustrates the register-enhanced instruction scheduling for latency hiding.

At a high level, EGEMM-TC tensorizes the input matrices into several sub-matrices

and processes one sub-matrix at each iteration. Before the first iteration, EGEMM-

TC has a "cold-start" that loads the data for the first iteration from global memory

to shared memory. On the following iterations, EGEMM-TC simultaneously conducts

the computation for the current iteration and the data loading for the next iteration.

Assuming that the data for the current iteration has been stored in the shared memory,

56



Accelerating Scientific Computing on Tensor Cores with Extended Precision Chapter 3

EGEMM-TC uses LDS to load data from shared memory to registers for computation.

Meanwhile, EGEMM-TC loads the data for the next iteration. Noting that Nvidia GPUs

usually do not support loading data directly from global memory to shared memory, we

first load data from global memory to registers and then store to shared memory with

LDG and STS, respectively. Considering that the shared memory stores the data for the

current iteration, we delay STS to the end of the current iteration to avoid undesired

data overwriting. This design enables caching large matrices in registers and provides

more latency hiding opportunities for improving performance.

3.6.2 Register Allocation Design

The second optimization at the SASS level is a manual register allocation to avoid

register spilling [104, 105]. To fully exploit the fast register access, we heavily utilize reg-

isters for a set of memory-related optimizations. While this register-caching can improve

performance theoretically, it also increases the register pressure. Indeed, implementing

these optimizations at the CUDA level can easily introduce register spilling, leading to

heavy slow down.

While the optimal register allocation has been shown as an NP-problem [106], we

propose a heuristic register allocation design for the Tensor-Core centric workload. Our

key observation is that these workloads usually contain four stages with different register

usage. During the first stage, a large number of registers are utilized on the context

information (e.g., threadIdx, blockIdx, and block matrix size) to locate the block matrix

for computation. During the following three stages, registers are utilized to load the

C matrix from global memory, conducting computation, and saving the C matrix to

the global memory. Register allocations across these stages are usually non-overlapping

and only utilized in a single stage. Based on this observation, we manually reuse most
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registers across stages to reduce the register pressure. In total, we utilize 232 out of 256

registers on each thread for all optimizations mentioned above.

3.7 Hardware-aware Analytic Model

In this section, we propose an analytic model to facilitate the hyper-parameter selec-

tion for achieving high performance. There are 6 hyper-parameters (bm, bn, bk, wm, wn, wk)

that have a significant influence on the performance. Selecting larger hyper-parameters

generally leads to higher data reuse and lower memory overhead. However, larger hyper-

parameters also increase the pressure on the shared memory and the register/FRAG.

Moreover, when the value exceeds the capability of FRAG, register spilling will happen,

leading to degraded performance.

Existing works [90, 90, 91] usually utilize a trial-and-error strategy to select these

hyper-parameters. There are two drawbacks of this strategy. First, experimenting with

new tiling sizes usually requires extra manual effort, making it a time-consuming task.

Second, there is a large design space of 6 parameters, making it infeasible to enumerate all

settings. To this end, we propose a hardware-aware analytic model that takes the small

set of hardware resource budgets and selects the parameters without trial-and-error.

3.7.1 Resource Consumption

At each iteration, each GPU block needs to do two tasks. First, it reads 2 matrices

(Alo, Ahi) of size (bm, bk) and 2 matrices (Blo, Bhi) of size (bk, bn). This step introduces

global memory access of

(bm + bm + bn + bn)× bk × 2 = 4(bm + bn)bk (3.2)
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Here, the last two comes from half data type (2 bytes). We skip the memory access for

block matrices of C since it is only loaded once for every k/bk times reading of the split

matrices and accounts for a negligible portion of memory overhead. Second, EGEMM-TC

conducts the computation with FLOPs of

2× bm × bn × bk × 4 = 8bmbnbk (3.3)

There is a constant 4 since EGEMM takes 4 Tensor Core calls for one extended-precision

computation. To this end, the ratio of computation to global memory access is

8× bm × bn × bk
4× (bm + bn)× bk

=
2bm × bn
bm + bn

(3.4)

We want to improve this ratio to fully exploit GPU compute capability and achieve

compute-bound. Noting that the numerator uses multiplication and the denominator

uses addition, we can improve the ratio by choosing a larger bm and bn. We surprisingly

observe that the ratio is independent of bk, indicating that we can select a smaller bk to

leave space for storing larger bm and bn.

On the memory space, we store a block matrix C of size (bm, bn) in the FRAG following

the intra-warp FRAG caching design. This would consume bm×bn×4+2×(bm+bn)×bk×2

bytes in registers. For reducing register pressure, we store the Alo, Ahi, Blo, and Bhi

blocks in the shared memory, leading to 2 × (bm + bn) × bk × 2 bytes shared memory

usage.

Inside each warp, we also have the computation and the memory access, determined

by the warp tiling size (wm, wn, wk) and the block tiling size (bm, bn, bk). Our design goal

is to adjust warp tiling size such that the computation time is larger than the memory

access time to achieve the compute-bound. Assuming that each Tensor Core execution

takes THMMA time, the computation time for a block matrix is

TComp =
2bmbnbk × 4

2× 16× 8× 8× 4
× THMMA (3.5)
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Table 3.3: Resource Budget on T4 GPU.

Shared Memory Size 64 KB
FRAG/Register Size 256 KB
Peak Computation 26 TFLOPS
L2 Cache Speed 750 GB/s

Table 3.4: Design Choice on T4 GPU

(bm, bn, bk) (128, 128, 32)
(wm, wn, wk) (64, 32, 8)

Shared memory/block 36 KB
Active Blocks/SM 1

Active Warps / Block 8

where 4 in the numerator represents the 4 Tensor Core calls in the emulation, 2×16×8×8

is the computation done with a HMMA.1688.F32 Tensor Core instruction, and each block

can call 4 tensor cores simultaneously from the hardware perspective [93, 94]. On the

memory access time, there are two steps, as described in the register-caching-based warp

collaboration. First, all warps collaboratively load data from global memory to the shared

memory. Denoting TLDG.128 as the time for reading 128-bit data from the global memory

and TSTS.128 the time for writing 128-bit data to the shared memory, the memory access

time is

TMem1 =
(bm + bm + bn + bn)bk × 2

32× 16
× (TLDG.128 + TSTS.128) (3.6)

where bm and bn are repeated for reading both Alo, Ahi, and Blo, Bhi, 32 is the warp

size, and 16 stands for 16 bytes (128 bits). The second step is to load the Alo, Ahi, Blo,

and Bhi from shared memory to the FRAG for computing. Denoting TLDS.32 as the time

for reading 32-bit data from the shared memory, the memory access time is

TMem2 =
bmbnbk
wmwnwk

× (
wm

8
+

wm

8
+

wn

8
+

wn

8
)× TLDS.32 (3.7)
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3.7.2 Analytic Solver

Our analytic model matches the theoretical resource consumption with the resource

budget and transforms the design space exploration to an optimization problem, which

can be solved analytically with existing optimization solvers [107]. To support different

GPUs, the user only needs to provide a small set of resource budgets. Table 3.3 shows

the budget on Tesla T4 GPU.

Formally, we have the following optimization problem

max
2bm × bn
bm + bn

s.t. 4bmbn + 4(bm + bn)bk ≤ SizeRegister

2× (bm + bn)× (bk + 8)× 2 ≤ SizeSHMEM

TMem1 + TMem2 ≤ TComp

(3.8)

Our goal is to maximize the ratio of computation to global memory access (Equation

3.4) to fully exploit the computing capability. Meanwhile, we need to make sure that

the usage of registers and shared memory does not exceed the corresponding resource

budget. In addition, we aim to increase (wm, wn) for ensuring that each warp spends

more time on computation than memory access, leaving space for latency hiding. Table

3.4 details our design choice for Tesla T4.

3.8 Evaluation

In this section, we compare EGEMM-TC with various GEMM kernels and show the

benefit of accelerating GEMM-based scientific computing on Tensor Cores.
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Table 3.5: Baseline Kernels.
Name Source Precision Description

cuBLAS-CUDA-FP32 cuBLAS single cublasSgemm on CUDA Cores

cuBLAS-TC-Half cuBLAS half cublasGemmEx on Tensor Cores

cuBLAS-TC-Emulation cuBLAS extended implement with cublasGemmEx
on Tensor Cores

SDK-CUDA-FP32 SDK single matrixMul on CUDA Cores

Markidis [85] extended* implemented Markidis method
on Tensor Cores

kMeans [82] single open-source implementation with
cublasSgemm on CUDA Cores

kNN [83] single open-source implementation with
cublasSgemm on CUDA Cores

3.8.1 Experiment Setup

Baseline Kernels. We compare EGEMM-TC with a diverse set of GEMM kernels

and GEMM-based scientific computing benchmarks shown in Table 3.5. These kernels

include cuBLAS kernels running on CUDA Cores and Tensor Cores. We utilize cuBLAS

kernel cublasGemmEx to implement Algorithm 1 on Tensor Cores, namely cuBLAS-TC-

Emulation, and compare with EGEMM-TC on the performance benefit of EGEMM-TC

optimizations. We also compare the performance with open-source code from CUDA-

SDK. Besides, we compare against Markidis [85], the most recent emulation work on

Tensor Cores. Note that Markidis has 1-bit lower precision than EGEMM-TC due to the

truncate-split, as detailed previously in Table 3.1. We evaluate on diverse matrix sizes

from 1024 to 16384 and report the performance averaged over 10 runs, measured with

Trillion Floating Point Operations per Second

TFLOPS = 2×M ×N ×K/(T × 109) (3.9)

62



Accelerating Scientific Computing on Tensor Cores with Extended Precision Chapter 3

0.008

0.01

0.017

0.02

0.029

0.043

0.055

0.0000086

0.00003

0.0001

0.00023

0.00046

0.0011

0.002

0.000008

0.000019

0.000053

0.000089

0.000187

0.0003

0.00067

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

128

256

512

1024

2048

4096

8192

Max Error

M
at

ri
x 

Si
ze

 (
N

xN
xN

)

EGEMM-TC Markidis cuBLAS-TC-Half

Figure 3.7: Emulation Precision.
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Figure 3.8: Comparison with Vendor Kernels on Square Matrices.

T is the time in milliseconds measured by cuda event [108].

We also experiment on two popular scientific computing workloads, kMeans and kNN,

that have wide applications in diverse domains (e.g., gene analysis [109], environmental

science [110], and astronomy [111]). In particular, we compare with two open-source

kernels (kNN [82] and kMeans [83]) on CUDA Cores that implement with cuBLAS-

CUDA-FP32.

Environments. We evaluate on both Nvidia T4 and Nvidia RTX6000. T4 [112] has 320

Tensor Cores and 16 GB GDDR6 memory. RTX6000 [113] has 576 Tensor Cores and 24
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GB GDDR6 memory. The host server has a 32-core Intel Xeon CPU E5-2620 processor

and 126 GB memory and runs Ubuntu 18.04 with CUDA 10.1 and cuBLAS 10.1.

3.8.2 Precision Improvement

Figure 3.7 compares the precision of EGEMM-TC and baseline GEMM kernels. We

present the max error relative to the single-precision computation

MaxError(p) = |Vp − VSingle| (3.10)
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Figure 3.12: GEMM-based Scientific Computing Acceleration with EGEMM-TC.

Here, Vp is the computation results under the precision p, which could be one of the

extended-precision, the half-precision, and the single-precision. During the computation,

we generate square matrices of size N × N × N with values sampled from [-1,+1]. On

average, EGEMM-TC effectively reduces the max error by 350× compared to cuBLAS-

TC-Half. This result shows the effectiveness of our emulation algorithm in improving

the computation precision on Tensor Cores. As the matrix size increases, we observe

a slow increase in the max error. The reason is that, a single element in the output

matrix involves N additions and N multiplications and the emulation error accumulates

as N increases. However, EGEMM-TC still achieves 82× reduction in max error, when

computing a large matrix of 8192×8192 with extended-precision. In addition, EGEMM-

TC reduces the max error by 2.33× over Markidis, thanks to the round-split algorithm.

3.8.3 Overall Speedup

Comparison with Vendor Kernels. Figure 3.8.1 shows the performance comparison

with vendor kernels on Tesla T4. Comparing with cuBLAS-CUDA-FP32, EGEMM-TC

is faster by 3.13× on average. This result shows that EGEMM-TC on Tensor Cores

can effectively outperform the single-precision GEMM on CUDA Cores by a large mar-
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gin. This benefit comes from the high-performance half-precision computation on Tensor

Cores and our kernel optimizations. Comparing with cuBLAS-TC-Emulation, we still

observe 1.35× speedup on average. This result shows the effectiveness of our kernel op-

timizations, considering that cuBLAS provides highly-optimized vendor GEMM kernel.

Comparing across matrix sizes, we can see that EGEMM-TC shows a larger speedup at

large matrix sizes. The reason is that the GPU capability is not fully utilized at small

matrix sizes and the compute-bound has not been achieved. As the matrix size increases,

the Tensor Core occupancy also increases and optimizations for reducing memory move-

ment start to show benefit. We show the performance comparison on Nvidia RTX6000

in Figure 3.8.1, where EGEMM-TC has similar benefits as the case on Tesla T4. Since

similar patterns show on Telta T4 and RTX6000, we will only show the results on Tesla

T4 in the following experiments.

Figure 3.9 shows the performance comparison on skewed matrices, where dimensions

K and M are larger than the remaining dimensions by 2× and 4×, respectively. We

skip dimension N since it can be viewed as dimension M under matrix transpose. When

dimension K is enlarged, we observe that the cuBLAS-TC-Emulation exhibits significant

slowdown when the matrix size exceeds 4096×4096×8192. Instead, EGEMM-TC consis-

tently provides high performance across different matrix sizes. In this case, EGEMM-TC

provides 1.33× speedup over cuBLAS-TC-Emulation and 2.89× speedup over cuBLAS-

CUDA-FP32. When dimension M is enlarged, cuBLAS-TC-Emulation achieves higher

performance but is still much slower than EGEMM-TC. Under this setting, our GEMM

are 1.40× faster than cuBLAS-TC-Emulation and 2.9× faster than cuBLAS-CUDA-FP32

on average.

Comparison with Open-Source Kernels. Figure 3.10 shows the performance com-

parison with the open-source kernels. Comparing with SDK-CUDA-FP32, EGEMM-TC

is faster by 11.18× on average. This result shows the significant performance improve-
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ment from EGEMM-TC on Tensor Cores. EGEMM-TC is also faster than Markidis by

3.0× on average. We manually tune Markidis performance with our optimizations on

the hand-written CUDA code, but the performance remains similar. The reason is that

the CUDA programming interface provides limited control over the GPU hardware while

our implementation-level optimizations with the SASS programming interface can utilize

GPU capability to much larger extent (e.g., register-enhanced instruction scheduling).

3.8.4 Benefit of Instruction Scheduling

Figure 3.11 shows the performance benefits of instruction scheduling in latency hid-

ing. In this optimization, we focus on the SASS programming interface and switch or-

ders of computation and memory access instructions for latency hiding. The instruction

scheduling can achieve 1.14× speedup on average. Comparing with the latency hiding

on the CUDA programming interface, we can achieve more fine-grained latency hiding

with the SASS programming interface. For example, loading data from global memory

to shared memory is a single instruction with the CUDA programming interface but two

instructions with the SASS programming interface (i.e., loading to register from global

memory and storing from registers to shared memory). This provides more opportunities

to interleave the memory access instructions with the compute instructions.

3.8.5 Scientific Computing Acceleration

Figure 3.12 shows the speedup of scientific computing based on EGEMM-TC over

cuBLAS-CUDA-FP32. We observe an average speedup of 1.9× on kMeans and an average

speedup of 1.7× on kNN. These speedups show that EGEMM-TC can be effectively

utilized to accelerate GEMM-based scientific computing. Comparing across data sizes,

EGEMM-TC accelerates kMeans by 1.3× when there are 2048 data points and accelerates
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kMeans by 1.82× when there are 16384 data points, as shown in Figure 3.8.2. There

are two reasons. First, EGEMM-TC shows a larger speedup than cuBLAS-CUDA-FP32

when the data size increases, as shown previously in Figure 3.8. Second, when data size

increases, GEMM accounts for more running time and the acceleration on GEMM shows

more benefits. We also observe similar trends on the kNN workload (Figure 3.8.2).
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Chapter 4

Palleon: A Runtime System for

Efficient Video Processing toward

Dynamic Class Skew

In this chapter, we present Palleon which is a runtime system for accelerating video

processing toward dynamic class skews. On par with the human classification accu-

racy, convolutional neural networks (CNNs) have fueled the deployment of many video

processing systems on cloud-backed mobile platforms (e.g., cell phones and robotics).

Nevertheless, these video processing systems often face a tension between intensive en-

ergy consumption from CNNs and limited resources on mobile platforms. To address this

tension, we propose to accelerate video processing with a widely-available, but not yet

well-explored runtime input-level information, namely class skew. Through such runtime-

profiled information, it strives to automatically optimize CNNs toward the time-varying

video stream. Specifically, we build Palleon, a runtime system that dynamically adapts

and selects a CNN model with the least energy consumption based on the automatically

detected class skews, while still achieving the desired accuracy. Extensive evaluations on
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state-of-the-art CNNs and real-world videos demonstrate that Palleon enables efficient

video processing with up to 6.7× energy saving and 7.9× latency reduction.

4.1 Problem Statement

Convolutional neural networks (CNNs) based video processing plays an important

role in many emerging applications [114, 115, 116, 117, 118, 119, 120, 121] deployed on

cloud-backed mobile platforms. Among them, cognitive assistants and robotic visions

are two representative categories. Smart glasses [117, 118, 119], for example, continu-

ously recognize the surrounding environment with CNNs and help the blind person with

ordinary tasks (e.g., reading a handwritten note, navigating the grocery store, and even

running the Boston Marathon). Robotic visions could automatically search specific ani-

mals and document the secret lives of them in the wild [120], as well as detect landmines

in various environments [121].

While these applications enjoy both the mobility of the wide deployment in real

world and the high accuracy of CNNs, they also face the tension between the limited

resource budget on mobile platforms and the high energy consumption and latency of

CNNs. A popular CNN, VggNet [122], can easily consume 3.6W and introduce 1.4-

second latency, which makes a large smartphone battery (e.g., 2.7-Ah battery in iPhone

X [14]) out of power within 2 hours on continuous image classification. To improve the

execution efficiency, many techniques have been proposed such as pruning [123, 124, 125]

and quantization [126, 127, 128] to reduce the size of CNN models. However, these

existing works fail to exploit the special characteristics of video streams; furthermore,

the compromised model accuracy also limits the overall pruning or quantization ratio.

Complementing existing model compression techniques, a strong temporal locality in

video streams is investigated here to enable efficient video processing on mobile platforms.
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Considering a video stream collected from a continuous camera feed, it is common that

only a small number of classes keep appearing in a large number of consecutive frames.

For example, in a film scenario, only a small number of people would come to the master

shots frequently, generally lasting for a few minutes, and another group of people will

not appear until the scenario has changed. A study on Youtube videos of day-to-day life

[129] also shows that more than 90% frames are comprised of less than 10 classes.

We first turn such an abstract concept, temporal locality, into something concrete and

measurable, class skew. Specifically, class skew is formally defined as an unbalanced class

distribution that flexibly and effectively extracts the scenario information of both class

cardinality and visual separability. Class cardinality here captures the number of classes

in a class skew. By exploiting this class cardinality, we can tailor a general CNN, which

is usually trained to recognize thousands of classes, into a specialized model, which only

needs to recognize a small number of classes in the current class skew. Meanwhile, we

notice that class skews show diverse visual separability under the same class cardinality.

For example, a class skew with two classes (e.g., houses and dogs) is easier to recognize

compared to that with two more subtle classes (e.g., Husky and Alaskan). By exploiting

visual separability, we can use a more compact model for computation and energy saving

without loss of accuracy compared with a full model.

We then identify several key challenges that hinder the successful utilization of class

skews. First, new class skews may appear and disappear suddenly as time goes, namely

class skew switches, making it hard to precisely capture the class skew and respond fast to

class skew switches. Second, a class skew may last for minutes or even hours between two

class skew switches, but this lasting time varies across different videos and even scenarios,

thus cannot be decided offline. Third, with the detected class skew, it is still hard to

adapt deep models at runtime, since existing model adaptation techniques of retraining

fully connected layers are computation-intensive and not affordable on mobile platforms.
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Forth, a single model adapted toward various class skews may show a significant difference

in accuracy due to the diverse visual separability. This difference in accuracy either allows

more lightweight CNNs for more energy saving or requires more computation-intensive

CNNs to achieve a satisfactory accuracy. Finally, model selection adaptive to class skews

may introduce high overhead, making it infeasible to execute on mobile platforms.

4.2 Overview of Proposed Solution

To address these challenges, we build a runtime system, Palleon, which could not

only detect class skews during runtime, but also dynamically adapt and select a CNN

model with the least energy consumption accordingly. In contrast, some existing works

[130, 131, 132], which share a similar high-level motivation with us, only target some

specific application scenarios that are already known offline—If you want to, you could

think of these as "static" class skews without dynamic switches. A recent work, FAST

[129], has made some progress along this research direction. FAST assumes that the exact

set of class skews (and their duration time) in a video stream are foreknown, and FAST

trains a set of compact models for each known class skew offline. During runtime, FAST

only needs to detect these foreknown class skews with a simple window-based detector

and directly apply those pre-trained models accordingly. To this end, Palleon adopts a

pure runtime approach and targets a more realistic setting that the class skews in the

video stream are not foreknown.

As illustrated in Figure 4.1, the Palleon runtime system continuously takes video

frames and efficiently generates video processing predictions with three novel components.

First, we propose an agile class skew detector, ABLE (Section 4.4), to abstract class

skews from video streams. ABLE comes with the static class-skew profiling and the

dynamic class-skew switch detection. The former automatically detects the class skew
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Figure 4.1: Overview of the Palleon Runtime System.

and generates a precise Class Skew Profile (CSP) when a class skew is detected. The latter

continuously catches class skew switches during runtime without the offline information

about the class skew lasting time.

Second, we propose Bayesian Filter (Section 4.5) to adapt CNNs toward the de-

tected class skew during runtime. While Bayesian Filter does not directly lead to energy

efficiency, it improves the accuracy of compact models with low resource consumption and

allows the compact models to replace the complex model. Bayesian Filter is a lightweight

module comprised of a Rescaling mode that adapts CNNs towards detected CSP without

online finetuning and a Direct Pass mode that allows the adapted CNNs to still recognize

classes out of the current CSP. This lightweight module resolves the complex trade-off

between accuracy improvement and adaptation overhead in exploiting class skews.

Third, we design a cloud-backed model selection scheme, namely Separability-

Aware Model Selection (Section 4.6), to further squeeze system energy consump-

tion. This scheme exploits visual separability with an efficient online model selection

that identifies the CNN with the least resource consumption while achieving satisfactory

accuracy on the detected class skew. Meanwhile, this scheme contains an edge-cloud

duplicated model bank to mitigate the model selection overhead on mobile platforms and
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deliberately schedule the runtime workload between the edge and the cloud.

In summary, we build Palleon, a runtime system that automatically detects input-level

information with ABLE and dynamically adatps the given CNNs online with Bayesian

Filter. Palleon also controls a set of tuning knobs for balancing the accuracy and the

resource efficiency with separability-aware model selection. We build Palleon upon Ten-

sorFlow [133] and evaluate it on a cloud-backed mobile platform (with NVIDIA Jetson

Nano [134] as the edge device and Dell Workstation T7910 [135] as the cloud server). We

evaluate Palleon on various CNN models and different datasets. In particular, for CNN

models, we use a variety of the state-of-the-art CNNs from two major domains – object

classification (MobileNet [41], VGGNet [122], ResNet [2], and DenseNet [136]) and face

recognition (VGGFace [137]). For datasets, we take both synthesized videos and several

real-world movies. Extensive experiments confirm the effectiveness of Palleon and show

that it could achieve up to 6.7× energy saving and 7.9× latency reduction while achieving

an equivalent or better accuracy.

4.3 Related Work

Model Compression. Model compression has been widely explored for accelerat-

ing video processing. The popular compression techniques include resolution reduction

[138, 139, 41, 140], matrix factorization [141, 142, 143], matrix pruning [144, 123], and

distillation [145, 146, 147, 148]. Model compression is orthogonal to our work in exploit-

ing class skews and usually leads to accuracy drop. By contrast, Palleon exploits class

skews in video streams and maintains accuracy while reducing energy consumption and

processing latency. Meanwhile, Palleon can integrate these compression techniques into

our Separability-Aware Model Selection for generating compact models.

Video Processing with Low-Level Temporal Information. Using low-level

temporal information can improve accuracy or reduce energy consumption. From the
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perspective of system design, existing work exploits low-level temporal information by

caching processing results of the most recent frames for future computation reuse [149,

150] or adjusting sampling rate [151, 152]. From the perspective of algorithm design,

existing work often augments the traditional 2D-CNN with optical flow [153, 154, 155]

for explicitly capturing object motions across frames. A new CNN design, 3D-CNNs

[156, 157, 158], has also been proposed to implicitly learn object motions by stacking

several 2D-CNNs and processing adjacent video frames in a combined way. These works

are orthogonal to our work because we focus on exploiting high-level temporal information

across minutes, not on low-level temporal information in a few seconds. Palleon could be

integrated with one of these approaches for further performance improvement.

Video Processing with High-Level Temporal Information. Several video pro-

cessing systems [159, 130, 131, 160, 161, 129] have been proposed to exploit high-level

temporal information across minutes, in terms of scenario information. Several early

work [131, 130, 160, 161] simplifies processing tasks by targeting a specific scenario and

only recognizing a specific object, e.g., buses at a crosswalk. Recent work [129] conducts

offline-profiling over a few scenarios and only reduces energy consumption when these

offline-profiled scenarios appear, which would be in-effective for more realistic settings

that class skews may switch during runtime. By contrast, Palleon abstracts these spe-

cific scenarios to a more general class skew of unbalanced distributions and enables online

class skew detection and online model adaptation.

4.4 ABLE for Class Skew Detection

We build a class-skew detector, namely ABLE, to detect class skews during runtime

and enable class-skew based optimizations. Our goal is two-fold: 1) giving a precise

class-skew profile (CSP) in static regions between adjacent class-skew switches, and 2)

75



Palleon: A Runtime System for Efficient Video Processing toward Dynamic Class Skew Chapter 4

detecting when the class-skew switches occur. To this end, we break down our class-skew

detection into two sub-tasks: Static Class-Skew Profiling and Dynamic Class-Skew

Switch Detection.

4.4.1 Static Class-Skew Profiling

A static CSP generates the distribution of classes in a static region where no class skew

switch happens. Palleon approximates the CSP in each static region with an empirical

distribution [162], which enjoys theoretical properties of converging fast to the ground

truth CSP. As illustrated in Figure 4.4.1, given a time window with rt = 10 frames, we

collect the predicted labels for each frame and count the frequency of each class. For

example, E appears for 4 times out of 10 frames in total, leading to 0.4 for class E in the

estimated CSP.

Formally, at time t, in a given frame window with rt frames (ranging from the t−rt+1th

to the tth frame), the probability of class j in the CSP is computed as

p(j|rt, x1:t) =
1

rt

t∑
i=t−rt+1

1xi=j (4.1)

where xi is the predicted label for the ith frame, 1xi=j is an indicator function [163] on

whether xi equals j, and x1:t denotes all t predicted labels in the history. The CSP for

the given frame window (with rt frames ending with the tth frame) is computed as a

probability vector of all classes:

CSPt,rt = {p(1|rt, x1:t), p(2|rt, x1:t), ..., p(d|rt, x1:t)} (4.2)

where d is the total number of classes.

Early Optimization by Adaptive Waiting Scheme. Palleon splits each static

region as two phases (Figure 4.4.1): a waiting phase to collect a precise CSP based on the

full model and an optimization phase to apply class-skew based optimizations. In the op-

timization phase, we use a compact model adapted toward CSPs, which saves energy and
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reduces latency while achieving an equivalent accuracy to the full model. By allocating

smaller number of frames in the waiting phase, Palleon can start the optimization phase

early and squeeze more optimization opportunities for more frames, leading to better

system performance. However, an imprecise CSP may be generated when allocating too

few frames to the waiting phase. Hence, we select the frame number carefully to improve

system performance and retain precise CSPs.

We develop an adaptive waiting scheme to determine whether Palleon has collected

a precise CSP and the waiting phase can be terminated. Suppose the waiting phase

has already lasted rt frames and the current class-skew profile is CSPt,rt , this scheme

computes a minimal frame number Fmin based on CSPt,rt . If Fmin < rt, it terminates the

waiting phase. Otherwise, it continues and repeatedly applies such check. In principle,

Fmin guarantees a negligible profiling error ϵ between the true probability pj and the

profiled probability p̂j

max
1≤j≤d

|p̂j − pj |/pj ≤ ϵ (4.3)

We next discuss how Fmin is computed and why it guarantees a negligible profiling

error. In addition, we will also propose some practical designs for efficiently computing

Fmin. We start with a theorem, which gives the minimum number of frames to profile a

particular class in the class skew.

Theorem 1. (Asymptotic Error Bound). With n = Zc/(ϵ
√
p̂j) samples (frames), the

probability of achieving a negligible error P (|p̂j − pj|/pj < ϵ) > 1 − c for class j holds

asymptotically, where Zc is a Gaussian Distribution Z-score with confidence level 1 − c

and ϵ is a tolerable error bound.

Proof. Due to the property of multinomial distribution, estimator p̂j computed with

Equation 4.1 is a maximum likelihood estimator (MLE). Based on the asymptotic nor-

mality of MLE, we have
√
n(p̂j − pj) → N(0, F I−1), where FI is the Fisher Infor-
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mation matrix FIwh = EX [−∂2lnfp(Xt)

∂pw∂ph
]. Clearly FIwh = n/pw if w = h; 0, other-

wise. Based on the marginalization property of multivariate normality, we can see that

(p̂j − pj)→ N(0,
pj
n2 ). Following this asymptotic distribution, we can derive the required

sample number n = Zc/(ϵ
√

p̂j).

Considering that CSP is stable only if estimators for most classes j are stable, we set

the minimum number of frames as

Fmin = max
p̂j>ξ

Zc/(ϵ
√
p̂(j|rt, x1:t)) (4.4)

Here we only consider classes showing significant existence ( p̂j > ξ, where ξ = 1/(2 ∗ d)

is a probability threshold). The intuition is that CNNs may make wrong predictions

randomly spanning in various classes with significantly low probabilities, leading to an

unnecessarily long waiting time. This strategy can mitigate the effect of prediction errors

and focus on the effect of correct predictions.

For an arbitrary class number d, computing Fmin has a low time complexity of O(d),

where the main computation resides in iterating through all classes j (Equation 4.4) and

estimating the probability p̂(j|rt, x1:t). This estimation can be conducted efficiently in

constant time, based on a computation reuse technique detailed in the following section.

4.4.2 Dynamic Class-Skew Switch Detection

Dynamic class-skew switch detection identifies class skew switches and provides static

regions for the static class skew profiling, as shown in Figure 4.4.1. Specifically, dynamic

class-skew switch detection identifies the timestamp t when the previous class skew ends

and a new class skew appears. There are two standard techniques to detect class skew

switches: Window-based approach [164, 129] and Bayesian-based approach [165, 166,

167, 168, 169, 170]. The former splits video streams into a sequence of windows with a

fixed window size k and periodically detects the class skew switch at the boundary. The
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(a) Static Class-Skew Profiling.
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(b) Dynamic Class-Skew Switch Detection.

Figure 4.2: Illustration of ABLE for Class Skew Detection.

latter detects class skew switch at each timestamp t by tracking all historical windows,

where the kth ∈ {1, 2, ..., t} historical window contains the t − k + 1th frame to the tth

frame. However, the former only detects the class skew switch when a time window

has finished, leading to a detection delay up to the fixed window size. While the latter

reacts fast to class skew switches by tracking all historical windows, it introduces high

overhead with a quadratic time complexity O((d+ t) ∗ t), in the number of frames t and

the number of classes d. The latter shows more than 1500-millisecond latency per frame

after processing a 3-minute video clip. By contrast, Palleon checks class skew switches

at each label prediction xt (Figure 4.4.1) while introducing low computation complexity

of O(d ∗ k), where k is the number of sampled windows (k ≪ t).

At a high level, we sample a subset of window sizes rt ∈ {w1, w2, ..., wk} and flag a

class skew switch when the probability p(rt = 0|x1:t) is higher than the probability of

the other rt. We estimate the probability p(rt|x1:t) of each window size rt when a new

predicted label xt comes:

p(rt|x1:t) = p(rt, x1:t)/

t∑
rt=0

p(rt, x1:t), (4.5)
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where p(rt, x1:t) is the joint possibility of the lasting time rt and the predicted labels x1:t:

p(rt, x1:t) =
k∑

i=1

p(rt|rt−1 = wi) ·

p(xt|rt−1 = wi, x1:t−1) · p(rt−1 = wi, x1:t−1)

(4.6)

Here, p(rt|rt−1 = wi) is a survival function [171] of the probability that a class skew

of length rt−1 is still alive at rt, and p(xt|rt−1 = wi, x1:t−1) is the probability that the

predicted label xt comes from the same distribution as last rt−1 labels, computed by

Equation 4.1.

Overhead Reduction by Window Sampling. Window sampling selects k win-

dows (i.e., w1, w2, ..., wk) that minimize the mean absolute error between tracking the

selected k windows and all t windows:

min
w1,w2,...,wk

t∑
rt=1

|p(rt, x1:t)− pf(rt)|, (4.7)

where f(rt) maps time window rt to one of the sampled time window {w1, w2, ..., wk}. A

small number of k windows can approximate all t windows since a window size with low

possibility p(rt−1, x1:t−1) tends to still have low possibility p(rt = rt−1+1, x1:t) when new

data comes:
p(rt, x1:t) = p(rt|rt−1)p(xt|rt−1, x1:t−1)p(rt−1, x1:t−1)

≤ p(rt−1, x1:t−1)

(4.8)

A straightforward approach is to only track the k most possible windows. However,

this approach may not work well when a large number (> k) of windows have equally

high probability p(rt, x1:t). To this end, we group all t windows into k clusters and

select a representative window out of each cluster. To cluster windows, we first sort the

possibility p(rt, x1:t) for all time windows rt and split into clusters at the top k − 1 gaps

in the sorted sequence. Then, we select the windows with the median probability to

represent this cluster and give this window a weight based on the number of windows in
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the cluster. Intuitively, we exclude the top k − 1 gaps by splitting clusters at these gaps

to minimize the mean absolute error.

Fast Update by Computation Reuse. Another optimization opportunity is the

computation reuse in estimating the conditional distribution p(xt|rt−1, x1:t−1). Since the

estimation for each window rt−1 at most traverses all data points and all classes, the time

complexity of the estimation is linear to the number of data points and classes O(d+ t).

Since adjacent windows differ only by one input, we can reuse the class frequency in

adjacent windows, reducing the time complexity for each window to be O(d). Specifically,

the class frequency counts in adjacent windows rt−1 = i and rt−1 = i + 1 differ only by

one in a single class, determined by the label xt−i. Thus, with the class frequency count

[C1, C2, ..., Cd] in window rt−1 = i, we can update the frequency count in window size

rt−1 = i+ 1 by C ′
j = Cj + 1, if j = xt−i; = Cj, o.w.

4.5 Bayesian Filter for Model Adaptation

In this section, we develop a highly flexible module, namely Bayesian Filter, to en-

able class-skew based optimizations. This module consumes a Class Skew Profile (CSP)

detected by ABLE and has two functionalities: 1) adapting CNNs toward the detected

class skew with low computation overhead and low latency during runtime; 2) allowing

the adapted CNNs to recognize classes out of the current CSP for enabling the detection

of class skew switches. To this end, we design a Rescaling mode (Section 4.5.1) for

scenario reference (i.e., model adaptation) and a Direct Pass mode (Section 4.5.2) for

retaining confident predictions.

Figure 4.5 exhibits two videos with extreme class skews, which are intentionally made

simple for understanding. In most video frames, the objects are easy to recognize, dur-

ing which Palleon extracts a precise CSP based on classes recently detected with high
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Bear Video

Beaver Video

(a) Two videos with extreme class skews (b) Intuition behind Bayesian Filter.

Figure 4.3: Overview of Bayesian Filter.

confidence. This CSP helps for frames in which objects are hard to recognize (e.g., the

animals jump into the water and turn around).

4.5.1 Rescaling

Rescaling mode is a lightweight module for model adaptation with low computation

overhead and low latency. This design avoids the heavy computation overhead and la-

tency in existing work [130, 131, 161, 129], which retrains fully connected layers in CNNs

during online and may introduce a long latency (up to 14 seconds) [129]. When consider-

ing the energy efficiency, this retraining procedure either introduces heavy computation

overhead when conducted on the edge, or heavy network communication overhead when

retraining is conducted on the cloud and updated weights are transferred to the edge.

By contrast, Rescaling mode adapts CNNs by appending an extra layer after the fully

connected layer. We stress that Rescaling mode requires neither weight update nor model

retraining.

Rescaling mode adapts CNNs toward the detected class skew by initializing the extra

layer with the CSP generated by ABLE. Since CSP contains the probability of all d

classes, the extra layer is designed to have the same number of d nodes, whose weights

are initialized by each probability in CSP. In this way, the magnitude of node weights
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indicates the frequency of the corresponding class in the CSP. When a frame comes, the

CNN will generate a probability for each class in the softmax layer and these probabilities

will be adjusted according to the magnitude of corresponding node weights. Specifically,

the extra layer rescales the probability of softmax-layer predictions (red nodes) toward

the current CSP (blue nodes) when the highest softmax-layer probability does not pass

a pre-defined threshold ω (i.e., not confident enough). Following the spirit of Bayesian

statistics [162], Rescaling mode updates the probability for each class by considering

both the prior and the posterior information. We tried several different designs, and it

turns out that a simple rescaling scheme based on Bayes theorem would already work

effectively, as shown in Formula 4.9.

P (i|X) =
P (i) · P (X|i)

P (X)
, i ∈ {1, 2, ..., d} (4.9)

where d is the total number of classes.

Formula 4.9 computes the posterior probability of class i for a given image X. The

prior probability P (i) is the profiled probability of class i in the current CSP. And the

likelihood P (X|i) describes the possibility that an image X comes from class i, according

to the softmax-layer probability of class i. P (X) stands for the marginal likelihood for

observing the image X, which is same for all classes and does not change the rescaling

results. Thus, we can avoid computing P (X) and, instead, use a handy rescaling mecha-

nism as P (i|X) ∝ P (i) ·P (X|i). To the best of our knowledge, we are the first to design

Bayesian rescaling on CNNs for runtime model adaptation toward class skews.

4.5.2 Direct Pass

Direct Pass mode selects the original prediction without rescaling when the predicted

probability is higher than a pre-selected threshold ω (Direct Pass mode in Figure 4.5).

This design allows detecting class skew switches by identifying classes out of the current
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CSP. This design is inspired by observations [172, 173] that neural networks usually

achieve higher accuracy when they predict a high probability.

Formally, Bayesian Filter with both Rescaling mode and Direct Pass mode can be

written as

P (i|X) ∝


P (i) · P (X|i) if P (X|i) < ω

P (X|i) if P (X|i) ≥ ω

(4.10)

where P (i) is the prior probability of observing class i provided by class skew, P (X|i) is

the predicted probability from CNNs. We utilize a hyper-parameter ω as the confidence

threshold deciding whether Bayesian Filter should enter the direct pass mode. When a

model makes a prediction with high probability (> ω), we believe its prediction is correct

and Bayesian Filter will not interfere with the decision. Note that two models with

different accuracy—for example, a model A with 70% accuracy and a model B with 95%

accuracy—could predict with similar high probability when they are making the correct

predictions. Their accuracy difference comes from those frames where the poorer model

makes a mistake while the stronger model is still correct, not from those frames where

both models are correct. Thus, we select the same threshold ω across different CNNs. In

particular, we experiment with diverse ω on an extensive collection of the state-of-the-art

CNNs and find that a threshold ω between 75% and 95% exhibits similar performance.

By default, we use 90% as the threshold ω in following sections.

4.6 Separability-Aware Model Selection

We propose Separability-Aware Model Selection to enable class-skew based optimiza-

tions by exploiting the visual separability. The key observation is that, the same model

under different class skew profiles (CSP), even with the same number of classes, may

have significantly different accuracy. Figure 4.4 illustrates two CSPs with different visual
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Figure 4.4: Class Skews with Different Visual Separability.

separability (i.e., one is easy to classify and the other one is hard). To exploit visual

separability, Palleon maintains a set of models with different accuracy and energy con-

sumption, and automatically switches to compact models for saving energy when the

detected CSP is easy to classify. We are inspired by the fact that people will relax and

spend less energy when objects have significantly different appearance, in contrast to

distinguishing similar objects (e.g., cat breeds). To this end, we propose an Efficient

Online Model Selection (Section 4.6.1) to automatically select models with low re-

source consumption, and an Edge-Cloud Duplicated Model Bank (Section 4.6.2) to

reduce model selection overhead and network overhead.

4.6.1 Efficient Online Model Selection

We conduct online model selection on the cloud when we detect class skew switches.

There are two baseline strategies. One approach records an average accuracy for each

model on all classes, and another approach records the accuracy of one model over all

possible CSPs (i.e., multiple accuracy for one model). Both approaches are unsatisfac-

tory. On the former approach [161], the selected model may fail to satisfy the accuracy

requirement during runtime since the same model may produce significantly different
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A B C D E

CSP I 97 91 87 84 81

CSP II 90 88 82 79 77

Figure 4.5: Example of Online Model Selection (Unit:%). Dashed boxes refer to
un-profiled models due to binary search.

accuracy on different CSPs. On the latter approach [129], a prohibitive offline profiling

overhead and online memory overhead may be introduced due to the huge number of

CSPs.

By contrast, we propose a hybrid approach that selects models on the cloud for

only class skews detected during runtime. During offline preparation, we profile a single

accuracy for each model over all classes and store the model in the order of this accuracy.

During online model selection, we use binary search to profile the CNN accuracy on the

detected CSP. This binary search leads to logarithm time complexity, compared to the

linear time complexity of enumerating all models. Behind the binary search, our key

observation is that, while the model accuracy on each CSP may change dramatically,

the relative accuracy order of models on all classes stays the same over various class

skews. In particular, if one model performs better than another model on all classes, the

former one generally performs still better than the latter model on various CSPs. Similar

observations have also been made in computer vision area [2, 41] that larger models (e.g.,

ResNet-50) usually give higher accuracy than smaller ones (e.g., ResNet-18) on the same

task. Figure 4.5 illustrates the online model selection. Suppose we have 5 models with

decreasing energy consumption and recognition accuracy, and target 90% accuracy. For

each CSP, we conduct binary search to find the most compact model with satisfactory

accuracy (> 90%). In this case, we will select B for CSP I but A for CSP II.

Cache Service to Avoid Redundant Model Selection. Palleon records the
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model selection results along with the CSP and skips model selection for a CSP that

have appeared previously. In particular, Palleon maintains a cache service between the

CSP and the selected model. When a new CSP comes, Palleon will first retrieve the CSP

in the cache. On a cache hit, Palleon immediately returns the selected model. On a cache

miss, Palleon conducts online profiling and records the selected model for reuse. In our

evaluation, a high cache hit rate is achieved quickly after less than 5 model selections,

since the same CSP appears frequently in real videos.

4.6.2 Edge-Cloud Duplicated Model Bank

Palleon’s goal of saving energy and improving accuracy is affected by the quality of

its model bank. We design a duplicated model bank to store only Pareto-Optimal models

and duplicate these models on both the edge and the cloud for reducing network overhead.

For each candidate model, Palleon stores the computation graph, the pre-trained weights,

and the metadata including energy consumption and latency.

Model Bank Generation with Offline Profiling. For each energy budget, we

conduct offline profiling to identify candidate models with the highest accuracy. This

offline profiling selects only models on the Pareto-optimal curve to reduce online search

space and runtime overhead. Specifically, we first generate a large number of candidate

models by applying compression techniques on CNNs. Then, we conduct offline profiling

to select models on the Pareto-optimal curve [174], defined as the models that we cannot

further reduce energy consumption without worsening the accuracy.

This candidate model generation is conducted once on all classes, instead of repeating

on different CSPs, since good models on all classes tend to consistently produce good

performance over various CSPs. The insight is that unsalient positions remain similar for

all CSPs. For example, when we repeat a compression technique, Perforation [175], for
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Compressed From Layer Remove Filter Remove Latency Energy
Ratio (%) Ratio (%) (ms) (J)

ResNet-50 20 10 65.6 0.63
DenseNet-40 30 10 48.4 0.46
MobileNet-128 30 30 34.5 0.35
MobileNet-128 30 40 20.6 0.18
VggNet-19 60 60 10.1 0.07

Table 4.1: Profiling on selected compact models. Latency and energy are measured
on Jetson Nano.

several CSPs on Dense-40 [136], the positions in later blocks will be deleted first while the

positions in the leading block remain unchanged until all later blocks have been pruned.

More generally, even though the best model (i.e., the one with the highest accuracy under

a given reduction in energy consumption) might change between different CSPs, the set

of top-k best models tends to remain stable over all CSPs. Thus, we can avoid repeating

the selection on all CSPs and, under any specific energy-saving requirement, use the best

model for all classes to approximate the best model for a specific CSP.

Our full model is a DenseNet-40 with 40 layers. Starting from 4 base models (i.e.,

MobileNet-128, VGGNet-19, ResNet-50, DenseNet-40), we generate 25 compact models

from each of these base models. In particular, we first remove {10%, 20%, 30%, 40%,

60%} of layers from the base model. For the remaining layers, we remove {10%, 20%, 30%,

40%, 60%} of filters. While more sophisticated compression techniques can be applied, we

adopt this simple compression technique to validate the effectiveness of model selection.

From these pruned models, we select NCW (=5, by default) compact models and put

them into our model bank for online use in our evaluation. We have experimented with

several numbers and found that 5 compact models can provide a relatively diverse range

of accuracy and resource consumption. We show the profiling data on raw latency and

raw energy consumption in Table 4.1, measured on Jetson Nano [134]. For each frame,

these models have inference latency from 10.1 ms to 65.6 ms and energy consumption
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from 0.07J to 0.63J . Here, all pruned models are retrained over all classes during offline

model bank generation.

Edge/Cloud Duplication to Reduce Network Overhead. We maintain a du-

plicated model bank on both the edge and the cloud to avoid weight transportation from

the cloud to the edge. The duplicated model banks on the edge and the cloud contain

the same deep models and pre-trained weights, while giving each model an index. During

online model selection, the cloud will select a model from the duplicated model bank and

only send the selected index to the edge. The edge uses the received index to identify

the selected model. This design avoids the network overhead of frequently transporting

model weights when class skew switches frequently.

4.6.3 System Overhead Analysis

Model Bank Memory Overhead. The model bank introduces negligible memory

overhead compared to the simple setting with only large CNNs. In the simple setting,

the memory consumption is

MemSimple = MemLW +MemLF (4.11)

where MemLW and MemLF are the memory for storing weights and features of the large

CNN, respectively. In our setting with model bank, the memory consumption is

MemBank = MemLW+max(MemLF ,MemCF )

+NCW ·MemCW

(4.12)

where NCW is the number of compact models, MemCW and MemCF are the memory for

storing weights and features of compact CNNs. We use max(·, ·) on CNN features since

each input frame is processed by only one CNN. Comparing Equation 4.11 and 4.12,

the model bank only introduces overhead of NCW · MemCW , which is less than 5MB

and is negligible compared to the GB-level memory in modern edge devices (GB) (e.g.,
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1GB in Raspberry Pi 3B+ [176] and 4GB in Jetson Nano [134]). In particular, we use a

small NCW (=5, by default), since Bayesian Filter can adapt compact models toward the

detected CSPs during runtime with low overhead (Section 4.5). The MemCW is usually

less than 1MB on compact models generated with compression techniques, especially

when the base model also consumes negligible memory (e.g., 0.5MB in SqueezeNet [177]

and 2MB in MobileNet [41]).

Runtime Overhead. Palleon’s runtime overhead comes from three sources. The

first is the model selection overhead. While this overhead is relatively large, model se-

lection is conducted on the cloud which is powerful and can evaluate several models

concurrently. Also, we have sorted the models and proposed a binary search for ac-

celerating the model selection. This procedure introduces negligible runtime overhead

(<1%). The second is the data transfer overhead. Existing work usually transfers frames

(around 100 KB per frame) to the cloud, which introduces heavy network overhead. In-

stead, we summarize the surrounding environment into the CSP (a short string within

1KB) and only need to transport the CSP from the edge to the cloud through a wireless

network. This network overhead is low since we only transport CSP instead of data or

CNN weights. Besides these two overhead from model selection, the third comes from

class skew detection on the edge, which is negligible due to optimizations for low-overhead

detection in Section 4.4.2.

4.7 Evaluation

To show the effectiveness of Palleon, we perform extensive experiments on both syn-

thesized videos and real videos. We first evaluate Palleon on synthesized videos (Sec-

tion 4.7.1) to study the performance in diverse settings, including varying class numbers,

class types, and lasting time of each class skew. We then conduct real video experi-
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(a) MobileNet with Bayesian Filter. (b) VGGNet with Bayesian Filter.

(c) ResNet with Bayesian Filter. (d) DenseNet with Bayesian Filter.

Figure 4.6: Accuracy on Fixed Class Skews. Error bars represent the accuracy range
for each number of classes.

ments (Section 4.7.2) to further validate the performance of Palleon for detecting and

exploiting class skews during runtime.

Experiment Platform. We have implemented Palleon in Tensorflow [133] for our

CNNs. For the edge device, we use NVIDIA Jetson Nano [134] which is a popular mobile

GPU platform with wide deployment in robotics [178], AI glasses [179], and doorbell

cameras [180]. Jetson Nano runs Ubuntu 18.04 with built-in support for Tensorflow. For

the cloud server, we use a Dell Workstation T7910 with an NVIDIA 1080Ti GPU (with

11 GB dedicated memory and a nominal peak performance of 11.3 TFLOPS), a 6-core

Intel Xeon CPU E5-2603 processor with 32 GB memory running Ubuntu 18.04. All

energy measurements mentioned are directly measured unless otherwise specified, using

an Extech EX330 Compact Digital Multimeter [181].
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4.7.1 Synthesized Video Experiments

In this section, we extensively evaluate Palleon on synthesized videos in diverse set-

tings. We generate synthesized videos based on ImageNet dataset [182] with diverse

class skews. The ImageNet dataset consists of 1, 200, 000 images categorized into 1, 000

classes. We generate class skews with varying numbers of classes and diverse lasting time.

These synthesized class skews create challenging scenarios and showcase the robustness

of Palleon in challenging settings. We train CNNs on ImageNet with all classes and

conduct offline profiling to generate a single accuracy over all classes and collect their

latency/energy consumption on mobile devices (e.g., Jetson Nano). This offline profiling

is conducted only once. During online, we use Bayesian Filter for online model adap-

tation and do not use online finetuning (i.e., retraining CNNs on the detected CSPs).

On dynamic class skews, we also have online profiling about the model accuracy on the

detected CSP, which is conducted on the cloud and introduces negligible overhead.

Bayesian Filter on Fixed Class Skews Figure 4.6 shows the accuracy improve-

ment from Bayesian Filter in an ideal case that the true class skew is known and fixed.

Under this setting, there is no detection delay and Bayesian Filter can adapt CNNs

toward the true class skew. To show the generality of Bayesian Filter, we use four state-

of-the-art CNNs as base models (i.e., MobileNet [41], VGGNet [122], ResNet [2], and

DenseNet [136]). When synthesizing fixed class skews, for each N ∈ {10, 20, ..., 1000}

classes, we generate 100 CSPs. Each CSP contains 1000N images by randomly selecting

N classes and 1000 images from each class following a uniform distribution. For each

number of classes, we run the adapted model and present the average, minimum, and

maximum accuracy. We note that we use Bayesian Filter to adapt the model and do not

use online finetuning.

Bayesian Filter provides on average 25% accuracy improvement when there are 10
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classes. This accuracy improvement shows the effectiveness of Bayesian Filter in adapt-

ing models. As the number of classes increases, this accuracy improvement diminishes

gradually until all 1, 000 classes appear in the class skew (i.e., no scenario information

to exploit). The reason is that, as the number of classes increases, opportunities to rule

out classes decreases. For example, Bayesian Filter rules out 990 classes when the CSP

contains 10 (out of 1000) classes, but only rules out 100 classes when the CSP contains

900 (out of 1000) classes. Surprisingly, an accuracy improvement around 2% still exists

when there are 900 classes in the class skew, considering that underlying models can only

recognize 1, 000 classes. This result shows that Bayesian Filter can consistently improve

accuracy on challenging class skews with a large number of classes.

A large accuracy difference exists for each model and each number of classes, demon-

strating the existence of visual separability. In particular, an accuracy difference of

15% can be observed for MobileNet when there are 10 classes. This accuracy difference

becomes less significant as the number of classes increases, since a smaller number of

classes indicates larger variation in the constituent classes. Comparing across models

(e.g., ResNet v.s. MobileNet), we see that a model tends to perform better than another

model on a specific class skew, if the former model has higher accuracy on all classes than

the latter model. This observation indicates that the relative order of model accuracy is

invariant over various class skews and supports our binary profiling.

ABLE on Dynamic Class Skews In this section, we show the accuracy improve-

ment when the true class skew is unknown and may switch abruptly, namely dynamic

class skew. Under this setting, the class skew detector decides the CSP quality and

the detection delay, which has a significant impact on the classification accuracy of the

adapted models. When synthesizing dynamic class skews, we randomly generate 30

CSPs. For each CSP, we first randomly select a small number (ranging from 10 to 20) of
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Figure 4.7: Accuracy with Various Detec-
tion Methods.

Figure 4.8: ABLE Latency relative to
Window Detector.

classes. Among all testing images from a given set of classes, a CSP uniformly samples

lastingT ime = 60 ∗ T images. T is a random variable following the Poisson(λ) distri-

bution and λ ∈ {2, 4, 8, 16, 32} controls the average number of images. We choose the

Poisson distribution, as it outputs positive integers. We use DenseNet as the original

model and elide the results on other CNNs due to the similar behavior.

Average Accuracy. Figure 4.7 shows the classification accuracy on dynamic class

skews when combining Bayesian Filter with two class skew detectors (i.e., Window and

ABLE). In the Window detector, we sample a sequence of window sizes for each synthe-

sized video and present the best accuracy for a strong baseline. Comparing across λ, we

can see a clear trend that the classification accuracy increases as λ increases. In partic-

ular, “ABLE" can increase accuracy by 13.65% when the average lasting time λ reaches

32. This trend indicates that a class skew lasting longer provides more optimization

opportunities to exploit. Comparing across detectors, we can see that ABLE achieves

higher accuracy improvement around 5% than the window-based detection. The reason

is that the lasting time for a specific class skew varies even for a fixed average lasting

time λ, such that a fixed window size can hardly hit the balance between CSP quality

and detection delay.

ABLE Detection Latency. Figure 4.8 shows the ABLE detection latency reduc-
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tion. This detection latency measures the computation overhead of incurring ABLE on

an incoming CNN prediction. Number of history images is the total number of images

in a synthesized video representing the video length, ranging from 200 to 4000 images.

“ABLE" represents ABLE with both computation reuse and window sampling where

k = 30 windows are sampled. “ABLE w/o Win. Sampl." disables window sampling

and “ABLE w/o Comp. Reuse" further disables computation reuse. “ABLE w/o Comp.

Reuse" shows a quadratic increase in the latency over time, which becomes costly when

the number of inputs increases gradually. By adding computation reuse, “ABLE w/o

Win. Sampl." decreases this quadratic time complexity to linear time complexity, lead-

ing to a much lower computation overhead. When adding window sampling, we can see

that “ABLE" further reduces the linear time complexity to a constant complexity, which

is similar to the Window detector.

Separability-Aware Model Selection In this section, we show the energy-saving,

runtime speedup, and the memory overhead from Separability-Aware Model Selection.

To study the impact of lasting time, we adopt the same setting as dynamic class skew

(Section 4.7.1). In each dynamic class skew, we randomly generate 30 class skews and

report the average energy saving and runtime speedup.

Energy Saving. Figure 4.9 shows energy saving when targeting the same accuracy

as the baseline model. Palleon can save energy consumption up to 6.2× while maintaining

the accuracy. This benefit comes from automatically replacing the original large model

with small models by separability-aware model selection. In addition, we can observe

that the energy saving increases as lasting time increases, since a longer lasting time

indicates less class skew switches and less system overhead for detecting and exploiting

new class skews.

Runtime Speedup. Figure 4.10 shows the overall runtime speedup when targeting
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Figure 4.9: Energy Saving with Model Se-
lection.

Figure 4.10: Runtime Speedup with
Model Selection.

the same accuracy as the baseline model. Palleon can achieve up to 5.48× speedup,

considering both the model execution speed and the system latency, including the model

adaptation latency, the model selection latency on the cloud, and the network latency.

Note that the model selection on cloud only introduces latency and has no impact on

the energy consumption on the edge device. Similar to the observation in energy saving,

we can observe an increase in runtime speedup as the lasting time increases, due to the

reduced system overhead.

Memory and data transfer overhead. We observe negligible memory overhead in

our current system with 5 compact models. In particular, these compact models usually

consume less than 1MB memory and Jetson Nano has 4GB memory. On the data transfer

overhead, we only transfer a short CSP (within 1KB) to the cloud when ABLE detects

class skew switches. This is significantly smaller than alternative system designs that

transfer frames (around 100 KB per frame) or CNN weights with the cloud.

4.7.2 Real Video Experiments

We evaluate Palleon on real videos to show the end-to-end accuracy improvement,

runtime speedup, and energy saving, including the overhead from model adaptation and

class skew detection. We compare Palleon with a state-of-the-art energy-efficient video
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processing system, FAST [129]. FAST approach studies the benefit of class skews in

an ideal case, assuming that all class skews that may appear at runtime are known

offline. In particular, FAST adapts a large number of compact CNNs towards each

class skew during offline preparation and identifies these foreknown class skews with a

window detector. As such, we denote it as FAST (offline). For a fair comparison of

our online framework, we further extend FAST (offline) to an online version, namely

FAST (online). The only difference between these two versions is that FAST (online)

does not have the pre-trained CNN models for different class skews. Instead, it adopts

a standard retraining method [183], which retrains the last few CNN layers toward the

online detected class skews, for online model adaption. To strike a good balance between

accuracy and performance, we manually tune the number of layers for retraining and find

that two is a good number and use it in our experiments. Different from FAST, we do

not foreknow the class skews offline. We conduct online class skew detection with ABLE,

online model adaptation with Bayesian Filter, and online model selection.

Real Video Datasets. We evaluate Palleon and FAST on four real videos [129]

depicted in Table 4.2. These videos come from several movies for face recognition and

have diverse length ranging from 6 minutes to 24 minutes. “#Switch" indicates the

number of class skew switches in each video and “#Class" represents the average number

of classes (faces) in each class skew between adjacent class skew switches. For example,

“Friends” is a 24-minute video with 45 class skew switches and each class skew contains

2.8 classes on average. While the total number of classes in these real videos is large

(> 20), each class skew contains only a small portion of classes (2 to 3.5). This is a

common case in films and Youtube videos, as we have discussed in introduction. The

lasting time for each class skew varies on videos from 10 seconds to 4 minutes (about

1.3 minutes on average), computed by “Len.(min) / #Switch". This diversity makes it a

challenging setting to detect and exploite class skews during runtime.
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Table 4.2: Real videos for evaluating Palleon. “#Switch" indicates the number of class
skews switches and “#Class" shows the average number of classes in each class skew.

Video Name Len. (min) #Switch #Class
Friends 24 45 2.8

Good Will Hunting 14 4 3.5
The Departed 9 8 2.4

Ocean’s Eleven / Twelve 6 25 2.0

Figure 4.11: Accuracy Improvement on
Various Videos.

Figure 4.12: Runtime Speedup on Vari-
ous Videos.

During the detection of faces, we follow the standard two-phase pipeline in object

detection [184, 185, 186] and face recognition [187]. We first use a Viola Jones detector

[188] to locate faces in video frames, which is agnostic to class skews. Then we crop faces

and feed into CNNs for face recognition [137]. Note that this procedure can be easily

applied to other object detection tasks by retraining the face recognition CNNs.

Base Model for Real Video Datasets. For a fair comparison with FAST, we

choose the state-of-the-art deep model, VGGFace [137], as our full model for face recog-

nition. We generate 5 compact models with diverse resource consumption and accuracy,

following the model bank generation in Section 4.6.2. We use the same compact models

for FAST. We train these models from scratch following the hyper-parameter setting in

FAST, and achieve comparable accuracy as reported. This offline training is conducted

once on LFW dataset. During online, we use Bayesian Filter for model adaptation and

do not use online finetuning.
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Accuracy Improvement. Figure 4.11 shows the overall classification accuracy on

real videos of the most compact VGGFace model, FAST (offline), and our online ap-

proach. We skip the accuracy of FAST (online) since it consistently provides lower accu-

racy than the Fast (offline) by around 1%, since we retrain only the last two layers in Fast

(online) to hit a good balance between accuracy and performance. Palleon provides 6.2%

accuracy improvement on average, compared to utilizing the compact model without

adaptation. This accuracy improvement comes from Bayesian Filter that dynamically

adapts models to class skews detected in real videos, containing only 2 to 4 people on

average (’#Class’ in Table 4.2). This reduced number of faces greatly eases the task

compared to recognizing thousands of faces in un-adapted models.

Comparing to FAST (offline) relying on offline adapted models, Palleon provides 1.3%

accuracy improvement due to the faster class skew switch detection in ABLE. When a

class skew switches, Window detector in FAST (offline) leads to a detection delay up to

10 seconds, during which the accuracy suffers from a dramatic drop. Moreover, ABLE

can effectively detect 98% class skew switches while Window detector can only detect

86% class skew switches, since Window detector fails to detect class skews that exist for

only a few seconds.

Runtime Speedup. Figure 4.12 shows the end-to-end runtime speedup on real

videos when targeting the same accuracy as the full model. Palleon achieves on average

5.43× speedup (up to 7.9× speedup on Good) compared to the full model. This speedup

comes from automated model selection by replacing the full model with a compact model.

When both assuming that the class skews are not foreknown and adapting models at

runtime, Palleon achieves 26.9× speedup over the FAST (online) approach. Indeed, FAST

(online) shows a 5× slow down due to heavy overhead from online model adaptation.

This comparison demonstrates the efficiency of Palleon in online class skew detection

and online model adaptation. For FAST (offline) with strong assumption that true class
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skews are foreknown and models are adapted during offline preparation, Palleon can still

achieve a higher speedup, due to the early optimization strategy in ABLE. Comparing

across videos, the speedup becomes more significant when class skews have longer lasting

time (Good Will Hunting), showing the same pattern as evaluations on synthesized videos

(Section 4.7.1). We note that Palleon takes 14.2 ms latency on average to process one

frame, which is significantly faster than the real-time requirement of 30 ms per frame.

We also observe negligible overhead from model switches (<1%) due to several rea-

sons. First, the number of model switches is much smaller than the number of class skew

switches, since class skew switches can usually be handled by the Bayesian Filter with-

out model switches. In particular, only 20% class skew switches lead to model switches.

Second, the model selection is conducted on the cloud and we cache all models in the

memory to avoid the repeatedly loading models, which introduces negligible memory

overhead.

Energy Saving. Figure 4.13 shows the end-to-end energy saving on real videos when

targeting the same accuracy as the full model. Palleon achieves on average 4.9× energy

saving (up to 6.7× on Good) compared to the full model. Palleon achieves a higher energy

saving compared to “FAST (offline)" (i.e., without counting the energy consumption in

retraining) due to the early optimization strategy in ABLE. FAST (online) conducts

model adaptation on the cloud and transfers the adapted model weights (in megabytes)

to the edge through the network, leading to extra energy consumption from network

communication. This network overhead becomes intensive when class skew switches

frequently (Ocean and Friends), leading to more energy consumption in FAST (online)

compared to the full model. This overhead reduces when class skews have longer lasting

time (Departed and Good), leading to energy saving. By contrast, Palleon shows a

consistent benefit on all four videos due to Palleon’s low overhead.

Workload Distribution over Models. We observe that most frames are processed
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Figure 4.13: Energy Saving on Various Videos.

by the most compact model. For eaxmple, on “Friends” dataset, the most compact model

processes 85% frames. While workload distribution varies for different CSPs, we observe

similar trends across datasets. The reason is that CSPs usually only contain a few classes

(Table 4.2) and the most compact model with Bayesian Filter can provide high accuracy.

4.8 Discussion

Comparison with alternative design that trains a model for each CSP. One

alternative design to exploit class skews is to train many small models to recognize only

a small set of classes for individual class skews. This alternative design has two intrinsic

drawbacks. First, we usually do not foreknow the class skew in an online video such that

we can hardly train compact models for each class skew offline. Second, even if we assume

that all class skews are foreknown (as the case in FAST), we may need to train a large

number of models due to the large number of class skews. By contrast, Palleon does not

assume that class skews are foreknown and trains the model on all classes offline. During

online video analytics, we use ABLE to conduct online class skew detection, Bayesian

Filter for efficient online model adaptation, and separability-aware model selection to

automatically select CNNs for balancing the accuracy and resource efficiency.
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Generality to other CNNs. Palleon can accelerate a large number of workloads on

mobile devices with the temporal locality that a small number of classes keep appearing

in a large number of consecutive frames. We have shown the performance benefits of

Palleon on object classification and face recognition. Palleon can be generalized to 2D

object detection [189] and 3D point cloud analytics [190] which share a similar pipeline

as face recognition. We also note that Palleon can benefit from more compact models

and pruning techniques designed for mobile systems. In particular, these compact models

can be incorporated during model bank generation to provide Pareto-optimal boundary

with reduced resource consumption and equivalent accuracy.
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Chapter 5

ZEN: Efficient Zero-Knowledge Proofs

for Neural Networks

In this chapter, we present ZEN, the first optimizing compiler that generates efficient ver-

ifiable, zero-knowledge neural network inference schemes. ZEN generates two schemes:

ZENacc and ZENinfer. ZENacc proves the accuracy of a committed neural network model;

ZENinfer proves a specific inference result. Used in combination, these verifiable com-

putation schemes ensure both the privacy of the sensitive user data as well as the con-

fidentiality of the neural network models. However, directly using these schemes on

zkSNARKs requires prohibitive computational cost. As an optimizing compiler, ZEN in-

troduces two kinds of optimizations to address this issue: first, ZEN incorporates a new

neural network quantization algorithm that incorporate two R1CS friendly optimizations

which makes the model to be expressed in zkSNARKs with less constraints and mini-

mal accuracy loss; second, ZEN introduces a SIMD style optimization, namely stranded

encoding, that can encode multiple 8bit integers in large finite field elements without

overwhelming extraction cost. Combining these optimizations, ZEN produces verifiable

neural network inference schemes with 5.43 ∼ 22.19× (15.35× on average) less R1CS
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constraints.

5.1 Problem Statement

From health care AI to machine translation, our civilization relies more and more

on neural networks. With the increasing adoptions of neural networks, privacy leakage

is ever-growing [191, 192, 193]. In particular, we need to protect two kinds of privacy:

the privacy of the end user’s sensitive data; and the intellectual properties of the neural

network that many companies spent millions of dollars in training [194, 195].

In recent years, zero-knowledge proof systems, commonly known as zkSNARKs (zero-

knowledge Succinct ARgument of Knowledge) [196, 197, 198, 199, 200, 201, 202, 203, 204],

become increasingly efficient. One natural question to ask is:

Can we build an optimizing compiler that leverages these powerful zkSNARKs

to construct efficient privacy-preserving, verifiable neural network schemes?

This question is important since a zkSNARK based privacy-preserving and verifi-

able neural network scheme has many desired and unique features, compared with other

popular solutions in this domain, such as secure multi-party computation (MPC) and

homomorphic encryption (HE) [205, 206, 207, 208, 209, 210, 211, 212]. To name a few,

(1) the computation result will be publicly verifiable; (2) the whole process could be

non-interactive.

Many potential applications require these two properties. For example, a patient may

want to selectively disclose the diagnosis result by an AI doctor without leaking sensitive

personal information. Blockchain oracles may want to put public verifiable results of

neural network based inference such as facial recognition, natural language processing on

the blockchain to interact with smart contracts, yet not leak the input information.
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To support these promising applications, we first propose verifiable neural network

inference schemes that protect both the privacy of input and the confidentiality of neural

network model, namely ZENacc and ZENinfer. They can work in combination: during

the setup phase (ZENacc), the neural network inference service provider first commits

the model, then takes a random challenge from the user to prove the accuracy of the

committed model; then, the service provider can provide verifiable inference using the

committed model without leaking the input data (ZENinfer).

However, naively implementing these schemes on zkSNARKs incurs prohibitive cost.

The neural network that is useful in the real world is usually defined on floating-point

numbers, which is not the first-class citizen in zkSNARKs. Despite previous attempts

to improve the efficiency of verifiable floating-point computation [213], there is still a

huge performance gap between the floating-point computation compared with “native”

arithmetic computations in finite field. Additionally, inference tasks using modern neural

network models require a significant amount of computation, which makes constraints

size very large and prohibitive performance.

5.2 Overview of Proposed Solution

We develop the first end-to-end optimizer that compiles a floating-point PyTorch

model to R1CS constraints, a common intermediate representation (IR) that is sup-

ported by a variety of zkSNARK back-ends. First, we observed that neural network

quantization has been extensively studied [30, 214, 215, 216, 217, 218, 219] and widely

deployed [220, 221, 222, 223]. As a result, instead of adapting zkSNARKs to floating-

point computation, we adapt state-of-the-art neural network quantization technique to

convert floating-point neural network models to quantized models which only contains low

precision integers. To optimize the number of the constraints in R1CS of the quantized
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models, we propose two “lossless” R1CS friendly optimizations: sign-bit grouping and

remainder-based verification, which reduces the constraint sizes without any accuracy

loss compared with models generated by the state-of-the-art quantization technique.

Since quantized neural network models work well on low precision integers (8bit or

16bit) and the underlying zkSNARKs usually works on large finite field element (e.g.

254bit), an intuitive idea is to encode many integers in a single finite field element, similar

to SIMD (Single Instruction Multiple Data). However, simply stacking low precision

integers in finite field elements would not work since extracting these integers requires

expensive bit decompositions, which out-weights the savings. To solve this problem,

we propose a novel encoding technique, namely stranded encoding, that could bring a

SIMD style optimization to batched dot product. We also develop an analytical cost

model for stranded encoding so that the encoding scheme can always choose the best

parameter based on neural network kernel sizes. Combining R1CS friendly optimizations

and stranded encoding, ZEN brings up to 22.19× savings in constraint size compared

with a vanilla implementation of neural networks in zkSNARK.

5.2.1 Our Contributions

In this chapter, we present ZEN: an optimizing compiler for verifiable neural networks

with zero-knowledge. To our best knowledge, ZEN is the first work of its kind. In short,

ZEN makes the following contributions:

• ZEN schemes: We propose two privacy-preserving, verifiable inference schemes

for neural networks, namely ZENacc and ZENinfer. These schemes can be used in

many promising applications where a publicly verifiable inference result is essential.

Additionally, they provide cryptographic privacy guarantees (zero-knowledge) for

both sensitive inputs and neural network models.
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• R1CS friendly quantization: The first compilation challenge that ZEN faces is

converting a floating-point neural network to a fully quantized model, so that it

could be expressed in Rank-1 Constraint Systems (R1CS), a common intermediate

representation used by many proving systems. We proposed a new quantization

algorithm, which incorporates two R1CS friendly optimizations, namely sign-bit

grouping and remainder-based verification. As a result, compared with the state-

of-the-art quantization schemes, ZEN brings up to 73.9× savings in R1CS con-

straints for convolution kernel and up to 8.4× reduction for fully connected kernel

without any additional accuracy loss.

• Stranded encoding of R1CS Constraints: To further improve the number of R1CS

constraints in the compilation result, ZEN incorporates a new stranded encoding

technique, which optimally encodes multiple low-precision integers (8bit), that are

common to quantized neural networks, with a single finite field element (usually

254bit). A caveat here is that encoding methods always come with some extra

cost for extraction. Simply stacking the low-precision integers in the finite field

does not work in our scenario, since the extraction coast is prohibitively high. Our

stranded encoding mechanism comes with an efficient extraction. Additionally, our

mechanism is adaptive, in that it always employs optimal encoding parameters,

for any given input. Empirically evaluation shows that stranded encoding leads

to up to 2.2× improvement in R1CS constraints for convolution kernel and 3.4×

improvement for fully connected kernel.

• ZEN toolchain: We build an open-sourced toolchain [224] (Figure 5.1) that takes

a floating-point PyTorch model and converts it to ZEN schemes with all the above

optimizations. Our evaluation shows that, without incurring any additional accu-

racy loss, ZEN brings 5.43 ∼ 22.19× (15.35× on average) savings, in the number of
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Figure 5.1: Overview of ZEN tool chain.
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Figure 5.2: Privacy-preserving, verifiable inference workflow.

constraints, compared with a vanilla implementation of the neural network models

in zkSNARK.

In a nutshell, while many existing works focus on improving the zero-knowledge proof

system backends, ZEN demonstrates a powerful new approach: co-designing the domain-

specific algorithms (neural network inference) and constraints compilation process. This

new approach brings orders of magnitude improvement on the performance.

5.2.2 Our Techniques

Privacy-preserving, verifiable inference schemes Neural networks are eating the

world. We focus on how to let service providers, such as medical AI service, identity

service, blockchain oracles [225], to provide verifiable proof of neural network inference
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Table 5.1: Overall performance of ZENinfer.

Model-Dataset Constraints
(K)

Linear Combinations
(K)

Setup
(s)

Comm.
(s)

Prove
(s)

Verify
(s)

CRS Size
(GB)

ShallowNet-MNIST 1,751 7,728 37.67 0.310 32.24 1.06 0.506
LeNet-small-CIFAR 2,053 11,870 46.21 0.255 41.71 0.79 0.575
LeNet-medium-CIFAR 12,796 88,485 446.43 1.069 430.97 4.59 3.711
LeNet-Face-small-ORL 9,862 54,200 305.04 1.226 292.07 4.54 3.058
LeNet-Face-medium-ORL 44,204 324,960 2319.02 3.779 2264.18 16.87 13.169
LeNet-Face-large-ORL 162,289 1,225,466 14407.32 7.949 14337.31 66.95 49.577

Table 5.2: Overall performance of ZENacc scheme.

Model-Dataset Constraints
(K)

Linear Combinations
(K)

Setup
(s)

Comm.
(s)

Prove
(s)

Verify
(s)

CRS Size
(GB)

ShallowNet-MNIST 8,305 75,210 37.99 0.366 32.59 1.05 0.506
LeNet-small-CIFAR 78,481 675,365 46.10 0.265 42.24 0.80 0.564
LeNet-medium-CIFAR 544,921 5,762,645 447.91 1.069 433.31 4.59 3.701
LeNet-Face-small-ORL 265,779 2,395,061 303.75 1.081 288.08 4.51 3.049
LeNet-Face-medium-ORL 1,762,250 21,266,440 2311.41 3.737 2260.45 16.85 13.160
LeNet-Face-large-ORL 5,628,278 77,689,757 14553.10 8.092 14533.57 66.37 49.568

result, without leaking either the user’s privacy or the service providers neural network

models.

To enable these privacy-preserving verifiable neural network inference applications,

we propose two schemes:

• ZENacc, a verifiable NN accuracy scheme for classification and recognition work-

loads;

• ZENinfer, a verifiable NN inference scheme for classification and recognition work-

loads.

We show overall performance results in Table 5.11 and Table 5.2. More details will be

given in the corresponding section.
1In Table 5.1 and Table 5.2, we record the number of linear combination before inlining. It influences

the time spent on inlining all linear combinations. We use the constraints of model commitment, inference
on 100 images and the final accuracy commitment check circuit as the ZENacc total constraints. We
record the time spent on model commitment, inference on one image plus the final accuracy commitment
check circuit as the ZENacc execution time and the CRS size due to parallelizing inference step on testing
dataset.
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Table 5.3: Overall saving on the number of constraints of ZEN vanilla and ZENinfer.
Constraints from Poseidon commitment are also shown above. The unit of number of
constraints is thousand (K).

Model Commitment ZEN vanilla ZENinfer Saving
(K) (K) (K) (×)

ShallowNet-MNIST 1, 685 364 67 5.43

LeNet-small-CIFAR 1, 281 16, 809 772 21.77

LeNet-medium-CIFAR 7, 421 85, 126 5, 375 15.84

LeNet-Face-small-ORL 7, 279 57, 352 2, 585 22.19

LeNet-Face-medium-ORL 26, 850 274, 490 17, 354 15.82

LeNet-Face-large-ORL 107, 078 610, 797 55, 212 11.06

These two schemes are compatible with each other (Figure 5.2). In a typical example,

the service provider firstly demonstrates the effectiveness of her model during the setup

phase using ZENacc. This is an interactive protocol: she needs to first commit the

neural network (NN) into a commitment cm. Then, a user or a trusted third party

sends her a random challenge: a dataset and truth label pair (D,T ). Next, the service

provider returns a zero-knowledge proof πacc, proving that the committed NN maintains

an accuracy accu on the input D.

Once this (one time) setup is completed, the service provider begins her service using

ZENinfer: the service provider collects the input data a from the end user, then gener-

ates a zero-knowledge proof πinfer to attest the result of inference using the previously

committed model.

Both ZENacc and ZENinfer leak no information of either the neural network model or

the sensitive user input by the zero-knowledge property of zkSNARK.

R1CS friendly quantization A crucial part of ZEN is converting neural network

models with floating-points to arithmetic circuit (R1CS constraints) on a given finite

field. This part is named quantization. Although neural network quantization has been

extensively studied [30, 214, 215, 216, 217, 218, 219] and widely deployed [220, 221, 222,

223], these existing works do not apply to zkSNARKs, for the following reasons. First,
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most schemes are partial quantization, in which part of the quantized models remain on

signed floating numbers; second, most quantization schemes require operations such as

divisions, which are non-atomic in an R1CS; last, directly applying the state-of-art full

quantization algorithm [30] will produce a prohibitive number of R1CS constraints.

We address these challenges by proposing an improved, dedicated full quantization

algorithm that minimizes the R1CS constraints. In this quantization algorithm, we in-

corporate two R1CS friendly optimizations (subsection 5.5.2), namely, sign-bit grouping,

and remainder-based verification, to the [30] algorithm. The core idea is to use algebraic

equalities to bypass expensive bit-decompositions caused by non-atomic operations (e.g.,

comparisons and divisions):

• With the sign-bit grouping, we completely eliminate the bit-decompositions from

element-wise zero-comparisons for all kernels.

• With the remainder-based verification, we reduce the bit-decompositions caused by

divisions (due to the scale factor) up to 8.4× and 73.9× for fully connected and

convolution kernels, respectively.

Both optimizations bring significant savings in terms of the number of constraints in

the generated circuits. In addition, since these optimizations only use algebraic equalities,

the resulted quantized neural network models do not incur any additional accuracy losses,

compared with the original quantization algorithm [30].

Stranded encoding of R1CS Constraints This technique comes from a fundamen-

tal observation: most quantized neural networks work with low precision (e.g. 8-bit)

unsigned integers; on the other hand, most zkSNARKs use ellipitic curves (e.g. BLS12-

381 [226]) with an underlying finite field of order ≈ 2254. It makes sense that if we encode

multiple matrix entries into a single finite field element, we should be able to reduce the
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number of constraints. This is analogous to the SIMD (Single Instruction Multiple Data)

technique that is widely used in modern CPUs and GPUs [227].

As alluded earlier, extraction remains problematic. Indeed, simply stacking many

8-bit unsigned integers into a finite field element would not work since the extraction

cost will out-weight the benefits. Instead, we propose a novel encoding scheme, namely

stranded encoding, which encodes batched vector dot products with fewer field operations

(section 5.6). Given {Aj, Bj}sj=1 as inputs, where |Aj| = |Bj| = n, to compute s dot

products simultaneously, i.e.,

(A1 ·B1), (A2 ·B2), . . . , (As ·Bs)

a naïve encoding requires 2ns field elements. Our stranded encoding encodes these dot

product operations with 2n field elements:

xi =
s∑

j=1

aj,iδ
ϕ(j), yi =

s∑
j=1

bj,iδ
ϕ(j)

where xi, yi ∈ Fp, i ∈ {1, . . . , n}. For appropriate parameters δ and ϕ(·) (see Definition

5.1), these s dot products could be extracted from the following quantity
n∑

i=1

xiyi = (A1 ·B1)δ
2ϕ(1) + . . .+ (A2 ·B2)δ

2ϕ(2)+

. . .+ (As ·Bs)δ
2ϕ(s),

and the cost is not much different from a single extraction.

A caveat here is to pack as many matrix coefficients into a field element, while still

allowing a proper ϕ(·) to extract A1 · B1, . . . , As · Bs correctly. We formulate this as a

discrete optimization problem; and develop a cost model for stranded encoding, so that

our implementation automatically chooses the optimal batch size s for any instance.

Implementation and evaluation To evaluate the effectiveness of ZEN, we imple-

mented both ZEN-vanilla, a straight-forward implementation of existing full quantiza-

tion scheme [30], and the fully optimized ZEN toolchain. We summarize our benchmark
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Table 5.4: Case study: benefits of optimizations on the number of constraints for the
four kernels in LeNet-5-Medium CIFAR-10. Opt. Lv1 only includes sign-bit grouping;
Opt. Lv2 adds remainder-based verification; Opt. Lv3 adds stranded encoding. We
note that our current optimizations did not focus on ReLU, since it only contributes
to a very small percentage (0.1%) of constraints.

Kernels ZEN-vanilla Opt. Lv1 Opt. Lv2 Opt. Lv3
Conv 69,692,928 28,630,272 8,082,688 5,195,008
FC 394,000 219,706 132,490 54,906

AvgPool 14,925,312 4,982,976 7,872 7,872
ReLU 114,227 97,920 97,920 97,920

results in Table 5.3. We see an improvement of 5.43∼22.19× (15.35× on average), de-

pending on the inference model. Further discussions will be given in the corresponding

sections.

As one shall see, while the verification speed is more or less stable, the proving cost

increases drastically with the increase of the number of constraints. We make various

optimizations that reduce the number of constraints. See Table 5.4 for a highlight of

optimizations on LeNet-5-Small for CIFAR-10.

Our code is open-sourced on GitHub [224] .

Our underlying zero-knowledge proof scheme is from the celebrated work of Groth

[228]. We remark that the selection of underlying zero-knowledge proof systems is largely

orthogonal to our ZEN design. In particular, our optimization is independent of the

underlying proving system, and we expect to see similar gains from our optimizations for

other proving systems. With [228], our proof size is always a constant, i.e., 192 bytes for

our choice of parameters. Verifying a proof can be done in a few seconds in all cases. This

feature may be particularly appealing in practical use cases such as blockchains, where

decisions (whether authentication passes or not) need to be made almost instantly.
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5.2.3 Related work

Verifiable machine learning. We first compare ZEN with existing verifiable ma-

chine learning systems. Ginger [213] is an argument system that supports floating-point

computation. Despite the improvement, Ginger’s concrete efficiency is still far behind ver-

ifying arithmetic computation that can be directly expressed in finite fields. As a result,

ZEN’s approach introduces quantization techniques to avoid expensive zero-knowledge

proof systems for floating-point values.

SafetyNet [229] implements a specialized interactive proof protocol for verifiable ex-

ecution of a class of deep neural networks. Compared with SafetyNet, ZEN has three

major advantages: first, ZEN’s inference schemes is non-interactive; second, SafetyNet

still leaks the neural network model, such as the weights, which are usually treated as

trading secrets of the service providers; last, SafetyNet only supports quadratic activa-

tion functions, which are usually considered less effective than the widely used ReLU

activation function [230].

zkDT [231] implements verifiable inference and accuracy schemes on decision trees.

zkDT proposes protocols with tree-specialized commitment design. Verifiable inference

and accuracy schemes for neural networks pose a whole different set of technical chal-

lenges. We also note that neural network inference itself has more complicated applica-

tion scenarios, such as computer vision, natural language processing, and computational

biology, compared with a limited scope of decision tree models.

vCNN [232] proposes a verifiable inference scheme for neural networks with zero-

knowledge. ZEN differentiates from vCNN in the following aspects. First, vCNN requires

a specific built underlying zero-knowledge system as a mixing of QAP [233], QPP [234]

and CP-SNARKs [235]. Instead, ZEN generates optimized R1CS constraint which is

used by many different zero-knowledge systems and shows large generality. Second,
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vCNN only optimizes convolution, while ZEN optimizes various kinds of NN kernels. As

a result, ZEN’s optimization would still be valid in newer generations of NNs (such as

transformers [5], which do not use convolution) while vCNN cannot. Last, ZEN includes

an accuracy statement, so that the effectiveness of neural networks from the service

provider is verifiable, rather than being blindly trusted.

zkCNN [236] explores a different trade-off point in zk NN design, namely trading

non-interactivity for better performance. We note that zkCNN is specialized for scenarios

where an interactive protocol is permitted. However, in many potential use cases of ZEN,

such as blockchain oracles, non-interactive is crucial.

To the best of our knowledge, ZEN is the first end-to-end optimizing compiler that

compiles neural network models to R1CS constraints.

Other privacy models for machine learning. Many research efforts [237, 238,

239, 240, 241, 242, 231] have been devoted to the security and privacy in machine

learning recently. These works largely fall into three categories. The first approach

[207, 208, 205] utilizes homomorphic encryption to execute machine learning models on

encrypted data. The second approach [243, 12, 244, 206] builds upon the multi-party

computations (MPC), enabling multiple parties with local datasets to learn the same

machine learning model on the aggregated datasets, while preserving privacy for indi-

vidual’s data. The third approach [245, 246, 247] adopts differential privacy (DP) to

ensure that the individual data points in a large dataset will not be leaked even if they

have been utilized to train a machine learning model. The privacy models of these works

are largely orthogonal to ZEN since none of these work can provide a publicly verifiable

inference result with both user input data and the service provider model private.

Zero-knowledge proof systems A large body of zero-knowledge proof systems [197,

198, 199, 200, 201, 202, 203, 204] have been proposed to facilitate various use cases. These

systems usually come with diverse setups, verification time, and proof size, leading to
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trade-offs in these dimensions. In particular, we focus on the scheme developed by Groth

[228] and the Arkworks implementation [248, 204] to provide constant size proofs and

millisecond-level verifications. We stress again that the selection of zero-knowledge proof

systems is largely orthogonal to our ZEN design; our design is applicable to other R1CS-

based proof systems and will deliver various performance preference, suiting dedicated

use cases.

Neural network quantization Quantization has been widely studied [30, 214, 215,

216, 217, 218, 219] to accelerate neural networks by replacing float32 data with low-

precision data (e.g., float16). Apple and XORNet.ai [220, 221] have deployed quantiza-

tion of neural network to accelerate neural network on devices with resource constraints.

Facebook [222] and Google [223] have integrated quantization as standard feature of Py-

Torch and TensorFlow due to its wide usage. However, existing quantization techniques

are usually not R1CS friendly due to two reasons. First, most quantization techniques

[214, 215, 216] involve floating-point data. However, applying neural network models in

zkSNARKs requires full quantization: converting a floating-point neural network model

to a neural network model consisting of only integer arithmetic. Second, for a few quan-

tization techniques [30] with full quantization, it still involves negative values and divi-

sion operations, which cannot be efficiently supported in zkSNARKs. We use the full

quantization scheme in [30] as in our baseline system ZEN-vanilla, since it establishes

state-of-the-art accuracy on uint8 quantization with minimal accuracy loss, for a variety

of real-world NNs.

5.3 Background

We briefly recall zk-SNARK in subsection 5.3.1. Then, we explain the necessary

background on neural networks to understand our optimizations in subsection 5.3.2.

116



ZEN: Efficient Zero-Knowledge Proofs for Neural Networks Chapter 5

5.3.1 Cryptography

The major cryptographic building block used in this chapter is zk-SNARK, formally

(publicly-verifiable, preprocessing,) zero-knowledge Succinct Non-interactive ARgument

of Knowledge. A zk-SNARK is defined in the context of arithmetic circuit satisfiability.

A more formal definition can be found in [249].

We denote a finite field of order p as Fp. An Fp-arithmetic circuit is a circuit whose

inputs and outputs are from Fp. We consider circuits that have an input x ∈ Fn
p and

a witness w ∈ Fh
p . We restrict the circuits to the ones with only bilinear gates, i.e.

addition, multiplication, negation, and constant gates with input y1, . . . , ym is bilinear if

the output is ⟨⃗a, (1, y1, . . . , ym)⟩ · ⟨⃗b, (1, y1, . . . , ym)⟩ for a⃗, b⃗ ∈ Fm+1
p .

It is not hard to convert boolean circuits to arithmetic circuits via bit decomposition.

We define arithmetic circuit satisfiability as follows:

Definition 5.3.1 The arithmetic circuit satisfiability of an Fp-arithmetic circuit C :

Fn
p ×Fh

p → Fl
p can be defined by the relation RC = {(x,w) ∈ Fn

p ×Fh
p : C(x,w) = 0l} and

the language LC = {x ∈ Fn
p : ∃ a ∈ Fh s.t. C(x,w) = 0l}.

A zk-SNARK for Fp-arithmetic circuit satisfiability is a triple of polynomial time

algorithms, namely (Gen,Prove,Verify):

• Gen(1λ, C) → (pk, vk). Using a security parameter λ and an Fp-arithmetic circuit

C as inputs, the key generator Gen randomly samples a proving key pk and a

verification key vk. These keys are considered as public parameters pp := (pk, vk),

and can be used any number of times to prove/verify the membership in LC .

• Prove(pk, x, w)→ π. Taking a proving key pk, and any (x,w) ∈ RC as inputs, the

Prove algorithm generates a non-interactive proof π for the statement x ∈ LC .
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Figure 5.3: Popular neural network kernels

• Verify(vk, x, π)→ {0, 1}. Taking the verification key vk, public input x, and proof π,

the Verify algorithm output 1 is the verification success, i.e. the verifier is convinced

that x ∈ LC .

Remark 5.3.2 In practice, the prover may segment the proving processing into multiple

stages. For example, it may commit to an input and publish the commitment first, and

at a later stage generates the proof. It may even commit different parts of the inputs

independently and separately. For simplicity, for the rest of the paper, we will model this

whole process as a single function. It is straightforward to see that our security features

remain intact in this simplified model.

A zk-SNARK has the following properties:

• Completeness. For any security parameter λ, any Fp arithmetic circuit C,

and (x,w) ∈ RC , an honest prover can convince the verifier, namely that the

verifier will output 1 with probability 1 − negl(λ) in the following experiment:

(vk, pk)← (1λ, C); π ← Prove(pk, x, w); 1← Verify(vk, x, π).

• Succinctness. An honestly-generated proof π has Oλ(1) bits and Verify(vk, x, π)

runs in time Oλ(|x|) 2.
1The concrete numbers are from [203].
2Oλ(·) hides a fixed polynomial factor in λ.
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• Proof of Knowledge. If the verifier accepts a proof output by a computationally

bounded prover, the prover must know a witness for a given instance. This is also

called soundness against bounded provers. More precisely, for every poly(λ)-size

adversary A, there is a poly(λ)-size extractor E such that Verify(vk, x, π) = 1 and

(x,w) /∈ RC with probability negl(λ) in the following experiment: (pk, vk) ←

KeyGen(1λ, C); (x, π)← A(pk, vk); w ← E(pk, vk).

• Zero Knowledge. An honestly generated proof is zero knowledge. Specifically,

there is a poly(λ)-size simulator Sim such that for all stateful poly(λ)-size distin-

guishers D, the probability of D(π) = 1 on an honest proof and on a simulated

proof is indistinguishable.

zk-SNARK’s security can be reduced to knowledge-of-exponent and variants of Diffie-

Hellman assumptions in bilinear groups [250, 251, 252]. Although the knowledge-of-

exponent assumption is considered fairly strong, Gentry and Wichs showed that assump-

tions from this class are likely to be inherent for efficient, non-interactive arguments for

NP relations [253].

There are a number of zero-knowledge proof systems proposed in recent years [197,

198, 199, 200, 201, 202, 203, 204]. In this chapter, we use Arkworks implementation [248]

that was part of [204]. We will use the scheme by Groth [228], commonly referred to as

Groth16, to generate and verify proofs. This scheme is the state-of-the-art in terms of

proof size and verifier efficiency.

In a typical Groth16-type of proving system, the statements that are to be proved

are translated into a so-called Rank-1 Constraint System (R1CS). To prove that the

prover knows some secret inputs that satisfy the given statements, is then converted into

the satisfiability of the R1CS over any points over the field. The proof is therefore a

demonstration that the R1CS is satisfied at a random point, which, as a prior, is agreed
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upon a trusted setup (result into the so-called common reference string) and remains

unknown to both prover and verifier. Without going into further details, we note that

the overall cost of the proving system is dominated by the number of constraints in the

R1CS.

Apart from zk-SNARK, we use a cryptographic commitment scheme as a building

block, formally, COMM : {0, 1}O(λ) × {0, 1}∗ → {0, 1}O(λ) . We require the scheme to

be both binding and hiding. Looking ahead, we will be using Pedersen commit which is

statistically hiding and computationally binding under well-accepted assumptions.

5.3.2 Neural network based classification and recognition

Neural network (NN) brings significant advancement in computer vision [2, 254],

natural language processing [255, 256] and computational biology [257, 258]. Abstractly,

An NN can be viewed as a function Y = f(X0) that takes an input X0 ∈ Rc×h×w and

generates an output Y ∈ Rm: f = fl ◦ fl−1 ◦ · · · ◦ f1 is usually composed by a sequence of

kernels. Each kernel fi (also called a single layer in NN) is usually one of the following 4

“elementry” matrix operations (illustrated in Figure 5.3):

1. ReLU [230] kernel applies a simple non-linear activation function (i.e., ReLU(X) =

max(X, 0)) element-wisely to the input matrix. This kernel enables NNs to learn

non-linearity patterns of the input data.

2. Average pool kernel splits the input data spatially into a set of r × r grid (r=2 in

Figure 5.3(b)) and computes the mean over all values in each grid. This kernel spa-

tially summarizes local image features and extract high-level features to facilitate

pattern recognition.

3. Fully connected kernel takes two inputs (i.e., a weight matrix W ∈ Rm×n and a

data matrix X ∈ Rn) and computes an output matrix W · X ∈ Rm. This fully
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connected kernel mixes signals from individual pixels and extra high-level features

based on the learnable weight matrix W .

4. Convolution kernel slides a weight matrix W along the height and width of the

input matrix X, retrieves a slice of input matrix with the same spatial size (2× 2

in Figure 5.3(d)), and computes the dot product to generate a real number. This

kernel mixes local signals (e.g., local edges and angles) in contrast to fully connected

kernel that mixes global signals over all pixels. Note that convolution kernel can

be transformed into matrix-matrix multiplications [259], which can be computed

similar as fully connected kernel.

Two prominent use cases of NNs are classification [2, 254] and recognition [260, 261].

The classification task puts an input into one of m candidate classes (e.g., cat, dog, and

house). In this case, the final layer fl is a softmax function that outputs Y = [y1, y2, ..., ym]

which satisfies 0 ≤ yj ≤ 1 and y1 + · · · ym = 1. As a result, yj can be treated as the

probability that the input image X0 has class j. The classification result is the class with

the highest predicted probability: ŷ = argmaxj yj.

The recognition task compares an input X to a reference input XR and decides

whether the input and the reference input are a same object. Different from classification,

the final layer fl takes neural embeddings of both the input and the reference, and then

computes their distance d in a metric space (e.g., Eculidean space). These two objects

are decided as a same object, if their distance d is smaller than a pre-defined threshold

τ (e.g. 0.5).
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5.4 ZKP for accuracy and inference

In this section, we present our constructions for accuracy and inference. We first

introduce a verifiable neural network accuracy scheme that proves the accuracy of neural

network models without revealing the weights of the models (subsection 5.4.1). We then

introduce a verifiable neural network inference scheme for classification and recognition

(subsection 5.4.2). Here, we consider a quantized neural network Q : Fd1
p → Fd2

p which is

a mapping from a size d1 vector over Fp to a size d2 vector on the same field. While neural

networks are usually floating-point models, we defer our R1CS friendly quantization to

section 5.5.

We remark that we will use Groth16 method to generate proofs. This implies that

the prover and the verifier need to agree on certain common reference string (CRS) that

is generated through either a trusted third party, or a multiparty computation protocol.

For a dedicated verifier use case, it may also be sufficient for the verifier to generate the

CRS.

5.4.1 ZENacc

We present ZENacc, a zero-knowledge, verifiable neural network accuracy scheme, that

works for the following typical scenario: the prover firstly commits to a private neural

network, then proves the prediction accuracy of the committed neural network, on either

a public or a verifier-chosen testing dataset. The verifier learns nothing about the model

except its prediction accuracy.

Formally, we consider a testing dataset D = {a1, a2, . . . , an} and the corresponding

truth labels T = {t1, t2, . . . , tn} for the testing dataset. In classification task, ti ∈

{1, 2, ...,m} indicates whether the image ai contains object ti. In recognition task, ti ∈

{0, 1} indicates whether the current image ai contains the same person as a reference
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image aref . Given a neural network Q, we define a classification computation routine as:

a) running the neural network Q on the testing dataset D provided by the verifier to get

prediction results Y ← Q(D); b) comparing Y with their truth label T to obtain the

accuracy, denoted by accu, of the neural network prediction.

For recognition task, we additionally define a distance metric L : Fd2
p ×Fd2

p → Fp over

the embedding space, τ ∈ Fp be the agreed threshold, and a ground truth embedding yg.

Given a neural network Q, we define a recognition computation routine as: a) running

the neural network Q on D to obtain the embedding results Y = {y1, y2, . . . , yn}; b)

for each yi in Y , calculate L(yi, yg) ≤ τ to obtain the recognition prediction results R;

c) comparing R and T and obtaining the recognition accuracy results accu on testing

dataset D.

Based on these two computation routines, we define a zero-knowledge, verifiable neu-

ral network accuracy scheme (ZENacc) as the following algorithms:

• (pk, vk)← ZENacc.Gen(1
λ,Q): given a security parameter λ and a quantized neural

network modelQ for classification or recognition tasks, randomly generate a proving

key pk and a verification key vk.

• cm← ZENacc.Commit(Q, r): given a random opening r, the prover commits to the

neural network Q with r, i.e., cm← COMM(r,Q).

• (accu, πacc) ← ZENacc.Prove(pk,D, T ,Q): Upon receiving the commitment, the

verifier sends a testing dataset D to the prover. Then the prover runs either clas-

sification or recognition computation routine for each data sample in D, compares

with the predictions with their truth labels in T and outputs accu, the prediction

accuracy of the neural network Q. Finally, the prover generates a proof πacc for

this computation routine.
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• {0, 1} ← ZENacc.Verify(vk, cm,D, T , accu, πacc): given the verification key vk and

proof πacc, verifies if the following statements are correct: the number of correct

predictions on dataset D with model Q is accu; cm is a commitment to Q.

5.4.2 ZENinfer

Our zero-knowledge, verifiable neural network inference scheme (ZENinfer) assumes

the prover keeps the neural network private, but will publicly commit to it (binding). At

a later time, the prover generates a proof for the result of the classification or recognition.

Upon receiving the model commitment and the proof, the verifier checks if the proof is

valid or not. During the whole process, the prover’s neural network is kept secret (hiding).

Formally, we consider a public input a ∈ Fd
p and a neural network Q. We define

the classification inference routine as running the neural network Q on the input a to

get ya ← Q(a). For the recognition task, we additionally have the distance metric

L, agreed threshold τ , and the ground truth embedding yg. We define the recognition

inference routine as running the neural network Q on a to obtain the embedding ya and

calculating L(ya, yg) ≤ τ to obtain recognition predictions.

Based on these two inference routines, we define a zero-knowledge, verifiable neural

network based inference scheme (ZENinfer) as the following algorithms:

• (pk, vk) ← ZENinfer.Gen(1
λ,Q): given a security parameter λ and a quantized

neural network model Q for classification, randomly generate a proving key pk and

a verification key vk.

• (cm, cma, ya, πinf ) ← ZENinfer.Prove(pk, a, r, s,Q): given an input a ∈ Fd
p and a

random opening r and s, the prover commits to the input with r and the neural

network model with s, i.e., cma ← COMM(r, a) and cm ← COMM(r,Q), respec-

tively. Then the prover runs the classification or the recognition inference routine
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Figure 5.4: Illustration of Partial Quantization when computing Y = WX.

to get a result. Finally, the prover generates a proof πinf for the above process.

• {0, 1} ← ZENinfer.Verify(vk, cm, cma, ya, π): validate input a’s inference result on

model Q given the verification key vk, a’s commitment, Q’s commitment, a’s infer-

ence result, and a zero-knowledge proof πinf .

5.5 R1CS Friendly Quantizaiton

In this section, we introduce our R1CS friendly quantization. Recall that popular

neural networks require arithmetic computation on floating-point numbers (e.g., float32).

However, zero-knowledge systems work over finite fields where data is represented by large

unsigned integers (e.g., uint256). This poses special challenges on the operation and data,

namely, converting floating points to non-negative integers, and handling divisions. To

bridge this gap of numerical data types, we first integrate the full quantization scheme

in [30] to the existing zkSNARK library and achieve our baseline system, ZEN-vanilla.

Then, we introduce two R1CS friendly optimizations on top of our baseline system, to

significantly reduce the number of constraints while maintaining an equivalent accuracy.

Last, we demonstrate these R1CS friendly quantizations can be applied to 4 major neural

network kernels: fully connected, convolution, average pool, and ReLU.
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5.5.1 Baseline: ZEN-vanilla

As discussed in subsection 5.3.2, given a floating-point weight matrix W and a

floating-point input matrix X, a neural network kernel computes the output matrix

Y as follows:

Y = WX, W ∈ Rm×n, X ∈ Rn, Y ∈ Rm (5.1)

The first step of quantization is to generate floating-point scale parameters (sY , sW , sX ∈

R) and the lifted zero points (zY , zW , zX ∈ uint) for each matrix, as illustrated in Fig-

ure 5.4. As a result, we have the quantized representation:

Y = sY (QY − zY Jm,1) W = sW (QW − zWJm,n)

X = sX(QX − zXJn,1)

Here, Jk,l represents a k × l matrix of ones.

During neural network computation, we can substitute Y , X, and W in Equation 5.1

with their quantized representation:

sY (QY − zY Jm,1) = sW sX(QW − zWJm,n)(QX − zXJn,1)

The second step is to replace the floating-point scale parameters with unsigned integers

and enable the full quantization computation:

M = ⌊2k sW sX
sY
⌋

QY − zY Jm,1 = M(QW − zWJm,n)(QX − zXJn,1)/2
k

By multiplying with 2k for a large k (=22 by default), we preserve the precision of the

floating-point scale parameters in an unsigned integer.

Efficiency Challenges in ZEN-vanilla. While ZEN-vanilla produces effective privacy-

preserving and verifiable neural network models, it is not efficient due to its large number

of constraints. There are two main reasons coming from [30]. First, [30] is developed for

signed int8 on integer-only hardware, allowing negative elements in (QW − zWJm,n) and
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(QX−zXJn,1) of Equation 5.2. However, zk-SNARK supports only finite field arithmetic

and requires expensive sign checks for signed integers.As a result, for mn+n elements in

(QW−zWJm,n) and (QX−zXJn,1), one may still need O(mn) sign-checks in the generated

constraints, where each sign-check needs expensive bit-decomposition. Considering that

Equation 5.2 accounts for most computations in neural networks in terms of fully con-

nected kernels and convolution kernels, this would lead to significant overhead. Second,

[30] involves division operations while the division operation is non-atomic in zk-SNARK

systems. To naïvely support this division operation, we need to first conduct the ex-

pensive bit-decomposition. Then, we need to drop the n least significant bits and pack

the rest back to enforce equality in Equation 5.2. While this strategy allows verifying

Equation 5.2, it would introduce heavy overhead from the bit decomposition.

5.5.2 R1CS Friendly quantizations

In this section, we introduce two R1CS friendly optimizations on top of the baseline

quantization scheme, namely, sign-bit grouping and remainder-based verification. Here,

we focus on fully connected kernel and convolution kernel. Both can be viewed as matrix

multiplications (Equation 5.1). We defer the discussion of ReLU kernel and average pool

kernel to the next section. Both optimizations use algebraic equalities to reduce the

number of expensive bit-decomposition operations in zkSNARK, while maintaining the

semantics of the quantization. As a result, our techniques incur similar accuracy loss as

[30]. Nonetheless, we note that [30] itself introduces accuracy loss.

Sign-bit grouping. In ZEN-vanilla, the constraints for a forward step on each layer is

generated by Equation 5.2. Our sign-bit grouping first reformulates Equation 5.2 to:

QY = zY Jm,1 +M(QW − zWJm,n)(QX − zXJn,1)/2
k
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Here, both sides are guaranteed to be positive. While (QW−zW ) and (QX−zX) may have

negative elements, we use the associativity of matrix multiplication to group operands of

the same sign:

G1 = QWQX , G2 = zXQW , G3 = zWQX , M ′ = ⌊zY 2
k

M
⌋

QY = M(G1 + nzW zXJm,1 +M ′Jm,1 −G2 −G3)/2
k

Note that we add zY before subtraction such that all intermediate elements in the refor-

mulated system are guaranteed to be positive. Now we can directly encode Equation 5.2

on the finite field without the need of any sign check, and thus completely remove bit-

decompositions. This optimization saves O(mn log p) constraints for QW ∈ Rm×n, where

p is the order of the finite field used by zk-SNARK.

Remainder-based verification. NN computation involves abundant division compu-

tations in average pool kernels (e.g., division by 4) and quantization (e.g., division by

2k). These division computations usually lead to non-integers and make it costly to

verify since zk-SNARK supports only integers. A naïve approach is to use expensive

bit-decomposition operations in zk-SNARK. To efficiently verify division operation in

zk-SNARKs, we propose a remainder-based verification optimization to avoid this high

overhead. We first use an extra matrix R to store the division remainder. During ver-

ification, we utilize R to avoid division in zk-SNARK systems. Formally, instead of

Equation 5.2, we prove Equation 5.2:

QY 2
k +R = M(G1 + nzW zXJm,1 +M ′Jm,1 −G2 −G3) (5.2)

As a result, we can verify the computation without the need of any division operations.

This optimization saves O(m log p) constraints (Y ∈ Rm, p is the order of the finite field

used by zkSNARK).
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5.5.3 Adapting R1CS friendly quantization for average pool and

ReLU kernels

Now, we show how to adapt the previously introduced R1CS friendly quantization

techniques to average pool and ReLu kernels as well. Here, we utilize average pool

instead of max pool following popular setting in zkNN design [229] to reduce constraint

sizes. We include a detailed discussion on its impact over constraint size and accuracy

in subsection 5.8.4.

Average pool kernel. The average pool kernel computes the average values among a set

of integers. It is useful to summarize neural network features across spatial dimensions,

as illustrated in Figure 5.3(b). Formally, given a matrix in quantized representation

(Q, s, z) (Q ∈ Ncin×m×n), and a pooling parameter r, the average pooling operator splits

the data into a set of r × r grid and computes the average in each grid

q̄c,i,j =

r−1∑
p=0

r−1∑
t=0

qc,ri+p,rj+t/r
2, c ∈ {1, 2, ..., cin}

i ∈ {1, 2, ..., ⌊m
r
⌋}, j ∈ {1, 2, ..., ⌊n

r
⌋}

Let’s briefly summarize the obstacles. First, the average pooling operator contains

division operation, which is not generally supported in zk-SNARK systems. Second,

even if division for certain pooling parameters (e.g., r = 2) can be conducted with bit

operations, it may still lead to non-integer outputs after division.

To this end, we incorporate the aforementioned remainder-based verification strategy

to the average pool kernels. In particular, we first use an extra scalar γ to store the

division remainder and use the following verification for the average pooling kernel

q̄c,i,jr
2 + γ =

r−1∑
p=0

r−1∑
t=0

qc,ri+p,rj+t, c ∈ {1, 2, ..., cin}

i ∈ {1, 2, ..., ⌊m
r
⌋}, j ∈ {1, 2, ..., ⌊n

r
⌋}
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Figure 5.5: Dot product/other computation Ratio in LeNet-5-Medium and LeNet-5-Small.

ReLU kernel. The ReLU kernel contains only maximum operations, and is used to

extract nonlinear neural network features, as illustrated in Figure 5.3(a). Formally, given

a quantized matrix represented in a triple (Q, s, z), where Q is the quantized matrix

(Q ∈ Ncin×m×n), s is the scale parameter (s ∈ R), and z is the zero point z ∈ N. We

compute the ReLU kernel by element-wisely applying the maximum comparison

QReLU = max(Q, zJcin,m,n))

The key insight is that z is an integer value corresponding to the lifted zero in the

floating-point data. Note that this design involves only integer arithmetics, and avoids

the conversion between floating-point and integer completely.

5.6 Optimizing Matrix Operation Circuits using Stranded

Encoding

In this section, we propose the stranded encoding, a general methodology of optimiz-

ing matrix operation circuits for zk-SNARKs. Our profiling on neural networks shows

that matrix operation, especially dot products, consumes most computation in neural

networks, as shown in Figure 5.5.

One important observation that we make is: neural network models can be effectively

quantized to models consisting of small integers, such as uint8 or uint16, while the un-
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Figure 5.6: Stranded encoding with batch size s = 2

derlying finite field is usually much larger (e.g. ≈ 2254 in case of BLS12-381 [226]). From

this observation, we propose a new encoding scheme, namely stranded encoding, that

could encode multiple low precision integers into a single finite field element.

Naïve encoding. One intuitive solution is, to encode A · B where A = [a1, a2], B =

[b1, b2], ai, bi ∈ uint8, we can use finite field elements x and y (x, y ∈ Fp, p ≥ 216) to encode

A and B:

x = a1 + a2δ, y = b1 + b2δ.

where δ ≥ 216. This encoding is already additive homomorphic, i.e., A + B = [a1 +

b1, a2 + b2] since x + y = (a1 + b1) + (a2 + b2)δ, from which a1 + b1 and a2 + b2 can be

easily extracted. This naïve encoding is not multiplicative homomorphic though. Take

dot product computation A ·B = a1b1 + a2b2 as an example. We know that

xy = a1b1 + (a1b2 + a2b1)δ + a2b2δ
2

To get A ·B, we need to extract each aibi separately from xy. This costs O(n), n = |A| =

|B|, which defeats the purpose of the encoding.

Stranded encoding. To address this problem, we propose a stranded encoding of

low precision integers in finite field elements. The core idea of stranded encoding is to

encode multiple matrix operations at the same time. For example, to better encode

A ·B = a1b1 + a2b2 and C ·D = c1d1 + c2d2, we could first encode low-precision integers
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in finite fields:

x1 = a1 + c1δ x2 = a2 + c2δ

y1 = b1 + d1δ y2 = b2 + d2δ

with sufficiently large δ (δ ≥ 217). Now, A ·B and C ·D can be all easily extracted from∑
xiyi, since:

x1y1 = a1b1 + (a1d1 + c1d1)δ + c1d1δ
2

x2y2 = a2b2 + (a2d2 + c2d2)δ + c2d2δ
2

x1y1 + x2y2 = (a1b1 + a2b2) + (. . .)δ

+ (c1d1 + c2d2)δ
2

We can extract A ·B and C ·D from x1y1 + x2y2 by mod δ and extracting the lowest

9 bits.

It is not hard to see that this stranded encoding can be easily extended to the case

that vector length |A| = |B| = |C| = |D| = n > 2, as illustrated in Figure 5.6:

A ·B =
n∑

i=1

aibi, C ·D =
n∑

i=1

cidi

We encode xi and yi as:

xi = ai + ciδ, yi = bi + diδ, i ∈ {1, 2, . . . , n}

Here, we set δ = 2k, k = 2win + log n, where win is the bit width of the low precision

unsigned integer and n is the size of the vector. We need to add n to catch possible

overflow of accumulating n win-bit unsigned integers. Now we have:
n∑

i=1

xiyi =
n∑

i=1

aibi + (. . .)δ +

(
n∑

i=1

cidi

)
δ2

= A ·B + (. . .)δ + (C ·D)δ2

(5.3)

Finally, we can decode the dot products A ·B and C ·D with bit operations

A ·B =

(
n∑

i=1

xiyi

)
mod δ, C ·D =

(
n∑

i=1

xiyi

)
≫ 2k
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(a) s=3

bits
0k2k3k4k5k6k7k254

E · F C ·D A ·B

fi di bi

ei ci ai

(b) s=4

bits
254 9k 8k 7k 6k 5k 4k 3k 2k k 0

G ·H E · F C ·D A ·B

hi fi di bi

gi ei ci ai

(c) s=5

bits
02k4k6k8k10k12k14k16k18k254

P ·Q G ·HE · F C ·DA ·B

qi hi fi di bi

pi gi ei ci ai

Figure 5.7: Data layout for variable batch size s. Each block has k bits and can store
a value up to 2k. k is a hyperparameter that is generally larger than 8 to accumulate
the dot product and avoid overflow.

where mod is the module operation and ≫ 2k indicates right-shift by 2k bits. While the

decoding adds more overhead, this overhead is amortized as we increase the number of

batched operations in stranded encoding.

In the above example, we batch two dot product operations: A · B, C · D. We will

discuss how to extend stranded encoding with a larger batch size next.

Stranded encoding with arbitrary batch sizes. Let batch size s be the number

of batched dot product operations. To achieve further saving in the constraint size, we

would like to extend s from 2 to larger batch sizes.

However, a naïve extension of the stranded encoding when batch size s = 2 would

not work. For example, for s = 3, we encode A · B, C ·D, E · F (A = [a1, . . . , an] etc.)

as follows:

xi = ai + ciδ + eiδ
2, yi = bi + diδ + fiδ

2.

Then, the multiplication becomes:

xiyi =aibi + (aidi + bici)δ + (cidi + aifi + biei)δ
2

+ (cifi + diei)δ
3 + eifiδ

4

It becomes very difficult to extract cidi from xiyi since cidi is “mixed” in the coefficient

of δ2. To solve this problem, we use the following encoding instead for i ∈ {1, ..., n}:

xi = ai + ciδ + eiδ
3, yi = bi + diδ + fiδ

3.
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Now it is not hard to see:

xiyi = aibi + (. . .)δ + (cidi)δ
2 + . . .+ (eifi)δ

6 (5.4)

As a result:
n∑

i=1

xiyi = A ·B + (...)δ + (C ·D)δ2 + . . .+ (E · F )δ6

In fact, stranded encoding can be generalized to an arbitrary batch size s (with

constraints). Formally, we define stranded encoding as follows:

Definition 5.1 (Stranded encoding scheme) For a series of dot product A1 ·

B1, . . . , As·Bs, where Aj = [aj,1, . . . , aj,n], Bj = [bj,1, . . . , bj,n](j ∈ {1, . . . , s}) and aj,i, bj,i ∈

[2win ], stranded encoding encodes these dot product operations in finite field elements

xi, yi ∈ Fp, p ≥ 2wout , i ∈ {1, . . . , n} as follows:

xi =
s∑

j=1

aj,iδ
ϕ(j), yi =

s∑
j=1

bj,iδ
ϕ(j)

where δ = 22win+logn and ϕ(·) : {1, . . . , s} → N can be defined by the following optimiza-

tion problem:

min ϕ(s)

s.t. Ω1 = {ϕ(1) + ϕ(s), ..., ϕ(s− 1) + ϕ(s)}

Ω2 = {2ϕ(1), 2ϕ(2), ..., 2ϕ(s− 1), 2ϕ(s)}

Ω1 ∩ Ω2 = ∅

(5.5)

In addition, n needs to satisfy the following constraint:

(2ϕ(s) + 1)(2win + log n) ≤ wout (5.6)

As a result:
n∑

i=1

xiyi = (A1 ·B1)δ
2ϕ(1) + . . .+ (A2 ·B2)δ

2ϕ(2)+

. . .+ (As ·Bs)δ
2ϕ(s)
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The core of this definition is to formulate stranded encoding as an optimization prob-

lem in Equation 5.5. Intuitively, as shown in Equation 5.7, Ω2 is the set of exponents of

δs in the terms of xiyi that ends up to be “useful”. Ω1 represents the set of exponents

of δs in the terms of xiyi that are going to be discarded. For example, in case of s = 2,

ϕ(1) = 0, ϕ(2) = 1,Ω1 = {1},Ω2 = {0, 2}. This can be verified in Equation 5.3. In

case of s = 3, ϕ(1) = 0, ϕ(2) = 1, ϕ(3) = 3,Ω1 = {1, 3, 4, 5},Ω2 = {0, 2, 6}. This can be

verified in Equation 5.4.

In addition, the constraint shown in Equation 5.6 prevents the stranded encoding

scheme from blowing up the finite fields. Since δ = 22win+logn > max{Ai ·Bi}, each term

in Equation 5.7 is non-overlapping in the final encoded bits (as shown in Figure 5.7).

Now, we only need to worry about the last term not exceeding the size of the finite

field, which is captured by Equation 5.6. We list ϕ(s) for different s and their nmax in

Table 5.5.

Cost based optimization. Now, we can analyze the benefits brought by stranded

encoding in terms of the number of constraints. Since the encoding part is “free”: the

addition would not cost extra constraints. The major cost is decoding, which requires

bit decomposition (generating O(wout) constraints). For example, in the zk-SNARK

implementation we use, bit decomposition of a finite field element in BLS12-381 generates

632 constraints. Then, the amortized cost of each element-wise multiplication in dot

product is:

cost(s, n) =
O(wout)

sn
(5.7)

where s is the batch size and n is size of the vectors to be dot producted. For the cost

function listed in Equation 5.7, we always choose the best batch size s for the given input.

For example, in our setting, win = 8, wout = 254, the fixed cost of bit decomposition is

632. For n < 632/3, we shall not do stranded encoding since the amortized cost is greater

than 1; for 632/3 ≤ n ≤ 4096, we choose a batch size of 4; and for n > 4096, we choose a
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Table 5.5: Largest supported vector size nmax in stranded encoding for different batch
size s (ωin = 8 and ωout = 254). ‘-’ indicates not supported.

s 2 3 4 5

ϕ(s) 1 3 4 9

2ϕ(s) + 1 3 7 9 19

nmax 268 220 212 -

batch size of 3. We believe this cost function is useful when determining both the integer

precision during the neural network quantization and the underlying field field used by

a zk-SNARK.

5.7 Evaluation

We first describe ZEN’s implementation details and evaluation settings in subsec-

tion 5.7.1. Next, we demonstrate the effectiveness of our proposed optimizations on

reducing constraints in subsection 5.7.2. Then, we show the benefits of reducing linear

combinations in subsection 5.7.3. Last, we show the end-to-end results on the number of

constraints as well as accuracy in subsection 5.7.4.

5.7.1 Implementation and Evaluation Settings

Implementation. ZEN implementation consists of three major parts: a quantiza-

tion engine, circuit generators, and a scheme aggregator. The quantization engine takes a

pretrained floating-point PyTorch model, applies our zk-SNARK friendly quantizations,

and produces a quantized neural network model. We include a detailed discussion on

quantization engine in subsection 5.8.3. Circuit generators generate individual compo-

nents of circuit. We implemented circuit generators for FC, Conv, average pooling, and

ReLU kernels. Our system also includes a commitment circuit generator from the un-

derlying zk-SNARK system we used. We implement stranded encoding as part of FC
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and Conv circuit generators. The scheme aggregator assembles all component circuits

together, and produces the final zero-knowledge proof systems according to the specified

ZENinfer scheme. Our system uses arkworks’ implementation [248] of Groth16 scheme

[228] as the underlying zk-SNARK. We choose the BLS12-381[226] as the underlying

curve for in Groth16. We use Poseidon sponge scheme [262] implemented in Arkworks

library.

Datasets. We select three popular datasets (MNIST, CIFAR-10, and ORL) used by

many secure machine learning projects [207, 246, 205, 206, 208]. Among these datasets,

MNIST and CIFAR-10 are used for the classification task and ORL is used for the

recognition task (e.g., face recognition).

• MNIST is a large dataset for handwritten digit classification with 60, 000 training

images and 10, 000 testing images. Images in MNIST are gray-scale of shape 28×

28× 1.

• CIFAR-10 is a classification dataset with 10 classes (e.g., cat and dog). It contains

50, 000 training images and 10, 000 testing images of shape 32× 32× 3.

• ORL dataset contains face images from 40 distinct subjects with diverse lighting,

facial expression, and facial details. Since ORL dataset does not specify the training

and testing dataset split, we randomly select 90% images as the training dataset

and use the remaining 10% images as the testing dataset.

All images are stored with uint8 data type and values are between 0 and 255.

Models. We use ShallowNet, a lightweight neural network model and a series of

LeNet variants [254], as summarized in Table 5.6: ShallowNet contains two fully con-

nected kernels and one ReLU kernel. LeNet has three convolutional kernels, two fully

connected kernels, and four ReLU kernels. These variants have different kernel sizes for
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Table 5.6: Neural Networks used in our evaluation.

Network Number of Layers # FLOPs (K)Conv FC Act Pool
ShallowNet 0 2 1 0 102
LeNet-5-small 3 2 4 2 530
LeNet-5-medium 3 2 4 2 7,170
LeNet-Face-small 3 2 4 2 2,880
LeNet-Face-medium 3 2 4 2 32,791
LeNet-Face-large 3 2 4 2 127,466

Figure 5.8: Constraint saving on conv kernels. Shape is [# of in channels]×[# of out
channels]×[kernel width]×[kernel height].

adapting to different sizes of inputs. The evaluation on these six variants demonstrates

the performance of ZEN under diverse model sizes.

Experiment Configuration. All the evaluations run on a Microsoft Azure M32ms

instance with 32 core Intel Xeon Platinum 8280M vCPU @ 2.70GHz and 875 GiB DRAM.

We compile ZEN code using Rust 1.51.0 in release mode. The Arkworks library version

is 0.3.0.
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5.7.2 Benefits on reducing constraints

R1CS friendly quantization. We demonstrate the optimization benefits from

R1CS friendly quantization on convolution (Conv) kernels and fully connected (FC)

kernels with diverse kernel sizes. We choose Conv and FC kernels since they take up

to 60% share in the total number of constraints. We report the benefits from sign-bit

grouping and remainder-based verification for each kernel.

Figure 5.8 shows the constraint saving on Conv kernels. We observe that the number

of constraints can be reduced by 3.4× to 73.9× with R1CS friendly quantization, includ-

ing the sign-bit grouping and remainder-based verification. Looking at individual kernels,

we find that sign-bit grouping and remainder-based verification significantly bring bene-

fits on diverse Conv kernels, especially on small Conv kernels of shape 8× 1× 5× 5 and

16 × 4 × 5 × 5. Figure 5.9 shows similar constraint saving (from 1.1× to 8.4×) for FC

kernels from R1CS-friendly quantization.

From Table 5.4 we know that AvgPool obtains 3.0× and 633× constraint reduction

from the sign-bit grouping and remainder-based verification in R1CS-friendly quantiza-

tion. ReLU obtains 1.2× constraint reduction from sign-bit grouping. This improvement

is regardless of AvgPool and ReLU kernel size, because the constraint reduction for each

division in AvgPool is fixed and independent of the number of division operations, and

similarly for ReLU.

Stranded encoding. We first show the effectiveness of stranded encoding with

the optimal batch s determined by the optimizer. Since stranded encoding can only be

applied to FC kernel and Conv. kernel, we show constraint savings cause by stranded

encoding in Figure 5.8 and Figure 5.9. When applied to Conv. kernel, stranded encoding

didn’t get triggered when the kernel sizes are small (8×1×5×5 and 16×4×5×5). This

is because the optimizer decides that the gain of stranded encoding will be negative. For
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Figure 5.9: Constraint saving FC kernels. Shape is [# of in channels]×[# of out channels].

larger size kernels, stranded encoding brings 1.6× to 2.2× constraint size savings on top of

R1CS friendly quantization. We observe a similar trend when applying stranded encoding

to FC kernel in Figure 5.9: it brings additional 1.2× to 2.9× constraint reduction for

FC kernels of different sizes. The larger FC kernel is, the more benefit from stranded

encoding it gets. This is because the amortized cost of stranded encoding decreases

proportionally as the kernel size increases.

Selecting the optimal batch size s in stranded encoding. We further demon-

strate the benefits of stranded encoding under different batch sizes s (Figure 5.10). Com-

paring across different batch sizes s, we notice that a larger batch size usually leads to

higher savings. This result shows that we should choose a larger batch size s when the

vector satisfies the corresponding length requirement. We also observe that the constraint

saving increases as the FC size grows. In particular, when the kernel shape is 100×16384,

s = 3 can lead to a 2.8× constraint saving, which almost reaches the theoretical upper

bound on constraint saving. Meanwhile, stranded encoding brings little benefits on small

FC kernels (e.g., 100×256). The reason is that the encoding and decoding overheads are

constant across FC sizes and become relatively small on large FC sizes. This observation
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Figure 5.10: Constraint saving on FC kernels with different batching size s. Shape is
[# of in channels] × [# of out channels].

Table 5.7: Accuracy comparison between floating-point (FP) models and R1CS
friendly quantized models.

Model FP Acc. Quant. Acc. ∆Acc.
(%) (%) (%)

ShallowNet-MNIST 95.13 94.91 −0.22
LeNet-small-CIFAR 55.76 55.35 −0.41
LeNet-medium-CIFAR 64.23 63.68 −0.55
LeNet-Face-small-ORL 84.3 84.0 −0.3
LeNet-Face-medium-ORL 88.6 88.2 −0.4
LeNet-Face-large-ORL 91.6 92.1 0.5

motivates the usage of s = 1 for these small FC kernels. Our optimizer maximizes the

benefits from stranded encoding by automatically selecting the best batch size s.

Case study: end-to-end results on LeNet-5-Medium. We show end-to-end

results of different levels of optimizations on inference using LeNet-5-Medium on CIFAR-

10 in Table 5.4. Starting from ZEN-vanilla, we add individual optimizations one by one

and show the total number of constraints from all NN layers. In ZEN-vanilla, LeNet-5-

Medium has almost 85 million constraints. This large number of constraints comes from
2We skip s = 4 for the FC kernel of shape 100×16384 since our stranded encoding with s = 4 requires

a vector of length less than 212 = 4096, as described in Table 5.5
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0% 20% 40% 60% 80% 100%

ZEN

ZEN-
Vanilla

Constraints Ratio

Conv AvgPool FC ReLU Commitment

Figure 5.11: Breakdown of constraints in LeNet-Face-large ORL dataset from both
ZEN-vanilla and ZEN.

the intensive computation and bit decomposition in NNs. When all three optimizations

are applied, ZEN significantly reduces the total number of constraints by 15.45×. This is

similar to the constraint saving on popular NN kernels in Figure 5.8 and Figure 5.9. These

results show that our optimization techniques can significantly mitigate the intensive

number of constraints on NN workloads and enable a more efficient deployment of ZEN.

Constraint size breakdown by kernel type. We breakdown the number of con-

straints in LeNet-Face-Large on CIFAR-10 circuits generated by ZEN-vanilla and fully

optimized ZEN in Figure 5.11. We split the constraints into those from the commitment

scheme and those from 4 different kinds of kernels. Overall, we observe that convolu-

tion kernels and fully connected kernels are the dominant sources of constraints in the

ZEN-vanilla (59.2%) implementation. Since these two kinds of kernels heavily rely on dot

products, this justifies our efforts on improving dot product circuit size by using stranded

encoding. It is worth noting that commitment accounts for only 30.1% constraints in the

ZEN-vanilla, but this ratio significantly rises to 82.6% in ZEN. Note that the absolute

number of constraints from commitment remains the same in both ZEN-vanilla and ZEN.

This ratio change comes from optimizations in ZEN that significantly reduces the number

of constraints from neural network inference part. Further improving the commitment

size to make ZEN even more efficient is our future work.
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5.7.3 Benefits on reducing linear combinations

Figure 5.12: LC saving on conv kernels.
Shape is [# of in channels]×[# of out
channels]×[kernel width]×[kernel height].

Figure 5.13: LC saving on FC kernels.
Shape is [# of in channels]×[# of out
channels].

Despite the traditional wisdom that the prover time is mostly decided by the number

of constraints, we find this is not the case for ZEN schemes on arkworks implementation of

Groth16 protocol [248], especially on the bigger neural network models (which translates

to a larger number of constraints). In Table 5.8, we breakdown the run time of ZENinfer’s

proving time into four parts: synthesizing constraints from circuits (Const. syn.), inlining

linear combinations (Inline LCs), transforming R1CS to QAP (R1CS to QAP), and

computation in groups (Comp. in Gs). Surprisingly, as the number of constraints goes

up, the time spent on inlining linear combinations goes up and dominates the run time.

Fortunately, our optimizations reduce the number of linear combinations (LCs) as

well. We demonstrate the effectiveness of our optimizations in terms of reducing the

number of LCs in Figure 5.12 and Figure 5.13. We can observe a result that is similar

to our savings of constraint sizes shown in subsection 5.7.2. Overall, our optimizations

save the number of LCs from 1.4× to 24.4× in ZENinfer. We also observe that stranded

encoding consistently saves the number of LCs across various kernel sizes. Meanwhile,

sign-bit grouping and remainder-based verification may slightly increase the number of

LCs on certain NN kernels (e.g., 100× 4096 and 100× 16384 in Figure 5.13).
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Table 5.8: Prover time breakdown of ZENinfer using Arkworks implementation of Groth16

Model-Dataset Const. syn. Inline LCs R1CS to QAP Comp. in Gs
ShallowNet-MNIST(4M) 21.6% 11.6% 17.3% 49.5%
LeNet-small-CIFAR(4M) 27.7% 16.2% 12.1% 44.0%
LeNet-medium-CIFAR(23M) 21.0% 28.9% 13.2% 36.9%
LeNet-small-ORL(20M) 23.1% 20.8% 14.9% 41.2%
LeNet-medium-ORL(83M) 17.9% 39.4% 12.5% 30.2%
LeNet-large-ORL(318M) 15.1% 67.4% 8.8% 15.7%

5.7.4 End-to-end performance

In this section, we evaluate the end-to-end performance of ZEN in terms of accuracy,

savings on total number of constraints, savings on total number of LCs, setup/proving

time, and CRS sizes.

ZEN is accurate. In Table 5.7, we list the accuracy of our quantized model com-

pared with the original floating-point PyTorch models. One can see the accuracy drop

is minimal and some of them are within the error bound of different implementation of

the same machine learning models. Additionally, compared with the state of the art full

quantization scheme [30], ZEN has exactly the same accuracy thanks to our semantic

preserving optimizations proposed in section 5.5. As a result, we can conclude that ZEN

maintains the accuracy of neural network models in practice.

Overall saving on the number of constraints. Table 5.3 shows the overall

saving on the number of constraints with our optimizations. Overall, we can significantly

reduce the number of constraints by 15.35× on average. This shows a similar saving on

the number of constraints as our case study in the micro-benchmarks. On large models

such as LeNet-Face-Large, we achieve a saving of 11.06×. On small models of LeNet-5-

small and LeNet-Face-small, we achieve more than 22.19× saving. This is mainly due

to the fact that kernels in these small models are dot products of vectors which can be

drastically improved with our sign-bit grouping and remainder-based verification. This
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result is similar to our microbenchmark in Figure 5.8 and Figure 5.9.

Overall saving on the number of LCs. Table 5.9 shows that the number of

LCs in ZENinfer varies significantly from 509K to 766, 147K. Our optimizations save the

number of LCs from 2.34× to 8.03× (5.34× on average).

Table 5.9: Overall saving on the # of linear combinations in ZENinfer.

Model-Dataset Commitment ZEN vanilla ZENinfer Saving
LCs(K) LCs(K) LCs(K) (×)

ShallowNet-MNIST 7, 173 1, 193 509 2.34
LeNet-small-CIFAR 5, 276 51, 231 6, 375 8.03
LeNet-medium-CIFAR 31, 618 263, 779 56, 649 4.66

LeNet-small-ORL 31, 032 175, 066 22, 982 7.62
LeNet-medium-ORL 115, 000 856, 834 209, 775 4.08
LeNet-large-ORL 459, 155 1, 944, 147 766, 125 2.54

Setup time, prover time and CRS sizes. Table 5.1 shows the overall performance

of ZENinfer on 6 neural networks with diverse number of constraints, ranging from 1, 751

thousands to 162, 289 thousands. We observe that a model with a higher number of

constraints comes with higher prover and setup time consumption and a larger Common

Reference String (CRS) size. For a small model ShallowNet on MNIST with 1, 751 K

constraints, we have a short time of 37 seconds and 32 seconds for setup and proving,

respectively; the CRS consists of 0.5 GB of data. The overall cost increases as the

number of constraints increases. For large models such as LeNet-Face-large on ORL with

over 162, 289 thousand constraints, ZENinfer requires nearly 14400 seconds for setup and

proving respectively. Its CRS size is around 50 GB.

Due to the large memory and time consumption by ZENacc, we can parallelize the

testing dataset inference step across multiple machines and add a prediction accuracy

commitment sum check circuit. Table 5.2 shows the overall performance of ZENacc on 6

neural networks with a testing dataset size of 100. The constraints of ZENacc here consist

of the commitment to the neural network model, the inferences on 100 images, and a
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commit to the final accuracy. The number of constraints of ZENacc ranges between 8, 305

K to 5, 628, 278 K on 6 NNs.

Overall speedup in practice. ZEN shows significant speedup in practice thanks

to our saving in the R1CS constraint in inference part. We reduce inference part prove

time from 252s to 23s (10.96×) on LeNet-small-cifar, and from 1267s to 311s (4.07×) on

LeNet-medium-cifar.

5.8 Discussion

5.8.1 zkNN Scalability

ZEN is the first work that compiles NN to optimized R1CS constraints with 5.43×

to 22.19× constraint size reduction. ZEN shows it merit in developing the technique

and illustrating the importance of “front-end” optimization. Since ZEN outputs R1CS,

an intermediate representation used by many different zkSNARKs, the innovations on

the backend proof systems can be combined with ZEN to bring even better scalability,

such as leveraging different level of parallelism in zkSNARK designs (e.g., DIZK [263]

and pipeZK [264]). While ZEN did not solve all scalability challenges, we are optimistic

about future ZK NN scalability.

5.8.2 zkNN Accuracy

The concrete model accuracy is orthogonal to ZEN’s main contributions. Many new

ML techniques could be applied to ZEN to get better accuracies, such as neural archi-

tecture search [265], neural network distillation [266], and pruning [267, 268, 269]. For

example, [270] can remove 84.82% computation while only reducing 0.57% top-1 accuracy

on VGG-16. We consider such accuracy improvement to be currently out-of-scope and
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leave it as future work.

5.8.3 Quantization Engine: Selection of quantization parameters

Our R1CS friendly quantization shares the same quantization parameters as exist-

ing quantization algorithms [30] and implementations [222]. The key novelty of R1CS

friendly quantization is to use algebraic equalities to reduce the number of expensive

bit-decomposition operations in zkSNARK while maintaining the semantics of the quan-

tization. In particular, we follow [30] and PyTorch quantization implementation [222]

that first generate a floating-point NN and then compute a scaling parameter s and a

lifted zero point z for each layer. For example, when quantizing to uint8, we profile the

range of a NN layer as (a, b) and compute s = (b− a)/256. We also fix the zero point z

to 128 such that the quantized value Q is always non-negative (ranging from 0 to 255).

5.8.4 Comparing Average Pooling and Max Pooling

While ZEN currently focuses on average pooling, it could be easily extended to

max/min-pooling at the cost of increased constraint size. For example, in LeNet-small-

cifar, the first max pool layer introduces 4704 comparisons. Based on our profiling based

on Arkworks’ default comparison operator, this translates to 8.9 million constraints. In

contrast, average pooling only needs 1176 constraints.

We also empirically observe that NNs with max pooling and average pooling shows

similar accuracy. In particular, we observe only 0.46% accuracy improvement by replacing

average pooling layer with max pooling layer on LeNet-small-CIFAR and LeNet-medium-

CIFAR.

To this end, we stick to average pooling for saving constraints and improving scala-

bility.
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Chapter 6

A Type-based Optimization Framework

for Zero Knowledge Neural Network

Inference

In this chapter, we present ZENO, a type-based optimization framework for zero-knolwedge

neural network inference. Zero knowledge Neural Networks draw increasing attention

for guaranteeing computation integrity and privacy of neural networks (NNs) based on

zero-knowledge Succinct Non-interactive ARgument of Knowledge (zkSNARK) secu-

rity scheme. However, the performance of zkSNARK NNs is far from optimal due to

the million-scale arithmetic circuit computation with heavy scalar-level dependency. In

this chapter, we propose a type-based optimizing framework for efficient zero-knowledge

NN inference, namely ZENO (ZEro knowledge Neural network Optimizer). We first

introduce ZENO language construct to maintain high-level semantics and the type infor-

mation (e.g., privacy and tensor) for allowing more aggressive optimizations. We then

propose privacy-type driven and tensor-type driven optimizations to further optimize the

generated zkSNARK circuit. Finally, we design a set of NN-centric system optimizations

148



A Type-based Optimization Framework for Zero Knowledge Neural Network Inference Chapter 6

to further accelerate zkSNARK NNs. Experimental results show that ZENO achieves

up to 8.5× end-to-end speedup than state-of-the-art zkSNARK NNs. We reduce proof

time for ResNet50 from 1.5 hours to 11 minutes, which makes constructing practical

zkSNARK NNs possible.

6.1 Problem Statement

Zero Knowledge Neural Networks [35, 229, 232, 271, 236] draw increasing attention in

solving the privacy issues of neural networks. Leveraging zero-knowledge Succinct Non-

interactive ARgument of Knowledge (zkSNARK) security scheme [196, 197, 198, 199,

200, 201, 202, 203, 204], zkSNARK NNs guarantee two important security properties.

First, zkSNARK NNs can validate the accuracy of a private NN without releasing the

NN weights. This is important for verifying the accuracy of many commercialized NNs,

considering that these NN weights are usually treated as important intellectual proper-

ties and may contain sensitive information from private user data. Second, zkSNARK

NNs can verify that the same private NN is consistently used to serve user requests.

In particular, a company may use smaller NNs with lower accuracy and lower energy

consumption to save costs, while claiming that a larger NN is provided. zkSNARK NNs

enable users to eliminate such integrity concerns by verifying that the same private NN

is used across user requests.

zkSNARK [196, 197, 198, 199, 200, 201, 202, 203, 204, 228] is a security scheme

where, given an arithmetic function F (x) and a target output y, the prover shows that

the prover knows a specific value x such that F (x) = y while not revealing such value

x. In zkSNARK NNs [35, 229, 232, 271, 236], arithmetic function is a plaintext neural

network with multiplication and addition. When protecting privacy of NN weights, x is

the NN weights and y is the NN predictions on a public dataset. Early zero-knowledge
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Figure 6.1: Arithmetic circuit in zero-knowledge proof for an arithmetic function
X1 ∗ X2 ∗ (X2 + X3). Here, all values are stored in finite-fields (e.g., 254-bit inte-
ger [272]) for privacy.

proofs [273] usually generate a large proof whose size is proportional to the number of

computation in arithmetic function. This leads to large communication overhead during

proof generation and limits the size of arithmetic function. Recent zero-knowledge proofs

[248] generate a fixed-size proof (e.g., 192 bytes [228]). The key behind such succinct

property is to decompose an arbitrary large and complex arithmetic function into a

sequence of small and uniform-format constraints. Some magic security schemes [228]

can then be applied to these constraints to generate a fixed-size proof.

Existing works on zkSNARK NNs usually treat a plaintext neural network as the

arithmetic function. This arithmetic function is first decomposed into scalar addition

and multiplication operations, where each operation is mapped to a gate (addition or

multiplication) in arithmetic circuit. We show an example of arithmetic circuit for a

simple arithmetic function in Figure 6.1. Then, this arithmetic circuit is condensed into

the uniform-format constraints. Finally, the constraints are further condensed into a

fixed-size proof. The last two steps are circuit computation and security computation,

which are major bottlenecks in zkSNARK NNs. While zkSNARK NNs provide privacy

properties, existing works usually cannot scale to large neural networks. For example,

based on a popular zkSNARK framework Arkworks [248], it takes hundreds of seconds

to prove zkSNARK LeNet on a single face image while non-zkSNARK LeNet usually

requires less than 100 ms on the same hardware. We summarize three key challenges
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that hinder deeper system optimizations for zkSNARK NNs.

Failing to maintain high-level semantics during proof generation. Existing

zkSNARK systems [248, 204, 35, 274, 213] map an arbitrary arithmetic function into a

low-level arithmetic circuit. During this procedure, NN semantics such as privacy and

tensor are not preserved and hard to recover. For example, reconstructing tensor seman-

tic by scanning and parsing the assembly-style circuit would introduce heavy runtime

overhead. Therefore, zkSNARK systems can only consider individual gates in circuits

and fail to exploit high-level NN-specialized optimization opportunities.

Lack of semantic-aware optimizations during compiling zkSNARK NNs.

Most zkSNARK optimizations [275, 276, 248]) focus on individual scalar gates and sup-

port only local circuit optimization at small scale. These scalar gates usually show heavy

dependency and prevent parallel computation. For example, in Figure 6.1, parent gates

(e.g., Gate3) cannot be computed until all children gates (e.g., Gate1 and Gate2) have

been computed. However, most NN computations are conducted at the tensor level

(e.g., convolution layers and fully connected layers) and provide abundant parallelization

opportunities. Moreover, NN computation usually requires floating-point values (e.g.,

single-precision or half-precision) or small integers [47, 45, 46, 127, 214], such as int8 or

even int1, while zkSNARK operates on finite field (e.g., ≈ 2254 in case of BLS12-381

[277]) to provide security guarantees. Naively representing these small values from NNs

with finite field elements may lead to extra memory and computation overhead.

Lack of NN-centric system optimizations. Neural networks usually contain

abundant computation reuse opportunities. For example, a zkSNARK NN shares the

same circuit when proving on different images. Existing works usually focus on proving

individual images and repeatedly generate redundant constraints. Moreover, fusing NN

layers can usually save the number of addition and multiplication computation. This can

potentially save the number of constraints in zkSNARK NNs. However, kernel fusion
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from existing plaintext NN systems usually cannot directly bring benefits to zkSNARK

NNs. For example, ReLU layer is usually fused with convolution layer in plaintext NNs

but cannot be fused in zkSNARK NNs.

6.2 Overview of Proposed Solution

In this chapter, we propose a type-based optimizing framework for efficient zero

knowledge neural network inference, namely ZENO (ZEro knowledge Neural network

Optimizer). We show the overview of ZENO in Figure 6.2. First , we introduce a ZENO

language construct to maintain high-level semantics (e.g., privacy and tensor) during zk-

SNARK proof generation. Our key insight is that, instead of parsing an assembly-style

arithmetic circuit, we maintain the privacy type and structured tensor computation to

guide efficient zkSNARK proof generation. We further propose a set of compute primi-

tives to effectively express zkSNARK NNs.

Second , we design an optimized circuit generation that reduces both computation

complexity and the number of computation by exploiting high-level semantics. Our opti-

mized circuit generation includes a a privacy-type driven optimization and a tensor-type

driven optimization. The privacy-type driven optimization reduces the number of con-

straints while maintaining zkSNARK NN semantics. We propose a knit encoding to

efficiently represent multiple uint8 NN computation with a single finite field (e.g., 254

bits [277]) to reduce number of zkSNARK computation. The tensor-type driven opti-

mization exploits tensor computation semantics in zkSNARK NNs to generate a ZENO

circuit with minimized dependency. We use ZENO circuit as an in-place replacement for

arithmetic circuit to reduce dependency.

Third , we propose NN-centric system optimizations to further accelerate zkSNARK

NNs. We first propose NN-inspired computation reuse to identify the computation reuse
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Figure 6.2: Overview of ZENO.

opportunities within images and cross images by exploiting NN semantics. Then, we

propose a zkSNARK-aware NN fusion to fuse NN layers while considering both NN

and zkSNARK properties. Our zkSNARK-aware NN fusion can save the number of

constraints for reducing zkSNARK NN latency.

We extensively evaluate ZENO using six zkSNARK NNs on multiple datasets. We

achieve 8.5× end-to-end speedup over state-of-the-art systems.

6.3 Related Work and Motivation

In this section, we will first give an in-depth discussion on background and related

work of zkSNARK Neural Networks (NNs). Then, we will demonstrate the unique opti-

mization opportunities for zkSNARK NNs.

6.3.1 zkSNARK

Zero-Knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) [196,

197, 198, 199, 200, 201, 202, 203, 204, 228] is a security scheme where, given a function

F (x) and a target output y, the prover shows that the prover knows a specific value
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Figure 6.3: Workflow of generating zero-knowledge proof. All values are stored in
ciphertext for privacy.

x such that F (x) = y while not revealing such value x. Here, the function F (·) can

describe an arbitrary arithmetic computation. One specific example is that, given a

function F (x1, x2, x3, x4 , x5, x6) = (x1x2+3x3)(2(x4+2x5)+x6), the prover can generate

a proof that the prover knows a set of secrete values (x1, x2, x3, x4, x5, x6) such that

F (x1, x2, x3, x4 , x5, x6) = y with a public value y while not revealing the exact values of

(x1, x2, x3, x4, x5, x6). As detailed in subsection 6.3.2, a neural network with millions of

computations can also be interpreted as an arithmetic computation.

We illustrate zero-knowledge proof generation in Figure 6.3. Given an arithmetic

function with an arbitrary number of inputs and computation, the proof generation

encodes the computation in ciphertext and condense the computation into a fixed-size

proof (e.g., 192 bytes [228]) for efficient and public verification. There are three steps in

proof generation. The first step is Generate, which takes a given arithmetic function

F(x) 1 and generates an arithmetic circuit 2 . In this step, each scalar addition and

multiplication in arithmetic function is mapped to a addition gate (e.g., Gate3) and

a multiplication gate (e.g., Gate1) in the arithmetic circuit, respectively. For a large

arithmetic function with millions of computation (e.g., zkSNARK NNs [35, 229, 232,

271, 236]), the arithmetic circuit contains millions of gates. The latency of generating

zero-knowledge proof is proportional to this number of gates in the arithmetic circuit.
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These million-level gates can easily lead to hour-level latency.

The second step is Circuit Computation that condenses the arithmetic circuit 2

into a constraint system 3 . The constraint system contains a set of constraints, which

is a specialized mathematical format:

(
n∑

i=1

aj,iXi) ∗ (
n∑

i=1

bj,iXi) = Wirej , j ∈ {1, 2, ...,m} (6.1)

Here, Xi are private input values (e.g., private NN weights) and Wirej are private output

values which can be used in following constraints. n is the number of private values

including both private input values Xi and private output Wirej. m is the number of

multiplication between private values (e.g., X1 and X2) or linear combination (LC ) of

private values (e.g., 1∗Wire1+3∗X4+2∗X5). The zkSNARK proof generation latency

is proportional to the number of private values n and the number of constraints m. For a

realistic arithmetic function (e.g., a neural network), both m and n could be million-level.

We note several properties in the constraints. First, privacy plays an important role where

multiplying a public value and a private value (e.g., 3 ∗X4) does not lead to constraints.

Second, the addition is “free" in zkSNARK in terms of not introducing constraints, since

a large number of additions can be expressed in a single linear combination (e.g., adding

1 ∗Wire1, 3 ∗ X4, and 2 ∗ X5) by incorporating into the linear combination of private

values. Third, in the circuit computation, children gates (e.g., Gate1 to Gate4) need

to be computed before parent gates (e.g., Gate5). This leads to heavy dependency in

circuits and is major bottleneck in zkSNARK NNs (see Figure 6.4).

The third step is Security Computation. Given a constraint system with a large

number of n private values and m constraints, security computation generates a small

fixed-size proof for independent and efficient verification. The latency of this step depends

on the number of n private values and m constraints. On the m-dimension, this step
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compresses m constraints into a single constraint

(
n∑

i=1

Ai(s)Xi) ∗ (
n∑

i=1

Bi(s)Xi) =
n∑

i=1

Ci(s)Xi (6.2)

Here, Wirei is treated as a special case of Xi for notation simplicity. Intuitively, aj,i for

all j ∈ {1, 2, ...,m} can be encoded with a single polynomial function Ai(s) with degree

m − 1 by requiring Ai(j) = aj,i. Similar property holds for Bi(s) and Ci(s). On the n-

dimension, this step sums the cipertext (e.g., Ai(s)Xi and Bi(s)Xi) and random numbers

δ to generate a small fixed-size proof. This fixed-size proof can be publicly distributed

and efficiently verified by a verifier in a few milliseconds [228].

6.3.2 zkSNARK Neural Networks

Neural network (NN) [255, 256, 2, 254] is a function F (X) = Y that maps an input

image X ∈ uint8H×W×3 to a prediction Y ∈ Rn, where n is the number of labels that

the NN needs to distinguish (e.g., n = 2 when only distinguish cat and dog). NN is

usually defined as the composition of a sequence of NN layers F (X) = F1◦F2 · · ·◦Fn(X).

Popular layers include convolution, fully connected, pooling, and ReLU, where each layer

computes at tensor-level. For example, the convolution layer and fully connected layer

take two inputs: the activation X(k) (the output of the preceding kth layer) and the

weight W for the current layer. Then, these two layers compute the output activation

X(k+1) = W ·X(k) + b.

zkSNARK NNs [35, 229, 232, 271, 236] draw increasing attention in recent years to

improve privacy and integrity of neural networks. These zkSNARK NNs treat a NN as

a function F (X) and generate proof following the workflow in Figure 6.3. To facilitate

the development of zkSNARK programs, several frameworks have been proposed such

as Arkworks [204, 248], Bellman [274] and Ginger [213]. However, existing zkSNARK
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Figure 6.4: Proof latency: private images and public weights.

frameworks usually focus on scalar computation and ignore optimization opportunities

from tensor-level computations which lead to prohibitive latency. In this chapter, we pro-

pose ZENO to exploit tensor-level computation and privacy type for efficient zkSNARK

NN inference.

Why Non-interactive zkSNARK NN? There are two types of zero-knowledge

NNs – interactive ones and non-interactive ones. The key difference is whether interactive

communication is required during proof generation. It is well-accepted in cryptography

that non-interactive zero-knowledge proof has more widely use cases than interactive ones

[228] since non-interactive zero-knowledge proof eliminates communication overhead. For

example, Mystique [278] accelerates interactive zero-knowledge NNs but still require GB-

level communication for proving a single image. Instead, non-interactive NNs [35, 232]

do not require such interactive communication during proof generation and generate a

fixed size proof (e.g., 192 bytes with [228]) for efficient and public verification. To this

end, ZENO focuses on accelerating non-interactive NNs.

6.3.3 Opportunities and Challenges

In this section, we introduce optimization opportunities and challenges in enabling

efficient zkSNARK NNs.
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Table 6.1: Tensor Compute Primitives.

Instruction Semantics
addConst(c1,c2) Add or multiply two Consts. The output is a ConstmulConst(c1,c2)
addVariableConst(v, c) Add or multiply variable v with Const c. The output is a LC. Adding or multi-

plying Gate, Wire,
mulVariableConst(v, c) and LC with Const are also supported (skipped for notation simplicity).
compare(x, y) Compare x and y and return the larger value. x and y can be Const, Variable,

Gate, Wire, or LC.

addVariableVariable(v1, v2)
Add variable v1 with variable v2 and generate a LC. Adding Gate, Wire, and
LC with another Gate, Wire, and LC are also supported (skipped for notation
simplicity).

mulVariableVariable(v1, v2)
Multiply variable v1 with variable v2 and generate a wire. Multiplying Gate,
Wire, and LC with another Gate, wire, and LC are also supported (skipped for
notation simplicity).

dotProduct(T1, T2) Dot product a 1-dimensional zkTensor T1 with another 1-dimensional zkTensor
T2. The output is a zkTensor.

fullyConnected(T1, T2) Computing fully-connected and convolution layers on two input zkTensors T1 and
T2. The output

convolution(T1, T2) is a zkTensor.
pool(T , p) Pooling operation on a zkTensor T and a plain scalar p. The output is a zkTensor.
ReLU(T ) ReLU operation on a zkTensor T . The output is a zkTensor.
addTensor(T1, T2) Elementwisely add or multiply a zkTensor T1 with another zkTensor T2.
mulTensor(T1, T2) The output is a zkTensor.

We show the latency of individual proof generation steps in Figure 6.4 for private

images and public NN weights. We have similar observations on other privacy settings

(e.g., private weights and private images, or private weights and public images). We

profile this latency based on state-of-the-art zkSNARK framework, Arkworks [248], on

a single image. Note that these three steps need to be executed sequentially and the

total time is the sum of individual steps. We have three major observations. First, the

total time of zkSNARK NN can easily exceed 5000 seconds, while the corresponding

non-zkSNARK NNs usually takes less than 1 second to compute. Second, the latency of

circuit computation increases significantly as NN sizes increase. Third, latency of security

computation also increases on large z as NN sizes increase.

Opportunities. There are two major opportunities to accelerate zkSNARK NNs.

The first opportunity is to exploit privacy types (e.g., private weights or public weights, as
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Table 6.2: ZENO Type Information.

Type Description

S
ta

n
d
ar

d

Const Public constant value in λ-bit fi-
nite field.

Variable Private scalar value in circuit for
input.

Gate Private scalar value in circuit for
intermediate results.

Wire Private scalar value in constraint
system.

LC Linear Combination of wires in
constraint system.

Z
E
N

O

Privacy ’private’ or ’public’
Tensor A tensor of finite field data.

zkTensor Tuple (T, P) where "T" is a Ten-
sor and "P" specifies privacy.

discussed in section 6.4) of zkSNARK NNs. Our investigation shows significant impact

from privacy types, which motivates privacy-driven optimizations. The second oppor-

tunity is to exploit tensor computation primitives in NNs for optimizing circuits and

exploiting parallelism. This opportunity has not been explored in existing zkSNARK

frameworks which focus on scalar operations.

Challenges. Although these ideas sound promising, the efforts to capitalize on their

benefits are non-trivial due to several challenges. First, while tensor operations may pro-

vide optimization opportunities, it is highly non-trivial to identify and reconstruct such

high-level semantics from assembly-style arithmetic circuits. We need a language con-

struct to maintain these high-level semantics and facilitate optimizations for zkSNARK

NNs. Second, the zkSNARK computation procedure usually shows complex dependency

across Gates and synergy between privacy types. For example, arithmetic circuits (as

discussed in Figure 6.3) are inherently sequential since earlier computation results (e.g.,

Gate1) may be used by later computation (e.g., Gate3). We need specialized optimiza-

tions based on type information in zkSNARK NNs to reduce the computation workload
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and mitigate the dependency.

6.4 ZENO Language Construct

In this section, we introduce ZENO language construct to facilitate the zkSNARK

NN development and maintain the semantic information during zkSNARK computation.

Type Information with Tensor and Privacy. The goal of ZENO type information

is to express the two important information in zkSNARK NN – tensor and privacy. We

summarize ZENO type information in Table 6.2. There are two complexities in zkSNARK

systems. First, previous zkSNARK systems contain only scalar-level data types, which

makes it complicated to implement zkSNARK NNs with intensive tensor computations.

Second, individual scalar data types have different privacy properties. This makes it

challenging to manually set the privacy type for scalar values in zkSNARK NNs.

To tackle these challenges, we introduce tensor-level data types to directly express

zkSNARK NN tensor computation and hide the complexity of privacy selection. zkTensor

is the basic data unit in zkSNARK NNs, which can represent weight tensors and feature

tensors in NNs. When "P" is public, "T" is a tensor of Const scalars for public constant

values. When "P" is private, "T" is a tensor of Variable, Gate, Wire, and LC, where

the specific type can be inferred automatically. Our type information abstracts details

of zkSNARK implementations and enables users to focus on complex NN structures.

Tensor Compute Primitives. We propose a set of tensor-level compute primitives

respecting the privacy and tensor types, as shown in Table 6.1. The goal of tensor com-

pute primitives is to maintain the high-level semantics of zkSNARK NN computation

and maps directly to gate-level circuits. In particular, the tensor compute primitives

hide the complexity of scalar-level operations and expose tensor computation capability,

which is the building block of many zkSNARK NNs. The tensor compute primitives
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Listing 6.1: Example of a 2-layer NN model in ZENO.
1 import ZENO
2 # Create a zkSNARK NN class.
3 class Shallow_Net():
4 def __init__(self, X, Y, W1, W2):
5 # Specify the zkSNARK NN
6 # First Fully Connected Layer
7 X = ZENO.fullyConnected(W1, X)
8 # ReLU Layer
9 X = ZENO.ReLU(X)

10 # Second Fully Connected Layer
11 X = ZENO.fullyConnected(W2, X)
12 Check_Equality(X,Y)
13

14 # Define a two-layer zkSNARK NN.
15 X_data, Y_data = ZENO.Tensor([...]), ZENO.Tensor([...])
16 W1_data, W2_data = ZENO.Tensor([...]), ZENO.Tensor([...])
17 X = ZENO.zkTensor(X_data, ’public’)
18 Y = ZENO.zkTensor(Y_data, ’public’)
19 W1 = ZENO.zkTensor(W1_data, ’private’)
20 W2 = ZENO.zkTensor(W2_data, ’private’)
21 model = Shallow_Net(X, Y, W1, W2)
22 # Generate circuit
23 circuit = ZENO.generate(model)
24 # Generate Constraint System (CS)
25 CS = ZENO.circuitComputation(model)
26 # Proof generation
27 proof = ZENO.securityComputation(X_data, W1_data, W2_data)
28 # Share proof to verifier for verification ...

also allow users to easily specify the privacy type of images and weights, which miti-

gates the manual efforts in specifying the privacy of each scalar. The tensor compute

primitives directly support dotProduct which consumes most computation in neural

networks. This high-level dotProduct can be directly mapped to gate-level circuits with

optimized circuit generation (discussed in section 6.5 and section 6.6). We then introduce

fullyConnected, convolution, pool, and ReLU to support popular layers in NNs. We

also provide addTensor and mulTensor to facilitate user-defined NN operations such as

residual connection [2].

Case Study of the ShallowNet. We show ShallowNet in ZENO language con-

struct, as shown in Listing 6.1. Note that the weights W1 and W2 are labeled as “private”

to protect the privacy of private NNs. The input image X is labeled as “public” following
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the accuracy zkSNARK NN scheme that proves the accuracy of a private NN on a public

dataset. The input image X can also be labeled as “private” when also protecting the

privacy of the input image.

6.5 Privacy-type Driven Optimization

In this section, we propose privacy-type driven optimizations. Our key insight is that

fully exploiting privacy of input data can significantly reduce the number of constraints,

which leads to proportional performance improvement for zkSNARK NNs. To this end,

we first propose a privacy-adaptive circuit generation to exploit privacy type for reducing

the number of constraints. Then, we propose privacy-aware knit encoding to further

squeeze the number of constraints when only NN weight or image is private.

6.5.1 Privacy-adaptive Circuit Generation

We propose privacy-adaptive circuit generation to reduce the number of constraints

in zkSNARK NNs. We observe that many zkSNARK NNs algorithmic designs [35, 229,

232, 271, 236] only require one of image or weights to be private. For example, ZEN [35]

only keeps privacy of NN weights and use a public dataset to prove the NN accuracy. A

naive implementation usually ignores privacy type of input data and generate constraints

for each multiplication in zkSNARK NN, which leads to a large number of constraints

and high latency. Our key insight is that, in zkSNARK, only multiplying two private

scalars generates constraints while multiplying a public scalar (e.g., Const) with a private

scalar does not generate constraint. To this end, ZENO automatically incorporates user-

specified privacy requirement into circuit generation to reduce the number of constraints.

We present our privacy-adaptive circuit generation for dot products which can be

easily applied to many zkSNARK NN layers (e.g., fully-connected, convolution, and
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average pooling). Formally, we consider a weight vector W = [w1, w2, ..., wn] with privacy

pw and a feature vector X = [x1, x2, ..., xn] with privacy pX where pW and pX are user-

specified privacy type ("private" or "public"). zkSNARK first computes a reference value

ref in plaintext according to dot product. Then, zkSNARK proves in constrains that

ref =
∑n

i=1wi ∗xi. In the last layer of zkSNARK NN, ref is the NN prediction such as a

"cat" or "dot". We show the mapping from high-level dot product computation
∑n

i=1 xi∗

wi to low-level constraints (
∑n

i=1 aj,iXi) ∗ (
∑n

i=1 bj,iXi) = Wirej, j ∈ {1, 2, ...,m} where

Xi and Wirej are private values, and aj,i and bj,i are public coefficients (see background

in Equation 6.1).

Both private feature and private weights. When both feature and weights are

private, we have n multiplications between private scalars wi and xi and n− 1 addition

to sum the multiplication output. Since both wi and xi are private values, we generate

one constraint for each multiplication wi ∗ xi = Wirei. Formally, each multiplication

can be written as constraints (1 ∗ wi) ∗ (1 ∗ xi) = Wirei. This leads to n constraints for

multiplying private scalars. Then, we generate a linear combination LC =
∑n

i=1 1∗Wirei

to represent the computation result in zkSNARK and check the equality between LC and

a reference value ref for dot product W ·X. Intuitively, this circuit checks that the dot

product of private input W and X equals to ref without releasing the value of W and

X. Checking equality leads to an extra constraint. Formally, we have n+1 constraints:

(1 ∗ wi) ∗ (1 ∗ xi) = Wirei, i ∈ {1, 2, ..., n}

(
n∑

i=1

1 ∗Wirei + (−1) ∗ ref) ∗ (1 ∗D1) = D0

(6.3)

where D1 = 1, D0 = 0, and −1 is conducted on finite field.

Either private feature or private weights. We consider public weight W and

private feature X since the design can be easily applied to the case with public weight and

private feature. When weight W is private and feature X is public, we have n multipli-
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cations between private weight scalar wi and public feature scalar xi and n− 1 additions

to sum the multiplication output. One naive design is to still generate one constraint for

each multiplication. However, our key insight is that the public weight scalar wi can be

treated as public coefficients in Equation 6.1 which eliminates unnecessary constraints.

To this end, we can directly generate a linear combination LC =
∑n

i=1 wi ∗ xi with pub-

lic scalars wi as coefficients and check equality with ref . This design requires only 1

constraint

(
n∑

i=1

wi ∗ xi + (−1) ∗ ref) ∗ (1 ∗D1) = D0 (6.4)

This is significantly smaller than n+ 1 constraints required for both private feature and

private weights.

6.5.2 Privacy-aware Knit Encoding

We propose privacy-aware knit encoding to further reduce the number of constraints

when only image or weight is private. Behind knit encoding, there are two major obser-

vations. First, zkSNARK NNs usually build upon quantized neural networks (e.g., with

uint8) while zkSNARK computes over finite fields (e.g., 254-bit integers). Naively en-

coding uint8 with finite fields leads to unnecessary memory and computation overhead.

Second, when only image or weight is private, multiplying a public scalar with a private

scalar does not introduce new constraints. In this case, constraints are only introduced

when checking the equality, as discussed in subsection 6.5.1. One natural question is

whether we can reduce the number of constraints by exploiting “free" (in the sense of the

number of constraints) multiplications between public scalars and private scalars.

Naive encoding. Consider a fully connected layer with a public weight W =

[W1,W2] ∈ uint82×cin , a private feature X = [x1, x2, ..., xcin ] ∈ uint8cin , and the output

Y = [y1, y2] ∈ uint82. The fully-connected layer can be treated as two dot products
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Figure 6.5: Knit encoding with batch size s = 2. LC1 and LC2 are two finite fields
with leading bits as 0. δ = 22∗bin+⌈log(cin)⌉ is a finite field such that multiplying δ is
equivalent to bit shifting. ":=" indicates equality check.

yi = Wi · X, i ∈ {1, 2}. One naive approach is to independently encode individual dot

products following Equation 6.4. This approach leads to 1 constraint for each dot product

and require 2 constraints for the fully connected layer. However, this approach encodes

low-bit quantized neural network values (e.g., uint8) with high-bit finite fields (e.g.,

254-bit), which leads to extra constraints and higher latency.

Knit encoding with batch size s = 2. We propose to batch multiple low-bit

values (e.g., uint8) into one high-bit finite field (e.g., 254-bit) to reduce the number of

constraints, as illustrated in Figure 6.5. We first generate two LCs

LC1 =

cin∑
i=1

w1,i ∗ xi, LC2 =

cin∑
i=1

w2,i ∗ xi

Generating LC1 and LC2 does not introduce constraints since we are multiplying public

scalars with private scalars. Here, both LC1 and LC2 are finite fields. We note that only

2 ∗ bin + ⌈log(cin)⌉) bit of each LC are non-zero values where bin(=8) is the bit width of

weights and features.

Instead of naively introducing constraints for checking equality between LCi and yi,

we further encode these two LCs into one LC:

LC3 = LC1 + LC2 ∗ δ

=

cin∑
i=1

w1,i ∗ xi +
cin∑
i=1

(w2,i ∗ δ) ∗ xi

Here, δ = 22∗bin+⌈log(cin)⌉ is sufficiently large to ensure the correctness of encoding. δ is
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also a public scalar such that generating LC3 does not introduce constraints.

Finally, we compute the encoded output value ref = y1 + y2 ∗ δ and introduce 1

constraint to check equality of these two dot products simultaneously

(

cin∑
i=1

w1,i ∗ xi +

cin∑
i=1

(w2,i ∗ δ) ∗ xi + (−1) ∗ ref) ∗ (1 ∗D1) = D0

This constraint bitwisely checks equality such that W1 ·X = y1 and W2 ·X = y2 when δ

is sufficiently large.

Knit encoding for arbitrary batch size s. Knit encoding can be generalized to ar-

bitrary batch size s. Formally, knit encoding takes a public weight W = [W1,W2, ...,Ws] ∈

uint8s×cin , a private feature X = [x1, x2, ..., xcin ] ∈ uint8ccin , and the output Y =

[y1, y2, ..., ys] ∈ uint8s. We first generates s LCs for dot products

LCj =

cin∑
i=1

wj,i ∗ xi, j ∈ {0, 1, ..., s− 1}

Then, we encode s LCs into one LC

LCs =
s−1∑
j=0

cin∑
i=1

(wj,i ∗ δj) ∗ xi

Since we only require multiplication between public scalars and private scalars, we do not

introduce constraints when generating these LCs. Finally, we can compute the encoded

output value ref =
∑s−1

j=0 yj ∗ δj and use 1 constraint to bitwisely check the euqality of s

dot products:

(
s−1∑
j=0

cin∑
i=1

(wj,i ∗ δj) ∗ xi + (−1) ∗ ref) ∗ (1 ∗D1) = D0

Theoretical analysis on vector length n and batch size s. Knit encoding

automatically selects batch size s to maximize the performance benefits while avoiding

bit overflow. Formally, given the vector length n, input data bitwidth bin, and finite

field bitwidth bout, each dot product requires 2 ∗ bin + ⌈log n⌉ bits and all s dot products

requires s∗ (2∗ bin+ ⌈log n⌉) bits. To avoid bit overflow and maximize benefits, we select
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Table 6.3: Comparison between knit encoding and stranded encoding. We consider 8
bits for features and weights and 254 bits for finite fields.

Knit Encoding Stranded Encoding [35]
Max Constraint Saving 8× 4×

Encoding Overhead 0 Constraint 0 Constraint
Decoding Overhead 0 Constraint 632 Constraints

Privacy One private Both Private

batch size as the largest integer satisfying s ≤ bout/(2∗bin+⌈log n⌉). For example, on dot

product with bin = 8-bit data, bin = 8-bit weight, bout = 254-bit finite field, and length

n = 1024, we select s = 9 to maximize benefits while avoiding bit overflow.

Comparing with Stranded Encoding. Existing work [35] proposed stranded

encoding which shares similar high-level motivation as our knit encoding. It focuses on the

case with private weights and private features by reducing the number of multiplications.

However, stranded encoding and knit encoding are significantly different in multiple

perspectives, as summarized in Table 6.3. Stranded encoding can be applied when both

features and weights are private while knit encoding can be applied when only features or

weights is private. By exploiting privacy type, knit encoding can save more constraints

with significantly reduced decoding overhead.

6.6 Tensor-type Driven Optimization

In this section, we propose tensor-driven optimizations. We first propose ZENO

circuit as an efficient intermediate representation (IR) between high-level NN layers and

low-level constraints. Then, we propose workload-specialized parallel scheduler to identify

parallel computation opportunities in ZENO circuit especially across NN layers.
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6.6.1 ZENO Circuit for Efficient IR

We present our ZENO circuit as an efficient intermediate representation (IR) from

high-level zkSNARK NN arithmetic function to low-level constraints. Since low-level

constraints require a specialized mathematical format (
∑n

i=1 aj,iXi) ∗ (
∑n

i=1 bj,iXi) =

Wirej (see Equation 6.1), it is challenging to manually write constraints for an arbitrary

arithmetic function. Existing work [248] utilizes arithmetic circuit as an intermediate

representation to automatically map arithmetic functions into constraints. However, it

is designed for scalar computations and ignores intrinsic tensor types in zkSNARN NNs

which leads to unsatisfactory performance. We first analyze the bottleneck in arithmetic

circuit and then propose ZENO circuit as an efficient intermediate representation.

Arithmetic circuit. Arithmetic circuit first breaks an arbitrary arithmetic func-

tion into a sequence of scalar multiplication and scalar addition operations. Then, it

maps each operation to a corresponding multiplication gate and addition gate, as dis-

cussed in subsection 6.3.1. We show an example of arithmetic circuit for dot product in

Figure 6.6(a).

Consider a weight vector W = [w1, w2, w3, w4], a feature vector X = [x1, x2, x3, x4],

and an arithmetic function

F (W,X) = w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + w4 ∗ x4

Here, we have 4 scalar multiplications and 3 scalar additions. Arithmetic circuit first

maps each multiplication to a multiplication gate (e.g., Gate1 and Gate2) and maps each

addition to an addition gate (e.g., Gate3 and Gate5):

Gatei = wi ∗ xi, i ∈ {1, 2, 4, 6}

Gatei = Gatei−2 +Gatei−1, i ∈ {3, 5, 7}

In total, there are 4 multiplication gates and 3 addition gates. Here, all computation are
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symbolic since the arithmetic circuit describes computation in the arithmetic function

regardless of specific values in input vector W and X.

Given this arithmetic circuit, we need to conduct circuit computation which converts

individual gates into constraints with a specialized mathematical format (Equation 6.1).

Without loss of generality, we consider public weight and private feature here. We can

first check privacy of each scalar and generate a tuple where public input wi is coefficient

(i.e., aj,i and bj,i in constraints Equation 6.1) and private input xi is variables:

(1, Gatei) = (wi, xi), i ∈ {1, 2, 4, 6}

(1, Gatei) = (1, Gatei−2) + (1, Gatei−1), i ∈ {3, 5, 7}

For addition gates, we have 1 as the coefficient. We note that this coefficient can be

arbitrary integer in general. Then, we need to recursively expand children gates for

addition gate, if one of its children gates is till an addition gate. For example, Gate5

has two children gates Gate3 and Gate4 where Gate3 is still an addition gate. In this

case, we need to symbolically expand Gate5 by multiplying the coefficient of Gate5 with

the coefficients of individual children and grandchildren gates (i.e., Gate1, Gate2, and

Gate4). This expansion introduces m finite field multiplications due to iterating through

m grandchildren gates. For dot product, m increases from 2 to n− 1(=3 in Figure 6.6).

Overall, circuit computation on arithmetic circuit costs O(n2) where n is the vector

length. This leads to prohibitive latency for zkSNARK NNs with millions of gates in

arithmetic circuit.

ZENO Circuit for Dot Product. To address this problem, we propose a ZENO

circuit to minimize the number of gates and reduce the computation complexity to O(n)

where n is the vector length. The core idea is to exploit the commutative property of

addition gates in zkSNARK. In particular, the order of addition gates can be exchanged

while the order between two multiplication gates and the order between a multiplication

gate and an addition gate need to be maintained. We show ZENO circuit for dot product
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Figure 6.6: Illustration of ZENO IR for dot product of
W ·X = [W1,W2,W3,W4] · [X1, X2, X3, X4].

Table 6.4: NN layer complexity comparison between conventional arithmetic circuit
and proposed ZENO circuit.
IR layer Input Shape # Gate # Wire # LC len(CriticalPath) Computation

Arithmetic
Circuit

Dot Product (n, n) 2n− 1 n n− 1 n O(n2)
Fully Connected (m× n, n) m(2n− 1) mn m(n− 1) n O(mn2)
Convolution (m× n, n× k) mk(2n− 1) mkn mk(n− 1) n O(mkn2)
Pool (m× n), s mn

s2
(s2 − 1) 0 mn

s2
(s2 − 1) s2 − 1 O(mns2)

ZENO
Circuit

Dot Product (n, n) n+ 1 n 1 2 O(n)
Fully Connected (m× n, n) m(n+ 1) mn m 2 O(mn)
Convolution (m× n, n× k) mk(n+ 1) mkn mk 2 O(mkn)
Pool (m× n), s mn

s2
0 mn

s2
1 O(mn)

of length 4 in Figure 6.6(b). We introduce 4 multiplication gatess (Gate1, Gate2, Gate3,

and Gate4) and only one addition gate (Gate5). Note that ZENO circuit has the same

number of multiplication gates but a significantly smaller number of addition gates. This

reduced number of addition gates significantly saves the number of computations during

circuit computation. On ZENO circuit, we can skip circuit computation operation for ad-

dition gates and directly generate constraints. In particular, we only need 5 operations for

converting ZENO circuit while requiring 12 operations for converting arithmetic circuit.

We also note that ZENO circuit shows short critical path length (=2) than arithmetic

circuit with length (=4).

Formally, given two vectors [w1, w2, ..., wn] and [x1, x2, ..., xn] of length n, ZENO

circuit contains binary multiplication gates and multi-child addition gates. The binary
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multiplication gate takes two input gates. To support dot product on two vectors of

length n, we need n multiplication gates for each wi ∗ xi. The multi-child addition gate

takes n inputs where n can be arbitrarily large number. This gate efficiently supports

summation over a large number of scalars in dot product and significantly reduces the

number of addition gates. In comparison, arithmetic circuit for dot product requires n−1

binary addition gates. In total, ZENO circuit for dot product generates n+1 gates while

arithmetic circuit generates 2n − 1 gates. We also stress that both ZENO circuit and

arithmetic circuit generate the same constraint systems. Thus ZENO circuit maintains

the semantic and can be used as an in-place replacement of arithmetic circuit.

ZENO circuit for fully connected, convolution, and pooling layers. We

propose ZENO circuit for fully connected, convolution, and pooling layers as an extension

to ZENO circuit for dot product. Fully-connected layer takes two input tensors W ∈

Rm×n and X ∈ Rn and generates one output tensor Y = WX ∈ Rm. With the help of

img2col algorithm [259], convolution layer can also be transformed into a matrix-matrix

multiplication. It takes two input tensors W ∈ Rm×n and X ∈ Rn×k and computes

an output tensor Y = WX ∈ Rm×k. Since fully connected and convolution layer can

be viewed as m and mk independent dot products, we simply duplicate dot product

circuits for m and mk times as ZENO circuit for fully-connected and convolution layers,

respectively. For the pooling layer, we focus on average pool following state-of-the-art

zkSNARK NN security scheme [35]. Given an input tensor of shape m×n and a constant

s, average pool splits the tensor into small grids of shape s× s and computes the average

value in each grid. Thus average pool can be viewed as a dot product between a one

vector 1 of length s2 (i.e., all elements are 1’s) and a vector of all values in a grid. On the

ReLU layer, ZENO shares the same circuit as scalar-level zkSNARK frameworks since

ReLU contains only elementwise comparison.

Theoretical benefit analysis. We summarize theoretical benefits of ZENO circuit

171



A Type-based Optimization Framework for Zero Knowledge Neural Network Inference Chapter 6

in Table 6.4. One significant result is that ZENO circuit requires O(n) computation for

dot product while arithmetic circuit requires O(n2) computation. This generalizes to

fully connected, convolution, and pool layers with significantly reduced complexity. This

saving leads to significant performance improvement on zkSNARK NNs with millions of

gates. ZENO circuit also introduces a constant critical path length of 2, in contrast to

the length n in arithmetic circuit. This exposes parallel opportunities that can hardly

be identified in arithmetic circuit due to complex dependency.

6.6.2 Workload-specialized Parallel Scheduler

Workload-specialized parallel scheduler identifies the parallel computation opportu-

nities in circuits and exploits these opportunities for speedup. While NNs have parallel

opportunities in the same NN layer (e.g., fully connected layer), NNs are also intrinsi-

cally sequential across layers where leading layer needs to be computed before following

layers. This cross-layer dependency still hurdles paralleling zkSNARK NN computation

even with ZENO circuit that improves parallelism within NN layer. Naively parsing the

circuit at NN level still leads to heavy overhead.

We propose a lightweight dependency-aware workload scheduler to identify cross-layer

dependency in circuit and map parallel workloads to individual threads. We have two

major observations. First, gates in the same zkSNARK NN layer usually can be computed

independently while gates in later layers depend on gates in leading layers. Second, the

number of gates for a NN layer is proportional to the number of computation in this

layer. To this end, we propose a three-step design. First, based on the plaintext NN with

specific layer shapes, we first count the number of addition and multiplication in each

layer. For example, given a fully connected layer with shape M × N , there are M × N

multiplications and M × (N −1) additions. Then, based on this number of computation,
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we directly identify the gates for each NN layer since each addition and multiplication is

mapped to exactly one gate in the circuit. Finally, we evenly assign gates in the same

layer to each thread for acceleration.

6.7 NN-centric System Optimization

In this section, we propose NN-centric system optimization to further accelerate zk-

SNARK NN computation.

6.7.1 NN-inspired Computation Reuse

ZENO identifies redundant computation in zkSNARK NNs and removes such re-

dundancy for improving performance. In particular, we identify two types of computa-

tion reuse opportunities – frequency-based cache service for mitigating redundancy when

computing a single image and batch-specialized constraint system sharing for mitigating

redundancy when computing a batch of images.

Frequency-based Cache Service. We build a lightweight cache service to cache the

computation results of frequent weight and data pairs. We have two insights behind our

cache service. First, zkSNARK NNs usually computes with uint8 values since zkSNARK

supports only computation on finite fields (e.g., 254-bit integers). Since there are at

most 256 values for uint8, the same value appears frequently. Second, NN weights and

features usually follow Normal distribution where many weights and features are around

zero, as widely observed in the NN algorithmic area [1, 67]. This distribution makes

many values around zero appear frequently. To this end, our cache service can improve

the performance by reducing the number of expensive computations on λ-bit finite fields

(λ ≥ 254).

To mitigate the runtime overhead, we adopt a two-phase design. During the offline
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profiling phase, we evaluate the plaintext NN on a small set (=100) of images and profile

the frequency of weight and data pairs. We rank all pairs by frequency and keep the top-

k(=5) values and the computation results in a hash table. This offline profiling introduces

negligible overhead since it is only conducted once on a plaintext NN. During the online

computation phase, for each weight and data pair, we first search the pair in the hash

table and reuse the results in the hash table. In this way, we can mitigate expensive

security computation for a large number of weight and data pairs that appear frequently.

Batch-specialized Constraint System Sharing. We share the constraint system

across images when using the same zkSNARK NN to process a batch of images. Our key

insight is that the constraint system is a description of the zkSNARK NN computation.

Since we usually use the same zkSNARK NNs to process a batch of images, the same

computation applies to each image such that the constraint system can be shared. One

specific example is the accuracy scheme in ZEN [35], where the same zkSNARK NN is

used to process n(= 100) images for proving the accuracy of the zkSNARK NN. To this

end, ZENO provides a batch mode that takes a zkSNARK NN and a batch of images.

The circuit computation step is only conducted once and the constraint system is reused

for different images. In particular, in the same constraint system, we assign different

values to input variables according to images.

6.7.2 zkSNARK-aware NN Fusion

We propose zkSNARK-aware NN fusion to further reduce the number of constraints

for performance improvement. Our key insight is that the number of constraints is

proportional to the number of computation in zkSNARK NNs. While fusion has been

utilized to accelerate non-zkSNARK NNs [279, 280, 27], there are several intrinsic differ-

ences in tensor fusion for zkSNARK NNs. First, fusion in non-zkSNARK NNs usually
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Table 6.5: Neural Networks for Evaluation.

Network Abbr. Dataset #FLOPs (K) Acc.(%)
ShallowNet SHAL MNIST 102 94.91

LeNetCifarSmall LCS Cifar-10 530 55.35

LeNetCifarLarge LCL Cifar-10 7,170 63.68

VggNet-16 VGG16 Cifar-10 19,917 84.19

ResNet-18 RES18 Cifar-10 32,355 85.45

ResNet-50 RES50 Cifar-10 69,191 87.05

target reducing memory access by avoiding saving intermediate results in memory. In

zkSNARK NNs, we target reducing the number of computations which decides the num-

ber of constraints and the latency of generating zero-knowledge proofs. Second, fusion

in non-zkSNARK NNs usually fuses all element-wise computation (e.g., relu) with con-

volution layers. However, many element-wise computation cannot be fused in zkSNARK

NNs. For example, relu layer cannot be fused since relu requires expensive comparison

operator with hundreds of constraints in zkSNARK.

To this end, we propose pre-computation-based fusion to reduce computation in zk-

SNARK NNs. Many NN layers involve injective computation such as one-to-one scale

and addition. We can fuse such injective layers with convolution and fully-connected lay-

ers. For example, consider a fully connected layer Y = WX and a batch normalization

layer BN(Y ) = γ ∗Y +β which is an injective layer. Naive approach is to independently

prove the computation of these two layers which leads to extra constraints. Instead, we

can precompute the fused weight value γ ∗ W and directly prove the computation of

(γ ∗W )X + β to save constraints.

6.8 Evaluation

In this section, we comprehensively evaluate ZENO over various datasets and popular

NNs.
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Baselines. We compare ZENO with Arkworks [204, 248], which is the state-of-the-

art zkSNARK framework and widely used in industry zkSNARK products [281, 282, 283].

We also compare with two other representative zkSNARK frameworks, Bellman [274] and

Ginger [213] for comprehensive comparison.

Datasets. We evaluate with two popular datasets (MNIST and CIFAR-10) in secure

deep learning field [207, 246, 205, 206, 208, 35]. MNIST [284] is a large dataset for

handwritten digits classification with 60, 000 training images and 10, 000 testing images

in gray-scale with the shape of 28 × 28 × 1. CIFAR-10 [285] is a classification dataset

with 10 classes (e.g., cat and dog). It contains 50, 000 training images and 10, 000 testing

images of shape 32× 32× 3.

Models. We evaluate six neural networks, as summarized in Table 6.5. The evalu-

ation of these six variants demonstrates the performance of ZENO under diverse model

sizes. In particular, ShallowNet [35] contains two fully connected layers and one ReLU

layer. LeNetCifarSmall and LeNetCifarLarge are two variants of LeNet [254] with 5 lay-

ers but different number of computation. VggNet-16 [286], ResNet-18 [2], ResNet-50 [2]

have 16, 18, and 50 NN layers, respectively.

Experiment Configuration. All the evaluations run on a server with Intel(R)

Xeon(R) Gold 5218 CPU @ 2.30GHz and 503 GB DRAM.

6.8.1 End-to-End Evaluation

In this section, we show the end-to-end performance improvement from ZENO on

various privacy settings that cover diverse use cases of zkSNARK NNs. For example, the

privacy setting of private image and public weights can be used when we only protect the

user image privacy (e.g., face image) and prove the user’s identity on a public NN (e.g.,

a face recognition based door lock system). The privacy setting of private weights and
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Figure 6.7: Overall speedup: private im-
ages & public weights.

Figure 6.8: Overall speedup: private im-
ages & private weights.

private images can be used when we aim to protect both privacy-sensitive images (e.g.,

medical images) and weights (e.g., private NNs as we discussed in section 6.1). We skip

the privacy setting of private weights and public images since it shows similar results as

private images and public weights.

We first show the overall speedup when proving private images and public weights

in Figure 6.7. Overall, ZENO achieves upto 8.5× speedup than Arkworks. This result

shows that ZENO can significantly improve the performance of zkSNARK NNs. We

also observe that ZENO achieves higher speedup on large NNs (e.g., 8.5× on VGG16)

than small NNs (e.g., 2.4× on SHAL). The reason is that tensor-type driven optimization

(section 6.6) reduces the quadratic computation complexity to linear complexity for many

NN layers (e.g., fully connected, convolution, and pool). We highlight that we reduce

the latency of ResNet-50 from 5154 seconds (around 1.5 hours) to 680 seconds (around

11 minutes), which makes it promising to construct practical zkSNARK NNs.

We show overall speedup when proving private NN weights and private images in

Figure 6.8. We achieve up to 2.01× speedup, which shows the effectiveness of ZENO

optimizations. We also observe a similar trend as Figure 6.7 that ZENO achieves higher

speedup on larger zkSNARK NNs. This validates the benefits from our tensor-driven

optimizations on reducing the computation complexity. Comparing with Figure 6.7, we

observe smaller speedup. The reason is that our type-sensitive circuit generation provides
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Figure 6.9: Circuit comput. speedup: pri-
vate images & public weights.

Figure 6.10: Circuit comput. speedup:
private images & private weights.

more aggressive optimization for the setting with private weights and public images. This

shows the importance of considering privacy information (section 6.5) when optimizing

zkSNARK NNs.

6.8.2 Optimization Analysis

In this section, we show speedup from individual ZENO optimizations. We demon-

strate the benefits on circuit computation and security computation steps in zkSNARK

which account for most latency in zkSNARK NNs (see Figure 6.4). We first show speedup

on circuit computation step at NN level and individual NN layer level. Then, we show

the benefits on security computation from knit encoding. Finally, we show benefits when

proving a large number of images.

Performance benefits on circuit computation step for entire NNs. We show

speedup on circuit computation step for private images and public weights in Figure 6.9.

Overall, we achieve speedup of 67.7× on average (from 15× to 150×) for circuit compu-

tation step. This speedup increases as zkSNARK NN size increases due to our ZENO

circuit (subsection 6.6.1) that reduces quadratic complexity to linear complexity. On in-

dividual optimizations, we observe 8.7× speedup from ZENO Circuit (subsection 6.6.1),

1.5× speedup from frequency-based cache service (subsection 6.7.1), and 6.2× speedup

from workload-specialized parallel scheduler (subsection 6.6.2). These results show ben-
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Figure 6.11: Circuit computation speedup: convolution. Shape: [#out_channels,
#in_channels, kernel_width, kernel_height ].

Figure 6.12: Circuit computation speedup: fully-connected layer. Shape:
[#in_channels, #out_channels].

efits of individual optimizations on reducing zkSNARK NN latency.

We show speedup on circuit computation step for private images and private weights

in Figure 6.10. We have similar observations as the case in private image and public

weights. In particular, we observe 9.4× speedup on average (from 2.5× to 24.6×). On

individual optimizations, we observe 2.9× speedup from ZENO circuit, 1.1× speedup

from frequency-based cache service, and 2.9× speedup from workload-specialized parallel

scheduler. Similar to the case in subsection 6.8.1, this speedup is smaller than the case

for private weights and public images. This shows importance of privacy-type driven

optimizations (section 6.5) that customize the circuit generation and encoding methods

according to privacy types.

179



A Type-based Optimization Framework for Zero Knowledge Neural Network Inference Chapter 6

Figure 6.13: Speedup on security computation from knit encoding.

Performance benefits on circuit computation step at NN layer level. We

further show the circuit computation speedup at NN layer level in Figure 6.11 and Fig-

ure 6.12. We focus on the two most time consuming layers – convolution and fully

connected layers, under the privacy setting of private images and public weights. We

omit the privacy setting of private images and private weights due to page limits. We

achieve up to 315.6× speedup on convolution layers and 10.5× speedup on fully con-

nected layers. This result matches up to 150× circuit computation speedup at NN level

in Figure 6.9. We achieve higher speedup on convolution layers which gain more benefit

from ZENO circuit due to the larger number of dot products. We also observe an in-

creasing speedup on both convolution layers and fully connected layers as the layer size

increases, thanks to the tensor-driven optimization that reduces computation complexity

of circuit computation step.

Speedup on security computation from knit encoding. We show the benefits

from knit encoding on accelerating security computation step in Figure 6.13. We show

the result for private weights and public images, as discussed in subsection 6.5.2. Overall,

we achieve up to 3.63× speedup. The reason is that knit encoding can effectively reduce

the number of constraints, which decides the latency in security computation step. We

observe that speedup increases from 1.03× to 3.63× as NN size increases. The reason is
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Figure 6.14: Overall performance: proving n (=100) images.

Figure 6.15: Speedup over Bellman and Ginger.

that, in larger zkSNARK NNs, fully-connected, convolution, and pooling layers account

for larger portion of security computation latency such that knit encoding can bring more

benefits.

Benefits from sharing when proving n (=100) images. We show the speedup

from batch-specialized constraint system sharing (subsection 6.7.1) in Figure 6.14. While

the latency of circuit computation step has been significantly reduced, we can still observe

6.5% speedup from this optimization. The reason is that the constraint system represents

the computation procedure of a zkSNARK NN with constraints which can be assigned

different values for different images.
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6.8.3 Compared with other Frameworks

In this section, we further compare ZENO with two other representative general

zkSNARK frameworks – Bellman [274] and Ginger [213]. These two frameworks are

general zkSNARK framework and do not provide direct support for zkSNARK NNs. They

require constraints (Equation 6.1) as inputs and cannot automatically compile arbitrary

arithmetic function to constraints. We manually port compiled constraints from ZENO

into Bellman and Ginger and compare security computation latency. We show results in

Figure 6.15. We demonstrate the performance on two fully-connected layers with shape

[#in_channels, #out_channels ] and two convolution layers with shape [#out_channels,

#in_channels, kernel_width, kernel_height ]. Overall, we observe that ZENO achieves

4.09× speedup over Bellman and 5.26× speedup over Ginger. These benefits come from

our NN-tailored optimizations such as privacy-aware knit encoding. Comparing across

layers, we observe 1.7× to 6.8× speedup over Bellman and 4.9× to 6× speedup over

Ginger. This result demonstrates the consistent benefits from ZENO on various layers.
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Chapter 7

Faith: An Efficient Framework for

Transformer Verification on GPUs

Transformer verification draws increasing attention in machine learning research and

industry. It formally verifies the robustness of transformers against adversarial attacks

such as exchanging words in a sentence with synonyms. However, the performance of

transformer verification is still not satisfactory due to bound-centric computation which

is significantly different from standard neural networks.

In this chapter, we propose Faith, an efficient framework for transformer verifica-

tion on GPUs. We first propose a semantic-aware computation graph transformation

to identify semantic information such as bound computation in transformer verification.

We exploit such semantic information to enable efficient kernel fusion at the compu-

tation graph level. Second, we propose a verification-specialized kernel crafter to ef-

ficiently map transformer verification to modern GPUs. This crafter exploits a set of

GPU hardware supports to accelerate verification-specialized operations which are usu-

ally memory-intensive. Third, we propose an expert-guided autotuning to incorporate

expert knowledge on GPU backends to facilitate large search space exploration. Exten-
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sive evaluations show that Faith achieves 2.1× to 3.4× (2.6× on average) speedup over

state-of-the-art frameworks.

7.1 Problem Statement

Transformers [5, 78, 287, 288, 289, 290, 291] is an important category of neural net-

works (NNs) in machine learning research and industry. Transformers are first designed

for natural language processing (NLP) and have achieved state-of-the-art accuracy across

many NLP tasks such as neural machine translation [292, 293, 294] and sentiment anal-

ysis [295, 296, 297]. Due to its success, transformers have been widely used in many

industrial products such as Facebook for hate speech detection [7] and Alexa for question

answering [8]. Recently, transformers also show extraordinary accuracy for many com-

puter vision tasks [298, 299, 300, 301, 302] and become the new trending model. However,

similar to prior NNs, transformers are also vulnerable to adversarial attacks that add im-

perceptible perturbations to input data for maliciously changing transformer predictions

[303, 304, 305, 306, 307]. One specific example of adversarial attack is to exchange words

(e.g., cold) in a sentence with carefully selected synonyms (e.g., frigid). This vulnerability

may result in security concerns for real-world applications. For example, an intentionally

crafted hate speech may spread widely on social network.

Transformer verification has been proposed to formally verify the robustness of a

transformer against adversarial attacks [11, 9, 10, 36]. Given an input data x and a

transformer F (x), transformer verification identifies a maximal bound ϵ, such that all

inputs x′ that are “close” to the input data (i.e., |x′−x| ≤ ϵ) cannot “mislead” the trans-

former (i.e., F (x) = F (x′)). A larger ϵ indicates better robustness. Early verification

approaches [11] enumerate all possible inputs x′ that satisfy |x′ − x| ≤ ϵ and conduct

inference on each input to check predictions. These approaches show prohibitive latency
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Ice is Cold

Original Input

Ice is Cold

Ice is         Cold

Frigid

Frosty
Transformer
Verification

0.4 ≤  P(“Pos”) ≤ 0.8
 0.1 ≤ P(“Neg”) ≤ 0.39

Prediction Bounds

Figure 7.1: Illustration of transformer verification. Here, all perturbed inputs share
the same prediction “positive” since the lower bound probability for “positive” (0.4) is
higher than the upper bound probability for “negative” (0.39).

due to the large number of inputs x′. Recent transformer verification [9, 10] avoids such

enumeration by providing a single pair of lower and upper bounds for transformer pre-

dictions over all these inputs, as illustrated in Figure 7.1. We can verify the robustness

of a transformer if the lower bound of the correct prediction is higher than the upper

bound of other predictions. The key computing pattern is a bound-centric computation,

which computes a pair of inequality bounds for individual neurons. It first represents the

input perturbations with inequality bounds over input neurons (e.g., x− ϵ ≤ x′ ≤ x+ ϵ)

and then propagates these bounds across layers to generate the bounds for transformer

predictions.

While transformer verification can formally verify the robustness of transformers, it

also introduces high latency and limits its applications. In particular, transformer veri-

fication usually leads to second-level latency [9] in contrast to millisecond-level latency

of standard transformers. We identify three challenges behind efficient transformer veri-

fication.

Lack of performance optimization over transformer verification computing

patterns. Existing transformer verifications usually utilize the existing deep learning

(DL) frameworks, such as PyTorch [58], which are designed for standard NNs. However,

transformer verification shows significantly different computing patterns from standard

NNs due to the nature of bound-centric computation. For example, when computing

the upper bound of an output neuron, transformer verification needs to use the upper
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bound of the input neuron if the weight is positive; and the lower bound of the input

neuron if negative. Straightforwardly deploying transformer verification to the existing

DL frameworks usually leads to poor performance.

Lack of framework support for verifying diverse NN layers. Transformer

verification shows large diversity in the bound computation for different types of NN

layers such as projection layer with only perturbed features and self-attention layer with

both perturbed weights and features. Even for the same type of NN layers, diverse upper

bounds and lower bounds may be designed which requires different implementations.

For example, Crown [308] utilizes two ReLU bound designs for generating more precise

bounds for verification, where these bounds are selected dynamically according to the

range of input neurons. This diversity makes it challenging to hand optimize GPU

kernels in transformer verification.

Lack of verification-specialized adaptability towards modern GPUs. Trans-

former verification involves abundant memory-intensive operations such as reduction

and broadcast. These memory-intensive operations can usually be significantly acceler-

ated with rich architecture supports (e.g., warp-level synchronized reduction) in modern

GPUs. However, existing DL frameworks usually only focus on computation-intensive op-

erations (e.g., convolution) and ignore abundant optimization opportunities for memory-

intensive operations. This leads to significant overhead in transformer verification with

a large number of memory-intensive operations.

7.2 Overview of Proposed Solution

In this chapter, we build Faith, the first framework for efficient transformer verifi-

cation on GPUs. We show an overview of the Faith framework in Figure 7.2. First, we

propose semantic-aware computation graph transformation to fully exploit fusion
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Figure 7.2: Overview of Faith Framework

opportunities in transformer verification at the computation graph level. Our key insight

is that transformer verification shows significantly different computing patterns (e.g., two

kernels for computing lower and upper bounds involve similar input data) from standard

NNs. These computing patterns usually exhibit abundant data reuse opportunities. By

exploiting such semantic information, Faith can fully harvest performance potential in

transformer verification and achieve significant speedup over existing DL frameworks.

Second, we propose a verification-specialized kernel crafter to optimize trans-

former verification towards modern GPUs. Transformer verification contains abundant

memory-intensive operations, such as elementwise computation, reduction, and broad-

cast. These operations may have complex dependencies and lead to performance bot-

tlenecks. To this end, Faith automatically exploits a set of GPU architecture supports

to improve the parallelism of such operations. Moreover, Faith introduces a set of opti-

mizations to effectively mitigate memory access and improve performance by exploiting

GPU memory hierarchies.

Third, we propose expert-guided autotuning to efficiently search optimized imple-

mentations in the large search space. Existing DL frameworks [279, 280] usually conduct

autotuning in a hardware-agnostic approach where an ML-based cost model is deployed

to implicitly learn hardware impact over performance from scratch. Instead, we pro-
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Figure 7.3: Illustration of transformer verification. (a) model prediction and verifi-
cation bound; (b) an example of verifying a model with a fully connected layer and
a ReLU layer; (c) computation graph of projection layer in transformer verification;
(d)-(e) two types of bounds for ReLU layer; (f)-(g) two types of bounds for the Tanh
layer.

pose a rule-based expert knowledge metafile to explicitly provide a small set of hardware

characterizations and an expert-guided cost model to incorporate the expert knowledge.

Faith exploits these two components to achieve efficient schedule exploration in the large

design space of transformer verification.

Extensive experiments show that Faith achieves up to 3.4× speedup (2.6× on average)

over state-of-the-art frameworks.

7.3 Related Work and Motivation

In this section, we first introduce the background of transformer verification (subsec-

tion 7.3.1). Then, we discuss related work on DL frameworks (subsection 7.3.2). Finally,

we present opportunities and challenges for efficient transformer verification on GPUs

(subsection 7.3.3).
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7.3.1 Transformer Verification

Standard Transformers. Transformer [5, 78, 287, 288] takes a sentence as in-

put and predicts a label for this sentence. Formally, the input X is a tensor of shape

Batch_size × Length × Dim_in, where Batch_size is the number of sentences in a

batch, Length is the number of words in a sentence, and Dim_in is the embedding size

of each word. When sentences in the same batch have different lengths, Length is set to

the maximal length in practice. A transformer has three types of operators. The first

type is the elementwise operator, such as ReLU and Tanh. The second type is the matrix

multiplication operator that takes an input tensor X, a weight matrix W , and generates

an output tensor Y = XW . We note that these two types are similar to operators in

prior neural networks. The third type is the dot product operator, which is the key idea

behind the transformer model. Informally speaking, it takes two input tensors Q and K

of the same shape Batch_size×Length×Dim_in. Then, it computes an output tensor

Y = QTK of shape Batch_size × Length × Length to measure the pairwise similarity

between individual words in a sentence. This similarity can significantly improve the

learning capacity of the model and the prediction accuracy.

Adversarial Attack on Transformers. Adversarial attack [309, 303, 304, 305,

306, 307] identifies small perturbations to input data X that can change the transformer

prediction. Formally, consider a transformer f(·), an input sentence X, and a tolerable

input perturbation bound ϵ, where the transformer correctly classifies X as a label i (e.g.,

hate speech). In other words, the sentence has label i and yi > yj for any j ̸= i where

yi is the predicted probability. Adversarial attack identifies a slightly perturbed sentence

X ′ = X + η such that η ∈ B(0, ϵ) and there exists a label j (e.g., benign speech) such

that yi < yj. This perturbed sentence X ′ is an adversarial example.

Transformer Verification. Transformer verification [11, 9, 10, 36] computes a
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maximum bound ϵ and mathematically proves that there does not exist an adversarial

example X ′ within the ϵ-ball of X (i.e., (X ′ − X) ∈ B(0, ϵ)). Verifying transformers

is challenging since transformers are essentially non-convex functions. The key idea of

transformer verification is to utilize linear bounds as an approximation to NN predictions.

We illustrate transformer verification at the model prediction layer in Figure 7.3(a).

Given these linear bounds, transformer verification can simply check if the predictions

insides the bounds satisfy certain linear requirements, such as yi > yj + c, where c is

a positive number. As illustrated in Figure 7.3(a), this bound-based approach is sound

since the linear bound covers the non-convex area of NN predictions.

We show an example of bound-centric computation of transformer verification in

Figure 7.3(b). Consider a fully connected layer Y [j] =
∑n

i=1W [j, i] · X[i] where Y [j],

W [j, i], and X[i] are scalars. Here, we skip the index for batch size and length for notation

simplicity. A formal summary of notations can be found in Table 7.1. For each neuron

X[i], there is a lower and a upper bound

X[i] ≥ Xlb[i] +Xlw[i] ∗ ϵ⃗, X[i] ≤ Xub[i] +Xuw[i] ∗ ϵ⃗

where Xlb[i] and Xub[i] are scalars, Xlw[i], Xuw[i], and ϵ⃗ are vectors. For the input

neurons, we have Xlb[i] = Xub[i] = X[i], Xlw[i] and Xuw[i] are one-hot vectors with 1 at

the index i and 0 at other indices. Given this linear bound, we can compute concretized

bounds for each neuron as

Xl[i] = Xlb[i]− ϵ ∗ ||Xlw[i]||, Xu[i] = Xub[i] + ϵ ∗ ||Xuw[i]|| (7.1)

where || · || computes the norm with reduction operations.

When computing the bounds for output neuron Y [j], we note that bound computation
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Table 7.1: Notations in transformer verification.

W Transformer weights. Shape: Dim_in×Dim_out
X Input feature tensor. Shape: Batch_size× Length×Dim_in

Xlb, Xub
The tensor of lower and upper bound bias of input features.
Shape: Batch_size× Length×Dim_in

Xlw, Xuw
The tensor of lower and upper bound weights of input
features. Shape: Batch_size× Length×Dim_in×Dim_out

Xl, Xu
The tensor of concretized lower and upper bounds of input
features. Shape: Batch_size× Length×Dim_in

depends on the sign of weights W [j, i]. In particular, we have upper bounds Yub[j] as

Y [j] ≤Yub[j] + Yuw[j] ∗ ϵ⃗

=(
∑

W [j,i]≥0

W [j, i] ·Xub[i] +
∑

W [j,i]<0

W [j, i] ·Xlb[i])

+(
∑

W [j,i]≥0

W [j, i] ·Xuw[i] +
∑

W [j,i]<0

W [j, i] ·Xlw[i])) ∗ ϵ⃗

(7.2)

The lower bounds can be computed in a similar way. This bound computation (Equa-

tion 7.2) is significantly different from standard NN computation since it explicitly consid-

ers the sign of weights. Previous transformer verification directly exploits the standard

DL frameworks to build a computation graph (Figure 7.3(c)) for computing bounds,

which leads to inefficient memory access and computation overhead. We will discuss the

opportunities and challenges of efficient transformer verification in subsection 7.3.3.

For the same NN layer, diverse bound computation designs may still be developed

to provide tighter bounds on NN predictions. We illustrate two types of bounds for

the ReLU layer in section 7.3(d)-(e) and two types of bounds for the Tanh layer in

section 7.3(f)-(g). A tighter bound (i.e., less space between linear bounds and ReLU

function) is preferred to provide a better linear bound approximation to NN prediction.

For example, consider the concretized lower bound Xl[i] and upper bound Xu[i] for an

input neuron X[i], when we have abs(Xl[i]) > abs(Xu[i]), linear bound in Figure 7.3(d)

is preferred over the linear bound in Figure 7.3(e) since the former one provides a tighter
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approximation. This diversity in bound design adds more complexity to developing

frameworks for transformer verification.

7.3.2 Deep Learning Frameworks

Many DL frameworks [58, 279, 280] have been developed recently to efficiently support

NN workload. Early works such as PyTorch [58] take user-specified computation graphs

for neural networks and maps towards hand-tuned kernels on backend platforms (e.g.,

GPUs). However, this approach usually builds upon kernels developed for standard NNs

and cannot efficiently support transformer verification computation. Recent works, such

as TVM [279] and Ansor [280], can automatically generate such backend kernels based

on a set of heuristic rules on fusion and operator optimizations. However, these heuristic

rules are developed specifically for standard NNs. Naively incorporating these rules into

transformer verification may lead to unsatisfactory performance due to the significant

difference in computing patterns. For example, Figure 7.3(c) shows the computation

graph for utilizing the kernels of standard NNs on transformer verification. This approach

leads to heavy sparsity and redundant memory access. In particular, only half of the

elements in Wpos and Wneg are non-zero values, leading to 50% sparsity. To this end, we

build Faith, the first framework for efficient transformer verification on GPUs.

7.3.3 Opportunities and Challenges

In this section, we introduce optimization opportunities and challenges in enabling

efficient transformer verification.

We show the latency of verifying individual transformer operators in Figure 7.4. We

profile this latency breakdown based on the state-of-the-art transformer verification im-

plemented with PyTorch [58]. We have three major observations. First, dot product
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Figure 7.4: Latency breakdown of transformer verification on sentences with length
8 and 20. Here, we show the latency of verifying individual operators such as dot
product and Tanh.

accounts for around 45% latency. Dot product takes two input tensors Q and K where

both inputs may be perturbed during adversarial attack, which is significantly different

from matrix multiplication that only one input (i.e., feature X) may be perturbed. This

adds complexity to the verification of dot product operators [9] and longer latency. Sec-

ond, elementwise operators such as Tanh and ReLU account for a large portion of latency

in transformer verification. This is significantly different from standard NNs where ele-

mentwise operators can usually be fused with remaining operators and show low latency.

Third, we observe that matrix multiplication and softmax accounts for certain latency.

Opportunities: There are two major opportunities to accelerate transformer ver-

ification. The first opportunity is to exploit the semantics of transformer verification

to minimize redundant memory access and computation. Our investigation shows that

transformer verification has rich semantic information (e.g., 50% sparsity in Wpos and

Wneg), which can be exploited to accelerate transformer verification. The second oppor-

tunity is to exploit the modern GPU architectures to efficiently support diverse computing

patterns in transformer verification. One example is to accelerate abundant reduction

computation in Equation 7.1.

Challenges: Although these ideas sound promising, the efforts to realize the ben-
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efits are non-trivial due to several challenges. First, transformer verification shows sig-

nificantly different computing patterns from standard NNs. Straightforwardly borrowing

optimizations for standard NNs such as kernel fusion can hardly bring similar benefits.

Second, while exploiting GPU architecture supports may bring benefits, we still need spe-

cialized designs as a synergy between architecture and specialized computing patterns.

Moreover, exploiting advanced GPU architecture supports will add more complexity to

the search space of optimized kernels which motivates novel autotuning optimizations.

7.4 Semantic-aware Computation Graph Transforma-

tion

In this section, we propose semantic-aware computation graph transformation for

efficient transformer verification. We first propose semantic-aware kernel fusion to

fuse kernels within a transformer layer. It contains two novel types of fusions – weight-

paring based fusion and double bound based fusion. Then, we propose bound-aware

cross-layer fusion to efficiently fuse kernels across transformer layers.

7.4.1 Semantic-aware Kernel Fusion

The semantic-aware kernel fusion fuses operators in a single transformer layer to min-

imize memory access. Different from standard transformers, a single layer in transformer

verification usually involves multiple kernels to compute the bounds adaptively to the

sign of weights, as discussed in subsection 7.3.1. Existing transformer verification [9, 10]

usually uses a set of GPU kernels developed for standard transformers to serve the need

for transformer verification. We illustrate the memory access pattern of this baseline ap-

proach in Figure 7.5(a). These kernels need to independently read data from the global
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Figure 7.5: Illustration of Semantic-aware Kernel Fusion. We show the memory access
pattern before and after applying semantic-aware kernel fusion in (a) and (b), respec-
tively.

memory of GPUs and lead to heavy memory overhead. Moreover, these kernels fail to ex-

ploit semantic information in transformer verification and show heavy redundancy during

memory access. For example, baseline approaches usually first split the weight matrix

W into two weight matrices Wpos and Wneg according to weight signs and then use each

matrix for computing lower and upper bounds. Here, these two split matrices Wpos and

Wneg have the same shape of M × N as the weight matrix W . However, reading these

matrices independently requires loading 2MN scalars, which leads to redundant memory

access.

We propose semantic-aware kernel fusion to minimize such memory overhead by ex-

ploiting transformer verification semantics and GPU memory hierarchies (i.e., global

memory, shared memory, and registers). We illustrate our semantic-aware kernel fusion

in Figure 7.5(b). Our key insight is to first load data collaboratively from global mem-

ory and only distinguish data semantics (e.g., Wpos and Wneg) at the register level to

mitigate redundant memory access. In particular, we identify weight-paring based fu-

sion and double bound based fusion as the two most important semantics in transformer
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verification.

Weight-pairing based fusion. We first propose weight-paring-based fusion to mit-

igate redundant memory access when reading Wpos and Wneg. Our key observation is that

the zero values in Wpos are exactly the position of non-zero values in Wneg. Formally, we

have Wpos +Wneg = W . To this end, instead of using an operator to split weight matrix

W into Wpos and Wneg, we first load the matrix W from global memory to shared memory

without distinguishing the sign of individual scalars. Then, we split the weight matrix

W into Wpos and Wneg when loading data from shared memory to registers, as illustrated

in Figure 7.5(b). In our design, we only need to load MN scalars from global memory,

which leads to significantly reduced memory access compared with loading 2MN scalars

in baseline approaches.

Double bound based fusion. Our second optimization is a double-bound-based

fusion. One important semantics in transformer verification is to multiply the same

weight matrix with lower and upper input bounds (e.g., Xlb and Xub) to compute the

output bounds (e.g., Ylb and Yub in Figure 7.5(b)). Meanwhile, when computing the

bound for output neurons, we usually need to read both lower and upper bounds for

computation. For example, when computing the upper bound of output neurons, we

need to read upper bound when weight is positive and read lower bound when weight is

negative. Suppose the input bounds Xlb and Xub have shape N × K, we need to load

4NK scalars during transformer verification.

Instead, we propose to fuse the computation of lower and upper bounds such that the

lower and upper bounds only need to be loaded once to save memory access. In particular,

we first use threads across GPU blocks to collaboratively load tiles of input matrices

from global memory to shared memory, which can be accessed by different GPU threads.

Here, we use shared memory to enable data sharing across GPU threads since different

threads may multiply the same input bound scalar with different weight scalars (e.g.,
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multiplying the first row in Xlb and Xub with various columns in W ). Then, each thread

loads independent data from shared memory to registers and directly accumulates output

bounds Ylb and Yub in registers. We note that this design further improves performance

by eliminating the redundant global memory access during generating Ylb and Yub.

7.4.2 Bound-aware Cross-layer Kernel Fusion

Bound-aware cross-layer kernel fusion fuses the verification of kernels across multiple

transformer layers to further minimize memory access. Existing frameworks for acceler-

ating standard NNs usually rely on a set of rules to fuse kernels. One popular example is

to fuse convolution kernel with the following elementwise kernels (e.g., ReLU kernel for

elementwise comparison with 0). However, these rules usually cannot be applied to fuse

kernels for transformer verification. For example, verifying the ReLU kernel requires first

a concretization operation with a global reduction to compute the concretized bounds

for a neuron and then applies different computation according to the concretized bounds

(see subsection 7.3.1).

To this end, we propose a set of rules for cross-layer kernel fusion in transformer

verification. In particular, we recognize three types of operators. The first type is

input-reduction-compute that conducts reduction or concretization operation on the in-

put data before computation. One example is verifying nonlinear activation functions

such as ReLU and Tanh that requires concretized bounds to apply different computa-

tion. Another example is the softmax operator that computes a global summation for

normalization. The second type is strict-elementwise that contains only elementwise

computation and does not require concretization or global summation. The third type is

dense-computation such as matrix-matrix multiplication kernels. In our cross-layer kernel

fusion design, we can always fuse a dense operator with its following strict-elementwise
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operator. However, we cannot fuse dense operator with input-reduction-compute due

to the concretization or reduction operation. In addition, we can fuse input-reduction-

compute with its following strict-elementwise operator. Finally, we can fuse multiple

strict-elementwise operators (e.g., elementwise addition and multiplication).

7.5 Verification-specialized Kernel Crafter

In this section, we propose a verification-specialized kernel crafter to efficiently map

transformer verification towards modern GPUs. We exploit intrinsic properties (e.g.,

abundant reduction operations) of transformer verification which are significantly differ-

ent from standard transformer operators. One major challenge in building the kernel

crafter is the large diversity in verification designs across operators (see Figure 7.3(d)-

(g)). To tackle this challenge, we first propose a verification pattern categorization to

abstract such diversity and provide a small set of computing patterns over verification

of diverse operators. Then, we propose three optimizations to efficiently support these

computing patterns of transformer verification.

7.5.1 Verification Pattern Categorization

While there are diverse bound designs across different operators, we characterize

transformer verification into four typical computing patterns. Based on this characteri-

zation, Faith can abstract the diversity in bound designs into a combination of computing

patterns and exploit optimizations towards individual computing patterns for improving

performance. Similar to standard NNs, one important computing pattern is general-

ized matrix multiplication (GEMM) when verifying projection layers and fully connected

layers. Matrix multiplication is the major bottleneck in standard NNs and has been

well-optimized by existing DL frameworks. Besides GEMM, transformer verification
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introduces three other time-consuming computing patterns, which are highlighted as fol-

lows:

The first computing pattern is generalized vector reduction. One typical source of

generalized vector reduction is concretization that computes the norm and generates the

concretized lower and upper bounds for individual neurons (see Equation 7.1). Formally,

consider a matrix X = [x⃗1, x⃗2, · · · , x⃗m] ∈ Rm×n where x⃗i = [xi,1, xi,2, · · · , xi,n] are vectors

of length n. The generalized vector reduction computes an output Y = [y1, y2, · · · , yn] ∈

Rn that satisfies

yi = reduction(x⃗i) =

n∑
j=1

f(xi,j), i ∈ {1, 2, · · · ,m} (7.3)

Here, f(x) is an elementwise function that takes a scalar input and generates a scalar

output. One example for f(x) is x2 when computing the L2 norm for input vectors.

The second computing pattern is generalized elementwise multiplication which ap-

pears frequently when verifying elementwise operators such as ReLU and Tanh. Formally,

consider a concretized lower bound l ∈ Rm×n and an upper bound u ∈ Rm×n where li,j

and ui,j are concretized lower and upper bounds for the neuron at position (i, j). Let

X ∈ Rm×n be the input values. The generalized elementwise multiplication computes an

output Y ∈ Rm×n that satisfies

yi,j = f(li,j , ui,j) ∗ xi,j , i ∈ {1, 2, · · ·m}, j ∈ {1, 2, · · · , n} (7.4)

Here, transformer verification introduces a function f(·, ·) that takes the lower and upper

bounds for an input neuron and computes a scaling parameter which is multiplied with

the input value of this neuron. One example is the tangent line between the concretized

lower and upper bounds when verifying Tanh layer, which accounts for more than 20%

latency as we profiled in Figure 7.4. Another example is f(li,j, ui,j) = 1 when verifying

ReLU layer and li,j is non-negative. While f(·, ·) shows large diversity across operators,
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we stress that the same computing pattern is shared across these operators such that a

uniform framework can be applied to improve performance.

The third computing pattern is generalized scalar-vector multiplication. This comput-

ing pattern exists widely when verifying dot products in the self-attention layer of trans-

formers. This computing pattern accounts for more than 40% latency in transformer ver-

ification, as discussed in Figure 7.4. Formally, consider a vector S = [s1, s2, · · · , sm] ∈ Rm

and a matrix X = [x⃗1, x⃗2, · · · , x⃗m] ∈ Rm×n, where si are scalars and x⃗i = [xi,1, xi,2, · · · , xi,n]

are vectors of length n. The generalized scalar-vector multiplication computes an output

Y = [y⃗1, y⃗2, · · · , y⃗n] ∈ Rn×n that satisfies

y⃗i = f(si) ∗ x⃗i = [f(si) ∗ xi,1, f(si) ∗ xi,2, · · · , f(si) ∗ xi,n],

i ∈ {1, 2, · · · ,m}
(7.5)

Here, f(·) is a function that takes a scalar input and generates a scalar output.

In the following sections, we first demonstrate a workload-adaptive reduction to im-

prove the performance of generalized vector reduction (Equation 7.3). We then propose a

sharing-oriented workload scheduling to improve the performance of generalized element-

wise multiplication (Equation 7.4). Finally, we demonstrate broadcast-aware super thread-

ing to efficiently support the generalized scalar-vector multiplication (Equation 7.5).

7.5.2 Workload-adaptive Reduction

Transformer verification contains abundant reduction operations where a sequence of

scalars are summed up into one scalar. One common reduction operation is the con-

cretization operation that computes the concretized lower and upper bounds for indi-

vidual neurons, as discussed in section 7.3. Another common reduction operation is

the softmax operation that is applied in each self-attention layer for measuring the rela-

tionship between individual words. These reduction operations pose challenges between
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Figure 7.6: Illustration of Workload-adaptive Reduction. (a) Sequential Mode; (b)
Parallel Mode. Here, xi and Ti are the i-th data and thread, respectively.

parallelism and data locality. One baseline approach is to use a single thread to read

and accumulate a sequence of scalars as illustrated in Figure 7.6(a). However, this ap-

proach usually leads to low parallelism and fails to exploit abundant threads in GPUs.

For example, we need 32 iterations to accumulate 32 scalars. Another baseline approach

is to first split this sequence of scalars into multiple chunks and allocate one thread to

each chunk for accumulation. Then, each thread writes the accumulated results for each

chunk to global memory and uses an additional thread to finally accumulate the sum

of each chunk. While this approach improves parallelism, it requires expensive global

memory access and high overhead.

Workload-adaptive Reduction with length n = 32. We propose a workload-

adaptive reduction to fully exploit GPU memory hierarchies and the inter-register com-

munication functionalities. We illustrate our design in Figure 7.6(b). Our design achieves

high parallelism by enabling multiple threads for reduction simultaneously. Meanwhile,

we avoid the expensive data communication through global memory and exploit only

efficient registers. In particular, we use 32 threads (i.e., a warp) to read these 32 scalars

simultaneously from global memory. Considering these 32 scalars are consecutive in

global memory, we can efficiently load them with 32 threads through coalesced memory

access. Then, we exploit the specialized instruction _shfl_down_sync to directly com-

municate data in registers across individual threads. As illustrated in the parallel mode of

201



Faith: An Efficient Framework for Transformer Verification on GPUs Chapter 7

Figure 7.6(b), our design involves only five iterations of cross-thread data communication

to generate the final accumulated result, rather than the 32 iterations in the sequential

mode of Figure 7.6(a).

Workload-adaptive Reduction with Arbitrary Length n. For an arbitrary

length n, one naive approach is to repeatedly use 32 threads to reduce 32 scalars and

then use 1 thread to accumulate the final results. However, this approach may lead

to unnecessary communication across threads. Suppose we are accumulating a vector

of length n = 32k, we need 5 iterations for reducing every 32 scalars, leading to 5k

iterations in total for accumulating the vector. Instead, we propose a hybrid mode to

minimize the number of iterations while still achieving high parallelism. In particular,

we first split the input sequence into chunks where each chunk contains 32 scalars. Then,

we use 32 threads to read one chunk simultaneously from global memory and accumulate

individual chunks iteratively. For example, the 1-st thread accumulates the 1-st scalar

in each chunk. Here, the accumulation is conducted in registers and does not require

communication across threads. Finally, we apply a single 5-iteration reduction across 32

threads. In total, our design has only k + 5 iterations which are significantly less than

6k iterations in the naive approach.

7.5.3 Sharing-oriented Workload Scheduling

We propose sharing-oriented workload scheduling to efficiently verify elementwise op-

erators. Different from standard transformers, verifying elementwise operators, especially

non-linear ones (e.g., ReLU and Tanh), accounts for a large portion of latency in trans-

former verification as we discussed in Figure 7.4. Verifying these operators usually first

requires computing a concretized lower bound Xl and upper bound Xu for each input neu-

ron and then computes the bounds for the output neuron. Different signs of concretized
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Figure 7.7: Illustration of sharing-oriented workload scheduling

input bounds usually lead to different computations for output bounds, which could eas-

ily lead to warp divergence and unsatisfactory performance. Moreover, when computing

the output bound weights (i.e., Ylw and Yuw) for a neuron, we need to repeatedly use the

same input bounds which leads to extra memory overhead.

To efficiently verify elementwise operators, we propose sharing oriented workload

scheduling to minimize memory access and improve performance. Our key observation

is that the same set of input bound weights Xlw and Xuw are used to compute the con-

cretized input bounds Xl and Xu, while these input weights are also used for computing

the output bound weights Ylw and Yuw. Instead of repeatedly loading Xlw and Xuw, we

can exploit the GPU memory hierarchies to cache Xlw and Xuw and minimize the global

memory access to improve the overall performance.

As illustrated in Figure 7.7, we use a set of T (=32) threads to first (Step 1 ) load

input bound weights Xlw and Xuw from global memory to shared memory. Here, T is a

hyper-parameter to balance the parallelism and compute intensity, which will be selected

in section 7.6. Then (Step 2 ), these T threads load input bound weights from shared

memory and collaboratively compute the concretized lower and upper bounds Xl and Xu,
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following our design in subsection 7.5.2. These concretized lower and upper bounds are

stored in shared memory which can be accessed by individual threads. Finally (Step 3 ),

each thread independently loads individual Xlw and Xuw scalars from shared memory

and rescales according to the concretized bounds Xl and Xu. Here, all threads in a warp

are computing the output bound weights for the same neuron and the concretized input

bounds are the same across threads in a warp. Thus, all threads in a warp can apply

the same rescaling computation and avoid warp divergence. We also note that input

bound weights are only loaded once from global memory which mitigates redundant

global memory access.

7.5.4 Broadcast-aware Super Threading

We propose broadcast-aware super threading to efficiently support generalized scalar-

vector multiplication, as discussed in Equation 7.5. One naive approach is to use one

thread to read a scalar si and a vector x⃗i and computes the generalized scalar vector

multiplication f(si)x⃗i. However, this approach fails to exploit the parallelism opportuni-

ties in generalized scalar vector multiplication. Another approach is to split the vector x⃗i

into multiple chunks and use one thread for each chunk. However, this approach requires

threads to repeatedly read the same scalar si from global memory and shows redundant

memory access.

Instead, we propose a broadcast-aware super threading to achieve high parallelism

while minimizing memory access. We consider two types of super threading for general-

ized scalar vector multiplication. The first type is a group of 32 threads (i.e., a warp for

one vector). When using 32 threads to compute the multiplication between a scalar si

and a vector x⃗i, these 32 threads can read the scalar si once, broadcast across threads

with modern GPU memory, and compute f(si) simultaneously. Based on this broadcast,
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we can mitigate the redundant memory access that each thread repeatedly read the same

scalar si. The second type is a group of 32t threads (i.e., t warps for one vector). In this

case, we use one warp to read the scalar si and use shared memory to broadcast si across

warps.

7.6 Expert-guided Autotuning Optimization

Considering the large design space of optimization towards GPUs, one natural ques-

tion arises: Can we effectively incorporate hardware knowledge to find optimal operator

implementation? Existing works such as TVM [279] and Ansor [280] usually autotune

operator implementations in a hardware-agnostic way. In particular, these works extract

implementation-specific parameters such as tiling size and use a cost model to implicitly

learn the relationship between these parameters and performance. However, there are

two drawbacks in this hardware-agnostic approach. First, there is a complex interac-

tion between implementation and the hardware properties, which could be hard to be

implicitly learned by the cost model. For example, existing works [310, 311, 312, 313]

on hand-tuning large matrix-matrix multiplication operators usually maximize the num-

ber of registers in use to improve cache performance. However, this optimization is also

limited by the number of registers for each GPU thread since exceeding such limita-

tion may lead to register spilling [314] and a significant performance drop. A careful

reasoning on the interaction between the implementation-specific parameters (e.g., the

number of registers for caching data) and the hardware properties (e.g., the number of

registers per thread) is usually necessary to maximize the performance. To tackle this

challenge, we propose an expert-guided autotuning optimization to automatically reason

both implementation-specific parameters and hardware properties. In particular, we have

the following two designs.
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Rule-based Expert Knowledge Metafile. We propose a rule-based expert knowl-

edge metafile to capture hardware properties. This metafile only needs to be set once for

each type of GPUs and requires limited manual efforts. In particular, we consider two

types of rules. The first type is hard rules which represents hardware limitation such

as the maximal shared memory size and the maximal number of registers per thread.

Violating these rules may lead to significant performance drop such as register spilling.

The second type is soft rules which represents intrinsic trade-offs related to the hardware

properties such as the number of streaming multiprocessors (SM) and the number of

threads per SM. One typical design choice is the number of threads per block which will

be mapped to threads on the same SM. Allocating more threads per block usually leads to

better parallelism for the sub-task assigned to a block. However, allocating more threads

per block may also hinder executing multiple blocks on the same GPU SM hardware and

lead to worse overall parallelism.

Expert-guided Cost Model. We propose an expert-guided cost model to automat-

ically tackle the complex interaction between implementation-specific parameters and

hardware properties. Given a set of candidate operator implementations, we have two

phases to select the optimal implementation. In the first phase, we generate an estima-

tion of shared memory and register usage for each operator implementation. We compare

the estimated usage with the hard rules and rule out operator implementations that vi-

olate hard rules. In the second phase, we utilize a regression tree based cost model to

automatically explore remaining candidate implementations and identify optimal imple-

mentations. In particular, we feed both the implementation-specific parameters (e.g.,

tiling sizes) and the hardware properties to the regression tree and predict the top-k

candidate implementations. We profile these top-k candidate implementations on GPUs

and use the profiling to finetune our cost model. We repeat this procedure until the

performance of top-k candidates becomes stable.
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Table 7.2: Dataset statistics

Dataset #Train #Val #Test Length
min mean max

SST 67,349 872 1,821 4 25 62
YELP 560,000 0 38,000 5 98 128

7.7 Evaluation

In this section, we comprehensively evaluate Faith over various datasets and GPU

backends. We first present our experiment setup in subsection 7.7.1. Then, we show the

overall speedup on end-to-end transformer verification in subsection 7.7.2. Finally, we

provide more optimization analysis on individual transformer layers in subsection 7.7.3.

7.7.1 Experiment Setup

Baselines. We compare Faith with the state-of-the-art transformer verification [9]

based on PyTorch. We further compare with TVM [279] and Ansor [280], as stronger

baselines. TVM and Ansor are two state-of-the-art deep learning compilers for standard

neural networks. We feed the pytorch model into TVM and Ansor through relay fron-

tend [315] which will automatically optimize transformer verification performance. While

TVM and Ansor take minutes to compile an operator implementation, we do not incor-

porate this compilation latency and record only inference latency for a fair comparison.

Datasets. We evaluate two popular datasets, Yelp [316] and SST [317], following the

setting in state-of-the-art transformer verification [9]. These two datasets are widely used

in the natural language processing for analyzing sentiment in languages. We summarize

the statistics of these two datasets in Table 7.2. SST dataset contains 67,349 training

sentences, 872 validation sentences, and 1,821 testing sentences. In SST dataset, there

are 4 to 62 tokens in each sentence and the average number of tokens in a sentence is

25. YELP dataset contains 560,000 sentences as training data and 38,000 sentences as
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testing data. In YELP dataset, there are 5 to 128 tokens in each sentence and the average

number of tokens in a sentence is 98.

Transformer Networks. We evaluate Faith on transformer networks with 1 to 6

layers to demonstrate the performance on large models. Following popular transformer

settings, each transformer layer has 4 attention heads and an embedding size of 128.

Furthermore, we study the Faith performance under diverse embedding sizes in subsec-

tion 7.7.3.

Experiment Configuration. We evaluate with an NVIDIA A100 GPU and an

NVIDIA V100 GPU to show Faith performance on various GPU backends. The host

server with A100 GPUs is an AMD EPYC 7742 64-Core Processor and runs Ubuntu

20.04 with CUDA 11.3. The host server with V100 GPUs has 32 cores of Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10GHz and runs Ubuntu 16.04 with CUDA 10.1.

7.7.2 Overall Performance

We show the overall speedup on SST dataset and Yelp dataset in Figure 7.8 and

Figure 7.9, respectively. We show the performance improvement over transformers with

diverse numbers of layers from 1 to 6, which covers popular settings in the natural lan-

guage processing domain. While the length of input sentences may have an impact on

the performance improvement, we show the averaged speedup over all testing sentences

in this section and study the impact of sentence length in subsection 7.7.3. We compare

Faith with the PyTorch baseline following existing transformer verification open-source

implementations [9]. We further compare Faith with two state-of-the-art deep learn-

ing frameworks (i.e., TVM and Ansor) to provide a comprehensive comparison, as we

discussed in subsection 7.7.1.

We show the overall speedup on SST dataset and A100 GPU in Figure 7.8(a). Com-
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(a) On A100 GPU. (b) On V100 GPU.

Figure 7.8: Overall speedup on SST dataset.

(a) On A100 GPU. (b) On V100 GPU.

Figure 7.9: Overall speedup on Yelp dataset.

pared with PyTorch, we observe 2.3× to 3.2× speedup (2.5× on average). We contribute

this performance improvement to our semantic-aware computation graph transformation

(section 7.4) and verification-specialized kernel crafter (section 7.5). We further observe

17.2× and 15.9× speedup over TVM and Ansor, respectively. The main reason is that

TVM and Ansor focus on optimizing standard neural networks and fail to efficiently

support verification-specific computing patterns, as discussed in subsection 7.3.2. While

Faith and these three baselines show different performance, we stress that the same ver-

ification bounds are generated, and the only difference resides in system optimizations.

Comparing across different numbers of transformer layers from 1 to 6, the performance

improvement remains similar around 2.5×. This result shows that Faith can efficiently

support transformer verification with diverse numbers of transformer layers. We show

the overall speedup on SST dataset and V100 GPU in Figure 7.8(b). We have similar
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observation about the results on A100 GPU which shows that Faith can effectively adapt

to diverse GPU backends, thanks to expert-guided autotuning optimization (section 7.6).

We show overall speedup on Yelp dataset and A100 GPU in Figure 7.9(a). Sentences

in YELP dataset has 5 to 128 tokens (98 on average), which is longer than sentences in

SST dataset with 4 to 62 tokens (25 on average). This provides an opportunity to show

Faith performance on long sentences. Overall, we observe 2.1× to 2.3× speedup (2.2× on

average) when comparing with the PyTorch baseline. We also observe 26.7× and 28.3×

speedup on average over TVM and Ansor, respectively. This speedup is similar to the

performance improvement on SST dataset and shows the good generality of Faith over

diverse input data. We also have similar observations on Yelp dataset and V100 GPU in

Figure 7.9(b).

7.7.3 Optimization Analysis

In this section, we show speedup from individual Faith optimizations. We first show

speedup on verification of matrix multiplication over the diverse lengths and diverse

embedding sizes. Verification of matrix multiplication plays an important role in verifying

projection layers and fully connected layers in transformers. Then, we show the benefits

on verification of ReLU, verification of dot product, and verification of Tanh, which

in total accounts for around 70% latency in transformer verification. Since we observe

similar performance on A100 GPU and V100 GPU, we focus on A100 GPU and omit

results on V100 GPU in this section due to page limits.

Performance benefits on verification of matrix multiplication. We show

speedup on verification of matrix multiplication over the diverse lengths in Figure 7.10.

We study the speedup over diverse lengths from 2 to 128, following the setting in the

popular natural language processing datasets as summarized in Table 7.2. Overall, we
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Figure 7.10: Speedup on verification of
matrix multiplication over the diverse
lengths. Embedding Size: 128.

Figure 7.11: Speedup on verification of
matrix multiplication over the diverse em-
bedding sizes. Length: 16.

observe 5.1× speedup on average over the PyTorch baseline. This result shows significant

performance benefits from utilizing Faith on accelerating transformer verification. Com-

paring across lengths, we observe a higher speedup of 5.54× over the PyTorch baseline

on shorter sentences with 2 to 32 words. The reason is that our autotuning optimization

(section 7.6) automatically adjusts the number of threads and memory layout to improve

the parallelism. We achieve a smaller speedup of 3.85× on longer sentences with 64 and

128 words. For these longer sentences, we have achieved high occupancy on GPUs and

the speedup is limited by the hardware capability.

Surprisingly, we observe that TVM and Ansor achieve 0.33× and 0.73× speedup,

which is significantly slower than PyTorch baselines on verification of matrix multiplica-

tion. The main reason is that TVM and Ansor focus on accelerating standard NNs and

cannot efficiently support computing patterns in the verification of matrix multiplication

(Figure 7.3(c)). Instead, Faith exploits a semantic-aware kernel fusion (subsection 7.4.1)

to efficiently support such computing patterns in verification.

We show speedup on verification of matrix multiplication over the diverse embed-

ding sizes in Figure 7.11. We study embedding size from 64 to 640 following popular

transformer settings. We note that transformer in natural language processing usually

adopts a relatively small embedding size (e.g., 64 to 256), which is different from con-
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Figure 7.12: Speedup on verification of
ReLU over the diverse lengths. Embed-
ding Size: 128.

Figure 7.13: Speedup on verification of
Tanh and dot product over the diverse
lengths. Embedding Size: 128.

volutional neural networks in computer vision that adopts a large embedding size (e.g.,

1024). Overall, Faith achieves 4.2× speedup on average over the PyTorch baseline. This

result shows that Faith can improve performance over diverse embedding sizes. We also

observe that Faith achieves larger speedup for smaller embedding sizes, which is similar

to the case when verifying matrix multiplication over diverse lengths.

Performance benefits on verification of ReLU. We show speedup on verification

of ReLU over diverse lengths in Figure 7.12. As we discussed earlier in subsection 7.5.1,

verification of ReLU represents an important computing pattern of verifying elementwise

operators. Due to similar behaviors between diverse lengths and embedding sizes, we

focus on verification over diverse lengths and keep embedding size as 128, which is a

popular setting in transformers. Overall, Faith achieves 141× speedup over PyTorch

baseline. This large speedup shows it promising to accelerate verification of elementwise

operators. Besides, Faith achieves 13.4× and 13.5× speedup over TVM and Ansor.

The reason is that our workload-adaptive reduction (subsection 7.5.2) can significantly

improve parallelism during reduction and sharing-oriented workload sharing can minimize

memory access with GPU memory hierarchy.

Performance benefits on verifying Tanh and dot product layers. We show

the speedup from Faith over the PyTorch baseline on verification of Tanh and verification
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of dot product in Figure 7.13. We skip the results of TVM and Ansor since these two

frameworks do not support computing patterns in verification of Tanh and verification of

dot product. Here, we show results of verification of Tanh since it is a popular elementwise

operator in transformer verification. We also show results of verification of dot product

since it accounts for around 45% latency in transformer verification. Overall, we observe

that Faith achieves 138× speedup on average for verification of Tanh. This result is

similar to the performance improvement for verification of ReLU, since both Tanh and

ReLU are elementwise operators and share benefits from the same set of optimizations.

We also observe that Faith achieves 26.5× speedup on average for verification of dot

product. This result shows the performance benefits from semantic-aware kernel fusion

(subsection 7.4.1) and broadcast-aware super threading (subsection 7.5.4) that mitigate

redundant memory access.
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Chapter 8

Conclusions and Future Work

In this chapter, I summarize the dissertation and discuss future directions.

8.1 Conclusions

In thesis, I present my research on building systems for efficient big data analytics.

We first demonstrate hardware-aware kernel tuning in chapter 2 and chapter 3 on gener-

alizing limited hardware compute primitives to efficiently support workloads with diverse

precision requirements. Then, we present a runtime system in chapter 4 that automati-

cally identifies and exploits runtime information in big data analytics to reduce latency

and energy consumption. Finally, we discuss three secure deep learning frameworks in

chapter 5, chapter 6, and chapter 7 that efficiently support diverse NN operators with

specialized computing patterns and mitigate manual efforts.

Overall, this study shows that APNN-TC (chapter 2) can accelerate arbitrary-precision

neural networks on Ampere GPU Tensor Cores. Specifically, APNN-TC contains an int1-

based emulation design on Tensor Cores to enable arbitrary-precision computation, an

efficient AP-Layer design for efficiently mapping NN layers towards Tensor Cores, and an
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APNN design to minimize the memory access across NN layers. Extensive evaluations on

two Ampere GPUs show that APNN-TC can achieve significant speedup over CUTLASS

kernels and various mainstream NN models, such as ResNet and VGG.

We also show that EGEMM-TC (chapter 3) can accelerate general-purpose scientific

computing on Tensor Cores with extended-precision. Specifically, EGEMM-TC contains

a lightweight emulation algorithm on Tensor Cores to achieve the extended-precision

computation, a set of Tensor Core kernel optimizations to efficiently map these work-

loads to Tensor Cores, and a hardware-aware analytic model to facilitate the selection of

performance-related hyper-parameters. Overall, EGEMM-TC achieves 3.13× and 11.18×

speedup on average over the single-precision kernels on CUDA Cores from cuBLAS and

CUDA-SDK, respectively. EGEMM-TC also achieves 1.8× speedup on a set of popular

GEMM-based scientific computing workloads and diverse input sizes.

We further show that exploiting runtime information can significantly accelerate big

data analytics. We present Palleon (chapter 4), a runtime system for efficient video

processing, by detecting and exploiting class skews in video streams. We propose ABLE

to detect class skews in video streams. Based on these detected class skews, Palleon uses

Bayesian Filter for online model adaptation and Separability-Aware Model Selection to

select the most energy efficient model during runtime. Evaluations on both synthesized

videos and real videos demonstrate that Palleon achieves up to 6.7× energy saving and

up to 7.9× latency reduction. We conclude that Palleon is a highly practical and effective

approach for efficiently processing video streams.

Then, we present our secure deep learning frameworks, ZEN (chapter 5) and ZENO

(chapter 6), that efficiently efficiently support zero-knowledge neural networks with spe-

cialized computing patterns. In chapter 5, we focus on reducing the theoretical constraint

size and present ZEN as an optimizing compiler that effectively map deep learning work-

loads to zero-knowledge proof security schemes. In particular, ZEN takes an existing
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neural network as the input and generates a privacy-preserving verifiable neural net-

work scheme. To improve efficiency and minimize accuracy loss, we propose a zkSNARK

friendly quantization and a novel encoding scheme, namely stranded encoding. Our

evaluation demonstrates 5.43 ∼ 22.19× (15.35× on average) savings in the number of

constraints compared with a vanilla implementation of neural network on zkSNARK.

We present ZENO (chapter 6) to realize the latency reduction in practice. Specifi-

cally, we design a set of ZENO language constructs to maintain high-level semantics and

type information while accommodating a more aggressive compilation from a zkSNARK

NN to a gate-level circuit. We then propose several privacy-type driven and tensor-type

driven optimizations to further optimize the generated zk-SNARK circuit. Finally, we

propose NN-centric system optimizations to further accelerate zkSNARK NNs. Exten-

sive experimental results show that ZENO outperforms the state-of-the-art zkSNARK

framework across diverse applications.

Finally, we propose a Faith framework (chapter 7) for efficient transformer verification.

Specifically, we first design a set of semantic-aware computation graph transformations

to fully exploit fusion opportunities in transformer verification at the computation graph

level. Then, we propose a verifier-specialized kernel crafter to efficiently map fused veri-

fication kernels towards modern GPUs with minimized memory overhead and improved

parallelism. Finally, we propose an expert-guided autotuning to dynamically optimize

kernels according to the transformer verification workload and GPU backend character-

istics. Comprehensive experimental evaluation shows that Faith significantly improves

the performance of transformer verification over state-of-the-art frameworks.

In addition to above papers, my research also leads to QGTC [318], DSXplore [44],

STPAcc [319], TiAcc [320], MPInfer [321] and KPynq [322] for hardware-aware kernel

tuning, GNNAdvisor [323] for efficient deep learning frameworks, UAG [324], SAGA

[325], and SAG [326] for adversarial attacks, SGQuant [327], 3DRF [328], and [329] for
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efficient deep learning algorithms, and deep learning applications in manufacture [330]

and bioinformatics [331].

8.2 Future Work

System optimizations are the key to efficiently support diverse big data analytics

in terms of precision, latency, and energy consumption. In my future work, I plan

to contribute more to the development of systems for big data analytics and provide

practical solutions to contemporary usages. I would like to highlight two important

research directions where building systems for big data analytics worth exploring and

can potentially bring large real-world impact.

Hardware-aware deep learning compilers. Recently, many deep learning compilers

have been built to automatically generate efficient implementations given the mathemat-

ical expression. However, existing deep learning compilers usually still require heavy

manual efforts on specifying a sequence of implementation optimizations. Moreover, ex-

isting deep learning compilers usually provide only limited supports and cannot fully

exploit hardware properties (e.g., PTX features on NVIDIA GPUs) to squeeze the per-

formance. We envision that hardware-aware deep learning compilers can fill this gap

between mathematical expression and hardware backend by building a hollistic hardware

analytic model and incorporating an enhanced hardware-aware autotuning design.

Secure deep learning framework on GPUs. Over the recent few years, the security

and privacy concerns of widely deployed deep neural networks draw significant attention

from both academic and industry. However, these secure deep learning workload usually

cannot fully benefit from GPUs due to the significantly different computing patterns.

Existing works usually either utilize GPU frameworks developed for standard neural
217



network workloads or rely on CPU-based approaches. We envision that building the

next generation secure deep learning framework on GPUs can significantly accelerate

secure deep learning workloads and make secure deep learning practical.
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