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Abstract: We generalize the exact predictive regularity of symmetry groups to give an algebraic
theory of patterns, building from a core principle of future equivalence. For topological patterns in
fully-discrete one-dimensional systems, future equivalence uniquely specifies a minimal semiautoma-
ton. We demonstrate how the latter and its semigroup algebra generalizes translation symmetry to
partial and hidden symmetries. This generalization is not as straightforward as previously considered.
Here, though, we clarify the underlying challenges. A stochastic form of future equivalence, known
as predictive equivalence, captures distinct statistical patterns supported on topological patterns.
Finally, we show how local versions of future equivalence can be used to capture patterns in space-
time. As common when moving to higher dimensions, there is not a unique local approach, and we
detail two local representations that capture different aspects of spacetime patterns. A previously
developed local spacetime variant of future equivalence captures patterns as generalized symmetries
in higher dimensions, but we show that this representation is not a faithful generator of its spacetime
patterns. This motivates us to introduce a local representation that is a faithful generator, but we
demonstrate that it no longer captures generalized spacetime symmetries. Taken altogether, building
on future equivalence, the theory defines and quantifies patterns present in a wide range of classical
field theories.

Keywords: organization; structure; pattern; computational mechanics; spacetime; translation symmetry;
predictive equivalence

1. Patterns in Nature

Symmetry plays a central role in fundamental physics. When we look out at the world
around us, on the human scale, however, there is a notable lack of exact symmetries. Cows
are not spherical, for instance. The disconnect between physics at the fundamental level
and the human scale is often described in terms of spontaneous symmetry breaking, the most
famous example being the Higgs et. al. mechanism of spontaneously broken gauge sym-
metries [1–4]. How and why spontaneous symmetry breaking occurs so ubiquitously in
natural systems are interesting and challenging questions, but not our concern here. Rather,
we are interested in the question of what structures result from broken symmetries. In par-
ticular, a special case of spontaneous symmetry breaking is spontaneous self-organization.
However, what is organization in the first place? Can we mathematically formalize it and
quantitatively measure it?

We will use the general rubric pattern to refer to the forms of organization that sponta-
neously emerge in natural systems. When a system undergoes a spontaneous symmetry
breaking event it self-organizes into some pattern, either in time, space, or both.

In many canonical examples of pattern formation near equilibrium [5–7]—recall the
convection roles that emerge in Bénard flow [8,9] or the spiral waves in the Belousov-
Zhabotinsky chemical reaction [10,11]—a system undergoes a continuous-to-discrete sym-
metry breaking bifurcation event. This occurs when it self-organizes, going from a ho-
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mogeneous state with trivial continuous spacetime symmetries to a state with nontrivial
discrete symmetries.

Hexagonal convection cells form in a fluid with velocity initially zero everywhere
during a Bénard instability. Belousov first discovered a “chemical clock” with a discrete-
time symmetry oscillation that arises from an initially stationary mixture. Farther from
equilibrium, these discrete symmetries may be further broken during subsequent bifurca-
tions, resulting in states we may consider “patterned”, but that have no discernible simple
symmetries remaining. Turbulent fluid flows containing coherent structures [12,13], such
as Jupiter’s Great Red spot [14,15], provide many commonly encountered examples.

What we would like then, and what the following contributes, is a unified account of
patterns—an account that rigorously and formally describes the full range of phenomenon
including, but going beyond, organizations with exact symmetries. Given that symmetries
are formally captured using the mathematics of group theory and given the enormous
success group theory has had in formulating physical theory [16], we take an algebraic
approach to framing patterns as generalized symmetries.

We start with the simplest setting of discrete one-dimensional spatial systems (e.g.,
spin lattices) and show how the semigroup algebra of semiautomata—a mathematical
representation originating in symbolic computation—generalizes translational symmetry.
In doing so, we rigorously clarify subtleties posed by this generalization—subtleties that
have not been previously addressed. Based on this, we introduce a classification hierarchy
in terms of exact symmetries, partial symmetries, hidden symmetries, and general pat-
terns. We also describe distinct statistical structures supported on these one-dimensional
patterns and show that stochastic generalizations of semiautomata provide mathematical
representations of these statistical patterns.

In addition, we explore generalizations to patterns in higher dimensions. We introduce
a class of local models that generalize the semiautomata approach for spatiotemporal
systems. Two models in this class are shown to be particularly useful. Intriguingly, the uses
of these models appear mutually exclusive. The first model, introduced previously, can
discover hidden spacetime symmetries and coherent structures [17], such as those in
turbulent fluid flows [18]. However, we describe a previously unknown shortcoming of
these models: they are not consistent generators of their associated spacetime field patterns.
The second model, introduced here for the first time, corrects this flaw and introduces a
consistent generator of spacetime field patterns. Unfortunately, it loses the first model’s
useful generalized spacetime symmetries.

These representations’ conflicting strengths—generalized spacetime symmetries and
consistent spacetime generation—add new questions and suggest new paths of inquiry to
the enigma of patterns in higher dimensions [19–21].

2. One-Dimensional Patterns

Abstractly, we can think of a pattern as a predictive regularity [22]:

... some object O has a pattern P—O has a pattern ‘represented’, ‘described’,
‘captured’, and so on by P—if and only if we can use P to predict or compress O.

On one extreme, symmetries represent an exact predictive regularity. If the symmetries
are known, the pattern can be perfectly predicted at any other point in time or space. On the
other extreme, a completely random system is entirely devoid of predictive regularity.
If every point in spacetime is an independent, identically distributed random variable,
there is no regularity. So, knowledge of any part of the system cannot be leveraged to predict
other parts of the system. The notion of pattern that we seek encompasses both of these
extremes and systems in between. A general pattern will be neither perfectly predicable
nor entirely unpredictable—it will be an amalgamation of regularity and randomness.

Before proceeding, let us briefly compare and contrast the theory developed here
with the Pattern Theory of Ulf Grenander and colleagues [23]. As both aim at a general
quantitative understanding of what patterns are and how to discover them in the world,
there are many conceptual similarities. While some quantitative similarities emerge, in par-
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ticular the use of nonparametric learning algorithms for hidden Markov models [24], most
of the quantitative machinery differs. Pattern Theory is grander in scope than what is
developed here, and so we do not require the very general constructs of bonds, connectors,
configurations, images, and the like [23]. Likewise, Pattern Theory does not employ the
machinery of symbolic dynamics, sofic shifts, and predictive equivalence used here. Thus,
our work is complementary to the more general approach of Pattern Theory.

2.1. Statistical Field Theories

The following mainly concerns fully-discrete one-dimensional spatial systems. These
are given as a shift space X—a set of indexed bi-infinite sequences, or strings, of symbols
taken from a finite alphabet A. Before diving into details, let us first take a moment
to compare shift spaces to the analogous setup from statistical mechanics for analyzing
ordered systems.

A shift space can be thought of as a topological ensemble—a set of strings—in contrast
with a statistical ensemble that is a distribution over a set of strings. This is an abstraction
of discrete-spin models in one-dimension—e.g., A = {−1, 1} for a standard Ising model.
Rather than specify interactions on the spin lattice and analyze the resulting statistical field
theory, we wish to analyze any pattern present for a given (topological) ensemble X .

A key distinction between a shift space X as a topological ensemble and a spin lattice
ensemble in a statistical field theory is that all elements x ∈ X are related to one another
through the shift operator σ. (Formally described below.) In fact, for the irreducible sofic
shifts we consider, (X , σ) is an ergodic dynamical system. So, every member x of the
ensemble can eventually be sampled through σ’s action. Thus, we equivalently consider
(i) X as an ensemble of points and σ as a deterministic mapping between those points or
(ii) X as a single infinite lattice and σ moves indices on that lattice. The difference is that of
active versus passive transformation.

Spontaneous symmetry breaking in statistical field theories is monitored through an or-
der parameter [25]; such as total magnetization for an Ising model. In the symmetric “ordered”
phase, the order parameter has a nonzero value and, after a symmetry-breaking phase
transition, the order parameter vanishes. For the Ising model, below the transition—below
the critical temperature—spins tend to align giving nonzero magnetization. At zero tempera-
ture the model reaches its ground state with all spins aligned. This is a fully symmetric
state with maximal magnetization, corresponding to strings of the form {. . . , 1, 1, 1, . . . }
or {. . . ,−1,−1,−1, . . .}. Above the critical temperature, this symmetry is fully broken,
with zero magnetization.

While effective as an approach to thermal spin lattices, such as the Ising and related
lattice models, abstractly quantifying “order” with a single scalar quantity—the order
parameter—is far from ideal.

First, for the Ising model, there are only two configurations with maximal magnetization,
as given above. Second, these configurations are maximally symmetric, with σp(x) = x for
integer p. Consider, though, configurations of the form {. . . ,−1, 1,−1, 1,−1, . . .}. These
configurations are still symmetric, with σ2p(x) = x, although they have vanishing order
parameter. There are many such symmetric configurations with zero magnetization: e.g., those
of the form {. . . , (−1)n, (1)n, . . .}, with σ2np(x) = x. More novelly, there are zero order-
parameter configurations that are neither completely symmetric nor completely random.
Third, these symmetric sequences with zero order parameter are not the ground state
and they are not stable under thermal perturbations. Thus, though singled out by the
choice of total magnetization as the order parameter, they are edge cases that will almost
never be seen. Finally and more generally, order parameters in statistical mechanics are
not determined from first physical principles. They must be posited initially and then
proved appropriate.

Similarly, correlation functions and structure factors are additional and commonly-
employed scalar quantities that capture one or another notion of order. Conceptually,
a system considered highly ordered will surely be highly correlated. Patterns that emerge
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on the macroscopic scale correspond to collective behaviors on the microscale that certainly
exhibit nonzero correlations. However, as with order parameters, there can be many de-
generacies between specific patterns and correlation values. In short, order is something
beyond correlation. A diverging correlation length in an Ising model at the critical temper-
ature does not signify the presence of intricate patterns and organization, such as spiral
wave patterns in lattice models of excitable media [26]. To remedy these failings, we seek a
definition of pattern that is not scalar.

This is not to banish all scalar quantities. Many, in given settings, can be insight-
ful [27]. We will show that the algebraic presentations for topological patterns have a natural
extension to patterns in statistical field theories. Moreover, scalar quantities of interest,
like correlation functions, can be computed in closed-form from the stochastic presenta-
tions. We also return later, briefly, to discuss generalized order parameters in light of the
algebraic theory.

2.2. Symbolic Dynamics

We now detail shift spaces and how they quantify topological patterns as generalized
symmetries. Consider a finite alphabet of n symbols A = {0, 1, . . . , (n− 1)} and (indexed)
bi-infinite symbol sequences or strings. The set AZ of all possible bi-infinite sequences is
known as the full-n shift. A particular sequence x = . . . x−1x0x1 . . . ∈ AZ is described as a
point in AZ. For now, we need not specify whether sequence indices are time coordinates
or space coordinates. In either case, translations are generated via the shift operator σ that
maps a point x ∈ AZ to another point y = σ(x) whose ith coordinate is yi = xi+1 for all
i. (That is, σ shifts every element of x one place to the left.) Our interest is in patterns as
predictive regularity, and the predictions are made over translations generated by σ. Thus,
we want to capture patterns in closed, σ-invariant subsets of AZ. The subsets are called
shift spaces (or subshifts or simply shifts).

Often one can concisely specify a shift space as the set of all strings that do not contain
a collection of forbidden words. A word is a finite block of symbols aj ∈ A and a point x is
said to contain or admit a word w = a0a1 · · · ak if there are indices i and j = i + k such that
xi:j = w; explicitly, xi = a0, xi+1 = a1, . . . , xj−1 = ak. Again, a word is a finite sequence of
symbols; a string, bi-infinite.

For a collection F of forbidden words, define XF to be the subset of strings in AZ that
do not contain any words w ∈ F . A shift space X is a subset of the full shift AZ such that
X = XF for some collection F of forbidden words [28]. The languageW(X ) = F c of a
shift space X is the collection of all words that occur in some point in X .

If F is a finite set, the resulting shift space is called a subshift of finite type [29] or an
intrinsic or a topological Markov chain [30]. A wider class of finitely-definable shift spaces
are the sofic shifts. These are the closure of subshifts of finite type under continuous local
mappings—k-block factor maps [31]. Though, note that there are many equivalent definitions
of sofic shifts; several of which are given below as needed. A sofic shift is irreducible if,
for every ordered pair of words u, v ∈ W(X ), there is a word w such that uwv /∈ F .
For reasons elaborated on shortly, we define general discrete one-dimensional patterns as
irreducible sofic shifts.

2.3. Sofic Shifts as Topological Patterns

To recap, we seek a mathematical specification of patterns in strings that captures
a range of organizations spanning fully-symmetric sequences to arbitrary (“random”)
sequences. Moreover, we wish to identify, from first principles, an associated algebra
that generalizes the group algebra of symmetries. For physical consistency, we started
with shift spaces since they are shift-invariant subspaces of strings. To fulfill the algebraic
requirement, we now further restrict to sofic shifts as they are shift spaces defined in terms
of a finite semigroup [31].

Recall that a group is a set of elements closed under an associative and invertible binary
operation with an identity element. In this, they are too restrictive and impose only exact
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symmetry. In contrast, semigroups require neither invertibility nor an identity operation.
This relaxation is key to defining generalized patterns, as we laid out above. It permits
exact symmetries but also allows expressing noisy and approximate symmetries.

The elements of a sofic shift’s semigroup are words and the binary operation is word
concatenation. For example, the setW(AZ) of all words in AZ and their concatenation
products together form the free semigroup. For example, the product of u = 00 and v = 11
in the free semigroup is the word w = uv = 0011. A sofic shift X = XF is defined in
terms of a finite semigroup G with an absorbing element e, whose product is ge = eg = e
for all g ∈ G. The absorbing element e together with the elements from the alphabet
A = {0, 1, . . . , (n− 1)} generates G via single-symbol concatenations. G’s production rules
are such that for any pair of allowed words u, v /∈ F , if their concatenation w = uv contains
a forbidden word f ∈ F , then their product in G gives the absorbing element uv = e.

A semigroup of word concatenations is also associated with a simple presentation
in the form of a semiautomaton finite-state machine [32]—the triple (Ξ,A,M), where Ξ =
{ξ0, ξ1, . . . , ξm} is a set of internal states, A = {0, 1, . . . , (n − 1)} is the symbol alphabet,
and M = {M0, M1, . . . , M(n−1)} is a set of mappings from Ξ into Ξ. To be explicit, we
consider deterministic and fully-specified semiautomata for which each Ma is a function—each
input has one and only one output—with domain over the full set Ξ of internal states.
Semiautomata can be usefully depicted as an edge-labeled directed graph. The vertices
represent the internal states in Ξ and for every pair (ξi, ξ j) such that ξ j = Ma(ξi) there
is an edge labeled a ∈ A that leads from ξi to ξ j. For a deterministic and fully-specified
semiautomaton, there is an edge labeled with each symbol inA emanating from every state
in Ξ.

A fully-specified semiautomaton directly determines a subshift’s algebra from the free
semigroup as follows. For every state ξi ∈ Ξ and any element a0a1 · · · ak of the the free
semigroup AZ there is a map Ma0 ◦ Ma1 ◦ · · · ◦ Mak from ξi to another state ξ j ∈ Ξ [32].
A deterministic and fully-specified semiautomaton is a presentation of a sofic shift if we
include an absorbing “forbidden” state ξe ∈ Ξ. That is, the mappings associated with all
elements of the free semigroup containing a forbidden word in F lead to the forbidden
state. Additionally, all mappings from the forbidden state return the forbidden state. That
is, Mw(ξi) = ξe for all ξi and w ∈ F , and Ma(ξe) = ξe for all a ∈ A. See Figure 1 for
presentations of example shifts.

Since sofic shifts are defined by a finite semigroup, every sofic shift can be presented
by a semiautomaton with a finite set of states Ξ. Recall from above that the idea of
compression is related to our intuition of pattern. A pattern—a predictive regularity—allows
for a compressed representation of a system’s behaviors. Note that sofic shifts and their
presentations provide a finite representation of an ensemble of infinite strings through their
finite semigroup.

Here, we distinguish between three types of sofic-shift semiautomaton presentation.
Appendix A gives example constructions of these three types of presentation.

The most straightforward presentation assigns a state ξ ∈ Ξ to each element of a
semigroup G of X and fills in the state transitions Ma using G’s production rules [33].
While straightforward to construct, if a G is known, this semiautomaton presentation is not
necessarily minimal, in terms of the state set size |Ξ|. To specify a particular pattern as a
sofic shift, it is crucial to have a minimal and unique presentation associated with the given
sofic shift. This also allows extracting unambiguous quantitative measures of the ensemble
of strings, such as measures of correlation, from the finite presentation.

An important presentation that is minimal and constructible without knowing any
G is X ’s future cover [34], defined below. The future cover semiautomaton of every irre-
ducible sofic shift X has a unique strongly connected component [35,36]. This irreducible
component is our mathematical representation of patterns as generalized symmetries. We
refer to it as the canonical machine presentation P(X ) of X . The future cover and its recurrent
component P(X ) provide a unique, minimal mathematical representation of X .
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Figure 1. Semiautomata presentations P(X ): (a) Exact symmetry shift, (b) partial symmetry shift,
(c) hidden symmetry shift, and (d) general pattern sofic shift.

The future set (sometimes follower set) FX (w) of a word w ∈ W(X ) is the collection of
all words u such that wu ∈ W(X ). Define the future equivalence relation ∼F on X as:

u ∼F v ⇐⇒ FX (u) = FX (v) , (1)

for all u, v ∈ W(X ).
An important definition of sofic shifts that we use shortly is:

Theorem 1. ([28], Theorem 3.2.10) A shift space is sofic if and only if it has a finite number of
future sets.

Therefore, sofic shifts have finitely-many equivalence classes, denoted [·]F, and these
equivalence classes plus the absorbing forbidden state are the internal states Ξ of the future
cover semiautomaton.

The mappings Ma that give the state transitions are defined from the allowed concate-
nations that do not contain a forbidden word in F . That is, each state ξi ∈ Ξ \ {ξe} is an
equivalence class [u]F and, for each symbol a ∈ A, the concatenation v = ua 6= e belongs
to the equivalence class [v]F assigned as state ξ j ∈ Ξ, giving Ma(ξi) = ξ j. Note that this is
independent of the choice u ∈ [u]F and that [v]F in some cases may be equal to [u]F. This
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gives a self-edge transition in the semiautomaton: Ma(ξi) = ξi. If ua = e, then Ma(ξi)
maps to the forbidden state ξe.

This natural transition structure follows from future equivalence and it leads to a
very important property of the future-cover semiautomaton. They are called unifilar [37]
in information theory, equivalently also called right resolving in symbolic dynamics ([28],
Corollary 3.3.19) or deterministic in automata theory [38]. A fully-specified semiautomaton
is unifilar if for every internal state ξi and every word (element of the free semigroup)
a0a1 · · · ak the map Ma0 ◦Ma1 ◦ · · ·Mak leads to one and only one internal state ξ j. (It may
be that j = i.)

Unifilarity is the defining property of a predictive semiautomaton. Since the goal is to
formalize patterns as predictive regularities, this is an important point to stress. By way
of contrast, first note that any presentation of a sofic shift X , whether unifilar or not, is
a generator of X . Every string in X can be generated by following the symbol-labeled
transitions of the presentation and no forbidden words can be generated. Thus, being
generative can be thought of as the baseline property of any model of a sofic shift. Prediction
is an additional capability beyond generation that arises from a presentation being unifilar.

Unifilarity establishes a presentation as predictive in the following way. For topological
patterns, the task of prediction is to establish what may happen in the future, given what
has happened in the past. Specifically, given a word w, what words are allowed to follow
in the shift space? That is, what is w’s future set? Due to the implied determinism, each
internal state of a unifilar presentation is uniquely specified by the word w leading to that
state. Notably, this is not guaranteed for an arbitrary generator of a shift. Furthermore, in a
unifilar presentation every subsequent word again leads to a unique internal state. It is
straightforward to see that the future cover is a predictive presentation: By definition, its
internal states are future separated—the set of all words that may follow from each internal
state is unique.

To establish that sofic shifts and their canonical machine presentations express patterns
as generalized symmetries, it is helpful to first describe how they capture exact translation
symmetries of symbolic sequences.

2.4. Exact Symmetries

A string x has a discrete translation symmetry if σp(x) = x, where the minimal such
p ∈ N is the symmetry’s period. The symmetry group is the set {σnp : n ∈ N} with
σipσjp = σkp where k = i + j. Since here p is finite, the action of σ on x produces a compact
shift-invariant subspace of AZ. Therefore, translation symmetric strings are shift spaces X .

We now show that the shift spaceX of translation symmetric strings is sofic. The action
of the symmetry group used to define x is determined by the shift operator σ, while the
action of sofic semigroups is word concatenation.

To connect these, consider windows xi:j (i < j) that return the word w from coordi-
nates i through j in x. For (i < j < k), if xi:j = u and xj:k = v, then xi:k = w = uv
gives the concatenated window. Recall that σ shifts indices in x so that σk(x)i = xi+k.
If we have a word u ∈ W(X ), there is some (i, j) such that xi:j = u. Then the al-
lowed concatenations uv 6= e are determined by the shift operator σ, since we can write
v = xj:j+k = (xj)σ(x)jσ

2(x)j · · · σk(x)j. All such concatenations determine X ’s semigroup
G. For translation symmetric strings with σp(x) = x, we have that σp(x)i = xi. So,
intuitively, there is only a finite number of elements in G because there is a closure of
allowed single-symbol concatenations after a finite number of unit-shifts. Therefore, X for
translation symmetric strings is sofic.

We now show this explicitly by constructing the canonical machine presentation P(X )
with a finite number of states.

Proposition 1. Translation-symmetric strings, σp(x) = x for some p ∈ N, together with their
shifts y = σn(x) for all n ∈ N, form an irreducible sofic shift space.
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Proof. First, note that σp(x) = x implies x can be written as a tiling · · · bbbbb · · · , where
b is a word of length p. Pick any xi as the first symbol b0 in the word b. Then σ(x)i = b1,
σ2(x)i = b2, ..., with σp−1(x)i = bp−1. Applying σ one more time gives σp(x)i = xi = b0,
arriving at the next tile b.

Second, using this observation we create P(X ) using p + 1 internal states, where we
have a state ξbi

for each symbol bi ∈ A in the tile b (there are p of these) and one absorbing
state ξe. Let ξbp−1 be the future-set equivalence class [b]F of the word b (bp−1 is the last
symbol in b). Due to x’s exact symmetry, there is one and only one symbol a ∈ A such that
ua 6= e for u ∈ [b]F; namely b0. Therefore, let Mb0(ξbp−1) = ξb0 , and then all other Ma map
to ξe, for a 6= b0. Now, ξb0 = [bb0]F and b1 is the only symbol such that ua 6= e for u ∈ [bb0]F.
Thus, Mb1(ξb0) = ξb1 , with ξb1 = [bb0b1]F, and all other Ma map to ξe, for a 6= b1. Repeat
this argument for all generators in b until we arrive at [bb0b1 . . . bp−1]F = [bb]F.

Third, as with ξbp−1 = [b]F, the only symbol that can follow is b0 and we repeat the
full argument again, where each bi sequentially follows. Therefore, [bb]F’s future set equals
that of [b]F and so [bb]F = [b]F. Thus, the only transition from ξbp−2 = [bb0b1 . . . bp−2]F
that is allowed returns to the original state ξbp−1 = [bb0b1 . . . bp−1]F = [bb]F = [b]F. This
completely specifies P(X ) with a finite number of states Ξ = {ξb0 , . . . , ξbp , ξe}. Given
Theorem (1) above, one concludes that the shift space X for a translation symmetric
sequence is sofic.

Figure 1a gives an example of P(X ) for the set of translation symmetric strings
· · · 000111000111000 · · · with b = 111000. For visual clarity it omits the self-loops on
state ξe.

Recall that P(X ) is the irreducible component of the future cover, so for a given
shift there may be additional states beyond those just described. However, these are
equivalence classes for words of length less than p, since we started with [b]F. Since p is
finite, there are only finitely many additional equivalence classes. These correspond to
transient (nonrecurrent) states of the future cover semiautomaton.

In Figure 1a’s example, knowing xi = 0 does not fully specify which state P(X ) is
in, since three states ξ3, ξ4, and ξ5 correspond to observing the symbol 0. The additional
transient states of the future cover specify how to synchronize to P(X )’s states from the
generators a ∈ A (single-symbol words).

Having constructed the canonical machine presentation P(X ), we can further relate
X ’s semigroup action to x’s translation symmetry group. For each state ξbi

∈ Ξ there is
one and only one transition that does not lead to the absorbing forbidden state ξe. That is,
only one generator a ∈ A can be concatenated to the words u ∈ [u]F = ξbi

. Similarly, if we
consider a word u ∈ ξbi as the window u = xi:j, then a unit shift by σ reveals one and only
one new symbol at index j in σ(x)i:j. Therefore, ignoring the absorbing state and transitions
to it, the graph of P(X ) is a cyclic graph with period p: Every p-length path from ξi returns
to ξi for all ξi ∈ Ξ \ {ξe}. Thus, the permutation symmetries of this (edge-labeled) graph
correspond to elements of x’s translation symmetry group.

In Figure 1a’s example, the state labeled ξb0 corresponds to the start of the tile
b = 111000, but we could equivalently use ξb0 as the start of tile 000111. Furthermore,
the internal states have a functional meaning. They are the elements of the quotient group
of the translation symmetry—counters that track the symmetry’s phase.

It must be emphasized that sofic shifts and their semigroups do not formally generalize
such exact symmetries in the obvious way. That is, the semigroup of a sofic shift for exact
symmetry strings does not simply become a symmetry group. G’s absorbing semigroup
element e is still required for an exact symmetry sofic shift X . From our construction of
translation symmetric P(X ), we see that, for every internal state ξbi

6= ξe, there is one and
only one transition that does not lead to ξe. This makes it clear that exact symmetries are a
highly restrictive form of pattern. By representing exact symmetries using sofic shifts and
their machine presentations, though, it is now straightforward to generalize by relaxing the
restrictions that impose exact symmetries.
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2.5. Generalized Symmetries

Ignoring ξe, a sofic shift X whose machine presentation is not cyclic then represents a
pattern as a generalized symmetry. We can again either considerX as an ensemble of strings
or one infinite sequence that possesses a generalized symmetry described byX ’s semigroup,
which is well represented by the machine presentation P(X ). By removing the restriction of
a cyclic graph in P(X )—that imposed the perfect regularity of x = · · · bbbbb · · ·—we now
can capture a much wider class of patterned strings with approximate or partial regularities.

Consider the extreme case of the full shift AZ that has no regularity. There are no
forbidden products such that uv = e in G for AZ, and so there are no restrictions on its
words; F = ∅. The algebra of the full shift is the free semigroup. Its machine presentation
P(AZ) is a single state with all Ma mapping that one state back to itself—i.e., all transitions
are self transitions. Since all words can be concatenated to each other, they all belong to a
single future equivalence class.

We interpret AZ’s complete lack of regularity to be a null pattern. Analogously,
the opposite extreme of total regularity with strings of the form x = · · · aaaaa · · · for
a ∈ A is also a null pattern with a single-state (again, ignoring ξe) machine presentation
that has a single self-transition. The null pattern, in these cases, has zero memory—the
logarithm of |Ξ \ {ξe}| vanishes. While both extremes at first seem to be polar opposites,
recall our goal is that “pattern” represents a predictive regularity and this is lacking in both
cases. The full shift is completely “random” and thus unpredictable. Whereas, for trivially
translation symmetric strings x = · · · aaaa · · · , the future is always the same. There is
nothing to predict.

Between the complete regularity of exact symmetries and lack of predictive regularity
in null patterns, we identify several categories of partial predictive regularity.

First, note that for translation symmetric strings σp(x)i = xi for all i.
Second, there are string classes for which σp(x)i = xi for only some i. We call these

partial symmetries. A particular case of partial symmetries are stochastic symmetries. For sim-
plicity, consider binary sequences with A = {0, 1}, and let ω denote a “wildcard” that can
be either 0 or 1 [39]. Sofic shifts with stochastic (partial) symmetries are fully translation
symmetric after making wildcard substitutions. For example, we can specify a sofic shift
with sequences of the form x = · · ·ωω0ωω0ωω0 · · · , say. Examples of such strings are
· · · 110010000100110 · · · , where spaces help emphasize the “fixed” 0s that are the scaffold-
ing of the partial symmetry. Note that the canonical machine presentation P(X ) for such
stochastic symmetries are also cyclic graphs, as shown in Figure 1b.

Third, recall that if the canonical presentation P(X ) is a cyclic graph, every p-length
path from ξi returns to ξi for all ξi ∈ Ξ \ {ξe}. Similar to how we generalized from exact to
partial symmetries, we define hidden symmetries for which only some states ξi ∈ Ξ \ {ξe}
return to themselves on all p-length paths in P(X ). We exclude the case of p = 1, so that
self-loops do not count as a hidden symmetry. Figure 1c shows an example with ξ2 as
the symmetric state. The canonical machine presentation specifies a sofic shift consisting
of arbitrary arrangements of blocks a = 000 and b = 111; e.g., x = · · · aababba · · · =
· · · 000000111000111111000 · · · . The exact symmetry shift in Figure 1a is the special case of
the symmetric tiling x = · · · abababa · · · .

Finally, Figure 1d gives an example of a general nonnull pattern that is not an exact,
partial, or hidden symmetry. This is the well-known Even Shift [31,33]—the set of binary
strings in which only even blocks of 1s bounded by 0s are allowed. This . . . 012n0 . . . pattern
extends to arbitrary lengths, despite being specified by only two internal states. While
there are no states in the presentation P(X ) that always return to themselves after p 6= 1
transitions, there is still predictive regularity. In particular, if a 1 is seen after a 0, it is
guaranteed that the next symbol will be a 1. This is specified by ξB having only one allowed
transition to ξA on a 1. Appendix A.2 discusses this example in more detail, along with its
semigroup and three semiautomaton presentations.

Before moving to probabilistic patterns represented by sofic measures, we note that
Krohn–Rhodes theory [40,41] was the first to connect finite automata with a semigroup
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algebra. Moreover, it showed that finite semigroups and their corresponding automata
naturally decompose into simpler components, including finite simple groups. This is yet
another perspective showing finite automata and their semigroup algebra capture patterns
as generalized symmetries. Further exploration of the connection between Krohn–Rhodes
theory and the perspective developed here is left for future work. One important difference
to note is that their approach did not address statistical or noisy patterns, as the following
now does.

2.6. Statistical Patterns Supported on Sofic Shifts

The exposition on sofic shift patterns did not invoke probabilities over symbols, words,
or strings. Shift spaces are not concerned with the probability of a word occurring, only
whether a word can possibly occur or not. This is why we referred to sofic shifts as
topological patterns. We just saw that exact symmetries are given as sofic shifts and so are
topological patterns. Recall that our key motivation for showing this was to argue for
sofic shifts as a mathematical formalism that captures a notion of (topological) pattern that
greatly expands exact symmetry to generalized symmetry. However, as we now describe,
we can generalize further to formalize statistical patterns that are supported on sofic shifts.
Doing so provides a direct link with the more familiar statistical measures of order and
organization used in statistical mechanics, such as correlation functions.

Our goal is to build a probability space on top of a shift space. The key property of
this probability space is that words are assigned positive probability if and only if they
are allowed in the shift space. This is accomplished through the use of cylinder sets as
the sigma algebra on a shift space X [42]. For a shift space X and a length-n word w,
the cylinder set Ci(w) is defined as:

Ci(w) := {x ∈ X : x[i : i + n− 1] = w} .

Naturally then, a probability measure µ is assigned such that the probability of a word w
occurring is given as:

Pr(w) = µ
(
Ci(w)

)
.

By definition , Pr(w) = 0 if w ∈ F , as the associated cylinder sets will be empty for
forbidden words.

Such a probability measure defines a stationary stochastic process over the shift space X
if it is shift-invariant, such that the probability of a word is independent of the index i in
Ci(w), and each word satisfies prefix and suffix marginalization:

µ(w) = ∑
{a:aw∈W(X )}

µ(aw)

and:

µ(w) = ∑
{a:wa∈W(X )}

µ(wa) .

This is the Kolmogorov extension theorem that guarantees the finite-dimensional word
distributions consistently define a stochastic process [43]. We only consider shift-invariant
measures and, so without loss of generality, we simply use C0(ω) for the cylinder sets.

Crucially, the semigroup algebra and canonical machine presentation machinery for
topological patterns have natural generalizations to stochastic patterns, as we now describe.

Following Ref. [44] in the context of shift spaces, a (free) stochastic semigroup is a
function F defined on the free semigroup S, with identity element η (the empty symbol),
that satisfies the following properties ([42], Definition 4.29):

1. F(η) = 1,
2. F(s) ≥ 0 for each s ∈ S and F(a) ≥ 0 for each a ∈ A, and
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3. ∑ai∈A F(ais) = ∑ai∈A F(sai) for each s ∈ S.

For a sofic shift X , we define a stochastic semigroup on X using the semigroup G
defined above, with absorbing element e corresponding to forbidden words. We simply
set F(e) = 0. Then, a shift-invariant measure µ satisfying Kolmogorov extension on a sofic
shift X with semigroup G forms a stochastic semigroup as follows. For all elements of
the free semigroup a0a1 · · · ak—i.e., for every word w = a0a1 · · · ak—define F such that
F(η) = 1, F(w) = 0 if and only if w ∈ F (equivalently, a0a1 · · · ak = e in the semigroup G),
and otherwise F(w) = µ

(
C0(w)

)
. Such a measure µ is called a sofic measure [42].

In this way, sofic measures allow for statistical structure on top of a sofic shift X , while
maintaining an algebraic structure related to X ’s semigroup algebra. More importantly,
there is a canonical machine presentation associated with sofic measures, analogous to
the canonical machine presentation of sofic shifts. As in the topological case for sofic
shifts, the canonical machine presentation of sofic measures provides the mathematical
formulation of statistical patterns.

Recall that the future cover semiautomaton—the canonical topological machine
presentation—is defined from Equation (1)’s future equivalence relation. The canoni-
cal stochastic machine presentation is defined through a stochastic generalization of future
equivalence, called predictive or causal equivalence, defined on semi-infinite words. Each
index i partitions a sequence into a semi-infinite past←−x i = {xj}, j ≤ i, and semi-infinite
future −→x i = {xk}, k > i. In the topological case, two pasts are considered future-equivalent
if they have the same future—the same set of futures that follow. In the stochastic case, two
pasts are predictively or causally equivalent if they have the same distribution Pr(

−→
X |←−X ) over

futures conditioned on the past:

←−x i∼ε
←−x j ⇐⇒ Pr(

−→
X |←−X =←−x i) = Pr(

−→
X |←−X =←−x j). (2)

Just as the future equivalence relation ∼F defines the unique minimal semiautomaton
presenting a sofic shift, the causal equivalence relation ∼ε defines the unique minimal
hidden Markov chain (HMC) that presents a sofic measure and its stationary stochastic
process [22].

Speaking simply, a hidden Markov chain (Ξ,A, T ) is a semiautomaton whose deter-
ministic symbol-labeled transitionsM = {M0, M1, . . . , M(n−1)} are replaced by symbol-
labeled transition probabilities T = {T0, T1, . . . , T(n−1)}, where Ta

ξ,ξ ′ is the probability of
transitioning from state ξ to ξ ′ on the symbol a ∈ A.

Paralleling the topological setting, the canonical stochastic machine presentation is
a hidden Markov chain whose internal states Ξ—the predictive or causal states—are the
equivalence classes of Equation (2)’s causal equivalence relation. The symbol-labeled
transitions are then defined through the one-step conditional distributions Pr(X1 = a|←−X =
←−x i). For a given causal state ξ, we write Pr(

−→
X |←−X ∈ ξ) since by definition each past←−x i in

the equivalence class ξ = [←−x i]ε has the same predictive distribution.
The transition probability Ta

ξ,ξ ′ is then given as Pr(X1 = a|←−X = ←−x i ∈ ξ), with ξ ′ =
[←−x ia]ε, where←−x ia is the new past given by concatenating the observed symbol a onto the
current past←−x i. This follows from unifilarity [22]: in the stochastic setting for each internal
state ξ ∈ Ξ and symbol a ∈ A there is at most one internal state ξ ′ such that Ta

ξ,ξ ′ > 0. It
then follows that [←−x ia]ε is the same for all←−x i ∈ ξ.

Historically, the canonical stochastic machine presentation (Ξ,A, T ) is known as the
ε-machine [22] of the associated stochastic process. As described shortly, the ε-machine
is a generator of its associated statistical field theory. It generates all words with their
corresponding probabilities. Similar to its topological counterpart, unifilarity additionally
elevates the ε-machine to a predictive presentation. Prediction in the stochastic setting
means identifying the predictive distribution associated with a given past. Additionally,
by definition, an ε-machine’s causal states carry unique predictive distributions.
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Summing over all symbol-labeled transitions produces a Markov transition operator
over the internal causal states: Tε = ∑a∈A Ta. This operator evolves probability distribu-
tions over the causal states, regardless of the symbols involved, and specifies an order-1
Markov process over the states [22]. The left eigenvector of Tε with unit eigenvalue pro-
vides the stationary distribution over causal states: πTε = π. For ergodic systems, as we
consider here, π is unique.

We emphasize that the causal states identify a hidden, internal Markov process un-
derlying the non-Markovian process over the symbols in A, specified by a sofic measure
on a sofic shift. This inverts the abstract definition of sofic measures, given as factor maps
on Markov processes [42]. There, a shift-invariant measure obeying Kolmogorov exten-
sion on a subshift of finite type produces a Markov chain of finite order and sofic shifts
are abstractly defined as factor maps of subshifts of finite type. Hidden Markov chains
are then given as the pushforward of the Markov measure along the factor map. Here,
in contrast, we start with a statistical field theory supported on a sofic shift. The causal
equivalence relation then identifies the underlying causal states and the Markov process
defined over them.

With our given assumption of a stationary ergodic process over symbols we can
use the stationary distribution π and the symbol-labeled transition operators to directly
extract the word probabilities Pr(w) = µ

(
C0(w)

)
from the ε-machine presentation. First,

single-symbol probabilities are given as:

Pr(a) = ∑
ξ∈Ξ

π(ξ) ∑
ξ ′∈Ξ

Ta
ξξ ′ . (3)

where ∑ξ ′ Ta
ξξ ′ gives the probability of observing the symbol a ∈ A, conditioned on being

in causal state ξ, and this is summed over all states in Ξ weighted by their stationary
probabilities π. We write this compactly as:

Pr(a) = 〈π|Ta|1〉 , (4)

where 〈π| indicates π as a row vector and |1〉 is the column vector of all 1s.
The probability of a word w = a0a1 . . . ak is then:

Pr(a0a1 · · · ak) = µ
(
C0(a0a1 . . . ak)

)
= 〈π|Ta0 Ta1 · · · Tak |1〉 . (5)

Recall that in the topological case, the semigroup algebra of the canonical machine presen-
tation is given through composition of the mappingsM = {Ma}. Now, we see the same
semigroup algebraic structure in the products of the symbol-labeled transition matrices
T = {Ta}. In fact, the topological structure, the set of mappingsM, is recovered from the
statistical structure, the set of transitions T , by setting all nonzero elements of each Ta ∈ T
to unity and then applying future equivalence.

It must be emphasized that this last step, applying future equivalence, is essential.
There may be distinct ε-machines—presentations of statistical patterns—that are supported
on the same sofic shift—topological pattern. Said another way, statistical patterns signify
distinct structure supported on topological patterns. They are not merely “adding proba-
bilities onto” topological patterns. Formally, the symbol-labeled transition matrices T can
represent a different semigroup than that represented by their topological counterpartsM
on which they are supported. Appendix B illustrates this distinction.

Let us briefly turn to mention the quantitative benefits of having these presentations.
Using the word probabilities as just described, in addition to the underlying pattern of the
sofic shift that supports the ensemble, a wide range of statistical properties of the sequence
ensembles, such as correlation functions, power spectral densities, and informational
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properties [45,46] can be directly determined via the ε-machine. For example, the Shannon
entropy rate hµ of an ensemble measures its degree of randomness and can be calculated as:

hµ = lim
`→∞

H[X0:`]

`

= lim
`→∞

H[X0|X−`:0]

= − ∑
ξ∈Ξ

π(ξ) ∑
a∈A

∑
ξ ′∈Ξ

T(a)
ξξ ′ log2 T(a)

ξξ ′ ,

where X0:` for ` > 0 is the random variable for the subsequence of symbols x0x1 · · · x`−1.
Moreover, the Shannon information in the causal states measures a process’ historical
memory [47]. This is the amount of memory about the past that must be stored in order to
optimally predict the future of the process.

3. Patterns in Spacetime

The preceding demonstrated that sofic shifts and their semiautomaton presentations
provide a formulation of patterns in discrete one-dimensional systems. Additionally, it
showed how they generalize to stochastic ensembles with associated information-theoretic
measures. With this, one can argue that the theory of one-dimensional patterns in discrete
stationary processes, augmented with the cited extensions, is largely complete. Now, we
turn to the question of how to capture patterns in higher dimensions. While patterns in this
new setting are amenable to similar analysis, there are key differences, new phenomena,
and open problems.

Consider now the time evolution of symbols A on the sites of a spatial lattice L.
A spacetime field x ∈ AL⊗Z is a time series x0, x1, . . . of spatial configurations xt ∈ AL.
With a d-dimensional lattice L = Zd a spacetime field x is an element of a spacetime shift
space AZd+1

[19,21]. In what follows, upper indices on field values are spatial coordinates
(e.g., at time t site i has value xi) and lower indices are time coordinates (e.g., xt).

Multidimensional shift spaces are notoriously difficult to study, with many simple
properties being uncomputable [21,48]. Similarly, while sofic shifts and their canonical
machine presentations provide a mathematical formalism for patterns as generalized
symmetries in one dimension, generalizing to higher dimensions is not straightforward.
Significantly, there is not a unique generalization for finite-state machines and regular
languages in higher dimensions [20]. If there were a unique generalization, we could use the
semiautomata special case as the mathematical representation of high-dimensional patterns.

As we argued, models that create a compressed representation of a system’s behavior
must do so by harnessing patterns—predictive regularities—in the system. Fully-discrete
one-dimensional systems are ideal as there is a unique minimal presentation of the system
and, in this case, that predictive presentation is the pattern. The situation is more complicated
in higher dimensions. A conflict arises between useful generalized spacetime symmetries
and predictive presentations that faithfully generate fields in their spacetime shift spaces.

We now outline the local spacetime generalization of predictive equivalence for con-
structing presentations of spacetime patterns. As with finite-state machines and regular
languages, degeneracy is broken when moving to higher dimensions as the spacetime
generalization is not unique. In particular, we demonstrate that the shape of local “futures”
determines the algebraic properties of the resulting local presentation.

3.1. Local Spacetime Presentations

Since an evolving spacetime field is a time series of spatial lattice configurations, it
can be interpreted as a one-dimensional shift space over an exponentially-large alphabet
(of lattice configurations). While formally well defined, however, this perspective is an
unwieldy basis for a mathematical formulation of patterns in spacetime. First, for space
and time translation symmetries, we typically consider the idealized case of infinitely-large
spatial lattices. Thus, one must work with shift spaces over an infinitely-large alphabet.
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Second, capturing patterns within the spatial configurations themselves means not treating
an entire lattice configuration simply as a single symbol, as done with the one-dimensional
framing. There is internal organization within the spatial configurations that is dynamically
and structurally important.

Therefore, we take a local approach to generalizing machine presentations of spacetime
shift spaces [17,49]. This is implemented by identifying equivalence classes over local pasts
that have the same future set of local futures in spacetime. The latter can be either topological
(sets) or statistical (predictive distributions).

Motivated by the causal restrictions of local interactions, past lightcones in spacetime
are the natural choice for local pasts when building local presentations. Formally, the past
lightcone L− of a site (r, t) in spacetime is the set of all field values xr′

t′ at previous times
(t′ ≤ t) that could influence xr

t through local interactions:

L−(r, t) ≡
{

xr′
t′ : t′ ≤ t and |r′ − r| ≤ c(t− t′)

}
, (6)

where c is the finite speed of information propagation in the system. We include the present
field value xr

t in (r, t)’s past lightcone, but not in its local future.
Due to the richness and complication of multidimensional shift spaces, the following

explores only topological spacetime patterns. Paralleling the one-dimensional development,
local presentations of topological spacetime patterns are defined through the local analog
of the future equivalence relations:

L−i ∼F L−j ⇐⇒ F(L−i ) = F(L−j ) , (7)

where F(L−i ) = {Local futures co-occurring with L−i }. We define co-occurring local futures
more precisely shortly, as there are alternatives.

Relation (7)’s equivalence classes determine the internal states for a local spacetime
presentation. The generalization of symbol-labeled transitions between the internal states is
constructed in terms of spatial [σs(x)]rt = xr+s

t and temporal [στ(x)]rt = xr
t+τ shift operators.

(Note that all space-time shift operators commute.) For a past lightcone L−(r, t) at spacetime
site (r, t), let σs

τ

(
L−(r, t)

)
denote the action of the shift operator on all of the field values in

L−(r, t). That is, an entire lightcone is shifted analogously to an individual spacetime site.
The right spatial transition fringe is defined as the set difference between L−(r, t) and

σ1(L−(r, t)
)
. This is the generalization of the “symbol” emitted during a rightwards move

in one spatial dimension. Similarly, the left spatial transition fringe is defined as the set
difference between L−(r, t) and σ−1(L−(r, t)

)
, and the forward temporal transition fringe is

the set difference between L−(r, t) and σ1
(
L−(r, t)

)
(see Figure 4 in Ref. [49]). For simplicity,

we consider spacetime fields with one spatial dimension, but the generalization to higher
dimensions is straightforward.

Time and space transition fringes form the appropriate alphabet to define local space-
time presentations (Ξ,A,M), with Ξ the set of past lightcone equivalence classes,A the set
of space and time transition fringes, andM the fringe-labeled state transitions [49]. Briefly,
a site (r, t) in spacetime has an associated internal state ξ(r, t) that is the equivalence class
of the past lightcone L−(r, t). Consider the neighboring site (r + 1, t), which similarly has
an associated internal state ξ(r + 1, t) = [L−(r + 1, t)]F. The right transition fringe provides
the missing information to construct L−(r + 1, t) from L−(r, t). Therefore, ξ(r, t) plus a
right transition fringe uniquely determines ξ(r + 1, t). That is, such local presentations are
unifilar, and therefore have the requisite structure of predictive presentations. Recall that
predictive models are also generative.

Generating words is rather straightforward for machine presentations in one dimen-
sion, markedly less so for local spacetime presentations. The fringe-labeled transitions
establish local spacetime presentations (Ξ,A,M) as local generative spacetime models.
Local spacetime patches, local “words”, are generated via concatenation of transition fringe
“symbols”. Denote concatenations of right spatial fringes generally as Vr, to signify the
particular shape of the resulting spacetime patches. Similarly, let Vl be the spacetime
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patches resulting from concatenations of left spatial fringes and Vt the patches from forward
temporal fringes.

Note that spacetime patches are more than merely collections of values from spacetime
sites. The configuration and space-time relation among the values matter. This is why we
refer to their shape. The Vr patches are a distinct form of local spacetime words apart from
Vl and Vt. Only patches of the same shape may be concatenated together to extend patches.

Let V be the spacetime patches resulting from the union of forward, left, and right
transition fringes. Let depth denote the number of single-fringe symbols concatenated
together in a particular spacetime patch word. See Figure 2.

Concatenating fringes into local spacetime patches has the same semigroup algebra
structure as in the one-dimensional setting. Similarly, the semigroup algebra is captured by
the local presentations through the action of the fringe-labeled transitionsM, analogous
to the one-dimensional presentations P(X ). We now examine possible choices of local
futures and the algebraic properties of the induced local presentations.

(a) Vl(r0, t0) (b) Vr(r0, t0)

(c) Vt(r0, t0)

(d) V(r0, t0)

Figure 2. Fringes induced by spacetime shifts: Co-occurring depth-4 past lightcone L−(r0, t0) (red)
and depth-4 spacetime patches resulting from concatenations of (a) left transition fringes V`(r0, t0)

(blue), (b) right transition fringes Vr(r0, t0) (blue), (c) forward transition fringes Vt(r0, t0) (blue),
and (d) unions of left, right, and forward transition fringes V(r0, t0) (blue). Arrows indicate the
direction(s) in which local spacetime patches may be generated with successive concatenations to the
seed past lightcone L−(r0, t0).
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3.2. The Shape of Local Futures

Recall that Relation (7) did not specify local futures when defining local presentations.
The future sets F(L−) of past lightcones there were intentionally left ambiguous to allow for
possible alternatives—alternatives that arise to address several subtleties of spacetime shifts.

Prior work assumed that the natural choice for a local future is a future lightcone
L+ [17,18,49]. The latter is defined as all field values at subsequent times that could possibly
be influenced from the given spacetime site xr

t through the local interactions:

L+(r, t) ≡
{

xr′
t′ : t′ > t and |r′ − r| ≤ c(t′ − t)

}
. (8)

Co-occurring past (L−) and future (L+) lightcones at spacetime point (r0, t0) are depicted in
Figure 3 for a 1+ 1 dimensional spacetime field with c = 1. Local presentations constructed
as equivalence classes of past lightcones that have the same future set of future lightcones
are known as local causal states.

Present t = t0

Past t < t0

Future t > t0

Xr0
t0

L−(r0, t0)

L+(r0, t0)

r0

t 0

Space

T
im

e

Figure 3. Co-occurring past (L−) and future (L+) lightcones at a spacetime site (r0, t0) in 1 + 1
dimensions with c = 1.

Interestingly, the benefit of local causal-state models derives from generalized symme-
tries [17,18]. However, this is a spacetime symmetry distinct from the semigroup algebra
of fringe concatenations. While we describe these spacetime symmetries in more detail
below, we first demonstrate that such symmetries are at odds with the semigroup algebra
of fringe concatenations for local causal states. That is, while employing lightcones as local
futures allows one to discover useful spacetime symmetries, the resulting local machine
presentation (Ξ,A,M) is not a faithful generator of the underlying spacetime shift space.
Even though all local presentations possess the unifilarity property of predictive models,
the more basic generative ability falls short unless the appropriate local futures are used.
We again emphasize that phenomena in higher dimensions are complicated—sometimes in
counterintuitive ways, as the following demonstrates.

Elementary cellular automata (ECA)—see Appendix C—produce spacetime shift
spaces with nontrivial patterns and structure in their spacetime fields; e.g., domains,
particles, and particle interactions [17,50]. In addition, their one-dimensional fully-discrete
spatial lattices are shift spaces and so provide a link between one-dimensional shifts and
1 + 1 dimensional shifts of their spacetime fields.

Following convention, denote the mapping from a past lightcone to its equivalence
class or, equivalently, to its associated local (causal) state ξ, as ε(L−) = [L−]F = ξ. Crucially,
this provides a local pointwise mapping over any spacetime field x. Each site (r, t) has
a unique past lightcone L− that is then mapped to its local state via ε(L−). We use this
pointwise mapping to transform a spacetime field x to an associated local-state field
S = ε(x) that shares the same coordinate geometry as x. Each site S t

r in the local state field
S is the local state S t

r = ξ = ε(L−) that is the image under the ε-map of the past lightcone
L− at the spacetime point xr

t .
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An example spacetime field x from ECA Rule 90 is shown in Figure 4 consisting of
black (xr

t = 1) and white (xr
t = 0) squares. The associated local causal-state field S is shown

as the overlaid colored letters, using lightcones as local futures. In the case of Rule 90, there
is a single local causal state, labeled as A—all past lightcones are future-lightcone equivalent.

This is consistent with prior findings [17] that connect the local causal states with the
canonical machine presentations of one-dimensional sofic shifts that represent invariant sets
of spatial configurations for the ECA. The full 2-shift is invariant under Rule 90, meaning
there are no forbidden words in the one-dimensional spatial configurations generated by
Rule 90. All binary strings have pre-images under the global dynamic Φ of Rule 90. Recall
that the canonical machine presentation of full shifts consists of a single internal state and,
hence, we expect the single local causal-state for the spacetime fields produced by Rule 90.

Figure 4. ECA Rule 90 spacetime field depicted as white (0) and black (1) squares. The corresponding
local causal-state field is overlaid with colored letters; simply the single causal state A. Three sample
right-transition fringes for past lightcone depth-2 are highlighted in colored (orange, green, purple) boxes.

Even though there are no forbidden words in Rule 90’s one-dimensional spatial
configurations, there certainly are forbidden patches in its spacetime fields. In particular,
note that the ECA’s local update rule φ corresponds to a spacetime patch in the shape of a
depth-1 past lightcone—the present spacetime site together with its local neighborhood one
time-step in the past. Therefore, any spacetime patch of the same shape that is inconsistent
with local update rule φ is forbidden in the spacetime shift space of the ECA’s spacetime
fields. For example, the following patch is allowed by Rule 90, since φ90(010) = 0:

0 1 0
0

Therefore:

0 1 0
1

is a forbidden spacetime patch in Rule 90’s spacetime shift space.
From ECA Rule 90’s single local causal-state, it is easy to see that the local causal-state

machine presentation is not a consistent spacetime generator. Since there is only one state,
A, all fringe-labeled transitions occur from state A back to itself. Thus, all like-shaped fringe
symbols that occur may be concatenated together to form spacetime patches. Figure 4
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highlights three right-transition fringes. If they are concatenated in order of orange, green,
magenta (left to right) they form the depth-3 Vr patch:

1 1 0
0 1 0

0 1 1

This patch contains the spacetime word given above that is forbidden in Rule 90’s spacetime
shift. In fact, the other word of the same shape in this patch is also forbidden by Rule 90:

1 1 0
0

,

since φ90(110) = 1.
Concatenations of left and forward fringes produce, respectively, Vl and Vt spacetime

patches that similarly contain words forbidden by Rule 90’s spacetime shift space, as shown
algorithmically in a supplementary Jupyter Notebook [51]. Similar results for another ECA
shift space, the domain of Rule 18 discussed in more detail below, are also given in a supple-
mentary Jupyter Notebook [52]. Empirically, we found that local causal state presentations
are generically not faithful generative models of their CA spacetime shift spaces.

Comparing Figure 3 with the Vi patch shapes in Figure 2, there is little to no overlap
between the “futures” (lightcones in this case) used to define the equivalence classes of past
lightcones and the spacetime patches generated from fringe-labeled transitions between
the equivalence classes. Therefore, it is not surprising that local presentations created with
future lightcones are not faithful generators of their spacetime shifts.

In one dimension, there is only one “future” that always follows from the past. When
translating forward, what once was a future becomes part of the past. This is not necessarily
the case for local pasts and futures in spacetime. The predictive ability of unifilar models
follows from this succession of futures becoming pasts, when combined with future equiv-
alence. As we now see, future equivalence without the successional relation between local
pasts and futures yields models that, while unifilar, are not consistent spacetime generators.

Constructively, this insight points the way to creating local presentations that are
faithful generators. As the future lightcones do not play a role in generating local spacetime
patches, they should not be used to define past lightcone equivalence in Relation (7). Rather,
we should use spacetime patch shapes—denote them Vi—that are to be generated as our
notion of a local future for defining future equivalence in Relation (7). Local causal states are
defined using the future sets with future lightcones F(L−i ) = {L+ co-occurring with L−i }.
We can alternatively define local machine presentations whose internal states are defined
as equivalence classes from Relation (7) using F(L−i ) = {Vi co-occurring with L−i }.

Indeed, as demonstrated computationally in the supplementary Jupyter Notebook
Ref. [51], using Vr shapes with F(L−i ) = {Vr co-occurring with L−i } yields a local machine
presentation that is a faithful generator of Vr spacetime patches. However, this presentation
is not a faithful generator of Vl or Vt spacetime patches. Similar to the use of future lightcones,
local presentations can only generate faithful spacetime patches in the shape used to define
F(L−). Therefore, as also demonstrated in Ref. [51], using Vl to define F(L−) results in local
presentations that faithfully generate Vl , but not Vr nor Vt. Similar for Vt.

This motivates the definition of V in Figure 2d as the union of Vr, Vl , and Vt. Local
presentations defined using F(L−i ) = {V co-occurring with L−i } are faithful generators of
spacetime patches in all directions emanating from a seed past lightcone. As the resulting
presentations are also unifilar, additionally they are consistent predictive models of local
spacetime patches. These V presentations can thus be seen as the most natural generalization
of the predictive canonical machine presentations P(X ) for one-dimensional sofic shifts.
Moreover, they possess the same semigroup algebra of “symbol” (fringe) concatenation
that allows the generation and prediction of arbitrarily-long “words”—arbitrarily large
spacetime patches.
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It is important also to note that the spacetime fields considered here are generated
by deterministic cellular automata. As pointed out above, each site in spacetime is fully
determined by its depth-1 past lightcone. From Figure 2d, we see that L− ∪ V is an enlarged
past lightcone. Moreover, the depth-1 past lightcone for each site in V is contained within
L− ∪ V. Therefore, the internal states of the V presentations are sets of past lightcones
that make the same prediction over spacetime regions that contain the full predictive
information necessary to make such predictions. This is not the case for local causal states
that make predictions over future lightcones, as L− ∪ L+ regions do not contain the depth-1
past lightcones required to make local spacetime patch predictions.

That said, as the following now details, local causal-state presentations that use future
lightcones to define F(L−) possess interesting and useful generalized spacetime symmetries
that are lost when using V presentations.

3.3. Generalized Spacetime Symmetries

Recall from above that machine transitions in one-dimension determine the structural
relations among internal states and that they are driven by the shift operator. We just saw
that the analogous fringe-labeled transition structure in spacetime is similarly related to
spacetime shift operators through the definition of the fringes. However, the spacetime
shift operators provide structural algebraic relations among local states independent of
fringe symbols and their concatenated spacetime words. This is due to the local pointwise
ε-map and the resulting shared coordinate geometry between spacetime fields x and
corresponding local state fields S = ε(x).

To see this, consider two space-adjacent sites in a spacetime field, xr
t and xr+1

t = σ1xr
t .

Under the ε-map, this produces ξi = S r
t and ξ j = S r+1

t = σ1ξi. As past lightcones
are defined solely in terms of spacetime distances, they are equivariant under spacetime
isometries. In the present setting, these are translations.

For example, if a spacetime field x has exact time and space translation symmetries
στx = x and σsx = x, for some s and τ, then the corresponding local state field S = ε(x)
shares these symmetries: στS = S and σsS = S . This is because the spacetime shift
operators act equivalently on lightcones, so that σsL−i = L−i and στL

−
i = L−i . Therefore,

ε
(
σsL−i

)
= ε(L−i ) and ε

(
στL
−
i
)
= ε(L−i ). Note that this argument is independent of which

local future shape is used, as they all define a local ε-map on past lightcones.
When future lightcones specifically are used as local futures, we previously showed

(i) there are spacetime fields x that do not have translation symmetries, but (ii) the associ-
ated local causal state field S = ε(x) does [17]. These are the spacetime generalizations of
partial and hidden symmetries; cf. Figure 1.

For the cellular automata examples in Ref. [17] and shown here in Figure 5, gener-
alized symmetries—exact, partial, and hidden—in the spacetime fields are generated by
the evolution of invariant one-dimensional sofic shifts (spatial configurations) under the
CA dynamic. Such spacetime regions are known as domains [17,50]. Interestingly, exact
symmetry domains are generated from the evolution of exact symmetry sofic shifts. More-
over, stochastic partial symmetry domains are generated from stochastic partial symmetry
sofic shifts and hidden symmetry domains from hidden symmetry shifts. Examples of each
of these cases are shown in Figure 5 as the generalizations of the one-dimensional cases
in Figure 1. Appendix D displays the presentations P(X ) for each sofic shift X used to
generate the fields in Figure 5.

Exact symmetries are straightforward, as just described. There is a finite s and τ such
that for every site (r, t) in spacetime we have that στxr

t = xr
t and σsxr

t = xr
t . Due to the

shared coordinate geometry and isometry equivariance of past lightcones, this applies for
the local causal state field as well: στS r

t = S r
t and σsS r

t = S r
t . The exact symmetry field

shown in Figure 5a is a sample of the domain of ECA Rule 54. As can be seen, both the
spacetime fields and corresponding local state fields have a period-4 translation symmetry
in both time and space.
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For partial symmetries, some, but not all, of the spacetime coordinates return to
themselves after fixed translation, just as in one dimension. For example, there are some
sites (r∗, t∗) such that xr∗+s

t∗ = σsxr∗
t∗ = xr∗

t∗ , but this does not hold for all (r, t). As in
one-dimension, a special case of partial symmetries are stochastic symmetries that be-
come symmetric after a wildcard substitution. For example, consider a 1+1 dimensional
spacetime field with A = {0, 1} such that it has a checkerboard layout with 0s on the
black squares and wildcards (either 0 or 1) on the white squares. The partial (stochastic)
symmetry example shown in Figure 5b is ECA Rule 18’s domain, which is a strict subset
(subshift) of the 0-wildcard checkerboard shift space. We examine these two spacetime
shift spaces in more detail below.

Unlike in one-dimension, hidden symmetries in higher dimensions correspond to
exact symmetries in the local causal-state field for spacetime fields that themselves have no
symmetries, exact or partial. The hidden symmetry spacetime fields in Figures 5c and 6c
are samples of ECA Rule 22’s domain and their structure is manifestly harder to detect
from visual inspection.

What is most important to note here is that the observable field x does not have any
space or time translation symmetries, exact or partial. The corresponding local causal-state
field S = ε(x) (shown in Figure 5), though, does have symmetries that are period-4 in both
time and space. Essentially, there are motifs that appear in x—such as, the black “triangles”
that occur with a local period-4 structure (e.g., 1110 in space and 1100 in time). However,
in contrast to a stochastic symmetry field, there is no global symmetry that captures how these
stochastic motifs occur. The global hidden symmetry is more complicated than can be revealed
by simple wildcard substitutions. It is uncovered, though, by the local causal-state field.

A general spacetime pattern then is one for which the local causal-state field does not
exhibit spacetime symmetries. There is still an algebraic relation among the local states
from the spacetime shift operators, but they do not correspond to spacetime symmetries.

Note that the example in Figure 5d has regions that are locally symmetric in both
x and S . However, this symmetry is globally broken by localized defects or coherent
structures [17]. Figure 5d is produced from from ECA Rule 54 evolving a random initial
configuration. The local symmetry regions are instances Rule 54’s domain—the exact
symmetry field shown in Figure 5a.

We emphasize that, with the exception of exact symmetries, these generalized space-
time symmetries are empirically observed only with local causal-state presentations that
employ future lightcone shapes. For example, the corresponding local state fields of pre-
sentations using V local futures are shown in Figure 6 with the same spacetime fields as
Figure 5. As expected, the exact symmetry case also has space-time translation symmetries
in the local state field in (a). However, there are no space-time symmetries present in the
local state fields for partial (b) or hidden (c) symmetry spacetime fields when V local futures
are employed.

Altogether, these observations portray a somewhat unsatisfactory scenario. On the one
hand, lightcone local futures and the resulting local causal-state models produce insightful
and predictive generalized symmetries in spacetime. Moreover, these clearly connect to
the one-dimensional sofic shifts of CA spatial configurations, as demonstrated in Ref. [17].
However, we just demonstrated that local causal-state models are unfaithful generators of
their underlying CA shift spaces.

On the other hand, we also showed how to create faithful local generators using V

future shapes. These presentations thus appear to be the most natural local generalization
of the canonical machine presentations in one dimension. In this case, though, the useful
spacetime generalized symmetries are lost with these generative models.

Let us now examine in more detail the trade-offs between these two local presentations
by diving deeper into the case of stochastic symmetries.
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Observable Field xes

Local Causal States Ses = ε(xes)

(a) Exact Symmetry

Observable Field xps

Local Causal States Sps = ε(xps)

(b) Partial Symmetry

Observable Field xhs

Local Causal States Shs = ε(xhs)

(c) Hidden Symmetry

Observable Field xgp

Local Causal States Sgp = ε(xgp)

(d) General Pattern

Figure 5. Spacetime pattern classes: Spacetime fields x (above) and corresponding local causal state
fields S = ε(x) (below) for (a) an exact symmetry (ECA Rule 54 domain), (b) a partial symmetry
(ECA Rule 18 domain), (c) a hidden symmetry (ECA Rule 22 domain), and (d) a general pattern (ECA
Rule 54 evolving random initial configuration).
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Observable Field xes

V Presentation States Ses = ε(xes)

(a) Exact Symmetry

Observable Field xps

V Presentation States Sps = ε(xps)

(b) Partial Symmetry

Observable Field xhs

V Presentation States Shs = ε(xhs)

(c) Hidden Symmetry

Observable Field xgp

V Presentation States Sgp = ε(xgp)

(d) General Pattern

Figure 6. Spacetime fields x shown in Figure 5 (above) and corresponding V state fields S = ε(x) (below)
for (a) an exact symmetry, (b) a partial symmetry, (c) a hidden symmetry, and (d) a general pattern.

4. Case Study: Stochastic Symmetries

The partial (stochastic) symmetry spacetime fields in Figures 5b and 6b are generated
from ECA Rule 18 evolving a string from its domain’s invariant sofic shift. Appendix D
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shows that these are points in the stochastic symmetry sofic shift with the form 0-Σ, where
Σ is a wildcard that can be either 0 or 1.

It is easy to see from Rule 18’s lookup table φ18 that the wildcard locations oscillate
each time step between even- and odd-indexed lattice sites. Thus, the spacetime field
can be interpreted as a checkerboard pattern of fixed 0s and wildcards Σ = {0, 1}; giving
the checkerboard pattern seen in the local causal-state field shown in Figure 5b. In this
way, the two local causal states can be interpreted as a “fixed” 0 state and a wildcard state.
The local states of the V machine presentation, though, do not occur in a checkerboard
pattern in Figure 6b. So, they clearly cannot be assigned such semantic labels.

While the fixed-0 and wildcard semantic labels are appealing for the two local causal
states, they are also misleading. For a given spatial configuration, the fixed-0 and wildcard
semantics are appropriate, as it describes the (invariant) one-dimensional sofic shift of the
spatial configurations. However, it is again easy to see from the Rule 18 lookup table that
the wildcard semantics can no longer be assigned to the full spacetime field. Specifically,
in spacetime the local update rule φ18 forbids certain spacetime patches of the form:

Σ 0 Σ
Σ

Therefore, the spacetime shift space of Rule 18’s domain is a proper subset (subshift) of
the 0-Σ checkerboard shift space for which all realizations of the above spacetime patch
are allowed.

Figure 7 demonstrates that both the local causal states and the V machine presentation
local states reveal a checkerboard symmetry for spacetime fields in the 0-Σ shift space.
In this case, both types of local states certainly do carry the semantics of fixed-0 and wildcard
Σ in spacetime.

(a) Local causal states

(b) V presentation local states

Figure 7. Cont.



Symmetry 2022, 14, 1636 24 of 34

(a) Local causal states

(b) V presentation local states

Figure 7. Sample field from 0-Wildcard shift space in black (1) and white (0) squares with (a) local
causal states and (b) V presentation local states (b) overlaid. In both cases, the local states can be
assigned fixed-0 and wildcard semantics. So, they are labeled F and W, respectively. The local causal
states in (a) have an additional “indeterminate” state assigned to the all-0 past lightcone, labeled as X;
see, for example, the field at r = 60 and t = 34).

What does this say then about Rule 18’s domain in the context of the alternative
local-state presentations in Figures 5b and 6b?

First, it is interesting and not entirely clear why the choice of lightcone local futures
produces local causal states that carry the strictly-spatial semantics of fixed-0 and wildcard
Σ, especially when we know the wildcard semantics do not hold in spacetime. Whatever
the reason, it is key to interpreting spacetime patterns through the local causal-state fields,
including identifying coherent structures as locally-broken generalized symmetries in
spacetime [17].

Second, this implies that the V machine presentation states are a more nuanced rep-
resentation of the spacetime pattern of Rule 18’s domain. From above, we know the
non-fixed-0 sites cannot be strictly interpreted as wildcards in spacetime. However, we
can interpret these as contextually-constrained wildcards. From the 0-Σ patch above,
the outcome of the bottom Σ is constrained by φ18 and the outcomes of the preceding Σs.
Propagating these constraints through space and time clearly becomes complicated very
quickly. However, this is a more appropriate semantic interpretation of Rule 18’s domain.
So, this seems to be to what the V machine states correspond. As shown in a supplementary
Jupyter Notebook [53], the local state field displayed in Figure 6b is reconstructed from past
lightcones of depth-8 and Vs of depth-3. This produces 767 local V states to (approximately)
capture the spacetime pattern of Rule 18’s domain. This is in contrast to the three local
causal states reconstructed with the same past and future depths. (For finite-depth past
lightcones, there is a third “indeterminate” state for the all-0 past lightcone.)

Note that the fixed-0 semantics still holds in spacetime and that this is not captured
by the V presentation states. Given that V machine presentations are constructed to be
faithful local generators of their spacetime shift spaces, it seems there is a similar spacetime
contextuality to the fixed-0 sites that is necessary for faithful local generation. The space-
time contextuality present in the V presentation states is absent in the local causal states.
Additionally, it is the latter that reveals the spacetime symmetries observed in Figure 5.
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Taken all together, the spacetime patterns of partial and hidden symmetry ECA space-
time shift spaces are exceedingly complicated. Local causal-state presentations constructed
from future lightcones and the V machine presentations capture different aspects of these
patterns. One the one hand, V machine presentations are faithful generators and predictors
of the spacetime patterns and so capture the patterns in a more direct connection with the
one-dimensional case. However, local causal states capture generalized spacetime sym-
metries that, in the case of ECA domain shift spaces, closely connect with the (evolution
of) the one-dimensional shift spaces of the invariant spatial configurations that, in turn,
possess the corresponding generalized symmetries.

5. Conclusions

There is a growing body of results that use machine presentations defined from
future or predictive equivalence to discover inherent, often hidden, pattern and structure
in natural and engineered systems [47]. The first half of the preceding development
synthesized the arguments for sofic shifts and their machine presentations as mathematical
formulations of pattern and structure. In particular, the manner in which they generalize the
perfect regularity of exact symmetries and the associated group algebra has been rigorously
clarified. It also connected to recent results on sofic measures and their relation to stochastic
ε-machine presentations of statistical patterns supported on sofic shifts.

The development’s second half overviewed the local approach to spacetime machine
presentations. We showed that the standard local causal-state approach that uses lightcones
as local futures reveals useful generalized spacetime symmetries. However, this comes at
a cost: it does not lead to faithful generative models of the underlying shift space. This
motivated introducing an alternative local presentation model using spacetime V shapes
as local futures. We showed that these presentations are faithful generative models and
that they do not possess the same generalized spacetime symmetries of the local causal
states. The seeming mutual-exclusion of multiple local presentations is emblematic of
the difficulty of high-dimensional shift spaces. The novel constructions given here—in
particular the generative local presentations using V futures—may provide new paths of
inquiry for investigating the organization of these rich and challenging spaces.

One advantage of the nongenerative approach using local predictive equivalence over
future lightcones is that it does not rely on a finite alphabet for labeled transitions to provide
the algebraic structure among local causal states. Thus, local causal states are well-defined
and can be algorithmically approximated for continuum field theories. For example, they
have been used to extract coherent structures in complex fluid flows [18]. The results
presented here provide a theoretical underpinning and a “physics of organization” behind
these unsupervised physics-informed machine learning algorithms.
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Appendix A. Examples and Constructions

To clarify the development and build intuition about patterns, as we use the term,
the following works through several examples in detail. Specifically, we show explicitly
how to construct a semigroup G for exact and generalized symmetries, how to construct a
semiautomaton presenting G (and thus X ), and how this general semiautomaton simplifies
to the future cover, whose irreducible component is the minimal presentation P(X ).

Appendix A.1. Exact Symmetry Shifts

The simplest class of exact symmetry strings to characterize as sofic shifts are the
k-clock shifts for which A = {0, 1, . . . , (k− 1)} and b = 01 · · · (k− 1). For example, points
in the 3-clock shift are of the form · · · 012012012012 · · · with b = 012. Intuitively, this is the
simplest case since each a ∈ A fully specifies the period of the translation symmetry. Recall
that this corresponds to the internal states of P(X ), which are the equivalence classes
[·]F. For k-clock sequences each internal state (excluding the forbidden state), and thus
equivalence class, is represented by a generator a ∈ A. This fully specifies X since there are
no transient states. Each a ∈ A is synchronizing. In terms of the defining semigroup of X for
k-clock shift, G is consists solely ofA plus the absorbing element e. The 3-clock shift is given
by G = {0, 1, 2, e} with 01 = 1, 12 = 2, 20 = 0, 02 = 12 = 22 = e, and 02 = 10 = 21 = e.

For more general exact symmetry shifts, there are additional elements in G beyond
the generators A∪ {e}. Additionally, the future cover will have transient states; i.e., there
are additional equivalence class [·]F beyond those in the minimal presentation P(X ).
To illustrate, consider the shift X with b = 001 and points of the form · · · 001001001 · · · .

A simple construction of a finite G for an exact symmetry shift X is as follows. Start by
constructing the asymptotic recurrent component of the presenting semiautomaton—this
is P(X ). We already showed the states of P(X ) are the equivalence classes [b]F, [bb0]F,
[bb0b1]F, and so on. These equivalence classes can generally be represented by the allowed
words of length p− 1 so that concatenation with a generator gives a (shift of) the tiling
block b. This represents shifts of windows of length p− 1 on points x ∈ X .

For our example with b = 001 and so p = 3, these words are 00, 01, and 10. The word
11 is not included because it is forbidden in X , and so 11 = 12 = e in G. If our p− 1 window
is on 00 in X , then a unit shift reveals the generator 1 and the window now shows 01. This
gives the production rule 00 · 1 = 001 = 01 in G. In the semiautomaton presentation, there
are states ξ00 = [00]F and ξ01 = [01]F with M1(ξ00) = ξ01. If we again shift the window on
01, we reveal the generator 0 and the window now shows 10, giving the production rule
010 = 10. To complete the cycle we have 100 = 00, giving the finite closure for G. The rest
of the elements in G can be filled in with the free semigroup: e.g., 0 · 1 = 01. Therefore,
we can give a finite G for our example as G = {0, 1, e, 00, 01, 10} with production rules
001 = 01, 010 = 10, 100 = 00 and 12 = 03 = 101 = e. The semiautomaton presentation for
this G is shown in Figure A1a. Teal colored states are transient, orange is the absorbing
forbidden state ξe, and black states are the recurrent component (excluding ξe). Again,
self-loops on ξe are omitted for visual clarity.

While this straightforward construction always produces a finite semigroup G for a
given exact symmetry shift X , it is not necessarily a minimal semigroup. (Or, equivalently,
not a minimal presenting semiautomaton.) The future cover equivalence relation exploits
additional structure in X to give a minimal description and may thus reduce and simplify
the straightforward G and its presenting automaton. The k-clock shifts are the extreme
example, since we only need the generators as the elements of G since each a ∈ A is
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synchronizing. In the b = 001 example, while 0 is not synchronizing, 1 is. Applying the
future cover equivalence relations exploits this to simplify G and its presenting semiau-
tomaton. From visual inspection of Figure A1a’s semiautomaton, we see that ξ1 and ξ01
are equivalent, since their transitions lead to the same states with the same labeled edges.
Applying the future cover equivalence relation gives the future cover, with its reduced
semiautomaton presentation shown in Figure A1b. The simplified semigroup G of the
future cover is given as G = {0, 1, e, 00, 10} with 01 = 1 and 100 = 00, and the same
production rules for forbidden words.

0100

10

e

0

1

10

0

1

00

1

0 1

1

100

10

e

0
10

1

00

0 1

1

(a) (b)

∼F

Figure A1. Semiautomaton presentations for straightforward semigroup construction (a) and its
simplification under the future cover equivalence relation (b).

Since we designed our straightforward construction around the asymptotic cycle of the
translation symmetry, the recurrent components in both cases are isomorphic and represent
the canonical presentation P(X ) that captures the symmetry algebra.

Appendix A.2. General Pattern: The Even Shift

To contrast with exact symmetry shifts, we now go through the well-studied Even
Shift [31,33]. Recall that the Even Shift is the set of sequences that have even-length
blocks of 1s bounded by 0s. Thus, it is defined by the set of irreducible forbidden words
F = {010, 0130, 0150, . . . }. Since F is not finite, the Even Shift is not of finite type—it is
strictly sofic. However, since it is sofic it can still be finitely defined in terms of a finite
semigroup G. Following Ref. [33] we use G = {0, 1, e, 01, 10, 11, 101} with production rules
02 = 0, 13 = 1, 012 = 120 = 0 and 010 = e.

The production rule 010 = e represents the shortest forbidden word and the other
rules allow for all the other forbidden rules to reduce to 010. For example, we use 13 = 1 to
reduce 01110 to 010 which then maps to the absorbing element e. We can see that while
there is a countably-infinite number of forbidden words in the Even Shift, there is structure
in these forbidden words that can be captured in a finite semigroup G.

As with our explicit symmetry example b = 001, the presenting semiautomaton for
the Even Process using the G above is not minimal. Shown in Figure A2, we see that there
are two recurrent components PA(X ) and PB(X ). While these components correspond to
different elements in G, we can see that they are again isomorphic and so collapse together
under ∼F. The resulting recurrent component is the canonical machine presentation P(X ),
shown in Figure 1c.

Though we discussed and described three forms of presenting semiautomata, we
want to emphasize the importance of the canonical presentation P(X ) as the mathematical
representation of pattern as generalized symmetry. There may be many semigroups G
that describe a given sofic shift X , and so there are many different semiautomata that
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can present X . However, for irreducible sofic shifts the recurrent components of all such
G will be isomorphic [33], which is why the future cover is guaranteed to have a single
recurrent component. Therefore, the future cover is a unique representation of the structure
of X . Patterns and the symmetries they generalize are asymptotic properties and so the
transients of the future cover are not of interest for our current purposes. This is why the
canonical presentation P(X )—the recurrent component of the future cover—is the unique
mathematical representation of patterns.

0

01

0

11

12 1

10

101

0

11

1

1

0 0

e0 0PA(X ) PB(X )

Figure A2. Presenting semiautomaton for the Even Shift using G = {0, 1, e, 01, 10, 11, 101} and 02 = 0,
13 = 1, 012 = 120 = 0, 010 = e. The two components PA(X ) and PB(X ) are isomorphic and thus
collapse together under ∼F. The recurrent component is the canonical machine presentation P(X ),
shown in Figure 1c.

Recall that the symmetry group of a translation symmetry is captured by the canonical
presentation, whose semiautomaton is a circle graph, neglecting the absorbing state and its
transitions. Similarly, we can see the canonical presentation of the Even Shift captures the
essential details of the pattern. From inspecting its edge-labeled graph, shown in Figure 1c,
we can see that an arbitrary number of 0s are allowed from state ξA, but once a 1 occurs
it must be followed by another 1, ensuring the pattern of an even number of 1s bounded
by 0s. This also highlights the partial regularity that motivated our definition of patterns.
Starting in state ξA there is a coin flip, either 0 or 1 may occur. If it is a 0, repeat. However,
if it is a 1, there is now additional regularity and structure that enforces another 1 to follow.

Appendix B. Distinct Statistical Patterns Supported on the Same Sofic Shift
Topological Pattern

The following illustrates how statistical patterns, in the form of sofic measures, are
additional structure on top of topological patterns. In particular, there can be complex
statistical structure supported on simple topological structure. The topological pattern in
this example is the full-2 shift—the set of all binary strings. As described above, the full-2
shift represents a “null” pattern, in the sense that there is no predictability leveraged from
knowing the pattern. This is captured quantitatively by the single-state canonical machine
presentation P(X ). Its memory—the log of the number of states—is zero.

The simplest statistical patterns supported on the full-2 shift is given by assigning
IID single-symbol probabilities, e.g., Pr(1) = 0.3 and Pr(0) = 0.7. The simplicity of this
statistical pattern is also captured by a single-state ε-machine, where the above probabilities
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are assigned to the correspond transitions from the state back to itself on the given symbol.
In this example it is easy to see the statistical pattern is supported on the full-2 shift. Simply
remove the probabilities from the single-state transitions and the single-state canonical
machine presentation of the full-2 shift is recovered. Since the ε-machine (statistical)
and canonical machine presentation (topological) have the same number of the states,
the statistical and topological patterns they capture can be thought of as comparable.

However, consider the ε-machine shown in Figure A3. Its two states signify a more
complex statistical pattern with nonzero memory. From the machine diagram, we can see
that the single-symbol probabilities depend on which of the two internal causal states A
and B the process is in. For example, the probability of seeing a 1 is 0.75 if in causal state A
and 0.25 if in B. Note also that the symbol 0 always leads to causal state A and 1 always
leads to B. Thus, single symbols are synchronizing in this example. This stochastic process
is an order-1 Markov process. The simple one-state case above is an IID (order-0 Markov)
process, by contrast.

A B

1 | 0.75

0 | 0.75

1 | 0.250 | 0.25

Figure A3. Two state stochastic ε-machine presentation for a statistical pattern supported on the
full-2 shift.

It is perhaps clear from Figure A3’s machine diagram that this statistical pattern is
supported on the full-2 shift, since both symbols have positive probability from each of
the two causal states. However, it is instructive to show this using the symbol-labeled
transition matrices. Recall that Ta

ij gives the probability of transitioning from state ξi to ξ j
on the symbol a ∈ A. For Figure A3’s ε-machine we have:

T0 =

(
0.25 0.0
0.75 0.0

)
,

and

T1 =

(
0.0 0.75
0.0 0.25

)
,

where state A is given index 1 and B is index 2, so that Ta
12 is the probability of transitioning

from A to B.
Matrix representations Ma of the topological transition maps are given by setting

non-zero elements of Ta to unity. In this example, we have:

M0 =

(
1 0
1 0

)
,

and

M1 =

(
0 1
0 1

)
.

Recall that Ma
ij = 1 signifies a transition from internal state i to state j is allowed on the

symbol a and Ma
ij = 0 is a forbidden transition that produces a forbidden word.

To see that these topological transitions correspond to the full-2 shift, note that the
action of Ma on both internal states yields the same output state, for both M0 and M1. That
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is, for both states, call them also A = (1 0) and B = (0 1), a transition on a 0 goes to state A
and a transition on a 1 goes to B. For example:

(0 1)
(

1 0
1 0

)
= (1 0) ,

and

(1 0)
(

1 0
1 0

)
= (1 0) .

Thus, as described above, the two states are topologically equivalent A ∼F B and so reduce
to the single-state canonical machine presentation of the full-2 shift.

Finally, as shown in Figure A4 this construction of probabilistically-distinct causal
states supported on the full-2 shift can be extended to ε-machine with a larger number of
states. Clearly, the construction can be extended indefinitely with an arbitrary number of
causal states ξi such that Pr(0|ξi) = p and Pr(1|ξi) = 1− p, since there can be uncountably-
many p. This shows that there can be arbitrarily complex statistical patterns supported on
simple topological patterns.

A B

C D

1 | 0.75

0 | 0.75
1 | 0.25

0 | 0.60 | 0.25

1 | 0.3

0 | 0.7 1 | 0.4

Figure A4. Four-state stochastic ε-machine presentation for a statistical pattern supported on the
full-2 shift.

Appendix C. Cellular Automata

A one-dimensional cellular automaton or CA (AL, Φ) consists of a spatial lattice L = Z
whose sites take values from a finite alphabet A. A CA state x ∈ AZ is the configuration of
all site values xr ∈ A on the lattice. (For states x, subscripts denote time; superscripts sites.)
CA states evolve in discrete time steps according to the global evolution Φ : AZ → X ⊆ AZ,
where:

xt+1 = Φ(xt) .

Φ is implemented through parallel, synchronous application of a local update rule φ that evolves
individual sites xr

t based on their radius R neighborhoods η(xr) = {xr′ : |r− r′| < R}:

xr
t+1 = φ

(
η(xr

t )
)

.

Stacking the states in a CA orbit x0:t = {x0, x1, . . . , xt−1} in time-order produces a
spacetime field x0:t ∈ AZ⊗Z. Visualizing CA orbits as spacetime fields reveals the fascinating
patterns and localized structures that CAs produce and how the patterns and structures
evolve and interact over time.
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Elementary Cellular Automata

The parameters (A, R) define a CA class. One simple but nontrivial class is that
of the so-called elementary cellular automata (ECAs) [54] with a binary local alphabet
A = {0, 1} and radius R = 1 local-interaction neighborhood η(xr

t ) = xr−1
t xr

t xr+1
t . Due to

their definitional simplicity and wide study, we explore ECAs in our examples.
A local update rule φ is generally specified through a lookup table that enumerates all

possible neighborhood configurations η and their outputs φ(η). The lookup table for ECAs
is given as:

η Oη = φ(η)

1 1 1 O7
1 1 0 O6
1 0 1 O5
1 0 0 O4
0 1 1 O3
0 1 0 O2
0 0 1 O1
0 0 0 O0

,

where each output Oη = φ(η) ∈ A and the ηs are listed in lexicographical order. There are
28 = 256 possible ECA lookup tables, as specified by the possible strings of output bits:
O7O6O5O4O3O2O1O0. A specific ECA lookup table is often referred to as an ECA rule with
a rule number given as the binary integer o7o6o5o4o3o2o1o0 ∈ [0, 255]. For example, ECA
172’s lookup table has output bit string 10101100.

The nth-order lookup table φn maps the radius n · R neighborhood of a site to that
site’s value n time steps in the future. Said another way, a spacetime site xr

t+n is completely
determined by the radius n · R neighborhood n time-steps in the past according to:

xr
t+n = φn(ηn(xr

t )
)

.

The depth-n past lightcone is the collection of all φ` for 1 ≤ ` ≤ n, plus the present site value
itself (i.e., “depth-0”).

Appendix D. ECA Domain Sofic Shifts

The generalization of invariant sets from low-dimensional dynamical systems to
high-dimensional cellular automata are known as domains [50]. These are sets of spatial
configurations that are invariant under the global CA dynamic Φ. Spatial configurations of
one-dimensional cellular automata are strings of symbols from an alphabet A. Thus, shift
spaces are natural choices for sets of spatial configurations. In fact, the Curtis–Hedlund–
Lyndon theorem shows that a CA’s dynamic—a sliding-block code—naturally induces
shift-invariance in the set of images under Φ [55]. Said another way, the dynamic of a CA
on a shift space maps to a shift space.

For a CA Φ, a domain Λ = {Λ1, Λ2, . . . , Λp} is a set of irreducible sofic shifts such that
Φ(Λi) ∈ Λ. That is, if x is a spatial configuration that is a point in one of the sofic shifts
Λi ∈ Λ, then the image Φ(x) is also a point in one of the sofic shifts in Λ. As irreducible
sofic shifts, domains may possess patterns that are exact symmetries, partial symmetries,
hidden symmetries, or general patterns with no symmetries. Empirically, the spacetime
fields produced from the evolution of ECA domains possess the same type of pattern as
their invariant sofic shifts. The generalized spacetime symmetries are revealed by the local
causal states, as shown above in Figure 5. Here, we provide the machine presentations for
the domain sofic shifts used in each case.

The exact symmetry spacetime field is given by the evolution of ECA Rule 54’s domain,
whose machine presentation is shown in Figure A5. As can be seen, there are two phase ΛA
and ΛB that are cycled between under Φ54. Each phase has an exact symmetry, with ΛA
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tiled by blocks of 0001 and ΛB tiled by blocks of 1110. As seen in Figure 5a, this creates an
exact symmetry spacetime field that is period-4 in both time and space.

The partial symmetry spacetime field possesses a stochastic symmetry and is given by
the evolution of ECA Rule 18’s domain. Its machine presentation is shown in Figure A6.
This is a single stochastic symmetry sofic shift with a period-2 tiling of 0Σ, where again Σ is
a wildcard that can be either 0 or 1. Spacetime fields generated by the domain of Rule 18,
as shown in Figure 5b, form a subshift of the 0-Σ checkerboard spacetime shift space. Both
are discussed in detail above in the stochastic symmetry Case Study of Section 4.

ΛA

D A

BC

0

0

0

1

ΛB

H E

FG

1

1

1

0

Φ54

Φ54

Figure A5. Presenting semiautomaton for the domain of ECA Rule 54.

A B

0
1

0
Figure A6. Presenting semiautomaton for the domain of ECA Rule 18.

Finally, the hidden symmetry spacetime field in Figure 5c is generated by the hidden
symmetry domain sofic shift of ECA Rule 22. The presenting automaton is shown in
Figure A7. Like Rule 54’s domain, the domain of ECA Rule 22 comes in two phases. As can
be seen, phase ΛA is actually a stochastic symmetry, as each state in P(ΛA) returns to
itself after four translations. However, this is not the case for phase ΛB, which is a hidden
symmetry sofic shift. This is because only states F and G of P(ΛB) return to themselves
after four translations. As drawn, one can imagine “folding” P(ΛB) up onto itself to create
a period-4 symmetry in the states. Said another way, one can think of a “length-3 wildcard”
that produces either three 0s or three 1s. The ΛB sofic shift is then given by tilings of this
length-3 wildcard followed by a fixed 0. This is the nature of hidden symmetries. Blocks of
three 0s and three 1s are forced to occur, followed by a fixed 0, but the sequence of these
blocks is not constrained. For example, the string of all 0s and the string of all 1s are both
in ΛB.
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ΛA

B
A

D
C

0

0

0

0 1 ΛB

E F

GH I

J

0

0

0

0

1

1

1
Φ22

Φ22

Figure A7. Presenting semiautomaton for the domain of ECA Rule 22.
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