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Quantitative imaging of lipid droplets in single cells
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Abstract

The combination of next generation sequencing (NGS) and automated liquid handling platforms 

has led to a revolution in single-cell genomic studies. However, many molecules that are critical to 

understanding the functional roles of cells in a complex tissue or organ, are not directly encoded in 

the genome, and therefore cannot be profiled with NGS. Lipids, for example, play a critical role in 

many metabolic processes but cannot be detected by sequencing. Recent developments in 

quantitative imaging, particularly coherent Raman scattering (CRS) techniques, have produced a 

suite of tools for studying lipid content in single cells. This article reviews CRS imaging and 

computational image processing techniques for non-destructive profiling of dynamic changes in 

lipid composition and spatial distribution at the single-cell level. As quantitative CRS imaging 

progresses synergistically with microfluidic and microscopic platforms for single-cell genomic 

analysis, we anticipate that these techniques will bring researchers closer towards combined 

lipidomic and genomic analysis.

Graphical Abstract

Non-destructive spatial characterization of lipid droplets using coherent Raman scattering 

microscopy and computational image analysis algorithms at the single-cell level

1. Introduction

While each cell in an organism has essentially the same genome, variation in gene regulation 

gives rise to vast cellular heterogeneity. This heterogeneity is present in tissues and even 

among populations of cells of the same type. Cellular heterogeneity plays an important role 

in many biological processes, including cell fate determination,1,2 cancer development and 
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relapse,3,4 and drug resistance.5 Investigations at the single-cell level are therefore critical 

for uncovering this heterogeneity which otherwise is masked by ensemble measurements. 

Many single-cell analysis techniques have been enabled by next generation sequencing 

(NGS). Reverse transcription of mRNA followed by high-throughput sequencing of cDNA 

(RNA-sequencing) allows transcriptome-wide gene expression profiling. Recently, 

microfluidic platforms have made it possible to isolate mRNA from hundreds to thousands 

of single cells in a single experiment, thereby enabling comprehensive mapping of cellular 

composition of biological tissues and organs. These technological advances have paved the 

way towards constructing a human cell atlas.6 The Human Cell Atlas project7 aims to 

leverage high-throughput single-cell RNA sequencing (scRNA-seq) along with other single-

cell measurements, to quantitatively characterize cellular identity throughout the human 

body, tracking both developmental and disease states, within their contextual niche. Recent 

work has already composed transcriptional catalogues of both mouse and human organs, 

including the brain,8,9 the thymus,10 the pancreas,11 and two recent reports of a 

comprehensive mouse atlas.12,13

While scRNA-seq has proven to be a robust tool for quantifying cellular identity, there are 

many molecules, which play critical roles in cellular function, that are not directly encoded 

in the genome and therefore cannot be detected with measurements that are based on 

sequencing. Metabolites and lipids are examples of such molecules that cannot be profiled 

using NGS but are important for regulation of cellular function. Lipids are predominantly 

involved in energy storage in cells and provide structural integrity to biological membranes.
14,15 Lipids also participate in signaling pathways14,16 and interact with proteins to regulate 

their functions.17,18 In cells, neutral lipids and phospholipids are stored in organelles called 

lipid droplets (LDs).For a long time, LDs’ only role was perceived as storage of lipids.19 It 

is now well-accepted that LDs are dynamic organelles with functions in energy production,
20 protein degradation,21 and lipid metabolism homeostasis.22 The dysregulation of lipid 

metabolism has been linked to many human diseases such as cancer, obesity, and diabetes. 

For example, imbalance in the number of intracellular LDs has been reported to be 

associated with multiple cancers23 and has been shown to promote cancer progression.24 

Obesity is associated with eventual accumulation of lipids in nonadipose tissues25,26 which 

subsequently interferes with local insulin signaling and plays a key role in the development 

of type II diabetes.27 Consequently, quantifying changes in lipid metabolism is critical for 

understanding disease pathways and screening for targeted therapeutics.28,29

There are many different species of cellular lipids with structural variations in their 

hydrophobic and hydrophilic regions. Intracellular LDs store a wide distribution of lipid 

molecules and lipid metabolism directly alters the lipid composition of LDs.30,31 The field 

of lipidomics aims to study changes in lipid metabolism in response to physiological, 

pathological, and environmental conditions by characterizing this compositional distribution 

of all cellular lipids.

Established techniques for lipidomic analysis include gas or liquid chromatography-mass 

spectrometry (GC/LC-MS)32-34 and shotgun mass spectrometry.35,36 GC/LC-MS and 

shotgun techniques allow for targeted and untargeted detection of lipid molecules, 

respectively, when implemented on biological extracts from a population of cells (Fig. 1A). 
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Recent advancements in sample preparation and ionization techniques have further enabled 

researchers to profile the lipidome at the single-cell level based on microarray for MS 

(MAMS), single-cell matrix assisted laser desorption/ionization-MS (MALDI-MS), and 

subcellular content aspiration-based MS techniques;37-40 Imaging mass spectrometry (IMS) 

is an imaging method that allows for visualization and quantification of spatial distribution 

of lipids in intact biological systems.41-45 Implementation of IMS techniques requires 

extensive sample preparation46 with spatial resolution ranging from submicron to hundreds 

of microns depending on the ion source.47 Typically, sensitivity of MS-based techniques lies 

in the picomolar range with detection specificity of hundreds of lipid species simultaneously.
48 Such high sensitivity and specificity of MS-based techniques comes at the cost of 

destructive measurements.

Quantitative microscopic imaging techniques are complementary to MS-based technology 

and allow for non-destructive spatial characterization of LDs in live cells but with less lipid 

specificity. The non-destructive nature of optical microscopy allows researchers to perform 

time-resolved imaging to investigate dynamic cellular behavior. Furthermore, live-cell 

imaging can be coupled with subsequent molecular measurements such as sequencing or 

mass-spectrometry. Also, when combined with image processing algorithms, microscopy 

enables researchers to gather subcellular information such as LD morphology, or LD 

composition. This circumvents the need for physical isolation of single cells, thereby 

increasing the speed of data acquisition (Fig. 1B).

Amongst quantitative microscopic imaging techniques, fluorescence imaging allows for 

quantification down to a single molecule level. Fluorescence imaging with lipid-soluble 

dyes, lipid-binding probes, or fluorophore-conjugated lipids, has been used to study the 

composition and morphology of LDs.49,50 In some cases, the process of labeling can alter 

the distribution of cellular lipids. For example, Yen et al. showed that staining based on both 

Nile red and BODIPY does not correlate with fat stores for the model organism C. elegans.
51 Complementary to fluorescence imaging are label-free optical techniques such as phase 

contrast,52 differential interference contrast,53 quantitative phase-imaging,54 and third 

harmonic generation microscopy55 that have been used to visualize LDs. In order to extend 

the capabilities of label-free imaging techniques for lipid profiling and quantification, 

magnetic resonance imaging (MRI) and coherent Raman scattering (CRS) techniques have 

been implemented to provide a lipid-specific contrast. MRI is an imaging technique based 

on nuclear magnetic resonance that has been implemented for quantification of total fat 

content and lipid accumulation.56-58 The high penetration depth achieved from near-IR 

imaging allows researchers to implement MRI techniques in vivo. For in vitro and in vivo 
label-free mapping of LD composition, CRS imaging techniques are used. CRS techniques 

include coherent anti-Stokes Raman scattering (CARS) imaging and stimulated Raman 

scattering (SRS) imaging, both of which have been widely used to quantify LDs at the 

single-cell level with high spatial and temporal resolution. In this review, we will highlight 

applications of CRS techniques for quantifying LDs. We will also discuss object recognition 

algorithms for identification of LD and cellular boundaries in an image. Such segmentation 

analysis is necessary for microscopy to be used for quantitative single-cell analysis. We will 

conclude by discussing the implications of non-destructive CRS techniques towards 

promises of multi-omic analysis at the single-cell level.
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2. Coherent Raman Scattering (CRS) Microscopy

CRS microscopy provides a label-free approach for profiling the chemical composition of 

biological specimens by probing the characteristic vibrational modes of molecular bonds. 

Because of the strong vibrational modes associated with CH2, CRS is particularly powerful 

for imaging intracellular lipids. For selective imaging of lipids, the asymmetric-stretching 

vibrational mode of the carbon–hydrogen bond is probed at 2,845 cm−1 (Fig. 2A). CRS is 

induced by simultaneously illuminating the specimen with two photons at frequencies ωp 

(pump) and ωs (Stokes). When the difference in frequency between the two photons equals a 

vibrational frequency that is characteristic of the target molecule (Ω = ωp-ωs), the Raman 

scattering cross-section is resonantly enhanced giving rise to a strong CRS signal. Coherent 

anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) are two 

imaging modalities that operate on this principle. In CARS, a signal is detected at the anti-

Stokes frequency, ωAS, given by ωAS = 2ωp - ωs. CARS relies on homodyne detection, as 

ωAS can be separated from both the incoming frequencies ωp and ωs using a dichroic mirror 

or optical filters.59 In SRS, one of the two incoming photons, ωs or ωp, is amplitude 

modulated and the signal is detected as a loss or gain in the intensity of the pump or Stokes 

photon respectively (Fig. 2B). Therefore, SRS techniques utilize heterodyne detection 

schemes and require a lock-in amplifier to amplify the modulated stimulated Raman loss or 

gain.60 As CARS and SRS are nonlinear optical processes, signal is only generated at the 

focal plane of the objective, enabling intrinsic three-dimensional sectioning by scanning in 

the x, y, and z axes. Long-term live cell imaging is also possible as CRS contrast is not 

limited by photobleaching. CARS and SRS are diffraction limited techniques and therefore 

offer quantification at a subcellular level with resolution as low as hundreds of nanometers. 

The CARS signal is quadratic with respect to the concentration of resonant chemical bonds 

and the SRS signal is linear. SRS also has a higher signal to noise ratio (SNR) as compared 

to CARS because there is no non-resonant background. However, heterodyne detection in 

SRS requires additional instrumentation (lock-in amplifier) which is bypassed in CARS by 

using appropriate filters for homodyne detection.

Multiphoton excitation techniques like CRS imaging employ ultrashort pulsed lasers to 

obtain high concentrations of laser power inside the sample, which is necessary for efficient 

excitation of the targeted vibrational mode. A possible consequence of this elevated laser 

irradiance is photodamage to cells and tissues. Schonle and Hell developed a model for 

investigating the effects of optical absorption (in near-IR, by water in biological specimens) 

on focal heating during multiphoton excitation microscopy.61 Their results showed an 

increase in focal temperature by not more than 3K for an average laser power of 100 mW at 

the focal plane, suggesting that heating through linear absorption does not play a destructive 

role. However, the required peak laser power, to maintain an average laser power of 100 

mW, may lead to nonlinear photodamage. Other studies have shown that maintaining laser 

power below 10 mW at the focal plane is considered to be a safe range for sample integrity.
62,63 Some applications of CRS imaging may require higher laser power for fast and 

efficient excitation of the resonant mode.64,65 For such purposes, optimizing the average and 

peak laser power should be the first step towards maintaining a strong signal while 

minimizing photodamage to the sample.66 Work has been done by several research groups to 
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identify and define criterias for characterization of photodamage induced by nonlinear 

imaging.67-70

In this section, we discuss investigations using CRS techniques for quantifying LDs. In 

section 3, we will then discuss object recognition algorithms applicable for cell and LD 

boundary determination. Section 4 will focus on biological investigations using CRS 

techniques coupled with segmentation algorithms for quantitative single-cell and single-lipid 

droplet analysis.

2.1. CARS and SRS

As CARS signal is quadratic with molecular concentration of the resonant bond, 

quantification using CARS requires processing of signal intensity. For example, Chen et al. 
derived a formula to calibrate CARS intensity to accurately report the number of lipid 

molecules in the scattering volume.71 In this study, they developed an automated image 

analysis algorithm for quantification of lipid content in single cells. Rinia et al. adopted 

another strategy where they implemented spectral-analysis tools in conjunction with 

multiplex CARS for retrieval of spontaneous Raman-like spectra which is linear with the 

number of vibrating molecules.72 In this study, they analyzed the retrieved spontaneous 

Raman-like spectra to map the acyl chain unsaturation and acyl chain order within individual 

LDs in adipocytes, which were incubated with exogenous free fatty acids (FFA) of varying 

compositions (Fig. 3). They found heterogeneity in lipid composition and packing in 

individual LDs and demonstrated that this heterogeneity was dependent on the FFA 

composition of incubation mixture. In contrast to CARS, SRS signal is linear with the 

number of vibrating molecules, thereby making quantification more straightforward. 

Freudiger et al. demonstrated SRS as a contrast mechanism for imaging biological 

specimens.60 They monitored the uptake and metabolism of unsaturated FFA by imaging at 

3015 cm−1 wavenumber specific to the =C-H bond in unsaturated fatty acids. Wang et al. 
used SRS microscopy combined with RNA interference screening to determine lipid storage 

regulatory genes in C. elegans.73 Lipid storage capacity was quantified based on mean SRS 

intensity. Using this technique, they were able to screen for 272 genes and found 8 new 

regulatory genes for fat storage. Besides quantifying LDs, CRS techniques have been critical 

towards visualizing LD growth and formation thereby revealing new lipid functions in 

cellular environment.74,75 Nan et al. demonstrated vibrational imaging of LDs using CARS 

and monitored LD formation during differentiation of 3T3-L1 fibroblast cells into 

adipocytes.76 They found that after adding adipogenic differentiation media, there was an 

initial clearance of LDs at the early stage of differentiation followed by formation of large 

LDs (Fig.4). Le and Cheng combined CARS microscopy with fluorescence imaging and 

flow cytometry to investigate heterogeneity in rates of LD formation in differentiating 3T3-

L1 cells.77 They found that phenotypic variability among differentiating 3T3-L1 cells was 

dependent on the kinetics of an insulin signaling cascade.

2.2. Vibrational Raman tags

Imaging at a single frequency is insufficient for monitoring the uptake of saturated fatty 

acids because all vibrational markers of saturated fatty acids are shared by unsaturated fatty 

acids. However, no endogenous molecular species, including lipids, vibrate in the range 
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from 1800 cm −1 to 2800 cm −1, known as the “Raman-silent region” in cells. Raman tags 

are biorthogonal vibrational labels that consist of chemical bonds having a unique Raman 

shift in the cell’s silent region. Fatty acids have been conjugated with Raman tags for 

tracking their uptake dynamics. Stable isotope substitution using 2H 78,79 or conjugation 

with alkyne tags80,81 are the two major strategies employed with CRS techniques. Wei et al. 
demonstrated metabolic incorporation of saturated FFA into triglycerides and its storage in 

LDs using alkyne tagging together with SRS.82 Li and Cheng demonstrated direct 

visualization and quantification of glucose metabolism in single cells using SRS microscopy 

coupled with isotope labeling (glucose-d7).83 They demonstrated up-regulation of de novo 
lipogenesis in pancreatic and prostate cancer cell lines as compared to healthy cell lines. 

They also showed that compared to pancreatic cancer cells, prostate cancer cells have lower 

level of de novo lipogenesis but higher level of dietary lipid uptake. On the other hand, Hu et 
al. monitored glucose uptake activity in live cells using a glucose analogue labeled with an 

alkyne tag (3-O-propargyl-d-glucose, 3-OPG).84 In their study, they found that glioblastoma 

cells have a higher level of de novo lipogenesis as compared to cervical cancer cells. These 

studies demonstrated that cancer cells with differing metabolic activities can be 

distinguished using Raman tagging strategies. It will be interesting to see if the reported 

results can be validated for prostate and pancreatic cells using alkyne tagging and for 

cervical and glioblastoma cells using isotope labeling.

2.3. Hyperspectral SRS

Single-channel imaging of deuterated or alkyne-tagged lipids has been demonstrated as a 

useful tool for tracking uptake dynamics of a targeted lipid molecule. For unbiased profiling 

of the distribution of cellular lipids in response to changes in cellular metabolic states, 

hyperspectral SRS (hSRS) imaging is implemented. hSRS imaging enables researchers to 

separately quantify lipid molecules with overlapping Raman spectra by utilizing subtle 

differences in the spectral intensity across a range of wavenumbers.85,86 hSRS techniques 

are often used in conjunction with spectral-analysis tools to retrieve the Raman spectra of 

different molecules from the convoluted SRS spectra. The retrieved spectra can be used to 

reconstruct the compositional distribution images for each lipid species (Fig.5).87,88 Li et al. 
employed hSRS imaging to quantitatively analyze the composition of intracellular lipids 

inside single ovarian cancer and non-cancer stem cells and reported higher levels of 

unsaturated lipids in cancer cells based on the ratio of intensities at 3002 cm−1 and 2900 cm
−1 wavenumber.89 Alfonso-García et al. used hSRS coupled with unsupervised vertex 

component spectral analysis to study the metabolism and storage of deuterated cholesterol 

(D38-cholesterol).90 They utilized the spectral differences in the CH fingerprint region 

between D38-cholesterol and natural cholesterol to map the distribution of esterified and 

unesterified cholesterol in LDs. They found that subpopulations of LDs exist each with a 

predominant storage of esterified or free cholesterol. They also found that steroidogenic Y1 

cells store triacylglycerol (TAG) and cholesteryl esters (CE) in different LDs. It is known 

that steroidogenic cells and macrophages primarily accumulate CE in LDs and liver cells 

primarily accumulate TAG in LDs.91,92 This study observed accumulation of TAG in 

steroidogenic cells but didn’t perform any investigation in macrophages or liver cells.90 In 

contrast, Fu et al. detected only CE containing LDs in macrophages and only TAG 

containing LDs in hepatocytes.93 In this study, spectral differences between TAG and CE 
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were utilized to quantitatively profile the two classes of neutral lipids. Based on these 

observations, it will be interesting to see whether lipid sorting occurs in macrophages, liver 

cells and other cell types using Alfonso-García’s methodology. Fu et al. also characterized 

lipid compositional changes associated with metabolic disorders and further extended hSRS 

coupled with isotope labeling to simultaneously trace saturated and unsaturated fatty acids.93

3. Object Recognition Algorithms

While optical microscopy has the spatial resolution necessary to be an inherently single-cell 

measurement, interpretation of micrographs in the single-cell paradigm is not always 

straightforward. Historically, microscopy has been used in low volume, manual, and 

generally qualitative, descriptions of biological samples. Such an approach, in addition to 

being susceptible to interpretation bias, is now increasingly impractical as image data has 

become larger and more complex. Furthermore, with the push in the life sciences towards 

generating results with greater statistical power, there is more demand for quantitative 

analyses of images, which all but necessitates computation. Image analysis algorithms have 

been under development since the pre-digital age, and the past two decades have seen many 

improvements in their application to biological datasets.

One of the most basic, and arguably most important, questions that can be asked about an 

image is where are the boundaries between objects? When quantifying metabolic 

composition of cells, it is important to have an objective methodology for defining objects. 

In tissue this amounts to cell boundaries, in individual cells, the subcellular structures and 

organelles such as LDs. Traditional techniques for answering this question often start with 

contrast enhancement and gradient-based edge detection methods. The simplest approach is 

thresholding, with automatic threshold determination by algorithms such as Otsu’s method,
94 or balanced histogram thresholding.95 Thresholding tends to separate objects and is also 

often employed to aid in background correction. Convolution with operators such as the 

Sobel,96 Canny,97 or other gradient operators can provide information on sharp line 

boundaries. For more general shape extraction, the Hough transform has been a popular 

choice in a wide variety of fields. First patented in 1962 for line identification,98 it was then 

generalized to arbitrary shapes.99 It is well-suited to identifying regularly shaped features 

which can vary in dimension across an image.

These gradient or edge detection techniques are then frequently combined with a watershed-

based algorithm,100 which imagines filling basins from minima in the images and draws 

boundaries where the watersheds meet. Implementations of these techniques can be found in 

all major programming languages, and are also included in many widely available image 

analysis software suites, like Fiji.101 They have therefore been applied, in a number of 

combinations and variations, for analysis of LD size and number distribution.102,103

More recently, the field of computer vision has shifted focus to machine learning approaches 

for everything from automatic feature extraction to image classification. This has been 

driven in large part by the success of convolutional neural networks (CNN), and their rapid 

development in the past decade. First introduced over 20 years ago,104,105 initial adoption 

was slow, but the list of current variations and applications is now constantly growing. CNNs 
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work similarly to conventional, or ‘fully-connected,’ neural networks but reduce the number 

of parameters that need to be learned by using convolutions rather than transformation 

matrices that relate every point in the image to every point in the output. This is in some 

ways analogous to some traditional methods listed above, but instead of pre-selecting, e.g. a 

gradient filter, the filter is learned by the network, and there are many filtering steps. While 

generally more computationally intensive, fully-connected neural networks have also found 

use in image analysis.

The major drawback for using CNNs or deep learning architectures generally is the need for 

training data. This has slowed adoption in the field of lipidomics, although CNNs have been 

successfully applied to numerous types of microscopy data. Medical imaging has been a 

recent adopter, with hundreds of successful demonstrations in the last three years.106 

Importantly, these demonstrations span a wide-variety of disciplines but utilize similar 

network architectures. Many are straightforward modifications of well-known networks, and 

often rely on already trained networks as starting points, suggesting a similar strategy may 

be effective for lipidomics. Single-cell segmentation, cell cycle progression and disease state 

identification, have been recently demonstrated using CNNs on fluorescent images.107 Chen 

et al. also recently showed algal cell classification based on lipid content, using time-stretch 

quantitative phase imaging and deep neural networks.108

A final consideration, is that many of the imaging techniques used for lipid characterization 

contain additional information beyond the purely morphological. Most of the analysis 

algorithms discussed thus far have focused on segmentation and object identification. This 

makes them generalizable to all types of images, but also makes them blind to the additional 

information that can be encoded in some microscopy datasets. In some cases, it is therefore 

advantageous to utilize more specialized algorithms for analysis, hyperspectral coherent 

Raman imaging being a prime example. Fu and Xie demonstrated the ability to segment 

subcellular structures, including lipid droplets, from a hSRS dataset using a spectral phasor 

method adapted from the fluorescence lifetime imaging field.109 Di Napoli et al. were also 

able to monitor uptake of different lipid components using hyperspectral CARS,110 using an 

unsupervised retrieval algorithm.111

4. Quantitative CRS for single-cell and single-LD analysis

High signal to noise ratio (SNR) associated with concentrated CH2 bonds in lipids allows 

researchers to monitor the dynamics of LDs in a straightforward fashion using CRS 

techniques coupled with LD recognition and trajectory tracking packages. Jungst et al. 
demonstrated tracking of LDs using fast, long-term three-dimensional CARS imaging at 

2850 cm−1 in order to investigate the dynamics of LD fusion in living adipocytes undergoing 

differentiation.112 They used the Imaris software package (http://bitplane.com) for detection 

and tracking of LDs. In Imaris, thresholding is performed for automated segmentation of 

LDs. Morphological characterization of identified LDs is then performed including radius 

and volume rendering. Detected LDs are then tracked by selecting for appropriate three-

dimensional tracking algorithm. Based on the lipid transfer rates obtained, researchers 

suggested a model in which lipid transfer is driven by the pressure difference between 
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participating LDs through a putative fusion pore, whose size depends on the size of the 

donor LD.

Zhang et al. used SRS microscopy to study the dynamics of LDs using three-dimensional 

SRS imaging at 2850 cm−1.113 They implemented a feature point tracking algorithm, as 

developed for the Particle Tracker software, 114 for monitoring LD movements. In this 

software, feature points are localized by finding local intensity maxima in the filtered image. 

The retrieved positions are then refined to reduce the standard deviation of the position 

measurement, which takes into consideration a user-provided threshold. Once point location 

matrices have been defined for each frame in the time-resolved image, a cost function is 

minimized to find a set of associations for tracking each point. Using this software, 

researchers demonstrated that the dynamics of LDs, quantified using maximum 

displacement and speed as the parameters, can be used to differentiate changes in lipid 

metabolism in living cells. They studied changes in lipid metabolism upon glucose 

starvation and refeeding and showed that their methodology could predict increase in 

lipolysis upon starvation as expected.

Medyukhina et al. developed an image processing approach for detection of nuclear and 

cellular boundaries from co-registered two-photon excited fluorescence (TPEF) and CARS 

images respectively.115 For nuclei boundary determination, they first used the local gray-

scale minimum from denoised TPEF images for localization of nuclei centers. The gradient 

maxima from each nucleus location was used to detect the nuclear boundary. Once nuclei 

locations and boundaries were validated, they subsequently used TPEF images to delineate 

the cellular boundaries in the denoised CARS images. They assumed that the cellular 

boundary corresponds to the first local gradient minimum behind the nuclear boundary. 

Finally, they demonstrated the implementation of this approach for automated segmentation 

of cells and nuclei in brain tumor samples.

In order to reveal single-cell heterogeneity, data has to be acquired from multiple single cells 

for statistically significant conclusions. Cao et al. characterized the mechanisms of LD 

growth and formation upon lipid accumulation, as induced by exogenous FFA, at the single-

cell level using SRS microscopy.116 LD growth and formation was monitored by tracking 

the number, average size, and average SRS intensity of LDs in a single cell under various 

concentrations of FFA. To increase throughput and therefore statistical power, all 

experiments were performed on a microfluidic platform capable of delivering controlled 

concentration of FFA to uniquely addressable nanoliter cell culture colonies. Images were 

obtained at 2850 cm−1 to identify LDs (Fig. 6A). A second set of images were taken at the 

protein-rich CH3 stretching vibration at 2950 cm−1 to extract boundaries of single cells. 

Thresholding was performed to generate a LD and cell mask. The position and morphology 

of each LD was then recorded and assigned to an individual cell (Fig. 6B). In this 

investigation, researchers found that lipid accumulation in nonadipocyte cells is mainly 

reflected in the increase of LD number, as opposed to an increase in their size or lipid 

concentration.
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5. From lipidomic to multiomic analysis

Highly-multiplexed barcoding strategies and automated fluid handling has now made it 

possible to profile the transcriptome from thousands of single cells in one experiment. 

However, in order to understand the correlation between gene expression and metabolic 

states at the single-cell level, multiple measurements must be made on the same single cell. 

Because CRS imaging in non-destructive, cells can be sequenced directly downstream of 

lipidomic analysis, thereby making implementation of multi-omic approaches possible. In 

this section, we will discuss the applicability of utilizing the developed microfluidic and 

microscopic platforms for combined single-cell genomic and lipidomic analysis.

5.1. Microfluidic Platforms

Microfluidic technology has proven critical for increasing the throughput of NGS techniques 

permitting profiling of genome-wide features from a large number of single cells. 

Implementation of single-cell sequencing requires single-cell isolation. In microfluidic 

platforms, this is typically achieved by valve-based compartmentalization,117,118 droplet 

encapsulation,119,120 and microwell separation.121,122 After single-cell isolation, 

downstream library preparation reactions are implemented. Another advantage of 

microfluidic devices is the optical transparency of the polymer used for chip fabrication, 

polydimethylsiloxane (PDMS), which enables researchers to visualize sequencing protocols 

in real-time using a microscope. Because of the optical transparent nature of microfluidic 

devices and the necessity to physically isolate single cells, lipidomic and genomic analysis 

can be performed on the same single cell by acquiring images upstream of library 

preparation reactions (Fig. 7A).

Streets et al. developed a microfluidic platform for whole-transcriptome profiling of single 

cells.118 In this device, cells were isolated in nanoliter-scale trapping chambers using a 

valve-based strategy. CRS imaging can be performed while cells are trapped thereby 

allowing researchers to perform combined lipidomic and genomic analysis on the same cell. 

Lane et al. integrated epifluorescence microscopy with scRNA-seq on a commercial 

microfluidic platform, Fluidigm C1.123 They used this approach to measure both the 

dynamics of activation for a specific transcription factor and the global transcriptional 

response in the same individual cell. Instead of fluorescence microscopy, label-free CRS 

imaging can be implemented on this platform for combined lipidomic and genomic analysis 

on the same cell. Gierahn et al4124 and Bose et al.125 developed platforms for massively 

parallel scRNA-seq based on gravitational settling of single cells in subnanoliter and 

picoliter-scale microwells respectively. As cells are stationary while isolated in microwells, 

this solid-phase capture can be utilized for high-resolution CRS imaging upstream of library 

preparation reactions. Zhang et al. developed a flow cytometer based on Raman scattering 

for fast, high-throughput single-cell analysis.126 They developed a multiplex stimulated 

Raman scattering flow cytometry (SRS-FC) technique for measuring chemical contents of 

single cells. This technique can be extended for quantifying lipid content in single cells. 

These cells can then be isolated using droplet encapsulation platforms119,120 for scRNA-seq. 

Thus coupling SRS-FC with droplet encapsulation-based microfluidic platforms will allow 

researchers to perform combined lipidomic and genomic analysis on the same cell. Such 
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coupled datasets will transform the way we understand single-cell biology by enabling 

researchers to study the correlation between single-cell phenotype and gene expression 

profile.

5.1.1. High-Speed CRS Imaging—Microfluidic devices have enabled researchers to 

perform single-cell analysis in a high-throughput fashion. In the previous paragraph, we 

discussed the applicability of microfluidic platforms for retrieving lipidomic (CRS imaging) 

as well as transcriptomic (scRNA-seq) information from the same single cell, thereby 

advancing towards multi-omic approaches. However, implementation of such coupled 

experiments on hundreds to thousands of single cells will require application of high-speed 

CRS imaging techniques for fast single-cell lipidome profiling. As discussed previously, 

hyperspectral imaging techniques are essential for profiling the distribution of multiple 

cellular lipids simultaneously. Thus, it becomes critical to employ hyperspectral CRS 

techniques capable of rapid spectral acquisition at microsecond scale. Recent developments 

in CARS and SRS instrumentation have been influential in accelerating the spectral 

acquisition rate. For example, Liao et al. demonstrated parallel acquisition of SRS signal 

over 180 cm−1 bandwidth (~20 spectral data points) with 42 μs pixel dwell time using 

spectrally focused laser pulses and a homebuilt microsecond optical delay-line tuner.127 He 

et al. integrated a galvanometer mirror-based rapid-scanning optical delay line with 

spectrally focused laser pulses to acquire a spectrum with 20 data points in 40 μs.128 Liao et 
al. built an array of tuned amplifiers for lock-in free parallel acquisition of SRS signal over 

180 cm−1 bandwidth (~20 spectral data points) with 32 μs pixel dwell time using 

multiplexed SRS.129,130 Alshaykh et al. integrated a rapid acoustooptic delay line with 

spectrally focused laser pulses to achieve parallel acquisition of SRS signal over 180 cm−1 

bandwidth (~20 spectral data points) with 12.8 μs pixel dwell time.131 Hashimoto et al. 
coupled a rapid-scanning retro-reflective optical path length scanner with a Fourier-

transform CARS (FT-CARS) system to accomplish spectral acquisition rate of 20,000 

spectra/second over 1300 cm−1 bandwidth (~130 spectral data points).132 Tamamitsu et al. 
updated this system to incorporate a more rapidly scanning optical delay line thereby 

achieving spectral acquisition rate of 50,000 spectra/sec (~500 spectral data points).133 

Recently, Coluccelli et al. demonstrated parallel detection of CARS signal with Raman 

shifts of ~ 3000 cm−1 using FT-CARS. The system was based on a single high-power Yb-

fiber laser source coupled to a FT interferometer with pixel dwell time of 160 μs (~675 

spectral data points).134 Thus, such studies focused on development of rapid CRS imaging 

techniques demonstrate the promise of coupling high-content spectral imaging with high-

throughput single-cell analysis.

5.2. Microscopic Platforms

An alternative to physical isolation for single-cell genomic analysis is to employ techniques 

that turn the genomic information into optical information in situ. Fluorescence in situ 
hybridization (FISH) is a technique that uses fluorescent probes that bind specifically to 

complementary nucleic acid sequences. Thus, researchers can obtain spatial information 

about the distribution and subcellular localization of specific DNA or RNA molecules. In-
situ sequencing leverages FISH to extract sequence information from tens to hundreds of 

targeted transcripts for large scale gene expression profiling in single cells.135-137 Such 
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methods preserve the microenvironment of the biological sample allowing single molecule 

RNA sequencing and localization without removing cells from their original context. These 

emerging technologies are enabling a new-wave of spatial transcriptomic studies, which link 

single-cell gene expression to cellular niche in a tissue or organ. Since FISH techniques are 

fundamentally based on imaging, quantitative CRS techniques for lipidomic analysis can be 

combined with in situ sequencing for multi-omic single-cell analysis. Figure 7B illustrates 

how single-cell transcriptomics might be combined with CRS-based single-cell lipidomics.

6. Conclusion

Coherent Raman scattering (CRS) techniques have become an essential tool for profiling 

LDs in single-cells by enabling researchers to quantify intracellular lipids in a non-

destructive and time-resolved fashion. As the development of CRS instrumentation 

progresses towards higher specificity, sensitivity, and faster hyperspectral imaging, and next 

generation sequencing techniques advance towards higher throughput single-cell genomic 

analysis with lesser bias, coupling these techniques will lead to a more acute understanding 

of the regulation of metabolic pathways. For example, adipocytes display a wide range of 

functions and phenotypes, from energy storage in large unilocular LDs (white adipocytes) to 

thermogenic lipolysis of small LDs (brown adipocytes). Adult humans were thought to only 

have white adipose tissue with brown adipose tissue being essentially absent after infancy. 
138,139 In the early 2000s, observations in the field of nuclear medicine started challenging 

this notion.140,141 Multiple studies performing positron emission tomography (PET) with 

[18F]-fluorodeoxyglucose (FDG) for staging of cancer observed increased uptake of glucose 

in tumor-unrelated areas.140,141 These areas were found in the neck and shoulder region and 

presented itself with features of adipose tissue. It was hypothesized that this FDG uptake 

could represent activated brown adipose tissue in adult humans and this was finally 

demonstrated by three independent studies in 2009.142-144 Now, the existence of brown 

adipose tissue in adult humans is a well-accepted fact in the research community. Rodents 

also have a third kind of adipocyte called beige adipocyte, which has a different 

developmental origin from brown adipocytes.145 This fact naturally raises the question of 

whether humans also possess beige adipocytes. Interestingly, recent investigations of human 

brown adipocytes have reported the mixed presence of presumed beige adipocytes.146,147 

These claims have been reported based on the upregulation of beige adipocyte markers as 

identified in rodents. Consequently, it is clear that we are only just beginning to understand 

and appreciate the vast cellular diversity of human adipose tissue. These data raise some 

critical questions about the composition of human adipose tissue that might only be 

addressed with single-cell measurements. Technology that couples CRS for lipid profiling 

and RNA-sequencing for gene expression analysis in single cells could greatly advance our 

understanding of adipocyte heterogeneity. We anticipate that imaging and sequencing single 

cells will be the next wave of multi-omic single-cell analysis.
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Figure 1. 
Pipeline of mass spectrometry (MS) and microscopic quantitative imaging for lipidomic 

analysis (a) In MS-based techniques, lipid is extracted from bulk cells. Extracted lipid can be 

separated using a gas/liquid chromatographic column before mass spectrometric detection, 

or directly infused in mass spectrometer for untargeted detection. (b) In quantitative 

imaging-based techniques, multiple live cells in the field of view are first imaged non-

destructively to generate a lipid-specific contrast. The image is then computationally 

analyzed to segment cells and quantify properties of subcellular lipid droplets on the single-

cell level.
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Figure 2. 
Vibrational imaging of lipids using coherent Raman scattering. (A) Spontaneous Raman 

spectra of oleic acid. The red solid line indicates asymmetric stretching vibrational mode of 

the carbon–hydrogen bond at 2,845 cm-1. (B) Schematic of excitation and detection for 

coherent Raman scattering. For both coherent anti-Stokes Raman scattering (CARS) and 

stimulated Raman scattering (SRS)imaging, a characteristic vibrational mode of the CH2 

bond in lipids is excited with two incoming photons at the pump (ωp) and Stokes (ωs) 

frequency. Stimulated Raman loss (SRL) is detected as a loss in the pump intensity and 

stimulated Raman gain (SRG) is detected as a gain in the Stokes intensity. CARS is detected 

at the anti-Stokes frequency, ωAS.
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Figure 3. 
Multiplex coherent anti-Stokes Raman scattering (CARS) imaging of 3T3-L1-derived 

adipocyte to map the composition and packing of individual lipid droplets. Cells were 

incubated in a 1:3 mix of unsaturated : saturated fatty acid (A) Brightfield image of an 

adipocyte. Spontaneous Raman-like spectra in the (B) CC-stretch and (C) CH-stretch 

regions for locations indicated (in D). Retrieved spectra was then analyzed for mapping the 

(D) lipid concentration, (E) acyl chain unsaturation and (F) acyl chain order on the same 

adipocyte. Reprinted from Biophysical Journal, Volume 95, Issue 10, H. A. Rinia, K. N. J. 

Burger, M. Bonn and M. Müller, Quantitative Label-Free Imaging of Lipid Composition and 

Packing of Individual Cellular Lipid Droplets Using Multiplex CARS Microscopy, Pages 

4908-4914, Copyright (2018), with permission from Elsevier.
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Figure 4. 
Monitoring lipid droplet formation during differentiation of 3T3-L1 cells using CARS at 

2845 cm-1. Images were taken at different times after adding differentiation induction 

media: (A) 0 h, (B) 24 h, (C) 48 h, (D) 60 h, (E) 96 h, and (F) 192 h. Republished with 

permission of American Soc for Biochemistry & Molecular Biology, from Vibrational 

imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering 

microscopy, X. Nan, J.-X. Cheng and X. S. Xie, volume 44, edition 11, Copyright (2018); 

permission conveyed through Copyright Clearance Center, Inc.
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Figure 5. 
Hyperspectral stimulated Raman scattering (hSRS) imaging for mapping three types of 

polymer beads with overlapping but distinct Raman spectra (A) Spontaneous Raman spectra 

of the three polymer beads. The black solid line indicates overlapping Raman spectra at 

3028 cm-1 (B) stimulated Raman scattering (SRS) imaging of the three polymer beads at 

3028 cm-1 with different color arrows pointing out corresponding beads (C) SRS spectra for 

the three polymer beads pointed out by the arrows (in B). (D) Color-code distribution of the 

three polymer beads generated using hSRS imaging coupled with spectral decomposition. 

PMMA: Poly (methyl methacrylate). Reprinted with permission from D. Fu, G. Holtom, C. 

Freudiger, X. Zhang and X. S. Xie, J. Phys. Chem. B, 2013, 117, 4634–4640 Copyright 

(2018) American Chemical Society.
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Figure 6. 
Stimulated Raman scattering (SRS) image processing pipeline for determining cellular 

boundaries and characterizing lipid droplets in single cells. (A) three-dimensional lipid-

specific images were acquired at 2850 cm-1. The signal was processed to generate a lipid 

droplet mask. The lipid droplet mask was analyzed for three-dimensional morphological 

characterization (B) three-dimensional protein-specific images were acquired at 2950 cm-1 

for cell boundary segmentation and cell mask generation. The position of each LD was then 

recorded and assigned to an individual cell. Reprinted with permission from C. Cao, D. 

Zhou, T. Chen, A. M. Streets and Y. Huang, Anal. Chem., 2016, 88, 4931–4939 Copyright 

(2018) American Chemical Society.

Gupta et al. Page 24

Analyst. Author manuscript; available in PMC 2020 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Combining lipidomic and genomic analysis at the single-cell level. (A)Lipidomic and 

genomic analysis using microfluidic single-cell isolation. A single cell is physically isolated 

in a small chamber using valve-based compartmentalization. While the cell is trapped, 

images are acquired in a non-destructive fashion using coherent Raman scattering (CRS) 

imaging for lipidomic analysis. The cell is then pushed downstream for library preparation 

and finally sequenced using next generation sequencing (NGS) techniques. (B) Lipidomic 

and genomic analysis using microscopy and computational cell-segmentation. Multiple live 

cells are imaged on a coverglass using CRS. Individual cells are then computationally 

isolated using object recognition algorithms and images are analyzed for lipidomic analysis 

at the single-cell level. The transcriptome of the same cells is then profiled using in-situ 

sequencing techniques.
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