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ABSTRACT OF THE DISSERTATION

Towards Leveraging Short Tandem Repeats for Large Scale Genome-Wide Association
Studies

by

Shubham Saini

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Melissa Gymrek, Chair

Most of the efforts in human genetics are directed towards identifying and characterizing

genetic variants that impact human traits, achieved by examining relationships between traits and

variants. A Genome Wide Association Study (GWAS) quantifies statistical association between

genetic variation and phenotypes. These statistical associations can tell us about the biological

mechanisms affecting the phenotype and can allow us to predict the phenotype from genetic

information in a clinical setting. However, the majority of GWAS datasets have been generated

with commodity genotype arrays of single-nucleotide polymorphism (SNP) that fail to explain

the majority of heritability for many complex traits even with large sample sizes.
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One compelling hypothesis explaining the missing heritability dilemma is that complex

variants, such as multi-allelic repeats not in strong linkage with common SNPs, are important

drivers of complex traits but are largely invisible to current analyses. Short tandem repeats (STRs),

consisting of repeated motifs of 1–6bp in tandem, comprise more than 3% of the human genome.

Multiple lines of evidence support a role of STRs in complex traits, particularly in neurological

and psychiatric phenotypes. However, existing technologies have not allowed for systematic STR

association studies.

To overcome these challenges, we recently generated a reference STR+SNP haplotype

panel that enables imputation of STR genotypes into SNP genotypes available for most GWAS

cohorts. Our imputation pipeline achieves a high concordance and can be used to impute nearly

500,000 STRs genome-wide. Next, we leveraged our reference haplotype panel to impute STRs

into GWAS data for more than 50,000 samples from the Psychiatric Genomics Consortium (PGC)

to perform a genome-wide analysis of associations between STR lengths and schizophrenia.

In this dissertation, I demonstrate an end-to-end pipeline for conducting large biobank

scale GWAS using STRs that serves as one of the initial studies which researchers can find useful

for incorporating complex variants into their analysis.
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Chapter 1

Introduction

1.1 The Human DNA

The human genome is a 3 billion base pairs long nucleic acid sequence, encoded as 23

pairs of chromosome. Humans are diploid, meaning they carry two copies of each chromosome,

with one inherited each from the mother and father. The Human Genome Project [1, 2] produced

the first complete reference of the human genome in 2001. Now, nearly two decades later,

hundreds of thousands of human genomes have been completely sequenced, with resulting data

being used for biomedicine, forensics, anthropology and other sciences.

1.1.1 Classes of Genetic Variation

A variant refers to a specific region of the genome that differs between two individuals.

Different versions of the same variant are known as alleles. For example one individual may

have the allele C at a position of the genome, while another individual may have allele G. Figure

1.1 gives cartoon representation of these concepts. Mutations are the original source of genetic

variation. A mutation in an individual is said to have occurred when there is an allele change (a

1



Figure 1.1: A cartoon representation of a genotype, a haplotype, an allele, a heterozygous
variant, and a homozygous variant. The alternate notation assumes the reference allele as 0 and
the alternate allele as 1. The genotype can be expressed as the sum of the two alleles.

change at a site in the genome) while inheriting DNA from the parents.

Human genomes have different types of genetic variants. The simplest of them are:

1. Single base pair mutations, also called Single Nucleotide Polymorphisms (SNPs) result

from mutations of a single base pair.

2. Insertion or Deletion, also called InDels, result from insertion of deletion of a sequence of

bair pairs as compared to the reference human genome.

3. Structural Variations (SV) occur over larger DNA regions. This category includes both

Copy Number Variations (CNVs) and Rearrangements of regions of the genome that may

span thousands of base pairs.

The probability of a mutation happening at a site is referred to as the average mutation

rate. Mutation rates are different for different genetic variant types. On an average, 50 SNP

mutations, 3 InDel mutations,and 0.2 structural variant mutations are observed genome-wide

per person [3]. These mutation rates imply that most human genomes are highly (around 99.5%)

similar, and differ at a small fraction of sites. With a total of 3 billion base pairs across all 23

chromosomes combined, the number of differences expected between two human genomes is

2



around 20 million base pairs [3], or 1 SNP every 150 base pairs.

1.1.2 Short Tandem Repeats

Short tandem repeats (STRs), consisting of repeated motifs of 1–6 bp in tandem, comprise

more than 3% of the human genome. Multiple lines of evidence support a role of STRs in

complex traits, particularly in neurological and psychiatric phenotypes. Due to their rapid

mutation rates, STRs exhibit high rates of heterozygosity and likely contribute at least as many

de novo mutations per generation as SNPs. Furthermore, STRs have been shown to play a

significant role in regulating gene expression, splicing, and DNA methylation. Intriguingly,

more than 30 Mendelian disorders are caused by STR expansions via a range of mechanisms,

including polyglutamine aggregation (Huntington’s Disease, ataxias), hypermethylation (Fragile-

X Syndrome), and RNA toxicity (ALS/FTD). Furthermore, causal STRs driving existing GWAS

signals have already been identified.

1.2 Genotype Phasing and Imputation

The human genome is diploid in nature, with one copy of each chromosome inherited from

the mother and one copy from the father. A genotype refers to an unordered, or unphased pair

of alleles at a single position, one from each chromosome, with no information about the parental

origin of the alleles. A haplotype refers to a phased sequence along a single chromosome with

the same parental origin. More precisely, a haplotype is a string of length k with each character

an element of {A,C,G,T}. We represent a haplotype as {A,C,G,T}k. Because the vast majority

of positions are bi-alleic, i.e. we have a maximum of two possible alleles, a haplotype can also

be represented as {0,1}k. Due to limitations of current genome sequencing technologies, it is

difficult to accurately separate the pair of chromosomes to obtain phased genotypes.

3



Figure 1.2: Genotype phasing: showing some of the possible haplotypes from the observed
genotypes. The variants within the dashed lines are homozygous, hence we do not need to phase
them. The alternate notation assumes the reference allele as 0 and the alternate allele as 1. The
genotype can be expressed as the sum of the two alleles.

We define the genotype phasing problem as follows: For a length k unphased genotype

string, there are 2(k−1) unique haplotype pairs that may explain the genotype. The objective of

the genotype phasing problem is to recover the two haplotypes out of 2(k−1) possible haplotypes

given an unphased genotype string. The problem can be formulated as follows:

Input : Genotype G = (g1,g2,g3, ...,gk), where gi ∈ {0,1,2} f or 1 <= i <= k

Output :Pair of haplotypes H = {h1,h2}, where h1,h2 ∈ {0,1}k

For many applications, haplotypes are more informative than unphased genotypes. Hap-

lotypes contain the history of a variant. We can use haplotypes for detecting natural selection,

4



Figure 1.3: Genotype imputation: process of inferring the missing variants in the study samples
using the reference haplotypes. Genotype imputation makes use of correlation between nearby
variants, as a result of Linkage Disequilibrium (LD). The figure on the right shows the decaying
correlation among different population groups as the genetic distance between two variants
increase.

i.e. finding how long until a variant becomes common in a population. This requires long range

haplotypes across large samples. Another important application of haplotypes of great medical

significance is analyzing effect of mutations. Gene function is determined by, among other things,

mutations on the two copies of the chromosome. If multiple mutations occur on the same copy of

the chromosome (also called cis mutations) only one gene is altered, whereas if mutations occur

on different copies of the chromosome (trans mutations), both the genes are altered. If at least one

copy of the gene is required, then multiple mutations in cis may be harmless, whereas mutations

in trans (known as compound heterozygosity) may lead to disease. Without phase information,

we cannot distinguish the difference.

Finally, a closely related problem to genotype phasing is genotype imputation that

require phased genotypes as an input. Early days of the Human Genome Project [1, 2] showed a

strong correlation between nearby SNPs, as a result of Linkage Disequilibrium (LD). Genotype

imputation is used to fill in the missing gaps in the genome by utilizing the Linkage Disequilibrium

(LD) structure between nearby sites. Since Whole Genome Sequencing (WGS), the process of
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determining the complete human genome at a single time is expensive when done across hundreds

of thousands of samples, geneticists make use of small subset of markers as this subset provides

information on the missing markers as well. The idea that small subset of variants provide useful

information about other variants forms the basis of genetic linkage studies that typically use <

10000 markers to survey entire human genome. We formulate the genotype imputation problem

as follows:

Input : Reference Haplotypes Hi = {Hi1,Hi2, ...,Hil}

Study Haplotypes h j = {h jm}

Output :Study Haplotypes h′j = {h j1,h j2, ...,h jl}

where Hil,h jm ∈ {0,1}, l ∈ L,m ∈M,M ⊂ L

i.e. we infer h jk, k ∈ L−M

1.3 Genome-Wide Association Studies (GWAS)

Most of the efforts in human genetics are directed towards identifying and characterizing

genetic variants that impact human traits, achieved by examining relationships between traits

and variants. A phenotype, also referred to as a trait, is a measured property of an individual. A

Genome Wide Association Studies (GWAS) quantifies statistical association between genetic

variation and phenotypes. These statistical associations can tell us about the biological mecha-

nisms affecting the phenotype and can allow us to predict the phenotype from genetic information

in a clinical setting.

The two main varieties of GWAS are studying quantitative traits or disease phenotypes.

Quantitative trait GWAS involves stuyding the association between genetic variants and quantita-

tive traits, for example height or BMI. Almost all quantitative trait GWAS are performed using an
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additive model that relies on the assumption that the means of the phenotypes depend additively

on the number of minor alleles in the genotype of the individuals. This can be achieved by fitting

a linear model y = µ+xβ+ ε where y is the phenotype, x is the genotype (0,1 or 2), µ is the mean

of genotype 0 and β is the effect of each copy of minor allele on the mean phenotype. On the

other hand, disease trait (or case-control traits) GWAS involve studying the association between

genetic variants and binary phenotypes like disease status. A generalized model like logistic

regression is fit when the phenotype is binary. The model explains the logarithm of the odds of

the disease by the genotype. Like a quantitative GWAS, we use an additive model and estimate

the effect size β that gives us the odds-ratio (or relative increase in odds between two genotypes)

on a log scale. log
(

Pr(Y=1|X=x)
Pr(Y=0|X=x)

)
= µ+ xβ. Here µ is the logarithm of odds for genotype 0 and β

is the log of odds ratio (logOR) between genotype 1 and 0 (and exp(β) is the corresponding odds

ratio)

GWAS based on linkage disequilibrium (LD) uses a small number of SNPs that character-

ize 80% of the genetic variation in a given population [4]. While these studies can identify SNPs

in correlation with the traits under study, they are just proxies for causal SNPs. In order to identify

the causal variants for a given trait, genotype imputation may be used to infer the missing genotype

markers using subset of available markers. Imputation works by using haplotype patterns in ref-

erence data of comprehensively typed samples to predict the missing variants in the study samples.

1.4 Towards Leveraging Short Tandem Repeats for Large-

Scale Genome-Wide Association Studies

While Genome-wide association studies (GWAS) have become increasingly successful at

identifying genetic loci significantly associated with complex traits in humans, common SNPs

still fail to explain the majority of heritability for most complex traits. One possible reason for
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this is that complex variants, such as multi-allelic repeats not in strong LD with common SNPs

are important drivers of complex traits.

Short tandem repeats (STRs), are 1-6bp repeats that comprise more than 3% of the human

genome. Multiple lines of evidence support a role of STRs in complex traits[5, 6, 7], particularly

in neurological and psychiatric phenotypes. Due to their rapid mutation rates[8], STRs exhibit

high rates of heterozygosity[9] and likely contribute at least as many de novo mutations per

generation as SNPs[10, 11]. Furthermore, STRs have been shown to play a significant role in

regulating gene expression[12, 13] , splicing[14, 15, 16], and DNA methylation[13]. Intriguingly,

more than 30 Mendelian disorders are caused by STR expansions via a range of mechanisms,

including polyglutamine aggregation (Huntington’s Disease, ataxias[17]), hypermethylation

(Fragile-X Syndrome[18]), and RNA toxicity (ALS/FTD[19]). Furthermore, causal STRs driving

existing GWAS signals have already been identified[20].

Although next-generation sequencing (NGS) can be used to directly genotype short

STRs, it is too expensive to perform on sufficiently large sample sizes. An alternative approach

is to impute STRs into existing SNP array datasets. Previous studies have demonstrated that

STRs are often in significant LD with nearby SNPs[21, 22, 23] and found that STRs and SNPs

provide complementary information about the evolutionary history of a genomic region. Despite

widespread SNP-STR LD, statistical phasing of STRs and SNPs is challenging for several reasons:

SNP-STR LD is notably weaker than SNP-SNP LD[23] due to the rapid mutation rates[8, 24]

and high prevalence of recurrent mutations in STRs. As a result, the relationship between STR

repeat number and SNP haplotype can be complex: the same STR allele may be present on

multiple SNP haplotypes. On the other hand, a single SNP haplotype may harbor multiple distinct

STR alleles. Furthermore, LD patterns at STRs vary widely as a function of properties of the

repeat, such as the repeat unit length, mutation rate, and mutation step size[23]. Finally, STRs are

prone to genotyping errors induced during PCR amplification[25, 26], further ambiguating phase

information.
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Figure 1.4: End-to-end pipeline for conducting large biobank scale GWAS using STRs.

In this dissertation, I demonstrate an end-to-end pipeline for conducting large biobank

scale GWAS using STRs that serves as one of the initial studies which researchers can find useful

for incorporating complex variants into their analysis (Figure 1.4). In Chapter 2, I present our

recently generated reference STR+SNP haplotype panel that enables imputation of STR genotypes

into SNP genotypes available for most GWAS cohorts. Our imputation pipeline achieves an

average imputed genotype concordance of 97% on European samples and can be used to impute

nearly 500,000 STRs genome-wide. Chapter 2, in full, contains material from Shubham Saini,

Ileena Mitra, Nima Mousavi, Stephanie Feupe Fotsing, Melissa Gymrek. ”A reference haplotype

panel for genome-wide imputation of short tandem repeats.” Nature Communications (2018).

I was a primary investigator and author of this paper. Finally, in Chapter 3, I present how we

leveraged our reference haplotype panel to impute STRs into GWAS data for more than 50,000

samples from the Psychiatric Genomics Consortium (PGC) to perform a genome-wide analysis of

associations between STR lengths and schizophrenia. Chapter 3, in full, contains material from

Shubham Saini, Brittany S Leger, Jonghun Park, PGC Schizophrenia Working Group, Vineet

Bafna, Alon Goren, Melissa Gymrek. ”Genome-wide analysis of the contributions of short

tandem repeat variants to schizophrenia risk”, which is currently being prepared for submission

for publication of the material. I was the primary investigator and author of this material.
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Chapter 2

A reference haplotype panel for

genome-wide imputation of short tandem

repeats

2.1 Introduction

Genome-wide association studies (GWAS) have become increasingly successful at iden-

tifying genetic loci significantly associated with complex traits in humans, largely due to the

enormous growth in available sample sizes[1, 2, 3]. Hundreds of thousands of individuals have

been genotyped using commodity genotyping arrays. These arrays take advantage of the corre-

lation structure between nearby variants induced by linkage disequilibrium (LD), which allows

genome-wide imputation based on genotypes of only a small subset of loci[4]. However, GWAS

based on single-nucleotide polymorphism (SNP) associations face important limitations. Even

with sample sizes of up to 100,000 individuals, common SNPs still fail to explain the majority of

heritability for many complex traits[2, 5].

One compelling hypothesis explaining the missing heritability dilemma is that complex
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variants, such as multi-allelic repeats not in strong LD with common SNPs, are important drivers

of complex traits but are largely invisible to current analyses. Indeed, dissection of the strongest

schizophrenia association, located in the major histocompatibility complex, revealed a poorly

tagged polymorphic copy number variant (CNV) to be the causal variant[6]. The signal could

not be localized to a single SNP and could only be explained after deep characterization of the

underlying CNV. This and subsequent discoveries[7, 8] highlight the importance of considering

alternative variant classes.

Short tandem repeats (STRs), consisting of repeated motifs of 1–6bp in tandem, comprise

more than 3% of the human genome[9]. Multiple lines of evidence support a role of STRs in

complex traits[10, 11, 12], particularly in neurological and psychiatric phenotypes. Due to their

rapid mutation rates[13], STRs exhibit high rates of heterozygosity[14] and likely contribute at

least as many de novo mutations per generation as SNPs[15, 16]. Furthermore, STRs have been

shown to play a significant role in regulating gene expression[17, 18] , splicing[19, 20, 21], and

DNA methylation[18]. Intriguingly, more than 30 Mendelian disorders are caused by STR expan-

sions via a range of mechanisms, including polyglutamine aggregation (Huntington’s Disease,

ataxias[22]), hypermethylation (Fragile-X Syndrome[23]), and RNA toxicity (ALS/FTD[24]).

Furthermore, causal STRs driving existing GWAS signals have already been identified[25].

Existing technologies have not allowed for systematic STR association studies. Next-

generation sequencing (NGS) can be used to directly genotype short STRs, but NGS is still

too expensive to perform on sufficiently large cohorts for GWAS of most complex traits. An

alternative approach is to impute STRs into existing SNP array datasets. Previous studies have

demonstrated that STRs are often in significant LD with nearby SNPs[26, 27, 28] and found

that STRs and SNPs provide complementary information about the evolutionary history of a

genomic region. Despite widespread SNP-STR LD, statistical phasing of STRs and SNPs is

challenging for several reasons: SNP-STR LD is notably weaker than SNP-SNP LD[28] due

to the rapid mutation rates[13, 29] and high prevalence of recurrent mutations in STRs. As a
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result, the relationship between STR repeat number and SNP haplotype can be complex: the

same STR allele may be present on multiple SNP haplotypes. On the other hand, a single SNP

haplotype may harbor multiple distinct STR alleles. Furthermore, LD patterns at STRs vary

widely as a function of properties of the repeat, such as the repeat unit length, mutation rate,

and mutation step size[28]. Finally, STRs are prone to genotyping errors induced during PCR

amplification[30, 31], further ambiguating phase information.

Sequencing related samples allows haplotype resolution by directly tracing inheritance

patterns. The recent generation of deep NGS using PCR-free protocols for hundreds of nuclear

families in combination with accurate tools for genotyping STRs from NGS[32] now enables

applying this technique genome-wide. Here, we profile STRs in 479 families and use pedigree

information to phase STR genotypes onto SNP haplotypes to create a genome-wide reference

for imputation. We use this panel to impute STRs into an external dataset of similar ethnic

background with average 97% concordance with observed STR genotypes. Imputation accuracy

varies across STRs, ranging from nearly perfect concordance at bi-allelic STRs to around 70% for

highly polymorphic forensic markers. We show that STR imputation achieves greater power than

individual SNPs to detect underlying STR associations and demonstrate the utility of our panel by

detecting STRs not previously known to be associated with gene expression. Finally, we impute

genotypes at STRs previously implicated in human disorders and show that we could accurately

identify specific SNP haplotypes associated with long normal alleles most at risk for expansion.

To facilitate use by the community, we release a phased SNP+STR haplotype panel for

samples genotyped as part of the 1000 Genomes Project (see Data availability). This resource

will enable large-scale studies of STR associations in hundreds of thousands of available SNP

datasets, and will likely yield significant new insights into complex traits.
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2.2 Results

2.2.1 A catalog of STR variation in 479 families

a b

d

c

1.08 1.1 1.12 1.14 1.16 1.18

Number of STRs genotyped (millions)

0

50

100

150

200

250

N
um

be
ro

fs
am

pl
es

0 250 500 750 1000 1250 1500 1750

Number of samples genotyped

104

N
um

be
r o

f S
TR

s 
(lo

g 10
)

105

106

0.90 0.92 0.94 0.96 0.98 1.00

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

M
en

de
lia

n
in

he
rit

an
ce

ra
te

HipSTR Q threshold

Mono-
Di-
Tri-
Tetra-
Penta-
Hexa-
Un�ltered

Mean
Mean

Expected heterozygosity
1000G (lobSTR)

E
xp

ec
te

d 
he

te
ro

zy
go

si
ty

S
S

C
 (H

ip
S

TR
)

100

101

102

103
Number of STRs e

HD

SC
A1

SC
A1

7

SC
A2

DR
PL

A

SC
A8

SC
A3

DM
1

SC
A6

SC
A7

SC
A1

2

HD
L

0

10

20

30

40

50

60

# 
R

ep
ea

ts

Tredparse
Previously reported

0.0 0.80.2 0.4 0.6
0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 2.1: A deep catalog of STR variation in the SSC cohort. a. Number of STRs called
per sample. Dashed line represents the mean of 1.14 million STRs per sample. b. Call rate
per locus. Dashed line represents the mean call rate of 90%. c. Mendelian inheritance rate
at filtered vs. unfiltered STRs. The x-axis gives the posterior genotype score (Q) returned
by HipSTR. The y-axis gives the average Mendelian inheritance rate for each bin across all
calls on chromosome 21. STRs that were homozygous for the reference allele in all members
of a family were removed. Colors represent different motif lengths. d. Per-STR expected
heterozygosity in SSC vs. 1000 Genomes. Only STRs with expected heterozygosity ¿0.095
in SSC are included. Color scale gives the log10 number of STRs represented in each bin.
e. Allele frequency distributions at pathogenic STRs obtained in SSC samples vs. previously
reported normal alleles. Blue=SSC, Gold=Previously reported. Boxes span the interquartile
range and horizontal lines give the medians. Whiskers extend to the minimum and maximum
data points. The y-axis gives the number of repeat units. Sources of previously reported allele
frequencies are described in detail in Methods. HD Huntington’s disease, SCA spinocerebellar
ataxia, DRPLA Dentatorubral-pallidoluysian atrophy, DM1 myotonic dystrophy type 1, HDL
Huntington’s disease-like 2

We first generated a genome-wide catalog of STR variation in a cohort of families included

in the Simons Simplex Collection (SSC) (see URLs). We focused on 1916 individuals from
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479 family quads (parents and two children) that were sequenced to an average depth of 30x

using Illumina’s PCR-free protocol. Based on comparison to 1000 Genomes Project samples,

we estimated the cohort to consist primarily of Europeans (83%), with 2.0%, 9.0%, and 3.6%

of East Asian, South Asian, and African ancestry, respectively (Supplementary Fig. S2.1). We

used HipSTR[32] to profile autosomal STRs in each sample. HipSTR takes aligned reads and

a reference set of STRs as input and outputs maximum likelihood diploid genotypes for each

STR in the genome. While HipSTR infers the entire sequence of each STR allele, we focus

here on differences in repeat copy number rather than sequence variation within the repeat itself.

To maximize the quality of genotype calls, individuals were genotyped jointly with HipSTR’s

multi-sample calling mode using phased SNP genotypes and aligned reads as input (Methods).

Multi-sample calling allows HipSTR to leverage information on haplotypes discovered across

all samples in the dataset to estimate per-locus error parameters and output genotype likelihoods

for each possible diploid genotype. Notably, our HipSTR catalog excluded most known STRs

implicated in expansion disorders such as Huntington’s Disease and hereditary ataxias, since even

the normal allele range for these STRs is above or near the length of Illumina reads[33, 34, 35, 36].

To supplement our panel, we applied a second STR genotyper, Tredparse[37], to genotype a

targeted set of known pathogenic STRs in our cohort (Supplementary Table S2.1). Tredparse

incorporates multiple features of paired-end reads to estimate the size of repeats longer than the

read length. For seven STRs called by both Tredparse and HipSTR, Tredparse genotypes were

used for downstream analyses.

An average of 1.14 million STRs passed HipSTR’s default filtering settings in each sample

(Fig. 2.1a). We obtained at least one call for 97% of all STRs in the HipSTR reference of 1.6

million STRs and for 15 of 25 STRs in the Tredparse reference with an average overall call rate of

90% (Fig. 2.1b). We applied additional stringent genotype quality filters to ensure accurate calls

for downstream phasing and imputation analysis. STRs overlapping segmental duplications, with

call rates ¡80%, or with genotype frequencies unexpected under Hardy-Weinberg Equilibrium
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were removed (Methods). We further removed STRs with low expected heterozygosity (¡0.095)

to restrict analysis to polymorphic STRs. We found that these filters increased the quality of our

calls, as evidenced by the average Mendelian inheritance rate of 99.8% and 97.9% at STRs that

passed and failed quality filters, respectively (Fig. 2.1c). After filtering, 453,671 and 9 STRs

from the HipSTR and Tredparse panels, respectively, remained in our catalog.

We further assessed the quality of our STR genotypes by comparing patterns of variation

from SSC to previous catalogs of STR variation obtained using a distinct set of samples and STR

genotyping methods. We found that per-locus heterozygosities (Methods) were highly concordant

with a catalog generated from the 1000 Genomes[38] Project data using lobSTR[39]. (Pearson

r=0.96; p < 10200; n=386,100) (Fig. 2.1d). Allele length distributions at known pathogenic

STRs observed in SSC matched closely to previously reported normal allele frequencies at each

STR (Fig. 2.1e). For STRs genotyped both by HipSTR and Tredparse, estimated repeat lengths

were highly concordant (average concordance 99.4%, Supplementary Table S2.1). Overall, these

results show that our catalog consists of robust STR genotypes suitable for downstream phasing

and imputation analysis.
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2.2.2 A genome-wide SNP+STR haplotype reference panel
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Figure 2.2: Creating a reference SNP-STR haplotype panel. a. Schematic of phasing
pipeline in the SSC cohort. To create the phased panel, STR genotypes were placed onto phased
SNP haplotypes using Beagle. Any missing STR genotypes were imputed. The resulting panel
was then used for downstream imputation from orthogonal SNP genotypes. Blue and red denote
phased and unphased variants, respectively. Positions in gray are homozygous. b. Concordance
of imputed STR genotypes vs. expected heterozygosity. Blue denotes observed per-locus values,
green denotes values expected under a random model and orange denotes values expected under
a naive model. Solid lines give median values for each bin and filled areas span the 25th to
75th percentile of values in each bin. x-axis values were binned by 0.1. Upper gray plot gives
the distribution of expected heterozygosity values in our panel. Concordance values are based
on the leave-one-out analysis in the SSC cohort. c. Per-locus imputation concordance in SSC
vs. 1000 Genomes cohorts. Color scale gives the log10 number of STRs represented in each
bin. Concordance values are based on the subset of samples from the 1000 Genomes deep
WGS cohort with European ancestry. d. Per-locus imputation concordance using HipSTR vs.
capillary electrophoresis genotypes. Each dot represents one STR. The x-axis and y-axis give
imputation concordance using capillary electrophoresis or HipSTR genotypes as a ground truth,
respectively. Concordance was measured in separate sets of 1000 Genomes European samples
for each technology. e. Concordance of imputed vs. 10X STR genotypes in NA12878 stratified
by concordance in SSC. STRs were binned by concordance value based on the leave-one-out
analysis. Concordance in NA12878 was measured across all STRs in each bin. Dots give
mean values for each bin and lines denote ±1 s.d. In all cases leave-one-out refers to analyses
performed in the SSC cohort
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We examined the extent of linkage disequilibrium between STRs and nearby SNPs using

two metrics. The first, termed length r2, is defined as the squared Pearson correlation between

STR allele length and the SNP genotype. The second, termed allelic r2, treats each STR allele

as a separate bi-allelic locus and is computed similar to traditional SNP-SNP LD (Methods).

Similar to previous studies[28], SNP-STR LD was dramatically weaker than SNP-SNP LD by

both metrics (Supplementary Fig. S2.2a) with length r2 generally stronger than allelic r2. We

additionally determined the best tag SNP (Methods) for each STR, which was on average 5.5kb

away (Supplementary Fig. S2.2b). Nearly all STRs were in significant LD (length r2 p¡0.05)

with the best tag SNP, suggesting that phasing would result in informative haplotypes.

We developed a pipeline to phase STRs onto SNP haplotypes leveraging the quad family

structure (Fig. 2.2a). Based on our LD analysis, we used a window size of ±50kb to phase each

STR separately using Beagle[40], which was recently demonstrated to perform well in phasing

multi-allelic STRs[41] and can incorporate pedigree information. Resulting phased haplotypes

from the parent samples were merged into a single genome-wide reference panel for downstream

imputation.

We first evaluated the utility of our phased panel for imputation using a leave-one-out

analysis in the SSC samples. For each sample, we constructed a modified reference panel with

that sample’s haplotypes removed and then performed genome-wide imputation. We measured

concordance, length r2, and allelic r2 between imputed vs. observed genotypes at each STR,

where observed refers to genotypes obtained by HipSTR or Tredparse. We additionally evaluated

imputation performance under two null models where genotypes were either imputed randomly

(random model) or always imputed as the most frequent diploid genotype (naive model) (Methods).

Imputed genotypes showed an average of 96.7% concordance with observed genotypes, compared

to 61.0% or 71.7% expected under the random and naive models, respectively (Table 2.1). As

expected, concordance was strongest at the least polymorphic STRs (Fig. 2.2b, Supplementary

Fig. S2.3a) and allelic r2 was highest for the most common alleles (Supplementary Fig. S2.3b).
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Length r2 was not strongly associated with expected heterozygosity, although the least and most

heterozygous STRs tended to have lower length r2 (Supplementary Fig. S2.3c). Imputation

metrics were weakly negatively correlated with distance to the best tag SNP (Pearson r=-0.06;

p=0.06, Pearson r=-0.04; p=0.27; and Pearson r=-0.06, p = 7.5× 10−5 between distance to

the best tag SNP and concordance, length r2, and allelic r2, respectively). To further evaluate

imputation performance at highly polymorphic STRs, we examined the CODIS STRs used in

forensic analysis (Supplementary Table S2.2). Per-STR concordances were highly correlated

with imputation results recently reported by Edge et al.[41] (Pearson r2=0.93; p = 6.3×10−6;

n=10), but were on average 8.8% higher (average concordance 69.1% vs. 60.3% using our panel

vs. in Edge et al.[41] restricting to STRs imputed in both studies), likely as a result of our

larger and more homogenous cohort. Per-locus imputation statistics for all STRs are reported in

Supplementary Data 1 and 2).

We next evaluated our ability to impute STR genotypes into external datasets. For this,

we focused on samples from the 1000 Genomes Project[38] with high quality SNP genotypes

obtained from low coverage whole-genome sequencing (WGS) (n=2504) or genotyping arrays

(n=2486 for Affy 6.0, and n=2318 for Omni 2.5). We validated imputed genotypes for subsets of

1000 Genomes samples using data obtained from three pipelines: (1) Illumina WGS+HipSTR, (2)

capillary electrophoresis, and (3) 10X Genomics+HipSTR, in each case using the orthogonal data

as the truth set. Each of these datasets evaluates a different aspect of our imputation pipeline. The

first tests whether a pipeline identical to that used to create our reference panel can achieve similar

performance on datasets collected by different groups using different protocols. Additionally,

since it consists of both Europeans and non-Europeans, it allows us to evaluate imputation

across a variety of population groups. The second tests whether our results are robust across

STR genotyping technologies and allows us to compare imputed STRs based on statistically

inferred HipSTR genotypes to those obtained experimentally using capillary electrophoresis. The

third returns phased genotypes, allowing us to directly compare inferred haplotypes and phase
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Table 2.1: Imputation performance summary. Results indicate mean across all STRs ana-
lyzed. Allelic r2 values include all common alleles (frequency at least 5%). Multi-allelic refers
to STRs with three or more common alleles. Naive and random denote the two null imputation
models as defined in the Methods

Panel
(n=number of

samples)

Ob-
served
concor-
dance

Naive
concor-
dance

Ran-
dom

concor-
dance

Ob-
served

length r2

Ran-
dom

length
r2

Ob-
served

allelic r2

Ran-
dom

allelic
r2

SSC—LOO
(n=1916)

96.7% 71.7% 61.0% 0.906 0.605 0.861 0.552

SSC—LOO
(multi-allelic)

94.3% 62.2% 48.5% 0.888 0.334 0.800 0.333

1000
Genomes—EUR

(n=49)
97.0% 75.1% 63.2% 0.921 0.678 0.892 0.543

1000
Genomes—EUR

(multi-allelic)
94.8% 66.6% 50.0% 0.900 0.334 0.828 0.314

1000
Genomes—AFR

(n=46)
90.6% 70.2% 57.9% 0.746 0.619 0.706 0.493

1000
Genomes—AFR

(multi-allelic)
85.6% 61.1% 44.4% 0.708 0.336 0.653 0.310

1000
Genomes—EAS

(n=45)
93.8% 77.2% 66.0% 0.823 0.690 0.781 0.557

1000
Genomes—EAS

(multi-allelic)
89.4% 69.7% 53.7% 0.780 0.336 0.663 0.313

information.

First, we used HipSTR to genotype STRs in separate high-coverage (30×) WGS datasets

available for 150 of the samples (see URLs) from European (n=50), African (n=50), and East

Asian (n=50) backgrounds. Per-locus concordance, length r2, and allelic r2 were highly concor-

dant between the SSC panel and 1000 Genomes samples of European origin (Pearson r=0.94,

0.63, and 0.85, respectively) (Fig. 2.2c; Supplementary Fig. S2.5; Table 2.1). Overall imputation
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performance did not vary when using phased genotypes obtained from WGS vs. Omni2.5 for

imputation (Supplementary Table S2.3). Concordance was noticeably weaker in African and East

Asian samples, likely due to different population background compared to the SSC samples and

lower LD in African populations[42].

Next, we compared imputed genotypes to capillary electrophoresis data[43] (see URLs)

available for a subset of samples in our panel at highly polymorphic STRs. After filtering non-

European samples and STRs that could not be reliably mapped to HipSTR notation (Methods),

41 samples and 206 STRs remained for comparison. We obtained an average overall concordance

of 76.9% with capillary genotypes compared with 76.4% expected based on HipSTR analysis.

Per-locus concordances based on HipSTR vs. capillary genotypes were strongly correlated

(Pearson r=0.83; p = 1.05×10−53; n=206) (Fig. 2.2d).

Finally, we compared imputed genotypes from the highly characterized NA12878 genome

to phased data available from 10X Genomics (see URLs), a synthetic long read technology. We

constructed a phased validation panel by calling HipSTR separately on reads from each phase

and combining with phased SNP genotypes (Methods, Supplementary Fig. S2.6). We could

obtain phased 10X calls for 116,764 of the STRs in our panel. We used the nearest heterozygous

SNP to each STR to match phase order between our panel and the 10X data, which allowed us

to directly compare imputed alleles and evaluate phase accuracy. Overall, imputed STR alleles

showed 96% concordance with those obtained from 10X and per-locus genotype concordance

was consistent with concordance metrics measured in SSC (Fig. 2.2e). Taken together, validation

of imputed STR genotypes against three separate truth sets demonstrates the accuracy of our

original SNP+STR haplotype panel and shows that our quality metrics are reliable indicators of

per-STR imputation performance across datasets.
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2.2.3 Imputation increases power to detect STR associations

We sought to determine whether our SNP+STR haplotype panel could increase power to

detect underlying STR associations over standard GWAS. First, we simulated phenotypes based

on a single causal STR and examined the power of the imputed STR genotypes vs. nearby SNPs

to detect associations. We focused primarily on a linear additive model relating STR dosage,

defined as the average allele length, to quantitative phenotypes (Fig. 2.3a), since the majority

of known functional STRs follow similar models (e.g., refs. [17, 21, 44, 45]). Association

testing simulations were performed 100 times for each STR on chromosome 21 in our dataset

(Methods). As expected, the strength of association for each variant as measured by the negative

log10 p-value was linearly related with its length r2 with the causal variant (Fig. 2.3b). On

average, imputed STR genotypes explained 17.7% more variation in STR allele length compared

to the best tag SNP (mean length r2=0.92 and 0.74 for imputed STRs vs. SNPs, respectively).

The advantage from STR imputation grew as a function of the number of common STR alleles

(Supplementary Fig. S2.7). Imputed genotypes showed a corresponding increase in power to

detect associations at a given p-value threshold (Fig. 2.3c). Similar trends were observed for

case–control traits (Supplementary Fig. S2.8). We additionally tested the ability of imputed STR

genotypes to identify associations due to non-linear models relating STR genotype to phenotype

(Supplementary Fig. S2.9). While both STR and SNP-based tests had limited power to detect

non-linear associations, per-allele STR association tests had higher power than the best tag SNP in

60% of simulations. Importantly, testing for complex models relating repeat length to phenotype

will only be possible when allele lengths are available, thus demonstrating an additional need for

STR imputation over SNP-based tests to detect these associations.

We next determined whether STR imputation could identify STR associations using real

phenotypes. We focused on gene expression, given the large number of reported associations

between STR length and expression of nearby genes in cis[17, 18] (termed eSTRs). To this

end, we analyzed eSTRs from samples in the Genotype-Tissue Expression [46] (GTEx) dataset
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Figure 2.3: STR imputation improves power to detect STR associations. a. Example
simulated quantitative phenotype based on SSC genotypes. A quantitative phenotype was
simulated assuming a causal STR (red). Power to detect the association was compared between
the causal STR, imputed STR genotypes, and all common SNPs (MAF¿0.05) within a 50kb
window of the STR (gray). b. Strength of association (-log10 p) is linearly related with LD with
the causal variant. For SNPs, the x-axis gives the length r2 calculated using observed genotypes.
For the imputed STR (blue), the x-axis gives the length r2 from leave-one-out analysis. c. The
gain in power using imputed genotypes is linearly related to the gain in length r2 compared to
the best tag SNP. Gray contours give the bivariate kernel density estimate. Top and right gray
area gives the distribution of points along the x- and y-axes, respectively. Power was calculated
based on the number of simulations out of 100 with nominal p¡0.05. d. Quantile-quantile
plot for eSTR association tests. Each dot represents a single STR×gene test. The x-axis gives
the expected log10 p-value distribution under a null model of no eSTR associations. Red and
blue dots give log10 p-values for association tests using HipSTR genotypes and imputed STR
genotypes, respectively. Black dashed line gives the diagonal. e. Comparison of eSTR effect
sizes using observed vs. imputed genotypes. Each dot represents a single STR×gene test. The
x-axis gives effect sizes obtained using imputed genotypes. Gray dots give the effect size in
GTEx whole blood using HipSTR genotypes. Purple dots give effect sizes reported previously
in lymphoblastoid cell lines. f, g Example putative causal eSTRs identified using imputed STR
genotypes. Left, middle, and right plots give HipSTR STR dosage (red), imputed STR dosage
(blue), and the best tag SNP genotype (gray) vs. normalized gene expression, respectively. STR
dosage is defined as the average length difference from hg19. One dot represents one sample.
P-values are obtained using linear regression of genotype vs. gene expression. STR and SNP
sequence information is shown for the coding strand. Gene diagrams are not drawn to scale
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for which RNA-sequencing, WGS, and SNP array data were available. As a test case, we

imputed STR genotypes using SNP data for chromosome 21 and tested for association with

genes expressed in whole blood. For comparison, we additionally performed each association

using genotypes obtained from WGS using HipSTR (Methods). A total of 2452 STR × gene

tests were performed in each case. Association p-values were similarly distributed across both

analyses and showed a strong departure from the uniform distribution expected under a null

hypothesis of no eSTR associations (Fig. 2.3d). For all nominally significant associations

(p¡0.05), effect sizes were strongly correlated when using imputed vs. HipSTR genotypes

(Pearson r=0.99; p = 1.01×10−79, n=97). Furthermore, effect sizes obtained from imputed data

were concordant with previously reported effect sizes in a separate cohort using a different cell

type (lymphoblastoid cell lines[17]) (Pearson r=0.79; p=0.0042, n=11) (Fig. 2.3e).

We identified genes for which the STR is most likely the causal variant and tested

whether STR imputation had greater power to identify causal eSTRs compared to SNP-based

analyses. We used ANOVA model comparison to determine genes for which the STR explained

additional variation over the top SNP (Methods). We additionally applied CAVIAR[47] to fine-

map associations using the most strongly associated STR and the top 100 associated SNPs for

each gene (Methods). We identified three genes with ANOVA p¡0.05 for which the STR was the

top variant returned by CAVIAR. One example, a CG-rich STR in the promoter of CSTB, was

previously demonstrated to act as an eSTR[48] and expansions of this repeat are implicated in

myoclonus epilepsy[49]. In each case, imputed STR genotypes were more strongly associated

with gene expression compared to the best tag SNP (Fig. 2.3f–g, Supplementary Table S2.4).
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2.2.4 Imputing normal alleles at known pathogenic STRs
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Figure 2.4: SNP haplotypes distinguish allele lengths at known pathogenic STRs. a. Ex-
ample SNP-STR haplotypes inferred in European samples at a polyglutamine repeat in ATN1
implicated in DRPLA. Each column represents a SNP from the founder haplotype reported by
Veneziano et al. Each row represents a single haplotype inferred in 1000 Genomes Project phase
3 European samples, with gray and black boxes denoting major and minor alleles, respectively.
Haplotypes are grouped by the corresponding STR allele. The number of SNP haplotypes
for each group of STR alleles is annotated to the left of each box. Alleles seen fewer than
10 times in 1000 Genomes samples were excluded from the visualization. b. Comparison of
imputed vs. observed STR genotypes in SSC samples at the DRPLA locus. The x-axis gives the
maximum likelihood genotype dosage returned by HipSTR and the y-axis gives the imputed
dosage. Dosage is defined as the sum of the two allele lengths of each genotype relative to the
hg19 reference genome. The bubble size represents the number of samples summarized by each
data point. c. Distribution of DRPLA repeat length vs. similarity to the pathogenic founder
haplotype. The founder haplotype refers to the SNP haplotype reported by Veneziano, et al. on
which a pathogenic expansion in ATN1 implicated in DRPLA likely originated. The x-axis gives
the Hamming distance between observed haplotypes and the founder haplotype, computed as
the number of positions with discordant alleles. White dots represent the median length
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Finally, to determine whether alleles at known pathogenic STRs could be accurately

imputed, we examined results of our imputation pipeline at 12 STRs previously implicated in

expansion disorders that were included in our panel (Table 2.2). Our analysis focused on alleles

in the normal repeat range for each STR, since pathogenic repeat expansions at these STRs

are unlikely to be present in the SSC cohort. Notably, accurate imputation of non-pathogenic

allele ranges is still informative as (1) long normal or intermediate size alleles may result in

mild symptoms in some expansion disorders[50, 51, 52] (2) longer alleles are more at risk for

expansion[53] and (3) allele lengths below the pathogenic range could potentially be associated

with more complex phenotypes[51].

Similar to the CODIS markers, these STRs are highly polymorphic with 10 or more

alleles per locus. In all cases, imputed genotypes were more strongly correlated with observed

genotypes compared to the best tag SNP. Where both HipSTR and Tredparse genotypes were

available, concordance results were nearly identical across all STRs (Supplementary Table

S2.5). Visualization of SNP-STR haplotypes at the CAG repeat implicated in dentatorubral-

pallidoluysian atrophy (DRPLA)[54] reveals a typical complex relationship between STR allele

length and local SNP haplotype (Fig. 2.4a), with the same STR allele often present on multiple

SNP haplotype backgrounds. Still, for most STRs there is a clear association of specific haplotypes

with different allele length ranges allowing accurate imputation across a large range of allele sizes

(Fig. 2.4b, Supplementary Fig. S2.10).

Resolution of SNP-STR haplotypes can be used to infer the mutation history of a specific

STR locus[26, 27]. Notably, for many STR expansion orders it has been shown that pathogenic

expansion alleles originated from a founder haplotype[55, 56, 57, 58] associated with a long

allele. We compared SNP haplotypes at the DRPLA locus in our dataset to a previously reported

founder haplotype[55]. In concordance with the hypothesis of a single founder haplotype, we

found that SNP haplotypes with smaller Hamming distance to the known founder haplotype had

longer CAG tracts (Pearson r=-0.79; p < 10−200). This finding demonstrates that while we were
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Table 2.2: Imputation performance at known pathogenic repeats. HD Huntington’s disease;
SCA spinocerebellar ataxia, DRPLA Dentatorubral-pallidoluysian atrophy, DM1 myotonic
dystrophy type 1, HDL huntington’s disease-like 2. The best tag SNP for an STR is defined as
the SNP within 50kb with the highest length r2. LOO refers to leave-one-out analysis in the
SSC cohort r2

bestSNP gives the length r2 between STR genotype length and the genotype of the
best tagging SNP within 50kb of the STR

Locus Motif
Disor-

der
Length

r2

LOO

Ob-
served
concor-
dance

Naive
con-
cor-

dance

Random
concor-
dance

Best tag
SNP

r2

best-
SNP

3:63898362 CAG SCA7 0.75 92.0%
75.6%

63.9% rs58676857 0.57

4:3076604 CAG HD 0.47 64.3%
39.4%

27.5% rs762855 0.11

5:146258292
CAG SCA12 0.88 93.8%

59.9%
46.3% rs2082405 0.64

6:16327867 CAG SCA1 0.72 85.3%
55.0%

33.8% rs17860797 0.04

6:170870996
CAG SCA17 0.51 80.0%

39.8%
31.5% rs9472489 0.15

12:112036755
CAG SCA2 0.49 96.2%

88.2%
80.2%

rs148019457
0.28

12:7045892 CAG
DR-
PLA

0.86 81.2%
38.8%

24.9% rs34199021 0.69

13:70713516
CTG /
CAG

SCA8 0.87 84.7%
27.0%

24.0% rs9564660 0.39

14:92537355
CAG SCA3 0.88 86.4%

33.8%
27.5% rs7144492 0.27

16:87637894
CAG HDL 0.55 88.2%

55.2%
46.5% rs2434850 0.34

19:46273463
CTG DM1 0.87 86.9%

39.4%
30.8% rs7254351 0.44

19:13318673
CAG SCA6 0.81 92.0%

44.1%
39.2% rs2070737 0.63

unable to directly impute pathogenic expansion alleles, STR imputation can accurately identify

which individuals are at risk for carrying expansions or pre-pathogenic mutations and the inferred

haplotypes can reveal the history by which such mutations arise.
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2.3 Discussion

Our study combines available whole-genome sequencing datasets with existing bioin-

formatics tools to generate the first phased SNP+STR haplotype panel allowing genome-wide

imputation of STRs into SNP data. Despite their exceptionally high rates of polymorphism, 92%

of STRs in our panel could be imputed with at least 90% concordance, and 38% achieved greater

than 99% concordance. Imputation performance varied widely across STRs, primarily due to

differences in polymorphism levels across loci. Bi-allelic STRs could be imputed nearly perfectly

(average concordance ¿99%, compared to 80% expected under a naive model), whereas STRs

with the highest heterozygosity, including forensic markers and known pathogenic repeats, could

be imputed to around 70% concordance (compared to approximately 50% expected under a naive

model). We additionally show that imputation improves power to detect STR associations over

standard SNP-based GWAS and could detect both known and previously unknown associations

between STR lengths and expression of nearby genes.

A widely recognized limitation of GWAS is the fact that common SNP associations still

explain only a small fraction of heritability of most traits. Multiple explanations for this have been

proposed, including minute effect sizes of individual variants and a potential role for high-impact

rare variation[59]. However, studies in large cohorts reaching hundreds of thousands of samples[3,

2, 1], as well as deep sequencing studies to detect rare variants[60], have so far not confirmed these

hypotheses. An increasingly supported idea is that complex variants not well tagged by SNPs may

comprise an important component of the missing heritability[10, 11, 12]. GWAS is essentially

blind to contributions from highly polymorphic STRs and other repeats, despite their known

importance to human disease and molecular phenotypes. Thus, STR association studies will

undoubtedly uncover additional heritability that is so far unaccounted for. Notably, while autism

phenotypes are available for the SSC families, this cohort is too small to perform a GWAS and

was specifically ascertained for families enriched for de novo, rather than inherited, pathogenic
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mutations. In future work our panel can be applied to impute STRs into larger cohorts for autism

and other complex traits for which tens of thousands of SNP array datasets are available.

Our initial haplotype panel faces several important limitations. First, the majority of

samples are of European origin, limiting imputation accuracy in other population groups. Second,

imputation accuracy is mediocre for the most highly polymorphic STRs, some of which will

ultimately have to be directly genotyped to adequately test for associations. Notably, our work

relied on existing tools originally designed for SNP imputation. Further work on computational

methods specifically for imputing repeats may be able to improve performance. Finally, thousands

of long STRs are filtered from our panel due to the limitation imposed by short read lengths.

While we have included target STRs implicated in STR expansion disorders, many long STRs

are still inaccessible using current tools. New methods are now being developed for genome-

wide genotyping of more complex STRs[37, 61] and longer variable number tandem repeats

(VNTRs)[62] from short reads and can be used to expand our panel in the future. Overall, our

STR imputation framework will enable an entire new class of variation to be interrogated by

reanalyzing hundreds of thousands of existing datasets, with the potential to lead to novel genetic

discoveries across a broad range of phenotypes.
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2.4 Methods

2.4.1 SSC Dataset

The SSC Phase 1 dataset consists of 1916 individuals from 479 quad families. Access to

SSC data was approved for this project under SFARI Base project ID 2405.1. This study was

certified as exempt from institutional review board (IRB) review by the University of California

San Diego IRB (Project #161286XX) since only de-identified data was accessed. Informed

consents were obtained for each participating family by SSC recruitment sites in accordance with

their local IRBs.

Aligned BAM and gVCF files for whole-genome sequencing data of individuals were

obtained through SFARI base (see URLs) and processed on Amazon Web Services (AWS). SNP

genotypes were called from gVCF files using the GATK version 3 joint calling pipeline[63].

A total of 27,185,239 variants that passed the default GATK filters and overlapped with sites

reported in the 1000 Genomes Project phase 3[38] data were retained for downstream analysis.

We performed principal components analysis (PCA) using SNPs from 2504 samples from

Phase 3 of the 1000 Genomes Project[38] and projected SSC samples onto the resulting PCs to

infer sample ancestry (Supplementary Fig. S2.1). We estimated that the SSC cohort consists of

1585 Europeans, 39 East Asian, 172 South Asian, 69 African samples, and 51 individuals that did

not clearly belong to any single population group.

2.4.2 Genome-wide multi-sample STR genotyping

STRs were jointly genotyped on the AWS EC2 platform in batches of 500 STRs. We

streamed the corresponding region of each BAM file and of the phased SNP VCF files to a

local EBS volume attached to each EC2 instance using samtools[64] version 1.4 and tabix[65]

version 1.2, respectively. HipSTR[32] version v0.5 was called individually per STR with default

parameters. Phased SNPs were provided as input to allow HipSTR to perform physical phasing
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when possible. Resulting VCF files from each batch were merged to create a genome-wide callset

in VCF format.

HipSTR calls were filtered using the filter vcf.py script in the HipSTR package with

suggested parameters (–min-call-qual 0.9 –max-call-flank-indel 0.15 –max-call-stutter 0.15). We

used the following criteria to remove problematic STRs from the callset: (i) STRs overlapping

segmental duplications (UCSC Table Browser[66] hg19.genomicSuperDups table) were removed

from the callset using intersectBed[67] v2.25.0; (ii) Pentanucleotides and hexanucleotides contain-

ing homopolymer runs of at least 5 or 6 nucleotides, respectively, in the hg19 reference genome

were removed as they were found to contain an excess of indels in the homopolymer regions;

(iii) STRs with call rate ¡80%; (iv) STRs with expected heterozygosity ¡0.095, corresponding to

a minor allele frequency of 5% for bi-allelic markers, were removed to restrict to polymorphic

STRs; (v) STRs with significantly more or fewer heterozygous genotypes compared to expectation

under Hardy-Weinberg equilibrium (p¡0.01) as suggested previously[68]. After filtering, 453,671

STRs remained in our panel.

2.4.3 Genotyping clinically relevant STRs

A total of 25 clinically relevant STRs were called using Tredparse[37] v0.75 from the

aligned BAM files obtained through SFARI base on Amazon EC2. Default profiles containing

information about the genomic position, reference repeat length, and repeat motif supplied with

the software were used. We filtered STRs with call rate less than 80% or for which only a single

allele was identified (Supplementary Table S2.1). Nine STRs remained after filtering.

2.4.4 Computing expected STR heterozygosity

For an STR with alleles {1...n}, let pi be the frequency of the ith allele computed from

observed genotypes. Expected STR heterozygosity is defined as: H = 1−∑
n
i=1 p2

i . For this study
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all alleles with identical length are treated as the same allele. On average each length-based allele

corresponded to 1.8 sequence-based alleles.

2.4.5 Comparison to 1000G catalog

STR genotypes for 1000 Genomes samples generated by Willems et al.[14] were down-

loaded from the strcat site (see URLs). Expected heterozygosity was computed using the PyVCF

package (see URLs) for the 1000 Genomes calls and using a custom script for the SSC data to

collapse alleles of identical length into a single allele. STRs passing all filters described above

included in the comparison. Analysis was restricted to STRs with at least 500 calls in the 1000

Genomes dataset.

2.4.6 Normal allele frequency distributions at pathogenic STRs

Control distributions for Fig. 2.1e were obtained from previous studies of normal alleles

at known pathogenic STRs. Allele frequencies for SCA1, SCA2, SCA3, SCA6, SCA12, SCA8,

SCA17, and DRPLA were obtained from Fig. 1 of Majounie et al.[36] and are based on 307

controls of Welsh origin. Frequencies for DM1 were obtained from Fig. 1 of Ambrose et al.[35]

and are based on 254 controls of Chinese origin. Frequencies for HDL were obtained from

Fig. 1 of Figley et al.[34] and are based on 352 controls of North American Caucasian origin.

Frequencies for SCA7 were obtained from Fig. 1 of Gouw et al.[33] and are based on 180 controls

of European origin. Frequencies for HTT are based on data in the phv00173896.v1.p1 variable of

dbGaP study phs000371.v1.p1 (Genetic modifiers of Huntington’s Disease) based on the shorter

allele of 2802 patients with Huntington’s Disease.
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2.4.7 Phasing SNPs in the SSC

SNP genotypes were phased using SHAPEIT[69] version 2.r837 with 1000 Genomes

Phase 3 genotypes as a reference panel and ignoring pedigree information. SHAPEIT’s duoHMM

[70] version 0.1.7 method was used to refine phased haplotypes using pedigree structure and

correcting for Mendelian errors.

2.4.8 Phasing STRs

Beagle[40] version 4.0 was used to phase each STR separately using phased SNP geno-

types, pedigree information, and unphased STR genotypes as input. In order to leverage the

HipSTR genotype likelihoods (GL field), Beagle requires all samples to have GL information.

To accommodate this, phasing was performed in two steps. First, samples with missing data

were removed and the remaining samples were phased using the -gl Beagle flag. Next, missing

samples were added back to the VCF and all samples were jointly phased in a second Beagle

round using default parameters. In this step Beagle additionally imputed any calls with missing

genotypes. Genotype values (GT field) were used for the STRs genotyped using Tredparse as it

does not report genotype likelihoods, and phasing and imputation of STRs was done in a single

step. Phased STRs and SNPs for only the unrelated parent samples from each locus were then

merged into a single genome-wide reference panel in VCF format.

2.4.9 Imputation performance metrics

Let X = {x1,x2, ...xn} be the true STR genotypes for samples 1..n and Y = {y1,y2, ...yn}

be the imputed STR genotypes. Each genotype xi is defined as xi = (xi1,xi2) where xi1 and xi2

give the (unordered) lengths of the two STR alleles for a diploid sample and similarly for Y . We

then define the following metrics:

Genotype concordance ci was defined as: 1 if both genotypes match (xi1 = yi1andxi2 =
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yi2orxi2 = yi1andxi1 = yi2); 0 if neither imputed allele matched a true allele; else 0.5 if one but not

both imputed alleles matched the true alleles. Genotype concordance for an STR is the average

over all the samples C = 1
n ∑

n
i=1 ci.

Define the STR genotype dosage as the sum of the lengths of the two alleles at a given

site: di = xi1 + xi2 and Xd = {d1,d2, ...,dn}. Length r2 is computed as:

cov2(Xd,Yd)/(Var(Xd)Var(Yd))

For a given allele length a, define Xa = {a1,a2, ...,an} where ai = ∑
2
j=1 1(xi j=a). Allelic

r2 is computed as cov2(Xa,Ya)/(Var(Xa)Var(Ya)).

The best tag SNP for an STR is defined as the SNP within 50kb with the highest length r2.

For all concordance metrics, outlier genotypes containing alleles seen less than three times

in the entire cohort were removed from the analysis.

For each STR, we additionally computed the expected value of each metric under a

random model where genotypes are imputed randomly based on the frequency of underlying

alleles and a naive model where genotypes are imputed to be the most common diploid genotype.

Expected genotype concordance under the random model was calculated as

∑
i, j

fi f j(∑
k,l

C(i, j,k, l))

, where (i, j)∈ {1, ...,n}2 and (k, l)∈ {1, ...,n}2, n is the number of alleles, fx gives the frequency

of allele x, and C(i, j,k, l) gives the concordance between genotypes (i, j) and (k, l) as defined

above. For example, for a bi-allelic marker with allele frequencies f1 and f2 expected genotype

concordance under the random model is given by f 2
1 ( f 2

1 +(0.5)2( f1)( f2))+ 2 f1 f2((0.5) f 2
1 +

2 f1 f2 +(0.5) f 2
2 )+ f 2

2 ( f 2
2 +(0.5)2 f1 f2). Random model values for length r2 and allelic r2 were

computed by comparing genotypes imputed randomly based on population allele frequencies to

true genotypes at each STR. Concordance under the naive model was computed by comparing
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each sample’s genotype to the most frequent diploid genotype. Length r2 and allelic r2 are not

defined under the naive model since all imputed genotypes are identical.

2.4.10 Evaluating imputation performance in the 1000 Genomes data

STRs were imputed into SNP data downloaded from the 1000 Genomes Project site from

three sources (WGS, phased SNPs from Affy6.0 array; and phased SNPs from Omni2.5 array;

see URLs and Supplementary Table S2.3) with Beagle version 4.1 using the SSC SNP-STR

haplotype panel. For comparison to WGS, STRs were jointly genotyped in high-coverage WGS

datasets for 150 of the 1000 Genomes Project samples (see URLs) using HipSTR version 0.6

followed by the filtering steps described above for the SSC cohort.

Capillary electrophoresis genotypes for 209 samples at 721 Marshfield STRs were down-

loaded from the Payseur Lab website (see URLs). PCR product sizes were converted to length

differences in bp from the reference genome using product size annotations[71] available from

the Rosenberg Lab website (see URLs). Prior to comparing genotypes, offsets were calculated to

match HipSTR lengths to the length of Marshfield STRs as previously described[14]. STRs with

imperfect repeat structures were removed. Capillary genotypes were rounded down to the nearest

number of repeat units.

10X Genomics data for NA12878 was obtained from the NA12878 Gemline Genome v2

available on the 10X Genomics website (see URLs). We extracted reads belonging to phase 1 or

2 from the phased, barcoded BAM based on the HP tag into separate BAM files. HipSTR v0.6.1

was called separately on each BAM with non-default parameters –def-stutter-model –min-reads 5

–use-unpaired and with –haploid-chrs containing a list of all autosomal chromosomes to force a

haploid genotyping model. Haploid STR calls were obtained for both phases at 118,353 STRs.

We identified the nearest heterozygous SNP to each STR that was genotyped in both the 10X data

and in our phased panel. STRs for which the nearest SNP had discordant genotypes in the two

datasets were discarded leaving 116,764 STRs for analysis.
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2.4.11 Simulations for power analysis

We analyzed parental genotypes for 5838 STRs across chromosome 21 that passed filtering

and quality control as described above. For each STR, we simulated quantitative phenotype

datasets under the model: P = βG+E, where P is a vector of standard normalized phenotypes, β

gives the effect size, E gives the error term drawn from a normal distribution N(0,1−β), and G

is a vector of the sum of genotype lengths for each individual scaled to have mean 0 and variance

1. For each simulated phenotype dataset, we tested the causal STR, the imputed STR genotypes,

and the best tag SNP (strongest length r2) within 50kb of the STR for association. Association

tests were performed using the Python statsmodels library OLS method (see URLs).

We performed additional simulations under a case–control model shown in Supplementary

Fig. S2.8. Phenotypes (0=control, 1=case) were drawn for each sample according to the model

logit (pi) = βXi where pi is the probability that sample i is a case and Xi is the scaled genotype for

individual i as described above. Association tests were performed using the Python statsmodels

Logit method.

For the non-additive phenotype example (Supplementary Fig. S2.9), we performed

simulations under a quadratic model: P = βG2 +E where G is a vector of the squared sum of

allele lengths scaled by the mean allele length, and P, β, E are as described above. Two sets

of association tests were performed: the first tested for association between STR length and

phenotype (Supplementary Fig. S2.9b) and the second set performed a separate association test

for each STR allele treating the allele as a bi-allelic locus (Supplementary Fig. S2.9c).

In all cases 100 separate simulations were performed and power was defined as the percent

of simulations for which the nominal association p-value was ¡ 0.05. Figures show results for all

simulations with β set to 0.1.
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2.4.12 eSTR analysis

Data for eSTR analysis was obtained from the Genotype-Tissue Expression (GTEx)

through dbGaP under phs000424.v7.p2. This included high-coverage (30×) Illumina whole-

genome sequencing (WGS) data from 650 unrelated samples, Omni 2.5 SNP genotypes for 450

samples, and gene-level RPKM values for whole blood in 336 samples. STRs were genotyped

from WGS data using HipSTR v0.5 and subject to the same quality filtering as SSC samples.

STRs were additionally imputed to Omni2.5 data with Beagle as described above. Downstream

analyses were restricted to the 336 samples with available whole blood expression data. These

samples consisted of 284 European, 45 African American, 3 Asian, and 3 Amerindian samples

and 2 samples with no population label available.

We performed separate eSTR analyses using HipSTR and imputed genotypes. In each

case, we performed a separate association test between gene expression and each STR within

100kb of the gene using a model Y = βX +C+ ε, where X denotes STR genotype lengths, Y

denotes expression values, β denotes the effect size, C denotes various covariates, and ε is the

error term. Following our previous study[17], we used STR dosage, defined as the sum of repeat

lengths of the two alleles for each sample, to define STR genotypes. All repeat lengths are

reported as length differences from the hg19 reference, with 0 representing the reference allele.

STR dosages were scaled to have mean 0 and variance 1. Genes with median expression of 0

were excluded and expression values for remaining genes were quantile normalized to a standard

normal distribution. We included sex, population structure, and technical variation in expression

as covariates. For population structure, we used the top 15 principal components resulting from

perform principal components analysis on the matrix of SNP genotypes from each sample. To

control for technical variation in expression, we applied PEER factor correction[72, 73] using 83

PEER factors.

We used model comparison to determine whether the best eSTR for each gene explained

variation in gene expression beyond a model consisting of the best eSNP. For each gene with an
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eSTR we determined the lead eSNP with the strongest p-value. We then compared two linear

models: Y∼eSNP (SNP-only model) vs. Y∼eSNP+eSTR (SNP+STR model) using the anova lm

function in the python statsmodels.api.stats module. We used CAVIAR v1.0 to further fine-map

eSTR signals against the top 100 eSNPs within 100kb of each gene. Pairwise-LD between the

eSTR and eSNPs was estimated using the Pearson correlation between SNP dosages (0, 1, or 2)

and STR dosages (sum of the two repeat allele lengths).

2.4.13 Comparison to DRPLA founder haplotypes

The founder haplotype for the expansion allele in ATN1 implicated in DRPLA was taken

from Table 1 of Veneziano et al.[55] and consists of rs4963516, rs1007924, rs7310941, rs7303722,

rs2239167, rs34199021, rs2071075, rs2071076, and rs2159887 with hg19 alleles G, A, G, T, A,

A, T, C, and C, respectively. Distance from the founder haplotype was calculated as the number

of mismatches.
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URLs

For Simons Simplex Collection, see https://base.sfari.org/.

For HipSTR, see https://github.com/tfwillems/HipSTR.

For Beagle, see https://faculty.washington.edu/browning/beagle/b4 0.html.

For 1000 Genomes phased Affy6.0 and Omni2.5 SNP data, see ftps.1000genomes.ebi

.ac.uk/vol1/ftp/release/20130502/supporting/shapeit2 scaffolds/hd chip sca

ffolds/.

For 1000 Genomes Phase 3, see http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/r

elease/20130502/.

For 1000 Genomes STR data, see http://strcat.teamerlich.org/download.

For Marshfield Capillary electrophoresis data, see https://payseur.genetics.wisc.

edu/strpData.htm.

For Marshfield marker annotations, see https://web.stanford.edu/group/rosenbe

rglab/data/pembertonEtAl2009/Pemberton AdditionalFile1 11242009.txt.

For NA12878 10X Genomics data, see https://support.10xgenomics.com/genome

-exome/datasets/2.2.1/NA12878 WGS v2.

For High-coverage Illumina sequencing for 1000 Genomes samples, see https://www.

ebi.ac.uk/ena/data/view/PRJEB20654.

For PyVCF, see https://github.com/jamescasbon/PyVCF.

For Python statsmodels, see http://www.statsmodels.org/stable/index.html.

Code availability

Analysis scripts and Jupyter notebooks for reproducing the figures in this study are

provided in the Github repository https://github.com/gymreklab/snpstr-imputation.
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Data availability

Phased SNP-STR haplotypes for 1000 Genomes Project phase 3 samples and example

commands for imputation are available from Gymrek Laboratory webpage [https://gymrekla

b.github.io/2018/03/05/snpstr imputation.html].

Phased SNP-STR haplotypes for the SSC samples are available through SFARI base

Accession Code: SFARI SSC WGS 1c. 1000 Genomes phased Affy6.0 and Omni2.5 SNP data

are available through the 1000 Genomes FTP server [ftp.1000genomes.ebi.ac.uk/vol1/f

tp/release/20130502/supporting/shapeit2 scaffolds/hd chip scaffolds/].

1000 Genomes phase 3 Whole-Genome Sequencing data is available through the 1000

Genomes FTP server [http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013050

2/].

1000 Genomes STR data is available from strcat [http://strcat.teamerlich.org/

download].

Marshfield Capillary electrophoresis data is available from the Payseur Laboratory web-

page [https://payseur.genetics.wisc.edu/strpData.htm].

Marshfield marker annotations are available from the Rosenberg Laboratory webpage

[https://web.stanford.edu/group/rosenberglab/data/pembertonEtAl2009/Pembert

on AdditionalFile1 11242009.txt].

NA12878 10X Genomics data is available at the 10X Genomics Datasets Repository [ht

tps://support.10xgenomics.com/genome-exome/datasets/2.2.1/NA12878 WGS v2].

High-coverage Illumina sequencing for 1000 Genomes samples is available from the

European Nucleotide Archive Accession Code PRJEB20654
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Figure S2.1: Analysis of SSC populations. Principal component analysis was performed
using SNP genotypes from the SSC and 1000G cohorts. Boxes show inferred ancestry groups
based on 1000 Genomes samples. Boxes for European, East Asian, South Asian, and African
populations contain 1,585, 39, 172, and 69 SSC samples respectively. 51 SSC samples could
not be confidently assigned to a population group.

51



0 10000 20000 30000 40000 50000

Pairwise distance (bp)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

M
ea

n
r2

a b

0.0 10000.0 20000.0 30000.0 40000.0 50000.0

Distance to best SNP

0.0

50.0

100.0

150.0

200.0

250.0

N
um

be
ro

fS
TR

s

Figure S2.2: a. SNP-SNP LD is stronger than STR-SNP LD. Gray dots give the average
pairwise SNP-SNP LD as a function of distance. Red dots give length r2 computed as the
squared Pearson correlation between STR length and SNP genotype (0, 1, 2). Blue dots give the
allele r2 , defined as the squared Pearson correlation between each SNP and each STR allele
treated as a separate bi-allelic marker. b. Distribution of distances from each STR to its best
tag SNP. The best tag SNP is defined as the SNP within 50kb with the highest length r2 . The
x-axis gives distance in bp.
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Figure S2.3: Imputation performance is strongest at the least polymorphic STRs. Plots
show per-locus concordance vs. the number of alleles (a), allelic r2 vs. allele frequency (b),
and length r2 vs. heterozygosity (c). Upper gray plots give the relative frequency of points
along the x-axis. Blue denotes observed per-locus values, green denotes values expected under a
random model and orange denotes values expected under a naive model as defined in the Online
Methods. Solid lines give median values for each bin and filled areas span the 25th to 75th
percentile of values in each bin. X-axis values for a. b., and c. were binned by 1, 0.05, and 0.1,
respectively.
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Figure S2.4: Imputation concordance vs. mutation rate. The x-axis gives the estimated
mutation rate of each locus and y-axis gives concordance between imputed vs. HipSTR
genotypes at each locus based on the leave-one-out analysis in SSC samples. Mutation rates
were inferred by correlating local sequence heterozygosity with observed population-wide STR
variation using the method described in Gymrek, et al . Green lines give median values. Boxes
span from the 25th percentile (Q1) to the 75th percentile (Q3). Whiskers extend to Q1-1.5*IQR
(bottom) and Q3+1.5*IQR, where IQR gives the interquartile range (Q3-Q1).
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Figure S2.5: Comparison of per-STR imputation metrics in the SSC dataset (leave-one-
out analysis) vs.in the 1000 Genomes European samples. a. and b. compare per-locus length
r2 and allelic r2 , respectively. Color scale gives the log10 number of STRs represented in each
bin. 1000 Genomes values are based on comparing HipSTR genotypes obtained from deep
WGS for 49 European samples vs. STR genotypes imputed into 1000 Genomes Phase 3 SNP
data obtained from low coverage WGS.
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Figure S2.6: Evaluating imputation and phasing accuracy using 10X Genomics. a.
Schematic of pipeline to create a phased SNP-STR validation set in NA12878. Barcoded
BAMs were separated by phase and HipSTR was called in haploid mode separately on each
set of reads. HipSTR genotypes from each read set were concatenated to form phased diploid
genotypes. Phased STR and SNP genotypes were combined into a single phased validation
panel. b. Imputation vs. 10X results at example STRs. Representative SNP-STR haplotypes
are shown for NA12878 at two CODIS STRs. Blue denotes “phase 1” and red denotes “phase 2”
as annotated in the 10X data. Values for each SNP (denoted by rsids) are 0 for the reference
allele and 1 for the alternate allele. “10X” on the left denotes phased STR genotypes obtained
using the pipeline in a. In each example all SNPs shown were identically genotyped in the 1000
Genomes Project panel and by 10X. Histograms on the right indicate STR allele frequencies in
the SSC reference panel for the phase 1 SNP haplotype (blue), phase 2 SNP haplotype (red), and
across the entire panel (gray). Filled bars give the imputed STR allele for each allele and stars
give the expected value based on 10X genotypes. Both alleles at the top locus (D13S317) were
imputed correctly. The second allele at the bottom locus (D7S820) was imputed incorrectly,
likely because most haplotypes matching NA12878 contain 9, rather than 10, copies of TATC.
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Figure S2.7: Gain in length r2 for imputed STR genotypes compared to the best tag SNP
vs. number of STR alleles. Data is shown for chr21 only. Red lines give medians and red
triangles give mean values. Boxes span from the 25th percentile (Q1) to the 75th percentile (Q3).
Whiskers extend to Q1-1.5*IQR (bottom) and Q3+1.5*IQR, where IQR gives the interquartile
range (Q3-Q1). The best tag SNP is defined as the SNP within 50kb of the STR with the highest
length r2.
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Figure S2.8: STR imputation improves power to detect STR associations - case control
phenotype. a. Example simulated case control phenotype. Simulation is based on observed
SSC STR genotypes. Boxes span from the 25th percentile (Q1) to the 75th percentile (Q3).
Whiskers extend to Q1-1.5*IQR (bottom) and Q3+1.5*IQR, where IQR gives the interquartile
range (Q3-Q1). For case/control simulations all phenotype values are either 0 or 1. b. The
gain in power using imputed genotypes is linearly related to the gain in r2 compared to
the best tag SNP. Gray contours give the bivariate kernel density estimate. Top and right gray
area gives the distribution of points along the x- and y-axes, respectively. Power was calculated
based on the number of simulations out of 100 with nominal p-value ¡ 0.05.

57



a

b
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

STR Genotype (bp relative to hg19)

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
im

ul
at

ed
ph

en
ot

yp
e

ACn SNPs

100kb
Simulate 100× (STR causal)

c

− 0.2 0.0 0.2 0.4 0.6

r2
imp-r

2
bestsnp

− 0.2

− 0.1

0.0

0.1

0.2

0.3
po

w
er

im
p-p

ow
er

be
st

sn
p

− 0.1 0.0 0.1 0.2 0.3 0.4 0.5

r2
imp-r

2
bestsnp

− 0.2

− 0.1

0.0

0.1

0.2

0.3

po
w

er
im

p-p
ow

er
be

st
sn

p

0

8

16

24

32

40

D
ensity

0

5

10

15

20

25

D
ensity

Figure S2.9: STR imputation improves power to detect STR associations - non-additive
phenotype model. a. Example simulated non-additive phenotype. Simulation is based on
observed SSC STR genotypes and uses a quadratic model as described in Online Methods.
Black horizontal lines in the center of each box give median values. Boxes span from the
25th percentile (Q1) to the 75th percentile (Q3). Whiskers extend to Q1-1.5*IQR (bottom)
and Q3+1.5*IQR, where IQR gives the interquartile range (Q3-Q1). b. Gain in power using
imputed genotypes compared to the best tag SNP. STR association tests were conducted
by regressing the imputed STR repeat dosage vs. phenotype. c. Gain in power using per-
allele STR association tests compared to the best tag SNP. A separate association test was
performed for each STR allele treating the allele as a bi-allelic marker. For the STR, power
was determined using the most strongly associated allele. For b. and c., gray contours give the
bivariate kernel density estimate. Top and right gray area gives the distribution of points along
the x- and y-axes, respectively. Power was calculated based on the number of simulations out of
100 with nominal p-value ¡ 0.05.
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Figure S2.10: STR imputation performance at known pathogenic STRs. Panels show the
genotyped vs. imputed dosage at each locus in the SSC cohort. Dashed lines give the diagonal.
Bubble size scales with the number of points represented by each bubble as in Figure 4.
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Table S2.1: Set of known pathogenic STRs genotyped using Tredparse. Concordance was
estimated for the STRs genotyped using HipSTR. # Alleles gives the number of alleles occurring
at least once in the Tredparse calls for SSC.

Coordinate

(hg19)
Disorder

Locus

ID

Mo-

tif

Call

rate

# Al-

leles

Tred-

parse vs.

HipSTR

concor-

dance

2:176957787
Syndactyly SD5

GCN
0.01 6

3:128891420

Myotonic dystrophy

2
DM2

CAGG
0 -

3:138664863

Blepharophimosis,

epicanthus inversus,

and ptosis

BPES
NGC

0 -

3:63898362
Spinocerebellar

ataxia 7
SCA7 CAG 0.43 14 99.60%

4:3076604 Huntington disease HD CAG 0.99 28

4:41747989

Central

hypoventilation

syndrome

CCHS
NGC

0 -

5:146258292

Spinocerebellar

ataxia 12
SCA12 CAG 0.65 21 99.90%

6:16327867
Spinocerebellar

ataxia 1
SCA1 CAG 0.89 27
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6:170870996

Spinocerebellar

ataxia 17
SCA17 CAG 0.85 34

6:45390488
Cleidocranial

dysplasia
CCD

GCN
0.13 9

7:27239544
Hand-foot-uterus

syndrome
HFG

GCN
0.01 5

9:27573527
Amyotrophic lateral

sclerosis
ALS GGC

CCC

0 -

9:71652203 Friedreich ataxia FRDA
GAA

0 -

12:112036755

Spinocerebellar

ataxia 2
SCA2 CAG 0.99 20 99.40%

12:7045892

Dentatorubral-

pallidoluysian

atrophy

DR-

PLA
CAG 0.87 21 99.80%

13:100637703

Holoprosencephaly-

5
HPE5

GCN
0.01 7

13:70713516

Spinocerebellar

ataxia 8
SCA8

CTG

/

CAG

0.95 36

14:23790682

Oculopharyngeal

muscular dystrophy
OPMD

GCN
0 -

14:92537355

Spinocerebellar

ataxia 3
SCA3 CAG 0.94 26 98.40%
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16:87637894

Huntington

disease-like 2
HDL CTG 0.74 20 99.70%

19:13318673

Spinocerebellar

ataxia 6
SCA6 CAG 0.9 12

19:46273463

Myotonic dystrophy

1
DM1 CTG 1 33 99.30%

20:2633380
Spinocerebellar

ataxia 36
SCA36 GGC

CTG

0 -

21:45196325

Unverricht-

Lundborg

Disease

ULD

CGC

GGG

GCG

GGG

0 -

22:46191235

Spinocerebellar

ataxia 10
SCA10

ATT

CT
0 -
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Table S2.2: Imputation performance at CODIS markers. Values were computed using
leave-one-out analysis in the SSC cohort as described in the main text.

Position ID
Length

r2

Concor-

dance

Edge,

et al.

Con-

cor-

dance

# Al-

leles

Motif

Length

5:149455884
CSF1PO 0.39 63% 60% 10 4

13:82722160
D13S317 0.75 69% 61% 10 4

18:60948895
D18S51 0.6 51% 32% 18 4

19:30417140
D19S433 0.61 70% NA 15 4

3:45582231 D3S1358 0.66 67% 59% 8 4

5:123111245
D5S818 0.53 70% 60% 9 4

7:83789542 D7S820 0.71 70% 63% 8 4

8:125907107
D8S1179 0.78 69% 59% 10 4

4:155508888
FGA 0.6 48% 41% 17 4

15:97374244
PentaE 0.93 77% NA 11 5
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11:2192318 TH01 0.93 94% 83% 7 4

2:1493425 TPOX 0.87 90% 85% 7 4
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Table S2.3: Comparison of imputation performance in 1000 Genomes samples across
genotyping platforms. Mean concordance and length r2 for the different datasets were found
by comparing the imputed genotypes against the real genotypes called on high-coverage WGS
samples using HipSTR.

Platform
Number of

samples
Mean conc. Mean length r2

1000 Genomes

- EUR
WGS 49 97.00% 0.91

1000 Genomes

- EUR
Affy 6.0 8 96.50% 0.86

1000 Genomes

- EUR
Omni 2.5 50 96.70% 0.9

1000 Genomes

- EAS
WGS 45 93.80% 0.79

1000 Genomes

- EAS
Affy 6.0 18 92.40% 0.7

1000 Genomes

- EAS
Omni 2.5 48 93.40% 0.77

1000 Genomes

- AFR
WGS 46 90.60% 0.71

1000 Genomes

- AFR
Affy 6.0 50 87.70% 0.6

1000 Genomes

- AFR
Omni 2.5 0 - -
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Table S2.4: Putative causal eSTRs. CAVIAR score gives the posterior probability of causality
of the STR. Best tag SNP gives the SNP within 50kb of the STR with highest length r2.

Gene STR (hg19) CAVIAR

score

HipSTR

eSTR

p-value

Imputed

eSTR

p-value

Best tag

SNP

SNP-

STR

length

r2

Best tag

SNP

p-value

DSCR3 21:38733174 0.35
2.05x10−4 5.0x10−5 rs9976222

0.46
3.5x10−3

CSTB 21:45196326 0.15
1.36x10−12 5.9x10−13 rs35285321

0.58
3.2x10−9

C21orf62
21:34133199 0.094

2.87x10−2 2.9x10−1 rs9967977
0.77 0.5

66



Table S2.5: Comparison of imputation performance using leave-one-out analysis on
known pathogenic STRs called using both HipSTR and Tredparse. Tredparse metrics were
computed as described in the main text and Online Methods. For comparison, HipSTR metrics
were re-computed by imputing each STR separately considering all SNPs within a 50kb region
surrounding the STR. This was found to give slightly better imputation results compared to im-
puting all genome-wide STRs simultaneously as is done in the main text. aSCA=spinocerebellar
ataxia; DRPLA=Dentatorubral-pallidoluysian Atrophy; DM1=Myotonic Dystrophy Type 1;
HDL=Huntington’s Disease-Like 2.

Locus
Diseasea

Hip-

STR

length

r2

HipSTR

concor-

dance

HipSTR

# alleles

Tred-

parse

length r2

Tred-

parse

concor-

dance

Tred-

parse #

alleles

3:63898362 SCA7 0.79 92.60% 10 0.8 91.90% 14

5:146258292
SCA12 0.9 94.90% 14 0.9 94.90% 21

12:112036755
SCA2 0.37 95.70% 13 0.48 96.20% 20

12:7045892 DRPLA 0.85 81.60% 19 0.85 81.20% 21

14:92537355
SCA3 0.86 87.10% 20 0.88 86.40% 26

16:87637894
HDL 0.65 88.50% 15 0.7 88.30% 20

19:46273463
DM1 0.88 85.40% 25 0.86 86.90% 33
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Chapter 3

Genome-wide analysis of the contributions

of short tandem repeat variants to

schizophrenia risk

3.1 Introduction

Schizophrenia is a highly heritable disorder affecting around 1% of the population[1].

Genome-wide association studies (GWAS) based on common single nucleotide polymorphisms

(SNPs) have now identified more than 200 independent genomic loci associated with schizophre-

nia risk[2, 3]. However, only a handful of loci identified so far point to a single plausible common

SNP[3]. Indeed, dissection of the strongest association signal located in the major histocompati-

bility complex, revealed a poorly tagged multiallelic copy number variant in the gene C4 to be

the causal variant[4]. Subsequent efforts in schizophrenia and other traits have often revealed

complex variant types only partially tagged by SNPs to be driving many published association

signals[5, 6, 7, 8].

Short tandem repeats (STRs), consisting of repeated motifs of 1-6bp, represent some
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of the most polymorphic regions of the human genome. Multiple lines of evidence point to a

role for STRs in psychiatric disorders. STRs exhibit rapid mutation rates which often result

in only moderate linkage disequilibrium (LD) with nearby SNPs. Further, variation in STR

copy number has been shown to play a significant role in regulating gene expression[9, 10] and

splicing[11]. Intriguingly, >30 Mendelian disorders, such as Huntington’s Disease and Fragile X

Syndrome, are caused by STR expansions[12]. Nearly all repeat disorders involve neurological

phenotypes and many have psychiatric components[13, 14]. Finally, we and others have recently

demonstrated the contribution of de novo mutations at STRs to autism spectrum disorders[15, 16].

Existing technologies have not allowed for systematic STR association studies. The

majority of GWAS datasets have been generated with commodity genotype arrays, and cannot

be used to directly analyze STR variants. STRs can be directly profiled from next-generation

sequencing (NGS)[17, 18]. However, sample sizes of available NGS datasets for schizophrenia

are still insufficient to detect common variants with modest effect size as expected based on

the genetic architecture of schizophrenia. To overcome this challenge, we recently generated

a reference STR+SNP haplotype panel that enables imputation of STR genotypes into SNP

genotypes available for most GWAS cohorts[19]. Our imputation pipeline achieves an average

imputed genotype concordance of 97% on European samples and can be used to impute nearly

500,000 STRs genome-wide.

Here, we leveraged our reference haplotype panel to impute STRs into GWAS data for

more than 50,000 samples from the Psychiatric Genomics Consortium (PGC) to perform a

genome-wide analysis of associations between STR lengths and schizophrenia. We performed

statistical fine-mapping of previously published GWAS loci and identified five independent loci

predicted to be driven by an underlying causal STR. We demonstrate that the second-strongest

GWAS signal (after MHC) for schizophrenia may be driven by a penta-allelic tetranucleotide

repeat associated with expression of the host gene for mir137, known to play a key role in

multiple psychiatric disorders[20], and the nearby gene DPYD. Additionally, we show that a
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signal overlapping AS3MT previously suggested to be driven by multiple independent signals[2]

can be explained by a single tri-allelic dinucleotide repeat. Taken together, these results reveal

new potential biological mechanisms at these loci and highlight the need to consider additional

variant types in future efforts to fine-map associations identified by GWAS.

3.2 Results

3.2.1 Performing a genome-wide STR association study for schizophrenia
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Figure 3.1: STR-based genome-wide association testing in schizophrenia. a. Study
overview: we imputed genome-wide STRs into available SNP genotypes from the PGC cohort,
and performed a logistic regression to test each STR for association with schizophrenia. b.
Quantile-quantile plot of STR and SNP associations. The QQ plot shows the distribution of
association p-values compared to the null expectation (light purple=published SNP summary
statistics from the PGC SCZ2 cohort; dark purple=SNP mega-analysis, orange=STR mega-
analysis). c. Manhattan plot of STR associations: The x-axis gives chromosome position
and the y-axis gives the -log10 p-value for each tested STR. Purple diamonds show locations
and p-values of previously published genome-wide significant loci based on SNPs. Orange
diamonds show lead STRs at each LD-independent signal identified. The horizontal line shows
the standard GWAS p-value threshold of 5×10−8. Arrows denote significant loci only identified
by STRs (non-bold) or loci for which fine-mapping indicated an STR as the most probable
causal variant (bold).
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We used Beagle[21] in combination with our published SNP+STR reference haplotype

panel[19] to impute STR genotypes into genome-wide SNP data for 25,578 cases and 31,957

controls across 36 cohorts genotyped as part of the Psychiatric Genomics Consortium (PGC)

(Methods; Supplementary Table S3.1; Fig. 3.1a). Our reference panel focuses on STRs that

can be reliably genotyped using short reads by HipSTR[17] and thus excluded most STRs

known to be involved in repeat expansion disorders such as Huntington’s Disease and hereditary

ataxias[12]. We filtered STRs with low imputation quality in PGC and with minor allele frequency

(MAF) <5% (Methods). After filtering, 383,813 autosomal STRs remained for analysis.

We next used imputed STR genotypes to test each STR for association with schizophrenia

in each cohort. As in previous studies of STR associations[9], we assumed an additive relationship

between STR copy number and phenotype. For each diploid genotype, we computed a dosage

score to account for uncertainty in the average copy number (Methods). For each STR, we

performed a logistic regression between the dosages in each person and case/control labels using

a mega-analysis framework, controlling for population structure (top 10 SNP PCs) and cohort

as covariates (Methods, Fig. 3.1a, Supplementary Dataset 1). For comparison, we applied the

same mega-analysis pipeline using SNPs (Methods, Supplementary Dataset 2). We found that

our results match closely to previous results on an overlapping dataset based on meta-analysis

(Supplementary Fig. S3.1).

Consistent with the known highly polygenic architecture of SCZ[2], STR association

p-values showed strong departures from the null expectation (Fig. 3.1b; λGC=1.50). Our

analysis identified 36 significant linkage-disequilibrium-independent STRs at p < 5× 10−8

(Supplementary Table S3.2). The majority of significant STR associations overlap with loci

previously identified by SNP-based GWAS (Fig. 3.1c; Methods). Four signals identified by

STRs were not within 1 Mb of the lead SNPs for any of the previously reported significant loci

based on meta-analysis of SNP genotypes in an overlapping dataset (Supplementary Table S3.2).

One of these falls in the complex HLA region on chromosome 6 and was excluded from further
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analysis. Significant SNP signals for the three remaining cases (Supplementary Fig. S3.2) have

been identified by subsequent GWAS for SCZ[3, 22] indicating they are not truly novel loci.

To evaluate the robustness of our STR association signals, we repeated the analysis above

using a meta-analysis framework. We analyzed each STR for association with SCZ in each cohort

separately and combined results using an inverse-variance weighted fixed effects model[23].

Of the 36 LD-independent signals identified above, 30 passed genome-wide significance (p <

5× 10−8) and all had p < 4.33× 10−7 in the meta-analysis. Overall, our results suggest that

STR association signals are robust and largely overlap with genomic regions previously identified

using standard SNP-based GWAS.

3.2.2 Fine-mapping prioritize STRs at multiple SCZ-associated loci

We fine-mapped SCZ-associated loci to determine whether each signal could plausibly

be explained by an underlying causal STR. To identify robustly fine-mapped STRs, we applied

two orthogonal methods (Methods). The first, FINEMAP[24], operates on association summary

statistics and pairwise variant LD. The second, a Bayesian method based on a flat prior with

steepest descent approximation[25], performs fine-mapping using individual-level genotype

information for each variant. We refer to the latter method below as “fmgt”. To further ensure

the robustness of our fine-mapping results, we repeated each method using either best guess

genotypes or genotype dosage values.

For each locus either previously implicated[2] or identified as meeting genome-wide

significance based on our STR analysis, we applied fine-mapping to all STRs and SNPs within a

1 Megabase window centered at the index variant with p < 10−6 (Supplementary Table S3.3).

At five loci, either all four fine-mapping settings identified the same STR as the variant with

the highest posterior probability or at least two settings identified the same STR at posterior

probability >50% (Table ??, Supplementary Fig. S3.3). These include four intronic STRs (in

MIR137HG, GRM3, AS3MT, and AKT3) and an STR in the 3’UTR of CNOT7.
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Table 3.1: Schizophrenia risk loci fine-mapped to STRs. The table shows loci for which
the same STR was the top variant in all four fine-mapping settings (MIR137HG, GRM3, and
CNOT7) or for which at least two settings indicated the same STR at >50% posterior probability
(AS3MT and AKT3). The lead SNP is that reported in Supplementary Table 2 of Ripke, et al.
2014. SNP and STR p-values are based on the mega-analysis performed here. Full fine-mapping
results for each locus are provided in Supplementary Table 3.

Locus

Lead SNP
(best

fine-mapping
posterior)

Lead
SNP p-
value

STR (best
fine-mapping
posterior*)

Annota-
tion

Re-
peat
unit

STR
p-

value

chr1:98001984-
99001984

rs1702294
(1.54%)

1.19×
10−11 chr1:98506615

(69%)
MIR137HG

(intron)
CATT

2.49×
10−12

chr1:243055105-
244055105

rs77149735
4.15×
10−8 chr1:243671958

(77%)

AKT3
(intron)

T 5.60×
10−11

chr7:85927626-
86927626

rs12704290
(9.17%)

1.21×
10−8 chr7:86454144

(31%)

GRM3
(intron) AGAT

5.88×
10−9

chr8:16584523-
17584523

NA NA chr8:17084523
(39%)

CNOT7
(3’UTR)

A 1.82×
10−8

chr10:104457618-
105457618

rs7907645
1.14×
10−5 chr10-

104639652
(77%)

AS3MT
(intron) AT

1.13×
10−16rs55833108

1.42×
10−6

chr10-
104957618-I

(0.069%)

6.94×
10−9

rs11191419
(1.52%)

2.25×
10−14
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3.2.3 A candidate causal STR at the MIR137HG locus
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Figure 3.2: Fine-mapping the MIR137HG locus. a. SNP and STR association signals at
the MIR137HG locus. The x-axis shows the position on chromosome 1 (hg19) and the y-axis
shows -log10 association p-values for SNPs (light purple) and STRs (light orange) based on
mega-analysis. The lead SNP (rs1702294) and lead STR (chr1:98506615) are annotated. b-
c. Conditional regression analysis of the MIR137HG locus. Plots show -log10 association
p-values after conditioning on the lead STR (b) and lead SNP (c) in the region. d. Per-allele
association tests. The x-axis shows odds ratios and 95% confidence intervals from testing each
allele length (7-11 TTCA repeats) for association with schizophrenia. e. SNP-STR haplotypes.
Each column represents a SNP in the region highlighted by the dashed red box. Each row
represents a single haplotype from a European individual from the 1000 Genomes Project. Gray
or black denotes that a haplotype harbors the reference or alternate allele, respectively, at that
SNP. Haplotypes are grouped by the number of copies of the tetranucleotide repeat. The index
SNP is highlighted in red. f. Haplotype association tests. Four representative SNPs, including
the index SNP, were used to perform haplotype association tests (0=ref allele, 1=alt allele).
The x-axis shows the odds ratio and 95% confidence interval from testing each haplotype for
association with schizophrenia. 4-SNP haplotypes and their relationship to each STR allele are
annotated in e.
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The role of the micro-RNA mir137 in psychiatric disorders has been extensively studied

[20], and its corresponding locus on chromosome 1 (Fig. 3.2a) is one of the genomic regions

most strongly associated with SCZ. The top variant identified in this region is a multi-allelic

tetranucleotide (TTCA) repeat in the MIR137 host gene (MIR137HG). Performing conditional

regression conditioned on either the lead STR or the lead SNP (rs1702294) leaves no additional

significant signals remaining (Fig. 3.2b-c) suggesting there is a single independent signal at this

locus and reflecting the significant LD between the two variants (r2=0.81). However, all four

fine-mapping settings above indicated the STR as the top variant (67% and 10% posterior for

FINEMAP and fmgt, respectively) for this locus (Supplementary Fig. S3.3).

A previous study suggested a polymorphic VNTR upstream of MIR137HG may act as a

causal variant at this locus. To test this hypothesis, we genotyped this VNTR in 503 European

samples from the 1000 Genomes Project[26] using adVNTR[27], phased VNTR genotypes

onto local SNP haplotypes, and imputed the VNTR into the PGC cohort (Methods). VNTR

length showed only modest LD with rs1702294 in the 1000 Genomes cohort (r2=0.049). Further,

imputed VNTR length did not show a significant association with SCZ risk (p = 2.48×10−2)

suggesting it is unlikely to be the main causal variant driving this signal.

To further examine this association, we repeated association tests treating each STR allele

(7-11 copies of TTCA) as a bi-allelic marker. These allele-specific association tests demonstrated

a monotonically increasing risk for SCZ with each additional copy of the TTCA repeat (Fig. 3.2d).

We next examined the relationship between STR alleles and local SNP haplotypes (Fig. 3.2e) in

European samples from the 1000 Genomes Project (Methods). We found that rs1702294 tags

short (7-8 copies) vs. long (9+ copies) of the repeat. On the other hand, multi-SNP haplotypes

better tag individual STR alleles. Performing association tests with these haplotypes recapitulates

the increasing trend between repeat copy number and SCZ risk (Fig. 3.2e). Although we cannot

rule out other variants not considered in our analysis, these results suggest the tetranucleotide

STR as the most probable causal variant for this locus.
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3.2.4 A candidate causal STR at the AS3MT locus
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Figure 3.3: Fine-mapping the AS3MT locus. a. SNP and STR association signals at
the AS3MT locus. The x-axis shows the position on chromosome 10 (hg19) and the y-axis
shows -log10 association p-values for SNPs (light purple) and STRs (light orange) based on
mega-analysis. The lead SNP from PGC (rs11191419) and lead STR (chr10:104639652) are
annotated. b. Per-allele association tests. The x-axis shows odds ratios and 95% confidence
intervals from testing each allele length (6-8 AT repeats) for association with schizophrenia. c.
Conditional regression analysis of the AS3MT locus. Plots show -log10 association p-values
after conditioning on the lead STR (top), the lead SNP (middle), or both the lead SNP and the
remaining strongest SNP (bottom). d. Haplotype analysis. The table shows the three common
two-SNP haplotypes for rs11191419 and rs34747231. “Frequency” gives the frequency of each
SNP haplotype in Europeans. “VNTR” gives the frequency of the reference (0) and alternate
(1) allele on each SNP haplotype. “STR” gives the frequency of each STR allele (6-8 repeats)
on each SNP haplotype. Frequencies are based on European samples from the 1000 Genomes
Project dataset.

Fine-mapping with fmgt indicated a tri-allelic dinucleotide (“AT”) STR in an intron of

AS3MT as the top signal with posterior probability >50% at the locus spanning chr10:104457618-

105457618 (Fig. 3.3a, Supplementary Fig. S3.3), which is the third most significant signal for

schizophrenia. Testing each allele separately (6, 7, and 8 copies of AT) shows a monotonically

77



increasing trend between repeat length and schizophrenia risk (Fig. 3.3b). We further tested

whether the STR best explains the signal in this region using conditional regression (Fig. 3.3c).

Conditioning on the STR leaves no remaining significant loci. On the other hand, after condi-

tioning on the lead SNP reported by PGC, rs11191419, the STR remains nominally significant

(p = 0.0023). Further conditioning on the top remaining SNP (rs34747231) leaves no remaining

signal. Thus, whereas at least two independent SNPs are required, copy number variation at

the STR alone is sufficient to explain the signal in this region, consistent with the fine-mapping

results.

We investigated the SNP-STR haplotype structure at this locus using the two SNPs

from our conditional regression above (Fig. 3.3d). We found that the lead SNP from PGC

(rs11191419) tags 8×AT vs. other alleles but cannot distinguish between 6-7×AT. On the other

hand, rs34747231 tags 6×AT vs. 7-8×AT. While neither SNP alone is in strong LD with all three

STR alleles, the three common two-SNP haplotypes correspond tightly with the three separate

STR alleles. These results are consistent with our conditional regression analysis, in which both

SNPs, but only a single STR, are needed to explain the signal.

Previous work suggested a bi-allelic 36-mer VNTR in the promoter of AS3MT as the

likely causal variant for this locus[28]. To test whether this VNTR might best explain the

GWAS signal, we genotyped it in European samples from the 1000 Genomes Project, imputed

VNTR genotypes into PGC, and tested for association with schizophrenia. We found that the

VNTR is in high LD (r2=0.94) with rs11191419 (Fig. 3.3d), which we showed above is not

sufficient to explain the signal in this region. As expected, the VNTR is strongly associated with

schizophrenia (mega-analysis p = 2.17×10−15). However, the association is not significant after

conditioning on the STR (p=0.15). On the other hand, the STR association remains significant

after conditioning on the VNTR (p=0.0047), suggesting the STR is a stronger candidate causal

variant.
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3.3 Discussion

This study uses our previously published SNP+STR reference haplotype panel to impute

STR genotypes into genome-wide SNP data for 25,578 cases and 31,957 controls across 36

cohorts genotyped as part of the Psychiatric Genomics Consortium (PGC). We used imputed

STR genotypes to test each STR for association with schizophrenia in each cohort. Consistent

with the known highly polygenic architecture of SCZ, STR association p-values showed strong

departures from the null expectation. Our analysis identified 36 significant linkage-disequilibrium-

independent STRs and the majority of significant STR associations overlap with loci previously

identified by SNP-based GWAS.

We fine-mapped SCZ-associated loci to determine whether each signal could plausibly be

explained by an underlying causal STR using two orthogonal methods in four settings. At five

loci, either all four fine-mapping settings identified the same STR as the variant with the highest

posterior probability, or at least two settings identified the same STR at posterior probability

>50%. These include four intronic STRs (in MIR137HG, GRM3, AS3MT, and AKT3) and an

STR in the 3’UTR of CNOT7.

The top variant identified in the micro-RNA mir137 region is a multi-allelic tetranucleotide

(TTCA) repeat in the MIR137 host gene (MIR137HG). All four fine-mapping settings indicated the

STR as the top variant. We show the allele-specific association tests demonstrate a monotonically

increasing risk for SCZ with each additional copy of the TTCA repeat.

Further, fine-mapping of AS3MT locus indicated a tri-allelic dinucleotide (“AT”) STR

in an intron as the top signal. Testing each allele separately (6, 7, and 8 copies of AT) shows a

monotonically increasing trend between repeat length and schizophrenia risk. We investigated the

SNP-STR haplotype structure at this locus using the two SNPs from our conditional regression

and found that the lead SNP from PGC (rs11191419) tags 8×AT vs. other alleles but cannot

distinguish between 6-7×AT. On the other hand, rs34747231 tags 6×AT vs. 7-8×AT.
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We identify the unavailability of pathogenic repeats expansion data and low accuracy

STR imputation for highly polymorphic repeats as a limitation of this study. This aspect can

be improved in the future with the availability of high coverage WGS data, allowing for direct

genotyping of STRs. We also note that statistical fine-mapping is a very new field, with no

clear protocols and best practices. While the availability of epigenomic data for SNP variants

greatly improves their fine-mapping accuracy, the unavailability of similar data for STRs makes

interpretation of fine-mapping results difficult. Overall, our STR imputation, GWAS, and fine-

mapping framework allow for an entirely new class of variation to be interrogated by reanalyzing

hundreds of thousands of existing datasets, with the potential to lead to novel genetic discoveries

across a broad range of phenotypes.
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3.4 Methods

3.4.1 Dataset and preprocessing

We used data from 36 European-ancestry cohorts with individual-level data available

through PGC. The cohorts used are listed in Supplementary Table S3.1. As described previously

[2], all subjects provided written and informed consent. This study was conducted in concordance

with an analysis proposal approved by the PGC Schizophrenia Working Group. All analyses of

individual-level genotype data were conducted on PGC’s approved server in the Netherlands.

Published meta-analysis summary statistics were obtained from (https://www.med.un

c.edu/pgc/download-results/).

3.4.2 STR Imputation

STR genotypes were imputed into SNP VCFs containing genotype data based on stringent

quality filtering (“.bgs” files from RICOPILI[29]) for all cohorts with Beagle version 5.1 using

our published SNP+STR reference haplotype panel[19] based on 957 unrelated samples. Imputed

VCFs were merged into a joint VCF file and split by chromosome using bcftools version 1.9

(http://samtools.github.io/bcftools/bcftools.html). We removed STRs for which

the posterior probability of the best guess genotype had an average value across all samples of

less than 0.5. We additionally removed STRs with MAF<5% in imputed genotypes.

3.4.3 STR association testing

We developed a custom utility (plinkSTR; https://github.com/gymreklab/plinkST

R) for performing association tests between STR length and a phenotype of interest. The script is

modeled after plink[30], which currently does not support association tests based on STR dosage.

PlinkSTR takes as input STR genotypes in VCF format, a covariates file, and a Plink FAM file.
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We consider each STR genotype GTi as the sum of the difference of allele lengths from hg19

reference allele. To account for uncertainty in imputed genotypes, we computed STR dosages

rather than using hard genotype calls. Dosages were computed as:

Pr(GT1)∗GT1 +Pr(GT2)∗GT2 +Pr(GT3)∗GT3 + ...

Where Pr(GTi) is based on the posterior probability of each genotype reported by Beagle.

For case-control phenotypes, plinkSTR uses the Python statsmodel[31] library’s Logit

module to perform logistic regression. PlinkSTR outputs an odds ratio, standard error, and

p-value for each STR tested. We used plinkSTR to perform STR-based GWAS in the PGC data

separately for each cohort using the top 10 population PCs (obtained from the PGC SCZ working

group) and cohort as covariates. At each locus, we filtered individuals with outlier genotypes with

dosages more than (1.5*IQR above the third quartile or the maximum dosage with 100 samples,

whichever if more) or (1.5*IQR below the first quartile or the minimum dosage with 100 samples,

whichever is less).

For meta-analysis, we analyzed each cohort separately using PlinkSTR and used METAL

[23] (release 2011-03-25) to perform a meta-analysis across all cohorts using default options.

Genome-wide STR summary statistics for STR mega- and meta- analyses are available in

Supplementary Dataset 1.

To obtain a list of LD-independent STR associations, we created a custom utility (plinkSTR-

clump.py in the plinkSTR package), modeled after plink –clump utility, which can handle STR

genotypes. plinkSTR clump.py takes as input a VCF file with STR genotypes and a summary

statistics file produced by plinkSTR. It computes pairwise LD based on the correlation between

STR genotype lengths at a pair of STR loci. plinkSTR clump.py was run using the following

options: –clump-p1 0.000001 –clump-p2 0.000 –clump-r2 0 –clump-kb 3000.
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3.4.4 SNP association testing

Published SNP summary statistics for the PGC SCZ2 cohort were computed using a

“meta-analysis” framework in which association testing is first performed separately in each

cohort and then combined. Further, it included some cohorts for which individual-level genotypes

were not available. To enable a more direct comparison of our STR results to SNP-based GWAS,

we recomputed SNP association statistics using an identical set of cohorts and covariates as used

for our STR analysis.

SNP genotypes were obtained from genotype data based on best guess genotypes with

moderate quality filtering (“.bgn” files from RICOPILI[29]) for all cohorts. All cohorts were

merged into a single plink BED file using plink –bmerge utility. We used plink v1.90[30] for

performing association tests between SNP genotypes and the phenotype. plink takes as input

SNP genotypes in a binary BED file format and a covariates file. To perform logistic regression,

we used the plink –logit method that outputs an odds ratio, standard error, and p-value using the

top 10 population PCs (obtained from PGC SCZ working group) and cohort as covariates.

3.4.5 Fine-mapping STRs

We used FINEMAP v1.4[24] to fine map association signals. We considered all previously

reported 108 loci based on SNP meta-analysis in this cohort2 as well as the 3 additional LD-

independent STR signals identified here. For each locus, we considered all variants within a

1Mb window centered at the lead variant with mega-analysis p < 10−6. Loci for which no STR

reached this threshold were removed from further analysis. We further excluded the MHC region,

which was fine-mapped previously to a multi-allelic CNV[2, 4].

FINEMAP takes as input an LD file with pairwise LD (pearson correlation coefficient),

and a Z file with summary statistics data for each variant. We use a custom python script

(generate finemap files.py) to extract SNP and STR genotypes from VCF files, extract summary
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statistics data for each variant, and find LD between each pair of variants. We ran FINEMAP

using default options which sets the maximum number of allowed causal SNPs to 5. We

report the model-averaged posterior summaries for the top SNP and top STR at each locus in

Supplementary Table S3.3.

We additionally applied a previously described fine-mapping method[25] that uses in-

dividual genotype data (https://github.com/hailianghuang/Fine-mapping), which refer to here

as fmgt We modified the existing method (https://github.com/shubhamsaini/Fine-mapping) to

allow one phenotype as input by removing any dependencies on the second phenotype. We

ran fmgt on an imputed set of SNPs and STRs obtained from Beagle during STR imputation

process described previously since fmgt does not let us work with missing genotype data which

is a limitation of underlying R nnet [32] library. We additionally included identical covariates

(cohort and population PCs) as were used in the original mega-analysis (note, FINEMAP, which

is based on summary statistics, cannot handle covariates). For each locus, we report the posterior

probability for the top SNP and top STR based on the best model identified by fmgt.

3.4.6 Conditional Regression

We used plinkSTR to perform conditional regression analysis. plinkSTR accepts a comma

separated list of variant positions to condition on and the conditional variants are included as

covariates in addition to the principal components and cohort information. The rest of the process

is done like regular STR case-control association testing as described previously.

3.4.7 Haplotype Association Tests

We used 1000 Genomes Project phased SNP+STR data published previously [19] for 503

samples of European ancestry to determine haplotypes that harbor distinct STR alleles. We train

a ElasticNet regression model using Python scikit-learn [33] library on SNP haplotypes spanning
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500kb around the STR. We consider each SNP as an input variable and the STR allele as the

output variable. We choose haplotypes consisting of 20 SNPs with the greatest absolute effect

sizes and the lead SNPs from SCZ2 [2] study, and group them for each unique STR allele.

Next, we select a minimal subset of SNPs from these haplotypes that uniquely identify

STR alleles. We use these minimal subset to run a haplotype based association test using plinkSTR

by regressing these haplotypes against the phenotype. For the haplotype based association test,

we consider the number of copies of each haplotype as the genotype for each sample.

3.4.8 Analysis of target STRs and VNTRs in the 1000 Genomes Project

We used 503 high-coverage 1000 Genomes data samples of European ancestry generated

by New York Genome Center. Using adVNTR[27] version 1.4.0, we genotyped the VNTRs in

the MIR137HG (chr1:98046173-98046233, hg38) and AS3MT (chr10:102869497-102869605,

hg38) region.

We next merged these VNTRs with our published SNP+STR[19] phased haplotype

reference panel using bcftools version 1.9 (http://samtools.github.io/bcftools/bcftoo

ls.html), and phased the VNTRs onto the SNP+STR haplotypes using Beagle version 5.1.

Data Availability

STR and SNP summary statistics are available in Supplementary Datasets 1-2. Upon

acceptance of this study for publication, individual-level STR genotypes will be made available

through PGC.
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Code Availability

The plinkSTR tool is available on Github: https://github.com/gymreklab/plinkST

R.
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Figure S3.1: Comparison of SNP p-values obtained by meta vs. mega analysis. The x-
axis gives published meta-analysis -log10 p-values from the PGC cohort (Methods). The
y-axis gives -log10 p-values recomputed for this study using a mega-analysis framework. Only
SNPs corresponding to lead SNPs published in Supplementary Table 2 of Ripke et al. are
shown. Horizontal and vertical gray lines denote the genome-wide significance threshold of
p = 5× 10−8. Note, p-values from published meta-analysis results sometimes fail to reach
genome-wide significance. This is because significant SNPs in Ripke et al. were determined
based on analysis of both a discovery and replication cohort, but published p-values are only
based on the discovery cohort. Further, our study contains a subset of samples from the original
PGC dataset since some cohorts were not made available for analysis.
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Figure S3.2: Association signals at genome-wide significant STR signals not identified by
SNPs. Zoomed in Manhattan plots show association p-values for STRs (magenta) and SNPs
(dark blue) in each region for STR signals not identified by SNP-based GWAS (Supplementary
table 2). The red horizontal line indicates the genome-wide significance threshold of p =
5×10−8.
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Figure S3.3: Fine-mapping results of loci with a putative causal STR. a-e highlight the
five STRs shown in Table 1. For each panel, the top plot shows the zoomed in Manhattan
plot. The x-axis gives chromosome position. The y-axis gives the -log10 association p-values.
Purple=SNPs; orange=STRs. The bottom four plots show the posterior probability of causality
computed baked on four different fine-mapping settings (Methods).
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Table S3.1: Summary of PGC cohorts included in this study.

Cohort ID Number of Controls Number of Cases

scz aber eur 699 720

scz ajsz eur 1,595 896

scz asrb eur 310 509

scz boco eur 2,170 1847

scz buls eur 608 195

scz cati eur 392 409

scz caws eur 306 424

scz cims eur 69 71

scz clm2 eur 4,297 3466

scz clo3 eur 2,083 2150

scz cou3 eur 693 540

scz denm eur 458 492

scz dubl eur 860 272

scz edin eur 284 368

scz egcu eur 1,177 239

scz ersw eur 332 322

scz gras eur 1,232 1086

scz irwt eur 1,022 1309

scz lacw eur 466 157

scz lie2 eur 269 137

scz lie5 eur 389 509

scz msaf eur 139 327

scz munc eur 351 437
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scz pewb eur 1,892 641

scz pews eur 236 150

scz port eur 216 346

scz s234 eur 2,341 2077

scz swe1 eur 214 221

scz swe5 eur 2,617 1801

scz swe6 eur 1,219 1094

scz top8 eur 403 377

scz ucla eur 637 705

scz uclo eur 494 521

scz umeb eur 584 375

scz umes eur 713 197

scz zhh1 eur 190 191

Total 31957 25578
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Table S3.2: Genome-wide significant LD-independent STR signals

Chro-

mo-

some

Position

(hg19)

Annota-

tion

P-

value

(mega-

analysis)

Odds

ratio

Odds

ratio

(95%

CI)

P-value

(meta-

analysis)

Index

SNP

1 8443073
RERE

(intron)

1.77×

10−9
1.083

1.056-

1.112

1.39×

10−9

chr1-

8424984-

D

1
98506615

MIR137HG

(intron)

2.49×

10−12
1.01

1.007-

1.012

1.07×

10−12 rs1702294

1
243671958

AKT3

(intron)

5.60×

10−11
0.99

0.987-

0.993

9.54×

10−10 rs77149735

2
58308993

VRK2

(intron)

6.26×

10−10
0.985

0.980-

0.989

6.13×

10−09 rs11682175

2
200818832

TYW5

(intron)

1.15×

10−14
1.129

1.095-

1.164

5.62×

10−14

chr2-

200825237-

I

2
233615442

GIGYF2

(intron)

1.89×

10−9
0.978

0.971-

0.985

8.31×

10−10 rs6704768

3 2559900
CNTN4

(intron)

5.76×

10−11
1.027

1.019-

1.035

9.63×

10−11 rs17194490

3
53015546

SFMBT1

(intron)

2.31×

10−8
1.023

1.015-

1.031

4.22×

10−08 rs2535627
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3
63849614

ATXN7

(5’UTR) /

THOC7

(promoter)

2.85×

10−9
0.996

0.994-

0.997

9.09×

10−10
rs832187

3
135987308

PCCB

(intron)

3.61×

10−8
0.94

0.919-

0.961

6.80×

10−09 rs7432375

4
118731929

intergenic
1.24×

10−8
0.929

0.906-

0.953

4.48×

10−08
NA

5
60609636

intergenic
3.43×

10−10
0.953

0.939-

0.967

2.40×

10−09 rs4391122

6
28176327

intergenic
3.87×

10−26
0.761

0.724-

0.801

2.07×

10−22 rs115329265

6
31719411

MSH5

(intron)

5.59×

10−23
0.849

0.822-

0.877

5.75×

10−16
NA

7 1989944
MAD1L1

(intron)

3.10×

10−8
0.981

0.974-

0.987

4.05×

10−08

chr7-

2025096-

I

7
86454144

GRM3

(intron)

5.88×

10−9
0.974

0.966-

0.983

1.88×

10−09 rs12704290

7
104978523

SRPK2

(intron)

1.33×

10−8
0.932

0.909-

0.955

1.61×

10−07 rs6466055

7
110936042

IMMP2L

(intron)

8.06×

10−11
1.022

1.015-

1.029

9.50×

10−11 rs13240464

8
17084523

CNOT7

(3’UTR)

1.82×

10−8
0.924

0.898-

0.949

1.22×

10−08
NA
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9
101069988

GABBR2

(intron)

3.17×

10−8
0.968

0.957-

0.979

1.52×

10−07
NA

10
104639652

AS3MT

(intron)

1.13×

10−16
1.041

1.031-

1.051

1.00×

10−15 rs11191419

11
46372406

DGKZ

(intron)

4.62×

10−11
1.11

1.076-

1.146

7.14×

10−10

chr11-

46350213-

D

11
113370024

DRD2

(upstream)

8.52×

10−12
0.992

0.990-

0.995

2.53×

10−12 rs2514218

11
124613794

NRGN

(intron)

4.70×

10−10
0.993

0.991-

0.995

1.57×

10−09 rs55661361

11
130719589

LINC02551

(intron)

4.50×

10−14
1.03

1.022-

1.037

8.32×

10−13 rs10791097

12 2358935 CACNA1C

(intron)

1.91×

10−11
1.085

1.060-

1.112

4.27×

10−11 rs2007044

12
123662401

MPHOSPH9

(intron)

5.31×

10−10
0.921

0.897-

0.945

3.28×

10−09 rs2851447

14
71565224

PCNX

(intron)

1.18×

10−8
1.008

1.005-

1.011

1.84×

10−09 rs2332700

14
104033707

KLC1 /

APOPT1

(intron)

1.67×

10−9
0.937

0.917-

0.957

5.34×

10−10 rs12887734
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15
61879178

intergenic
4.07×

10−8
0.931

0.907-

0.955

4.33×

10−07 rs12903146

15
78866721

CHRNA5

(intron)

1.84×

10−10
1.054

1.037-

1.072

2.08×

10−10 rs8042374

15
85303360

ZNF592

(intron)

6.32×

10−9
0.922

0.897-

0.948

4.32×

10−09
rs950169

16
29964957

TMEM219

/ BOLA2

(intron)

1.17×

10−9
0.927

0.905-

0.950

1.79×

10−09 rs12691307

16
58553551

SETD6

(3’UTR)

4.59×

10−8
0.964

0.951-

0.977

1.19×

10−07 rs12325245

18
53226273

TCF4

(intron)

4.20×

10−8
0.929

0.904-

0.954

1.44×

10−07 rs9636107

19
19519822

GATAD2A

(intron)

3.08×

10−8
1.027

1.018-

1.037

1.60×

10−07 rs2905426
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Table S3.3: Fine-mapping STRs and SNPs at schizophrenia-associated loci

Locus
Finemapping

method
Top Hit

Top

Hit -

Poste-

rior

Top STR

Top

STR -

Poste-

rior

K (#

indepen-

dent

signals

de-

tected)

chr1-

8424984 FINEMAP:dosages

chr1-

8424984-D 27.04%

STR-

4382
4.42% 1

chr1-

8424984

FINEMAP:best-

guess

chr1-

8424984-D 26.05%

STR-

4382
3.54% 1

chr1-

8424984
fmgt:dosages rs301797

11.90%

STR-

4382
5.30% 1

chr1-

8424984
fmgt:bestguess rs301797

11.70%

STR-

4386
3.20% 1

chr1-

73768366 FINEMAP:dosages
rs35998080 4.46%

STR-

47952
2.68% 1

chr1-

73768366

FINEMAP:best-

guess
STR-47952 4.52%

STR-

47952
4.52% 1

chr1-

73768366
fmgt:dosages STR-47880 2.50%

STR-

47880
2.50% 1

chr1-

73768366
fmgt:bestguess STR-47865 2.20%

STR-

47865
2.20% 1

chr1-

98501984 FINEMAP:dosages
STR-60458 6.64%

STR-

60458
6.64% 1
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chr1-

98501984

FINEMAP:best-

guess
STR-60458

10.29%

STR-

60458 10.29%
1

chr1-

98501984
fmgt:dosages STR-60458 6.20%

STR-

60458
6.20% 1

chr1-

98501984
fmgt:bestguess STR-60458

69.00%

STR-

60458 69.00%
1

chr1-

150031490 FINEMAP:dosages
rs72694943 2.39%

STR-

72618
0.21% 1

chr1-

150031490

FINEMAP:best-

guess
rs72694943 2.40%

STR-

72575
0.48% 1

chr1-

150031490
fmgt:dosages rs55802315 3.30% 0.00% 1

chr1-

150031490
fmgt:bestguess rs55802315 3.30%

STR-

72575
0.40% 1

chr1-

243555105 FINEMAP:dosages
rs12748870

77.30%

STR-

126189 61.88%
2

chr1-

243555105

FINEMAP:best-

guess
rs12748870

72.23%

STR-

126189 63.77%
2

chr1-

243555105
fmgt:dosages rs12748870

61.80%

STR-

126095
3.00% 2

chr1-

243555105
fmgt:bestguess rs12748870

62.50%

STR-

126241
3.00% 2

chr2-

57987593 FINEMAP:dosages
rs11682175

28.60%

STR-

735369
6.59% 2
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chr2-

57987593

FINEMAP:best-

guess
rs11682175

23.14%

STR-

735369 19.06%
2

chr2-

57987593
fmgt:dosages rs11682175

36.60%

STR-

735364
0.50% 1

chr2-

57987593
fmgt:bestguess rs11682175

36.60%

STR-

735364
0.30% 1

chr2-

146436222 FINEMAP:dosages
rs2381759 8.30%

STR-

780716
2.74% 1

chr2-

146436222

FINEMAP:best-

guess
rs2381759 8.30%

STR-

780719
5.29% 1

chr2-

146436222
fmgt:dosages rs2890780 9.30%

STR-

780719
1.00% 1

chr2-

146436222
fmgt:bestguess rs2890780 9.00%

STR-

780719
2.60% 1

chr2-

198304577 FINEMAP:dosages
rs35157131

10.99%

STR-

806656
0.89% 1

chr2-

198304577

FINEMAP:best-

guess
rs35157131

11.32%

STR-

806752
1.99% 1

chr2-

198304577
fmgt:dosages rs788023 3.10%

STR-

806656
1.10% 1

chr2-

198304577
fmgt:bestguess rs2565160 3.00%

STR-

806593
1.90% 1

chr2-

200164252 FINEMAP:dosages
rs35733345

83.60%

STR-

807558
0.33% 3
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chr2-

200164252

FINEMAP:best-

guess
rs35733345

83.51%

STR-

807515
0.80% 3

chr2-

200164252
fmgt:dosages rs4673480

50.90%
0.00% 2

chr2-

200164252
fmgt:bestguess rs4673480

50.90%
0.00% 2

chr2-

200825237 FINEMAP:dosages
rs76432012

83.61%

STR-

807927
0.83% 2

chr2-

200825237

FINEMAP:best-

guess
rs76432012

81.63%

STR-

807866
1.41% 2

chr2-

200825237
fmgt:dosages rs11693528

20.00%

STR-

807927
1.40% 1

chr2-

200825237
fmgt:bestguess rs116393510

85.40%

STR-

807927
1.30% 2

chr2-

225391296 FINEMAP:dosages
rs4674918

58.41%

STR-

822313
3.71% 2

chr2-

225391296

FINEMAP:best-

guess
rs4674918

58.78%

STR-

822283
3.83% 2

chr2-

225391296
fmgt:dosages STR-822313 7.20%

STR-

822313
7.20% 1

chr2-

225391296
fmgt:bestguess rs11686590 4.80%

STR-

822313
3.60% 1

chr2-

233592501 FINEMAP:dosages
STR-827401

18.74%

STR-

827401 18.74%
1
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chr2-

233592501

FINEMAP:best-

guess
rs1108252

14.27%

STR-

827373
5.18% 1

chr2-

233592501
fmgt:dosages rs6704768 4.60% 0.00% 1

chr2-

233592501
fmgt:bestguess rs6704768 4.60% 0.00% 1

chr3-

2547786 FINEMAP:dosages
rs11925117

92.22%

STR-

913024 22.42%
2

chr3-

2547786

FINEMAP:best-

guess
rs11925117

92.16%

STR-

913024 19.84%
2

chr3-

2547786
fmgt:dosages rs17194490

24.90%

STR-

913024
3.20% 1

chr3-

2547786
fmgt:bestguess rs17194490

25.20%

STR-

913024
2.00% 1

chr3-

36858583 FINEMAP:dosages
rs75968099

20.52%

STR-

930771
0.85% 1

chr3-

36858583

FINEMAP:best-

guess
rs75968099

20.02%

STR-

930771
1.08% 1

chr3-

36858583
fmgt:dosages rs9876421

18.50%

STR-

930771
0.70% 1

chr3-

36858583
fmgt:bestguess rs9876421

18.50%

STR-

930771
0.70% 1

chr3-

52845105 FINEMAP:dosages
rs2535629 5.33%

STR-

941180
3.36% 2
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chr3-

52845105

FINEMAP:best-

guess
rs2535629 5.23%

STR-

941180
3.24% 2

chr3-

52845105
fmgt:dosages rs2710339 5.80%

STR-

941159
1.80% 1

chr3-

52845105
fmgt:bestguess STR-941070 3.20%

STR-

941070
3.20% 1

chr3-

63833050 FINEMAP:dosages
rs832187

16.01%

STR-

947312 14.73%
1

chr3-

63833050

FINEMAP:best-

guess
rs832187

16.10%

STR-

947357 12.01%
1

chr3-

63833050
fmgt:dosages STR-947312

28.10%

STR-

947312 28.10%
1

chr3-

63833050
fmgt:bestguess rs832190

21.40%

STR-

947312 19.00%
1

chr3-

136288405 FINEMAP:dosages
rs12488721

16.08%

STR-

981628 14.94%
1

chr3-

136288405

FINEMAP:best-

guess
rs12488721

19.64%

STR-

981845
2.40% 1

chr3-

136288405
fmgt:dosages STR-981628

12.90%

STR-

981628 12.90%
1

chr3-

136288405
fmgt:bestguess STR-981628

18.30%

STR-

981628 18.30%
1

chr3-

180594593 FINEMAP:dosages
rs13096210

18.86%

STR-

1004849
3.22% 2
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chr3-

180594593

FINEMAP:best-

guess
STR-1005316

93.59%

STR-

1005316 93.59%
3

chr3-

180594593
fmgt:dosages rs13096210

18.90%

STR-

1004849
2.60% 2

chr3-

180594593
fmgt:bestguess rs13096210

18.70%

STR-

1004860
3.90% 2

chr4-

118731929 FINEMAP:dosages
rs139199583

11.90%

STR-

1075390
2.25% 1

chr4-

118731929

FINEMAP:best-

guess
rs139199583

11.92%

STR-

1075442
0.77% 1

chr4-

118731929
fmgt:dosages rs4446400 1.60%

STR-

1075388
0.30% 1

chr4-

118731929
fmgt:bestguess rs4446400 1.60%

STR-

1075388
0.50% 1

chr4-

170626552 FINEMAP:dosages
rs72696665

12.96%

STR-

1101256
0.18% 1

chr4-

170626552

FINEMAP:best-

guess
rs72696665

12.90%

STR-

1101233
0.94% 1

chr4-

170626552
fmgt:dosages rs1566522 6.50%

STR-

1101285
0.00% 1

chr4-

170626552
fmgt:bestguess rs1566522 6.40%

STR-

1101416
0.10% 1

chr5-

60598543 FINEMAP:dosages
STR-1140999

11.80%

STR-

1140999 11.80%
1
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chr5-

60598543

FINEMAP:best-

guess
STR-1140941

86.53%

STR-

1140941 86.53%
2

chr5-

60598543
fmgt:dosages STR-1140946

11.20%

STR-

1140946 11.20%
1

chr5-

60598543
fmgt:bestguess rs4132385 7.50%

STR-

1140946
5.40% 1

chr5-

152177121 FINEMAP:dosages
rs111294930

26.87%

STR-

1188614
0.84% 2

chr5-

152177121

FINEMAP:best-

guess
rs111294930

25.96%

STR-

1188654
4.76% 2

chr5-

152177121
fmgt:dosages rs2910032

19.30%

STR-

1188611
0.90% 2

chr5-

152177121
fmgt:bestguess rs2910032

19.30%

STR-

1188611
1.20% 2

chr5-

152608619 FINEMAP:dosages
rs111294930

40.67%

STR-

1188614
0.64% 2

chr5-

152608619
fmgt:dosages rs12522290

50.70%

STR-

1188611
0.90% 3

chr5-

152608619
fmgt:bestguess rs12522290

50.80%

STR-

1188611
1.10% 3

chr5-

153680747 FINEMAP:dosages

chr5-

154139507-D 66.11%

STR-

1189243 35.31%
2

chr5-

153680747
fmgt:dosages rs153431 3.90% 0.00% 1

107



chr5-

153680747
fmgt:bestguess rs153431 3.90% 0.00% 1

chr6-

28712247 FINEMAP:dosages
rs116591906

100.00%

STR-

1222821 100.00%
5

chr6-

28712247

FINEMAP:best-

guess

chr6-

28523687-D 100.00%

STR-

1222586 100.00%
5

chr6-

28712247
fmgt:dosages STR-1222540

99.50%

STR-

1222540 99.50%
2

chr6-

28712247
fmgt:bestguess rs13217619

15.60%

STR-

1222643 13.70%
2

chr6-

84280274 FINEMAP:dosages
STR-1250745

100.00%

STR-

1250745 100.00%
5

chr6-

84280274

FINEMAP:best-

guess
STR-1250745

100.00%

STR-

1250745 100.00%
5

chr7-

2025096 FINEMAP:dosages
rs4719432

16.22%

STR-

1296596
0.27% 1

chr7-

2025096

FINEMAP:best-

guess
rs4719432

16.35%

STR-

1296596
0.18% 1

chr7-

2025096
fmgt:dosages rs4719432

37.90%

STR-

1296596
0.20% 1

chr7-

2025096
fmgt:bestguess rs4719432

38.00%

STR-

1296596
0.10% 1

chr7-

86427626 FINEMAP:dosages
STR-1344557

31.41%

STR-

1344557 31.41%
2
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chr7-

86427626

FINEMAP:best-

guess
STR-1344557

19.99%

STR-

1344557 19.99%
2

chr7-

86427626
fmgt:dosages STR-1344557

28.50%

STR-

1344557 28.50%
2

chr7-

86427626
fmgt:bestguess STR-1344557

20.00%

STR-

1344557 20.00%
2

chr7-

104929064 FINEMAP:dosages
rs10953479

98.43%

STR-

1355970
9.14% 2

chr7-

104929064

FINEMAP:best-

guess
rs10953479

98.36%

STR-

1355947
3.18% 2

chr7-

104929064
fmgt:dosages rs10953479

100.00%

STR-

1355970 10.80%
2

chr7-

104929064
fmgt:bestguess rs10953479

100.00%

STR-

1355947
5.20% 2

chr7-

110898915 FINEMAP:dosages
rs214475

100.00%

STR-

1359239
0.00% 5

chr7-

110898915

FINEMAP:best-

guess
rs214475

100.00%

STR-

1359239
0.00% 5

chr7-

110898915
fmgt:dosages STR-1359256

100.00%

STR-

1359256 100.00%
2

chr7-

110898915
fmgt:bestguess rs13240464

15.70%

STR-

1359120
3.70% 1

chr8-

17084523 FINEMAP:dosages
STR-1394258

32.68%

STR-

1394258 32.68%
1
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chr8-

17084523

FINEMAP:best-

guess
STR-1394258

18.26%

STR-

1394258 18.26%
1

chr8-

17084523
fmgt:dosages STR-1394258

38.50%

STR-

1394258 38.50%
1

chr8-

17084523
fmgt:bestguess STR-1394258

32.80%

STR-

1394258 32.80%
1

chr8-

60700469 FINEMAP:dosages
rs6986251

29.01%

STR-

1417379
3.88% 1

chr8-

60700469

FINEMAP:best-

guess
STR-1417390

100.00%

STR-

1417390 100.00%
3

chr8-

60700469
fmgt:dosages rs6986251

29.00%

STR-

1417379
3.60% 1

chr8-

60700469
fmgt:bestguess rs6986251

30.00%

STR-

1417379
1.50% 1

chr8-

111485761 FINEMAP:dosages
rs16880943 7.55%

STR-

1443799
1.11% 1

chr8-

111485761

FINEMAP:best-

guess
rs16880943 9.09%

STR-

1443892
8.92% 1

chr8-

111485761
fmgt:dosages rs34137090 4.20%

STR-

1443844
0.60% 1

chr8-

111485761
fmgt:bestguess rs34137090 4.20%

STR-

1443840
0.60% 1

chr9-

101069988 FINEMAP:dosages

chr9-

101360865-I 17.46%

STR-

1501905 11.39%
2
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chr9-

101069988

FINEMAP:best-

guess

chr9-

101360865-I 17.33%

STR-

1501905 10.29%
2

chr9-

101069988
fmgt:dosages STR-1501905

12.90%

STR-

1501905 12.90%
1

chr9-

101069988
fmgt:bestguess STR-1501905

10.10%

STR-

1501905 10.10%
1

chr10-

18745105 FINEMAP:dosages

chr10-

18737405-I 14.40%

STR-

140824
0.89% 1

chr10-

18745105

FINEMAP:best-

guess
STR-140811

99.90%

STR-

140811 99.90%
3

chr10-

18745105
fmgt:dosages rs12784686

22.30%

STR-

140824 16.60%
1

chr10-

18745105
fmgt:bestguess rs12784686

24.00%

STR-

140824 10.40%
1

chr10-

104957618 FINEMAP:dosages
STR-187791

100.00%

STR-

187791 100.00%
5

chr10-

104957618

FINEMAP:best-

guess
rs7085104

18.62%

STR-

187806 16.71%
2

chr10-

104957618
fmgt:dosages STR-187806

77.10%

STR-

187806 77.10%
1

chr10-

104957618
fmgt:bestguess STR-187806

67.40%

STR-

187806 67.40%
1

chr11-

24403620 FINEMAP:dosages
rs1579116

49.82%

STR-

216044
2.73% 2
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chr11-

24403620

FINEMAP:best-

guess
rs1579116

49.94%

STR-

216044
2.49% 2

chr11-

24403620
fmgt:dosages rs12418983

23.70%

STR-

216044
3.20% 2

chr11-

24403620
fmgt:bestguess rs12418983

23.70%

STR-

216044
2.80% 2

chr11-

46350213 FINEMAP:dosages
STR-227380

20.96%

STR-

227380 20.96%
1

chr11-

46350213

FINEMAP:best-

guess

chr11-

46350213-D
7.83%

STR-

227386
4.09% 1

chr11-

46350213
fmgt:dosages STR-227380

18.50%

STR-

227380 18.50%
1

chr11-

46350213
fmgt:bestguess rs7951870 6.70%

STR-

227386
5.20% 1

chr11-

57510294 FINEMAP:dosages
rs112614215

56.36%

STR-

231316
1.40% 2

chr11-

57510294

FINEMAP:best-

guess
rs112614215

56.11%

STR-

231404
1.11% 2

chr11-

57510294
fmgt:dosages rs112614215

97.20%

STR-

231685
2.80% 2

chr11-

57510294
fmgt:bestguess rs112614215

97.70%

STR-

231685
2.30% 2

chr11-

109378071 FINEMAP:dosages
rs10789735

23.69%

STR-

260485
1.67% 2
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chr11-

109378071

FINEMAP:best-

guess
STR-260514

43.79%

STR-

260514 43.79%
2

chr11-

109378071
fmgt:dosages rs11213112

34.40%
0.00% 1

chr11-

109378071
fmgt:bestguess rs11213112

34.40%
0.00% 1

chr11-

113392994 FINEMAP:dosages
STR-262621

80.29%

STR-

262621 80.29%
3

chr11-

113392994

FINEMAP:best-

guess
rs4987094

59.76%

STR-

262602
0.22% 3

chr11-

113392994
fmgt:dosages rs12288145

51.80%
0.00% 3

chr11-

113392994
fmgt:bestguess rs12288145

51.80%
0.00% 3

chr11-

124613957 FINEMAP:dosages
rs10128573

55.32%

STR-

269231 39.76%
3

chr11-

124613957

FINEMAP:best-

guess
rs10128573

56.13%

STR-

269231 11.68%
3

chr11-

124613957
fmgt:dosages rs10128573

100.00%

STR-

269231 48.90%
3

chr11-

124613957
fmgt:bestguess rs10128573

100.00%

STR-

269231 32.30%
3

chr11-

130718630 FINEMAP:dosages
rs10894287

100.00%

STR-

272427 99.34%
5
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chr11-

130718630

FINEMAP:best-

guess
rs2324317

100.00%

STR-

272411 100.00%
5

chr11-

130718630
fmgt:dosages rs4601795

29.50%

STR-

272364 21.60%
2

chr11-

130718630
fmgt:bestguess rs4601795

37.40%

STR-

272383
1.70% 2

chr11-

133822569 FINEMAP:dosages
rs1561613

67.00%

STR-

273684
0.11% 5

chr12-

2344960 FINEMAP:dosages
rs1024582

19.12%

STR-

275767
0.93% 1

chr12-

2344960

FINEMAP:best-

guess
rs1024582

18.78%

STR-

275767
2.62% 1

chr12-

2344960
fmgt:dosages STR-275586

67.50%

STR-

275586 67.50%
2

chr12-

2344960
fmgt:bestguess STR-275592

60.10%

STR-

275592 60.10%
2

chr12-

29917265

FINEMAP:best-

guess
rs1874797

24.53%

STR-

291274
9.12% 2

chr12-

29917265
fmgt:dosages rs1874797

25.40%

STR-

291274
8.30% 1

chr12-

29917265
fmgt:bestguess rs1874797

25.10%

STR-

291274
9.50% 1

chr12-

123665113 FINEMAP:dosages

chr12-

123742918-D 41.08%

STR-

346691
1.55% 1
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chr12-

123665113

FINEMAP:best-

guess

chr12-

123618360-D 100.00%

STR-

346707 100.00%
5

chr12-

123665113
fmgt:dosages rs1727319

12.80%

STR-

346756
1.80% 1

chr12-

123665113
fmgt:bestguess rs1727319

11.70%

STR-

346726
5.20% 1

chr14-

30190316

FINEMAP:best-

guess

chr14-

29725144-I 89.36%

STR-

408005 30.14%
4

chr14-

30190316
fmgt:dosages rs2068012

65.30%

STR-

408005
1.00% 1

chr14-

30190316
fmgt:bestguess rs2068012

64.40%

STR-

408005
2.50% 1

chr14-

104046834 FINEMAP:dosages
rs4906364

28.90%

STR-

450965
3.58% 1

chr14-

104046834

FINEMAP:best-

guess
rs4906364

31.38%

STR-

451168
0.84% 1

chr14-

104046834
fmgt:dosages STR-450745

100.00%

STR-

450745 100.00%
2

chr14-

104046834
fmgt:bestguess STR-450745

100.00%

STR-

450745 100.00%
2

chr15-

61854663 FINEMAP:dosages
rs2414718

18.83%

STR-

476493
0.49% 1

chr15-

61854663

FINEMAP:best-

guess
rs2414718

17.53%

STR-

476480
7.80% 1
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chr15-

61854663
fmgt:dosages rs2414718

20.90%
0.00% 1

chr15-

61854663
fmgt:bestguess rs2414718

20.90%
0.00% 1

chr15-

78859610 FINEMAP:dosages
STR-487459

18.95%

STR-

487459 18.95%
2

chr15-

78859610

FINEMAP:best-

guess
rs147144681

10.08%

STR-

487495
5.25% 2

chr15-

78859610
fmgt:dosages rs57064725 5.40%

STR-

487517
2.00% 1

chr15-

78859610
fmgt:bestguess rs57064725 5.20%

STR-

487517
4.30% 1

chr15-

84706461

FINEMAP:best-

guess
rs2002375

14.48%

STR-

490798
0.39% 1

chr15-

84706461
fmgt:dosages rs11638445 4.40% 0.00% 1

chr15-

84706461
fmgt:bestguess rs11638445 4.40% 0.00% 1

chr15-

91426560 FINEMAP:dosages
rs4702

91.19%

STR-

494789
0.31% 2

chr15-

91426560

FINEMAP:best-

guess
rs4702

91.45%

STR-

494789
0.24% 2

chr15-

91426560
fmgt:dosages rs4702

84.00%
0.00% 1
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chr15-

91426560
fmgt:bestguess rs4702

84.00%
0.00% 1

chr16-

29939877 FINEMAP:dosages
rs12691307

15.28%

STR-

524508
0.62% 1

chr16-

29939877

FINEMAP:best-

guess
rs12691307

14.08%

STR-

524484
7.29% 1

chr16-

29939877
fmgt:dosages rs4402589

21.30%

STR-

524508
0.30% 1

chr16-

29939877
fmgt:bestguess rs4402589

21.30%

STR-

524508
0.20% 1

chr16-

58681393 FINEMAP:dosages
rs11647976

15.03%

STR-

535191
0.65% 2

chr16-

58681393

FINEMAP:best-

guess
rs12325245

15.56%

STR-

535323
0.59% 2

chr16-

58681393
fmgt:dosages rs12325003 9.80%

STR-

535314
5.40% 2

chr16-

58681393
fmgt:bestguess rs12325003

10.10%

STR-

535323
3.30% 2

chr16-

68189340 FINEMAP:dosages
rs7193701 5.12%

STR-

541443
0.61% 1

chr16-

68189340

FINEMAP:best-

guess
rs7193701 4.76%

STR-

541292
4.46% 1

chr16-

68189340
fmgt:dosages rs10852439 7.00%

STR-

541443
0.40% 1
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chr16-

68189340
fmgt:bestguess rs10852439 6.70%

STR-

541382
3.60% 1

chr17-

2208899 FINEMAP:dosages
rs4523957 4.45%

STR-

557975
1.09% 1

chr17-

2208899

FINEMAP:best-

guess
rs4523957 4.32%

STR-

557984
1.58% 1

chr17-

2208899
fmgt:dosages rs216189 3.30%

STR-

557943
1.10% 1

chr17-

2208899
fmgt:bestguess rs216189 3.30%

STR-

557943
0.90% 1

chr18-

52749216 FINEMAP:dosages
rs9636107

53.73%

STR-

640744
1.86% 4

chr18-

52749216

FINEMAP:best-

guess
rs9636107

51.69%

STR-

640744
6.50% 4

chr18-

52749216
fmgt:dosages rs9636107

97.80%
0.00% 4

chr18-

52749216
fmgt:bestguess rs9636107

97.80%
0.00% 4

chr18-

53063676 FINEMAP:dosages
rs144158419

23.65%

STR-

640744
2.14% 4

chr18-

53063676

FINEMAP:best-

guess
rs144158419

24.46%

STR-

640744
3.92% 4

chr18-

53063676
fmgt:dosages rs9636107

69.60%

STR-

640873
4.20% 4
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chr18-

53063676
fmgt:bestguess rs9636107

69.00%

STR-

640873
5.00% 4

chr18-

53200117 FINEMAP:dosages
rs9636107

21.09%

STR-

640744
1.73% 3

chr18-

53200117

FINEMAP:best-

guess
rs9636107

19.64%

STR-

640744
3.83% 3

chr18-

53200117
fmgt:dosages rs9636107

69.60%

STR-

640873
4.20% 4

chr18-

53200117
fmgt:bestguess rs9636107

69.00%

STR-

640873
5.00% 4

chr18-

53533189 FINEMAP:dosages
rs1792695

30.29%

STR-

640873
2.87% 4

chr18-

53533189

FINEMAP:best-

guess
rs1792695

29.60%

STR-

640744
4.39% 4

chr18-

53533189
fmgt:dosages rs9636107

46.10%

STR-

640873
7.80% 4

chr18-

53533189
fmgt:bestguess rs9636107

45.30%

STR-

640873
9.30% 4

chr18-

53795514 FINEMAP:dosages
rs77882218

49.12%

STR-

640873
4.34% 4

chr18-

53795514

FINEMAP:best-

guess
rs77882218

48.45%

STR-

640873
5.52% 4

chr18-

53795514
fmgt:dosages rs77882218

100.00%
0.00% 3
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chr18-

53795514
fmgt:bestguess rs77882218

100.00%
0.00% 3

chr19-

19478022 FINEMAP:dosages
rs4808931 4.99%

STR-

674033
3.20% 1

chr19-

19478022

FINEMAP:best-

guess
rs4808931 4.81%

STR-

674033
2.17% 1

chr19-

19478022
fmgt:dosages rs7253952 5.90%

STR-

674111
0.60% 1

chr19-

19478022
fmgt:bestguess rs7253952 5.90%

STR-

673901
0.60% 1

chr20-

37453194 FINEMAP:dosages
rs208818

18.34%

STR-

853031
5.26% 2

chr20-

37453194

FINEMAP:best-

guess
rs208818

20.19%

STR-

852980
1.04% 2

chr20-

37453194
fmgt:dosages STR-852893

100.00%

STR-

852893 100.00%
2

chr20-

37453194
fmgt:bestguess STR-852893

100.00%

STR-

852893 100.00%
2

chr22-

39987017 FINEMAP:dosages
rs732381

15.03%

STR-

904116
2.73% 2

chr22-

39987017

FINEMAP:best-

guess
rs732381

15.26%

STR-

904116
4.52% 2

chr22-

39987017
fmgt:dosages rs732381

17.30%

STR-

904139
1.10% 1
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chr22-

39987017
fmgt:bestguess rs732381

16.60%

STR-

904139
4.90% 1

chr22-

41587556 FINEMAP:dosages
rs9607782

40.53%

STR-

905118
0.23% 2

chr22-

41587556
fmgt:dosages rs5995910

13.80%

STR-

905095 10.10%
2

chr22-

41587556
fmgt:bestguess rs5995910

14.30%

STR-

905095
6.70% 2

chr22-

42340844 FINEMAP:dosages
STR-906383

24.02%

STR-

906383 24.02%
1

chr22-

42340844

FINEMAP:best-

guess
rs760648

23.07%

STR-

906477
4.12% 1

chr22-

42340844
fmgt:dosages STR-906383

29.60%

STR-

906383 29.60%
1

chr22-

42340844
fmgt:bestguess rs1023499 7.30%

STR-

906383
3.00% 1
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