
University of California

Los Angeles

Classification of Imbalanced Data Using

Synthetic Over-Sampling Techniques

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Peng Jun Huang

2015

c© Copyright by

Peng Jun Huang

2015

Abstract of the Thesis

Classification of Imbalanced Data Using

Synthetic Over-Sampling Techniques

by

Peng Jun Huang

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Yingnian Wu, Chair

A dataset is considered to be imbalanced if the classification objects are not

approximately equally represented. The classification problems of imbalanced

dataset have brought growing attention in the recent years. It is a relatively new

challenge in both industrial and academic fields because many machine learn-

ing techniques do not have a good performance. Often the distribution of the

training data may be different than that of the testing data. Typically, sampling

methods would be used in imbalanced learning applications, which modifies the

distribution of the training samples by some mechanisms in order to obtain a rel-

atively balanced classifier. A novel synthetic sampling technique, SMOTE (Syn-

thetic Minority Over-sampling Technique), has showed a great deal of success in

many applications. Soon after this powerful methods was introduced, some other

SMOTE-based sampling methods such as SMOTEboost , Border-line SMOTE

and ADASYN (Adaptive Synthetic Sampling) have been developed. This pa-

per reviews and compares some of these synthetic sampling methods for learning

imbalanced datasets.

ii

The thesis of Peng Jun Huang is approved.

Nicolas Christou

Frederic Paik Schoenberg

Yingnian Wu, Committee Chair

University of California, Los Angeles

2015

iii

To my dear parents . . .

for constantly supporting me through my educational journey

and giving me the most motivation

to succeed in everything I pursue.

iv

Table of Contents

1 Introduction . 1

2 Performance Measure . 3

2.1 Confusion Matrix . 3

2.2 Evaluation Metrics . 4

2.3 Receiver Operating Characteristics (ROC) Curves 5

3 Oversampling Methods . 8

3.1 Random Oversampling with Replacement 8

3.2 Synthetic Minority Oversampling Technique (SMOTE) 9

3.3 Adaptive Synthetic Sampling Approach (ADASYN) 12

3.4 Other Oversampling Techniques 15

4 Experiments . 17

4.1 Dataset description . 17

4.2 Experiment results . 19

4.2.1 Ionosphere dataset . 20

4.2.2 Glass1 dataset . 21

4.2.3 Pima India Diabetes dataset 22

4.2.4 Vehicle dataset . 23

4.2.5 Vowel dataset . 24

4.2.6 Glass2 dataset . 25

4.2.7 Abalone dataset . 26

4.3 Discussion . 27

v

5 Conclusion . 29

References . 30

vi

List of Figures

2.1 Confusion Matrix . 3

2.2 ROC Curves . 6

3.1 Synthetic Minority Over-sampling Technique Demostration 10

vii

List of Tables

4.1 Dataset description . 17

4.2 Ionosphere dataset results . 20

4.3 Glass1 dataset results . 21

4.4 PID dataset results . 22

4.5 Vehicle dataset results . 23

4.6 Vowel dataset results . 24

4.7 Glass2 dataset results . 25

4.8 Abalone dataset results . 26

viii

CHAPTER 1

Introduction

Imbalanced dataset, which can be found in real world applications of various fields,

can cause extremely negative effect on the performance of machine learning algo-

rithms. These applications range from text classification, bioinformatics, speech

recognition and telecommunications. This is a This a new challenge that often

causes inaccurate statistical modeling and classification. Imbalance with the or-

der of 100 to 1 is prevalent in fraud detection and imbalance of up to 100,000 to

1 has been considered as other applications [1], [12]. When dealing with imbal-

anced dataset, we should not use standard machine learning algorithms since it

may cause a critical mistake; instead, we may consider classifiers with adjusting

the output threshold. In the real world, we usually have far more data than the

algorithm can deal with and we have to select and sample, or we have no data at

all and we have to create them artificially. In the first situation, we need to think

about how much sample we should obtain and what the proportion of major group

and minor group should be. In the second situation, we need to consider what the

cost of creating samples and how many we should create with what proportion.

Sampling methods can be further classified into oversampling and undersampling.

Oversampling is an intuitive method that increases the size of the minority class;

on the other hand, undersampling is to use a subset of the majority class to train

the classifier. In real world applications, both methods have showed positive ef-

fects on the performance of many classifiers. This paper focuses on oversampling

techniques on two-class imbalanced learning problems, as well as provides a re-

1

view of several oversampling approaches, which are random oversampling with

replacement, synthetic minority over-sampling (SMOTE) and adaptive synthetic

sampling approach. The combinations of these oversampling methods and dif-

ferent classifiers will be applied on various imbalanced dataset to compare and

measure their performances.

In order to compare the performances of the combinations of oversampling meth-

ods and classifiers, traditional metric such as, overall accuracy, precision and recall,

do not give a meaningful evaluation. This is not appropriate because of the natu-

ral problem of imbalance. For example, consider an imbalanced dataset with 95%

majority class and only 5% minority class. A simply default strategy of guessing

the majority class would give a predictive accuracy of 95%. However, the minor-

ity class examples are usually the observations that we are interested in, which

requires a high correction rate on predicting minority class, with a reasonable

tolerance of error rate in the majority class. Therefore, a high overall predictive

accuracy does not give great confidence on the classifier. Some typical metrics

to measure these methods performance are F-measure and G-measure. Addition-

ally, a standard technique for summarizing classifier performance, the Receiver

Operating Characteristic (ROC) curve is also a good metric used in imbalanced

situation. ROC curve summarizes over a range of tradeoffs between true posi-

tive and false positive error rates. The Area Under the Curve (AUC) is widely

used as a measurement of classifiers performance. All these metric will be further

discussed in the later chapter and also be calculated in each experiment.

2

CHAPTER 2

Performance Measure

2.1 Confusion Matrix

Most of the metrics mentioned above can be calculated from the confusion matrix

as illustrated in Figure 2.1, which is a typical tools used to record the performance

of classifiers.

Predicted Negative Predicted Positive

Actual Negative TN FN

Actual Positive FP TP

Figure 2.1: Confusion Matrix

The rows of the matrix are the actual class while the columns are the predicted

class. In confusion matrix, TN, FN, FP and TP represent true positives (the num-

ber of negative samples correctly classified, similar definition for the rest), false

negatives, false positives, false negatives and true positive respectively. Because

under imbalanced learning condition, a comprehensive assessment of a learning al-

gorithm should not be evaluated by a single metric, but a set of metrics. The next

section will introduce a set of assessment metrics, derived from confusion matrix,

related to ROC graphs to evaluate the performance of classification approaches.

3

2.2 Evaluation Metrics

A typical classification evaluation criterion is overall accuracy. This metric pro-

vides a comprehensive assessment when the dataset is relatively balanced; how-

ever, this is not the case in imbalanced situation. It measures the percentage of

the examples that are correctly classified. It is defined as:

Overall Accuracy (OA) =
TP + TN

TP + FP + FN + TN

Precision is the fraction of predicted positive examples that are actually positive.

Maximum precision (no FP) corresponds to absence of type I error.

Precision =
TP

TP + FP

Recall is the fraction of actual positive examples that are predicted as positive.

It is also named specificity. Maximum recall (no FN) corresponds to absence of

type II error.

Recall (Sensitivity) =
TP

TP + FN

It is more difficult to obtain both high precision and high recall simultaneously

in imbalanced learning than in balanced learning. It is common for a classifier to

achieve high rate in one of these metrics but low rate in the other. F-measure,

also known as F-score or F-measure, is a typical metric for binary classification,

which can be interpreted as a weighted average of the precision and recall. The

general formula of F-measure is as:

F −measure = (1 + β2) · precision · recall
(β2 · precision) + recall

where greater β gives higher weights on recall. In the balanced case, β is set to

be one. This yields to the harmonic mean of precision and recall. This F-measure

will be one important evaluation metric in all the experiments in this paper.

4

Another common metric, the G-mean metric, is the geometric mean of true pos-

itive rate and true negative rate. The former term is the same as recall, or sen-

sitivity; while the later term is also known as specificity. G-mean evaluates the

degree of inductive bias in terms of the ratio of positive accuracy and negative

accuracy. It is defined as:

Specificity =
TN

TN + FP

G−mean =
√
sensitivity ∗ specificity

Although both F-measure and G-mean are great improvements to overall accuracy,

they are not the only metrics being used. Because many performance assessment

metrics have been used by different authors, it is difficult to make a comparison

among different learning approaches.

2.3 Receiver Operating Characteristics (ROC) Curves

The receiver operating characteristic curve, or ROC curve, is a assessment tech-

nique that makes use of the true positive rate and false positives rate, as illustrated

in Figure 2.2. On an ROC curve, the x-axis is FP percentage, which can be cal-

culated by the formula, FP% = FP
FP+TN

. It is equivalent to 1− specificity. The

y-axis is TP percentage or recall, which calculated by the formula, TP% = TP
TP+FN

.

By plotting the TP percentage over FP percentage, ROC curve provides a visual

representation of the tradeoff between the benefits (TP%) and the costs (FP%).

The points on a ROC curve corresponds to the performance of a single classifier on

a given distribution. The line y = x represents the scenario of guessing the class

randomly. In imbalanced dataset, the original ratio of minority class to majority

class is small, it is hard to detect the positive examples by a classifier; therefore,

we tend to obtain low true positive rate and low false positive rate. In this case,

the point is usually at the lower left corner. By varying the distribution of the

training set, the corresponding point of a classifier will move from one position to

5

Figure 2.2: As the ratio of minority class to majority class in training set increases,

the operation point will move to the upper right.

another along the curve. We can change the distribution of the training set by

oversampling the minority class or undersampling the majority class.

Our target is to achieve high true positive rate and low false positive rate for a

given classification learning, the ideal point appears at the upper left corner (0,

100). Although this point is almost impossible to achieve, we should try to develop

a method to obtain a curve as closer to the ideal point as possible. This brings

us to a question: how can we determine which classification learning method out-

performs than the others if the ROC curves are intersecting each other?

The Area Under the ROC Curve (AUC) gives the comprehensive solution to this

question. This metric is a standard technique used to compare the performances

of classification learners. As illustrated in Figure 2.2, it is difficult to select be-

6

tween the cyan and the green classifier based on the ROC curves; however, AUC

quantifies their overall performances given different class distributions. By com-

paring AUC, we can establish a dominance relationship between classifiers.

Several evaluation metrics discussed above are used in all experiments throughout

this paper. A classification approach could be shown that it is superior under

one metric while another metric might indicate it is less desirable than other ap-

proaches. Therefore, evaluation should be considered under different metrics and

one can select an appropriate metric based on his or her knowledge of the applica-

tion. The next chapter will discuss several efficient oversampling techniques that

have been widely applied in many real-world imbalanced dataset.

7

CHAPTER 3

Oversampling Methods

The nature problem of imbalanced learning is the extreme ratio of minority class

and majority class cause biases on making decision for a classifier. In this situ-

ation, most of minority instances could be easily classified into majority group,

causing the detection of minority instance difficult. Many evaluation metrics sug-

gest that classifiers perform poorly, detection rate of minority class is low. How-

ever, this does not mean that classifiers can’t learn from imbalanced dataset. The

use of sampling methods on imbalanced learning is to modify the dataset by some

mechanisms in a way that they can achieve a more balanced distribution. Over-

sampling and undersampling act as a preprocessing phase, but this paper only

discusses oversampling. Several famous sampling methods, random oversampling

with replacement, synthetic minority oversampling technique (SMOTE), adaptive

synthetic sampling technique (ADASYN), will be discussed in this chapter.

3.1 Random Oversampling with Replacement

Random oversampling with replacement is adding a set E sampled from the mi-

nority class by the following mechanics: for a set of randomly selected minority

examples in Smin, augment the original set S by replicating the selected examples

and adding them to S [8]. By doing this, the size of total examples in Smin will be

increased by |E| and the class distribution becomes more balanced accordingly.

This inquisitive method simply replicates a portion of minority class to increase

the weights of those examples. Because the replacement process is totally random,

8

this method does not specify a clear borderline of two classes. However, because

this method re-creates some existing examples in the original minority class, its

main drawback is that it could cause overfitting [4]. This methods is the fun-

damental concept of oversampling technique. Many other common oversampling

algorithms used in real-world applications are developed based on this method.

3.2 Synthetic Minority Oversampling Technique (SMOTE)

Inspired by a technique that has successfully proved in handwritten character

rcognition [5], [10], Synthetic Minority Oversampling Technique (SMOTE) was

proposed by Chawla in 2002 [1]. Unlike random oversampling, in SMOTE al-

gorithm minority class is oversampled by generating synthetic examples rather

than by oversampling with replacement. The SMOTE algorithm creates artificial

examples based on the feature space, rather than data space, similarities between

existing minority examples [1] [8]. These synthetic examples are generated along

the line segments joining a portion or all of the K nearest neighbors of the minor-

ity class. Depending on the amount of the oversmapling required, neighbors from

the K nearest neighbors are randomly chosen.

More specially, let Smin ∈ S represent the minority class. For each example

xi ∈ Smin, find the K-nearest neighbors, given an specified K. The K-nearest

neighbors are defined as the K elements of Smin whose euclidian distance between

itself and xi have the smallest magnitude in the feature space X. To create a

new sample, select one of the K-nearest neighbors randomly, and then find the

difference between the selected sample and its nearest neighbor. Multiply this dif-

ference by a number generated uniformly from 0 to 1; however, one might modify

this factor by changing uniform distribution to other distribution depending on

the application. Finally, add this vector to the selected sample xi

xsyn = xi + (x̂i − xi)× λ,

9

where xi ∈ Smin is the selected instance from minority class, x̂i ∈ Smin is one of

the K-nearest neighbors of xi and λ ∈ [0, 1] is random generated number.

Figure 3.1: Synthetic Minority Over-sampling Technique with K = 4

Figure 3.1 demonstrates an example of SMOTE procedure. The number of K-

nearest neighbors is set to be K = 4. The figure shows the synthetic examples are

created along the line segment between xi and x̂i in red. Theses synthetic examples

help balance the original class distribution, which generally significantly improves

learning. However, SMOTE algorithm also has its disadvantage such as over

generalization of the minority class space. From the original SMOTE algorithm,

many other SMOTE-based algorithms have been developed over the years and

some of them effectively improve the performance on imbalanced learning.

10

Algorithm 1 SMOTE(X, N, K)

Input:

X: the original training set

N percentage of oversampling

K: number of nearest neighbors

Output: the oversampled training set

n← # observations

m← # attributes

nmin ← # min observations

if N < 100 then

Stop: warning ”N should be greater than 100”

end if

N ← int(N/100)

S(n∗N)×m ← empty array for synesthetic samples

for i← 1 to nmin do

for each i, compute k nearest neighbors and store the indices in the nn

newindex← 1

while N 6= 0 do

Kc ← random number between 1 and K

for j ← 1 to m do

diff ←= X[nn[Kc]][j]−X[i][j]

gap← uniform(0, 1)

synthetic[newindex][j]← X[i][j] + gap× diff

end for

newindex+ = 1

N− = 1

end while

end for

Return Dataframe (X & synthetic)

11

3.3 Adaptive Synthetic Sampling Approach (ADASYN)

Based on the idea of SMOTE, various oversampling methods have been introduced

later on such as SMOTEBoost, Borderline-SMOTE [6] and Adaptive Synthetic

Sampling (ADASYN), which all have been shown improvement on imbalanced

learning on different dataset. Of particular interest with these adaptive algorithms

are the techniques used to identify minority examples.

Before discussing ADASYN, lets consider the case of Borderline-SMOTE, which

provides the basic idea of the development of ADASYN. This algorithm is achieved

as the following. First, for each xi ∈ Smin determine the set of nearest neighbors,

denoted as Si:m, where m is the number of minority class, and determine the

number of nearest neighbors that belongs to the majority class, i.e., |Si:m ∩Smaj|.

Then it classifies each xi into three groups, ”Danger”, ”Safe”, and ”Noise”, based

on the number of majority examples in its K-nearest neighbors. xi belongs to

”Danger” if:
m

2
≤ |S1:m ∩ Smaj| < m

These examples represent the borderline minority class examples. If |S1:m∩Smaj| =

m, i.e., all the K nearest neighbors of xi are majority examples, then xi is consid-

ered as ”Noise”; otherwise, it is ”Safe”. Unlike SMOTE, Borderline-SMOTE only

creates synthetic examples for those near the border, while no synthetic examples

should be generated for ”Noise” instances.

On the other hand, ADASYN, which adapts the concept of Borderline-SMOTE,

creates different amount of synthetic examples for minority class according to their

distribution. ADASYN algorithm decides the number of synthetic examples that

need to be generated for each minority example by the amount of its majority

nearest neighbors [7]. The more majority nearest neighbor, the more synthetic

examples will be created.

12

More specifically, the total number of synthetic data examples, G, is determined

by β ∈ [0, 1], which is a parameter used to specifiy the balanced level after the

synthetic process.

G = (|Smaj| − |Smin|)× β

Then find the K-nearest neighbors for each example xi ∈ Smin. Define the weight

of xi for synthetic process as the density distribution Γi:

Γi =
∆i/K

Z
, i = 1, ..., |Smin|

where ∆i is the number of majority examples in the K-nearest neighbors of xi, Z

is a normalized constant so that Γi is a probability mass function, i.e.,
∑

Γi = 1.

Then determine the number of synthetic examples that need to be generated,gi

for each xi ∈ Smin:

gi = Γi ×G

Finally, using SMOTE algorithm to generate gi synthetic examples for each xi ∈

Smin. ADASYN was developed based on the idea of SMOTE algorithm. The

difference is that ADASYN use density distribution Γ as a criterion to decide

the number of synthetic examples; while in SMOTE, each minority examples

has equally likely chance to be selected for synthetic process. Unlike Borderline-

SMOTE, ADASYN does not identify ”Noise” instances so it is possible to create

a large amount of artificial data around those instances, which may create an

unrealistic minority space for the learner.

13

Algorithm 2 ADASYN(X, β, K)

Input:

X: the original training set

β ∈ [0, 1]: desired balanced level

K: number of nearest neighbors

Output: the oversampled training set

Smaj majority class Smin minority class

nmaj # of majority observations nmin # of minority observations

G← (nmaj − nmin)× β

r1×nmin
percentage of nearest neighbors in majority class

for i← 1 to nmin do

for each i, compute k nearest neighbors and store the indices in the nn

r[i]← |nn[i]∩Smaj |
K

for i← 1 to nmin do

r̂[i]← r[i]∑
i r[i]

g[i]← int(r̂[i]×G)

Syn(G)×m ← empty array for synesthetic samples

j = 1

for i← 1 to nmin do

newindex← g[i]

while newindex 6= 0 do

Kc ← random number between 1 and K

diff ←= Smin[nn[i][Kc]]− Smin[i]

Syn[j][]← Smin[i][] + diff × uniform(0, 1)

j+ = 1

n− = 1

end while

end for

Return Dataframe (X & Syn)

14

3.4 Other Oversampling Techniques

Besides ADASYN algorithm, multiple modification have been proposed based on

the idea of the original SMOTE algorithm. SMOTE-NC (Synthetic Minority

Oversampling Technique Nominal Continuous) and SMOTE-N (Synthetic Minor-

ity Oversampling Technique Nominal)are proposed by Chawla later which are

the extended version of SMOTE handling datasets with nominal features [1] .

SMOTEBoost has also been proposed which changes the updating weights and

compensating for skewness [2]. Exceptional improvement of its performance has

been shown in F-measure.

Proposed by Hui Han and Wen-Yuan Wang [6], borderline-SMOTE1 and borderline-

SMOTE2 are two new oversampling techniques. In these two algorithms, only the

minority examples close to the borderline are being over-sampled, which adap-

tively creates a clearer separation of two classes. Their paper has shown that

these two algorithms achieve better F-value and TP rate than SMOTE. Border-

line oversampling has been used widely for imbalanced data classification. [11]

Data extracted from medical images usually resulted in geometric complexity

in data classification. Additionally, they can not be separated linearly in Eu-

clidean space. In order to deal with this problem, Juanjuan Wang et al have

proposed an novel method that improves SMOTE algorithm by incorporating

LLE algorithm (locally linear embedding algorithm)[14]. This approach maps the

high-dimensional data into a low-dimensional space where the data can be over-

sampled by SMOTE.

Support vector machine has been widely used for the classification of imbalanced

dataset. Several revised versions of SVM that combines over and under sampling

techniques such as SVMs, SVM-C, SVM-SMOTE and SVM-RU, have been pre-

sented [13], [15]. A cluster-based oversampling algorithm dealing with between-

15

class imbalance and within-class imbalance simultaneously has been proposed by

Taeho Jo et al [9]. A multiple re-sampling method that selects an appropriate

re-sampling rate adaptively has been proposed by Andrew Estabrooks [3].

Many other oversampling methods have proposed for solving imbalanced prob-

lems. Many other methods such as undersampling, cost-sensitive learning and

hybrid algorithm have been prosed in real-world applications from various fields

over years. However, we don’t emphasize them in this paper.

16

CHAPTER 4

Experiments

4.1 Dataset description

We compared different oversampling techniques on various real world imbalanced

machine learning datasets. The basic summary of these datasets sorted by imbal-

ance ratio are as shown in Table 4.1. All datasets are accessible on UCI Machine

Learning Repository. Because we only focus on two-class imbalanced classification

problems, some of the original datasets need to be modified in preprocess stage

according to different literary result from similar experiments. A brief description

of modification is discussed in the following.

Dataset

name

total

examples

minority

examples

majority

examples
atrributes

imbalance

ratio

ionosphere 351 126 225 34 0.56

glass1 214 76 138 9 0.551

PID 768 268 500 8 0.536

vehicle 846 199 647 18 0.308

vowel 990 90 900 10 0.1

glass2 214 17 197 9 0.086

abalone 731 42 689 7 0.061

Table 4.1: Dataset description

Ionosphere dataset: This dataset contains 351 observations with a binary re-

sponse, 225 good radar returns and 126 bad radar returns. The bad radar returns

17

are treated as minority class. There are 34 numerical attributes, all of which will

be used.

Glass1 dataset: This dataset contains 214 observations with a binary response,

76 positive and 138 negative. The positive examples are treated as minority class.

There are 9 continuously numerical attributes, all of which will be used.

Pima India Diabetes dataset: This dataset contains 768 females at least 21 years

old of Pima India heritage. The response variable is binary, diabetic cases (posi-

tive) and nondiabetic cases (negative). There are 268 positives and 500 negatives.

All 8 attributes are numerical and all of them will be used for analysis.

Vehicle dataset: This dataset has a total of 846 examples with 4 type of vehicles,

opel, saab, bus and van. It is used to classify a given silhouette. Each example

is represented by 18 attributes. Because we are only interested in two-class clas-

sification, Van has been chosen as the minority class and combine the remaining

classes into a majority class. After the modification, the dataset become imbal-

anced with 199 minority examples and 647 majority examples.

Vowel recognition dataset: This dataset is used to classify different vowels related

to speech recognition. The data contains 990 examples with 13 attributes. The

first 3 attributes are grouping and identifiers so they are moved, as a result of 10

attributes for analysis. The response variable has 11 classes in the original dataset

and we only choose the first vowel as the minority, giving us 90 and 900 minority

and majority class examples, respectively.

Glass2 dataset: This dataset is the same as glass1 dataset except that it has a

different imbalance ratio. There are also 214 observations and 9 attributes, but

only with 17 minority class examples. This is a dataset with imbalance ratio about

1:12.

Abalone dataset: This dataset is used to predict the age of abalone from physical

18

measurements. It originally contains 4177 observations and 8 attributes. There

are 29 classes, and we choose the class ”18” as the minority class and class ”9” as

the majority class as suggested in another research paper. Moreover, the attribute

”sex” is removed for analysis. This gives 42 and 689 minority and majority class

examples respectively with a total of 7 numerical attributes.

4.2 Experiment results

In our experiments, four classifiers, naive bayes, decision tree, random forest,

and supported vector machine, are used as the learning models, combined with

several oversampling techniques, oversampling with replacement, SMOTE, and

ADASYN. As a reference, we also provide the performance of those classifiers

based on the original imbalanced dataset without using any oversampling meth-

ods. The assessment metrics presented in Chapter 2 are used to illustrates the

performance of these learning techniques. The results are based on the average

of 100 runs and at each run, half of the minority and majority class examples are

used for training purpose and the rest are used for testing. All seven datasets

discussed above are used for the experiment under the same learning methods.

We will compare different learning methods within each dataset and provide an

overall picture of their performance.

For oversampling with replacement, the minority class examples are oversampled

to the number at which the ratio of the number of two classes examples is 1. For

SMOTE, the parameters are set as the following: number of nearest neighbors

K = 5, percentage of oversampling N = 200. For ADASYN, the parameters are

set as the following: number of nearest neighbors K = 5, desired balance level

β = 1. The following tables contain the experiment results.

19

4.2.1 Ionosphere dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.8826 0.8556 0.8180 0.8335 0.8656 0.9078

REP 0.8811 0.8489 0.8235 0.8330 0.8659 0.9002

SMOTE 0.8874 0.8481 0.8479 0.8450 0.8772 0.9155

ADASYN 0.8964 0.8690 0.8454 0.8545 0.8833 0.9134

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.8726 0.8450 0.8002 0.8138 0.8517 0.8855

REP 0.8745 0.8441 0.8027 0.8187 0.8551 0.8946

SMOTE 0.8428 0.7460 0.8566 0.7948 0.8447 0.8847

ADASYN 0.8510 0.7669 0.8516 0.8022 0.8494 0.8725

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9301 0.9276 0.8721 0.8981 0.9157 0.9546

REP 0.9297 0.9230 0.8770 0.8983 0.9166 0.9572

SMOTE 0.9220 0.8745 0.9140 0.8925 0.9201 0.9693

ADASYN 0.9256 0.8971 0.8957 0.8953 0.9182 0.9650

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9151 0.9812 0.7763 0.8661 0.8771 0.9273

REP 0.928 0.9674 0.8259 0.8904 0.9013 0.9352

SMOTE 0.9088 0.8887 0.852 0.8685 0.8948 0.9219

ADASYN 0.9169 0.931 0.8288 0.8762 0.8942 0.9261

Table 4.2: Ionosphere dataset results

20

4.2.2 Glass1 dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.5864 0.4543 0.7881 0.5648 0.5801 0.5873

REP 0.5753 0.4448 0.8202 0.5713 0.5901 0.6060

SMOTE 0.5637 0.4404 0.8540 0.5784 0.5836 0.6354

ADASYN 0.5697 0.4446 0.8558 0.5829 0.5943 0.6268

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.6869 0.5711 0.5704 0.5562 0.6473 0.6727

REP 0.7228 0.6106 0.6284 0.6116 0.6932 0.7071

SMOTE 0.6566 0.5171 0.7155 0.5945 0.6647 0.6839

ADASYN 0.6774 0.5452 0.6347 0.5779 0.6595 0.6677

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.8041 0.7904 0.6263 0.6914 0.7502 0.8102

REP 0.7968 0.7616 0.6424 0.6892 0.7510 0.8141

SMOTE 0.7493 0.6246 0.7704 0.6834 0.7526 0.8269

ADASYN 0.7890 0.7111 0.7049 0.7012 0.7655 0.8361

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.7073 0.6905 0.4065 0.4676 0.5688 0.7302

REP 0.7166 0.6107 0.6017 0.5959 0.6809 0.7463

SMOTE 0.5994 0.4668 0.8620 0.6022 0.6238 0.7426

ADASYN 0.6598 0.5203 0.7547 0.6103 0.6725 0.7235

Table 4.3: Glass1 dataset results

21

4.2.3 Pima India Diabetes dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.7471 0.6560 0.5868 0.6184 0.6987 0.7800

REP 0.7429 0.6330 0.6344 0.6329 0.7123 0.7848

SMOTE 0.7255 0.5849 0.7520 0.6569 0.7307 0.7971

ADASYN 0.7333 0.6050 0.6894 0.6437 0.7216 0.7833

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.7342 0.6361 0.5774 0.6015 0.6857 0.7617

REP 0.7267 0.6085 0.6294 0.6164 0.6991 0.7711

SMOTE 0.6975 0.5472 0.8114 0.6523 0.7151 0.7789

ADASYN 0.7092 0.5707 0.7106 0.6308 0.7081 0.7671

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.7530 0.6770 0.5685 0.6165 0.6957 0.8123

REP 0.7517 0.6633 0.5953 0.6261 0.7050 0.8159

SMOTE 0.7430 0.6081 0.7551 0.6725 0.7454 0.8130

ADASYN 0.7478 0.6277 0.6917 0.6570 0.7331 0.8074

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.7564 0.7012 0.5365 0.6061 0.6846 0.7812

REP 0.7420 0.6338 0.6276 0.6296 0.7097 0.8082

SMOTE 0.7178 0.5704 0.8003 0.6647 0.7336 0.8050

ADASYN 0.7304 0.5926 0.7417 0.6578 0.7324 0.8017

Table 4.4: PID dataset results

22

4.2.4 Vehicle dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.6594 0.3933 0.8749 0.5422 0.7206 0.7801

REP 0.6589 0.3963 0.9097 0.5516 0.7281 0.7806

SMOTE 0.6623 0.4012 0.9364 0.5613 0.7365 0.7927

ADASYN 0.6539 0.3874 0.8574 0.5332 0.7125 0.7645

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9179 0.8307 0.8136 0.8195 0.8779 0.9455

REP 0.9217 0.8052 0.8756 0.8373 0.9045 0.9606

SMOTE 0.9126 0.7778 0.8756 0.8216 0.8986 0.9492

ADASYN 0.9154 0.7763 0.8953 0.8297 0.9078 0.9449

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9643 0.9253 0.9211 0.9225 0.9487 0.9875

REP 0.9653 0.9229 0.9290 0.9252 0.9522 0.9879

SMOTE 0.9605 0.8906 0.9472 0.9173 0.9558 0.9893

ADASYN 0.9600 0.8877 0.9484 0.9165 0.9559 0.9883

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9630 0.9217 0.9191 0.9197 0.9472 0.9856

REP 0.9695 0.9022 0.9737 0.9363 0.9709 0.9902

SMOTE 0.9606 0.8687 0.9781 0.9198 0.9667 0.9889

ADASYN 0.9584 0.8583 0.9831 0.9162 0.9669 0.9887

Table 4.5: Vehicle dataset results

23

4.2.5 Vowel dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.8595 0.3245 0.5052 0.3926 0.6701 0.8637

REP 0.8185 0.3055 0.7883 0.4394 0.8037 0.8777

SMOTE 0.8413 0.3279 0.7116 0.4474 0.7786 0.8772

ADASYN 0.8069 0.2960 0.8144 0.4331 0.8097 0.8603

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9367 0.6726 0.6254 0.6368 0.7730 0.8771

REP 0.9354 0.6240 0.7703 0.6838 0.8548 0.9346

SMOTE 0.9337 0.6284 0.7275 0.6652 0.8307 0.9065

ADASYN 0.9158 0.5317 0.8037 0.6354 0.8620 0.9151

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9682 0.9710 0.6743 0.7912 0.8181 0.9824

REP 0.9749 0.9496 0.7661 0.8452 0.8721 0.9639

SMOTE 0.9792 0.9339 0.8313 0.8773 0.9080 0.9879

ADASYN 0.9767 0.8789 0.8669 0.8705 0.9244 0.9717

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9428 0.8453 0.4660 0.5883 0.6729 0.9715

REP 0.9685 0.7586 0.9694 0.8487 0.9686 0.9900

SMOTE 0.9582 0.7195 0.9074 0.7969 0.9338 0.9820

ADASYN 0.9562 0.6840 0.9762 0.8022 0.9649 0.9847

Table 4.6: Vowel dataset results

24

4.2.6 Glass2 dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.4696 0.1011 0.8075 0.1691 0.5940 0.6372

REP 0.4588 0.0998 0.8159 0.1772 0.5889 0.6508

SMOTE 0.5117 0.1012 0.7306 0.1766 0.5950 0.6473

ADASYN 0.5020 0.1011 0.7491 0.1791 0.6060 0.6579

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9107 0.2452 0.2392 0.2220 0.4590 0.5300

REP 0.8721 0.2412 0.3620 0.2585 0.5521 0.6517

SMOTE 0.8449 0.2291 0.3865 0.2672 0.5664 0.6440

ADASYN 0.8417 0.2129 0.4177 0.2758 0.5899 0.6639

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9252 0.7262 0.1612 0.2480 0.3990 0.6795

REP 0.9151 0.4357 0.2037 0.2501 0.4312 0.7536

SMOTE 0.8922 0.2963 0.3070 0.2756 0.5166 0.7874

ADASYN 0.8777 0.2479 0.2995 0.2511 0.5068 0.7304

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9245 0.3012 0.0334 0.2388 0.5312 0.6587

REP 0.8768 0.3079 0.5414 0.3817 0.6811 0.7329

SMOTE 0.8465 0.2324 0.4342 0.2781 0.5913 0.7080

ADASYN 0.8210 0.2311 0.6166 0.3295 0.7074 0.7172

Table 4.7: Glass2 dataset results

25

4.2.7 Abalone dataset

Naive Bayes

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.8528 0.2016 0.4826 0.2166 0.6466 0.7186

REP 0.7305 0.1280 0.6280 0.2109 0.6766 0.7242

SMOTE 0.7714 0.1413 0.5781 0.2245 0.6690 0.7284

ADASYN 0.6328 0.1071 0.7387 0.1861 0.6776 0.7202

Decision Tree

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9337 0.3731 0.1880 0.2681 0.4624 0.7545

REP 0.9071 0.2796 0.3623 0.3038 0.5765 0.7496

SMOTE 0.9117 0.2981 0.3649 0.3168 0.5793 0.7468

ADASYN 0.8499 0.1934 0.4999 0.2749 0.6551 0.7554

Random Forest

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9472 0.7198 0.1366 0.2249 0.3619 0.7678

REP 0.9432 0.5431 0.1874 0.2680 0.4226 0.7768

SMOTE 0.9394 0.4790 0.2810 0.3420 0.5207 0.7966

ADASYN 0.9083 0.2862 0.3873 0.3228 0.5990 0.7946

SVM

Methods OA Precision Recall F-measure G-mean AUC

NONE 0.9451 0.8914 0.0398 0.1241 0.2528 0.8327

REP 0.9153 0.3502 0.5368 0.4172 0.7063 0.8490

SMOTE 0.9497 0.6392 0.3153 0.4098 0.5530 0.8555

ADASYN 0.8744 0.2580 0.6162 0.3593 0.7388 0.8434

Table 4.8: Abalone dataset results

26

4.3 Discussion

Above datasets are sorted by the ratio of the number of minority class examples

to the number of majority class examples from large to small. For each dataset,

four classifiers and four oversampling methods are used so there are a total of 16

different imbalanced learners. For each learner, six assessment metrics are used,

and the best performance is highlighted in bold. However, we should focus on the

last three measurements, F-measure, G-mean and AUC, as discussed in Chap-

ter 2. The first three evaluation metrics, overall accuracy, precision, and recall,

are included in the tables because, as a reference, this can show that they are

inappropriate to be used in imbalanced learning. Using classifiers without any

oversampling method tends to have a higher overall accuracy rate and precision.

This happens simply because there is no artificially data points in the training

set, which can better detect the majority class examples. The training model is

biased toward the majority class, thus it may cause high overall accuracy rate

and precision. However, as mentioned in the previous chapters, these metrics are

inappropriate for evaluating the performance.

From experiment results above, learning without using oversampling methods

outperform under these traditional evaluation metrics; while they underperform

under those regular imbalanced evaluation metrics. The results also show that in

all datasets used in this paper, oversampling methods provides a better perfor-

mance. This is a significant evidence to show the improvement of exercising these

methods in imbalanced classification. There is no one oversampling method that

absolutely outperforms the others. The performance of these sampling methods

vary among datasets and classifiers. As the distribution of dataset became more

imbalanced, oversampling methods have greater impact on the performance. For

example, the last three datasets are considered more imbalanced relatively, and

oversampling methods improve the performance significantly compared to first

27

four datasets, which are considered to be more ”balanced”.

The oversampling methods indeed improve the performance of imbalance learn-

ers in most of applications; however, the impact of choosing a suitable classifier is

also important. The results indicate that there is a relatively huge variance among

different classifier. For example in the abalone dataset as shown in Table 4.8, the

areas under the curve(AUC) are about 0.72, 0.74, 0.78, and 0.84 for naive bayes,

decision tree, random forest and svm, respectively. On the other hand, the the

difference between the same metric under the same classifiers is relatively small,

which is about ±1% variation. This phenomenon indicates that even though the

oversampling methods improve the performance of classifiers, they can not effec-

tively solve the imbalanced problems. Choosing the best combination of sampling

methods and classifiers based on the distribution of minority class and majority

class is essential to deal with imbalanced problems.

28

CHAPTER 5

Conclusion

This paper provides an overview of the usage of various classification algorithms

combined with several oversampling methods for imbalanced dataset. Because of

the natural problem of imbalanced learning, general classification methods will

not provide good performance, and traditional evaluation metrics are inappropri-

ate. Thus, classification of imbalanced dataset should be treated very differently.

Several common assessment methods should be used in order for an imbalanced

learner to give a comprehensive evaluation. Among those sampling techniques,

oversampling is the most common one that reduces the bias. In most of the cases,

classifiers with oversampling clearly perform better than those without. How-

ever, the impact of classifiers is relatively more sensitive than that of sampling

techniques. One should select an appropriate classifier before determing which

sampling method to use in order to improve the performance, which depends on

the distribution of the data. Among those oversampling methods discussed above,

there is no obvious evidence to show one is outperforming than the others. We

hope this paper provide clear insights of the fundamental nature and solutions of

the imbalanced learning problem, and can help the direction for future research

of this field.

29

References

[1] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal
of artificial intelligence research, 16(1):321–357, 2002.

[2] Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W
Bowyer. Smoteboost: Improving prediction of the minority class in boosting.
In Knowledge Discovery in Databases: PKDD 2003, pages 107–119. Springer,
2003.

[3] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resam-
pling method for learning from imbalanced data sets. Computational Intelli-
gence, 20(1):18–36, 2004.

[4] Vaishali Ganganwar. An overview of classification algorithms for imbalanced
datasets. International Journal of Emerging Technology and Advanced Engi-
neering, 2(4):42–47, 2012.

[5] Thien M Ha and Horst Bunke. Off-line, handwritten numeral recognition
by perturbation method. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 19(5):535–539, 1997.

[6] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new
over-sampling method in imbalanced data sets learning. In Advances in in-
telligent computing, pages 878–887. Springer, 2005.

[7] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive
synthetic sampling approach for imbalanced learning. In Neural Networks,
2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on, pages 1322–1328. IEEE, 2008.

[8] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowl-
edge and Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[9] Taeho Jo and Nathalie Japkowicz. Class imbalances versus small disjuncts.
ACM SIGKDD Explorations Newsletter, 6(1):40–49, 2004.

[10] V Garćıa JS Sánchez RA Mollineda and R Alejo JM Sotoca. The class
imbalance problem in pattern classification and learning. 2007.

[11] Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. Borderline over-
sampling for imbalanced data classification. International Journal of Knowl-
edge Engineering and Soft Data Paradigms, 3(1):4–21, 2011.

[12] Foster Provost and Tom Fawcett. Robust classification for imprecise envi-
ronments. Machine learning, 42(3):203–231, 2001.

30

[13] Yuchun Tang, Yan-Qing Zhang, Nitesh V Chawla, and Sven Krasser. Svms
modeling for highly imbalanced classification. Systems, Man, and Cybernet-
ics, Part B: Cybernetics, IEEE Transactions on, 39(1):281–288, 2009.

[14] Juanjuan Wang, Mantao Xu, Hui Wang, and Jiwu Zhang. Classification of
imbalanced data by using the smote algorithm and locally linear embedding.
In Signal Processing, 2006 8th International Conference on, volume 3. IEEE,
2007.

[15] Mingrui Wu and Jieping Ye. A small sphere and large margin approach for
novelty detection using training data with outliers. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 31(11):2088–2092, 2009.

31

