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Abstract

Background. A recent genome-wide association study (GWAS) identified 12 independent loci
significantly associated with attention-deficit/hyperactivity disorder (ADHD). Polygenic risk
scores (PRS), derived from the GWAS, can be used to assess genetic overlap between
ADHD and other traits. Using ADHD samples from several international sites, we derived
PRS for ADHD from the recent GWAS to test whether genetic variants that contribute to
ADHD also influence two cognitive functions that show strong association with ADHD:
attention regulation and response inhibition, captured by reaction time variability (RTV)
and commission errors (CE).
Methods. The discovery GWAS included 19 099 ADHD cases and 34 194 control participants.
The combined target sample included 845 people with ADHD (age: 8–40 years). RTV and CE
were available from reaction time and response inhibition tasks. ADHD PRS were calculated
from the GWAS using a leave-one-study-out approach. Regression analyses were run to
investigate whether ADHD PRS were associated with CE and RTV. Results across sites
were combined via random effect meta-analyses.
Results. When combining the studies in meta-analyses, results were significant for RTV
(R2 = 0.011, β = 0.088, p = 0.02) but not for CE (R2 = 0.011, β = 0.013, p = 0.732). No significant
association was found between ADHD PRS and RTV or CE in any sample individually ( p > 0.10).
Conclusions. We detected a significant association between PRS for ADHD and RTV (but
not CE) in individuals with ADHD, suggesting that common genetic risk variants for
ADHD influence attention regulation.

Introduction

A recent case-control genome-wide association study (GWAS) identified, for the first time, 12
independent loci significantly associated with attention-deficit/hyperactivity disorder (ADHD)
(Demontis et al., 2019). This GWAS enables further genetic investigations using polygenic risk
scores (PRS), which are calculated for each individual by computing the sum of their risk
alleles across the genome, weighted by effect sizes (Choi, Mak, & O’Reilly, 2018). PRS provide
an estimate of the genetic propensity to ADHD at the individual level that can be used to
investigate shared genetic etiology between ADHD and other phenotypes.

Previous studies on general population samples show that ADHD PRS are associated with a
wide range of psychiatric and somatic disorders and traits, such as depression, anxiety, neur-
oticism, irritability, childhood internalizing and externalizing symptoms, obesity-related phe-
notypes and smoking (Brikell et al., 2018; Du Rietz et al., 2018; Riglin et al., 2017). Only a few
of these population-based studies explored the cognitive phenotypes associated with ADHD
using polygenic approaches, but have provided initial evidence for an association between
PRS for ADHD and lower general cognitive ability (Du Rietz et al., 2018; Martin,
Hamshere, Stergiakouli, O’Donovan, & Thapar, 2015a), educational attainment (Stergiakouli
et al., 2017) and working memory, but not inhibition impairments (measured with the
Opposite Words Task; Martin et al., 2015a). Evidence from clinically diagnosed samples
with ADHD remains even more limited. The findings reported to date indicate an association
of ADHD PRS with low academic achievement (Vuijk et al., 2019) and poor working memory
and arousal-alertness, measured with latent variables (Nigg et al., 2018). In contrast, no
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significant associations emerged between PRS for ADHD and
latent variables capturing inhibition or speed of responses (Nigg
et al., 2018). A recent study found that PRS for ADHD were asso-
ciated with a measure of interference, the ‘variance of word inter-
ference time’ in the Stroop test (Chang, Yang, Wang, & Faraone,
2020).

We now extend, in a sample of 845 people with ADHD, the
previous PRS investigations of ADHD-related cognitive pheno-
types to two cognitive measures that have extensive evidence
from phenotypic studies of a strong association with ADHD,
but have not yet been investigated using PRS: increased reaction
time variability (RTV) and commission errors (CE) (Kuntsi
et al., 2010; Loo et al., 2009; Schachar et al., 2007; van Rooij
et al., 2015). RTV captures the highly variable speed of respond-
ing that is strongly characteristic of people with ADHD across a
variety of cognitive tasks requiring a fast response (Kofler et al.,
2013; Kuntsi et al., 2013), and has been linked in EEG and skin
conductance studies to attention allocation and peripheral
hypo-arousal (Cheung et al., 2017; James, Cheung, Rijsdijk,
Asherson, & Kuntsi, 2016). CE, which represent the responses
to non-target stimuli on inhibitory tasks such as the Go/No-Go
task, capture failures to withhold responding.

Family and twin studies suggest a significant degree of familial/
genetic sharing between ADHD and both RTV and CE (Kuntsi
et al., 2010, 2014). For example, in a large study of 1265 children
and adolescents, including 464 participants with ADHD, we
observed a familial correlation of 0.74 between ADHD and
RTV, and 0.45 between ADHD and CE (Kuntsi et al., 2010). The
analyses further indicated a significant degree of etiological separ-
ation in the association of ADHD with RTV and CE (Kuntsi
et al., 2010), with a similar conclusion emerging also from model
fitting analyses in a population twin sample of 1312 children
(Kuntsi et al., 2014). Family model fitting analyses also showed a
high familial correlation between RTV obtained from two different
tasks (a four-choice reaction time task, the Fast task, and a Go/
No-Go task; rf = 0.75) (Kuntsi et al., 2010), suggesting RTV can
be combined across such tasks for further genetic investigations.

Using a polygenic approach, we can move beyond the inferred
etiological sharing between ADHD and RTV or CE that rely on
comparisons of related individuals (in twin and family designs), to
test the associations using molecular genetic data in unrelated indi-
viduals. Specifically, in this collaborative study using ADHD samples
from several international sites, we derive PRS for ADHD from the
recent GWAS (Demontis et al., 2019) to test whether genetic var-
iants that contribute to ADHD also influence the cognitive impair-
ments captured by RTV and CE in people with ADHD.

Methods

Discovery sample

As the discovery dataset, we used the Psychiatric Genomics
Consortium (PGC) and iPSYCH Danish data analyzed in the
recently published GWAS of ADHD (Demontis et al., 2019).
This GWAS consists of 11 studies, with a total of 19 099
ADHD cases and 34 194 control subjects of European ancestry
(full sample sizes are given in online Supplementary Table S1).

Target samples and cognitive assessments

From the above discovery sample, four sub-samples from different
sites were used as target samples applying a leave-one-study-out

approach: International Multisite ADHD Genetics Project
(IMAGE-I, subdivided here to IMAGE-8 and IMAGE-Dutch
that had different cognitive test batteries), University of
California Los Angeles (UCLA), Toronto and Barcelona. All par-
ticipants for each site completed a comprehensive protocol of cog-
nitive tasks, which differed for each site. Participants from
IMAGE-8 performed a four-choice reaction time task (Fast
task) and a version of the Go/No-Go task with fast and slow con-
ditions, whereas IMAGE-Dutch participants performed the
Stop-Signal Task (SST). At UCLA and Barcelona, participants
performed the Continuous Performance Test II (CPT-II), whereas
the Go/No-Go task was administered in Toronto. Descriptive sta-
tistics for each sample are shown in Table 1. Based on previous
publications, cognitive variables were selected from the tasks
that showed a significant ADHD case-control difference (effect
sizes ranging from 0.32 to 0.95 for RTV, and from 0.38 to 0.42
for CE; Alemany et al., 2015; Hale et al., 2014; Kuntsi et al.,
2010; Schachar et al., 2007; van Rooij et al., 2015). RTV [standard
deviation (S.D.) of reaction times] was obtained from each of the
tasks. Evidence for comparability between tasks was previously
obtained from model fitting analyses on the fast task and Go/
No-Go task, which indicated a high familial correlation (rf =
0.75) between RTVs obtained from each task, suggesting they
are measuring largely the same liability (Kuntsi et al., 2010). CE
was obtained from the CPT-II and Go/No-Go tasks only. The
high rates of Go-stimuli in the CPT-II task make this task com-
parable to a Go/No-Go task.

IMAGE-I
Sample: IMAGE-I is a European project on ADHD familiality
using a common protocol of centralized training and data man-
agement. IMAGE-I includes data from different European sites
and Israel, recruited from specialist clinics in Tel-Aviv, Essen,
Gottingen, Brussels, Dublin, Valencia, Zurich, London,
Nijmegen and Amsterdam (Kuntsi, Neale, Chen, Faraone, &
Asherson, 2006a; Müller et al., 2011a; Müller et al., 2011b). The
full IMAGE-I sample consisted of 782 individuals with DSM-IV
ADHD combined type (680 ADHD combined type probands
including 102 of their siblings who also met criteria for ADHD)
and 808 additional unaffected siblings aged 6–19 years (Kuntsi
et al., 2006a). All participants were recruited from specialist
clinics. In IMAGE-I, parents of children were interviewed by

Table 1. Descriptive statistics for all samples

Sample N
IQ

mean (S.D.)
Age

mean (S.D.)
Sex
M:F

IMAGE-I

IMAGE-8 143 103.78
(15.24)

11.30
(2.67)

231:26

IMAGE-Dutch 226 98.96
(11.52)

11.50
(2.47)

119:24

UCLA 55 113.33
(15.03)

11.43
(2.98)

30:25

Toronto 54 101.24
(11.40)

9.38
(2.12)

42:12

Barcelona 367 NA 33.24
(10.54)

249:118

IMAGE, International Multisite ADHD Genetics Project; UCLA, University of California Los
Angeles.
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trained researchers with the Parental Account of Childhood
Symptom (PACS), a semi-structured, standardized, investigator-
based interview developed as an instrument to provide an object-
ive measure of child behavior. Both parents and teachers com-
pleted the respective versions of the Conners’ ADHD rating
scales and the Strengths and Difficulties Questionnaire (SDQ).
Exclusion criteria were autism, epilepsy, IQ < 70, brain disorders
and any genetic or medical disorder associated with externalizing
behaviors that might mimic ADHD. Wherever possible, families
withdrew stimulant medication for 1 week prior to research
assessments to allow for more accurate ascertainment of the
current level of ADHD symptoms and behaviors. Alternatively,
clinical interviews were based on medication-free periods. A min-
imum of a 48-h medication-free period was required for cognitive
testing. All data were collected with informed consent of
the parents and with the approval of the site’s Institutional
Review Board (IRB) or Ethical Committee.

Due to differences in the protocol of the cognitive tasks,
IMAGE-I can be subdivided into two subsamples: IMAGE-8
(including participants from Tel-Aviv, Essen, Gottingen,
Brussels, Dublin, Valencia, Zurich and London) and
IMAGE-Dutch (including participants from Nijmegen and
Amsterdam). In the current study, we included only participants
with an ADHD diagnosis who had both cognitive and genetic
data available. The final sample consisted of 143 ADHD partici-
pants from the IMAGE-8 study and 226 ADHD participants
from the IMAGE-Dutch study.

Tasks: Fast-Task, Go/No-Go and SST: The Fast task is a com-
puterized four-choice reaction time (RT) task which measures
performance under a baseline (slow-unrewarded) and a
fast-incentive condition (Andreou et al., 2007; Kuntsi et al.,
2006b). In the current study, only data from the baseline condi-
tion was included as this condition is more sensitive to ADHD
(Kuntsi et al., 2013). The baseline condition consisted of 72 trials.
Four empty circles (warning signals, arranged horizontally) first
appeared for 8 s, after which one of them (the target) was colored
in. Participants were asked to press the response key that corre-
sponded to the position of the target. Following a response, the
stimuli disappeared from the screen and a fixed inter-trial interval
of 2.5 s followed. Speed and accuracy were emphasized equally.

The Go/No-Go task is a computerized test used to assess
inhibitory control (Börger & van der Meere, 2000; Kuntsi,
Andreou, Ma, Börger, & van der Meere, 2005; van der Meere,
Stemerdink, & Gunning, 1995). On each trial of the Go/No-Go
task, one of two possible stimuli appeared for 300 ms in the mid-
dle of the computer screen. The child was instructed to respond
only to the Go stimuli and to withhold their response to
No-Go stimuli. Participants were asked to react as quickly as pos-
sible while maintaining a high level of accuracy. The proportion of
Go stimuli to No-Go stimuli was 4:1. This version of the Go/
No-Go task consisted of three conditions (slow, fast and incen-
tive). Here, we use data only from the slow condition, which
show a strong association with ADHD (Andreou et al., 2007;
Kuntsi, Wood, Van Der Meere, & Asherson, 2009; Uebel et al.,
2010). The slow condition consisted of 72 trials and were pre-
sented with a fixed inter-stimulus interval of 8 s.

The SST is a response inhibition task, where participants had
to respond as quickly as possible to a Go stimulus by left or right
button press, unless shortly after presentation it was followed by a
Stop signal, in which case they were to withhold their response
(25% of trials) (Logan, Cowan, & Davis, 1984). The task difficulty
was adaptive, meaning delays between the Go and Stop stimulus

were adjusted by 50 ms after every failed or successful response,
leading to an approximate 50% success rate on the Stop-trials
for all participants. The task consisted of two practice blocks
and four test blocks, each consisting of 60 trials.

UCLA
Sample: At UCLA, 156 participants with ADHD were recruited as
part of the PUWMa collaboration [Pfizer-funded study from the
University of California, Los Angeles (UCLA), Washington
University, and Massachusetts General Hospital (MGH)], which
included 540 children and adolescents aged 5–18 years, and 519
of their parents, ascertained from 370 families with
ADHD-affected sibling pairs. Children and adolescents were
assessed according to DSM-IV-TR criteria. Families were
recruited through clinical referrals, schools and responses to
advertisements (e.g. newsletters, community newspapers or flyers
distributed at parent meetings in the greater Los Angeles area).
Respondents without a previous diagnosis of ADHD were
screened with the parent and teacher version of the Swanson,
Nolan and Pelham Rating Scale, SNAP-IV (Swanson et al.,
2012). After initial screening, children and adolescents were
assessed by master’s level clinical psychologists or highly trained
interviewers using the Schedule for Affective Disorders and
Schizophrenia for School-Age Children-Present and Lifetime
version (K-SADS-PL), as well as a parent-completed Child
Behaviour Checklist (CBCL) and Teacher Report Form.
Participants were excluded if they were positive for any of the
following: neurological disorder, head injury resulting in concus-
sion, lifetime diagnoses of schizophrenia or autism or estimated
IQ < 70. Participants on stimulant medication were asked to dis-
continue use for 24 h prior to their visit. The final sample with
both cognitive and genetic data available consists of 55 ADHD
cases.

Task: CPT-II: The CPT-II (Conners, 2000) is a 14-min compu-
terized task that consisted of six blocks and three sub-blocks.
Participants were required to press the space button on the key-
board whenever any letter except the letter ‘X’ appeared on the
computer screen. The task consisted of 360 trials, including 36
presentations of the inhibition target (X). Targets (including
‘go’ targets: A, B, C, D, F, I, L, O, T) were presented in rando-
mized order for 250-ms with variable inter-trial interval of 750,
1750 and 3750 ms. The presentation order of the different
inter-trial intervals varied between blocks. The Go:No/Go ratio
was 9:1.

Barcelona
Sample: The Spanish sample included 607 adults with ADHD
(age range 18–40 years), recruited and evaluated at the Hospital
Universitari Vall d’Hebron in Barcelona. The diagnosis of
ADHD was evaluated by clinicians with the Structured Clinical
Interview for DSM-IV Axis I and II Disorders (SCID-I and
SCID-II) and the Conner’s Adult ADHD Diagnostic Interview
for DSM-IV (CAADID Parts I and II). Exclusion criteria were
IQ < 70, schizophrenia or other psychotic disorders, ADHD
symptoms due to mood, anxiety, dissociative or personality disor-
ders, adoption, sexual or physical abuse, birth weight <1.5 kg and
other neurological or systemic disorders that might explain
ADHD symptoms. Cognitive and genetic data were available
from 367 ADHD participants. More information about this sam-
ple can be found elsewhere (Sánchez-Mora et al., 2015).

Task: CPT-II: See UCLA for task description.
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Toronto
Sample: The initial Canadian ADHD sample included 248 chil-
dren aged 6–16 years referred for ADHD, learning and/or behav-
ioral problems to the Hospital for Sick Children, Toronto (Lionel
et al., 2011). ADHD diagnostic information was obtained based
on DSM-IV criteria from parents and teachers in semi-structured
clinical interviews including the Parent Interview for Child
Symptoms (PICS) and the Teacher Telephone Interview (TTI).
The assessments were conducted by a social worker, a clinical
nurse specialist or a clinical psychologist and supervised by a clin-
ical psychologist or child psychiatrist. Exclusion criteria were an
IQ < 80, pervasive developmental disorder, autism or comorbid
psychiatric disorder that could better account for the disorder
Participants who were treated with stimulant medication had to
be unmedicated for a minimum of 24 h before assessment and
testing. Cognitive and genetic data for this study were available
from 54 children with ADHD.

Task: Go/No-Go task: This version of the Go/No-Go task
involved 128 trials of which 32 were No-Go trials and 96 were
Go trials. During the Go task, one of two possible letters was pre-
sented (an X or an O) on each trial. Participants were required to
make a response to the Go task stimuli as quickly and as accur-
ately as possible by pressing one key of a handheld response
box for an X and the other for an O (Go stimuli). The No-Go
task involved an auditory tone which was presented, at the
same time as the stimulus (letters), at random, on 25% of trials.
Participants were instructed to withhold their response when
they heard the tone. The Go task stimulus was presented for
1000 ms immediately following a fixation point of 500 ms. The
task included four blocks, each with 24 Go trials and eight
No-Go Trials. The Go:No-Go ratio was 3:1.

Data analyses

Quality control of genetic and cognitive data
Quality control of genetic data was previously performed and was
available for analyses (for more information see Demontis et al.,
2019).

To account for positive skewness of the cognitive data, we
applied appropriate transformations to all cognitive measures
for each variable prior to analyses. Square root transformations
were used in all samples for CE. For RTV, we used a logarithm
transformation for IMAGE-8 team, Dutch-IMAGE and UCLA,
and square root transformation for Barcelona and Toronto.
There were no extreme outliers for RTV or CE (>3.5 S.D.).

PRS analyses
The GWAS summary statistics used as the discovery sample in-
cluded the four target sub-groups (IMAGE-I, Toronto, Barcelona
and UCLA). For this reason, PRS were calculated from the
main GWAS each time excluding one of the target samples
using four leave-one-out association meta-analyses, to ensure
entirely independent discovery and target samples. PRS were esti-
mated for each target sample using PRSice-2 software (Euesden,
Lewis, & O’Reilly, 2015) (https://www.prsice.info) and applying
standard procedures (imputation quality cut-off using PRSice
INFO >0.9, and minor allele frequencies cut-off using PRSice
MAF > 0.05) (Choi et al., 2018). PRSice computes PRS by calcu-
lating the sum of trait-associated alleles, weighted by the log odds
ratio generated from the discovery GWAS. An R2⩾ 0.1 (250-kb
window) including all single-nucleotide polymorphisms (SNPs)
( p1, p2 = 1) was used for linkage disequilibrium (LD) clumping

to keep a set of independent SNPs. Linear regression models
were used to estimate associations between PRS and phenotypes
in the target samples. PRS were calculated at a number of
p value thresholds for SNP inclusion to provide the most pre-
dictive PRS. The p value thresholds used were 0.001, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5 and 1. We included age, sex and the first five
principal components (PCs) as covariates in all analyses, to con-
trol for population stratification. The number of PCs was chosen
based on the cohort’s sample size (all <1000) in order to avoid
overfitting and to reflect the differential power to capture true
population structure by principal component analysis, as
reported in Demontis et al. (2019). The estimated amount of
variance explained by PRS (i.e. R2 values) that we report for
each study are adjusted from a baseline model including the
covariates; the reported regression coefficients and standard
errors (S.E.) were standardized to have mean = 0 and S.D. 1
using the PRSice command (--score std). We performed strin-
gent permutation testing within PRSice-2 using 10 000 permu-
tations to control for type 1 error and to prevent data overfitting
across the range of p value thresholds considered (0.001, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 and 1). The p values are reported before
correction (indicated with ‘p’), and after correction (indicated
with ‘empirical-p’). Online Supplementary Figs S1–S9 provides
plots for the PRS prediction models for RTV and CE across all
sites.

Meta-analyses
For the meta-analyses, we used a random effects model using
the rma.uni function of the metafor package in R, with the
method set to ‘REML’. Meta-analyses for both RTV and CE
were performed across all samples at all thresholds to check
the consistency of the associations between PRS and these mea-
sures (online Supplementary Tables S2 and S3). Combining all
samples, the sample size for the meta-analysis consisted of n =
743 ADHD participants for RTV and n = 679 ADHD partici-
pants for CE.

Results

PRS in individual datasets

PRS for ADHD were not significantly associated with RTV in any
of the individual datasets (R2 = 0.004, p = 0.771, empirical-p = 0.993,
β = 0.024 for IMAGE-8; R2 = 0.016, p = 0.124, empirical-p = 0.317,
β = 0.135 for IMAGE-Dutch; R2 = 0.008, p = 0.466, empirical-p
= 0.823, β = 0.032 for UCLA; R2 = 0.031, p = 0.362, empirical-p
= 0.459, β = 0.112 for Toronto; R2 = 0.012, p = 0.029,
empirical-p = 0.079, β = 0.122 for Barcelona). All associations
showed a positive direction. PRS for ADHD were not significantly
associated and showed inconsistent direction of association with
CE in any of the individual samples (R2 = 0.011, p = 0.085,
empirical-p= 0.217, β =−0.104 for IMAGE-8; R2 = 0.036, p = 0.188,
empirical-p= 0.556, β = 0.101 for UCLA; R2 = 0.013, p = 0.407,
empirical-p= 0.761, β =−0.121 for Toronto; R2 = 0.006, p = 0.122,
empirical-p= 0.301, β = 0.083 for Barcelona).

Meta-analysis of all datasets

Meta-analysis across all thresholds for RTV showed that the best
threshold for PRS association with RTV was 0.2 (online
Supplementary Table S2). At this threshold, the PRS for ADHD
was significantly associated with RTV (R2 = 0.011 p = 0.022,
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β = 0.088), with a positive direction. The best threshold for PRS
association with CE was 0.001 (online Supplementary Table S3),
but the association with CE did not reach significance CE
(R2 = 0.011, p = 0.732, β = 0.013). Heterogeneity tests showed
low heterogeneity across studies for both measures (Q = 3.777,
p = 0.436, I2 = 13.513% for RTV; Q = 1.195, p = 0.754, I2 = 0%
for CE). Forest plots for each variable are reported in Figs 1
and 2.

Discussion

This is one of the largest studies investigating the association
between ADHD PRS and cognitive impairments in individuals

diagnosed with ADHD. Combining our samples in meta-analyses,
our results show that polygenic risk for clinically diagnosed
ADHD is positively associated with higher RTV, but not with
CE as measured by Go/No Go tasks. These data suggest that com-
mon genetic variation relevant for ADHD influences attention
regulation (RTV) but not response inhibition processes (CE) in
a clinical ADHD sample. Whether the lack of an association
with CE could reflect possible involvement of rare variants not
detectable in this analysis or limited power to detect a potentially
smaller association, requires further study.

Our results on RTV build on previous evidence from a smaller
sample of children with ADHD showing a significant positive
association between a latent variable of arousal-alertness and
PRS for ADHD (Nigg et al., 2018). Of note, the association we

Fig. 1. Forest plot of the meta-analysis of RTV.
The overall estimate from random effects model is
represented by the diamond below the individual
study estimates.

Fig. 2. Forest plot of the meta-analysis of CE.
The overall estimate from random effects model is
represented by the diamond below the individual
study estimates.
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observed between PRS for ADHD and RTV was mostly consistent
across all p value thresholds in the meta-analysis, with only slight
fluctuations in results possibly due to low power. Similarly, our
results on CE are consistent with a previous population-based
study and a clinical study showing no association between poly-
genic risk for ADHD and other inhibition measures (Martin
et al., 2015a; Nigg et al., 2018), although a recent study did report
an association between PRS for ADHD and interference when
measured with the variance of word interference time in the
Stroop test (Chang et al., 2020). Previous twin and sibling ana-
lyses have indicated a degree of shared genetic/familial influences
on ADHD and response inhibition (Kuntsi et al., 2006b; Kuntsi
et al., 2010). Further evidence from a sibling study suggested in
fact two familial cognitive impairment factors for ADHD: a larger
factor (85% of familial variance of ADHD) related to RTV, and a
smaller factor (12.5% of familial variance of ADHD) capturing
CE and omission errors (an overall measure of task accuracy)
(Kuntsi et al., 2010). The findings from the sibling and twin stud-
ies (Kuntsi et al., 2010, 2014) suggested a potential separation, at
the genetic level, between attention regulation and response inhib-
ition processes in their association with ADHD. It is possible that
our current analyses detected the larger factor accounted for by
RTV in the sibling analyses (Kuntsi et al., 2010) while the smaller
factor (accounting for CE) could not be detected with the current
sample size. Future studies should investigate the genetic correl-
ation between ADHD and RTV or CE across the whole genome
using LD score regression, when summary statistics from
GWAS on the appropriate cognitive traits will be available.

Although PRSs capture the common risk alleles that contrib-
ute to clinically diagnosed ADHD, they do not incorporate con-
tributions from other genetic factors, such as copy number
variants (CNVs) and single-nucleotide variants (SNVs) that
may underlie the association of ADHD with RTV or CE.
Several studies indicate a role for CNVs and SNVs in contributing
to ADHD risk (Martin, O’Donovan, Thapar, Langley, & Williams,
2015b; Satterstrom et al., 2018; Thapar et al., 2016; Williams et al.,
2012; Williams et al., 2010; Yang et al., 2013). CNVs were shown
to be associated with cognitive features in the general population
such as general cognitive ability (MacLeod et al., 2012), educa-
tional and occupational attainment (Kendall et al., 2017;
Männik et al., 2015), and other cognitive phenotypes such as
working memory, episodic memory, speed processing, visual
attention and fluid intelligence (Kendall et al., 2017). Similarly,
SNVs have been implicated in intellectual disability (Satterstrom
et al., 2018). Yet, the extent to which CNVs and other genetic var-
iants may contribute to cognitive impairments in individuals with
ADHD is poorly understood and is an important direction for
future research.

Although this is the largest study to date to investigate RTV
and CE with a cutting-edge PRS method in a sample of indivi-
duals with clinically diagnosed ADHD, certain limitations need
to be considered. First, our individual study analyses were under-
powered due to the small sample sizes available in each single
study. To increase statistical power, we analyzed the target studies
with meta-analyses, reaching a combined sample size of n = 743
ADHD participants for RTV and n = 679 ADHD participants
for CE; yet future studies, ideally with larger samples, are needed
to replicate these results. Second, the age range of our participants
was wide (8–45 years old). It would be informative in future larger
studies to explore results separately for participants of different
age groups (children, young adults and older adults). Third, our
study included only participants of European ancestry; the

generalizability of our findings to non-European populations
requires further investigation. Fourth, the use of different tasks
to reflect the two constructs of interest at different sites could
have introduced heterogeneity in our data; however, we used ran-
dom effects in the meta-analyses to account for between-study
variation across sites. A further direction for future research is
to widen the PRS investigation to additional cognitive impair-
ments associated with ADHD.

Overall, polygenic risk associated with clinical ADHD diagno-
sis was associated with higher RTV in individuals with clinically
diagnosed ADHD. Our results provide molecular genetic evidence
that attention regulation and ADHD share common genetic fac-
tors. In other words, ADHD common variants not only contrib-
ute to risk of ADHD diagnosis, but are also a marker of poorer
RTV performance in the context of having such a diagnosis.
Further investigation, with bigger sample sizes, is needed to rep-
licate these findings and to further determine the neurobiological
mechanisms underlying this association. Furthermore, it is
unknown whether the findings reported here are specific to
ADHD or generalize to other disorders where increased RTV is
also observed (such as bipolar disorder, schizophrenia and aut-
ism) (Brotman, Rooney, Skup, Pine, & Leibenluft, 2009; Kaiser
et al., 2008; Karalunas, Geurts, Konrad, Bender, & Nigg, 2014).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720005218
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