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ABSTRACT
Understanding the conformation of a polyelectrolyte (PE) is not only a fundamental challenge in polymer science but also critical for under-
standing the folding and aggregation of proteins. Here, we develop a theory by systematically including the electrostatic interactions into the
self-consistent field theory for polymers to study the conformational behaviors of a single PE in poor solvents. As the backbone charge fraction
of the PE increases, our theory predicts that the spherical globule (Sph) can either be elongated to a series of pearl-necklace (PN) structures
or be flattened to two novel structures that have not been reported before: biconcave red cell and toroid. While the PN structures are stable
conformations, the two fattened structures are metastable. We find that the cylindrical globule, the stability of which is under debate, is an
unstable structure. The signature of the PN structures obtained by our calculation is less pronounced than that reported by other theoretical
works due to the continuous change in the curvature from the pearl to the necklace, which, however, is in good agreement with the results
from molecular simulations and neutron scattering experiments. In addition, our theory reveals different characteristics of the globule to PN
transition: the transition from the Sph to the PN with double pearls is discontinuous, whereas those from adjacent PN structures are continu-
ous at finite salt concentrations. Furthermore, we observe different scaling behaviors: the string width is not a constant as a thermal blob but
decays as the backbone charge fraction increases.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0017371., s

I. INTRODUCTION

Polyelectrolytes (PEs) are polymers with charged repeating
units, which have attracted widespread attention in both academic
and industrial research.1–4 Applications for PEs are ubiquitous,
such as surfactants in a variety of personal care/health products,5

surface-modifiers in water treatment and oil recovery,6,7 additives in
foods,8,9 superabsorbers in agriculture and sanitation,10 biomedical
materials in implant coating and drug delivery,11,12 and electrolytes
in lithium batteries.13,14 In addition, many biomacromolecules, like
proteins, DNA, and RNA, are essentially PEs.15 Due to the pres-
ence of long-range electrostatic interaction, PEs exhibit complex
structural and dynamic behaviors.16–23 Despite their fundamental
importance and wide range of applications, PEs remain among the

least understood systems in polymer science, in stark contrast with
our understanding of neutral polymers.24–27 The majority of PEs
are composed of hydrocarbon backbones for which a polar medium
such as water is a poor solvent. The addition of charged groups to
polymer chains prevents aggregation and precipitation, thus signif-
icantly improving their solubility in aqueous solutions. A critical
problem for almost all the solution properties of PEs is the con-
formation of a single polyelectrolyte chain in poor solvents. The
study of PE conformation also provides fundamental understand-
ing of the folding and aggregation of proteins, which is associated
with many human disorders, including Alzheimer’s, Parkinson’s,
and prion diseases.28–30

The competition between the electrostatic repulsion and the
effective attraction induced by poor solvents leads to nontrivial

J. Chem. Phys. 153, 064901 (2020); doi: 10.1063/5.0017371 153, 064901-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0017371
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0017371
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0017371&domain=pdf&date_stamp=2020-August-10
https://doi.org/10.1063/5.0017371
https://orcid.org/0000-0002-5133-0267
https://orcid.org/0000-0002-4058-9521
mailto:weihuali@fudan.edu.cn
mailto:ruiwang325@berkeley.edu
https://doi.org/10.1063/5.0017371


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

conformational behaviors of PEs, which has been a subject of
long-standing debate.31,32 Khokhlov suggested that a collapsed
spherical globule cannot be stable as the charge density on the chain
increases and would eventually deform into an elongated cylinder.33

Based on the similarity between this problem and the Rayleigh insta-
bility of charged droplets, Kantor and Kardar further argued that
the stable structure should not be cylindrical but pearl-necklace
(PN)-like, which consists of highly stretched strings alternating
with collapsed globules.34–36 In addition, Dobrynin, Rubinstein, and
Obukhov developed a scaling theory for this pearl-necklace model
and predicted a cascade of abrupt transitions between necklaces
with different numbers of pearls.37 The pearl-necklace structure has
been supported by AFM images38–42 and molecular simulations of
a polyelectrolyte in implicit solvents.43–50 However, using molecu-
lar dynamics simulations either with an explicit solvent model or
a solvent-accessible surface area model where the polymer–solvent
interaction is rigorously considered, Yethiraj and co-workers
claimed that the pearl-necklace structures were not clearly seen
in the snapshots.51,52 Instead, the polyelectrolyte shows structures
similar to cylindrical globules in their simulations. This observa-
tion is also consistent with the lack of the pearl-necklace signature
in the structure factor measured by small-angle neutron scattering
(SANS).41,53–56

To reconcile the discrepancy between theories, simulations,
and experiments, it is necessary to identify the stability of differ-
ent candidate structures by accurately calculating the free energy.
In addition, previous theories focused only on a few preassumed
structures, which exclude the existence of other equilibrium struc-
tures beyond the cylindrical globule and the pearl-necklace.37,57–59

Furthermore, motivated by the potential application of a PE as
a soft single-chain nanoparticle and its essential connection with
biomacromolecules, it is desirable to predict the response of the
equilibrium conformation to external stimuli like solvent quality and
ionic strength. It is also worthwhile to understand its dependence
on the chain structure such as chain length, architecture, and charge
distribution. In this work, we develop a theory to describe PE con-
formation in poor solvents. This theory systematically includes the
electrostatics for charged systems and the self-consistent field theory
(SCFT) for neutral polymers in a unified framework, which captures
the coupling between charge interactions and chain conformation.
Superior to existing theories, our work does not need to invoke any
preassumed structure as a priori, not only providing the most accu-
rate description of the density profile and free energy for known
conformations but also facilitating the search for new equilibrium
structures.

II. THEORY
As shown in Fig. 1, the system we considered is a subvolume V

consisting of np monodisperse PE chains and ns solvent molecules in
the presence of n+ mobile cations and n− anions. np = 1 specifies a
single PE chain. The subvolume is treated as a semicanonical ensem-
ble:60,61 the number of polymers in the subvolume is fixed while the
solvent and mobile ions are connected with a bulk salt solution of an
ion concentration cb

± that maintains the chemical potentials of the
solvent μs and ions μ±. The PE is assumed to be a Gaussian chain of
N Kuhn segments with a Kuhn length b. The smeared charge model
is adopted to describe the charge distribution on the chain backbone

FIG. 1. Schematic of a single polyelectrolyte (PE) chain in poor solvents in the
presence of mobile cations and anions.

such that the annealed fraction of segments α contains a charge with
valency zp.62–68 While the choice of charge is arbitrary, we choose
the charge on the PE backbone to be negative here. Mobile ions are
taken as point charges with valency z±.

The semicanonical partition function can be written as

Ξ =
1

np!vNnp
p

∞
∑

nγ=0
∏

γ

eμγnγ

nγ!v
nγ
γ

np

∏

i=1
∫ D̂{Ri}

×

nγ

∏

j=1
∫ drγ,j∏

r
δ[ϕ̂p(r) + ϕ̂s(r) − 1] exp(−H), (1)

where γ = s, ± represents all the small molecules in the system. vp and
vγ are the volume of the chain segments and small molecules, respec-
tively. For simplicity, we assume vp = vs = v0. ∫ D̂{Ri} denotes the
integration over all chain configurations weighted by the Gaussian-
chain statistics. ϕ̂p(r) and ϕ̂s(r) are the local instantaneous volume
fraction of the solvent and the polymer, respectively. The δ func-
tional accounts for the incompressibility. The Hamiltonian H in
Eq. (1) is given by

H =
χ
v0
∫ drϕ̂p(r)ϕ̂s(r) +

1
2 ∫

dr∫ dr′ρ̂c(r)C(r, r′)ρ̂c(r′), (2)

which consists of two contributions: the short-range polymer–
solvent interaction described by the Flory–Huggins χ parameter and
the long-range Coulomb interaction between all charged species.
ρ̂c(r) = z+ĉ+(r) − z−ĉ−(r) − zpαϕ̂p(r)/v0 is the local charge den-
sity, where ĉ±(r) is the instantaneous number density of ions. C(r,
r′) is the Coulomb operator satisfying

−∇ ⋅ [ε(r)∇C(r, r′)] = δ(r − r′). (3)

ε(r) = kTε0εr(r)/e2 is the scaled permittivity, where ε0 is the vacuum
permittivity and εr(r) is the local dielectric constant which depends
on the local composition of the system.67–70

We follow the standard self-consistent field approach62 (see
supplementary material Sec. I for the detailed derivation), which
involves (1) identity transformation and Hubbard–Stratonovich
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transformation to decouple the interacting system into noninteract-
ing chains and ions in the fluctuating fields and (2) the saddle-point
approximation to simplify the evaluation of the functional integral
over the fluctuating fields. The free energy of the system is then

F =
1
v0
∫ dr[χϕp(1 − ϕp) − ωpϕp − ωs(1 − ϕp)]

− ∫ dr[c+ + c− +
1
2
ε(∇ψ)2 +

zpα
v0

ϕpψ]

− np log Qp + log(np!) − eμs Qs. (4)

It should be noted that the free energy in Eq. (4) can also be perceived
as the self-energy of a single polyelectrolyte chain for the case of
np = 1.71 Qp is the single-chain partition function in the field ωp,
given by Qp = (1/v0)∫dr q(r, N). q(r, s) is the chain propagator
determined by the modified diffusion equation

∂q(r, s)
∂s

=
b2

6
∇

2q(r, s) − ωp(r)q(r, s). (5)

Qs is the single particle partition function of the solvent in the field
ωs, given by Qs = (1/v0)∫dr exp[−ωs(r)]. The PE density profile ϕp,
the ion concentration c±, and the fields ωp, ωs, and ψ are determined
by the following self-consistent equations:

ωp(r) − ωs(r) = χ[1 − 2ϕp(r)]

−
∂ε(r)
∂ϕp(r)

v0[∇ψ(r)]2 − zpαψ(r), (6a)

ϕp(r) =
np

Qp
∫

N

0
dsq(r, s)q(r, N − s), (6b)

1 − ϕp(r) = eμs exp[−ωs(r)], (6c)

−∇ ⋅ [ε(r)∇ψ(r)] = z+c+(r) − z−c−(r) −
zpα
v0

ϕp(r), (6d)

c±(r) = λ±e∓z±ψ(r), (6e)

where λ± is the fugacity of the ions, defined as λ± = eμ±/v±, which
can be determined from the bulk salt concentration cb

±.
Equations (6a)–(6e) are derived in the mean-field framework

which cannot describe the effects of the spatially varying dielectric
medium and the ion–ion correlation as a consequence of the fluctu-
ation of the electrostatic field. To capture the local fluctuation effect,
the Born solvation energy u±(r) can be included into the Boltzmann
factor in Eq. (6e) as

c±(r) = λ±e∓z±ψ(r)−u±(r), (7)

where u±(r) = z2
±/[8πa±ε(r)] with a± being the Born radius of

cations and anions, respectively.67,69,70 The inclusion of the Born
solvation energy can be rigorously achieved by taking the Gaussian
fluctuation of the electrostatic field and retaining the nonuniversal
contribution in the length scale of the ion size. We refer interested

readers to the relevant literature for a more detailed derivation.72,73

The Born solvation energy accounts for the electrostatic interac-
tion between the ion and the local dielectric medium. For spatially
varying ε, u± is not a constant, which cannot be adsorbed into the
redefinition of the chemical potential and thus will affect the ion
distribution.

By solving Eqs. (6a)–(6d) and (7) iteratively, the equilibrium
density profile of the PE, the electrostatic field, and the ion distribu-
tion can be obtained. Based on the symmetry of possible structures,
we use a cylindrical coordinate in the numerical calculation. Both
the polymer density and the electrostatic potential field are set to
be zero at the boundary of the cylindrical box. The approximate-
factorization implicit (AFI) method is used to solve the modified dif-
fusion equation [Eq. (5)], whereas the alternating-direction implicit
(ADI) method is used to solve the Poisson–Boltzmann equation
[Eq. (6d)].74 Different initial seeds are used in the iteration process
to generate all possible equilibrium structures. The free energy can
be calculated from Eq. (4) to determine the stability of different equi-
librium structures. Furthermore, the theory can be easily generalized
to PEs with different chain architectures, chain statistics, and a vari-
ety of charge distributions on the backbone. Electrostatics beyond
the mean-field level can also be straightforwardly included into the
current theory by taking the Gaussian fluctuation around the sad-
dle point.72,73 While the current work focuses on the single chain
conformation in the dilute limit, our theory can also be applied to
study the aggregation behavior of multiple PE chains75 for finite PE
concentrations by including the effect of translational entropy in the
framework of dilute solution thermodynamics.60,61

III. RESULTS AND DISCUSSION
In the current work, we focus on the effect of the backbone

charge fraction α on the equilibrium structures of the PE and their
transitions. Other effects such as polymer–solvent interaction, chain
length, salt concentration, valency of ions, and dielectric contrast
between the solvent and the polymer will be reported elsewhere.
For simplicity, the dielectric constants of the polymer and the sol-
vent are set to be the same (εr ,p = εr ,s = 80), yielding a constant
Born solvation energy u± which can be adsorbed into a redefined
chemical potential. The temperature is set to be 293 K, whereas
the Bjerrum length lB = e2/4πε0εrkT is 0.7 nm. The Kuhn length
b = 1.0 nm. Both the backbone charge and the mobile ions are taken
to be monovalent (zp = z+ = z− = 1). The bulk salt concentration is
set to be dilute (cb

± = 2×10−3M) such that the Debye screening length
κ−1

D = [4πlB(z+cb
+ + z−cb

−)]
−1/2 = 7 nm, which is larger than the glob-

ule size, and the screening effect on the electrostatic interactions is
not significant.

A. Equilibrium structures
The equilibrium structure of a PE in poor solvents is deter-

mined by the interplay between the electrostatic repulsion and the
solvent-induced effective attraction between monomers. The charge
fraction α has a great impact on the equilibrium shape, polymer
density distribution, and electrostatic potential, as shown in Fig. 2.
When α is small (e.g., α = 0.1), the PE maintains a spherical glob-
ule (Sph) structure with a core region and a diffuse surface. In the
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FIG. 2. Equilibrium structures formed by a single polyelectrolyte with different backbone charge fractions α in poor solvents. N = 200, χ = 1.0, and cb
±
= 2 × 10−3M. (a)–(f)

show the 3D isosurface plots of the polymer density profiles of the spherical globule (Sph), pearl-necklace structures with two spheres (PN2), three spheres (PN3) and four
spheres (PN4), biconcave red cell (RC), and toroid (Tor) structures, respectively. (g)–(l) show the 2D visualizations in the xz plane of the polymer density distribution ϕp. The
corresponding electrostatic potential distributions ψ of different equilibrium structures are shown in (m)–(r).

core region, the polymer density near the rim is slightly higher than
that in the center [see Fig. 2(g) for the 2D density distribution and
Fig. S1 for the radial density distribution in supplementary material
Sec. II], benefiting the charge dispersion. This is different from the
case of a charge neutral polymer in poor solvents where the poly-
mer density is uniform in the entire globule core.60,61 As shown in
Fig. 2(m), charge accumulation in the globule core raises the electro-
static potential of the Sph. As α increases beyond a threshold value,
the spherical shape can no longer be stable and have to deform, bear-
ing similarity with the Rayleigh instability of a charged droplet.34

The shape deformation is to release the electrostatic energy by
increasing the average distance between charged monomers at the
lowest cost of the surface energy due to the unfavorable contact
between monomers and solvents. This deformation can be achieved
by either elongating or flattening the spherical shape, as shown
in Figs. 2(b)–2(d) and 2(e)–2(f), respectively. It should be noted
that both the elongated structure and the flattened structure can
exist at equilibrium for the same value of the charge fraction α,
which are obtained by using different initial seeds in the iteration

process. To the best of our knowledge, flattened structures have not
been reported before, despite a considerable discussion of elongated
structures.31,32

For the elongated part, the equilibrium conformation of the
PE shows a series of pearl-necklace (PN) structures with two pearls
(PN2), three pearls (PN3), and four pearls (PN4), as α increases to
0.115, 0.13, and 0.145, respectively. The change in the pearl struc-
tures is sensitive to the α values, which has also been observed
in the early simulation of the PE with similar chain lengths.37,44,47

The electrostatic repulsion increases as α becomes larger, leading
to a more elongated PN structure. The number of pearls is iden-
tified from the local maxima of the distance between the axis of
the symmetry and the Gibbs dividing surface (see supplementary
material Sec. III for detailed description). Pearls are connected by
thinner strings, whereas a large fraction of the mass and charge
belong to the pearls, but the size of the chain is attributed to
the stretch of the strings. While existing theories usually assumed
in advance the exact different curvatures between the pearl and
the string in the PN structure,37,57–59 our theory generates the PN
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structure without any prior assumption. Obviously, the change in
the curvature from pearl to string is less significant than that con-
sidered by the scaling model and variational approach, especially for
the PN structures with a large number of pearls. However, these PN
structures obtained by our SCFT calculation are in good agreement
with those observed in the snapshots of molecular simulations by
Yethiraj et al., where the polymer–solvent interaction is rigorously
considered through an explicit solvent model or a solvent-accessible
surface area model.51,52 In their simulations, it is even difficult to
distinguish the PN structures from the cylindrical globule due to
thermal fluctuations. In addition, the density profiles show that the
middle pears in PN3 and PN4 are notably smaller than the ending
pearls, in agreement with the results from previous simulations.43–51

However, it is clear that these pearls greatly deviate from the spher-
ical shape, also strongly contradicting with the assumptions in the
scaling model.37 We also note that the PN structure becomes more
pronounced as the solvent becomes poorer; i.e., the Flory–Huggins
parameter χ becomes more positive. Furthermore, it is intriguing to
note from the magnitude of ψ in Figs. 2(m)–2(p) that a PE with
a larger backbone charge density can have a smaller electrostatic
potential by increasing the number of pearls. This is in stark contrast
with our intuition that the electrostatic potential usually increases
with the amount of charge carried by the object. The effectiveness
of the PN structure in releasing electrostatic energy also reveals
the unique feature of the soft single-chain nanoparticles with shape
regulation.

It has been long debated whether the cylindrical globule struc-
ture theoretically proposed by Khokhlov and observed in simula-
tions is an equilibrium structure and whether this structure is more
stable than the PN.33,46,47,51,52 Our calculation demonstrates that the
cylindrical globule structure cannot exist in equilibrium under the
condition of dilute salt solution. Using an ellipsoid or a cylindri-
cal globule as the initial condition of the polymer density profile,
we find that these structures disappear during the iteration process
when numerically solving the self-consistent equations and eventu-
ally transit to a more stable PN structure. It will be desirable to exam-
ine in the future whether the cylindrical structure can exist as a tran-
sition state in the kinetic pathway of the globule to pearl-necklace
transition.

Our theory is free of any preassumption on the structure itself
as invoked in existing theories, providing a facile way for search-
ing new equilibrium structures which have not been reported before.
As shown in Figs. 2(e) and 2(f), two flattened structures, biconcave
red cell (RC) and toroid (Tor), can also be obtained for α = 0.13,
besides the elongated PN3 structure. These flattened structures are in
local minimum of the free energy since they can be obtained using
different initial seeds in the iteration process of the numerical cal-
culation and can be stabilized if small perturbations are introduced
in the polymer density profile. The existence of RC and Tor as the
equilibrium structure indicates that flattening the spherical shape
besides elongation provides an alternative way to effectively dis-
perse the charge. The strong accumulation of the electrostatic energy
near the center of the spherical globule can be notably reduced
in the biconcave shape through lowering the polymer density in
the center region. The formation of the cavity in the Tor structure
can further enlarge the separation between charges and thus lower
the electrostatic potential, as shown in the comparison between
Figs. 2(q) and 2(r). While the RC and Tor structures have been

experimentally observed in block copolymer micelles and lipid
membranes,76–78 here, it is predicted for the first time that these
structures can also exist in the system of a single homogeneous PE
chain. This indicates the essential similarity between the current sys-
tem and other elastic soft matter systems. Furthermore, these versa-
tile soft single-chain nanoparticles can be used as distinctive building
blocks for the assembly of nanoporous materials.

B. Stability and conformational transition
By systematically including the electrostatic interactions and

self-consistently describing the polymer density profile, our theory
provides the accurate calculation of the free energy, which enables
us to determine the stability of different equilibrium structures.
Figure 3(a) shows the free energy (in excess of a charge-neutral poly-
mer in the same salt solution) of different structures as a function of
the charge fraction α in their existing regimes. While the Sph is sta-
ble for a small charge fraction, the PN is a more stable structure as
α increases. The number of pearls in the stable structure increases
with the increase in α. The two flattened structures, RC and Tor,
which only exist in the intermediate regime of α, have a higher free
energy than the PN structure and thus are metastable because the

FIG. 3. Stability of different equilibrium structures and the conformational tran-
sition. (a) Excess free energy Fexc (based on a charge-neutral polymer in the
same salt solution) as a function of the charge fraction α. The transition point from
the Sph to PN2 and the successive transitions from PNm to PNm+1 (m ≥ 2) are
located by vertical dashed lines. (b) The plot of the order parameter of aspheric-
ity s, where the metastable regions of different structures are illustrated by dotted
lines.
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PN can be more effective in releasing the electrostatic repulsion due
to the more diffusive polymer density distribution. This explains the
fact that elongated PN structures are more likely to be observed than
flattened structures in simulations and experiments.

The functional dependence of free energy on the charge frac-
tion α shown in Fig. 3(a) also elucidates the order of the confor-
mational transition between different stable structures. The scal-
ing model and the variational approach predict that both the tran-
sition from the Sph to PN2 and the successive transitions from
PNm to PNm+1 (m ≥ 2) are discontinuous.37,59 However, our the-
ory predicts different characteristics of the globule to pearl-necklace
transition compared to the existing theories. The transition from
the Sph to PN2 remains discontinuous due to the breaking of the
spherical symmetry, which is clearly demonstrated by the cross-
ing of the free energy curves belonging to these two structures at
α = 0.105, as shown in Fig. 3(a). Beyond this transition point,
there are two metastable regimes corresponding to the Sph and
PN2. On the other hand, the free energy curves between different
PNm (m ≥ 2) connect smoothly. The crossing point cannot be found
in our calculation even when the accuracy of α was increased up
to 10−4. Our numerical results suggest that the transitions between
successive pearl-necklace structures are continuous at finite salt con-
centrations, which contradicts with the prediction from existing the-
ories. These different characteristics of conformational transition
are due to the continuous change in the curvature from the pearl
and the strings self-consistently generated in our theory. The exist-
ing theories enforce exact different curvatures between the pearl
and string and further assume in advance a constant string width,
which automatically gives rise to a cascade shape change in the
transition from PNm to PNm+1 when a new pearl appears from the
string.37,59 In contrast, the formation of the new pearl predicted by
our theory is achieved by continuously adjusting the curvatures of
the existing pearls and strings, which does not necessitate a discon-
tinuous shape transition. The continuous change in the curvature
in the conformational transition makes it difficult to identify the
PN structures with a different number of pearls, in agreement with
both the experimental results using an AFM image38–42 as well as
neutron scattering41,53–56 and the snapshots observed in molecular
simulations.51,52

The conformational transition can be more clearly illustrated
by tracking the order parameter of asphericity, as shown in Fig. 3(b).
The order parameter of asphericity s characterizes the deviation in
the shape from a perfect sphere, which is defined as

s =
3

∏

i=1

λi − λ
λ

, (8)

where λi (i = 1, 2, 3) are the three eigenvalues of the radius of the
gyration tensor Tαβ and λ = (λ1 + λ2 + λ3)/3. Tαβ can be calculated
from the polymer density as

Tαβ =
∫ dr ∫ dr′ϕp(r)ϕp(r′)(rα − r′α)(rβ − r′β)

2[∫ drϕp(r)]2
, (9)

with rα being the αth Cartesian component of the position vector.
s ranges from −0.25 to 2, where s = 0 corresponds to structures
with a perfect spherical shape. The negative values of s correspond

to flattened structures like RC and Tor, whereas s > 0 are for elon-
gated structures such as the PN with a different number of pearls.
As shown in Fig. 3(b), s jumps abruptly from 0 to 0.9 at the Sph to
PN2 transition point, clearly demonstrating a discontinuous shape
change. In contrast, s changes smoothly in the successive transitions
from PNm to PNm+1 (m ≥ 2), which confirms the continuous nature
of the transition between adjacent pearl-necklace structures, as we
obtained from the free energy analysis.

C. Scaling behaviors
Since our theory shows different equilibrium structures and

characteristics of conformational transition compared to existing
theories, it is desirable to revisit the scaling behaviors of the pearl-
necklace structure predicted previously. By assuming that the string
is “long” (much longer than the pearls) and “narrow” (much thinner
than the size of the pearls), the scaling model37 and the subsequent
modifications59 predicted that the string has a constant width of a
thermal blob, which is independent of the charge fraction α, whereas
the pearls have the size of an electrostatic blob, scaling as α−2/3. How-
ever, these scaling behaviors are not fully confirmed by our results,
as shown in Fig. 4. Figures 4(a) and 4(b) plot the α dependence of
the string width dstr and the diameter of the pearls dpearl, which are
determined from the distance between the axis of the symmetry and
the Gibbs dividing surface (see supplementary material Sec. III). It
can be noted that dstr is comparable to dpearl, particularly for mid-
dle pearls. This indicates that the assumption of “narrow string” is
not valid for finite salt concentrations even though cb used in the
current calculation is very low. Due to the failure of the “narrow
string” assumption, our results show that dstr changes nonmonoton-
ically with α, which also contradicts with the constant string width
predicted by the scaling theory.

To reconcile this discrepancy, we revisit the derivation of
the scaling theory. Following the same procedure as the previous
derivation by Dobrynin et al.37 except invoking the “narrow string”
assumption (see supplementary material Sec. IV), we obtain

dpearl ∼ bl̃−1/3
B α−2/3, (10a)

dstr ∼ bl̃−1/3
B α−2/3, (10b)

Lnec ∼ Nbl̃2/3
B α4/3, (10c)

where l̃B is the scaled Bjerrum length, l̃B = lB/b = 1/(4πεb).
Equations (10a) and (10b) indicate that dstr is not a constant but
decreases as α increases with the same scaling as dpearl. As shown
in Figs. 4(a) and 4(b), the α−2/3 dependence of both dstr and dpearl
is in good agreement with our numerical results in the regime of
large α where PN structures are highly elongated such that the “long
string” assumption becomes more accurate. In addition, the length
of the PN, Lnec, is plotted in Fig. 4(c). The numerical result is closer
to the newly derived scaling Lnec ∼ α4/3, as shown in Eq. (10c), than
the result Lnec ∼ α obtained in the previous theory.37 Equation (10c)
also shows a linear dependence of Lnec on N under the condition of
low salt concentration. Furthermore, the scaling of the critical value
of the charge fraction αc for the transition point from PNm−1 to
PNm (m ≥ 2 and PN1 stands for the spherical globule) will not be
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FIG. 4. Scaling behaviors of the pearl-
necklace structure. The dependence of
(a) the diameter of the pearls dpearl , (b)
the string width dstr , and (c) the length
of the PN Lnec on the charge fraction α.
For PN3 and PN4, the ending pearl and
the middle pearl are plotted separately in
(a). (d) The plot of the critical value of
the charge fraction αc for the transition
point from PNm−1 to PNm (m ≥ 2 and
PN1 stands for the spherical globule).

affected by whether the “narrow string” assumption is invoked or
not. Both our newly derived result and the previous theory show
that αc ∼ m1/2. This scaling has been confirmed by our numerical
results, as shown in Fig. 4(d), where the agreement becomes better
as m increases.

D. Structure factor
Small-angle scattering techniques, such as SANS and small-

angle x-ray scattering (SAXS), are the major tools for determining
the single chain conformation because they provide direct measure-
ment of the structure factor.41,53–56 To facilitate the comparison with
the scattering measurements, we examine the structure factors for
different equilibrium structures predicted by our theory. Under the
saddle-point approximation, the structure factor can be calculated
based on the polymer density distribution ϕp(r) as

P(q) =
∫ dr ∫ dr′ϕp(r) sin(q∣r−r′ ∣)

q∣r−r′ ∣ ϕp(r′)

[∫ drϕp(r)]2
, (11)

where q is the scattering wave number. Figure 5(a) shows the rep-
resentative structure factors of the spherical globule (Sph), bicon-
cave red cell (RC), and toroid (Tor). P(q) for the Sph structure has
a flat low-q part and a high-q part that decay as Porod’s law q−4.
The strong oscillations at higher-q values indicate that the glob-
ule has a sharp surface and does not fluctuate significantly. The RC
structure has a similar scattering behavior as the oblate disk except
for two shoulders in the intermediate-q regime which indicates the
signature of the concavity. The two shoulders at q ≈ 0.64b−1 and
q ≈ 1.07b−1 correspond to the diameter of the disk (≈9.8b) and the

width of the thickest point (≈5.9b), respectively. In addition, P(q)
for the Tor structure also shows typical characteristics of an oblate
body in the low-q part; on the other hand, the two shoulders in the
intermediate-q regime (i.e., q ≈ 0.52b−1 and q ≈ 0.94b−1) correspond
to the size of the central hole (≈12b) and the width of the torus ring
(≈6.7b), respectively.

The structural factors of a series of elongated PN structures
are shown in Fig. 5(b), which can be divided into three different
regimes: the Guinnier regime at qRg ≤ 1, where Rg is the radius of
gyration, characterizing the size of the PE chain as a whole; the q−1

regime at intermediate-q values, elucidating the stretched chain con-
formation overall as an elongated cylinder in this length scale; and
the Porod regime at a high-q range, where P(q) ∼ q−4, indicating
the approximate spherical shape of individual pearls. The signature
of the PN structure is the existence of shoulders in the q−1 regime
as a result of the inter-pearl scattering.46,47,79 The number of pearls
in the PN structure can be identified by the number of shoulders
plus one, whereas the corresponding q values of the shoulders reflect
the pearl–pearl distances.46,47,79 Taking PN3 as an example, the first
shoulder at q ≈ 0.23b−1 can be assigned to the distance between two
ending pearls (≈27b), and the second shoulder at q ≈ 0.38b−1 can
be assigned to the distance between the ending pearl and its adja-
cent middle pearl (≈17b). The pearl–pearl distances found from the
structure factors in Fig. 5 are in agreement with the results obtained
from the density profiles in Fig. 2. Furthermore, it can be noted in
Fig. 5(b) that the shoulders become less pronounced as the number
of pearls increases, in accordance with the less distinguishable struc-
ture between the pearls and strings as illustrated in Fig. 2. This also
provides an explanation of the difficulty in the neutron scattering
experiment to unambiguously identify the PN structure especially
when the number of pearls is large.
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FIG. 5. Plot of the structure factors P(q) as a function of the wave number q (in
the unit of b−1) for different equilibrium structures: (a) spherical globule (Sph),
biconcave red cell (RC), and toroid (Tor) and (b) pearl-necklace structures with
two spheres (PN2), three spheres (PN3), and four spheres (PN4). The dashed
lines indicate an elongated cylinder with P(q) ∼ q−1 and Porod scattering for a
sphere with P(q) ∼ q−4.

Another difficulty for the PN to be experimentally identified is
the fluctuation effects, such as the polydispersity, nonuniform line
charge distribution, shape and size of pearls and strings, and the
number of pearls, which will broaden and overlap characteristic sig-
natures. It should be noted that our current calculation is in the
framework of self-consistent field theory (SCFT) which neglects the
fluctuation of density and electrostatic fields. The equilibrium struc-
tures obtained is valid under the condition that the surface energy
is much larger than kT; otherwise, shape fluctuation must be taken
into account. This condition is equivalent to the requirement that
the number of thermal blobs within the structure must be much
larger than one.26 Particularly, the characteristic signature of the PN
will be highly blunted if the widths of the string and the globule are
reduced to the thermal blob size. It will be difficult to identify the
number of pearls, and the dumbbell structure (PN2) will be the most
pronounced. Although the study of the fluctuation effect is beyond
the scope of the current work, it will be interesting to include this
effect in the future.

IV. CONCLUSIONS

In this work, we have developed a theory which systematically
includes the electrostatic interactions into the self-consistent field
theory (SCFT) for polymer systems to study the conformation of a
single polyelectrolyte in poor solvents. This theory calculates the free
energy of different equilibrium structures accurately, facilitating the
determination of the stable conformations and their transition. As
the backbone charge fraction α increases, the theory predicts that the
spherical globule can either be elongated to a series of pearl-necklace
structures or be possibly flattened to a biconcave red cell structure
and a toroid structure. This is the first time the existence of flattened
structures for a single homogeneous PE chain is reported. While
the pearl-necklace structures are stable conformations, the two flat-
tened structures are metastable. Our calculation demonstrates that
the cylindrical globule, a structure of long-standing debate in the lit-
erature, cannot exist in equilibrium. Without preassuming different
curvatures from the pearl to the string, the signature of the pearl-
necklace structures obtained by our calculation is less pronounced
than that predicted by existing theories, which, however, is in good
agreement with both the molecular simulations using explicit sol-
vents and the neutron scattering experiments. Our theory also shows
that the pearl-necklace structure with a larger backbone charge frac-
tion can have a smaller electrostatic potential through increasing the
number of pearls, indicating the unique shape regulation of these
smart single-chain nanoparticles. In addition, our theory elucidates
different characteristics of the globule to pearl-necklace transition
compared to existing theories: the transition from the Sph to PN2
is discontinuous, whereas the successive transitions from PNm to
PNm+1 (m ≥ 2) are continuous at finite salt concentrations. Fur-
thermore, our theory shows different scaling behaviors compared to
existing theories due to the failure of the “narrow string” approxima-
tion. The string width is not a constant as a thermal blob but decays
as α−2/3.

Although we have only studied the conformation of a homoge-
neous PE chain in a monovalent salt solution in the current work,
the theory developed here can be easily generalized to PEs with dif-
ferent chain architectures and statistics, a variety of backbone charge
distributions and systems with more complex electrostatics beyond
the mean-field framework. This theoretical platform is able to pre-
dict the response of the soft single-chain nanoparticle to a variety
of external stimuli, including solvent quality, dielectric medium, ion
concentration, valency, and tensile forces.80 The flattened biconcave
red cell and toroid structures reported in this work also reveal the
possibility that other novel structures may exist in certain exter-
nal conditions, which can be further fine-tuned through design-
ing the chain structure. The density profiles and free energies of a
single-chain soft particle and multiple-chain clusters obtained from
the current calculation in the semicanonical ensemble can also be
included into the dilute solution thermodynamics to study the aggre-
gation behaviors of polyelectrolytes.60,61 The theory-aided design of
smart nanoparticles will greatly broaden the applications of PEs in
sensors, drug-delivery vehicles, and nanoporous materials. Further-
more, the theoretical platform developed here facilitates the study
of a wealth of structure, interfacial, and dynamic behaviors of poly-
electrolytes, which will provide a fundamental step toward under-
standing challenges in protein systems, such as folding, binding,
aggregation, and translocation.
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SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of the self-
consistent field theory for polyelectrolyte solutions, radial density
distribution of the spherical globule, characteristic lengths of the
pearl-necklace structure, and revisiting the derivation of the scaling
relations for the pearl-necklace structure.
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