UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Two Heads are Better than One: Causality and Similarity in Misconception Discovery

Permalink
https://escholarship.org/uc/item/7301v3cr|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Authors

Sison, Raymund
Numao, Masayuki
Shimura, Masamichi

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7301v3cn
https://escholarship.org
http://www.cdlib.org/

Two Heads are Better than One:
Causality and Similarity in Misconception Discovery

Raymund Sison (sison@cs.titech.ac.jp)
Masayuki Numao (numao@cs.titech.ac.jp)
Department of Computer Science
Tokyo Institute of Technology, Japan

Masamichi Shimura (shimura@ia.noda.sut.ac.jp)
Department of Industrial Administration
Science University of Tokyo, Japan

Abstract

MMD is an algorithm that learns without supervision
intensional definitions of classes of knowledge errors us-
ing data (similarity) and theory (causality). Causality
can be especially useful when similarity fails to discover
certain errors due to their entanglement in complex be-
haviors, while similarity can be especially useful when no
causal relationships for robust co-occurring discrepan-
cies are present in the background knowledge. This pa-
per examines the individual and combined effectiveness
of MMD’s similarity and causality components in dis-
covering error classes and classifying behaviors in which
these errors occur. Experimental results show how simi-
larity and causality can serve to complement each other
in the discovery of novice PROLOG programmer errors.

Introduction

Although most concept formation systems in artificial
intelligence (Gennari, Langley & Fisher, 1989) as well
as concept learning models in cognitive psychology (Ko-
matsu, 1992) have tended to rely almost exclusively on
similarities in the data, evidence is mounting that the-
ories and goals are at least as important as data in the
formation of concepts (Murphy & Medin, 1985; Barsa-
lou, 1991; Rips & Collins, 1993; Wisniewski & Medin,
1994).

In (Sison, Numao & Shimura, 1997) an algorithm
called MMD!, was presented that utilizes similarity and
causality for unsupervised concept formation in a more
tightly coupled way than previous systems have. Mor-
ever, MMD deals with the formation of categories that
are intended to represent classes of knowledge errors.?
Thus, the usual problem of concept formation is compli-
cated by the additional requirement that the conceptual
descriptions that are formed also need to be explain-
able, at least in terms of causal relationships, since a
conceptual description that is an ordinary conjunction
of seemingly correlated discrepancies in novice behavior
can hardly be considered as representing a knowledge er-

!Multistrategy Misconception Discovery

2 Misconceptions are incorrect or inconsistent knowledge
— facts, procedures, concepts, principles, schemata or strate-
gies — about a domain that result in errors in behavior.
Behavioral errors can also be due to insufficient knowledge,
however, and we use the term knowledge error to include
insufficient knowledge as well as incorrect or inconsistent
knowledge.

986

ror unless causal relationships among the discrepancies
can be found.

This paper further examines the utility of coupling
data and theory in the discovery of knowledge errors of
novice PROLOG programmers. Specifically, it examines
(1) the usefulness of the causality component of MMD
especially when the similarity component fails to dis-
cover certain errors due to these errors’ entanglement
in complex behaviors (particularly in novice PROLOG
programs with multiple bugs), and (2) the usefulness
of the similarity component when no causal relation-
ships for robust co-occurring discrepancies are present
in the background knowledge. In what follows, we first
review the basic representation and algorithm of MMD.
We then present and discuss results of experiments that
reveal how similarity and causality can serve to com-
plement each other in the discovery of novice PROLOG
Programmer errors.

MMD: A Review and Closer Look

Representation

The objects that MMD deals with — discrepancies in
behavior — are represented as sets of relational descrip-
tions (specifically, as atomic formulas in the function-free
first order logic). Consider the following ideal behavior
in the form of a correct PROLOG clause for the reversal
of the elements of a list:3

% correct clause %

reverse([H|T],R)
reverse(T,T1),
append(T1, [H],R).

% head
% subgoall
% subgoal?2

The correct clause has a head, reverse([H|T],R),
which states that the reverse of a list that is made up
of a first element, H, called the list’s head, and a sub-
list, T, called the list’s tail, is R. R is determined in the
clause’s body, which has two subgoals. The first subgoal,
reverse(T,T1), states that the reverse of the list T is T1.
The second subgoal, append (T1, [H] ,R), states that R is
just the concatenation of the list T1 and the element H.
In short, the clause as a whole recursively states that the
reverse of a list is the concatenation of the reverse of its
tail and its head.

3Words or phrases that come after a % symbol in a PRO-
LOG program are considered comments; they are not part of
clause definitions.

mailto:sison@cs.titech.ac.jp
mailto:numao@cs.titech.ac.jp

Now consider the following actual student behavior,
which is incorrect.

% buggy clause %
reverse([H|T],[T1|H]) :-
reverse(T,T1).

The above clause differs from the correct clause in two
ways. First, in place of the variable R in the head of the
correct clause, the buggy clause has the list [T1]H] in
its head. Expressed in relational form, this discrepancy
is:

replace(head,R, [T1|H]).

Second, the second subgoal in the correct clause is omit-
ted in the buggy clause. Expressed in relational form,
this discrepancy is:

remove (subgoal?2).

The two discrepancies just described form a discrepancy
set, and constitute one input object to MMD. MMD
takes one such discrepancy set at a time and clusters
it into an error hierachy (Figure 1A; we shall explain the
figure shortly).

For each input discrepancy set, MMD outputs two
things: (1) a revised error hierarchy (Figure 1B) and
set of intensionally defined error classes,* and (2) the er-
ror class or classes to which a discrepancy set (as well as
its corresponding program) belongs.

Algorithm

MMD uses a similarity measure that adapts Tversky’s
(1977) contrast model, and a set of causality heuristics
to classify a discrepancy set into an error hierarchy. The
similarity measure is:

Sim(C,0) = 8f(C N O) — af(C - 0) - Bf(O - C)

where C and O are sets of behavioral discrepancies; 4, a,
and 3 are user-redefinable parameters; f(X) returns the
cardinality of X; and, the set of commonalities (C N O)
is:

(€no)=com(c,0)=J] t99(C:,0;)
i=13=1

where lgg(z,y) is the least general generalization (Plotkin,

1970; Muggleton & Feng, 1990) of discrepancies r and

y in the function-free first order logic, and m and n are

the number of discrepancies in C and O, respectively.
The causality heuristics are:

1. Component-level causality: Causal relationships
among the components of the ideal behavior that are
present in a set of discrepancies suggest causal rela-
tionships among these discrepancies.

2. Concept-level causality: The co-occurrence of two dis-
crepancies di and d2 in a generalization node of an
error hierarchy, where d1 is an intersection generaliza-
tion and d2 is a variabilization generalization, suggests
that dI causes d2.

‘Each subtree (minus its variable-instantiating leaves) un-
der the root node of an MMD-induced hierarchy forms an
intensional definition of a class of errors which, in turn, rep-
resents a misconception or other knowledge error.

r_ DISCREPANCY SET 1|

ERROR HIERARCHY

*** (emove(subgoall)
replace(subgoal2,T1,T)
replace(subgoal2,[H],H)

REVISED
ERROR HIERARCHY

[remove(subgoal1)

|replace(subgoal2,T1,T)
\replace(subgoal2,[H],H)

emove(subgoal2

Q

“freplace(head.R,[X?H)) |

B?:T‘II

remove(subgoall)
X?2=T

--------- denotes a causal relationship
intersection generalization

@ vanableization generalization)

_

Figure 1: Clustering set of behavioral discrepancies into
an error hierarchy I (See explanation in text.)

3. Subconcept-level causality: Causal relationships be-
tween a parent node dI of an error hierarchy and its
child d2 suggests that, all other things being equal, d2
causes dI.

We shall illustrate the use of the first heuristic later.®

MMD, whose algorithm is summarized in Figure 2,
takes one discrepancy set at a time and classifies this re-
cursively into the nodes of the error hierarchy that match
it to a certain degree (Figure 2, steps 1 and 2). Refer-
ring back to Figure 1A, for example, note that the node
remove (subgoal2) below the root node of the error hi-
erarchy is actually one of the discrepancies in the input
discrepancy set (remove(subgoal2) is called an ‘inter-
section’ generalization of the two). Assuming that the v
parameter of step 1 indicates that this is a match, the
input discrepancy set will therefore be classified into this
subtree, among possible others.

Next, the remaining discrepancy replace(head,R,
[T1iH]) of the input discrepancy set is com-
pared against the child node [replace(head,R, [TIH]),
remove (subgoall)]. This time, a ‘variabilization’ gen-

5The second and third heuristics do not directly affect the
results we discuss in this paper, and are provided only for
completeness. Further details regarding the similarity mea-
sures, causality heuristics, and algorithm of MMD can be
found in (Sison, Numao & Shimura, 1998).

087

)

. MATCH.)
Determine which children of a given node N of an
error hierarchy match the input set of input discrep-
ancies . Specifically, compute the set of common-
alities, Com, and the degree of similarity, Sim, be-
tween a child and D, and determine whether Sim ex-
ceeds a system threshold, 4. In addition, determine
causal relationships among discrepancies in D using
the component-level causality heuristic.

2. PosITION.

If no match is found, or if the input discrepancy is a
single discrepancy (in which case it has no causal ties),
place D directly under N. Otherwise, place D in its
appropriate position vis-a-vis the matching child(ren)
of N.

3. SEVER (unnecessary ties).

For every new node created in (2), determine concept-
and subconcept-level causalities. If no concept-level
causality exists among discrepancies in this node, re-
tain the node nevertheless. If this node is a leaf node,
and no subconcept-level causality exists between com-
ponents of this node and its parent, sever the link be-
tween this child and its parent, and reclassify it (and
the current subtree) into the hierarchy.

4. FORGET (the occasional slip).

Nodes whose weights fall below a system parameter

may be discarded on a regular or demand basis. (No

_ nodes are discarded in the current implementation.))

Figure 2: Basic procedure of MMD

eralization (replace(head,R,[X?|H])) occurs,® and so
a node for this variabilization is created, and the instan-
tiations of the pattern variable X7 (i.e., X?=T and X?=T1),
among others, are pushed down to the next level. Fig-
ure 1B shows the revised hierarchy. The left subtree in
Figure 1B (though not complete in the figure) charac-
terizes a misconception in which the append/3 relation
(in subgoal2) and the [|] operator are thought to be
functionally the same, at least as far as concatenating
two lists is concerned. This is in fact the misconception
underlying the student’s buggy clause presented earlier.

The SEVER Operator In addition to the hierarchical
reorganization that step 2 entails, the absence of causal
relationships between a parent and a child in a hier-
archy can cause further reorganization: said child can
be severed from its parent and then reclassified (step 3
(SEVER)). This allows the algorithm to disentangle the
multiple misconceptions or knowledge errors that may
have produced the discrepancies in a student’s behavior.
Consider the following buggy clause:

% buggy clause 2 %
reverse([H|T],R) :-
append (T,H,R) .

The discrepancies between the above clause and the
correct clause presented earlier are:

remove (subgoall),

$Variabilization generalizations correspond to Markman
and Gentner’s (1993) ‘alignable differences.’

988

— —_
DISCREPANCY SET 2 @
Famove[lubgonn) —
r

eplace(subgoal2,T1,T)

ERROR HIERARCHY

replace(subgoal2,T1,T)

*** [(remove(subgoall)
replace(subgoal2,(H].H)

REVISED
ERROR HIERARCHY

--fremove(subgoal2

eae [rnmova(sungoan] l
replace(subgoalt2,T1,T)

- St sever

[reptace(subgoat2,(H].H) |

:"-{fepfaoe(haad,ﬁ,[X?IH]}]

|re‘;nm'.rr9(subgoall]l 7 =T1)

«eseeeee denoles a causal relationship
@ intersection generalization

Figure 3: Clustering a set of behavioral discrepancies
into an error hierarchy II (See explanation in text.)

replace(head,T1,T).

Clustering the discrepancies of the above buggy clause
into the error hierarchy in Figure 3A produces the re-
vised error hierarchy in Figure 3B. Now note that the
node replace(subgoal2, [H],H) in the right subtree of
Figure 3B is not at all (causally) related to its parent
([remove (subgoall), replace(subgoal2,T1,T)]).

Since the child replace(subgoal2, [H],H) is not re-
lated to its parent, MMD severs (denoted in the figure
by a jagged line) the child from the parent and then
reclassifies the child into the hierarchy. This particu-
lar severing operation is consistent with the fact that
omitting or forgetting to put the list brackets [] around
a variable (denoted by the discrepancy replace(sub-
goal2, [H] ,H)) has nothing to do with omitting the
first subgoal of the correct clause (i.e., the discrepancy
remove (subgoall)), and the natural consequence of the
latter, which is using some other variable in place of T1
in the second subgoal of the correct clause (i.e., the dis-
crepancy replace(subgoal2,T1,T)).

It will be noted that the SEVER operator only applies
between a child and an unrelated parent; i,e., a subset
of discrepancies will not be severed from its original set,
S, even if no causal relationship can be found between it
and S, unless it has already been ‘gently pushed out of’

S, only connected to S by a parent-child link. In other
words, the SEVER operator will not split a node even
though its contents are unrelated with respect to the
background knowledge. This conservative approach of
retaining nodes despite the absence of component-level
causalities thus takes into account the possibility that
the background knowledge may be incomplete.

Experiments and Discussion
Experiments

To empirically examine the individual and combined ef-
fectiveness of MMD’s similarity and causality compo-
nents in discovering error classes and classifying behav-
iors accordingly, we compare the performance of MMD
against its similarity and causality components working
‘alone’ on the discrepancy sets of 64 buggy reverse/2
and 56 buggy sumlist/2 PROLOG programs’ obtained
from third year undergraduate students learning the lan-
guage. We shall call the similarity and causality compo-
nents SMD and CMD, respectively. Specifically, SMD
is MMD without the checks for causality in steps 1 and
3 (of Figure 2), while CMD is MMD in which the last
part of step 1 would be changed to read “...threshold, v
and causal relationships exist among the discrepancies in
Com.” The latter modification implies that for two sets
of discrepancies to match, their similarity value must not
only be above the system threshold, but their commonal-
ities must also have (the same) inter-discrepancy causal
relationships.

Performance is viewed from two perspectives, namely,
(1) program classification (i.e., the percentage of buggy
programs, or more specifically, their corresponding dis-
crepancy sets, that are correctly classified) and (2) er-
ror discovery (i.e., the percentage of misconceptions and
knowledge errors, or more specifically, their correspond-
ing error classes, that are correctly discovered). Perfor-
mance accuracy is determined by comparing the clas-
sification and discovery results of SMD/CMD/MMD
against the error categories and groupings that were pro-
duced by a team of PROLOG teachers who have exam-
ined (1) the buggy programs and (2) MMD's output.
Specifically, performance accuracy is the percentage of
buggy programs (discrepancy sets) correctly classified or
knowledge errors (error classes) correctly discovered by
SMD/CMD/MMD with respect to those of the experts.

Earlier we have noted that a buggy program can ex-
hibit more than one misconception or knowledge error.
Thus, in our experiments, a buggy program is considered
fully classified only if all the misconceptions and knowl-
edge errors underlying it are detected; otherwise, it is
only partially classified, receiving only a partial point
(L), where n is the total number of knowledge errors
underlying the program. Similarly, a knowledge error is
considered fully discovered (with respect to past data)
only if the knowledge error’s intensional definition con-
tains all the manifestations that the error can assume
in a buggy program; otherwise, it is only partially dis-
covered, receiving only a partial point (2-), where m is

"For the naive reversal of elements of a list and for sum-
ming the elements of a list of numbers, respectively.

989

Table 1: Results for the reverse dataset

BC ED
Algorithms | P-P [P-F [P-P [P-F
[SMD 61 | 79 | 34 | 38
CMD 68 81 44 50
MMD 84 94 70 88

BC: Buggy Programs Correctly Classified (%)

ED: Error Classes Correctly Discovered (%)

P-P: Partial classification/discovery awarded Partial point
-F: Partial classification/discovery awarded Full point

Table 2: Results for the sumlist dataset

BC ED
Algorithms | P-P [P-F | P-P [P-F
SMD 76 81 55 58
CMD 44 45 63 63
MMD 95 97 75 75

BC: Buggy Programs Correctly Classified (%)

ED: Error Classes Correctly Discovered (%)

P-P: Partial classification/discovery awarded Partial point
F: Partial classification/discovery awarded Full point

the total number of possible ways in which the error has
been observed to appear in a program. Partially classi-
fied buggy programs or partially discovered error classes
can, of course, be awarded full points. This is appropri-
ate when, for example, all that is required in a certain
application is for one student error to be determined.

The mean accuracies of SMD, CMD, and MMD for
5 random orderings of the input datasets are shown in
Tables 1 and 2. These results were obtained using the
following parameter settings: # = 1, a = 0.5, 8 = 0.5,
and v > 0. These values of #, a and 3 are intuitive and
give good results for v > 0. Other values of « are pos-
sible, but are somewhat more arbitrary and contrived.
Using different values for « and 3 (e.g., to model some
asymmetry) do not yield better results, at least not in
the two datasets. (Sison et al., 1997) shows some re-
sults for different values of these parameters. The first
causality heuristic is implemented using input-output re-
lationships between components in the ideal behavior
(see appendix).

Results and Discussion

The overall result is that MMD can identify the bugs
in most of the programs, and can do this more effec-
tively than either of its similarity or causality compo-
nents working alone. Tables 1 and 2 show that MMD’s
classification performance (P-P) was 38% better than
SMD’s and 24% better than CMD’s on the reverse
dataset, and 25% better than SMD’s and more than a
hundred percent (!) better than CMD’s on the sumlist
dataset. As far as discovery performance is concerned,
MMD (P-P) was almost a hundred percent (!) better
than SMD and almost fifty percent better than CMD
on the reverse dataset, and 36% better than SMD and
19% better than CMD on the sumlist dataset. The dif-

S replace(subgoal2,T1 H) s
replace(subgoal2, [H],X7)

e

Figure 4: An error unlearnable by CMD

ferences were even greater when partially classified pro-
grams or partially discovered error classes were given full
points (P-F).

\Moreover, MMD'’s P-P-to-P-F ratios for program clas-
sification performance (84/94 or .89 for reverse, 95/97
or .98 for sumlist) were higher than those of SMD’s
(61/79 or .77 for reverse, 76/81 or .94 for sumlist), in-
dicating that MMD was better able to disentangle mul-
tiple errors as a result of its causality component. This
is the main reason for what was reported in previous pa-
pers as MMD's superior performance compared to SMD.

Although CMD’s P-P-to-P-F ratio for program clas-
sification performance was quite high, quite as high in
fact as MMD's for the sumlist dataset (44/45 or .98),
its rather surprisingly dismal performance (both P-P and
P-F values for classification accuracy were only half as
good as MMD's on this dataset) quickly negates this
slight P-P-to-P-F advantage. This poor performance can
be traced to the fact that CMD requires that two simi-
lar discrepancy sets have (the same) inter-discrepancy
causal relationships. Thus, for example, CMD was
not able to learn the subtree in Figure 4 because the
discrepancies in the node [replace(subgoall,T1,H),
replace(subgoal2, [H] ,X?)]| are not causally related
according to the first causality heuristic and the back-
ground knowledge (in the appendix).

Unfortunately, not all co-occurring discrepancies in
the above experiments had causal relationships that
could be found in or explained by the background knowl-
edge. This is not to say that there are are no causal rela-
tionships between these co-occurring discrepancies; this
only says that the background knowledge of causal rela-
tionships that was used in the experiments was not com-
plete. While a perfectly complete background knowl-
edge is desirable, it might not always be feasible. By
retaining such robust (i.e., frequently co-occurring but
unseparatable by a parent-child link) groups of discrep-
ancies in spite of the absence of causal relationships in
the background knowledge, MMD can in fact correctly
discover more errors and classify more programs than
CMD. In addition, such as-yet-not-fully-understandable
co-occurrences® can be used to trigger a new kind of

8We say ‘not fully’ understandable or explainable because,
although MMD'’s second causality heuristic can be used to in-
ductively determine which discrepancy causes which (e.g., the
second causality heuristics suggests that the first discrepancy
in Figure 4 causes the second), this still does not specify the
exact nature of the relationship.

990

discovery process involving the search for new causal re-
lationships.

The results also indicate some important differences
between the two datasets. For example, the sumlist
dataset seems to be simpler than the reverse dataset
in the sense that buggy programs in the former tend to
each have only one misconception or knowledge error.
In contrast, many programs in the reverse dataset are
more complex, having multiple knowledge errors. Thus,
the ratios of the P-P values to the P-F values are smaller
in the reverse dataset than in the sumlist dataset for
SMD, CMD, and MMD.

Finally, although MMD was not able to discover all
error classes, MMD succeeded in discovering the more
common ones. This explains why the classification rates
were higher relative to the discovery rates.

Related Work

The similarity component of MMD is similar to
UNIMEM (Lebowitz, 1987) and COBWEB (Fisher,
1987), which are also incremental concept formation sys-
tems. Like UNIMEM, it adopts a set theoretic concept
representation. UNIMEM’s similarity measure, however,
considers only the differences between two sets of fea-
tures. Moreover, UNIMEM only deals with attribute-
value descriptions. COBWEB uses a probabilistic con-
cept representation and a corresponding probabilistic
similarity measure (category utility (Gluck & Corter,
1985)), and can thus only produce disjoint clusters of
whole objects. In terms of explaining errors in novice
behavior, this means that a buggy behavior can only be
classified under one misconception, though it may well
be symptomatic of several. Like UNIMEM, COBWEB
deals only with attribute-value descriptions (but see the
COBWERB variant in (Thompson & Langley, 1991)).

Causal relationships among features that have been
previously clustered can be induced or deduced in a va-
riety of ways. In the UNIMEM extension proposed in
(Lebowitz, 1986), for example, frequently occurring fea-
tures in other concepts are considered causative, from
which one can forward-chain to the other features us-
ing heuristic, low-level, causal domain rules. In MMD,
causality between discrepancies is determined by the ex-
istence of causal relationships among their components,
and whether a generalized discrepancy is an intersection
or a variabilization, or if it is a parent or a child. There
is no need in MMD for a given set of heuristic directional
causal rules linking discrepancies, though the causal re-
lationships among their components can be viewed as
a lower-level and less ad hoc form of such. In (Paz-
zani, 1993), which likewise uses a UNIMEM-like clus-
terer, there are two kinds of features, namely, actions
and state changes, and actions are always the causative
features. Explanation is achieved by instantiating gen-
eral causal domain rules or templates. In our approach,
any discrepancy is potentially causative, and no general
causal domain rule templates are necessary.

ke

Figure 5: Input-output (causal) relationships between
ideal behavior components

J

Conclusion

In this paper, we have reviewed the basic representation
and algorithm of MMD, and presented and discussed
results of experiments in which the individual and com-
bined use of MMD’s similarity and causality components
were examined to evaluate their usefulness in discover-
ing novice programmer errors. Results have shown that
MMD can effectively discover such errors and classify
discrepant behaviors according to these errors. More-
over, results have revealed the usefulness of the causality
component of MMD especially when the similarity com-
ponent fails to discover certain errors due to these er-
rors’ entanglement in complex behaviors (particularly in
PROLOG programs with multiple bugs), and the useful-
ness of the similarity component when no causal relation-
ships for robust co-occurring discrepancies are present in
the background knowledge. Future work involves the in-
corporation of a failure-driven mechanism for extending
the set of causal relationships in the background knowl-
edge. MMD is part of MULSMS (Sison & Shimura,
1996), a framework for a multistrategic learning student
modeling system.

Appendix

Figure 5 shows the input-output relationships between
components of the correct reverse clause presented ear-
lier. Toillustrate, recall the discrepancy set of Figure 1A,
which is made up of the following two discrepancies:

replace(head,R, [T1|H]),
remove (subgoal2).

These two discrepancies are causally related according
to the first causality heuristic because both involve the
user variable R, and the R involved in the second discrep-
ancy can be viewed as causing (emphasized in Figure 5
using a broken line) the R involved in the first. Of course,
the R in the head and the R in the second subgoal of the
correct clause refer to one and the same thing. To be
more precise, therefore, what we mean by the R in the
subgoal “causing” the R in the head is that: given that
both R’s are output variables, the subgoal (rather than
the head) is responsible for binding R to a value.

Acknowledgment

We thank Ethel Chua Joy and Philip Chan for their help
in collecting and analyzing the buggy programs.

991

References

Barsalou, L. (1991). Deriving categories to achieve goals.
The Psychology of Learning and Motivation, 27, 1-64.
Fisher, D. (1987). Knowledge acquisition via incremental
conceptual clustering. Machine Learning, 2, 139-172.

Gennari, J., Langley, P., & Fisher, D. (1989). Models of
incremental concept formation. Artificial Intelligence,
40, 11-61.

Gluck, M. & Corter, J. (1985). Information, uncertainty,
and the utility of categories. Proceedings of the Seventh
Annual Conference of the Cognitive Science Society.

Komatsu, L. (1992). Recent views of conceptual struc-
ture. Psychological Bulletin, 112(3), 500-526.

Lebowitz, M. (1986). Integrated learning: Controlling
explanation. Cognitive Science, 10, 219-240.

Lebowitz, M. (1987). Experiments with incremental con-
cept formation: Unimem. Machine Learning, 2, 103
138.

Markman, A. & Gentner, D. (1993). Splitting the differ-
ences: A structural alignment view of similarity. Jour-
nal of Memory and Language, 32, 517-535.

Muggleton, S. & Feng, C. (1990). Efficient induction
of logic programs. Proceedings of the Conference on
Algorithmic Learning Theory.

Murphy, G. & Medin, D. (1985). The role of theories
in conceptual coherence. Psychological Review, 92(3),
289-316.

Pazzani, M. (1993). Learning causal patterns: Making a
transition from data-driven to theory-driven learning,.
Machine Learning, 11(2/3), 173-194.

Plotkin, G. (1970). A note on inductive generalization.
Machine Intelligence, 5, 153-163.

Rips, L. & Collins, A. (1993). Categories and resem-
blance. Journal of Ezperimental Psychology: General,
122(4), 468-486.

Sison, R. & Shimura, M. (1996). The application of
machine learning to student modeling: Toward a mul-
tistrategic learning student modeling system. Proceed-
ings of the European Conference on Artificial Intelli-
gence in Education.

Sison, R., Numao, M., & Shimura, M. (1997). On us-
ing theory and data in misconception discovery. Pro-
ceedings of the Nineteenth Annual Conference of the
Cognitive Science Society.

Sison, R., Numao, M., & Shimura, M. (1998). Discover-
ing error classes from discrepancies in novice behaviors
via multistrategy conceptual clustering. User Mod-
eling and User-Adapted Interaction (Special Issue on
Machine Learning for User Modeling), 8. To appear.

Thompson, K. & Langley, P. (1991). Concept formation
in structured domains. In D. Fisher, M. Pazzani, &
P. Langley (Eds.), Concept Formation: Knowledge and
Experience in Unsupervised Learning. San Mateo, CA:
Morgan Kaufmann.

Tversky, A. (1977). Features of similarity. Psychological
Review, 84(4), 327-352.

Wisniewski, E. & Medin, D. (1994). On the interaction
of theory and data in concept learning. Cognitive Sci-
ence, 18, 221-281.

	cogsci_1998_986-991

