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Abstract

We show that linear generalizations of Rescorla-Wagner can perform
Maximum Likelihood estimation of the parameters of all generative mod-
els for causal reasoning. Our approach involves augmenting variables
to deal with conjunctions of causes, similar to the agumented model of
Rescorla. Our results involve genericity assumptions on the distributions
of causes. If these assumptions are violated, for example for the Cheng
causal power theory, then we show that a linear Rescorla-Wagner can
estimate the parameters of the model up to a nonlinear transformtion.
Moreover, a nonlinear Rescorla-Wagner is able to estimate the parame-
ters directly to within arbitrary accuracy. Previous results can be used to
determine convergence and to estimate convergence rates.

1 Introduction

It is important to understand the relationship between the Rescorla-Wagner (RW) algorithm
[1,2] and theories of learning based on maximum likelihood (ML) estimation of the para-
meters of generative models [3,4,5]. The Rescorla-Wagner algorithm has been shown to
account for many experimental findings. But maximum likelihood offers the promise of a
sound statistical basis including the ability to learn sophisticated probabilistic models for
causal learning [6,7,8].

Previous work, summarized in section (2), showed a direct relationship between the basic
Rescorla-Wagner algorithm and maximum likelihood for the ∆P model of causal learning
[4,9]. More recently, a generalization of Rescorla-Wagner was shown to perform maximum
likelihood estimation for both the ∆P and the noisy-or models [10]. Throughout the paper,
we follow the common practice of studying the convergence of the expected value of the
weights and ignoring the fluctuations. The size of these fluctuations can be calculated
analytically and precise convergence quantified [10].

In this paper, we greatly extend the connections between Rescorla-Wagner and ML esti-
mation. We show that two classes of generalized Rescorla-Wagner algorithms can perform
ML estimation for all generative models provided genericity assumptions on the causes
are satisfied. These generalizations include augmenting the set of variables to represent
conjunctive causes and are related to the augmented Rescorla-Wagner algorithm [2].



We also analyze the case where the genericity assumption breaks down and pay particular
attention to Chengs’ causal power model [4,5]. We demonstrate that Rescorla-Wagner
can perform ML estimation for this model up to a nonlinear transformation of the model
parameters (i.e. Rescorla-Wagner does ML but in a different coordinate system). We sketch
how a nonlinear Rescorla-Wagner can estimate the parameters directly.

Convergence analysis from previous work [10] can be directly applied to these new
Rescorla-Wagner algorithms. This gives convergence conditions and put bounds on the
convergence rate. The analysis assumes that the data consists of i.i.d. samples from the
(unknown) causal distribution. But the results can also be applied in the piecewise iid case
(such as forward and backward blocking [11]).

2 Summary of Previous Work

We summarize pervious work relating maximum likelihood estimation of generative mod-
els with the Rescorla-Wagner algorithm [4,9,10]. This work assumes that there is a binary-
valued event E which can be caused by one or more of two binary-valued causes C 1, C2.
The ∆P and Noisy-or theories use generative models of form:

P∆P (E = 1|C1, C2, ω1, ω2) = ω1C1 + ω2C2 (1)

PNoisy−or(E = 1|C1, C2, ω1, ω2) = ω1C1 + ω2C2 − ω1ω2C1C2, (2)

where {ω1, ω2} are the model parameters.

The training data consists of examples {Eµ, Cµ
1 , Cµ

2 }. The parameters {ω1, ω2} are esti-
mated by Maximum Likelihood

{ω∗
1 , ω

∗
2} = arg max

{ω1,ω2}

∏
µ

P (Eµ|Cµ
1 , Cµ

2 ; ω1, ω2)P (Cµ
1 , Cµ

2 ), (3)

where P (C1, C2) is the distribution on the causes. It is independent of {ω1, ω2} and does
not affect the Maximum Likelihood estimation, except for some non-generic cases to be
discussed in section (5).

An alternative approach to learning causal models is the Rescorla-Wagner algorithm which
updates weights V1, V2 as follows:

V t+1
1 = V t

1 + ∆V t
1 , V t+1

2 = V t
2 + ∆V t

2 , (4)

where the update rule ∆V can take forms like:

∆V1 = α1C1(E − C1V1 − C2V2), ∆V2 = α2C2(E − C1V1 − C2V2), basic rule (5)

∆V1 = α1C1(1 − C2)(E − V1), ∆V2 = α2C2(1 − C1)(E − V2), variant rule. (6)

It is known that if the basic update rule (5) is used then the weights converge to the ML
estimates of the parameters {ω1, ω2} provided the data is generated by the ∆P model (1)
[4,9] (but not for the noisy-or model).

If the variant update rule (6) is used, then the weights converge to the parameters {ω 1, ω2}
of the ∆P model or the noisy-or model (2) depending on which model generates the data
[10].

3 Basic Ingredients

This section describes three basic ingredients of this work: (i) the generative models, (ii)
maximum likelihood, and (iii) the generalized Rescorla-Wagner algorithms.



Representing the generative models.

We represent the distribution P (E| �C; �α) by the function:

P (E = 1|�C; �α) =
∑

i

αihi(�C), (7)

where the {hi(�C)} are a set of basis functions and the {αi} are parameters. If the dimen-
sion of �C is n, then the number of basis functions is 2n. All distributions of binary variables
can be represented in this form.

For example, if n = 2 we can use the basis:

h1(�C) = 1, h2(�C) = C1, h3(�C) = C2, h4(�C) = C1C2, (8)

Then the noisy-or model P (E = 1|C1, C2) = ω1C1 + ω2C2 − ω1ω2C1C2 corresponds to
setting α1 = 0, α2 = ω1, α3 = ω2, α4 = −ω1ω2.

Data Generation Assumption and Maximum Likelihood

We assume that the observed data {Eµ, �Cµ : µ ∈ Λ} are i.i.d. samples from P (E| �C)P (�C).
It is possible to adapt our results to cases where the data is piecewise i.i.d., such as blocking
experiments, but we have no space to describe this here.

Maximum Likelihood (ML) estimates the �α by solving:

�α∗ = arg min
�α

−
∑
µ∈Λ

log{P (Eµ|�Cµ; �α)P (�Cµ)} = arg min
�α

−
∑
µ∈Λ

log P (Eµ|�Cµ; �α). (9)

Observe that the estimate of �α is independent of P ( �C) provided the distribution is generic.
Important non-generic cases are treated in section (5).

Generalized Rescorla-Wagner.

The Rescorla-Wagner (RW) algorithm updates weights {Vi : i = 1, ..., n} by a discrete
iterative algorithm:

V t+1
i = V t

i + ∆V t
i , i = 1, ..., n. (10)

We assume a generalized form:

∆Vi =
∑

j

Vjfij(�C) + Egi(�C), i, j = 1, ..., n (11)

for functions {fij(�C)}, {gi(�C)}. It is easy to see that equations (5,6) are special cases.

4 Theoretical Results

We now gives sufficient conditions which ensure that the only fixed points of generalized
Rescorla-Wagner correspond to ML estimates of the parameters �α of generative models
P (E|�C, �α). We then obtain two classes of generalized Rescorla-Wagner which satisfy
these conditions. For one class, convergence to the fixed points follow directly. For the
other class we need to adapt results from [10] to guarantee convergence to the fixed points.
Our results assume genericity conditions on the distribution P ( �C) of causes. We relax
these conditions in section (5).

The number of weights {Vi} used by the Rescorla-Wagner algorithm is equal to the number
of parameters {αi} that specify the model. But many weights will remain zero unless
conjunctions of causes occur, see section (6).



Theorem 1. A sufficient condition for generalized Rescorla-Wagner (11), to have a unique
fixed point at the maximum likelihood estimates of the parameters of a generative model
P (E|�C; �α) (7), is that < fij(�C) >P (�C)= − < gi(�C)hj(�C) >P (�C) ∀ i, j and the matrix

< fij(�C) >P (�C) is invertible.

Proof. We calculate the expectation < ∆Vi >P (E|�C)P (�C). This is zero if, and only if,∑
j Vj < fij(�C) >P (�C) +

∑
j αj < gi(�C)hj(�C) >P (�C)= 0. The result follows.

We use notation that < . >P (�C) is the expectation with respect to the probability distri-

bution P ( �C) on the causes. For example, < fij(�C) >P (�C)=
∑

�C P (�C)fij(�C). Hence

the requirement that the matrix < fij(�C) >P (�C) is invertible usually requires that P ( �C)
is generic. See examples in sections (4.1,4.2). Convergence may still occur if the ma-
trix < fij(�C) >P (�C) is non-invertible. Linear combinations of the weights will remained
fixed (in the directions of the zero eigenvectors of the matrix) and the remaining linear
co,mbinations will converge.

Additional conditions to ensure convergence to the fixed point, and to determine the con-
vergence rate, can be found using Theorems 3,4,5 in [10].

4.1 Generalized RW class I

We now give prove a corollary of Theorem 1 which will enable us to obtain our first class
of generalized RW algorithms.

Corollary 1. A sufficient condition for generalized RW to have fixed points at ML esti-
mates of the model parameters is fij(�C) = −hi(�C)hj(�C), gi(�C) = hi(�C) ∀ i, j and the
matrix < hi(�C)hj(�C) >P (�C) is invertible. Moreover, convergence to the fixed point is
guaranteed.

Proof. Direct verification. Convergence to the fixed point follows from the gradient descent
nature of the algorithm, see equation (12).

These conditions define generalized RW class I (GRW-I) which is a natural extension of
basic Rescorla-Wagner (5):

∆Vi = hi(�C){E −
∑

j

hj(�C)Vj} = − ∂

∂Vi
(E −

∑
j

hj(�C)Vj)2, i = 1, ..., n (12)

This GRW-I algorithm ia guaranteed to converge to the fixed point because it performs
stochastic steepest descent. This is essentially the Widrow-Huff algorithm [12,13].

To illustrate Corollary 1, we show the relationships between GRW-I and ML for three
different generative models: (i) the ∆P model, (ii) the noisy-or model, and (iii) the most
general form of P (E| �C) for two causes. It is important to realize that these generative
models form a hierarchy and GRW-I algorithms for the later models will also perform ML
on the simpler ones.

1. The ∆P model.

Set n = 2, h1(�C) = C1 and h2(�C) = C2. Then equation (12) reduces to the basic
RW algorithm (5) with two weights V1, V2. By Corollary 1, we see that it performs ML
estimation for the ∆P model (1). This rederives the known relationship between basic RW,
ML, and the ∆P model [4,9].

Observe that Corollary 1 requires that the matrix

(
< C1 >P (�C) < C1C2 >P (�C)

< C1C2 >P (�C) < C2 >P (�C)

)



be invertible. This is equivalent to the genericity condition < C1C2 >2
P (�C)

�=<

C1 >P (�C)< C2 >P (�C).

2. The Noisy-Or model.

Set n = 3 with h1(�C) = C1, h2(�C) = C2, h3(�C) = C1C2. Then Corollary 1 proves that
the following algorithm will converge to estimate V ∗

1 = ω1, V ∗
2 = ω2 and V ∗

3 = −ω1ω2

for the noisy-or model.

∆V1 = C1(E − C1V1 − C2V2 − C1C2V3) = C1(E − V1 − C2V2 − C2V3)
∆V2 = C2(E − C1V1 − C2V2 − C1C2V3) = C2(E − C1V1 − V2 − C1V3)
∆V3 = C1C2(E − C1V1 − C2V2 − C1C2V3) = C1C2(E − V1 − V2 − V3). (13)

This algorithm is a minor variant of basic RW. Observe that this has more weights (n = 3)
than the total number of causes. The first two weights V1 and V2 yield ω1, ω2 while the
third weight V3 gives a (redundant) estimate of ω1ω2. The matrix < hi(�C)hj(�C) >P (�C)

has determinant (< C1C2 > − < C1 >)(< C1C2 > − < C2 >) < C1C2 > and is
invertible provided < C1 > �= 0, 1, < C2 > �= 0, 1 and < C1C2 > �=< C1 >< C2 >.
This rules out the special case in Cheng’s experiments [4,5] where C1 = 1 always, see
discussion in section (5).

It is known that basic RW is unable to do ML estimation for the noisy-or model if there are
only two weights [4,5,9,10]. The differences here is that three weights are used.

3. The general two-cause model.

Thirdly, we consider the most general model P (E| �C) for two causes. This can be written
in the form:

P (E = 1|C1, C2) = α1 + α2C1 + α3C2 + α4C1C2. (14)

This corresponds to h1(�C) = 1, h2(�C) = C1, h3(�C) = C2, h4(�C) = C1C2. Corollary 1
gives us an algorithm:

∆V1 = (E − V1 − C1V2 − C2V3 − C1C2V4) = (E − V1 − C1V2 − C2V3 − C1C2V4)
∆V2 = C1(E − V1 − C1V2 − C2V3 − C1C2V4) = C1(E − V1 − V2 − C2V3 − C2V4)
∆V3 = C2(E − V1 − C1V2 − C2V3 − C1C2V4) = C2(E − V1 − C1V2 − V3 − C1V4)
∆V4 = C1C2(E − V1 − C1V2 − C2V3 − C1C2V4) = C1C2(E − V1 − V2 − V3 − V4). (15)

By Corollary 1, this algorithm will converge to V ∗
1 = α1, V

∗
2 = α2, V

∗
3 = α3, V

∗
4 = α4,

provided the matrix is invertible. The determinant of the matrix < h i(�C)hj(�C) >P (�C) is
< C1C2 > (< C1C2 > − < C1 >)(< C1C2 > − < C2 >)(1− < C1 > − < C2 >
+ < C1C2 >). This will be zero for special cases, for example if C1 = 1 always.

It is important to realize that the GRW-I algorithm in equation (15) will converge if P (E| �C)
is the ∆P or the noisy-or model. For ∆P it will converge to V ∗

1 = 0, V ∗
2 = ω1, V

∗
3 =

ω2, V
∗
4 = 0. For noisy-or, it converges to V ∗

1 = 0, V ∗
2 = ω1, V

∗
3 = ω2, V

∗
4 = −ω1ω2.

The learning system which implements the GRW-I algorithm will not know a priori
whether the data is generated by ∆P , noisy-or, or the general model for P (E|C 1, C2).
It is therefore better to implement the full model, equation (15), because this works what-
ever model generated the data.

Note: other functions {hi(�C)} will lead to different ways to parameterize the probability
distribution P (E| �C). They will correspond to different RW algorithms. But their basic
properties will be similar to those discussed in this section.



4.2 Generalized RW Class II

We can obtain a second class of generalized RW algorithms which perform ML estimation.

Corollary 2. A sufficient condition for RW to have unique fixed point at the ML estimate
of the generative model P (E| �C) is that fij(�C) = −gi(�C)hj(�C), provided the matrix
< hi(�C)hj(�C) >P (�C) is invertible.

Proof. Direct verification.

Corollary 2 defines GRW-II to be of form:

∆Vi = gi(�C){E −
∑

j

hj(�C)Vj}. (16)

We illustrate GRW-II by applying it to the noisy-or model (2). It gives an algorithm very
similar to equation (6).

Set h1(�C) = C1, h2(�C) = C2, h3(�C) = C1C2 and g1(�C) = C1(1 − C2), g2(�C) =
C2(1 − C1), g3(�C) = C1C2.

Corollary 2 yields the update rule:

∆V1 = C1(1 − C2){E − C1V1 − C2V2 − C1C2V3} = C1(1 − C2){E − V1},
∆V2 = C2(1 − C1){E − C1V1 − C2V2 − C1C2V3} = C2(1 − C1){E − V2},
∆V3 = C1C2{E − C1V1 − C2V2 − C1C2V3} = C1C2{E − V1 − V2 − V3}. (17)

The matrix < hi(�C)hj(�C) >P (�C) has determinant < C1C2 > (< C1 > − < C1C2 >)(<

C2 > − < C1C2 >) and so is invertible for generic P ( �C). The algorithm will converge
to weights V ∗

1 = ω1, V
∗
2 = ω2, V

∗
3 = −ω1ω2. If we change the model to ∆P , then we get

convergence to V ∗
1 = ω1, V

∗
2 = ω2, V

∗
3 = 0.

Observe that the equations (17) are largely decoupled. In particular, the updates for V 1 and
V2 do not depend on the third weight V3. It is possible to remove the update equation for V3

by setting g3(�C) = 0. The remaining update equations for V1&V2 will converge to ω1, ω2

for both the noisy-or and the ∆P model.

These reduced update equations are identical to those given by equation (6) which were
proven to converge to ω1, ω2 [10]. We note that the matrix < hi(�C)hj(�C) >P (�C) now has

a zero eigenvalue (because g3(�C) = 0) but this does not matter because it corresponds to
the third weight V3. The matrix remains invertible if we restrict it to i, j = 1, 2.

A limitation of GRW-II algorithm of equation (17) is that it only updates the weights if
only one cause is active. So it would fail to explain effects such as blocking where both
causes are on for part of the stimuli (Dayan personal communication).

5 Non-generic, coordinate transformations, and non-linear RW

Our results have assumed genericity constraints on the distribution P ( �C) of causes. They
usually correspond to cases where one cause is always present. We now briefly discuss
what happens when these constraints are violated. For simplicity, we concentrate on an
important special case.

Cheng’s PC theory [4,5] uses the noisy-or model for generating the data but cause C 1 is
a background cause which is on all the time (i.e. C1 = 1 always). This implies that



< C2 >=< C1C2 > and so we cannot apply RW algorithms (13),(15), or (17) because
the matrix determinant will be zero in all three cases. Since C1 = 1 we can drop it as a
variable and re-express the noisy-or model as:

P (E = 1|�C) = ω1 + ω2(1 − ω1)C2. (18)

Theorem 1 shows that we can define generalized RW algorithms to find ML estimates of
ω1 and ω2(1 − ω1) (assuming ω1 �= 1). But, conversely, it is impossible to estimate ω2

directly by any linear generalized RW.

The problem is simply a matter of different coordinate systems. RW estimates the parame-
ters of the generative model in a different coordinate system than the one used to specify
the model. There is a non-linear transformation between the coordinates systems relating
{ω1, ω2} to {ω1, ω2(1 − ω1)}. So RW can estimate the ML parameters provided we allow
for an additional non-linear transformation. From this perspective, the inability to RW to
perfrom ML estimation for Cheng’s model is merely an artifact. If we reparameterize the
generative model to be P (E = 1| �C) = ω1 + ω̂2C2, where ω̂2 = ω2(1 − ω1), then we can
design an RW to estimate {ω1, ω̂2}.

The non-linear transformation breaks down if ω 1 = 1. In this case, the generative model
P (E|�C) becomes independent of ω2 and so it is impossible to estimate it.

But suppose we want to really estimate ω1 and ω2 directly (for Cheng’s model, the value of
ω2 is the causal power and hence is a meaningful quantity [4,5]). To do this we first define
a linear RW to estimate ω1 and ω̂2 = ω2(1 − ω1). The equations are:

V t+1
1 = V t

1 + γ1∆V t
1 , V t+1

2 = V t
2 + γ2∆V t

2 . (19)

with < V1 > �→ ω1 and < V2 > �→ ω2 for large t. The fluctuations (variances) are scaled
by the parameters γ1, γ2 and hence can be made arbitrarily small, see [10].

To estimate ω2, we replace the variable V2 by a new variable V3 = V2/(1 − V1) which is
updated by a nonlinear equation (V1 is updated as before):

V t+1
3 = V t

3 +
V t

3

1 − V t
1

δV t
1 +

∆V t
2

1 − V t
1

, (20)

where we use V3 = V2/(1−V1) to re-express ∆V1 and ∆V2 in terms of functions of V1 and
V3. Provided the fluctuations are small, by controlling the size of the γ’s, we can ensure
that V3 converges arbitrarily close to ω̂2/(1 − ω1) = ω2.

6 Conclusion

This paper shows that we can obtain linear generalizations of the Rescorla-Wagner algo-
rithm which can learn the parameters of generative models by Maximum Likelihood. For
one class of RW generalizations we have only shown that the fixed points are unique and
correspond to ML estimates of the parameters of the generative models. But Theorems
3,4 & 5 of Yuille (2004) can be applied to determine convergence conditions. Conver-
gence rates can be determined by these Theorems provided that the data is generated as
i.i.d. samples from the generative model. These theorems can also be used to obtain con-
vergence results for piecewise i.i.d. samples as occurs in foreward and backward blocking
experiments.

These generalizations of Rescorla-Wagner require augmenting the number of weight vari-
ables. This was already proposed, on experimental grounds, so that new weights get created
if causes occur in conjunction, [2]. Note that this happens naturally in the algorithms pre-
sented (13,15,17) – weights remain at zero until we get an event C 1C2 = 1. It is straight-
forward to extend the analysis to models with conjunctions of many causes. We conjecture



that these generalizations converge to good approaximation to ML estimates if we truncate
the conjunction of causes at a fixed order.

Finally, many of our results have involved a genericity assumption on the distribution of
causes P (�C). We have argued that when these assumptions are violated, for example in
Cheng’s experiments, then generalized RW still performs ML estimation, but with a non-
linear transform. Alternatively we have shown how to define a nonlinear RW that estimates
the parameters directly.
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