
 

 

 

UNIVERSITY OF CALIFORNIA, 

IRVINE 

 

 

 

Integration of Weigh-In-Motion and Inductive Signature Data for Truck Body Classification 

 

DISSERTATION 

 

 

submitted in partial satisfaction of the requirements 

for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

in Civil and Environmental Engineering 

 

 

by 

 

 

Sarah Vavrik Hernandez 

 

 

 

 

 

 

 

 

                                                              

 

 

         Dissertation Committee: 

                               Professor Stephen G. Ritchie, Chair 

                                     Professor Will Recker 

                                              Professor R. Jayakrishnan 

 

 

 

 

 

 

2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 Sarah Vavrik Hernandez 

 



ii 

 

DEDICATION 
 

 

 

To 

 

 

my family, my friends, and my teachers 

 

 

in recognition of their patience, support, motivation, and trust. 

 

 

 

 

 

 

 

 

  



iii 

 

TABLE OF CONTENTS 
Page 

LIST OF FIGURES ............................................................................................................................................ v 

LIST OF TABLES ........................................................................................................................................... viii 

ACKNOWLEDGEMENTS ................................................................................................................................. x 

CURRICULUM VITAE ....................................................................................................................................xiii 

ABSTRACT OF THE DISSERTATION ............................................................................................................. xvii 

1 Introduction .......................................................................................................................................... 1 

1.1 Impact and Importance of Commercial Vehicle Activity .............................................................. 4 

1.2 Current Data Sources and Their Limitations ................................................................................. 7 

1.3 Defining Commercial Vehicle Body Class .................................................................................... 13 

1.4 Needs for Body Classification of Commercial Vehicles ............................................................... 17 

1.5 Proposed Solution ....................................................................................................................... 23 

1.6 Organization ................................................................................................................................ 27 

2 Background ......................................................................................................................................... 29 

2.1 Weigh-In-Motion Systems .......................................................................................................... 30 

2.2 Inductive Signature Technology .................................................................................................. 36 

2.3 Limitations of Existing Body Classification Models ..................................................................... 41 

3 Data Sources ....................................................................................................................................... 44 

3.1 Hardware Integration.................................................................................................................. 44 

3.2 Data Collection ............................................................................................................................ 46 

3.3 Data Groundtruth Process .......................................................................................................... 55 

3.4 Classification Scheme Development ........................................................................................... 61 

3.5 Summary of Data ........................................................................................................................ 68 

4 Machine learning methods for Vehicle Classification ......................................................................... 71 

4.1 Overview of Classification Methods from a Machine Learning framework ............................... 72 

4.2 Machine Learning Methods for Body Type Classification with Inductive Signatures ................. 74 

4.3 Proposed Classification Model Framework ................................................................................ 97 

5 Models and Results ........................................................................................................................... 102 

5.1 WIM-based Truck Body Classification ....................................................................................... 103 

5.2 Inductive Signature-based Truck Body Classification ............................................................... 117 

5.3 Integrated WIM and Inductive Signatures Truck Body Classification ....................................... 140 



iv 

 

5.4 Sensitivity Analysis .................................................................................................................... 167 

5.5 Conclusions ............................................................................................................................... 173 

6 Applications ....................................................................................................................................... 176 

6.1 Time of Day Analysis ................................................................................................................. 176 

6.2 Average Payload Estimation ..................................................................................................... 179 

6.3 Gross Vehicle Weight Interpolation .......................................................................................... 185 

7 Closing Remarks ................................................................................................................................ 198 

7.1 Contributions ............................................................................................................................ 198 

7.2 Future Work .............................................................................................................................. 200 

7.3 Conclusions ............................................................................................................................... 201 

8 References ........................................................................................................................................ 203 

Appendix A1: WIM-Only Body Classification Model Results ............................................................... 210 

Appendix A2: Inductive Signature Only Body Classification Model Results ........................................ 214 

Appendix A3: WIM-Signature Body Classification Model Result ........................................................ 217 

 

 
 

 

  



v 

 

LIST OF FIGURES 
 

                Page 

Figure 1.1 Freight shipment weight and value by mode ................................................................ 4 

Figure 1.2 FHWA 13 Class Axle Based Classification Scheme ....................................................... 15 

Figure 1.3 Samples of vehicle body configurations ...................................................................... 16 

Figure 1.4 Spatial (left) and temporal (right) trends in body class. .............................................. 17 

Figure 1.5 Total Crashes by Truck Body Type ............................................................................... 22 

Figure 1.6 WIM Site Configuration with data outputs from Advanced ILDs and WIM ................ 24 

Figure 2.1 Trailer Body Type breakdown of FHWA Class 9 Tractor-Trailers ................................. 30 

Figure 2.2 WIM and VDS Sites in California .................................................................................. 32 

Figure 2.3 WIM Site Configuration ............................................................................................... 33 

Figure 2.4 Examples of Inductive Signatures ................................................................................ 38 

Figure 3.1 Comparison of Hardware for Standalone and Integrated 1060 WIM Controllers ...... 45 

Figure 3.2 Data collection sites used for model development and testing .................................. 49 

Figure 3.3 Irvine Site Configuration .............................................................................................. 50 

Figure 3.4 Fresno Site Configuration ............................................................................................ 50 

Figure 3.5 Willows and Redding Site Configuration ..................................................................... 50 

Figure 3.6 Box and whisker plots of speed for data collection time periods ............................... 52 

Figure 3.7 Data Collection System Architecture with SLR Still Image Camera ............................. 54 

Figure 3.8 Data collection setup at WIM site ............................................................................... 54 

Figure 3.9 Examples of still images collected for various truck types .......................................... 55 

Figure 3.10 Customized User Interface for Vehicle Classification Example 1 .............................. 59 

Figure 3.11 Customized User Interface for Vehicle Classification Example 2 .............................. 59 

Figure 3.12 Database Structure for Data Groundtruth ................................................................ 60 



vi 

 

Figure 3.13 Examples of Single Unit Trucks .................................................................................. 62 

Figure 3.14 Examples of Combination Truck Trailer Body Classes ............................................... 64 

Figure 3.15 Examples of Semi-Tractor Trailer Drive Units ............................................................ 65 

Figure 3.16 Number of semi-trailer truck samples by body type across all sites ......................... 70 

Figure 4.1 A Decision Tree ............................................................................................................ 85 

Figure 4.2 Support Vector Machine .............................................................................................. 86 

Figure 4.3 Artificial Neural Network ............................................................................................. 89 

Figure 4.4 PNN structure consists of input, pattern, summation, and output layers .................. 91 

Figure 4.5 Framework for Classification Model Development ..................................................... 97 

Figure 4.6 Model Application Framework .................................................................................. 101 

Figure 5.1 WIM system measurement and derived features for five axle semi tractor-trailer 

trucks ........................................................................................................................................... 105 

Figure 5.2 Box plots of spacing between the 1st and 2nd axles, vehicle length, and vehicle 

length interacted with axle spacing by tractor body class ......................................................... 107 

Figure 5.3 Box plots of spacing between the 1
st

 and 2
nd

 axles ................................................... 108 

Figure 5.4 Box plots of vehicle length by tractor body class and data collection site ................ 108 

Figure 5.5 Box plots of length, axle spacing, and overhang for five trailer body classes ........... 109 

Figure 5.6 Overall APE comparisons of baseline and ADT approaches by site .......................... 115 

Figure 5.7 Inductive signature feature extraction procedure. ................................................... 119 

Figure 5.8 Comparison between VDS and WIM inductive signature for passenger vehicle, single 

unit truck, combination semi-truck and multi-unit truck ........................................................... 122 

Figure 5.9 Histogram of Aggregated Paired Differences for WIM and VDS signatures ............. 122 

Figure 5.10 Inductive Signature Based Model Framework......................................................... 123 

Figure 5.11 Summary of Model Accuracy for Naïve Bayes Combination and Majority Vote MCS 

Methods for Inductive Signature Only Tier 3 Models ................................................................ 140 

Figure 5.12 Inductive Signature Parsing using WIM axle spacing measurements ..................... 143 



vii 

 

Figure 5.13 FHWA Class 5 Model Framework............................................................................. 145 

Figure 5.14 Examples of Axle Groups with FHWA Class 8 .......................................................... 146 

Figure 5.15 WIM-Signature Integrated Model Framework ........................................................ 148 

Figure 5.16 Summary of Model Accuracy for Naïve Bayes Combination and Majority Vote MCS 

Methods for WIM-Signature Models .......................................................................................... 167 

Figure 5.17 Diversity Statistic (Qav) for Various Ensemble Combinations .................................. 172 

Figure 5.18 Classifier Diversity by Overall CCR and Minority Class CCR for Base Classifier 

Combinations .............................................................................................................................. 173 

Figure 6.1 Time of Day Plot for Select Body Classes in FHWA Class 9 for Fresno ...................... 178 

Figure 6.2 Time of Day Plot for Select Body Classes in FHWA Class 5 for Irvine ........................ 178 

Figure 6.3 Examples of GMM for Van and Open Top Van Trailers ............................................. 182 

Figure 6.4 Average Payloads by VIUS Body Class estimated from VIUS and the Integrated WIM-

Signature System ........................................................................................................................ 184 

Figure 6.5 Average Payloads by VIUS Commodity estimated from VIUS and the Integrated WIM-

Signature System ........................................................................................................................ 184 

Figure 6.6 Example of GVW distribution by Body Class Group Contributing to Overall Site GVW 

Distribution ................................................................................................................................. 188 

Figure 6.7 GVW Distributions along Southbound I-5 and SR-97 in Northern California ............ 189 

Figure 6.8 ATRI Truck Trip Trajectories ....................................................................................... 192 

Figure 6.9 Shared Truck Trip Trajectories with the Lodi Northbound WIM Site as an origin .... 194 

Figure 6.10 Spatial Interpolation of GVW Distributions Results................................................. 196 

 

  



viii 

 

LIST OF TABLES 

 

                Page 

Table 1.1 Environmental effects of air pollution ............................................................................ 6 

Table 1.2 Data Gaps, Definitions, and Existing Sources for Commercial Vehicle Data .................. 7 

Table 1.3 California Energy Commission Freight Truck Classification Scheme ............................ 15 

Table 1.4 Summary of Models ...................................................................................................... 25 

Table 2.1 Summary of Vehicle Classification Methods by Inductive Loop Detectors .................. 40 

Table 3.1 Summary of Data Collection Sites ................................................................................. 48 

Table 3.2 Summary of Data Collection Time Periods ................................................................... 52 

Table 3.3 WIM Data record fields ................................................................................................. 56 

Table 3.4 VIUS and Model Single Unit Trucks Body Classification ................................................ 63 

Table 3.5 VIUS and Model Drive Unit Body Classification ............................................................ 65 

Table 3.6 VIUS and Model Body Classification for Semi-Trailers for Existing VIUS Classes.......... 67 

Table 3.7 Volume by site and FHWA class .................................................................................... 69 

Table 4.1 Summary of inductive signature based vehicle classification methods ....................... 75 

Table 4.2 Configuration Parameters for Base Classifiers .............................................................. 99 

Table 5.1 Data Summary for WIM Only Model Development.................................................... 104 

Table 5.2 Results of the WIM-Only Tractor Classification Model ............................................... 112 

Table 5.3 Spatial Transferability Results of the WIM-Only Tractor Classification Model .......... 113 

Table 5.4 Results of the WIM-Only Trailer Body Classification Model for Irvine compared to 

Overall ......................................................................................................................................... 116 

Table 5.5 Data Summary for Inductive Signature-based Model Development .......................... 118 

Table 5.6 Inductive Signature Only Model Tier 1 and 2 Cross Classification Table and Volume 

Accuracy ...................................................................................................................................... 127 

Table 5.7 Single Unit Truck without Trailer MCS Summary ........................................................ 129 



ix 

 

Table 5.8 Single Unit Truck without Trailer Cross Classification Table ....................................... 130 

Table 5.9 Inductive Signature Only Model Tier 3 Single Unit Truck with Trailer MCS Results ... 132 

Table 5.10 Semi Tractor Trailers MCS Summary......................................................................... 134 

Table 5.11 Semi Tractor Trailers Cross Classification Table ........................................................ 135 

Table 5.12 Multiple Semi Tractor Trailer Combination Trucks MCS Summary .......................... 137 

Table 5.13 Inductive Signature Only Model Tier 3 Results Summary ........................................ 139 

Table 5.14 Summary of Input Feature Sets for WIM-Signature Model ...................................... 149 

Table 5.15 FHWA Class 4 MCS Summary .................................................................................... 150 

Table 5.16 FHWA Class 5 without Trailer MCS Summary ........................................................... 152 

Table 5.17 FHWA Class 5 without Trailer Cross Classification Table .......................................... 153 

Table 5.18 FHWA 6 MCS Summary ............................................................................................. 155 

Table 5.19 FHWA 7 MCS Summary ............................................................................................. 156 

Table 5.20 FHWA Class 8 MCS Summary .................................................................................... 157 

Table 5.21 FHWA Class 9 MCS Results Summary ....................................................................... 159 

Table 5.22 FHWA Class 9 Cross Classification Table for All Sites ................................................ 160 

Table 5.23 FHWA 11 and 12 MCS Summary ............................................................................... 162 

Table 5.24 FHWA 14 MCS Summary ........................................................................................... 163 

Table 5.25 WIM-Signature Model Summary .............................................................................. 164 

Table 5.26 Spatial Transferability Analysis Cross Classification Table for Irvine Data ................ 169 

Table 6.1 Directional Spatial Weight Matrix from GPS Truck Trip Trajectories ......................... 193 

Table 7.1 Summary of Contributions by Application Area ......................................................... 199 

 



x 

 

ACKNOWLEDGEMENTS 
 

 

Former Supreme Court Justice Sandra Day O’Connor says it perfectly, “Whatever 

happens is the result of the whole tapestry of one’s life and all the weavings of individual 

threads from one to another that creates something.”   My tapestry has been woven by 

communities from childhood to academia and it is truly the influences of these communi-

ties that have fueled me through my degree.   

First and foremost I would like to acknowledge my advisor, Professor Stephen 

Ritchie.  He welcomed me into the PhD program and has provided me with years of en-

couragement, advice, and opportunities.  He was always supportive of the many paths I 

travelled down from teaching to research to outreach.  I could not have had a more sup-

portive experience during my tenure at UC Irvine without Professor Ritchie.   I would like 

to thank my committee members, Professor Will Recker and Professor Jayakrishnan.  In 

taking their courses, I became more than equipped with the tools needed to carry out my 

dissertation work.   Likewise, Professors Michael McNally and Doug Houston deserve sin-

cere thanks for their feedback during my dissertation proposal presentation.  Their insights 

helped to better frame the broader impacts and to identify future applications of my work.   

With sincere appreciation, I would like to acknowledge Dr. Andre Tok.  Dr. Tok has 

always provided me with valuable writing tips, research recommendations, and technical 

expertise.  From my very first visit to UC Irvine to the day of my defense Dr. Tok has been 

an encouraging, educating, and caring mentor.  His hands-on involvement throughout the 

work undertaken in this dissertation is immeasurable.   

Graduate school is an enlightening experience but can be fraught with many per-

sonal hurdles.   In times of joy my peers have shared and contributed to my success.  And in 



xi 

 

times of struggle my peers have encouraged me to overcome all obstacles.  Through their 

friendship my graduate life was complete.  I would especially like to acknowledge Dr. Kang, 

Dr. You, Dr. Liu, and Dr. Chow for their personal and academic support.    For the jovial 

lunches during which we shared research ideas, movie ratings, and philosophical musings, 

I have to thank my friends and colleagues- Dr. Ranafier, Dr. Camargo, Daniel Rodriguez, and 

Ashley Lo.  For the coding tips, vocabulary lessons, and feedback on new research ideas I 

would like to acknowledge my office mates, Dr. Yuan, Gavin Ferguson, and Qijian Gan.  Last-

ly, to the ‘inductive signature research team’ of Kate Hyun, Dr. Jeng, Dr. Chu, and Jun Park, I 

owe much gratitude for assistance with data collection and processing, and the various op-

portunities to collaborate on research.   

The UC Irvine community is made of an incredible number of hardworking staff.  I 

would like to acknowledge Anne Marie DeFeo, Kathy Riley, Ziggy Bates, and April Heath for 

not only their professional work but also for the friendship they have shown me over the 

years.   I would like to thank the UC Irvine Graduate Division staff including Daniel Fabrega 

and Raslyn Rendon who helped me find my passion for higher education by introducing 

and involving me in the many outreach programs hosted at UC Irvine.  Dr. De Gallow and 

Dr. Chris O’Neal of UC Irvine’s Teaching, Learning, and Technology Center showed me what 

it means to teach with passion and I am forever grateful for all the training and fellowship 

programs they have offered.   

The data collected for this dissertation would not have been available without the 

logistical and technical support of Jon Slonaker at Caltrans and Ben Ludjents at Interna-

tional Road Dynamics.  Financial support for the work described in this dissertation was 



xii 

 

provided by the University of California Transportation Center (UCTC), California Air Re-

sources Board (CARB), and California Department of Transportation (CalTrans). 

Lastly, with heartfelt and everlasting gratefulness I would like to recognize my par-

ents, my sister, and brother in law, for their unwavering support and patience.  Even 

though graduate school brought me thousands of miles away, my family managed to make 

me feel like I lived next door though their phone calls, care packages, and many wonderful 

trips shared in California, Florida, and abroad.   I am thankful that we always managed to 

share time together each year camping, laughing, and fishing.   

 

 

 

 

 



xiii 

 

CURRICULUM VITAE 

 

Education                                 

PhD  Civil and Environmental Engineering, University of California, Irvine, 2014 

M.S. Civil and Environmental Engineering, University of California, Irvine, 2009 

B.S. Civil and Coastal Engineering, University of Florida, Gainesville, Florida, 2007  
 

Research  

Graduate Research Assistant- University of California, Irvine 

Transit Feasibility Study for Joshua Tree National Park, Sponsored by the National Parks 

Conservation Association and Joshua Tree National Park, 2013 – 2014 

 

Development of a New Methodology to Characterize Truck Body Types along California 

Freeways, Sponsored by the California Air Resources Board, 2011 – Current 

 

Travel Time and Origin-Destination Estimation using Bluetooth Technology 

 Unsponsored individual research, 2011-2012 

 

Sustainable Transit Feasibility Study for the Mojave National Preserve,  

 Sponsored by the National Parks Conservation Association, 2009 - 2010 

 

Online Freeway Corridor Deployment of Anonymous Vehicle Tracking for Real Time Per-

formance,  

Sponsored by the California Department of Transportation (Caltrans) and Partners for 

Advanced Traffic Transportation Technology, 2008-2010 

 

Corridor Deployment and Investigation of Anonymous Vehicle Tracking for Real-Time Traf-

fic Performance Measurement, Sponsored by Partners for Advanced Traffic Transporta-

tion Technology, 2007-2008 

 

Undergraduate Research Assistant- University of Florida 

Various topics: travel time estimation, travel time reliability, highway capacity analysis, 

and probability of breakdown 

Sponsored by the National Science Foundation under 03-556, performed under super-

vision of Dr. Lily Elefteriadou and Dr. Jiyoun Yeon, 2005-2007 
 

Teaching  

Teaching Assistant, Department of Civil and Environmental Engineering, UC Irvine, Fall 

Quarters 2009-2014 

 

Graduate Assistant, Department of Civil and Environmental Engineering, UC Irvine, 2013-

2014 

  

Pedagogical Fellow (PF), Teaching Learning and Technology Center, UC Irvine, Fall Quar-

ters 2011-2014 

 



xiv 

 

Teaching Assistant Consultant, Henry Samueli School of Engineering, UC Irvine, 2011-

2012  
 

Mentoring  

Henry Samueli School of Engineering, UC Irvine, Summer Internship Program for High 

School Students, Summer 2014 

 

 Institute of Transportation Studies, UC Irvine, Various Students, 2011-14 

 

Society for Advancement of Chicanos and Native Americans in Science, Ongoing 

 

Graduate Division Summer Research Program (SRP), UC Irvine, Graduate Student Lead, 

Writing Tutor, Graduate Student Mentor, Summers 2011-2013 
 

Publications 

Hyun, K., Hernandez, S., Tok, A., and Ritchie, S.G., “Estimating truck volume and weight 

distribution by body configuration using Weigh-in-Motion (WIM) data”, Accepted for 

presentation and publication at the 94th Annual Meeting of the Transportation Research 

Board, Washington, D.C., January, 2015. 

 

Hernandez, S., and Ritchie, S.G., “Motivating Students to Pursue Transportation Careers: 

Implementation of a service learning project on transit”, Accepted for presentation and 

publication at the 94th Annual Meeting of the Transportation Research Board, Washing-

ton, D.C., January, 2015. 

 

Jeng, S.T., Chu, L., and Hernandez, S., “A Wavelet-KNN based Vehicle Classification Ap-

proach using Inductive Loop Signatures”, Transportation Research Record, No. 2380, Vol. 

1, pp. 72-80, 2013. 

 

Chow, J., Hernandez, S., Bhagat, A., and McNally, M., “Multicriteria Sustainability As-

sessment in Transport Planning for Recreational Travel”, International Journal of Sus-

tainable Transportation, Vol. 8, Issue 2, pp. 151-175, 2013.   

 

Chow, J., Hernandez, S., Bhagat, A., and McNally, M. “Sustainable Transit Feasibility 

Study for the Mojave National Preserve”, Report for the National Parks Conservation As-

sociation, January 2010. 

 

Yeon, J., Hernandez, S., and Elefteriadou, L., “Differences in Freeway Capacity by Day of 

the Week, Time of Day, and Segment Type”, Journal of Transportation Engineering, Vol. 

135, No. 7, pp. 416-426, 2009.  

 

Hernandez, S., Tok, A., and Ritchie, S.G., “Multiple-Classifier Systems for Truck Body 

Classification at WIM Sites with Inductive Signature Data”, Submitted to the 94th Annual 

Meeting of the Transportation Research Board, Washington, D.C., January, 2015. 

 



xv 

 

Hernandez, S., Tok, A., and Ritchie, S.G., “Density Estimation using Inductive Loop Signa-

ture Based Vehicle Re-identification and Classification”, UCI-ITS-WP-13-4. 

 

Presentations  

Hernandez, S., Tok, A., and Ritchie, S.G., “Integration of Weigh-in-Motion and Inductive 

Signature Technology for Advanced Truck Monitoring”, Presentation at the 2014 Univer-

sity of California Transportation Center Student (UCTC) Conference Cal Poly Pomona, 

April 2014. 

 

Hyun, K., Hernandez, S., Tok, Y.C., and Ritchie, S.G., “Estimating Truck Volumes by Body 

Configuration using Weigh-in-Motion Data”, Poster at the 2014 UCTC Student Confer-

ence, Cal Poly Pomona, April 2014. (Best Overall Poster Award) 

 

Carrillo, Alma, Hernandez, S., and Ritchie, S.G., “Severity of Accidents Based on Truck 

Body Classification,” Poster at the 2014 UCTC Student Conference Cal Poly Pomona, April 

2014.  (Best Poster Design Award) 

 

Hernandez, S., Tok, A., and Ritchie, S.G., “Integration of Weigh-in-Motion and Inductive 

Signature Technology for Advanced Truck Monitoring”, Accepted for Presentation at the 

2014 Annual Meeting of the Transportation Research Board, Washington, D.C., January, 

2014. 

 

Hernandez, S. and Regue, R., “Using Signature Based Re-identification to Measure Lane 

Changing Maneuvers”,  Presented at the 10th Annual Postgraduate Research Symposium 

at Beihang University, Beijing, China, October 9-13th, 2013. 

 

Hernandez, S. and Regue, R., “Using Signature Based Re-identification to Measure Lane 

Changing Maneuvers,” Presented at the 92nd Annual Meeting of the Transportation Re-

search Board, Washington, D.C., January 2013. 

 

Hernandez, S., Tok, A., and Ritchie, S.G., “Real-Time Density Estimation Using Inductive 

Signature Technology”, Poster at the 2012 UCTC Student Conference, UC Davis, April 2012.  

 

Kuo, J., Bui, J., Tong, J., and Hernandez, S., and Ritchie, S.G., “Bluetooth OD Estimation 

Study: Using Bluetooth Technology to Determine Travel Patterns for University Setting”, 

Poster at the UCTC Student Conference, UC Davis, April 2012.  (Best Overall Poster 

Award) 

 

Hernandez, S., Redmond, M., and Shafer, R., “Investigation of Bluetooth in a Southern 

California Corridor for Determination of Traffic Characteristics,” Presented at the UCTC 

Student Conference, UC Berkeley, February 2010.   
 

Tok, A., Hernandez, S., and Ritchie, S.G., “Accurate Individual Vehicle Speeds from Single 

Inductive Loop Signatures,” Presented at the 88th Annual Meeting of the Transportation 

Research Board, Washington, D.C., January, 2009.  



xvi 

 

 

Professional Experience 

Research Assistant, CLR Analytics, Irvine, CA, 2011-current 

- Measuring Traffic Performance with Inductive Loops Detector Signature 

Technologies 

- Tracking Heavy Vehicles based on Weigh-in-Motion and Vehicle Signature 

Technologies 

- Proposal preparation FHWA SBIR on STEM Education and Connected Vehicles 

 

Technical Intern, ICON Consulting Group, Tampa, Florida, 2007 

 

Technical Intern II, Project Development, PBS&J, Tampa, Florida, 2006 

Awards 

- UC Irvine Graduate Hooding Ceremony Student Speaker, June 2014UCI Civil and En-

vironmental Engineering Travel Award, June 2014 

- Best Poster Award, 1st Place, UCTC Student Conference, Cal Poly Pomona, 2014 

- Best Poster Design, 2nd Place, UCTC Student Conference, Cal Poly Pomona, 2014 

- Nomination for Civil Engineering TA of the Year, UCI Engineering Student Council, 

2014 

- Best Poster Award, UCTC Student Conference, UC Davis, 2012 

- Eno Fellow, Eno Transportation Leadership Development Conference, 2010  

- WTS Graduate Scholarship Recipient,  WTS Orange County Chapter, 2008 

- Frankee Hellinger Leadership Scholarship Recipient, WTS Central Florida Chapter, 

2007 

 

Certifications 

- Engineer in Training (E.I.T), Florida Board of Professional Engineers, 2007 

 

Service 

- Committee Member, TRB Transportation and Education Training Committee 

(ABG20) 

- Vice President, UCI Engineering Diversity Council, 2013-2014 

- President,  UCI Engineering Diversity Council, 2012 – 2013 

- Lead Organizing Chair,  16th Annual UCTC Student Conference, 2010 

- Volunteer,  Discovery Science Center Children’s Museum, 2008 

Skills 

- Languages: Java, Visual Basic, SQL 

- Mathematical and statistical tools: Matlab  

- Transportation tools:  GIS 

 



xvii 

 

ABSTRACT OF THE DISSERTATION 

 

Integration of Weigh-in-Motion and Inductive Signature Data for Truck Body Classification 

 

By 

 

Sarah V Hernandez 

 

Doctor of Philosophy in Civil and Environmental Engineering 

 

 University of California, Irvine, 2014 

 

Professor Stephen G. Ritchie, Chair 

 

 

 

Transportation agencies tasked with forecasting freight movements, creating and 

evaluating policy to mitigate transportation impacts on infrastructure and air quality, and 

furnishing the data necessary for performance driven investment depend on quality, de-

tailed, and ubiquitous vehicle data.  Unfortunately, commercial vehicle data is either miss-

ing or expensive to obtain from current resources.  To overcome the drawbacks of existing 

commercial vehicle data collection tools and leverage the already heavy investments into 

existing sensor systems, a novel approach of integrating two existing data collection devic-

es to gather high resolution truck data – Weigh-in-motion (WIM) systems and advanced 

inductive loop detectors (ILD) is developed in this dissertation.  Each source provides a 

unique data set that when combined produces a synergistic data source that is particularly 

useful for truck body class modeling.  Modelling truck body class, rather than axle configu-

ration, provides more detailed depictions of commodity and industry level truck move-

ments.  Since body class is closely linked to commodity carried, drive and duty cycle, and 

other operating characteristics, it is inherently useful for each of the above mentioned ap-

plications.   



xviii 

 

In this work the physical integration including hardware and data collection proce-

dures undertaken to develop a series of truck body class models are presented.  Approxi-

mately 35,000 samples consisting of photo, WIM, and ILD signature data were collected 

and processed representing a significant achievement over previous ILD signature models 

which were limited to around 1,500 commercial vehicle records. 

Three families of models were developed, each depicting an increasing level of input 

data and output class resolution.  The first uses WIM data to estimate body class volumes of 

five semi-trailer body types and individual predictions of two tractor body classes for vehi-

cles with five axle tractor trailer configurations.  The trailer model produces volume errors 

of less than 10% while the tractor model resulted in a correct classification rate (CCR) of 

92.7%.   The second model uses ILD signatures to predict 47 vehicle body classes using a 

multiple classifier system (MCS) approach coupled with the Synthetic Minority Over-

sampling Technique (SMOTE) for preprocessing the training data samples.  Tests show the 

model achieved CCR higher than 70% for 34 of the body classes.   The third and most com-

plex model combines WIM and ILD signatures using to produce 63 body class designations, 

52 with CCR greater than 70%.  To highlight the contributions of this work, several applica-

tions using body class data derived from the third model are presented including a time of 

day analysis, average payload estimation, and gross vehicle weight distribution estimation. 



1 

 

1 Introduction 

The newest transportation infrastructure funding and policy act signed into law by 

President Obama, the Moving Ahead for Progress in the 21st Century Act (MAP-21), repre-

sents a substantial shift to ‘performance and outcome oriented’ transportation investment 

(FHWA, 2013a). Federal highway programs must now provide hard data evidence that 

provided funds will improve performance along several identified targets including safety, 

freight movement and economic vitality, and environmental sustainability.  MAP-21 also 

sets forth mandates for identifying and developing a National Freight Network and freight 

policy such that designation of a highway as part of the National Freight Network can in-

centivize funding (FHWA, 2013b).  While these data-driven approaches will certainly make 

transportation investments more effective by prioritizing projects which can produce the 

greatest multi-faceted enhancements to our national highways and on state and regional 

corridors, the major hurdle becomes finding enough data to be able to evaluate each of the 

performance goals. 

In addition to federal initiatives to increase data driven investment, state agencies 

have initiated mandates related to air quality and freight transportation that require gath-

ering advanced vehicle data.   As a result of California Assembly Bill 32 (the Global Warm-

ing Solutions Act of 2006) and California Senate Bill 375, the California Air Resources 

Board (CARB) has been tasked with developing emissions inventories and models for the 

State so that achievements in reaching emissions reductions goals can be monitored.  Addi-

tionally, the California Department of Transportation (Caltrans) in adherence with the fed-

erally mandated Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) which 
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requires states and metropolitan planning agencies to incorporate freight travel in their 

long range plans, is adopting a statewide freight forecasting model.   For both emissions 

models and freight forecasting, highly detailed information about truck travel characteris-

tics is needed.   

Commercial vehicles have impacts far more sizeable than what their diminutive vol-

umes might suggest.  At the national level, trucks account for around 10% of the annual ve-

hicle distance traveled (Highway Statistics, 2010).  Although this represents a small portion 

of the total travel, the impacts of trucks on the environment, the economy, and infrastruc-

ture, are much more substantial than that of passenger vehicles.  In fact, according to 

CARB’s Mobile Source Emissions Inventory, heavy-duty diesel trucks are the “single largest 

source of nitrogen oxide emissions in California” as well as the “largest source of diesel par-

ticulate matter” (CARB, 2010).  Further, the economic impacts of trucks in regard to freight 

transport are considerable.  The Bureau of Transportation Statistics reported that “trucking 

as a single mode (including for-hire and private use) was the most frequently used mode, 

hauling an estimated 70 percent of the total value, 60 percent of the weight, and 34 percent 

of the overall ton-miles” (BTS, 2006).  Given the huge health, safety, and economic impacts 

of commercial vehicles, many agencies are interested in increasing the amount of and im-

proving the quality of publically available commercial vehicle activity data.  

While many states have wide ranging resources for passenger traffic, such as Califor-

nia’s Performance Measurement System (PeMS), a significantly smaller set of states collect 

or measure commercial vehicle traffic at the same level as passenger vehicles.  Convention-

al data sets, although commendable, have various limitations and lack detail, especially re-

garding truck travel patterns and characteristics beyond basic volume measurement.  Due 
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to privacy concerns in the trucking industry, commercial vehicle activity data can be diffi-

cult and expensive to obtain, and many times is incomplete due to small sample sizes. To 

further exacerbate the lack of data, a much used national data set, the Vehicle Inventory 

and Use Survey, was discontinued over ten years ago, and nothing has been implemented 

as a replacement.  If policies are to be formed which reduce the negative impacts of truck 

traffic such as temporal shifts or route restrictions, there needs to be a way to assess 

whether the policy has had any affect, which points to the need for route specific, temporal-

ly continuous, up-to-date, and representative truck data.   

In this dissertation a more reliable, timely, and detailed classification system of the 

truck fleet in California is developed.  Using weigh-in-motion (WIM) devices to provide axle 

spacing and weight information and inductive loop detectors equipped with high sampling 

rate detector cards to provide unique truck signatures, the body-type of a truck can be de-

termined.  Truck body class data represents an incredible level of detail regarding the 

commodity carried and industry served by the truck, the operating characteristics such as 

time of day travel patterns and spatial range of operations (e.g. long or short haul), and the 

environmental and infrastructure impacts of the truck.   Each of these data elements are 

missing from current truck data sources which mostly rely on axle or weight based classifi-

cation of trucks but would be undeniably important for freight forecasting, emissions mod-

eling, and infrastructure management.  The proposed work leverages the benefits of both 

the WIM stations which provide high levels of detail and VDS which are widely deployed 

throughout CA, and is able to overcome the drawbacks of the traditional truck data collec-

tion methods by providing link specific and temporally continuous data.   The integration of 

WIM and inductive signature technologies represents a novel approach that has yet to be 
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investigated by other researchers.  Ultimately, considering applications to freight and emis-

sions modeling, the research proposed in this work will assist California, and other States, 

in meeting the goals set forth by AB 32, ISTEA, and MAP-21 while also opening new doors 

for research by providing a valuable dataset to study commercial vehicle operations in 

greater detail.   

1.1 Impact and Importance of Commercial Vehicle Activity 

Commercial vehicle activity has multi-faceted impacts and benefits.  In relation to 

freight movements, commercial vehicles are the primary mode of transport by both weight 

and value accounting for 65% and 68% of the market, respectively, as shown in Figure 1.1 

(USDOT, 2013).    

 

  

Shipments by weight Shipments by value 

Figure 1.1 Freight shipment weight and value by mode 

 

As a whole, freight transportation is a primary component of economic growth, so 

there is much to be attributed to commercial vehicle operations.  However, with increasing 

awareness of global warming effects, air pollution concerns, high congestion along freight 

corridors and around major freight generators, safety concerns, and other effects, it is es-



5 

 

sential to gain a better understanding of commercial vehicle activity in order to diminish its 

harmful side-effects.  A brief overview of externalities resulting from freight movements 

provides an apt platform to discuss the impacts and importance of commercial vehicle ac-

tivity as they relate to the impacts of the research presented in this study.  

In economics, external costs of an activity are those borne by members of society 

who may not directly benefit from that activity. In freight transportation, externalities re-

sult when one who did not directly benefit from goods movement or other related freight 

activities has to pay the cost in terms of health impacts, air pollution, and/or congestion, 

for example (de Palma et al., 2010).   Ranaiefar and Regan (2011) categorized freight exter-

nalities into economic, ecological, social, and environmental. 

While not all externalities depicted by Ranaiefar and Regan (2011) can be attributed 

directly to commercial vehicles, e.g. they speak more broadly about freight transport in-

cluding rail, air, port facility operations, etc., several of the externalities are the responsibil-

ity of commercial vehicles.  Economic externalities include changes in land use, economic 

growth, efficiency of infrastructures, congestion in terms time away from productive activi-

ties, and waste of energy or resources due to empty movements or partial load shipments. 

Unlike the other three types of externalities, economic externalities can be positive in that 

growth in freight volumes reflects a growth in the economy, increased employment, and 

increased revenue.  In fact, transportation related goods and services accounted for more 

than 10% of the US GDP in 2002 according to the Bureau of Transportation Statistics (RITA, 

2013).   

Environmental externalities of road based freight transportation include air pollu-

tion which damages the environment at both the local level (e.g. vegetation and crop dam-
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age, endanger nature and animal life) and global levels (e.g. climate change).  The environ-

mental effects of different types of air pollutants are shown in Table 1.1 (Ranaiefar et. al, 

2011).  Lee et. al (2010) analyzed the health impacts of PM and NOx emissions generated by 

trucks accessing the Ports of Long Beach and Los Angeles in California and found that, on 

average, trucks contribute to 50% of PM and 60% of NOx emissions and more specifically 

that port trucks contribute 6% of CO, 10% of HC, 35% of NOx and 21% of PM total emis-

sions. 

Table 1.1 Environmental effects of air pollution  

Pollutant Affects 

VOC: Volatile Organic Compounds 

(mainly Hydrocarbons, HC) 

• Produces ground-level ozone (O3) which leads to regional 

smog production, which impairs visibility and alters the 

taste and smell of air. 

SO2:Sulfur Dioxide 
• Formation of acid rain, which can adversely affect vegeta-

tion, buildings, and humans. 

NOx: Nitrogen Oxides 

• Produces ground-level Ozone (O3), which leads to regional 

smog production. 

• Formation of Nitric Acid (HNO3), which causes paint dete-

rioration, corrosion, degradation of buildings, and damage 

to agricultural crops. 

• Short term health effects include acute irritation, neuro-

physiological dysfunction, and respiratory problems. 

• Long-term health effects are damage to lung tissue and 

possibly lung cancer. 

PM10:  Particulate Matter (ten microns) 
• Can cause severe health problems. 

• Increases Greenhouse Gas emissions. 

CO: Carbon Monoxide 
• CO can form Ozone and has direct effect on global warming 

when reacting with hydroxyl (OH) radicals. 

CO2: Carbon Dioxide • Concentration of CO2 increases GHG effects. 

 

 

The ecological externalities of freight transportation are the most difficult to meas-

ure since they are related to the long term detriment of the environment attributed to 

global warming.  The EPA measures Green House Gas (GHG) emissions as a major contribu-

tor to global warming and defines GHG in terms of Carbon Dioxide (CO2) equivalents.  

Commercial vehicles are the second largest contributor of GHGs (EPA, 2013) accounting for 
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28% of the GHG productions in the US.  For these reasons, policies related to reducing 

GHGs through emissions caps, CO2 feebate programs, CO2 taxes, and road pricing have been 

discussed as possible methods for reducing CO2 output. 

Communities near major freight activity centers in urban areas such as intermodal fa-

cilities or sea ports benefit from exclusive job market opportunities, economic growth of 

their region and significant tax revenues. However, freight transportation causes extensive 

damage to these same populations. Health threats due to air and noise pollution, stressful 

driving, accidents, death, injuries or property damage, waste of time and energy along con-

gested routes and reduced enjoyment of outdoor activities are some examples of the social 

externalities of freight transportation.   

1.2 Current Data Sources and Their Limitations 

The National Cooperative Freight Research Program (NCFRP) Repot 39 reviewed the 

current state of truck activity data and determined critical gaps in freight data (NCFRP, 

2014).   Critical information gaps, their basic definition, and the best publically available 

data sources for each variable are summarized in Table 1.2.    

Table 1.2 Data Gaps, Definitions, and Existing Sources for Commercial Vehicle Data  

Variable Definition Best Publically Available Sources 

Vehicle Miles Trav-

eled (VMT) 

Measure of the extent of motor vehicle opera-

tion within a specific geographic area 

 

Highway Performance Measurement 

System (HPMS) 

Tons/Ton-Miles 
Total weight of the entire shipment multi-

plied by the mileage traveled by the shipment 
Commodity Flow Survey (CFS) 

Value/Value-Miles 
Market value of goods shipped multiplied by 

the mileage traveled by the shipment 
Commodity Flow Survey (CFS) 

Origin-Destination 

(OD) Flows 

 

The start and end points for a particular truck 

trip 

Commodity Flow Survey (CFS) 

Freight Analysis Framework (FAF) 

Vehicle Speed 

 
Velocity of a vehicle 

Roadside traffic counters 

Weigh-in-motion (WIM) 

GPS traces 
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The major source for several of these data gaps include the Commodity Flow Survey 

(CFS) which is a comprehensive survey of businesses, warehouses, and freight managing 

offices conducted at the national level every five years.   In addition to the CFS and HPMS, 

several other existing data sources were identified in NCFRP Report 39 as sources for 

commercial vehicle data including the Vehicle Inventory and Use Survey (VIUS), Weigh-in-

Motion (WIM) systems, privately owned truck GPS data, and state and federal truck regis-

tration records.  

Many of these sources lack in their ability to segment each of these variables by: (1) 

commodity type, (2) vehicle type, (3) vehicle characteristics, and (4) spatial coverage.   Un-

fortunately, no single source addresses each and every data gap with the desired level of 

detailed segmentation.  According to NCFRP Report 39, the CFS and VIUS possess the best 

ability to cover each of the data gaps at some level of segmentation.  Other research high-

lighted VIUS, GPS, and WIM data as three core data sets which provide truck data stratified 

across the segmentation categories (ITS, 2010).   

1.2.1 Commodity Flow Survey (CFS) 

The Commodity Flow Survey (CFS) is often referred to as the most comprehensive 

tool for understanding freight flows in the US (RITA, 2014).  The CFS is a national shipper 

based survey conducted every five years as part of the Economic Census.  It provides in-

formation on commodities shipped including value, weight, mode of transport, origin-

destination.  The survey covers manufacturing, mining, wholesale, and selected retail and 

service industries.   For the 2012 survey, approximately 100,000 establishments were in-

cluded (NCFRP, 2014).   The survey is limited in its coverage of imports and farm based 

shipments, and due to its coordination with the economic census, is not timely.   The CFS is 
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a major input for the Freight Analysis Framework (FAF) which is a national commodity 

flow model that estimates tonnage, value, and ton-miles for all good shipped to, from, and 

within the US.  FAF estimates are stratified by origin and destination at the regional level, 

commodity type, and mode.   Because the CFS and FAF concentrate on regional commodity 

flows they are less valuable sources commercial vehicle characteristics at the state and 

metropolitan levels.   

 

1.2.2 Vehicle Inventory and Use Survey (VIUS) 

The widely used Vehicle Inventory and Use Survey (VIUS) formerly the Truck Inven-

tory and Use Survey (TIUS), is a national level survey of registered commercial and private 

trucks in the US.  The survey represents the most extensive data source to capture physical 

and operational characteristics at the state-level.  VIUS provides estimates of distributions 

of trucks by body type, commodities carried, and vehicle age (VIUS 2002).  VIUS is used by 

state and federal agencies for transportation planning, highway safety studies, emissions 

estimation, and fuel and energy consumption (NCFRP, 2014).  Even though VIUS provides 

extensive data, these data come with limitations.   

First, the VIUS data represents a sample of all vehicles, approximately 2,000 vehicles 

per state (Cambridge, 2008) and therefore contains sampling biases.  Further, VIUS cannot 

identify truck population statistics at the state level due to discrepancies in how the survey 

captures in-state and out-of state trucks traveling in each state.  For instance, trucks oper-

ating on California routes may be registered in California or in any other state, but only 

trucks which selected California as their home base would be included in the California da-

ta sub-set.  Thus, only national level characteristics can truly be captured by VIUS which 
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presents a problem if state level characteristics are thought to differ from national level 

statistics.   

Second, VIUS can only capture trucks owned or operated by carriers, which means 

that intermodal containers and chassis typically owned by shippers are not included in the 

data.  Southern California, which is home to two major US ports, would most likely possess 

a distribution of vehicle types (intermodal containers, in particular) which would deviate 

from what national statistics provided by VIUS might suggest or even have the ability of re-

porting.   

Third, although it is not a goal of VIUS, VIUS is not able to provide route information 

or OD patterns which are needed for freight and emissions model calibrations. Instead, it is 

meant to provide more general information about relationships between commodities and 

truck characteristics (truck types, distance traveled, average weights, etc.) such as payload 

factors.  Commodity-based freight models such as those developed in Florida, Ohio, and 

California and at the federal level (Freight Analysis Framework, or FAF) require methods of 

converting tonnage to truck trips and rely on payload factors from the VIUS (Battelle, 2011; 

Cambridge, 2008; ITS, 2010).   

Lastly, VIUS was discontinued in 2002 and can therefore only be used as a source for 

backcasting validation (backcasting is the process of estimating values for a year prior to 

the year on which a model was developed and calibrated) in the context of freight models.  

With the discontinuation of VIUS it has become a challenge to obtain equivalent data for 

satisfying the various needs of state and local planning agencies. Several suggested re-

placements have been identified including survey or mandated data collection programs 

such as state level truck intercept surveys (Lutsey, 2008), International Registration Plan 
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(IRP) records, and International Fuel Tax Agreements (IFTA).  Further, while IRP and IFTA 

sources are plausible replacements for VIUS, they are not publically available.   

1.2.3 Weigh-in-Motion (WIM) 

Weigh-in-motion (WIM) systems and inductive loop detectors are examples of two of the 

more prevalent passive data collection methods which have the potential to provide detailed 

truck characteristics data.  WIM systems collect weight, axle spacing, and length data without 

requiring the vehicle to stop, such as would be required at static scales.  WIM are sparsely 

located throughout most states.  In California, for example, there are approximately 118 

sites (Caltrans, 2014), while in Oregon there are only 22 WIM sites (Monsere et al., 2011).  

WIM systems are widely used to collect truck data such as axle load spectra for the Me-

chanical-Empirical Pavement Design Guide (MEPDG) for pavement design and manage-

ment across many states (Lu and Harvey, 2006; Elkins and Higgins, 2008; Haider et al., 

2011; Ishak et al., 2011; Cottrell and Kweon, 2011; Stone et al., 2011; Darter et al., 2013).   

Additionally, WIM data are used to report traffic classification counts to the HPMS.  While 

these sites provide valuable truck count and weight data, they do not provide detailed 

characteristics such as commodity carried or trip origin-destination.   

1.2.4 Highway Performance Measurement System (HPMS) 

The Highway Performance Measurement System (HPMS) was developed in 1978 to 

provide a central database for the extent, condition, performance, use and operating char-

acteristics of the nation’s highways (HPMS, 2003).   The main use of HPMS is to allocate 

funds of the Federal-Aid Highway Program back to states under the TEA-21 legislation.  

The majority of traffic data reported to HPMS come from short term counts.  Annual Aver-

age Daily Truck Traffic (AADTT) result from 24 to 48 hour manual traffic counts extrapo-
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lated to annual counts by applying adjustment factors.  AADTT may possess significant er-

rors, as they depend on short sampling periods which cannot effectively capture the sea-

sonal and diurnal trends of truck travel patterns, even with the use of adjustment factors, 

due to the heterogeneous disposition of truck travel patterns (Kwon et al., 2003).   

In addition to short-count methods, HPMS data also comes from continuous count 

stations including inductive loop detectors (ILD) and WIM systems.  Florida, Illinois, Ohio, 

Michigan, and Washington use ILD data for highway traffic reporting to HPMS (HPMS, 

2014).  In California, there are over 25,000 inductive loop detectors grouped among around 

8,000 vehicle detection stations (VDS) which report traffic volume, loop occupancy, and, 

when installed as double loops, speed (PeMS, 2012).  Measurements are typically aggregat-

ed at 30 second and five minute intervals.  Loop detector data from VDS cannot measure 

truck volumes directly and must rely on estimation algorithms to estimate broad truck 

classes and can only be used at aggregate levels (Kwon et al., 2003).  Although, several re-

searchers have derived algorithms to predict truck counts from traditional loop measure-

ments (Wang and Nihan, 2003; Zhang et al., 2006; Coifman and Kim, 2009), loop detector 

data alone cannot be used to measure truck volumes.   However, the instrumentation of ex-

isting inductive loop sensors with high sample rate detector cards provides significant po-

tential improvements in truck data.   Advanced ILD have been shown to be capable of vehi-

cle body classification (Sun and Ritchie, 2000; Sun et al., 2003; Cheung et al., 2005; Ki and 

Baik, 2006; Jeng and Ritchie, 2008; Meta and Cinsdikici, 2010; Liu et al., 2011; Jeng and 

Ritchie, 2013).  A significant advantage of advanced ILD is their compatibility with existing 

conventional bivalent ILDs.  This allows existing conventional ILDs to be swapped with ad-

vanced ILDs without suffering any loss in system functionality.  
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1.2.5 Global Positioning Systems (GPS) 

Global Positioning System (GPS) data provide speed, location, and directional data 

necessary for determining origin-destination (McCormack and Hallenbeck, 2006).  GPS da-

ta is mostly used for real time trucking industry operations and is collected by truck logis-

tics companies (NCFRP, 2014). There are significant privacy concerns that limit the public 

availability of GPS data.  The American Transportation Research Institute (ATRI) collects 

and sells truck GPS data (Zmud et al., 2014).   GPS does not provide truck characteristics 

such as body configuration or commodity carried and represents only subpopulations.  The 

Ports of Los Angeles and Long Beach also collect GPS data from drayage trucks as part of 

the Clean Truck Program (You, 2012).  The NCFRP Report 39 suggests that a ‘near perfect’ 

dataset for understanding truck movements in the US could be created by mandating a na-

tional freight GPS network under which all trucks, or a statistically valid sample of trucks,  

be required to report GPS data of all trips.  Major challenges to this potential data source 

are: (1) the immense amount of data that would require significant amounts of infrastruc-

ture for storage (2) creation of a valid sample frame from which to generalize observations, 

and (3) privacy and proprietary information concerns that limit the number of variables 

collected (NCFRP, 2014).  Several state-level GPS collection programs have been imple-

mented in Oregon using smartphone GPS (Bell and Figliozzi, 2013) and in Washington us-

ing GPS (McCormack et al., 2010).   

1.3 Defining Commercial Vehicle Body Class 
 

One major hindrance is that data sources which provide commodity information (e.g. 

CFS, SAS, and VIUS) come from surveys so cannot be linked to links or routes while data 

sources that provide observed volumes, weights, and vehicle types (e.g. WIM and GPS) do 
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not provide commodity information.  This means there is a significant advantage in con-

necting observed vehicle data to commodity information.  Since body configuration is 

closely linked to commodity carried and other operating characteristics, body class data 

can provide the link to the desired commodity information currently provided only in CFS 

or VIUS.    

Vehicle configuration generally refers to axle or length based groupings of vehicles 

and takes different forms depending on the agency using the data.   A commonly used 

scheme, FHWA’s Scheme F, shown in Figure 1.2 defines 13 axle based classes.  Within each 

axle based category, vehicles can be further distinguished by body configuration.  Examples 

of body configurations are shown in Figure 1.3 .  Semi-tractor trailer body types are classi-

fied by their drive unit and trailer unit.  Similarly, multi-trailer trucks are defined by drive 

and trailer units.  For example, the body type of a commonly observed five axle semi-

tractor trailer listed by the FHWA scheme Figure 1.2 as ‘Class 9 single trailer’ might have a 

body configuration of a van, intermodal container, a tank, or a platform. 

In California, the California Department of Transportation (Caltrans), the California 

Air Resources Board (CARB), and the California Energy Commission (CEC) have developed 

their own classification schemes which represent different levels of detail regarding truck 

characteristics. For instance, the CEC adopted the U.S. DOT’s designation in which trucks 

with more than 33,000 lbs gross vehicle weight rating are labeled as Class 8.  Table 1.3 (ex-

cerpt from (CEC, 2012) shows a subset of the CEC truck body classification scheme for 

USDOT Class 8 vehicles that fall into the FHWA Class 9 category. Clearly, the CEC would 

benefit from detailed body type data (platforms, tanks, vans, and other) within the Class 8 

truck category.   
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Figure 1.2 FHWA 13 Class Axle Based Classification Scheme  

 

 

Table 1.3 California Energy Commission Freight Truck Classification Scheme  

Class Description 

14 Class 8 (over 33000 lbs.) Cement Mixer 

15 Class 8 (over 33000 lbs.) Dump etc. 

16 Class 8 (over 33000 lbs.) Other 

17 Class 8 (over 33000 lbs.) Platform/Flat 

18 Class 8 (over 33000 lbs.) Tank 

19 Class 8 (over 33000 lbs.) Van 
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Figure 1.3 Samples of vehicle body configurations 
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1.4 Needs for Body Classification of Commercial Vehicles 

Spatial and temporal trends in truck, trailer, and drive unit body types signal differing 

activity patterns, industry-specific operating characteristics, regional land uses, and sea-

sonal commodity flow patterns.   Figure 1.4(left) shows the variation in minority trailer 

body classes at two WIM sites in California- an urban location (Irvine) near the Ports of Los 

Angeles and Long Beach and a rural site (Redding) 120 miles from the Oregon-California 

border.   Although vans represent over 60% of truck traffic, the proportions of industry 

specific, minority classes contrast significantly between these two sites.  In Figure 

1.4(right) the volume of enclosed vans observed at a WIM site located in central California 

(Fresno) peaks in the late afternoon while intermodal container traffic decreases over this 

same period.  Existing data collection methods do not possess the sophistication required 

to capture the dynamic behavior of commercial vehicle operations illustrated in these fig-

ures.  

 

Figure 1.4 Spatial (left) and temporal (right) trends in body class.  
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The needs for body class data of commercial vehicles are twofold.  First, body class 

data is needed to fill critical gaps for existing transportation programs.  Freight transporta-

tion planning programs rely heavily on the results of the Vehicle Inventory Use Survey (VI-

US), but with the discontinuation of that resource, a critical gap has been opened and a re-

placement data source is desperately needed.   Second, body class data collected at the link 

and route level presents an increased level of detail that has yet to be captured by any oth-

er data source.  The previous figures clearly demonstrate that body class varies significant-

ly by location and time of day, so ignoring this level of detail can lead to significant model-

ing errors. 

Body class data can allow agencies to further develop existing models by replacing 

existing sources that are either inaccurate or lacking in necessary detail or to create new 

models designed to make full use this new data source.  In the end, better models will lead 

to more effective management of transportation facilities, and improved confidence in es-

timates of emissions and air quality.   In this section, a description of each need is provided.  

1.4.1 Transportation Planning 

Traditional transportation planning models suffer from the inability to accurately 

depict commercial vehicle travel (FHWA, 2014).  This is because the travel behavior of 

commercial vehicles differs geographically and temporally from passenger travel, so the 

same forecasting approaches used for passenger travel do not apply to trucks.  For exam-

ple, passenger vehicles tend to travel shorter distances, concentrate in urban areas, and 

operate mainly during peak hours, while commercial vehicles exhibit intra-city and inter-

state travel ranges plus they operate outside of peak hours.  In fact, in California, the Ports 

of Los Angeles and Long Beach implemented the PierPass program in which port-related 
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commercial vehicles are incentivized to operate outside peak periods in an effort to miti-

gate environmental and social externalities (PierPASS, 2014).  Many urban transportation 

models rely on factoring based approaches to account for truck traffic.   

Freight transportation planners are some of the main consumers of truck data spe-

cifically related to temporal and geographic body class data.  Detailed truck characteristics 

such as body type which can indicate the commodity transported, can be used in model val-

idation during which estimated and observed truck counts are compared.  Knowledge of 

body configuration data allows validation exercises to compare results closer to the com-

modity flow level so that rather than comparing aggregate truck counts, commodities can 

be grouped and compared by truck body configuration. This would allow researchers to 

better pinpoint modelling errors.  Further, the Freight Analysis Framework (FAF), a na-

tional level freight forecasting model, presents specific guidelines for converting commodi-

ty flows to truck traffic flows by using payload factors from motor carrier surveys (Battelle, 

2011).   

Beyond model validation and average payload estimation, body class data provided 

at the link level can assist in understanding travel patterns of commercial vehicles.  Point 

based estimates of body class allow body types to be mapped across a region allowing bet-

ter depiction of travel patterns.   For instance, measuring the volumes of intermodal con-

tainers at 100 sites across the state highway system would effectively show the general 

origin and destination pattern of this class of trucks.  Likewise, logging type trucks ob-

served in one region of the state may only be observed in a small bubble around the region 

thus depicting that short distance trips dominate this particular class. These types of ob-
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servations provide policy makers a better understanding of truck travel patterns and vol-

umes across the State. 

Additional needs relating to freight transportation planning include: (1) truck vol-

umes of freight versus non-freight trucks and long haul versus short haul trucks, (2) pro-

portions of empty hauls to for truck touring models, and (3) seasonal and hourly traffic pat-

terns by commodity type for converting annual flows to daily flows.   

1.4.2 Air Quality Monitoring  

Although emissions models are currently not designed to harness truck body classi-

fication data as input, their inclusion in future models will likely yield significant improve-

ments in emissions estimations due to the improved fidelity of truck characterization.  

Since trucks can been related to commodity type through body classification, agencies can 

design programs to reduce emissions that are aimed at specific industries that produce 

those commodities.  Additionally, in line with freight transportation planning data needs, 

body class information will distinguish between long and short haul movements as well as 

empty movements.  This will lead to improvement in emissions inventory models.  

1.4.3 Operations and Maintenance 

Truck count and weight data are currently used by state DOTs for pavement studies, 

highway monitoring and capacity studies, accident rate calculations, and analysis of truck 

transport practices (Caltrans, 2014).  State agencies rely on continuous classifier systems 

such as Weigh-in-Motion (WIM) or Automatic Vehicle Classifier (AVC) systems to gather 

truck counts for federal reporting requirements to the Highway Performance Monitoring 

System (HPMS).   Where WIM or AVC systems are not present, manual counts are per-

formed for short time periods.  There is a real need to expand not only the geographical 
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scope of measured locations, but also to increase the level of detail in the data that is col-

lected.   Pavement maintenance and design, safety, and sensor calibration would each 

uniquely benefit from higher fidelity truck characterization data.   

For pavement studies, many states have implemented the Mechanistic-Empirical 

Pavement Design Guide, or MEPDG, which at the highest level of detail, requires truck axle 

load spectra as the main input (Haider et al., 2011; Lu and Harvey, 2006).   Agencies that 

follow the MEPDG must collect site specific truck data (Level 1) or rely on broader regional 

(Level 2) or even broader state level (Level 3) estimates.  Moving away from Level 1 esti-

mates can result in over or under designed pavement structures, resulting in wasteful 

spending for construction or maintenance and repair.  Thus, it would be valuable to be able 

to obtain estimates of truck volumes and weights as many sites possible.  

Body class data can also be a valuable tool for sensor calibration programs.  In terms 

of length-based measurement and load measurement error from the WIM systems, two 

sources of error relating to load measurements exist: systematic errors due to calibration 

and random errors due to vehicle dynamics over the sensors (Prozzi et al., 2007).  Identify-

ing the cause of measurement errors by relating it to truck body type can be a valuable tool 

for calibrating WIM sites (Nichols and Bullock, 2004).  Nichols and Bullock (2004) com-

ment on liquid tanks causing possible sensor measurement errors due to dynamics of liq-

uid movement while the truck is traversing the sensor, for example.  If a site is known to 

have a high number of tanks, then observed systematic or random errors might not be a 

result of calibration errors, but rather due to the high concentration of tanks.   For state 

agencies tasked with sensor maintenance this could help prioritize maintenance activities 

by indicating which sites do not require service as frequently, thus saving time and money.   
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In terms of safety, body type can serve as a predictor of accident severity and delay 

time.  For instance, a tanker-involved accident may cause more damage, be more danger-

ous, and cause more delay, then an intermodal container involved accident since a tanker is 

more likely to be carrying fuel or other corrosive liquid.  Figure 1.5 depicts the crash rates 

by truck body type occurring in 2011 (FMCSA, 2013).  Although there appear to be signifi-

cant differences between the numbers of crashes by body type, the accidents rates are not 

scaled by observed volumes of each truck type.   This is because data such as vehicle-miles-

traveled (VMT) by truck body type is not available from existing data sources.  Therefore, 

knowledge of total volumes or VMT by body type would help to provide more informative 

safety statistics.  Moreover, information about body type volumes by location could help 

decouple accident causes.   

 

 

Figure 1.5 Total Crashes by Truck Body Type  
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1.5 Proposed Solution 
 

Given the many uses of commercial vehicle body class data and the series of draw-

backs of current data sources, it is evident that alternative data collection methods are 

needed.  Agencies need a low cost and readily implementable solution to gather data that 

fulfills the geographical and temporal needs of freight transportation and air quality moni-

toring.  To achieve these goals, a novel approach of integrating WIM and advanced ILDs 

was developed in this dissertation.  WIM and inductive signature data are exceptionally 

complementary.  WIM data provides information on a truck’s axle configuration and 

weights; however, the axle-based information cannot be directly associated with a truck’s 

function or body configuration.  On the other hand, ILD signatures have the ability to dis-

tinguish trucks by body configuration, although inductive signatures obtained from con-

ventional loop sensors are not suited for obtaining detailed axle configuration information 

(Jeng and Ritchie, 2008).   

As shown on the left side of Figure 1.6, at a typical WIM site the outermost lanes are 

equipped with bending plates or pressure sensors to measure axle weights while inductive 

loop detectors straddle the weight sensors to detect vehicle presence.   WIM sites measure 

speed, volume, truck weight, axle spacing, and length, however, axle-based information 

cannot be directly associated with a truck’s function or body configuration.  Advanced ILDs 

produce analog waveform outputs, called inductive signatures, which strongly correlate 

with vehicle body type.  A significant benefit of advanced ILD technology is that it requires 

no in-pavement infrastructure upgrades thus, implementation costs are minimal.   The 

WIM system can be equipped with advanced ILD technology by simply swapping out detec-

tor cards in the WIM controller with advanced signature capable ILDs.  Test deployments 
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showed that the modification does not alter the WIM site functionality, so regular data re-

porting requirements from WIM site are not affected.   

 

Figure 1.6 WIM Site Configuration with data outputs from Advanced ILDs and WIM 

 

Three models are developed in this dissertation (Table 1.4): (1) WIM based body 

class volume estimation, (2) ILD signature based body classification, (3) integrated WIM 

and ILD signature based body classification.  Progression from the first to the third model 

represents increasing levels of input data resolution with the first model using only WIM 

variables such as length and axle spacing, the second model using only signature data, and 

the third model fusing WIM variables and signature data.  The outputs of each model also 

vary in the level of detailed truck body classes that are predicted.  For simplification pur-
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poses, the output classes are shown in Table 1.4 pertain only to semi-trailers which gener-

ally correspond to FHWA class 9 five axle single semi-trailer vehicles.   

Table 1.4 Summary of Models 

Model Technique Input Resolution Output Resultion 

WIM Based Body Class Vol-

ume Estimation 

(Section 5.1) 

Adapted Decision 

Tree 

WIM measurements 

only 

Volume estimates for 5 body 

class groups for FHWA Class 9 

Trailers 

Inductive Signature-based 

Body Classification 

(Section 5.2) 

Ensemble of Clas-

sifiers 
Inductive Signatures  

Individual vehicle classifications 

by vehicle configuration group 

WIM and Inductive Signa-

ture based Body Classifica-

tion 

(Section 5.3) 

Data integration + 

Ensemble of Clas-

sifiers 

WIM measurements + 

Inductive Signatures  

Individual vehicle classifications 

with weight by axle configura-

tion group 

 

 

The WIM based Body Class Volume Estimation method outputs truck body class 

volumes five-axle semi-tractor trailers based solely on WIM data.  A modified decision tree 

model is developed to estimate volumes of five body categories including vans, tanks, plat-

forms, 40ft containers, and an additional ‘other’ category using vehicle length, axle spacing 

between the third and fourth axles, and a measurement derived from axle spacing and 

length.  This method allows more information to be extracted from axle-based measure-

ment data without any additional equipment or significant resource expenditures.  The 

model is therefore applicable to prior years and is an ideal tool for freight model validation 

backcasting.  

The Inductive Signature-based Body Classification model is formulated in three tiers 

using features derived from the inductive signature but not using any WIM data.  The first 

tier separates single- and multi-unit vehicle configurations.  The second tier employs a mul-

ti-layer feed forward neural network to classify vehicles into five broad vehicle configura-

tion categories: passenger car, single unit truck, single unit with trailer, semi-trailer, and 
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multi-trailer.  The third tier differentiates body class within the top tier category using a 

multiple classifier system approach that accounts for class imbalance.   The multiple classi-

fier systems (MCS) method was adopted to increase the classification accuracy for minority 

body classes and to ensure spatial and temporal transferability of the models.   Despite 

their many benefits, MCSs have not been considered in previous work with inductive signa-

tures nor have they been widely used in the broader body of vehicle classification litera-

ture.   Instead, research in this area has focused on pre-processing of predictive features, or 

tuning and optimization of individual classifiers used to predict vehicle class.  The Signa-

ture Only body class model provides truck counts by body class at loop detector sites which 

have been equipped with advanced ILDs.  This model is ideal for pavement management 

and air quality monitoring because it provides truck counts in regions without WIM detec-

tors.  

The integrated WIM and Inductive Signature based Body Classification model repre-

sents the highest resolution of input and output data.  Like the Inductive Signature only 

model, the integrated model also follows a tiered approach.  However, instead of the first 

tier relying on inductive signature features to distinguish broad vehicle configuration cate-

gories, the integrated model uses WIM axle count, axle spacing, length, and weight meas-

urements to first predict the axle configuration class according to the FHWA classification 

sieve.   The second tier then predicts the body class within each FHWA category using a 

multiple classifier system approach with correction for class imbalance.  Features for the 

model include WIM variables (length, spacing, etc.) and signature features derived through 

a fusion of the WIM and signature components.  This model is applicable at WIM sites that 

have been equipped with advanced ILDs.  The model suits many of the needs expressed 
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Section 1.3 including payload factor estimation for freight modeling and time of day analy-

sis. 

Together, the unique integrated data source and robust classification framework 

described in this dissertation represent a significant advancement in detailed truck classifi-

cation that has not been achieved in previous work.  While previous models are able to 

classify trucks by either axle or body information, but not both, the methods developed in 

this research unite the benefits derived from these complementary data sources thus pro-

ducing the highest possible resolution of truck data from existing sensor technologies.  In 

addition to the body classification models, the large data set resulting from the data collec-

tion efforts for this dissertation is itself a valuable and novel resource for truck studies.    

1.6 Organization 
 

This dissertation is organized into seven chapters.  Following the Introduction in 

Chapter 1, Chapter 2 presents the necessary background of WIM and ILD signature tech-

nologies and summarizes the previous work in using these sources for body classification 

of commercial vehicles.   

Chapter 3 describes the data collection and processing efforts including the develop-

ment of a user-interface for processing over 35,000 vehicle records which consist of photo, 

WIM and signature data.  Also, the classification scheme developed as part of this disserta-

tion is described and summary statistics are provided for the collected data.   The large da-

ta set resulting from the data collection efforts for this dissertation is itself a valuable and 

novel resource for truck studies.    
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Chapter 4 introduces the machine learning tools used for vehicle classification in the 

signature only and WIM-signature models.  This chapter identifies the reasons for choosing 

the machine learning tools based on the particular characteristics of the data.   

Chapter 5 contains the implementation details and results of each of the three body 

classification models.   The chapter follows the evolution of the models in terms of the reso-

lution of the input and output data, beginning with the WIM based model, continuing with 

the signature only model for VDS locations, and concluding with the WIM-signature com-

bined model for WIM locations.   

Chapter 6 presents the potential applications of body class data including time of 

day trend analysis, average payload estimation, and gross vehicle weight interpolation.   

Finally, Chapter 7 concludes with a synthesis of model results, summary of impacts, 

and listing of future work.  
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2 Background  

Currently, the main truck data available for emissions and freight models is limited to 

WIM, ILDs, vehicle registration records, national shipper/carrier surveys, and AADTT 

counts.   The data from these sources is commonly mapped to the FHWA 13 class axle-

based scheme, or simplified schemes based on weight classes which divide trucks into me-

dium, heavy, or light duty types.  None of the existing sensor based sources (WIM and ILD) 

are capable of providing body type information, which can be a key indicator of the indus-

try served by the truck as well as the travel patterns of the truck.  And while survey data is 

capable of providing origin-destination information and truck body type, surveys are lim-

ited by sample sizes, timeliness, and data lifespan and cannot yet provide individual link or 

route level data.  

As an illustrative example of the lack of detail in axle-based classification, consider the 

most common truck axle configuration, the five axle tractor trailer corresponding to FHWA 

class 9. Within class 9, there exists a diverse distribution of trailer body types as shown in 

Figure 2.1, with the most common being enclosed and refrigerated vans, platforms, and 

tanks. It is important to know the specific trailer type because each trailer body type may 

have dissimilar travel patterns, unique emission rates, and distinct effects on congestion 

and safety. For example, in relation to travel patterns, intermodal containers travel be-

tween ports and intermodal facilities whereas enclosed vans might be commercial delivery 

vehicles traveling between regional distribution centers and businesses.  The breakdown of 

FHWA Class 9 into the wide variety shown in Figure 2.1 clearly illustrates the significant 

amount of unknown information that exists in existing truck monitoring data.   
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Figure 2.1 Trailer Body Type breakdown of FHWA Class 9 Tractor-Trailers 

 

 The integrated data source presented in this dissertation is a result of combining two 

highly complementary technologies, WIM and inductive signatures, to create a synergistic 

resource that is highly detailed, link specific, temporally continuous, up-to-date, and repre-

sentative of the full truck population.   In this Chapter, the hardware systems for WIM con-

trollers and advanced ILDs are described and a literature review of classification models 

which have used these systems is provided.   

2.1 Weigh-In-Motion Systems 

2.1.1 System Description 

Weigh-in-Motion (WIM) devices have been used since the 1980s to collect data for 

truck routing, pavement management and design, weight enforcement, traffic safety, and 

transportation policy (Nichols and Bullock, 2004).   

There are currently 106 WIM stations in California as shown on the map in Figure 2.4.  

Two main types of WIM controllers are currently deployed in the State of California: the 
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earlier DOS-based 1060 series controllers and the current Linux based iSinc family of con-

trollers, which include the iSinc WCU-II and iSinc WCU-3 Lite.  Of the 106 WIM controllers 

in California, 17 are WIM iSinc type controllers.  The main distinction between the control-

lers for the purpose of this work is in their built-in ability to log inductive signature data.  

The loop sensor module (LSM) of the 1060 WIM controllers is designed only to obtain con-

ventional bivalent inductive loop data.  On the other hand, the LSM of the iSINC Lite con-

troller has the ability to obtain inductive signature data.  The caveat for the iSINC controller 

however, is that inductive signature data is currently designed only for diagnostic and 

troubleshooting purposes.  Hence, the inductive signature data can only be manually logged 

when the system is in diagnostic mode, and is not currently available as an operational fea-

ture within the system.   As WIM controllers become damaged and require replacement, 

older controllers are replaced with the newest iSinc models.   This is a great advantage for 

the work developed in this dissertation because this essentially means that all WIM con-

trollers will be capable of producing signature outputs. 

A typical WIM station, as depicted in Figure 2.3, includes bending plates or pressure 

sensors straddled by square inductive loop detectors in the outermost lanes and piezoelec-

tric sensors straddled by inductive loops in the innermost lanes.  Figure 2.3a depicts a five 

lane highway sensor site in which the outer three lanes are equipped with bending plates 

while the inner two lanes, used mostly by passenger vehicles, are equipped with piezoelec-

tric sensors.   
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Figure 2.2 WIM and VDS Sites in California 
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(a) Typical inner and outer lane WIM configurations 

 

(b) Example of site configuration for five lane highway 

Figure 2.3 WIM Site Configuration 

 

WIM stations collect vehicle arrival time and date, axle weights and gross weight, axle 

spacing, and speed (Lu et al., 2002).  Vehicle classification is determined from the number 

of axles, axle spacing, and weight according to the classification sieve for FHWA Scheme F 

which includes 13 axle-based classes, or for California, the 14 class modified axle-based 
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scheme.   A basic decision tree approach divides vehicles into FHWA classes based on num-

ber of axles and inter-axle distances.   This is approach can lead to classification error for 

certain vehicle classes since many of the axle counts and distances overlap.  Reported er-

rors in classification range have been shown to be as high as 9.5% (Kwigizile et al., 2005). 

In Chapter 5, improvements to the standard FHWA classification decision tree are made by 

introducing additional variables such as length and axle spacing ratios to further define 

certain classes.   

Agencies using WIM data are aware that WIM data is prone to accuracy errors in speed, 

spacing, and weight measurements (FHWA, 2001). The inaccuracies are the result of sever-

al possible factors: (1) vehicle dynamics such as speed, acceleration, tire condition, load, 

and body type; (2) site conditions such as pavement smoothness; (3) environmental factors 

such as temperature and precipitation (Lee, 1998; NCHRP, 2008).  Prozzi et al. (2007) 

modeled the load errors as systematic and random where random error is a result of statis-

tical fluctuations in estimation which can be over- or under- estimations of the true value. 

On the other hand, systematic errors are persistent inaccuracies in which the true value is 

either consistently over- or under-estimated. Through proper calibration procedures such 

as those outlined in American Society of Testing and Materials (ASTM) Standard E1318-02 

(ASTM, 2009) and National Cooperative Highway Research Program Synthesis 386 

(NCHRP, 2008), systematic error can be addressed, but random disturbances in the data 

will persist regardless of calibration.    

2.1.2 Previous Work  

As was already stated, body-type classification is not available from WIM data.  A pre-

vious study conducted by the FHWA (FHWA, 1999) attempted to link survey data collected 
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from VIUS to measured truck characteristics from WIM stations in order to better under-

stand truck body configuration characteristics.  The study aimed to infer which vehicle con-

figuration variables were indicative of a particular body type so that WIM measurements of 

those variables could be used to determine body classification over time and across loca-

tions.  The report deduced the most common body configuration for each of the following 

vehicle configuration variables: 

1. total number of axles,  

2. number of lift axles,  

3. total vehicle length,  

4. average gross vehicle weight (GVW),  

5. number of axles on trailers pulled by truck tractors, and  

6. number of axles on trailers pulled by straight trucks 

Each variable was recorded in VIUS and, except for the average GVW and number of 

lift axles, is also available from a WIM detector.  The report concluded that the 11 distinct 

body configuration types listed in VIUS could not be distinguished using the above listed 

variables alone due to significant overlap between axle and weight variables and body con-

figuration categories.   For example, weight was found to correlate with body type such that 

lower weight categories were dominated by platform body types and heavier vehicles 

tended to be dump trucks, enclosed vans, and tanks.   The report concludes that with axle 

spacing data, it would be possible to further infer body type but without more data con-

necting vehicle configuration variables to body type available to develop a model, little can 

be inferred.  
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2.2 Inductive Signature Technology 

2.2.1 System Description 

Inductive loop detector technology has been used since the 1960s. An inductive loop 

detector consists of several coils of electrified wire embedded beneath the pavement and 

connected to a roadside control unit in which loop detector cards process the inductive 

magnitude changes to measure vehicle presence.  The use of inductive loop signature tech-

nology for classification was introduced by Pursula and Pikkarainen in 1994.   

There are approximately 25,000 inductive loop detectors in California at around 8,000 

vehicle detection sites (VDS) as shown in Figure 2.2.   VDS are positioned more densely in 

urban areas.   

Conventional loop detectors measure bivalent signals from inductive loops embedded 

in the pavement and are capable of measuring aggregated volumes and occupancies. The 

red lines in Figure 2.4 depict the bivalent outputs, e.g. [0,1], of a conventional loop detector.  

Unlike many other detector systems such as imaging or acoustic sensors, loop detectors are 

inherently accurate, achieving the best volume count accuracy compared with other com-

mon detection technologies, providing a good technology platform to develop the proposed 

system.  Finally, because magnetic inductance is invariant to changes in temperature, light-

ing, visibility and humidity, ILDs are robust.     

Advanced inductive loop detectors measure the inductance change in an inductive loop 

sensor at rates of up to 1200 samples per second (IST, 2006), producing analog waveform 

outputs, referred to as inductive signatures, for each traversing vehicle.  A significant ad-

vantage of advanced inductive loop detectors is that they can replace conventional detec-
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tors without altering the system’s intended functions (e.g. occupancy and volume 

measures). 

Samples of inductive signatures of various vehicle types are presented in Figure 2.4.  

The shape of the signature is the result of the ferrous components of the vehicle with the 

overall duration of the signature related somewhat to the length of the vehicle.  Comparing 

passenger car and semi-tractor trailer signatures, it is easy to distinguish the general shape 

difference between the signatures.   The differences in signature shapes of vehicle within 

the same axle class are more subtle where spikes and valleys generally relate to the under-

carriage or chassis of a trailer but can also be the result of refrigeration tanks or axle 

placement, for example.   

2.2.2 Previous Work 

Previous classification methods which use ILDs (Lu et al., 2002; Zhang et al., 2006; 

Coifman and Kim, 2009; Sun and Ritchie, 2003; Cheung et al., 2005; Ki and Baik, 2006; Jeng 

and Ritchie, 2008; Liu et al., 2011) have been capable of distinguishing trucks into only a 

handful of detailed body types.   Even the most detailed model by Tok and Ritchie (2008) 

which focused on commercial vehicles contains only 10 trailer unit types, and this level of 

detail required an advanced prototype loop detector to be installed in the pavement. 

Because of its binary data scale, conventional loop detectors are only capable of 

providing length-based classification if the speed a vehicle can be obtained.  Outputs from 

conventional ILDs have been used to stratify vehicles into distinct length classes (Reijmers, 

1979). But have only been successful in dividing vehicles into no more than five classes 

with the more successful algorithms obtaining only three defined classes (Coifman, 2007; 

Coifman and Kim, 2009; Wang and Nihan, 2003).   
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This represents only a small portion of the FHWA scheme’s 13 axle classes and does 

not include body classification.  These models are therefore not sufficiently detailed to pro-

vide accurate emissions estimates or to estimate freight movements.  At the more basic 

level of obtaining truck counts but not classifications, the Caltrans Performance Measure-

ment System (PeMS) estimates truck proportions from inductive loop detectors located in 

California.  Their estimate is taken from five-minute aggregates of volume and occupancy 

and is based on lane-to-lane speed correlation (Kwon et al., 2003).   

Inductive signature based methods of vehicle classification have shown to be better 

able to stratify vehicles into more detailed classes (Gadja et al., 2001; Ki and Baik, 2006;  

Sun et al., 2003) than length based classification systems.   The signature-based methods 

are ideal for determining section based travel times, speed, and emissions through vehicle 

reidentification (Liu et al., 2011; Jeng and Ritchie, 2008), both measures that are needed for 

accurate determination of air quality.    From the summary of the listed classification meth-

ods shown in Table 2.1, most emphasis on truck classification is placed on axle or length 

based classification and most of the models do not focus on commercial vehicle classifica-

tion.  An exception to this is the study by Liu et al. (2011) which stratified vehicles by 

MOVES emissions model vehicle classes which are based on body classes for trucks such as 

concrete mixers and dump trucks, therefore this study represents the possibility of signa-

tures to distinguish body types.  Although many of these methods demonstrate the ability 

to stratify vehicles by class with high correct classification rates none have been able to dis-

tinguish into detailed body type classes, which is of significant importance for freight anal-

ysis and truck movement studies.   
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Table 2.1 Summary of Vehicle Classification Methods by Inductive Loop Detectors   

(A) Inductive Loop Bivalent Outputs 

Author Truck Classifications Correct Classifica-

tion Rate 

Wang and 

Nihan (2003) 

Two class scheme: (1) short vehicle less than 39 ft, and (2) long vehi-

cles 

Not explicitly provid-

ed 

Zhang et. al. 

(2006) 

Four class scheme: (1) cars, pickups, short single unit trucks (less 

than 26 ft), (2) cars and trucks pulling trailers and long single unit 

trucks (between 26 and 39ft), (3) combination trucks (between 40 

and 65 ft), (4) multi-trailer trucks (greater than 65 ft) 

Overall: 91% 

Coifman and 

Kim (2009) 

Three class scheme: (1) less than 28 ft, (2) between 28 and 46ft, and 

(3) greater than 46ft  

Overall: 97%, truck 

classes (2)  93%, (3) 

74% 

 

(B) Inductive Loop Signature Outputs 

Author Truck Classifications Correct Classifica-

tion Rate 

Sun and 

Ritchie 

(2000) 

Seven vehicle classes: (1) cars, (2) SUV, (3) vans, (4) limos, (5) buses, 

(6) two axle trucks, (7) trucks with more than two axles 

Overall: 81 to 91%, 

(6) 100%, (7) 75%  

Sun et al. 

(2003) 

Of the four schemes evaluated (ranging from four to seven classes), 

the seven class scheme was: (1) passenger cars, minivans, sports car, 

and station wagons, (2) vans, SUVs, pickups, and full size pickups, (3) 

truck, (4) more than two axle truck, (5) bus, (6) vehicle with trailer, 

and (7) limousine. 

Overall: 82-87%, 

with truck classes 

(3) 88-100% and (4) 

67-75% 

Cheung et al. 

(2005) 

Five class scheme: (1)passenger vehicle, (2) SUV, (3) van, (4)bus,  (5) 

Mini-truck (MT) 

Three class scheme following FHWA classes: (1) FHWA 2, (2) FHWA 

3, (3) FHWA 4 

Overall: 57%, truck 

class (5) 28% 

Overall: 84% (no 

truck specific class) 

Ki and Baik 

(2006) 

Five class scheme: (1) Passenger cars, (2) van, (3) bus, (4) truck, and 

(5) motorcycle 

Overall: 91.5%, for 

truck class (4) 100% 

Jeng and 

Ritchie 

(2008) 

13 class FHWA Scheme: classes (5) through (13) for trucks 

15 class modified FHWA Scheme: (1) passenger cars, (2) two-axel, 

four tire single units, (3) buses, (4) two axel four tire single unit, 

(5)three axle six tire single unit, (6) four or less axle single trailer, (7) 

five axle single trailers, (8) class 1 + trailer, (9) class 2 + trailer, (10) 

class 4 + trailer, (11) class 5 + trailer, (12) semi-tractor, no trailer, 

(13) gooseneck trailer or moving van, (14) 30ft busses, and (15) 20 

ft busses. 

Overall of both 

schemes: 93% 

Meta and 

Cinsdikici 

(2010) 

Five class scheme: (1) cars, jeep, (2) minbus, van, (3) pickup, truck, 

(4) bus, articulated bus, (5) motorcycle 

Overall: 94%, for 

class (5) 93%  

Liu et al.  

(2011) 

Five class scheme to which MOVES emissions model was applied: (1) 

passenger car, (2) 4 tire single unit passenger and light commercial 

trucks, (3) busses, (4) 4 or more single unit truck including refuse 

trucks, short and long haul trucks, and motorhomes, and (5) multi-

unit trucks including combination short and long haul trucks 

Overall: 97.6%, for 

classes (4) 77.1% 

and (5) 95.0% 

 

Jeng and 

Ritchie 

(2013) 

13 class FHWA Scheme (same as Jeng and Ritchie, 2008) 

Overall: 92.4%; 

FHWA class 5: 

67.0%;  FHWA class 

9 trucks: 85.5% 
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2.3 Limitations of Existing Body Classification Models 

There have been no published attempts to gather body classification data from WIM 

systems.  The only existing study conducted by the FHWA (FHWA, 1999), performed ag-

gregate analyses to link body type characteristics found in VIUS to axle and weight meas-

urements from WIM systems.  In this dissertation, a model for predicting body class vol-

umes from axle spacing and length measurements produced by WIM systems is presented.  

This model represents the first published attempt to classify commercial vehicles by body 

type from WIM data.  Part of the reason for the lack of predecessor models is the lack of 

available data to create such models.  Likewise one of the main issues with existing body 

classification models using inductive signature data is the lack of truck data available for 

model development.  Most of the models described above gather data from urban locations 

for short time periods and consist of mostly passenger car records.  For example, Jeng and 

Ritchie (2008) collected data from the I-405 freeway in Irvine, California for an approxi-

mate 30 minute window centered on the morning peak travel period.  This dataset used in 

their analysis consists of less than 3% trucks, due in part to the highway location not being 

a major truck route and the time period not centered on peak truck travel periods.  In fact, 

only 39 FHWA class 9 trucks were included in the dataset.  Tok and Ritchie (2010) collect-

ed data from the San Onofre Truck Weigh and Inspection Facility located in Southern Cali-

fornia and use approximately 1,000 truck records to build their models.  Liu et al. (2011) 

combined data from both sites used by Jeng and Ritchie (2008) and Tok and Ritchie (2010) 

to create a more comprehensive dataset for model development, but was only able to sepa-

rate five classes.   By collecting data at WIM sites located along major trucking routes 

across the state for multi-day periods, the modeling efforts in this dissertation are able to 
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overcome the lack of data problem experienced by predecessor models and to go beyond 

existing models by using a geographically diverse set of signature records.    

While the lack of data for commercial vehicles is corrected for by collecting data over 

longer time periods and across wider geographic ranges, a second major problem with ex-

isting inductive signature models is that they concentrate on sorting vehicles into axle 

based classes rather than body based categories.  This limits the power of prediction of in-

ductive signatures because the true strength of inductive signatures is in depicting the 

body configuration of vehicles, not the axle configuration or even the axle count.  The work 

in this dissertation corrects this problem by combining WIM data which contains axle spac-

ing and count information with inductive signatures.  This fusion of two data sources 

means that axle-based classification is directly measured and the body class is the only fac-

tor being predicted.   

Each of the predecessor models discussed in this section are implemented using a sin-

gle model architecture.  For instance, Sun and Ritchie (2000) used heuristic discriminant 

algorithms and multiobjective optimization, Sun et al. (2003) adopted a self-organizing fea-

ture map, Ki and Baik (2006), Tok (2008), Meta and Cinsdikici (2010), and Liu et al. (2011) 

used neural networks, Oh and Ritchie (2008) used Probabilistic Neural Networks, and Jeng 

and Ritchie (2008) used decision tree and clustering.  However, trucks possess a wider di-

versity of body types than passenger vehicles and have much more detailed signatures, so 

more advanced model architectures may be needed.   Therefore, in this dissertation, an en-

semble approach is adopted for classification.   

Dietterich (2000) gives three general reasons why a set of classifiers might be better 

than a single classifier.  First, merging multiple classifiers eliminates the risk of picking an 
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inadequate single classifier and can increase the ability of the model to generalize.  Second, 

for models which rely on optimization approaches including random search or hill-

climbing, not all single classifiers will reach global optima.  Aggregating multiple classifiers 

of this type helps to better capture the true optimum.  Third, based on classifier formula-

tion, e.g. linear versus non-linear, each single classifier has a varying ability to interpret the 

feature space to make predictions.  By combining classifiers with different inherent as-

sumptions, it is more likely that the true or optimal representation of the feature space is 

achieved.  For these reasons, in this dissertation, pattern recognition is performed via en-

sembles of classifiers with voting.  Chapter 4 provides a more in-depth discussion of en-

semble learning approaches.   
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3 Data Sources 

Given the complementary nature of the WIM and inductive signature data, along with 

the physical embedded configuration of inductive loops within the WIM station, the two are 

ideally suited for physical integration.  There have not been any prior studies which inte-

grate WIM data with inductive loop signatures, thus the integration method described in 

this dissertation is quite novel.  The hardware configuration, data collection procedures, 

and data groundtruth process are described in this section.  

3.1 Hardware Integration 

In California, the WIM controllers are fabricated, installed, and maintained by Inter-

national Road Dynamics (IRD) (Caltrans, 2014 a).  Two main types of WIM controllers are 

currently deployed in California: the earlier DOS-based IRD 1060 series controllers and the 

current Linux based IRD iSinc family of controllers.  For the purposes of this dissertation, 

the main distinction between the controllers is in their built-in ability to log inductive sig-

nature data.  The loop sensor module (LSM) of the 1060 WIM controllers is designed to ob-

tain only conventional bivalent inductive loop data whereas the LSM of the iSINC control-

lers have the ability to obtain inductive signature data.  The caveat for the iSINC controller 

however, is that inductive signature data is currently designed only for diagnostic and 

troubleshooting purposes and is not currently available as an operational feature within 

the system. Therefore, the iSinc system could not be readily used for the purposes of this 

dissertation without further development by the product vendor.  Furthermore, 1060 se-

ries controllers are currently deployed at about 80% of current WIM sites within the Cali-
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fornia.  Hence, despite their age, a hardware integration solution with the 1060 series con-

trollers would be applicable to a much larger number of candidate sites currently available 

for deployment consideration.   

As part of CARB Contract 11-316 (Ritchie, 2013), a prototype LSM adapter was de-

signed to adapt advanced inductive loop signature detector cards to replace the 1060 WIM 

LSM.  Inductive loop signature data was logged into a field processing unit via the USB port 

located on the front panel of each signature detector card.  Schematic layouts showing a 

comparison of the hardware setup for a standalone 1060 WIM controller and the proposed 

integration with an advanced signature detector card are shown in Figure 3.1 (Ritchie, 

2013).  With this set-up both inductive loop signatures and WIM weight and axle spacing 

data can be collected at the WIM site. 

 

Figure 3.1 Comparison of Hardware for Standalone and Integrated 1060 WIM Controllers  
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3.2 Data Collection 

A major drawback of existing vehicle classification modeling efforts has been lack of 

data for model training and testing.  This is especially true for commercial vehicles which 

on average account for around 10% of the total highway vehicle population (Caltrans, 

2012) thus requiring extended data collection periods or selection of specific truck routes 

with high volumes of truck traffic to obtain sufficiently large enough samples.  An addition-

al complication is that unlike passenger vehicles, commercial vehicle body types vary by 

location and are influenced by local industry and land uses.  For example, intermodal con-

tainer trailers are more prevalent nearer to port areas while trucks with logging trailers 

appear in regions tied to the logging industries.  Smaller commercial vehicles such as single 

unit trucks may also vary in body type by location.  For instance, service related body types 

like garbage trucks or firetrucks might be observed in higher volumes near busier urban 

areas compared to remote rural sites.  Significant efforts were made in this dissertation to 

collect and process an abundant sample of commercial vehicles for model training and test-

ing.  This, in part, helped to facilitate more advanced modeling efforts and expand the pre-

dictive capabilities of the developed models.  Care was taken to select data collection loca-

tions and seasonal time periods that would capture the extreme diversity of commercial 

vehicle body types.   In total, around 35,000 vehicle records were captured and processed 

from four disparate WIM and VDS sites in California over a time period spanning the fall, 

winter, and spring seasons.    

3.2.1 Site Location Description 

Truck body types vary by location so to capture the full diversity of the California 

truck population data was collected at four disparate locations across the State.  The sites, 
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from north to south were Redding, Willows, Fresno, and Irvine.   Each of the four sites con-

tained a 1060 series WIM controller which was equipped with the data collection equip-

ment described in the previous section.  The sites span metropolitan and agricultural re-

gions as shown in Figure 3.2 (adapted from maps.com).  Depicted on the map are the major 

land uses, industries, and cities in California.  In the northern portion of the State, forestry 

dominates while in the central region agriculture is widespread, and further south urban 

land uses prevail.   Each selected site captures a unique set of truck body types related to 

the region in which it is located.  The sites at Redding and Willows were selected to capture 

logging type trailers; Fresno to capture agricultural land use related body types; and Irvine 

to capture port related intermodal container and localized service traffic.   

The WIM sites at Redding, Willows, and Irvine are located along with Interstate 5 (I-

5) freeway that runs longitudinally across the State.  The WIM site at Fresno is located on 

State Road (SR) 99, to the east of I-5.  Each of these routes capture inter- and intra-state 

travel.  The WIM sites at Redding, Fresno, and Irvine capture southbound traffic while the 

site at Willows captures northbound traffic.  Table 3.1 provides a summary of the data col-

lection sites including station name, location, a brief description, and number of total and 

equipped lanes.  

Additional data for the signature only body classification model was obtained at a 

VDS site located 210ft upstream of the WIM controller at the Irvine site.  For the data col-

lection the still image camera was placed at the VDS site and both the VDS and WIM sites 

were equipped with inductive signature cards.    
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Table 3.1 Summary of Data Collection Sites 

Site Name Irvine Fresno Willows Redding 

Location 
I-5 Southbound 

Southern California 

SR-99 South-

bound Central 

California 

I-5 Northbound 

Northern Califor-

nia 

I-5 Southbound 

Northern California 

Description 

Urban, Approx. 45mi 

from San Pedro Bay 

Ports 

Semi-Urban, Agri-

cultural 
Rural 

Rural, Approx. 

120mi from OR-CA 

border 

WIM Site Number 15  10  108 2  

Controller Type 1060 1060 1060 1060 

California Post-

mile  
R25.8 25 R10.9 R24.9 

Total Lanes 5 SB 3 NB, 3 SB 2 NB, 2 SB 2 NB, 2 SB 

No. Lanes for data 2 SB 2 SB 2 NB 2 SB 

Approximate To-

tal Truck Per-

centage1 

5% 22% 25% 25% 

1 Percent of total trucks, Source: Caltrans Traffic Counts for AADTT (Caltrans, 2012) 

 

  

3.2.2 Site Configuration 

The Irvine WIM and VDS site configuration is shown in Figure 3.3.  There are a total 

of five mainline lanes plus a high occupancy vehicle (HOV) lane.   At the Irvine WIM site, 

weight sensors (i.e. bending plates) are installed in the outermost three lanes and an axle 

sensor (e.g. piezoelectric sensor) is installed in the inner three lanes.    At the Fresno site, 

there are a total of three lanes as shown in Figure 3.4. The outer two lanes are equipped 

with weight sensors and the innermost lane with an axle sensor.  The Willows and Redding 

sites each consist of two lanes equipped with weight sensors as shown in Figure 3.5.    
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Figure 3.2 Data collection sites used for model development and testing  
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Figure 3.3 Irvine Site Configuration 

 

 

Figure 3.4 Fresno Site Configuration 

 

 

Figure 3.5 Willows and Redding Site Configuration 
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3.2.3 Data Collection Time Periods  

Data was collected at the four sites over several two to three day periods during the 

fall, winter, and spring seasons between 2012 and 2013 as summarized in Table 3.2.   The 

data collection covered 13 weekdays spanning a total of 97.25 hours.   

The posted speed limits for I-5 and SR-99 are 65 mph.  However, in California trucks 

must obey the statewide laws for speed limits and lane usage.  In California, large trucks 

must drive in the right hand lane or in a lane specially marked for slower vehicles and fol-

low reduced speeds of 55mph (CA DMV, 2014 a and b).  It is important to note that during 

congested conditions the quality of inductive signature and WIM data diminishes (Tok, 

2010; Nichols and Bullock, 2004) due to vehicle dynamics over the sensors.  The majority 

of the data were collected during uncongested conditions as shown in the box plots in Fig-

ure 3.6.  The box and whisker plots show the median, upper and lower quartile, minimum 

and maximum, and outliers.  The median speeds are between 50 to 55 miles per hour 

across all sites.    The Irvine site experienced a brief period of minor congestion on October 

3rd with speeds below 50 mph.   The Fresno site also experienced a brief period of conges-

tion during the November 8th time period.   
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Table 3.2 Summary of Data Collection Time Periods 

Site 

Name 
Date 

Day of 

Week 
Season Time Period 

Total 

Hours 

Average 

Speed 

(mph) 

Irvine 

Sept. 21, 2012 F Fall 10:45AM – 6:00PM 7.25 56.4 

Oct. 2nd, 2012 

Oct. 3rd, 2012 

T 

W 
Fall 

1:00PM – 6:45PM 

6:30AM – 9:15AM 

5.75 

2.75 

57.7 

48.2 

March 20th , 2013 

March 25th, 2013 

W 

M 
Spring 

6:30AM – 7:45PM 

7:30AM – 4:15PM 

12.25 

8.75 

61.9 

59.1 

Fresno 
Nov. 7th, 2012 

Nov. 8th, 2012 

W 

T 
Fall 

10:15AM -5:15PM 

6:15 AM – 4:45PM 

7.0 

10.5 

57.6 

56.8 

Willows 

Dec. 10th 2012 

Dec. 11th,2012 

Dec. 12th,2012 

M 

T 

W 

 

Winter 

10:30AM – 4:45PM 

7:15AM - 4:45PM 

7:00 AM – 3:00 PM 

6.25 

9.5 

8.0 

62.1 

59.0 

61.9 

Redding 

Dec. 10th 2012 

Dec. 11th,2012 

Dec. 12th,2012 

M 

T 

W 

 

Winter 

1:30 PM – 5:00 PM 

7:00 AM – 4:45PM 

7:00 AM – 1:00PM 

3.5 

9.75 

6.0 

57.8 

57.7 

58.8 

Total 13 days    97.25 58.5 
 

 

 

 

Figure 3.6 Box and whisker plots of speed for data collection time periods 
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3.2.4 Photo Data Collection 

In addition to inductive loop signature and WIM data, still image data was collected 

for each passing vehicle by connecting a digital camera with a remote trigger to the ILD de-

tector card.  Figure 3.7 (Ritchie, 2013) depicts the hardware configuration including the 

still image camera connected to the inductive signature cards.  With this configuration, the 

loop activation triggered the camera and a series of still images were captured for each 

passing vehicle at a rate of three frames per second while the vehicle was over the loop.  

Figure 3.8 (Ritchie, 2013) shows a typical data collection hardware setup at WIM site.  The 

traffic cabinet on the right contains the WIM controller and ILD signature cards.  The still 

image camera shown to the left of the cabinet connects to the ILD signature detector cards 

within the cabinet.   The field PC clock which set the timestamps for the ILD signature and 

photo data was synchronized against the WIM controller clock in order to ease the data 

groundtruth process that required the processor to link the WIM record, inductive signa-

ture, and photo together. 

For each passing vehicle, the number of still images is proportion to the vehicle’s 

length.  For example, a passenger vehicle covers the inductive loop sensor for approximate-

ly 0.2 seconds during uncongested conditions which results in a single still image.  Longer 

vehicles, like FHWA class 9 tractor-trailer combination trucks have durations nearer to 1.0 

second in uncongested conditions which result in a series of around 2 to 4 still images.  The 

camera was set back from the traveled lanes and angled in such a way that the series of still 

images capture the full side view of the truck or car.  Figure 3.9 shows examples of still im-

ages captured for longer combination trucks and a passenger vehicle. 
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Figure 3.7 Data Collection System Architecture with SLR Still Image Camera  

 

Figure 3.8 Data collection setup at WIM site  
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Figure 3.9 Examples of still images collected for various truck types 

 

3.3 Data Groundtruth Process 

The data groundtruth procedure involved preprocessing the WIM, inductive signa-

ture, and photo data, linking the three data types, and identifying the vehicle configuration 

and body type from each photo record.    
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3.3.1 Preprocessing 

All WIM record, inductive loop signature, and photo data was stored in a relational 

database powered by PostgreSQL.  Currently, the 1060 WIM controller output (Table 3.3 ) 

is captured as a text file which is processed and stored as individual vehicle records accord-

ing to a unique vehicle identification number in the PostgreSQL database.    

In addition to the fields shown in Table 3.3, the day, year, hour, minute, and second 

time fields were combined into a single timestamp and the vehicle length and speed were 

used to determine an approximate loop occupancy value (i.e. the time over which the loop 

was occupied by the vehicle).  These two additional fields were used to link the WIM record 

to the photo and inductive signature data. 

Table 3.3 WIM Data record fields  

 

 

Inductive loop signature data was collected through proprietary software provided 

by Inductive Signature Technologies (IST), the manufacturer of the signature cards.  The 

proprietary software converts the binary outputs from the detector cards to a continuous 

Field Data Type By Field Field Data Type By Field 

1 Lane 16 Axle 2 Right Side weight (kips) 

2 Month 17 Axle 2 Left Side weight (kips) 

3 Day 18 Spacing between Axles 1 and 2 (feet) 

4 Year 19 Axle 3 Right Side weight (kips) 

5 Hour 20 Axle 3 Left Side weight (kips) 

6 Minute 21 Spacing between Axles 2 and 3 (feet) 

7 Second 21 Axle 4 Right Side weight (kips) 

8 Vehicle Number 22 Axle 4 Left Side weight (kips) 

9 Type 23 Spacing between Axles 3 and 4 (feet) 

10 Gross Weight (kips) 24 Axle 5 Right Side weight (kips) 

11 Overall Length (feet) 25 Axle 5 Left Side weight (kips) 

12 Speed (mph) 26 Spacing between Axles 4 and 5 (feet) 

13 Violation code 28 - 39  Remaining axle spacing and weights 

14 Axle 1 Right Side weight (kips) 40 Direction  

15 Axle 1 Left Side weight (kips) 41 Axle Count  
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stream of inductive magnitude changes.  The continuous stream of data was parsed into 

separate individual signature records by applying magnitude cutoff and smoothing criteria.  

The smoothing procedure reduced the effects of noise from dropped data.   

To ease the data groundtruth procedure each inductive signature was then plotted 

and stored as an image referenced by a unique identification number.   Along with the im-

age of the inductive signature, the timestamp and duration (i.e. time occupancy of the loop 

detector) were also stored in the database for later reference against the WIM data.  

Each vehicle traversing the loop produced a series of photos.  The shutter speed of 

three frames per second was used to group the photos by vehicle such that a group of pho-

tos corresponding to one vehicle consists of photos with timestamps separated by less than 

1/3 seconds.   The photos were stored in the PostgreSQL databased referenced by a unique 

identification number, labeled as the ‘vehicle identification number’ or ‘VehicleID’.    

3.3.2 Customized User Interface 

A software user interface was developed in Visual Basic to efficiently integrate the 

WIM, signature, and photo data.  The user interface is linked to the database. The user can 

scroll through photos and select the vehicle class parameters while also linking inductive 

loop signature and WIM records to the photo. The rightmost image of Figure 3.10 is the in-

ductive loop signature and the table below the signature is the list of vehicle signature rec-

ords within the user-designated time window. The center FHWA image based on the FHWA 

class predicted by the WIM controller and the table below is the list of WIM vehicle records 

with the user-designated time window for the WIM data.   The largest table in the upper 

right is the list of vehicle records derived from the set of photos taken by the still camera. 

The photo series corresponding to the vehicle record is show at the left.   Since this inter-
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face was developed to provide groundtruth truck body classification data, below the photo 

there is a selection region where the user designates the axle and body configuration of the 

vehicle.   Figure 3.11 shows an example of the customized user interface for the Irvine site 

with WIM and VDS signature data.  The leftmost signature image is from the VDS site and 

the rightmost signature image is from the WIM site.   

For each vehicle record, the user should scroll through the list of inductive signa-

tures and WIM records comparing the timestamp, duration, and other characteristics such 

as the shape of the signature or the designated FHWA vehicle class in order to find the cor-

responding signature and WIM records.    Then, the user must designate the total axle 

count, truck axle configuration, truck body configuration, trailer axle configuration, truck 

body configuration, and may optionally select the commodity type transported by the vehi-

cle.   Once all the fields are selected and the WIM and signature data have been identified, 

the user ‘appends all’ of the data to the vehicle record.   This links the unique identification 

numbers of the photo, WIM record, signature record, and body classification data to the ve-

hicle record in the PostgreSQL database.    

Figure 3.12 presents an example of the database structure to link the inductive sig-

nature, WIM records, and photo data with the vehicle records.  The uppermost table sum-

marizes the user inputs for body class, while the middle three tables contain identification 

numbers.  The ‘wimsigid’ is the unique identification number for each inductive signature 

record, ‘wimid’ for the WIM records, and ‘photoid’ for the photo records.   The unique iden-

tifier for each vehicle record, ‘vehid’, provides the link between each data source.  The table 

at the bottom of Figure 3.12 shows how the three data sources are referenced for each ve-

hicle record.    
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Figure 3.10 Customized User Interface for Vehicle Classification Example 1  

 

Figure 3.11 Customized User Interface for Vehicle Classification Example 2 
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Figure 3.12 Database Structure for Data Groundtruth 
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3.4 Classification Scheme Development 

A key component in the development of the body classification model was the crea-

tion of a classification scheme that captured the diversity of truck bodies found in the data.   

The initial body classes were based on the VIUS defined body types (VIUS, 2002).  VIUS was 

selected as it provided the highest level of detail regarding body classification.  VIUS sepa-

rates trucks into three vehicle configuration groups:  Passenger vehicles, single unit trucks, 

and semi-tractor trailer combination trucks.  Body classes corresponding to trucks were 

further expanded based on observed field data.   

3.4.1 Single Unit Trucks 

Single unit trucks are defined by VIUS as any truck with or without a trailer that is 

not a truck or road tractor.  Figure 3.13 illustrates examples of single unit trucks without 

trailers (a and b) and with small trailers (c).  VIUS defines 22 single unit body classes.  

Table 3.4 summarizes the five main body class groups: vans, platforms, tanks, ser-

vice, and specialty vehicles.   The VIUS classes were separated into 28 body classes for 

modeling in this dissertation.  The VIUS body class, ‘Vans, insulated, non-refrigerated’ are 

not visually distinguishable and therefore grouped together with VIUS category for basic 

enclosed vans and separated across four body class for modeling.   The VIUS body class for 

‘Concrete pumpers’ were not found in the data and thus not included in model develop-

ment.  Body classes identified the data but not defined in VIUS include pneumatic tanks, 

livestock trucks, and firetrucks.  Additionally, the three body classes including buses and 

recreational vehicles (RV) are not included in the VIUS classification scheme so these were 

added to the model classification scheme.  In total there are 31 body classes for single unit 

truck included in the model. 
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(a) Enclosed van 

 

 
(b) Trash, Garbage, or Re-

cycling 

 

(c) Enclosed Van with small 

trailer 

Figure 3.13 Examples of Single Unit Trucks 
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Table 3.4 VIUS and Model Single Unit Trucks Body Classification  

Body 

Category 
VIUS Body Class Model Body Class 

Van 

Van, basic enclosed (dry cargo) 

Van, insulated non-refrigerated 

Conventional Enclosed Van 

Light Duty Enclosed Van 

Low Loading Enclosed Van 

Cab-Over Engine Enclosed Van 

Van insulated refrigerated 
Conventional Reefer Enclosed Van 

Cab-Over Reefer Enclosed Van 

Van, open top (including low-side grain, 

fruit, potato bed, etc.) 
Open Top Van 

Van, step, walk-in, or multistep (including 

hi-cube or cutaway) 
Multi-Stop or Step Van 

Tank 

Tank, dry bulk 

Tank Tank, liquids or gases 

Vacuum 

* Pneumatic Tank 

Platform 
Flatbed (including any with added devices), 

stake, platform, etc. 

Basic Platform 

Low Boy Platform 

Service 

Service, utility (telephone line, cable, pipe-

line, etc.) 
Utility  

Service, other (mobile workshop, crafts-

man’s vehicle”, etc.) 

Specialty 

Armored Armored 

Beverage Beverage  

Concrete mixer Concrete Mixer 

Concrete pumper ** 

Crane Winch or crane truck 

Curtainside Curtainside Van 

Dump (including belly or bottom dump) 

End Dump 

Bottom Dump 

Dumpster Transport 

Pole, logging, pulpwood, or pipe Pole, logging, pulpwood, or pipe 

Street sweeper Street sweeper 

Tow/Wrecker (including flatbed) 
Platform for auto transport 

Wrecker 

Trash, garbage, or recycling Garbage 

* Livestock 

* Firetruck 

Other Other Other 

Bus 

* Recreational Vehicle (RV) 

* 30ft Bus 

* 20ft Bus 

* Not included in model body classification scheme 

** Not included in VIUS 
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3.4.2 Combination Trucks 

Combination trucks refer to multi-unit trucks including single unit trucks pulling 

single or small trailers (Figure 3.14 a and b) and semi-tractor trailer trucks with semi-

trailers or multiple trailers (Figure 3.14 c and d).   A single unit truck pulling a trailer is de-

fined by the drive unit body type as defined in the previous section and a trailer body type.  

Similarly, a semi-tractor trailer combination truck whether for a single semi-trailer or mul-

tiple trailer combination is defined in two parts: the tractor unit and trailer unit(s).    

 
(a) Single unit truck with single trailer 

 

(b) Single unit truck with small trailer (recreational vehicle) 

 
 

(d) Enclosed Van Semi Trailer (d) Belly Dump Multi-Semi Trailer 

Figure 3.14 Examples of Combination Truck Trailer Body Classes 

 

 

 Tractor Units 3.4.2.1

The tractor refers to the cab of the truck as shown in Figure 3.15 and is divided by 

VIUS into four standard engine configuration types described in Table 3.5.  Conventional 

and cab-over engine configurations are further specified as sleeper (Figure 3.15 a and b) or 

non-sleeper (Figure 3.15 c and d).  ‘Cab forward engine’ and ‘cab beside engine’ body clas-
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ses defined in VIUS were not found in the data and are thus not included in the model 

scheme.  Lastly, two specialty cab types were found in the data including cabs with at-

tached cranes and cabs for auto transport (Figure 3.15 e) and included in the body classifi-

cation scheme for model development.  In total there are six drive unit body classes includ-

ed in the model classification scheme.  

 
(a) Conventional drive unit without sleeper 

 
(b) Cab over drive unit without sleeper 

 
(c) Conventional drive unit with sleeper 

 
(d) Cab over drive unit with sleeper 

 
(e) Specialty cab with crane 

Figure 3.15 Examples of Semi-Tractor Trailer Drive Units 

 

                             

Table 3.5 VIUS and Model Drive Unit Body Classification 

Body Category VIUS Body Class Model Body Class 

Standard Drive 

Units 
Conventional cab with or without sleeper 

Conventional cab 

Conventional sleeper cab 

Cab over engine with or without sleeper 
Cab over cab 

Cab over sleeper cab 

Cab forward engine * 

Cab beside engine * 

Specialty Drive 

units 

** Cab with attached crane  

** Cab for auto transport 

* Not included in model body classification scheme 

** Not included in VIUS 
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 Trailer Units 3.4.2.2

As shown in Table 3.6, VIUS defines 17 trailer body types which can be categorized 

into four groups: van, tank, platform, and specialty.   The 17 body classes were redefined 

into 27 body types for the model classification scheme as shown in the rightmost column of 

Table 3.6.   VIUS classes for basic enclosed vans and insulated non-refrigerated vans were 

combined because they could not be visually distinguished.  For model purposes, this group 

was divided into vans with and without side skirts (e.g. ‘skirted enclosed van’) which are 

aerodynamic panels attached to the bottom sides of the trailer to decrease airflow through 

the trailer undercarriage.  Skirted panels cause disturbances in the inductive signature and 

must be separately categorized to avoid model confusion.   Further added categories in-

clude hoppers and agricultural vans.   

Major additions to the VIUS body classification scheme include intermodal contain-

ers and smaller trailers.   Intermodal container trailers are not included in VIUS since these 

belong to shippers rather than carriers or operators who participated in the VIUS survey.  

Additional body classes include container chassis, 20ft, 40ft, and 53ft intermodal contain-

ers, and 40ft intermodal refrigerated containers.  Inclusion of these specific categories 

greatly expands the applicability of the models to freight activity analysis.  As for small 

trailers, for the purpose of this dissertation, the trailer units are considered to be any unit 

pulled by a drive unit which can be a single unit truck or a tractor.   Therefore, the VIUS 

trailer body classes were expanded to include small trailer body types such as RV trailers, 

towed vehicles, and small dolly trailers.   
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Table 3.6 VIUS and Model Body Classification for Semi-Trailers for Existing VIUS Classes 

Category VIUS Body Class Model Body Class 

Van 

Van, basic enclosed (dry cargo) 

Van, insulated non-refrigerated 

Enclosed van 

Skirted enclosed van 

Van, drop frame (excluding livestock) Drop frame van 

Van, insulated refrigerated Reefer enclosed van 

Tank 
Tank, dry bulk 

Tank, liquids or gases 

Hot product tank 

Deep drop tank 

Food grade tank 

Petroleum tank 

Chemical tank 

Crude oil tank 

Air compression tank 

Propane tank 

Pneumatic Tank 

Platform 
Flatbed, platform, etc. 

Basic platform  

Platform with devices 

Low boy (platform with depressed center) Low boy platform 

Specialty 

Dump (including belly or bottom dump) 

Bottom/Belly dump 

Bulk waste transport 

End dump 

Livestock (including livestock dropframe) Livestock 

Curtainside Curtainside van 

Mobile home toter * 

Open tops (vans, low side grain, fruit, etc.) Open top van 

Pole, logging, pulpwood, or pipe Pole, logging, pulpwood, or pipe 

Automobile Carrier  Automobile transport 

Beverage Beverage 

Trailer mounted equipment * 

** Hopper 

** Agricultural van 

Intermodal 

Containers 

** Container chassis 

** 40ft container 

** 40ft refrigerated container 

** 20ft container 

** 20ft container on 40ft chassis 

** 53ft container 

Small 

Trailers 

** Recreational vehicle trailer 

** Towed vehicle 

** Small trailer/dolly 

* Not included in model body classification scheme 

** Not included in VIUS 
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3.5 Summary of Data 

Single unit trucks in FHWA class 5 and semi-tractor trailer combination trucks in 

FHWA class 9 were the most prevalent across all four data collection sites as summarized 

Table 3.7.  It should be noted that Table 3.7 reports lower than observed volumes of pas-

senger vehicles.   For more efficient data groundtruth processing, passenger vehicles not 

considered to be larger pick-up trucks or 12 passenger vans were not processed for the 

Fresno, Willows, or Redding data collection sites, or for the September and October data 

collection periods at Irvine.   Passenger vehicles, including sedans, SUVs, minivans, etc. are 

included in the March 20 and 25th data sets at the Irvine site.     

Semi-tractor trailer combination trucks (FHWA class 9) exhibit one of the most di-

verse sets of body types.  Therefore the summaries provided in this section focus on semi-

trailer body types.  There are a total of 12,681 processed vehicle records for semi-tractor 

trailer vehicle configurations in FHWA class 9.  The most prevalent trailer body type is the 

enclosed van which comprises 65.1% of the data across all sites.  Within the enclosed van 

body category, non-refrigerated vans represent 28.6%, refrigerated (e.g. reefer) vans rep-

resent 26.1%, and non-refrigerated skirted vans represent 10.4% of the total data.   The 

second most populous semi-trailer body type is the basic platform which accounts for 

9.5%, followed by tanks representing 4.8% of the total data.  Figure 3.16 shows the number 

of samples for each semi-trailer body class across all four sites.   

Enclosed vans, refrigerated enclosed vans, and platform semi-trailer body classes 

dominate the population across all four sites.  Notable differences by site are observed in 

the number of tanks, open top vans, curtainside vans, 53ft containers, 40ft containers, and 

pole/logging/pipe trailers.  These trailer body types are more industry specific and thus 
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possess greater spatial variability due to diverse land uses among the four sites.   For ex-

ample, logging trucks are observed in higher proportion at the Redding site which is locat-

ed in a region with forestry related industries.  At the site in Irvine, open top vans which 

transport garbage, refuse, and construction debris are observed in greater numbers as a 

result of the more urban land uses.   

Table 3.7 Volume by site and FHWA class 

FHWA Class Irvine Fresno Willows Redding Total 

Passenger Vehicles 
2 1,649 47 127 1 1,824 

3 4,345 745 1,187 22 6,299 

Single Unit 

4 176 58 11 8 253 

5 2,843 842 145 77 3,907 

6 515 238 64 64 881 

7 149 14 0 1 164 

Single Trailer 

8 455 261 82 112 910 

9 3,077 4,200 3,693 1,711 12,681 

10 11 20 7 7 45 

14 225 119 43 96 483 

Multi Trailer 

11 232 477 251 125 1,085 

12 12 63 65 44 184 

13 2 0 1 0 3 

Other 15 148 422 88 88 746 

Total 13,839 7,506 5,764 2,356 29,465 
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(a) Majority Class Samples by Site 

 
(b) Minority Class Samples by Site 

Figure 3.16 Number of semi-trailer truck samples by body type across all sites 
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4 Machine learning methods for Vehicle Classification 

 

The body classification schemes for single unit, semi-tractor trailer, and multi-unit 

trucks defined in Chapter 3 show the wide diversity of truck body types that exist on our 

highways.  For instance, five axle semi-tractor trailers, which represent the majority of the 

trucks by vehicle configuration, were divided into 27 trailer body types ranging from com-

monly observed enclosed vans to rarer types such as 20ft intermodal shipping containers.  

Not only is there a wide diversity of body types within each vehicle configuration group, 

but observed volumes of trucks by body type at the four data collection sites showed that 

each site contains a different distribution of truck body types, especially for minority body 

classes such as those that carry seasonal commodities like agricultural vans, or vehicle 

classes with unique travel characteristics such as intermodal containers.  In light of these 

observations, the body classification models developed in this dissertation have the com-

plicated task of producing accurate classifications across a large array of body classes and 

generalizing across locations with varying distributions of those classes.  Furthermore, be-

cause many of the vehicle configuration groups are dominated by a particular class even 

the most naive model would be relatively accurate if it simply assigned all vehicles to the 

dominate class.  For example, for the case of five axle semi-tractor trailers, enclosed vans 

represent about 71% of the observations at the Irvine data collection site.  Therefore, in 

addition to addressing multiple classes and spatially related proportions of body classes, 

the classification model development tasks developed in this dissertation also address the 

class imbalance problem.   
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In this Chapter, the scope of the vehicle classification problem including selection of ap-

plicable tools from the machine learning literature are discussed (Section 4.1), an overview 

of the classification model development procedure is given (Section 4.2), and details con-

cerning model selection and implementation are presented (Sections 4.3 and 4.4).  Lastly, 

the proposed model is summarized (Section 4.5). 

4.1 Overview of Classification Methods from a Machine Learning framework 

Classification is the task of assigning labels to objects represented by a set of meas-

urements called features.  Features can be any qualitative or quantitative representation of 

the object.  For example, a photo image could be discretized by pixel so that each pixel 

would be feature.   A ‘classifier’, also called a ‘learner’ or ‘machine’, is defined as a set of al-

gorithmic rules which map an object’s features to its class label.  

A classification problem has two phases: training and prediction.  In the training 

phase, a classifier learns to model the relationship between features and labels.  This form 

of model training is called ‘supervised learning’ because each object in the dataset has a 

predefined class label.   Supervised learning involves presenting learning examples to the 

classifier which then derives the particulars of the set of algorithmic rules.  The algorithmic 

rules can be parametric distributions, linear or more complex decision boundaries, or 

nearest neighbor patterns.  In the prediction phase, unlabeled examples are presented to 

the trained classifier which uses the set of learned rules to assign a label to the example.    

There are a wide variety of classifiers available for supervised learning and several tax-

onomies for defining categories of classifier methods.  Lippmann (1991) categorizes five 

types of classifiers by the form of the decision rule and the computing element: 
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1. Probabilistic- model the likelihood distributions of classes using parametric func-

tions (e.g. Naïve Bayes classifiers) 

2. Rule-forming- partition the input space into labeled regions using threshold-logic 

nodes or rules (e.g. decision trees) 

3. Local- form discriminant functions using Gaussian or radially symmetric functions 

(e.g. radial basis function neural networks) 

4. Global- form discriminant functions using sigmoidal or polynomial functions (e.g. 

multilayer perceptron neural networks) 

5. Nearest neighbor type- estimate distance between unknown samples and stored 

patterns (e.g. k-nearest neighbors) 

Each type of classifier listed above may be equally applicable to a dataset and result in 

equally acceptable performance.  Studies comparing the performance of a variety of classi-

fiers across a variety of datasets show that although some classifiers can be labeled as the 

best or worst classifier based on average performance, there is significant, data dependent 

variability in classifier performance (King et al., 1995; LeCun et al., 1995; Cooper et al., 

1997; Lim et al., 2000; Caruana and Niculescu-Mizil, 2006).   The expansive StatLog project 

(King et al., 1995) compared the performance of 17 learning algorithms representing sta-

tistical (e.g. Naïve Bayes), symbolic (e.g. decision trees), and neural network formulations 

across twelve real-world, noisy, complex classification datasets.  The author’s main conclu-

sion is that there is no single best classifier and that the best algorithm is highly dependent 

on the features of the dataset.   Furthermore, the authors found that even the worst models 

based on average performance across multiple datasets occasionally performed exception-

ally well.  Therefore, a major consideration in classifier development, in addition to feature 
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extraction and selection, is the selection of an appropriate classifier for the particular data 

used in this dissertation.   

4.2 Machine Learning Methods for Body Type Classification with Inductive 

Signatures 

It is clear from the diverse set of classification algorithms that have been employed in 

previous studies using inductive signatures for vehicle classification and the conclusions 

drawn from the comprehensive comparison studies described in Section 4.1 (King et al., 

1995; Caruana and Niculescu-Mizil, 2006), that that no single classifier has been shown to 

produce more accurate classifications than another.  As summarized in Table 4.1, Sun and 

Ritchie (2000) used heuristic discriminant algorithms and multiobjective optimization, Sun 

et al. (2003) adopted a self-organizing feature map, Ki and Baik (2006), Tok (2008), Meta 

and Cinsdikici (2010), and Liu et al. (2011) used neural networks, Oh and Ritchie (2008) 

used Probabilistic Neural Networks, Jeng and Ritchie (2008) used decision tree and cluster-

ing, and Jeng et al. (2013) used a K-Nearest Neighbor approach with wavelet features of the 

inductive signatures.  It should be noted that each of the studies summarized in Table 4.1 

worked with a very limited number of commercial vehicle samples so it is difficult to con-

clude the ability of any of these models to accurately predict commercial vehicle classes.  

Also, each study used a different feature set and classification scheme, so direct compari-

sons are not possible.   However, the general observation intended by Table 4.1 is that 

there is no single ‘best’ classifier for inductive signature data.  
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Table 4.1 Summary of inductive signature based vehicle classification methods 

Model Classifier Approx. accuracy (number of 

classes)** 

Sun et al. (2003) Self-organizing feature 

map 

87% (7 body classes) 

Ki and Baik (2006) 

Neural Networks 

92% (4 body classes) 

Tok (2008)* 84% (9 semi-trailer body clas-

ses) 

Meta and Cinsdikici 

(2010) 

93% (5 body classes) 

Liu et al. (2011) 98% (5 body classes) 

Oh and Ritchie (2008)* Probabilistic Neural Net-

works 

71% (4 body classes) 

Jeng and Ritchie (2008) Decision tree 93% (13 axle classes) 

Jeng et al. (2013) K-Nearest Neighbor  92% (13 axle classes) 

*Inductive signatures were obtained from experimental Blade inductive loop detectors 

** Body classes include passenger vehicle body types and truck body types 

 

Selection of the classifier is of utmost importance as it has immediate effects on the 

predictive abilities of the classification model.  More specifically, the predictive abilities of 

the body classification model relate to the model’s ability to generalize from imbalanced 

class distributions and noisy features- two prevailing issues in the vehicle classification 

problem with inductive signatures.   

Firstly, class imbalance is highly apparent in the observed body class data across the 

four data collection sites as was shown in Chapter 3.  This is important for vehicle classifi-

cation since the rarer minority classes can be related to seasonal activities such as agricul-

tural shipments, or trucks with unique travel characteristics such as intermodal container 

movements.  Observations of unique trucks such as these would give great insight that is 

otherwise not available through existing data collection programs.   Class imbalance causes 

classifiers to be overwhelmed by the majority class and ignore the minority classes leading 
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to poor classification accuracy of minority classes.  Weiss (2004) categorized the problems 

arising in learning from imbalanced data: 

1. improper evaluation metrics such as overall classification accuracy which do not 

capture minority case classification accuracy,  

2. lack of total number of minority samples (absolute) and proportion of minority 

samples (relative) leading to difficulties in defining distinct decision boundaries, 

3. inductive bias in the classifier in favor of class priors such that in the face of un-

certainty, the classifier preferences the majority class 

4. noise has a greater impact on minority cases since minority samples many be in-

terpreted as noisy samples of the majority class  

Previous vehicle classification research using inductive signatures have not explicit-

ly addressed the class imbalance problem in model development.   Instead, research in this 

area has focused on pre-processing of inductive signatures and tuning and optimization of 

individual models. No attempts have been made to account for dominant majority classes 

during training.   

Secondly, inductive signature and WIM data are prone to measurement noise.   

Measurement noise in inductive signature and WIM data are the result of several possible fac-

tors: (i) vehicle dynamics such as speed, acceleration, tire condition, load, and body configura-

tion; (ii) site conditions such as pavement smoothness or sensor calibration issues; (iii) environ-

mental factors such as temperature and precipitation (Nichols and Bullock, 2004;  Papagiannakis 

et al., 2008). An effective classification model should be able to perform well given noisy fea-

tures.  Furthermore, in relation to the class imbalance problem, noise in minority class samples 

can have significant effects on classification performance.   
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Several tools in the machine learning domain address the issues related to the body 

classification problem with inductive signature as described above.   When many models 

are available for classification and little prior knowledge does not point to which classifier 

is best, the first attempt is to try many different models on the data and select the model 

which achieves highest performance.  Alternatively, rather than selecting a single classifier, 

much can be gained from combining multiple classifiers.  This method of combining the 

predictions of a set of classifiers is referred to as Multiple Classifier Systems (MCS), also 

called ensemble learning methods, committees, or mixtures of experts. MCS have been 

found to increase overall classification performance, ensure generalization, and reduce the 

effects of class imbalance (Kuncheva, 2004).  Additionally, MCS are more likely to approxi-

mate the optimal classifier by removing the risk of selecting a single sub-par classifier.  This 

well-suited approach has not been considered in previous work with inductive signatures 

nor has it been used in the broader body of vehicle classification problems.  

Dietterich (2000) gives three general reasons why a set of classifiers might be better 

than a single classifier: statistical, computational, and representational.  Dietterich (2000) 

defines the goal of a learning algorithm is to find the best hypothesis in the search space of 

all possible hypotheses.  From a statistical perspective, when the amount of training data is 

too small, the learning algorithm can produce many different hypotheses.  But if multiple 

learners are averaged, the combined hypothesis might be closer to the most accurate hy-

pothesis.  From a computational perspective, learners which rely on hill climbing or ran-

dom search algorithms are subject to getting stuck in local optima.  Thus, an ensemble ap-

proach where local search is started from varying points can have a better chance of ap-

proximating the global optimum.  Lastly, from a representational perspective, it is possible 
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that the true relationship between inputs and outputs cannot be represented by any of the 

learners.  In this case, the true classifier lies outside the scope of the individual leaners, so 

combining learners can help expand the space of representable functions.  For these three 

reasons, multiple classifier systems exceed the capability of standard learning algorithms.   

Kuncheva (2004) defines four levels at which we can develop a MCS.  The approach-

es range from methods to combine predictions of independent classifiers to methods to 

train different classifiers that constitute the ensemble.  These are: 

1. Combination level 

2. Classifier level 

3. Feature level 

4. Data level 

The combination level is the capstone to the MCS.  Given a set of independent predic-

tions from the set of classifiers that constitute the ensemble, the combination level looks at 

different methods in which the set of predictions can be combined into a single prediction.   

For example, majority voting or weighted voting can be used to combine the predictions.   

The next tier of MCS development is the classifier level.  At this level, the set of constituent 

classifiers is selected.  The constituent classifiers are commonly referred to as base classifi-

ers.  Base classifiers can be variations of the same classifier or widely different classifier 

formulations.   The goal in selecting the base classifiers is to ensure as much diversity in the 

scope of the ensemble as possible.   For example, a classifier from each of the five classifier 

categories listed in Section 4.1 could be selected to as a base classifier in the ensemble.  Fol-

lowing the selection of base classifiers, the feature set used as input to each model has to be 

selected. Kuncheva (2004) refers to this as the feature level.  Different feature subsets can 
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be used for the base classifiers.  Lastly, the data level focuses on selecting subsets of the da-

taset on which to train each base classifier.   Each classifier could be trained on different 

subsets of the data, or the data could be subsampled to correct for class imbalance, for ex-

ample.   In this dissertation, attention is placed on the combination, classifier, and data lev-

els and each are discussed in the following sections.   

4.2.1 Combination Level 

At the combination level, individual base classifier predictions are combined.  Com-

bination can be done in two ways: (1) fusing label outputs through voting or averaging, or 

(2) selecting a label output from a single classifier in the ensemble based on each classifi-

er’s confidence it its prediction (e.g. posterior probability).   Based on the findings by 

Kuncheva (2004) there is no significant difference between the simplest and most complex 

combination methods in terms of prediction accuracy.  So, two voting methods were select-

ed and evaluated in this work: majority voting and Naïve Bayes Combination.   Majority 

vote was selected due to its simple interpretability and ease of implementation.  Naïve 

Bayes Combination was selected due to its popularity and reported success and efficiency 

in experimental studies summarized in Kuncheva (2004).  Majority voting simply assumes 

each model is equivalent in terms of prediction accuracy whereas Naïve Bayes Combination 

places weight on base model predictions as part of the voting scheme.   

 Majority Vote 4.2.1.1

Each base classifier produces a class label independent from the class labels pre-

dicted by the other base classifiers.  At the most basic level, if no information is assumed 

about the accuracy of each base classifier, than the individual predictions can be combined 

by simple majority voting.  Following the notation used by Kuncheva (2004), in which label 
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outputs are assumed to be c-dimensional binary vectors [di,1, …., di,c] ∈ {0,1}c, i = 1, …, L, 

where c is the number of classes, L is the number of base classifiers, and di,j = 1 if Di labels a 

sample as wj and 0 otherwise, the majority vote is formulated as: 

���,�
�

���
	 
��
��� ���,


�

���
 

This results in a simple majority, or plurality vote, where ties are broken arbitrarily.  

The majority vote is proven to give an accurate class label if at least L/2 + 1 classifiers give 

correct answers and the following assumptions hold true: (1) the number of classifiers is 

odd, (2) the accuracy of individual classifiers is greater than 0.5, and (3) the classifier out-

puts are independent.   While this is a widely used concept in combining classifiers, it does 

not make full use of the known accuracies of each base classifier on the dataset.  For the ve-

hicle classification problem, even weighting the majority vote by the accuracy of the model 

might not be useful since even the weakest model can be at least 80% correct if the majori-

ty class is predicted for each and every vehicle.   

 

 Naïve Bayes Combination 4.2.1.2

Majority voting simply fuses base classifier labels without regard for known class 

specific accuracies of a given base classifier.  A more informed approach, Naïve Bayes Com-

bination, weights base classifier predictions following from Bayes theory (Kuncheva, 2004; 

Stefano et al., 2012).  Following the notation used by Kuncheva (2004), where P(sj) is the 

probability that classifier Dj labels a sample as class sj and wk is the correct class label, con-

ditional independence (probability of assigning to class s, given the true class is wk) as-

sumed among base classifiers is represented as: 
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The posterior probability (probability of the true class wk given the assigned class s), which 

is used as the weight in the Naïve Bayes Combination voting scheme, is a follows: 

 

����|�� 	 	��������|������� 	 �����∏ ����|������� 	���� 	 
Ignoring the denominator, P(s), which does not depend on the true class, wk, the support 

for class wk is: 

�� ∝ 	����������|���
�
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P(wk) is the prior distribution of each class and can easily be estimated from the training or 

validation data as the number of samples in class k, Nk, divided by the total number of sam-

ples, N.   The latter half of the formulation, termed ‘modal evidence’, can be represented by 

the confusion matrix, cmi, resulting from application of each classifier, i, on the training or 

validation data.   Each entry, (k, s), of �
�,��   represents the number of samples with true 

class k (wk) and assigned class s (ws).  Further, the formulation is adapted to account for 

zero values of ����|��� which would equate ��to zero regardless of the remaining classifier 

estimates.  The final formulation from Titterington et al. (1981) for the Naïve Bayes Combi-

nation is: 
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Where B is a tunable constant suggested by Titterington et al. (1981) to be {1, 0.8, 0.5}.   

The class, wk, with the highest value of support, &', is the assigned class label.   Kuncheva 

(2004) concludes that Bayes Combination has been found to be accurate and efficient even 

when classifiers are not independent in their predictions.   

4.2.2 Classifier Level 

At the classifier level, the set of constituent classifiers is selected for the MCS.  The 

set of base classifiers included in the MCS can be modifications of the same classifier or a 

combination of different classifiers.  For example, a set of neural networks with different 

number of hidden layers constitutes an ensemble, as does a set of three different classifiers 

consisting of a neural network, decision tree, and support vector machine.   The question 

becomes how to ensure the optimal set of base models is selected.  

An important consideration in selecting base classifiers for MCS is to ensure “error 

diversity” among the classifiers used (Brown, 2005).   Error diversity means that the base 

models should exhibit different error on different instances.  To ensure diversity, entirely 

different classifiers such as neural networks, support vector machines, decision trees, etc., 

can be combined.  Brown (2005) refers to ensembles of different learners as ‘hybrid en-

sembles’ and draws conclusions about their effectiveness in providing ‘error diversity’ 

from the following studies:  Wang (2000) combined decision trees with neural networks;  

Langdon (2002) combined decision trees with neural networks; Woods (1997) combined 

neural networks, k-nearest neighbors, decision trees, and Bayes classifiers.  Brown (2005) 

concluded that hybrid ensembles “produce estimators with differing specialties and accura-

cies in different regions of the space- it seems sensible that two systems which represent a 

problem and search the space in radically different ways may show different strengths, and 
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therefore different patterns of generalization” (p.18).   In this dissertation, a hybrid ensem-

ble is adopted to best ensure diversity among classifiers.    

The ensemble of classifiers used for the body classification model spans the five cat-

egories outlined by Lippman (1991) and within each category, the chosen model has 

shown to have good performance for a variety of datasets (King et al., 1995; Caruana and 

Niculescu-Mizil, 2006).  The ensemble consists of: 

1. Probabilistic: Naïve Bayes Classifier (NB) 

2. Rule forming: Decision Tree (DT) 

3. Global: Support Vector Machine (SVM) 

4. Global: Multilayer Feed Forward Neural Network (MLFF) 

5. Probabilistic, Local, or Nearest neighbor: Probabilistic Neural Network (PNN)    

Several classifiers selected for the ensemble can be considered in multiple catego-

ries.  For instance, a Probabilistic Neural Network (PNN) is a variant of radial basis function 

networks that approximate Bayesian statistical techniques.  According to the taxonomy by 

Lipmann (1991) PNNs fall into the probabilistic, local, or nearest neighbor categories.  The 

purpose of organizing the ensemble constituents into the classifier categories is to illus-

trate the diversity that exists in this particular set of classifiers.  This diversity is captured 

in the varying assumptions and implementations captured by each classifier.     

 Naïve Bayes Classifier (NB) 4.2.2.1

The Naïve Bayes classifier (NB) is a simple statistical approach which makes use of 

an underlying probability model based on Bayes Theorem.  The method relies on the as-

sumption of conditional independence among features.  NB assumes the value of a particu-

lar feature of a class is unrelated to the presence of any other feature.  Parameter estima-
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tion for NB is conducted using maximum likelihood estimation.   Using Bayes Theorem the 

probability model is formulated as: 

��C|)�, )�, … , )*� 	 	��C���)�, )�, … , )*|C���)�, )�, … , )*� 	 ��+����
*

���
)�|+� 

where ()�, )�, … , )*� is the set of n sample features and C is the dependent class variable.  

The conditional independence assumption between features implies that the likelihood, 

��)�, )�, … , )*|C�, can be rewritten as the product of terms, P�)�|+�, as shown on the right 

hand side of the equation.    

The posterior probability model is translated to the NB classifier using the training 

data to calculate the class priors, P(C), and maximum likelihood estimation to determine 

the feature probability distributions, P�)�|+�.   The feature distribution is assumed to follow 

a statistical distribution, most commonly Gaussian, N(µ,σ).   

The advantages are short computational time for training and high accuracy given 

its simple formulation.  The main limitation is linked to the conditional independence as-

sumption of features, however, even though this assumption is violated, studies show good 

results using NB.   

 Decision Tree Classifier 4.2.2.2

Tree based supervised learning models are simple but common tools for classifica-

tion. Classification and Regression Trees (CART) recursively partition the feature space in-

to sub-regions beginning at the root of the tree and traversing down binary branches until 

a leaf node is reached at which point the sample is assigned to a class.  Figure 4.1 depicts a 

decision tree.  Each node (light grey circle) represents a split in the data, xi, by feature val-

ue, Oi.  The terminal nodes, or leaves, (dark grey circles) indicate the final class assignment.   
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To train the tree, the feature that best divides the training data is set as the root 

node of the tree.  A common method for determining which feature to split at each node is 

the information gain criterion (Hunt et al., 1966).  The tree grows by adding branches ac-

cording to the information gain criteria until the tree meets a specified stopping criterion 

preventing the tree from over fitting the training data.   Pruning of the tree is accomplished 

most commonly using the Grini Impurity Index which encourages the formation of regions 

which cover a high proportion of the data, thus allowing unnecessary branches to be 

trimmed from the tree. 

The main advantages of decision trees are easy interpretation and implementation.  

Limitations include: (1) lack of generalization ability if pruning method is not properly ad-

justed, (2) inability to efficiently represent non-linear decision boundaries (Kotsiantis, 

2007), and (3) training approach does not guarantee global optimal solution.   

 

Figure 4.1 A Decision Tree 
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 Support Vector Machines 4.2.2.3

Support Vector Machines (SVM) estimate a margin around a hyperplane separating 

two classes.   The model maximizes the margin to create the largest possible distance be-

tween the separating hyperplane and instances surrounding it.   Once the separating hy-

perplane is found, data points that lie on its margin are known as support vector points, 

and the model is represented as a linear combination of these points.   Figure 4.2 depicts 

the main concept of SVMs for the two class problem.   

The following formulations follow from Bishop (2006).  The hyperplane for a binary 

classification problem is represented as a linear model of the form y(x) = wTx + b, where w 

is the weight vector and b is the intercept.   Data points, xn, are classified according to the 

sign of y(xn) such that the class of point xn, labeled tn = +1 when y(xn) > 0 and tn = -1 when 

y(xn) < 0.    

 

Figure 4.2 Support Vector Machine 

 

Among many possible hyperplanes, the optimal plane will produce the lowest mis-

classification risk which is the hyperplane with the maximum margin.   Given that the per-
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pendicular distance from a point, x, to a hyperplane, y(x) =0, is |y(x)|/||w||, the maximum 

margin solution is given by: 

argmax2,3 4 1
||�||min*78*��

9�* + :�;< 

The solution to this equation is complex, so an equivalent constrained optimization prob-

lem is formulated as: 

argmin2,3 12 ||�||� 

Subject to:  8*��9�* + :� 	≥ 1		 
 

The formulation above requires the feature space to be perfectly separable, which is 

not feasible for most datasets.  The correction is to allow for ‘soft margins’ which allow data 

points to be misclassified but subject to some penalty term.   Slack variables, ξn, are intro-

duced for each training data point such that ξn = 0 for points on the correct side of the mar-

gin, and ξn = |tn – y(xn)| for those on the wrong side of the margin, i.e. a distance based pen-

alty.   Thus, the objective function becomes: 

argmin2,3,? 12 ||�||� + +� ξ*
A

*��
 

 

Subject to:   8*��9�* + :� 	≥ 1 −	ξ*		 
 ξn ≥ 0 

Solution to the minimization is performed using the corresponding dual Lagrangian 

formulation and Karush-Kuhn-Tucker (KKT) conditions.    Finally, the solution derived 

above is for the two class problem, but can be extended to multi-class problems.  A com-
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monly used approach constructs K separate SVMs in which the kth model is separates class 

k from all other classes in a one-versus-the-reset approach.    Lastly, many machine learn-

ing software packages implement the Sequential Minimal Optimization (SMO) method of 

Platt (1998) to speed up training of SVMs.   

The advantages of SVMs are: (1) well suited to deal with large number of features, 

(2) training procedure reaches a global optimum so SVM is not subject to local optimum 

(Kotsiantis, 2007).  Limitations are: (1) SVM was originally proposed for binary classifica-

tion and the adaptation to multi-class problems leads to weaker outcomes (Bishop, 2006) 

and (2) larger training data sets are required to achieve maximum accuracy features (Ko-

tsiantis, 2007).  

 Neural Networks 4.2.2.4

Artificial Neural Networks (NNs) derive their name from the biological central 

nervous system functions from which they were inspired.   The use of NNs is extensive 

across many fields of study with well-established abilities to perform accurately on real-

world classification tasks (Lippman, 1989).    The main structure of a NN is shown in Figure 

4.3 and consists of an input layer, hidden layer, and output layer made up of neurons.   The 

basic neural network model can be described as a series of functional transformations 

(Bishop, 2006).     Two NN architectures are described in this section, the commonly used 

Multilayer Feedforward Neural Network and the Bayesian interpretation of NN called the 

Probabilistic Neural Network.   
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Figure 4.3 Artificial Neural Network 

 

 

 Multilayer Feedforward Neural Network  4.2.2.5

The Multilayer Feedforward (MLF) Neural Network follows the same principle as 

described above.  The input layer constructs linear combinations of the input variables, 

x1,…, xN, using weights and  biases.  The summed quantities of the input layer are then fed 

to an activation function on the hidden layer, usually a sigmoidal function.  Output unit ac-

tivations are linearly transformed using another set of weight and bias values to give the 

final set of network outputs.  The model is termed feedfoward because the output of each 

layer is passed only to the higher layer, from input to output.   The number of input neu-

rons corresponds to the size of the feature set and the number of output neurons corre-

sponds to the number of classes.  The number of hidden layers and number of hidden neu-

rons must be set as part of the network architecture and can be determined through sensi-

tivity testing.   
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The training procedure for a MLF involves adjusting the weights and biases of the 

transformation and activation functions as labeled training samples are introduced.  A 

common training method is called the backpropagation training algorithm.   Essentially, 

this algorithm adjusts weights at each neuron by first calculating the error of a training 

sample at the output node and then carrying that error back through each layer and neuron 

(Bishop, 2006).    For each neuron, the weights are adjusted so that the local error is re-

duced.   The local error is passed to the connecting neurons and used to assess their local 

error.   The process continues until a stopping criterion, such as an error measure on an in-

dependent validation dataset, is reached.  

The advantages of MLF are: (1) ability to adapt to noise and distorted patterns, (2) 

ability to perform well with dependent feature inputs, and (3) proved capability in real-

world problem sets.   Limitations include:  (1) high variance and unsteadiness due to back-

propagation training reaching local minima in determining weights, (2) long training times, 

(3) lack of interpretability, and (3) sensitivity testing required to  determine network archi-

tecture.   

 Probabilistic Neural Network  4.2.2.6

The Probabilistic Neural Network (PNN) is a computationally efficient pattern clas-

sification algorithm for implementing Bayesian decision theory.   It differs from MLFs in 

that the sigmoid activation function is replaced by a statistically derived function.  The PNN 

has four layers: input, pattern, summation, and output (Figure 4.4).    The input layer nor-

malizes then distributes the input features to the pattern layer.  The pattern layer com-

pares the features to training patterns by calculating the dot product of the input pattern 

and the weight/training vector and then uses the dot product as input to the activation 
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function.  The summation layer sums of the activation outputs of the pattern layer as 

shown below which is essentially a Gaussian mixture smoothed by σ as follows:   

)C�D� 	 	 �
��E�F/GHF

�
I∑ K�L M− �NONP��Q�NONP���HG RI���   

 

The output layer compares the estimated posterior probabilities and determines the final 

class to which the vehicle belongs. The network is trained by making a pattern neuron for 

each training vector and then finding the connections between pattern units and summa-

tion units.  Also, the smoothing parameter has to be determined through sensitivity analy-

sis. 

 Advantages of PNN are: (1) fast training process, (2) guaranteed convergence to an op-

timal classifier as the size of the training set increases, and (3) training samples can be 

added and removed without extensive re-training.  Limitations include: (1) large memory 

requirement to store all training samples, (2) slow running time for new data due to the 

requirement to compare new data to all training samples, and (3) requires a representative 

training set. 

 

Figure 4.4 PNN structure consists of input, pattern, summation, and output layers 
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The large data storage requirement and resulting lengthy running time have been 

addressed by the Constructive PNN (CPNN) adaptation of the PNN (Berthold and Diamond, 

1998).  CPNN introduces new pattern layer neurons (i.e. training data samples) only when 

they will contribute positively to the overall classification rate and adjusts the shape of the 

already existing pattern neurons individually to minimize the risk of misclassification.  Es-

sentially, CPNN reduces the number of training samples stored in the pattern layer which 

reduces running time.  

4.2.3 Data Level 

To build a successful vehicle body classification model, not only is it important to se-

lect the right classifier or set of classifiers, but the model should also address the problem 

of class imbalance when training the classifiers.  Key problems in learning from imbalanced 

datasets are due to small sample sizes and overlapping class features.  When the number of 

samples is small or no sample is available for a particular class the estimated decision 

boundary can be very far from the true boundary (Kotsiantis et al., 2006).  Overlapping 

class features make discriminative rules hard to learn so more general rules are created 

which more likely misclassify minority instances (Kotsiantis et al., 2006).  As the degree of 

data complexity increases, the class imbalance factor (e.g. ratio of majority samples to total 

samples) starts to affect the generalization ability of the classifier (Kotsiantis et al., 2006).  

If the class imbalance problem is not addressed, classification models contain bias 

toward classes with greater numbers of instances.   Galar et al. (2011) illustrate an extreme 

case where the imbalance ratio is 100:1.  They state that a classifier which tries to maxim-

ize accuracy can obtain 99% accuracy just by ignoring the single instance of the minority 

class.   Ignoring this aspect will reduce the models spatial transferability to sites which may 
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not be dominated by the majority class such as sites near Ports with heavy intermodal con-

tainer traffic or farming regions with high proportions of agricultural type trucks, for ex-

ample, thus reducing the usefulness of the model in studying unique freight patterns.   

Several methods have been developed for handling the class imbalance problem.   

The methods can be synthesized into three main areas based on reviews by Kotsiantis et al. 

(2006) and Galar et al. (2011):  (1) data preprocessing techniques, (2) classifier modifica-

tion techniques, and (3) hybrid approaches.   Additionally, MCS are also considered to be 

methods to handle class imbalance when the set of classifiers in the ensemble are diverse 

enough.   

 Data preprocessing techniques 4.2.3.1

Data preprocessing techniques balance the class distributions prior to classifier 

training by under sampling the majority class, over sampling the minority class, or combin-

ing both.  Under-sampling refers to random sub-selection of the majority class.  Under-

sampling methods have three branches: completely random selection from the majority 

class (e.g. random under-sampling RUS), selecting of majority examples near the classifica-

tion boundary, or selection of majority examples with lots of neighbors.  Examples of these 

methods include the Condensed Nearest Neighbor rule (CNN), Edited Nearest Neighbor 

(ENN), Neighborhood Cleaning Rule (NCL), and Tomek Link method (Kotsiantis et al. 

(2006)).  Kotsiantis et al. (2006) comment that these methods are difficult for large da-

tasets since for any example in the dataset nearest neighbors of the sample must be found 

and also that potentially useful data is discarded.  Rather than reduce the majority class, an 

alternative is to increase the number of samples in the minority classes.  This is called 

oversampling.  Oversampling can be performed by replication (sampling with replacement) 
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or introduction of synthetic samples.  A much used method for sample generation is Syn-

thetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002).   

SMOTE generates synthetic minority examples by finding k minority class nearest 

neighbors and then randomly interpolating between the line segments connecting the 

sample to the nearest neighbor.  If there are many nearest neighbors, a random subset is 

chosen.  The authors suggest using five nearest neighbors.  This procedure in effect creates 

‘noise’ in the features of the minority samples.  This is beneficial for inductive signature da-

ta because signatures naturally contain fluctuations caused by vehicle dynamics over the 

sensors or other environmental considerations, but the basic shape of the inductive signa-

ture is maintained.  In other words, the SMOTE method would mimic the noise that would 

occur naturally.  Chawla et al. (2002) suggest that in addition to SMOTE, under-sampling of 

the majority class should also be applied to the training data.  Under-sampling the majority 

class is done by randomly selecting samples from the majority class.  

SMOTE improves minority classification accuracy by causing the classifier to create 

larger and less specific decision regions which better capture minority classes.  The main 

limitation is over-fitting since modified copies of minority class examples may come from a 

small set of nearest neighbors and thus not provide enough feature diversity to create dif-

ferent enough samples allowing for generalization.  Comparison of SMOTE, oversampling 

alone, and under-sampling alone, across multiple datasets of varying complexity and levels 

of imbalance shows that SMOTE improved the accuracy of minority classification better 

than either of the other approaches (Chawla et al., 2002).   
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 Classifier modification techniques 4.2.3.2

Rather than preprocessing data prior to classifier training, class imbalance in the 

training sample can be compensated for without actually altering class distributions and 

instead manipulating classifiers internally.   Although there are many forms this can take, 

depending on the classifier, the general idea is to internally bias the learning procedure by 

applying weights to the training samples.   Classifier level methods include:  cost sensitive 

learning in which the objective is to minimize the cost of misclassification by incorporating 

a cost matrix into the learning algorithm; one class learning in which only the minority 

class samples are used in training and defaulting to the majority class if a threshold on the 

similarity value is surpassed; and ensemble methods which train multiple or successive 

learners and combine results. 

Ensemble methods, specifically bagging and boosting, have been used extensively to 

solve class imbalance problems at the classifier level.  Bagging, i.e. bootstrap aggregating, 

was introduced by Breiman (1996) to construct ensembles.  Bagging involves independent-

ly training multiple classifiers on separate, randomly sampled, bootstrap sub-samples of 

the training data and then combining the classifiers through majority voting.   Boosting, in-

troduced by Freund and Schapire (1997), is an iterative algorithm that places different 

weights on training samples at each iteration.  After each iteration weights on incorrectly 

classified examples are increased while weights on correctly classified examples are de-

creased.  This forces the learner to focus more on the incorrectly classified examples in the 

next iteration.  Each trained classifier is then combined via a weighted vote where the 

weight is derived from overall classification accuracy of each classifier.  AdaBoost, or Adap-

tive Boosting, is the most representative implementation of boosting.   Boosting based ap-
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proaches can also be modified to incorporate misclassification costs into the weights, ra-

ther than placing arbitrary valued weights on the iterative training phases.   The most 

common algorithm is called AdaCost.    

 Hybrid approaches 4.2.3.3

Hybrid approaches combine some form of data preprocessing with classifier modifi-

cation through ensemble methods.  For example, SMOTEBoost introduces synthetic exam-

ples from the minority class during the iterative boosting process weighting phase.  

SMOTEBagging combines SMOTE preprocessing with bagging.  RUSBoost removes instanc-

es from the majority class by random under-sampling the dataset during each boosting it-

eration.    

 Comparison of Class Imbalance Methods  4.2.3.4

Galar et al. (2011) compare approximately 35 different class imbalance methods in-

cluding both data preprocessing methods such as SMOTE and classifier modification tech-

niques including boosting and bagging based ensembles across 44 datasets.   Statistical re-

sults show that a hybrid form of data preprocessing and bagging, SMOTEBagging, outper-

formed the other methods of class imbalance correction and is the computationally least 

complex among the best performing methods.  The authors conclude that more complex 

methods such as AdaBoost and AdaCost do not perform better than simpler methods such 

as SMOTE.  Furthermore, the authors comment that the collective approach of random un-

der-sampling of the majority class, synthetically oversampling the minority class, and ap-

plying an ensemble approach such as Bagging “stood out” in the experimental analysis.  
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4.3 Proposed Classification Model Framework 

4.3.1 Model Development Framework 

The proposed classification model development framework shown in Figure 4.5 can 

be applied for body classification using inputs of inductive signatures only and inductive 

signatures and WIM data.  The framework incorporates the MCS and class imbalance tools 

described in the previous sections.  

 

Figure 4.5 Framework for Classification Model Development 

 

The first stage of the model development process deals with the raw input data from 

the WIM controllers and inductive signature detectors.  Data pre-processing entails clean-
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ing of the raw inductive signatures and WIM data so that effects of lane changing, off center 

vehicles, and sensor calibration are corrected.   This step results in noise-reduced, normal-

ized, spatially insensitive inductive signature data.   The second procedure pertains to fea-

ture extraction in which the pre-processed inductive signature is converted to features that 

are representative of the signature.  This is necessary because an inductive signature can 

contain between 200 to 1400 data points depending on the length of the vehicle and traffic 

conditions.  Using all of the data points would be too computationally intensive for any 

classifier, so the inductive signature is reduced to between 30 to 60 representative data 

points through interpolation methods such as cubic spline interpolation (Jeng and Ritchie, 

2008).  Next, the WIM data including axle count, spacing and weight and vehicle length, is 

paired to the inductive signature.  The WIM data can then be used to parse the signature 

into components representing different portions of the vehicle.    

The second stage of model development deals with classifier design.   The MCS ap-

proach is adopted and follows the four levels discussed in Section 4.2: data level, feature 

level, classifier level, and combination level.  At the data level, the class imbalance correc-

tion procedures for oversampling the minority class (e.g. SMOTE) and under-sampling the 

majority class (e.g. RUS) are applied to the training data.  For SMOTE, the number of near-

est neighbors from which to create synthetic minority class samples was set to five as sug-

gested by Chawla et al. (2002).  The under-sampling rate, i.e. the percentage of samples to 

keep in the training dataset, was selected through sensitivity testing.  The under-sampling 

rate was dependent on the body class distribution. 

At the feature level, a set of salient features are selected from the inductive signa-

ture and/or WIM data.  For the signature only model, only signature features are chosen 
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and the same set of signature features is input for each base classifier at the classifier level.  

For the WIM-signature combined model, the set of WIM and signature features vary by ve-

hicle configuration class.  For example, for semi-tractor trailer combination trucks, the fea-

ture set includes inductive signature features from only the portion of the signature parti-

tioned by the WIM axle spacing measurements to represent the trailer.   Whereas for single 

unit trucks, the feature set includes features extracted from the entire signature as well as 

length and axle spacing measurements.  

At the classifier level, each of the base classifiers selected for implementation (e.g. 

NB, DT, SVM, MLFF, and PNN) is trained using a S-fold cross validation approach (Bishop, 

2006) to configure the model parameters shown in Table 4.2.  In the S-fold cross validation 

approach, S partitions of the training data are made.  Then S-1 groups are used for training 

the model and the remaining group is used for model validation.   The procedure is repeat-

ed for all S groups.   This allows as much data as possible to be used for classifier training 

which is important given the sometimes limited number of samples available for minority 

classes.   

Table 4.2 Configuration Parameters for Base Classifiers 

Base classifier Configuration Parameters 

NB None 

DT Pruning criteria 

SVM Class overlap penalty, Kernel function 

MLFF Number of hidden layers and nodes 

CPNN None 

 

The combination level compares two procedures for combining the predictions of 

the base classifiers.   The MV procedure combines the predictions of the base classifiers by 

simple majority.   The NBC method requires a reference confusion matrix to be stored for 
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each base classifier.   A validation dataset was held out from model training for this pur-

pose.  After training each base classifier, the trained classifiers are applied to the validation 

data to produce a confusion matrix.   

At all stages of model development the main criteria used to assess the performance 

of the model is the Correct Classification Rate (CCR).  CCR is the proportion of correctly 

classified vehicles in the dataset.  A CCR of 100% indicates a perfect classification model 

whereas 0% indicates a model in which no samples were correctly classified.  The ‘overall 

CCR’ (CCR) refers to the total number of correctly classified vehicles over the entire set of 

body classes.  The ‘class specific CCR’ (CCRb) refers to the total number of correctly classi-

fied vehicles in a specific body class (b) over the total number of vehicles in that body class.  

For some models, the minority class CCR, the total number of the correctly classified vehi-

cles in the set of minority classes divided by the total number of vehicles in the set of mi-

nority classes, was also used to assess model performance.   

4.3.2 Model Application Framework 

The model application framework is shown in Figure 4.6.  To apply the model de-

scribed in the previous section, first an unknown sample is pre-processed and features are 

extracted.  Then the features needed for the classifiers are selected from the feature set.  

Next, the MCS model is applied.  Each of the five trained classifiers is applied to the un-

known sample feature set and five independent predictions are produced.  The five predic-

tions can then be combined by MV or NBC.  To apply NBC, the class support values are 

computed by referencing the stored confusion matrices that resulted from applying the 

trained classifiers to the validation data during model development.   The final result re-
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gardless of the combination strategy is a single prediction of the body class for the un-

known sample.  

 

Figure 4.6 Model Application Framework 

 

Improving over existing models, MCS are the chosen implementation approach rather 

than simply, and possibly naively, selecting a single, sub-par classifier.  Furthermore, unlike 

previous vehicle classification models, especially those using inductive signatures, the 

methods used in this dissertation fully address the class imbalance problem inherent in ve-

hicle classification data.   While the MCS introduces a diverse model set that can increase 

generalizability, each base classifier in the multiple classifier system might not produce ac-

curate results when trained on imbalanced data.   So the method created in this disserta-

tion combines the benefits of multiple classifier systems and class imbalance correction 

methods.    
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5 Models and Results 

In this Chapter models for obtaining truck body class from WIM data, inductive signa-

ture data, and integrated WIM and signature data are presented.  The three models are pre-

sented in increasing order of input and output resolution to better show the added value in 

combining WIM and inductive signature data.  The first model (Section 5.1) uses only WIM 

system measurements such as axle spacing and length and produces body class volume es-

timates as opposed to individual vehicle predictions.  The WIM-only model is valid only for 

five axle combination tractor trailers corresponding to FHWA class 9.  The second model 

(Section 5.2) uses only inductive signature data and produces individual vehicle classifica-

tions aligning with the body classification scheme presented in Chapter 3.  Unlike the WIM 

based body class volume model, the inductive signature model classifies all vehicle types 

including passenger cars, single unit trucks, and combination trucks using a three tiered 

approach.  After determining if the vehicle is a single or multi-unit vehicle,  the second tier 

determines the vehicle configuration (e.g. passenger vehicle, single unit, multi-unit, etc.) 

and the third tier subsequently determines the body class within the vehicle configuration 

class.  The model applies the multiple classifier systems approach (MCS) with class imbal-

ance correction previously described in Chapter 4.  The third and most capable model (Sec-

tion 5.3) integrates WIM and inductive signature data to produce the highest resolution 

classifications in line with the body class schemes presented in Chapter 3 and stratified by 

axle configuration group (e.g. the FHWA axle configuration classification scheme).  Like the 

inductive signature only model, the integrated model employs the MCS approach with class 

imbalance correction.   Because the integrated model pulls data from the WIM system it 
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contains weight and axle configuration in addition to body class, thus improving upon the 

inductive signature only model.   

5.1 WIM-based Truck Body Classification 

 

In a joint effort of the research team assigned to the project from which this disserta-

tion was established, a ‘WIM-only’ model was developed to estimate site and time specific 

truck body configuration volumes using existing WIM site data.   The motivation for this 

method was to find a way to get more truck body class information out of historical WIM 

data for the purposes of validating the California Freight Forecasting Model (CSFFM) to 

prior validation years.  Two models were developed: (1) a tractor body class model and (2) 

a trailer body class model.  Rather than estimating individual vehicle classifications as the 

models in Section 5.2 and 5.3 produce, the WIM-only model produces aggregate trailer 

body configuration volumes.  This method allows more information to be extracted from 

axle-based measurement data without requiring modifications to existing infrastructure 

such as installing inductive signature capable detector cards, thus better leveraging already 

heavy investments in WIM systems.   

The WIM-only model was developed for five axle semi-tractor trailers that have 

been classified according to their axle spacing and weight measurements to be FHWA class 

9 trucks.  Five axle semi-tractor trailer combination trucks have distinct axle configuration 

characteristics, prevalence in the traffic stream relative to other truck types, and unique 

implications for freight and emissions analysis.  Thus, identifying the body classes of five 

axle semi-tractor trailer combination trucks is of interest.   
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5.1.1 Data 
 

Data from the four data collection sites described in Chapter 3 were used to develop 

and test the WIM-only body class models.   Data were split by day as shown in Table 1 to 

create separate training and testing datasets.  The Irvine was held out from model training 

and used as an independent test dataset.  The data was partitioned randomly into training 

and testing datasets with 60% for training and 40% for testing.   

The tractor body classification scheme is a two class scheme: (1) cabs with sleepers 

and (2) cabs without sleepers.  This is a condensed version of the scheme presented in 

Chapter 3 which had five tractor units.  The semi-trailer body classification scheme pre-

sented in Chapter 3 would be far too detailed to model using only WIM measurements.   

Therefore, the scheme was collapsed into five representative classes: enclosed vans (vans), 

platforms, tanks, 40ft containers (containers), and other.  Each group shares similar physi-

cal attributes and commodity types.   

 

Table 5.1 Data Summary for WIM Only Model Development 

Site Training Data 

Date 

Test Data Date Number of Five Axle 

Semi-Trucks (% of total) 

Fresno Nov. 8, 2012 Nov. 7, 2012 4,101 (61%) 

Redding Dec. 11, 2012 Dec. 10, 2012 1,694 (73%) 

Willows Dec. 10-11, 2012 Dec. 12, 2012 3,507 (78%) 

Irvine - March 20 & 25, 2013 1,632 (35%) 

 

 

The WIM system measures the number of axles, spacing between each axle, weight 

of each axle, and overall vehicle length.  In addition, overhang was derived.  Overhang rep-

resents the front and rear portions of the vehicle outside the axles and was obtained as the 

arithmetic difference between the overall length and the sum of all axle spacing measure-

ments.   
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Figure 5.1 WIM system measurement and derived features for five axle semi tractor-trailer 

trucks 

 

Figure 5.2 shows the distribution of the axle spacing data for the two tractor body 

classes: cabs without sleepers and sleeper cabs.   Approximately 24% of the data are cabs 

without sleepers and 76% are cabs with sleepers. For the tractor model, the spacing be-

tween the 1st and 2nd axles, vehicle length, and an interaction term constructed by multi-

plying the vehicle length and spacing between the 1st and 2nd axles were used as inputs to 

the classification model.  The spacing between the 2nd and 3rd axle did not vary signifi-

cantly by tractor body type and was not included in the model.   

Cabs without sleepers have shorter spacing between the 1st and 2nd axles than cabs 

with sleepers.  The median spacing between the 1st and 2nd axles were 13.3ft and 17.3ft 

for cabs without sleepers and cabs with sleepers, respectively.  The median vehicle length 

for cabs without sleepers was 66.4ft and 74.0ft for sleeper cabs.   

The interaction term was included to further delineate between the two tractor 

body types across sites.  It was observed that the tractor axle spacing (e.g. spacing between 
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axles 1 and 2) for cabs without sleepers at Redding was significantly larger than that at the 

other three sites, as shown in Figure 5.4.  However, the overall vehicle lengths of cabs with-

out sleepers observed at the Redding site were shorter than at the other three sites.   Inter-

acting the terms allowed for better delineation between sleeper and non-sleeper cabs that 

was consistent across all observed sites. 

 For the trailer model, the spacing between the 3rd and 4th axles (referred to simply 

as ‘spacing’), vehicle length, and overhang were used as input to the trailer body classifica-

tion model.  Figure 5.5 summarizes the distribution of each of the selected measurements 

for each body class as box plots.   Vans have the longest median length and overhang.  Vans 

have more outliers (red dots extending past the whiskers) due to the intra-class diversity 

in each of the three measures.  Platforms have the second longest length and possess a 

larger variability than vans across all three measurements as indicated in the box plot by 

the height of the box which represents the lower and upper quartiles of the data.  Tanks 

have the shortest median length and overhang measurements.  Containers, which are solely 

40ft containers, display the lowest variance in length, spacing, and overhang.  The ‘Other’ 

group has the largest variability due to the intra-class diversity of body types.   A Kolmogo-

rov-Smirnov (KS) hypothesis test confirmed that the five body groups are indeed differen-

tiable by length, axle spacing, and overhang.   

To reduce the effects measurement noise in the WIM measurements due to sensor 

calibration issues that may exist across sites, a normalization procedure was developed 

and applied to the WIM data use in the WIM-only model.  Sensor calibration issues will re-

sult in either systematic over or under estimations in the data at a particular site or for a 

particular span of time.   The spacing between the 2nd and 3rd axles of the tractor unit are 
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fairly static across all trailer body types and geographical location, although as shown pre-

viously, they vary by tractor body type.  To normalize the length, spacing, and overhang 

measurements, each variable was divided by the spacing between the 2nd and 3rd axle spac-

ing.  Thus, if a WIM station was consistently overestimating length and spacing measure-

ments, after normalizing the data by the 2nd and 3rd axle spacing would effectively cancel 

out the overestimation.  

 

 

 

Figure 5.2 Box plots of spacing between the 1st and 2nd axles, vehicle length, and vehicle 

length interacted with axle spacing by tractor body class 
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Figure 5.3 Box plots of spacing between the 1
st
 and 2

nd
 axles  

 

 

 

Figure 5.4 Box plots of vehicle length by tractor body class and data collection site  
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Figure 5.5 Box plots of length, axle spacing, and overhang for five trailer body classes 

 

 

 

5.1.2 Modeling Approach 
 

The tractor body class was modeled using a Naïve Bayes model and the trailer body 

class was modeled using an adapted decision tree approach.   For the tractor model, several 

other models were tried including a support vector machine, multilayer feed forward neu-

ral network, and decision tree.  All models had similar results.   
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The description in this section follows from (Hyun et al., 2015).  The WIM-only mod-

el employs an adapted decision tree (ADT) approach to estimate trailer body class volumes.  

Whereas a standard decision tree (DT) assigns singular predictions to each sample collect-

ed at a terminal node of the tree, our ADT approach instead applies predetermined proba-

bilities of each body configuration to the collection of samples that accumulate at each ter-

minal node.  To produce volume estimates at an aggregate level rather than individual ve-

hicle classification, the probabilities of body configurations estimated at each terminal 

node were used to produce body configuration volume rather than assign a single predic-

tion to all samples collected at a terminal node.  Predetermined probabilities resulting from 

training the tree on observed field data are applied to distribute the samples by body con-

figurations at each terminal node.  Then, the estimated volumes of each body configuration 

from each terminal node are aggregated across all terminal nodes to produce the body con-

figuration volume estimates as follows:   

 

S3TUV	�T*W�XYZ[\�T*	�		 		�S�**
		��]�**

	× 	_* 

Where S� = total volume of body configuration i  

S�*= volume of body configuration i at terminal node n 

�]�* = probability of body configuration i at a terminal node n 

_*= total volume collected at a terminal node n 

The input variables of the ADT represent each body configuration’s length, spacing, 

and overhang which were statistically invariant by site or time, thus the terminal node’s 

body configuration proportions from the observed field data (i.e. training data) can be used 
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to predict the body configuration volumes when the same input variables are used to bin 

new, unseen data via the ADT. 

The final trained ADT is provided in Appendix 1 with the probabilities of body con-

figurations displayed at each terminal node along with the branching criteria.  The ADT has 

12 decision branches and 13 terminal nodes.  The branching criteria values shown in the 

figure are the normalized values of the input variables.   Several of the terminal nodes are 

dominated by a particular body class.  For instance, the proportion of platforms at Node 10 

is 83.5%.   This means that platforms share a unique combination of overhang (Node 1 and 

5 branches) and length (Node 2 branch).  Other terminal nodes contain more uniform pro-

portions of each body class, although each node is dominated to some degree by one body 

class.  For instance, Node 18 has 1.4% vans, 24.7% platforms, 39.7% tanks, 17.8% contain-

ers, and 16.4% other.    

To apply the tree to new data, normalized vehicle records would be fed into the tree.  

Then based on the branching criteria, the new data would be binned into each of the termi-

nal nodes.  Finally, the terminal node body class proportions would be applied at each ter-

minal node and body class volumes would be estimated by summing across all nodes.   For 

example, if 1000 vehicle records terminate at Node 8, 58 would be counted as vans, 194 as 

platforms, 38 as tanks, 0 as containers, and 79 as other.  

5.1.3 Results 
 

 Tractor Model 5.1.3.1
 

Model performance was measured by the correct classification rate (CCR).  As sum-

marized in Table 5.2, the total CCR was 91.9% for the 4,999 test samples.  Cabs without 
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sleepers had a CCR of 83.4% while sleeper cabs had a CCR of 94.6%.   The overall CCR were 

90.1%, 96.2%, and 94.0% for Fresno, Willows, and Redding, respectively.  

Both the training and test data from Redding had lower than average accuracy for 

cabs without sleepers.  As previously mentioned, the spacing of the 1st and 2nd axles of cabs 

without sleepers observed at Redding was larger than the average across the other four 

sites.  This configuration was found at each of the four sites but dominated the Redding site 

data.   Tractors without sleeper cabs that have longer tractor chassis might be considered 

as an additional unique body type, however, there is no clear visual features by which the 

body could be identified to provide groundtruthed model data.   

 

Table 5.2 Results of the WIM-Only Tractor Classification Model 

 Cabs without sleepers Sleeper Cabs Count CCR 

Fresno 86.4% 91.8% 1,692 90.1% 

Willows 79.8% 97.4% 1,474 96.2% 

Redding 60.3% 97.2% 670 94.0% 

Overall  83.4% 94.6% 4,999 91.9% 

 

 

Spatial Transferability 

The Irvine data was held out during model training so that it could be used inde-

pendently for spatial transferability testing.  Table 5.3 summarizes the spatial transferabil-

ity results.  The overall CCR was 88.0%.  The CCR for cabs without sleeper was 83.6% and 

for sleeper cabs the CCR was 91.2%.  The results support the conclusion that the model is 

reasonably transferable to locations that were not included in model training.  
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Table 5.3 Spatial Transferability Results of the WIM-Only Tractor Classification Model  

 Cabs without sleepers Sleeper Cabs Count CCR 

Irvine 83.6% 91.2% 1,163 88.0% 

 

 

 Trailer Model 5.1.3.2
 

To evaluate model performance, the absolute percentage error (APE) in volume was 

used.  APE measures the deviation of estimated from actual truck volumes by body configu-

ration.  The overall APE representing all sites by body configuration can be obtained from 

the volume weighted average of each body configuration’s APE at each site as follows:  

 

`�a	3TUV	�T*W�XYZ[\�T*	���\b	\ 	 |`�8c�d�\ − a�8e
�8K�	�	\|`�8c�d�\ 	× 100	�%� 
 

APE	3TUV	�T*W�XYZ[\�T*	�[jj	��\b� 	 ∑ �`�a	�\ ^ `�8c�d�\�	\
∑ `�8c�d�\\

^ 100�%� 
 

The overall APE across all sites weighted by body class volume was 5.3%.  Redding 

possessed the lowest overall APE of 4.7% across all body classes while Willows had the 

highest APE at 5.9%.   Across all sites, vans had the lowest APE between 0.4 and 1.9% while 

40ft Containers had the highest between 23 and 44%.  Minority body class groups such as 

40ft containers and tanks have very low volumes, and have higher errors than the majority 

classes of vans and platforms.   The detailed results are given in Appendix 1.  

To get a better sense of the accuracy of the proposed ADT approach, two baseline 

approaches were developed for comparison.   The baseline approaches represent what 

practitioners could do to estimate body classes at a particular WIM site without developing 

a model like the ADT model.  
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The first is based on body configuration proportions calculated from observed, site 

specific data.  The proportions are determined from the training data at each site.  The stat-

ic proportions of body types do not vary by time of day, but only by location.  To apply such 

a method in practice, manual field data collection and classification would need to be per-

formed at each site where body class volumes are needed.   This is not a practical approach 

since physical data collection would need to be performed at each WIM site and have signif-

icant labor costs.    

The second is based on national level body configuration proportions collected in 

VIUS which have been adjusted by Average Annual Truck Miles by body configuration.  VI-

US does not include intermodal container trucks so this body configuration cannot be esti-

mated under this baseline approach.  Also, VIUS is a national level estimate and might devi-

ate significantly from a State’s body class distribution.  For example, Southern California is 

the home to two major Port complexes and would thus have a significant amount of con-

tainer traffic.   

The static proportions derived from site observations and VIUS were applied to the 

same test data used for the ADT model to estimate body class volumes.  Resulting APE val-

ues for each of the baseline approaches are provided in Appendix 1.  Overall APE compari-

sons are shown in Figure 5.6.  The ADT approach produces the lowest APE overall and 

across all sites whereas the baseline approach using site specific static proportions is 

slightly higher than the ADT approach and the baseline approach using VIUS proportions is 

significantly higher.  In fact, the VIUS based approach produces over 50% error for all sites.  

A major fault in the baseline approaches it that, unlike the ADT method, they do not consid-

er the trucks physical characteristics as measured by the WIM controller in determining 
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vehicle body class volumes.   Rather, the baseline approaches only apply observed or re-

ported proportions.    

 

 

Figure 5.6 Overall APE comparisons of baseline and ADT approaches by site 

 

 

Spatial and Temporal Transferability 

 

The Irvine data from March 20th and 25th was held out from model training so that it 

could be used to test the spatial transferability of the ADT model.  Table 5.4 summarizes 

the results for the Irvine data and provides a comparison to the ADT performance on the 

Fresno, Willows, and Redding (‘Overall’) data as well as the VIUS baseline approach.  The 

Irvine site preforms reasonably well with overall APE of 7.6% compared to 5.3% APE ob-

served across the other three sites.  The largest APE is seen for 40ft containers, although it 

is lower than the overall APE from the other three sites.  The slightly higher APE might be 

explained by the different body class distribution seen at the Irvine site due to its more ur-

ban location compared to the other three sites which were more rural.   The ADT model 

preforms much better than the VIUS baseline approach which had APE of 51.7% overall.   
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Table 5.4 Results of the WIM-Only Trailer Body Classification Model for Irvine compared 

to Overall 

Site Van Platform Tank 
40ft Con-

tainer 
Other 

Overall 

APE (%) 

Irvine 

Actual Volume 1159 162 51 28 69 
1469 

Estimated Volume 1215 135 42 20 58 

Absolute Difference 56 -27 -9 -8 -11 111 

APE (%) 4.8% 16.7% 17.6% 28.6% 15.9% 7.6% 

Overall* APE (%) 1.7% 5.4% 21.2% 31.5% 22.3% 5.3% 

VIUS APE (%) 30.3% 117.9% 15.7% 100.0% 262.3% 51.7% 

* From the test sites at Fresno, Redding, and Willows 

 

5.1.4 Discussion 

The purpose of the WIM-only model was to demonstrate what could be done to bet-

ter understand truck body class using only the measurements available from WIM control-

lers.   Two body classification models were developed for five axle semi tractor-trailer 

combination trucks: a tractor model and a trailer model.   

The tractor model distinguished between sleeper and non-sleeper cabs with an 

overall accuracy of 92.7% for the test data from Fresno, Willows, and Redding.  The model 

used the spacing between the 1st and 2nd axles, vehicle length, and a term interacting vehi-

cle length with spacing between the 1st and 2nd axles as input and employed a Naive Bayes 

model for classification.  The tractor model was tested for spatial transferability by apply-

ing the trained model to the Irvine dataset which had been held out from training.  The 

overall classification accuracy for the Irvine data was 88.0%.   The model performs reason-

ably well given the limited set of features available for modeling from WIM data alone and 

the significant overlap in those features across tractor body types. 

The trailer model estimated body class volumes for five body classes: vans, tanks, 

platforms, 40ft containers, and others.   The WIM-only trailer body classification model was 

shown to be spatially and temporarily transferable.  The WIM-only model was also com-
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pared to two baseline approaches which referenced static proportions of body class from 

site observed data and VIUS national estimates.  The WIM-only model produced slightly 

better volume estimates than the observed site specific baseline approach and significantly 

better than the VIUS baseline approach.       

Even though the WIM-only model was an improvement compared to simple static 

proportion approaches, there is still much to be desired in terms of the resolution of the 

model output.  First, the WIM-only model was only applied to five axle semi tractor-trailers 

although the same method could potentially be applied to two axle single unit trucks.   

However, for classes with little diversity in axle spacing, length, or overhang by body type, 

it is to be expected that using WIM data alone will not be enough to sufficiently distinguish 

detailed body types.   Second, the WIM-only trailer body class model produces body class 

volume estimates, not individual predictions of body class for each vehicle.  The low resolu-

tion of the model output might not be sufficient for detailed freight studies such as calcula-

tion of average payloads because individual vehicle body types are not predicted.  Addi-

tionally, only five body class groups are included in the model and these groups contain a 

diverse range of body classes.  For example, many commodity specific body types like log-

ging and livestock trailers are grouped into the ‘other’ category.  In order to produce higher 

resolution classifications, higher resolution data is needed.  In the next section, body class 

models using inductive signatures are presented.   

5.2 Inductive Signature-based Truck Body Classification 
 

WIM data alone cannot adequately provide body class information as demonstrated 

in the previous section.  The ‘Inductive Signature-based Body Classification’ model does not 

rely on WIM data.  While the WIM-only model is applicable at any WIM site, the inductive 
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signature only model in this section is applicable at any loop detector site that has been 

equipped with advanced loop detector cards.   

5.2.1 Data 
 

Data described in Chapter 3 was split by day and site to create datasets for model 

training and testing.  The data was split as shown in Table 5.5 in order to have a balanced 

and representative sample of each body class in the training and testing datasets.  In total, 

9,697 samples were used for model training and 14,634 samples for model testing. 

  

Table 5.5 Data Summary for Inductive Signature-based Model Development  

Site Training Data Date Training 

Samples 

Test Data Date Testing 

Samples 

Irvine Oct. 2 & 3, 2012 2,039 March 20 & 25, 2013 9,809 

Fresno Nov. 8, 2012 4,312 Nov. 7, 2012 3,248 

Willows Dec. 10, 2012 1,492 Dec. 11 & 12, 2012 4,323 

Redding Dec. 11 & 12, 2012 1,854 Dec. 10, 2012 499 

All  9,697  17,879 
 

 

Inductive signatures require pre-processing to convert raw inductive signatures to 

feature sets.  The complementary preprocessing procedures developed by Jeng (2007) and 

Tok (2008) were used to process the signatures.  The preprocessing procedure includes (1) 

noise filtering, (2) magnitude (vertical axis) and time (horizontal axis) normalization, and 

(3) feature extraction.  The pre-processing procedure is shown in Figure 5.7.   

First, the raw inductive vehicle signature is cleaned by applying a magnitude cutoff 

criterion to reduce measurement noise at the signature tails (Figure 5.7 (a)).  Second, the 

signature is normalized by its peak magnitude along the vertical axis and total duration 

along the horizontal axis (Figure 5.7 (b)).  Magnitude normalization helps to remove loop 
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detector sensitivity differences across sites.  Third, inductive signatures can possess any-

where from 200 to 1200 or more data points depending on vehicle length and traffic condi-

tions.  The variable number of data points needs to be reduced to a common number of 

points for modeling.  The cubic spline method Jeng (2007) was applied to reduce the varia-

ble number of samples into a defined set of equally spaced magnitudes (Figure 5.7 (c)).   

Finally, a second feature set is computed as the difference between consecutive interpolat-

ed magnitude points (Figure 5.7 (d)) (Tok, 2008). 

 

 

Figure 5.7 Inductive signature feature extraction procedure. 

 

(d) Magnitude Differences Features (c) Interpolated Magnitude Features 

(b) Normalized Signature (a) Raw Signature  

Magnitude Differences 
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 Sensor type (VDS to WIM-loop) transferability 5.2.1.1

The data collected for much of the modeling in this dissertation came from WIM site 

loop detectors which differ in geometric configuration from loop detectors at vehicle detec-

tor sites (VDS).  However, it is desirable to apply the classification model developed from 

WIM signatures to VDS sites.  The main issue in doing this is that loop detectors at WIM and 

VDS sites have different geometries:  WIM loop detectors are square whereas VDS detec-

tors are round.  Prior work by Jeng (2007) found that round and square loops could be 

used interchangeable for vehicle re-identification using inductive signatures.  Although 

both loop detectors were equipped with the same advanced detector card technology, due 

to loop geometry differences in the signatures may arise that could produce modeling error 

when applying the models developed with WIM signature data to VDS signature data.    

Concurrent VDS and WIM loop detector data was collected at the Irvine site.   The 

VDS and WIM signatures were manually matched.  Examples of WIM and VDS signatures 

are shown in Figure 5.8 for several vehicle types.  Differences in the inductive signature 

magnitudes are the result of vehicle dynamics over the sensors since the sensors are 

around 210ft apart or due to the different loop geometries.   

A statistical comparison between the VDS and WIM signatures was performed to de-

termine the compatibility of the data.   The VDS and WIM signatures were compared by ex-

amining the differences between paired signature features.   The aggregate sum of the 

paired differences, referred to as agg_diff was computed as: 

 

agg_diff 	 	�fnopq B fnrst
uv

n��
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where  

fnopq = feature I of VDS signature 

fnrst = feature i of WIM signature 

 

Figure 5.9 shows the histogram of the aggregate differences (agg_diff) for the 14,970 

pairs of VDS and WIM signatures.  The mean difference is 0.356 with a standard deviation 

of 0.718.  The normality of the errors was assessed by applying an Anderson-Darling test 

under the null hypothesis that the errors are normally distributed.  It was found that the 

aggregate paired errors are not normally distributed (p < 0.001), so non-parametric tests 

were used to further test the statistical evidence on a pair by pair basis that WIM and VDS 

signatures are comparable.  A two-sample Kolmogorov-Smirnov (KS) test at the 95% confi-

dence level was used to assess each pair of signature samples under the null hypothesis 

that both signatures arise from the same distribution.   Of the 14,970 pairs of VDS and WIM 

signature samples, the null hypothesis failed to be rejected for 14,850 samples, or 99.2%.  

Only 120 (0.8%) of the samples rejected the null hypothesis, i.e. the signatures were not 

statistically similar.  Because the VDS and WIM sites were located approximately 200ft 

apart, significant differences arising in the 120 signature pairs found to be statistically dis-

similar can be attributed to vehicle dynamics over the loop detectors such as off-center tra-

versal or stop-and-go conditions.  Based on the statistical evidence and previous studies 

comparing differing loop configurations (Jeng, 2007), it can be concluded that the inductive 

signature only model can effectively be developed using WIM loop detector data. 
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Figure 5.8 Comparison between VDS and WIM inductive signature for passenger vehicle, 

single unit truck, combination semi-truck and multi-unit truck 

 

 

Figure 5.9 Histogram of Aggregated Paired Differences for WIM and VDS signatures 
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5.2.2 Modeling Approach 
 

The inductive signature only model implements a three tiered approach as shown in 

Figure 5.10.  The first tier separated vehicles into two general vehicle configuration groups: 

single unit and multi-units.  The second tier further divides the two groups into more spe-

cific body configuration groups.  For single units, vehicles are classified as passenger vehi-

cles or single unit trucks.   For multi-units, vehicles are classified as single units with trail-

ers, semi-tractor single semi-trailer configurations, or semi-tractor multiple semi-trailer 

configurations.  The final and third tier consists of the body classification models for each 

body configuration group.  

 

 

Figure 5.10 Inductive Signature Based Model Framework 
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All three tiers of the model use 30 interpolated magnitude features and 29 magni-

tude differences for a total of 59 input features.  The first tier was implemented as a deci-

sion tree.  The second tier was implemented as a feed forward neural network with two 

hidden layers of 15 neurons.  The third tier was implemented as a multiple classifier sys-

tem with correction for class imbalance via SMOTE.  

5.2.3 Results 
 

The results are presented for the first and second tiers of the model followed by the 

results of the third tier body classification models for each of the body configuration cate-

gories.   Results are presented in terms of the cross classification table, the volume error, 

and the error reduction occurring from the SMOTE method.  The terms used to assess the 

models include accuracy, class specific Correct Classification Rate (CCR), precision, Abso-

lute Percent Error (APE), and Mean Absolute Percent Error (MAPE).  These are defined as 

follows: 

 

Accuracy 	 ∑ #3zTZZb�\3 # 	× 100	�%� 
++{3 	 #3zTZZb�\#3|3�bZ}bU 	× 100	�%� 

 

�]K�e�e~�3 	 ∑ #3zTZZb�\3#3�ZbU��\bU 	× 100	�%� 
 

`�a3 	 |#3|3�bZ}bU − #3�ZbU��\bU	
	|

#3|3�bZ}bU
	× 100	�%� 

 

 

MAPE = ∑ �`�a3 × #3|3�bZ}bU�	3
# × 100	�%� 
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where  

b = body class 

#3zTZZb�\ = number of vehicles correctly classified in body class b 

#3|3�bZ}bU = number of vehicle observed in body class b (e.g. the true vehicle count) 

#3�ZbU��\bU = number of vehicles predicted in body class b  

N = total number of vehicles in test dataset 

The cross classification table contains the predicted classes along the columns and 

the observed (or true) classes along the rows.   Each element (i,j) of the table represents the 

number of samples that were observed as class i but predicted as class j.   The sum across 

each row is the total number of observed vehicles for that body class (i) while the sum of 

the columns is the total number of predicted vehicle for that body class (j).   The diagonal 

elements (i=j) are the correctly classified samples and the off diagonal elements (i ≠j) are 

incorrectly classified samples.  

Accuracy is the overall correctness of the model in terms of total number of correct-

ly classified vehicles divided by the total number of samples being tested.  CCR and preci-

sion are both included as measures of individual body class classification accuracy.  CCR (or 

recall, as it is more commonly referred to in the machine learning literature) captures the 

ability of the model to select instances of a certain class from the data.  CCR ranges between 

0 to 100%.  High CCR can be achieved by simply assigning all vehicles to one class.  There-

fore, precision can be used to assess the model accuracy in addition to CCR.  In the case 

where all vehicles are assigned to a single class, the precision for that class would be 0%.   

There is a tradeoff between CCR and precision so an ideal model will balance the two.  
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APE and MAPE assess the volume accuracy of the classification models.  A drawback 

of APE is that it is irrelevant when there are zero observed counts within a class.  Also, 

when the class has low volume, small volume prediction errors can result in high APE.   

 Tier 1 and 2 Results 5.2.3.1
 

The first tier of the model which separated single units from multi-unit vehicles had 

an overall CCR of 98.4%.  The CCR for single units was 98.3% and 98.4% for multi-unit con-

figured vehicles.  Vehicles classified as single unit vehicles by the first tier were then classi-

fied as either passenger cars (PC) with CCR of 95.3% or single unit trucks without trailers 

(SU) with CCR of 89.6%, for an overall CCR of 93.4%.  Vehicle classified as multi-unit vehi-

cles by the first tier were then classified as single units with trailers, single semi-trailers, or 

multiple semi-trailers, with CCR of 82.7%, 98.6%, and 96.1% respectively.   The overall CCR 

for multi-unit vehicles was 96.3%.   The combined result of the first and second tiers is 

shown in the confusion matrix in Table 5.6.   Common misclassifications occur for single 

units with trailers.  A possible reason for the low performance of the single unit with trail-

ers class is that signatures for these vehicles closely mimic those of smaller three or four 

axle semi-tractor trailers.  Secondly, smaller trailers towed by single unit trucks do not re-

sult in signatures that are distinctly different from those of larger single unit trucks without 

trailers.  In all, the first and second tiers of the model produce reasonably accurate classifi-

cations.  MAPE in volume of the combined first and second tiers is 1.3%.  APE in volume 

ranges between 0.5% and 7.6%.  Single units with trailers have the highest APE, but overall 

the model produces accurate volume estimates of each of the five vehicle-body configura-

tion groups.  
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Table 5.6 Inductive Signature Only Model Tier 1 and 2 Cross Classification Table and 

Volume Accuracy 

Vehicle-Body 

Configuration 

Groups 

Single Unit Multi-Unit 

Total 
CCR 

(%) PC SU 
SU w/ 

Trailer 

Single 

Semi 

Multi 

Semi 

Passenger Car  5,389 263 3 0 0 5,655 95.3 

Single Unit (SU) 298 2,417 121 20 0 2,856 84.6 

SU w/Trailer 0 104 925 186 23 1,238 74.7 

Single Semi 0 47 89 7,415 9 7,560 98.1 

Multi Semi 0 0 6 16 548 570 96.1 

Total 5,687 2,831 1144 7,637 580 17,879 93.4 

Volume APE (%) 0.5 0.9 7.6 1.0 1.8  

 

 Tier 3 Results 5.2.3.2
 

Detailed results including the cross classification table, MCS summary, volume accu-

racy, and effects of the SMOTE training algorithm are shown for single unit trucks without 

trailers and single semi-trucks as these are the more common classes observed on the 

highways.   Results for single unit trucks with trailers and multi semi-trailers are discussed 

briefly with detailed tables given in Appendix 2.  

Single Unit Truck without Trailers 

 

The model consists of 13 body classes.  Table 5.7 summarizes the CCR results for 

each of the base classifier models and the two model combining strategies, Majority Vote 

(MV) and Naïve Bayes Combination (NBC).  NBC achieved superior performance over the 

best performing base classifier with CCR of 72.4%.   For all but four body classes, the NBC 

approach performed better than the best base classifier.   Nine of the 13 body classes have 

CCR above 70%, of which five achieve CCR of at least 80%, and finally, two models have 

CCR above 90.0%.   Still several body classes have low classification accuracy.  Single units 

without trailers have a wide variety of body types and due to their shorter length, have less 
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distinguishing inductive signature features.   This leads to low classification performance in 

this class.  

Table 5.8 shows the cross classification matrix for the results of the MCS with NBC 

approach.  The most common errors resulted from vehicles  being misclassified into the 

majority classes of conventional or cab-over van/platforms as well as utility/service trucks.  

This is most likely due to the variability in the signature features of these classes.   The last 

column of the cross classification table represents the difference between the CCR values 

with and without the SMOTE method to alleviate the class imbalance problem.  A positive 

difference indicates improved performance due to SMOTE while a negative value indicates 

a decrease in performance.  Overall, the SMOTE method reduced CCR by 0.7% (i.e. from 

71.0 with SMOTE to 71.7% without SMOTE) while a 1.1% improvement was achieved for 

minority body classes (i.e. all classes except conventional vans/platforms, utility/service, 

and cab over vans/platforms).   The largest improvements were observed for multi-stop 

vans and RVs, street sweepers, and dump trucks with triple rear axles.  

The MAPE in volume is 15.4% for the MCS modeling approach.   Class specific vol-

ume APE ranges from 0.0 to 287.0% for the MCS approach.  The largest discrepancies in 

volume arise from several low volume classes (< 30 samples) such as concrete mixers, 

dump trucks with triple tandem axles, and street sweepers.    In these cases, the APE meas-

urement somewhat exaggerated the small absolute differences in volume.    
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Table 5.7 Single Unit Truck without Trailer MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Conv. Van/Platform 333 72.4 69.7 56.5 67.3 67.6 74.2 74.5 

Utility/Service 312 74.4 68.3 59.3 64.4 58.7 76.0 68.9 

Cab Over Van/Platform 209 30.6 56.0 23.4 35.9 45.5 47.4 68.4 

30ft Bus 114 86.8 89.5 89.5 76.3 85.1 90.4 89.5 

Bobtail 107 88.8 86.9 74.8 69.2 82.2 87.9 89.7 

Garbage 93 77.4 91.4 90.3 74.2 66.7 86.0 88.2 

Multi Stop Van/RV 77 39.0 35.1 29.9 44.2 15.6 48.1 51.9 

20ft Bus 74 44.6 70.3 63.5 67.6 17.6 66.2 78.4 

Dump/Tank 66 27.3 39.4 28.8 39.4 36.4 39.4 36.4 

Dumpster Transport 59 49.2 61.0 50.8 35.6 52.5 55.9 54.2 

Concrete 21 81.0 100.0 100.0 85.7 61.9 100.0 95.2 

Dump w/ Triple Rear 8 62.5 75.0 62.5 12.5 62.5 75.0 75.0 

Street Sweeper 3 66.7 100.0 100.0 33.3 0.0 66.7 66.7 

OVERALL  1,476 63.5 68.6 56.6 59.7 57.5 70.1 72.4 

Minority Classes  622 64.3 72.5 66.6 61.3 55.5 72.5 74.3 
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Table 5.8 Single Unit Truck without Trailer Cross Classification Table 
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Conv. Van/Platform 251 20 1 0 7 22 5 9 2 2 5 1 8 333 251 75.4 -3.0 

Cab Over Van/Platform 12 132 1 3 8 33 1 6 6 1 1 0 5 209 132 63.2 0.6 

30ft Bus 0 3 101 0 5 0 0 0 2 2 0 0 1 114 101 88.6 -4.7 

20ft Bus 0 4 0 54 6 10 0 0 0 0 0 0 0 74 54 73.0 -0.9 

Multi Stop Van/RV 5 8 3 2 37 10 0 2 0 3 5 0 2 77 37 48.1 -2.8 

Utility/Service 13 30 1 5 12 220 3 9 2 3 3 3 8 312 220 70.5 0.0 

Concrete 0 1 0 0 0 0 20 0 0 0 0 0 0 21 20 95.2 23.4 

Dumpster Transport 7 13 0 0 1 3 0 29 3 1 0 1 1 59 29 49.2 -8.1 

Garbage 1 3 0 0 0 0 0 4 82 0 2 1 0 93 82 88.2 1.6 

Bobtail 
0 3 1 0 2 6 0 0 0 89 0 0 6 

107 89 83.2 
-

10.1 

Dump Triple Rear 0 0 0 0 0 0 0 0 0 1 6 0 1 8 6 75.0 0.0 

Street Sweeper 0 0 0 0 0 0 0 0 0 0 0 3 0 3 3 100.0 25.0 

Dump/Tank 1 12 1 0 4 7 2 4 0 2 9 0 24 66 24 36.4 66.7 

Total 290 229 109 64 82 311 31 63 97 104 31 9 56 1,476 1,048 71.0 -0.7 

Correct 251 132 101 54 37 220 20 29 82 89 6 3 24  
   

Precision (%) 86.6 57.6 92.7 84.4 45.1 70.7 64.5 46.0 84.5 85.6 19.4 33.3 42.9  
   

Volume APE (%) 12.9 9.6 4.4 13.5 6.5 0.3 47.6 6.8 4.3 2.8 287.5 200.0 15.2     



 

131 

 

 

Single Unit Trucks with Trailers 

 

The body classification model for Single Unit Trucks with Trailers covers nine truck-

trailer combinations.  A tractable set of unique truck-trailer combinations were observed in 

the data so separate models to predict trucks and trailers was not necessary.  The body 

classes are presented as truck –trailer combinations, e.g. Dump- Dump is a dump truck 

pulling a dump trailer.  Table 5.9 summarizes the CCR for each of the base classifiers and 

the two model combining strategies.  Using the NBC method, the overall CCR is 94.2% while 

the MV is 93.4%.   The best base classifier varied for each body class.  For example, NB was 

best for single units with small trailers (SU small trailer) while SVM was best for RV w/ 

towed vehicles.  Although the overall CCR of the MV and NBC methods is slightly less than 

the overall CCR for the best base classifier, the MV and NBC methods achieve superior per-

formance for each of the eight body types than any of the base classifiers.  

Single units with small trailers and RVs with towed vehicles are commonly cross 

classified due to the similarities in the signature shapes of these two classes.   Concrete 

trucks with lift axles extended achieve superior performance in terms of CCR and precision.   

The MAPE in volume was 8.2% across all classes with four classes achieving APE below 

10%.   Tow trucks, tanks with tank trailers (Tank-Tank), and dump trucks with lift axles 

extended which had poor classification accuracy, likewise have low volume accuracy.  Last-

ly, the SMOTE method significantly improved the classification accuracy of tow trucks tow-

ing vehicles and platforms with platform trailers.   However, the classification accuracy was 

diminished for RVs with towed vehicles and tanks with tank trailers.   
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Table 5.9 Inductive Signature Only Model Tier 3 Single Unit Truck with Trailer MCS 

Results  

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

SU small trailer 515 95.0 93.0 85.6 94.8 97.9 94.6 96.3 

Dump-Dump 87 92.0 100.0 100.0 93.1 100.0 100.0 100.0 

RV w/ Towed Vehicle 49 67.3 93.9 81.6 59.2 91.8 87.8 85.7 

Concrete w/Lift Axle 34 100.0 100.0 88.2 91.2 79.4 100.0 100.0 

Tank-Tank 30 83.3 100.0 93.3 66.7 70.0 90.0 76.7 

Platform-Platform 20 35.0 25.0 50.0 30.0 70.0 55.0 65.0 

Tow Truck w/ vehicle 8 87.5 50.0 75.0 87.5 62.5 75.0 75.0 

Dump w/ Lift Axle 3 100.0 66.7 66.7 100.0 66.7 66.7 66.7 

OVERALL  746 90.9 92.1 86.3 89.1 94.5 93.4 94.2 

 

 

Semi-Tractor Trailer Combinations with Single Semi Trailers 

 

There are 19 trailer body classes included in the model for single semi-trailers.  This 

class consists of semi-trailers with several difference axle configurations including those 

with single axle trailers resembling FHWA class 8, those with tandem axle trailers resem-

bling FHWA class 9, as well as triple or more axle trailers.  Enclosed vans were separated 

into two groups which approximate FHWA class 9 (five axle) and 8 (three or four axle) 

semi-trailers.  Each of the remaining 17 body classes contains both single and tandem rear 

axle configurations within its class.  The classification performance of the MCS method is 

summarized in Table 5.10 along with the CCRs for each of the base classifiers.   The overall 

CCR of the MCS is 74.3% and 73.8% when considering only minority classes.  In this model, 

minority classes refer to all body classes except enclosed vans and enclosed van reefers in 

FHWA 8 and 9.  Seven of the 19 body classes have CCR between 70% and 80%, five have 

CCR between 80% and 90%, and two have CCR above 90%.   Low performance in terms of 

CCR is observed for enclosed van reefers in FHWA class 8, 53ft containers, and agricultural 
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vans.  Several unique body classes including logging, livestock, and beverage trailers have 

CCR above 80% and precision above 75%.      

The cross classification matrix is shown in Table 5.11.  Enclosed Van body types in-

cluding FHWA class 8 and 9 reefer and non-reefer configurations and 53ft containers were 

commonly cross classified.  Essentially, the subtle difference in the signatures caused by the 

configuration of the chassis for these set of body types is not able to be picked up by the 

models.  Also, vehicles are commonly misclassified as platform trailers. This is likely due to 

the diverse set of body types and axle configurations within the platform body class.  For 

example, platform trailers can have split tandem axle configurations causing differing in-

ductive signature shapes.    

The last row of the cross classification table shows the volume APE.  The MAPE in 

volume was 11.3% for all classes and 17.5% for minority classes.  Class specific APE ranged 

from 3.7% (Enclosed vans Reefer FHWA 9) to 149% (Drop Frame Vans).  APE errors above 

20% were observed for enclosed reefer vans in FHWA class 8, 40ft reefer container 20ft 

containers, low chassis trailers including low boy platform and drop frame vans, dump 

trucks, agricultural vans, and beverage trailers.  The low CCR and APE in volume can be im-

proved by further collapsing commonly cross classified classes.  For example, if collapsed 

to nine classes, the total CCR rises to 90.5% and MAPE in volume becomes 9.6% with class 

specific CCR between 59 and 95% and APE between 7 and 100%.     

The overall effect of applying SMOTE was a decrease in overall CCR.  As expected, by 

increasing the number of training samples for minority classes through the SMOTE method, 

increased performance for several minority classes was achieved including enclosed van 

reefers (FHWA class 8), 53ft container, 40ft reefer containers, 20ft containers, drop frame 
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vans, and agricultural trailers.  In total, SMOTE improved the CCR of nine classes, which 

several increases in performance above 15%.   The vans and platforms which represent the 

majority saw decreased performance of 4.4% and 1.6%, respectively, since the models 

could not simply rely on class priors for class prediction. 

Table 5.10 Semi Tractor Trailers MCS Summary  

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Enclosed Van  (FHWA 9) 2343 31.2 33.1 87.5 63.8 46.4 59.2 74.6 

Enc. Van Reefer (FHWA 9) 1624 54.4 71.9 22.9 71.2 44.3 69.3 74.3 

Enclosed Van (FHWA8) 89 66.3 69.7 86.5 77.5 71.9 83.1 83.1 

Enc. Van Reefer (FHWA 8) 13 76.9 46.2 0.0 30.8 38.5 53.8 46.2 

53ft Container 124 71.0 74.2 21.8 64.5 37.9 68.5 57.3 

40ft Container 136 68.4 51.5 19.1 81.6 19.9 68.4 75.0 

40ft Container Reefer  17 88.2 88.2 82.4 70.6 82.4 100.0 94.1 

20ft Container 14 71.4 85.7 0.0 57.1 71.4 78.6 85.7 

Platform 796 57.4 60.2 70.4 64.2 83.8 72.4 77.5 

Tank 283 58.3 65.0 78.1 71.7 64.3 73.1 70.7 

Open Top Van 185 42.2 54.1 51.4 67.6 28.1 57.3 60.5 

Auto 86 61.6 61.6 66.3 52.3 88.4 77.9 77.9 

Low Boy Platform 184 58.7 75.5 97.3 63.6 71.2 86.4 82.1 

Drop Frame Van 51 54.9 49.0 3.9 62.7 70.6 60.8 60.8 

Dump 54 59.3 66.7 44.4 48.1 59.3 68.5 70.4 

Logging 15 86.7 80.0 80.0 73.3 73.3 80.0 80.0 

Livestock 56 78.6 83.9 67.9 78.6 28.6 80.4 80.4 

Agriculture 29 44.8 79.3 13.8 51.7 13.8 55.2 58.6 

Beverage 14 92.9 92.9 0.0 50.0 7.1 85.7 92.9 

Overall  6113 47.4 54.2 61.5 66.6 52.0 66.5 74.3 

Minority Classes 2044 59.6 63.7 62.3 66.2 64.1 72.5 73.8 
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Table 5.11 Semi Tractor Trailers Cross Classification Table  
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Enc. Van 9 1749 345 1 1 61 6 2 1 76 4 31 0 20 41 2 0 0 2 1 2343 74.6 -4.4 

Reefer 9 249 1207 11 2 6 4 1 5 85 4 27 0 4 12 1 0 0 6 0 1624 74.3 0.1 

Enc. Van 8 1 0 74 6 0 0 0 4 1 0 2 0 0 1 0 0 0 0 0 89 83.1 -5.6 

Reefer 8 0 0 4 6 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 13 46.2 15.4 

53ft Container 53 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 57.3 8.9 

40ft Container 0 1 0 0 0 102 0 1 10 2 8 0 0 0 9 0 0 3 0 136 75.0 -1.5 

40ft Reefer  0 0 0 0 0 0 16 0 1 0 0 0 0 0 0 0 0 0 0 17 94.1 11.8 

20ft Container 0 0 1 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 14 85.7 42.9 

Platform 30 6 6 2 2 9 16 5 617 29 33 5 17 9 5 1 0 4 0 796 77.5 -1.6 

Tank 0 2 1 0 0 1 3 0 41 200 6 1 2 3 16 0 0 7 0 283 70.7 -2.5 

Open Top Van 7 3 0 0 0 5 0 0 39 11 112 0 1 1 3 0 0 3 0 185 60.5 -13 

Auto 0 0 0 0 0 0 0 0 1 0 0 67 10 7 0 0 0 1 0 86 77.9 -1.2 

Low Boy Plat. 0 0 0 0 0 0 0 0 5 0 0 5 151 18 0 0 4 0 1 184 82.1 -4.3 

Drop Frm. Van 0 0 0 0 0 0 0 0 0 0 0 3 14 31 0 0 2 0 1 51 60.8 11.8 

Dump 0 0 0 0 0 5 0 0 0 11 0 0 0 0 38 0 0 0 0 54 70.4 1.9 

Logging 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 12 0 0 0 15 80.0 0.0 

Livestock 0 0 0 0 0 0 0 0 0 0 0 0 8 2 0 0 45 0 1 56 80.4 1.8 

Agriculture 0 0 0 0 0 1 0 0 3 5 1 0 0 2 0 0 0 17 0 29 58.6 27.6 

Beverage 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 13 14 92.9 0.0 

Total 2089 1564 98 17 140 133 38 28 885 266 220 82 228 127 74 13 51 43 17 6113 74.3 -2.0 

Correct 1749 1207 74 6 71 102 16 12 617 200 112 67 151 31 38 12 45 17 13 

Precision (%) 83.7 77.2 75.5 35.3 50.7 76.7 42.1 42.9 69.7 75.2 50.9 81.7 66.2 24.4 51.4 92.3 88.2 39.5 76.5 

APE (%) 10.8 3.7 10.1 30.8 12.9 2.2 123.5 100 11.2 6.0 18.9 4.6 23.9 149 37.0 13.3 8.9 48.3 21.4 
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Semi-Tractor Trailer Combinations with Multiple Semi Trailers 

There are seven trailer body classes included in the model semi-tractor trailers 

combination trucks with multiple semi-trailers.  Each trailer in the multi trailer configura-

tion was of the same body class for all of the observed data.  For example, two enclosed van 

trailers, or two tank trailers, but not one enclosed van and one tank trailer.   The body clas-

ses listed in the follow tables represent the body class of both trailers in the multi-semi 

trailer configuration.   The class labeled ‘platforms/tanks’ contains tank-tank and platform-

platform trailers, not to be confused with tank-platform trailers.  The model was trained 

with separate distinctions for platforms and tanks, but later the classes were merged due to 

the inability of the models to effectively distinguish between these two classes.   Likewise, 

the low chassis van/platform class represents a merged class, rather than a mixed trailer 

configuration.   

Table 5.12 summarizes CCR for each of the base classifiers and the two model com-

bining strategies.   The NBC and MV methods had about equal performance across all body 

types although the MCS approach outperformed the MV approach for dump trailers.    As 

with the previous models, the MCS approach achieves overall higher CCR compared to the 

best performing base classifier and is more consistent across body classes than any of the 

of the base classifiers.   Using MCS, all seven body classes achieve above 70% CCR with five 

of these having CCR above 90%.  In examining the cross classification matrix for the MCS 

approach it can be seen that common misclassifications occur between enclosed vans and 

platforms/tanks.    The MAPE for the multi-trailer model was 7.0%.   Enclosed vans, plat-

form/tanks, and dump multi-trailers all have APEs lower than 7%.  The APEs of the remain-
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ing classes ranges from 22 to 50%.   Lastly, applying the SMOTE method to the training data 

increases the overall and minority class CCRs by 3.0% and 3.7%, respectively.   The only 

class that saw a decrease in performance due to SMOTE were the low chassis 

vans/platforms however this represents only one vehicle being misclassified after SMOTE.    

Table 5.12 Multiple Semi Tractor Trailer Combination Trucks MCS Summary  

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Enclosed Van 253 92.1 93.3 77.6 87.4 77.6 92.5 92.9 

Platform/Tank 121 91.7 86.8 25.6 71.1 95.0 91.7 90.1 

Dump 126 84.1 88.9 90.5 84.9 80.2 86.5 90.5 

Pneumatic Tank 36 72.2 75.0 80.6 72.2 66.7 77.8 75.0 

Hopper 46 84.8 37.0 54.3 95.7 93.5 91.3 91.3 

Agricultural Van 2 100.0 0.0 100.0 50.0 0.0 100.0 100.0 

Low Chassis Van/Pltfr. 20 95.0 80.0 100.0 75.0 100.0 95.0 85.0 

OVERALL 604 88.8 84.9 69.1 82.8 82.7 90.2 90.4 

Minority Classes 351 86.3 78.9 63.0 79.5 86.3 88.6 88.6 

 

5.2.4 Discussion and Conclusions 

 

The inductive signature only model used inductive signature data as the sole input.  

The model was structured into three tiers.  The first tier distinguished between single units 

and multi units.  The second tier separated vehicles in each of the first tier bins into axle 

configuration classes.  For single units, these are passenger cars and single unit trucks 

without trailers.   For multi units, these are single units with trailers, semi-tractor trailer 

combination trucks with single semi-trailers, and semi-tractor trailer combination trucks 

with multiple semi-trailers.   Combined together, Tiers 1 and 2 achieved CCR of 93.4% and 

volume error of only 1.3%.  The four body classification models on Tier 3 are summarized 

by their training and testing dataset sample sizes, number of body classes, CCR, and APE in 

Table 5.13.    
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The major contribution of the Inductive Signature only model is that it greatly in-

creases the level of information available from an inductive loop sensor.  Current methods 

found in the vehicle classification literature can at best distinguish vehicles into a few 

length based bins using conventional inductive loop detectors, and methods using induc-

tive signatures are capable of classifying vehicles into a handful of body groups.  The meth-

od presented in this section distinguished amount 47 body classes representing a vast ex-

pansion over existing methods.  

Notable body class distinctions for single unit trucks include 30 and 20ft buses, con-

crete mixers, garbage trucks, bobtails, and street sweepers.  Knowledge of these body clas-

ses can assist in separate freight from service trucks for freight modelling as well as for 

emissions estimation.   Other notable body class distinctions for single semi unit trucks in-

clude distinction between five and three or four axle semi trucks, container transport trail-

ers including 40ft, 40ft reefer, and 20ft containers, and specialty trailers like dump, bever-

age, livestock, and logging trailers.   Commodity specific body types can be especially useful 

for commodity based freight modeling.  

Histograms and cumulative distributions of classification error (100% - CCR%), 

precision error (100%-Precision(%)), and volume APE for each of the 47 body classes are 

shown in Figure 5.11.  34 of body class models have CCR above 70% and 19 have APE in 

volume lower than 10%.  Single unit and single semi-trailer models have the largest variety 

of body types and therefore also possess higher volume error and lower classification accu-

racy.  Low performance in these classes is due to the varied axle configurations in the class.  

For example, single units can be two to four axle trucks and semi-trailers can be three to 
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five axle trucks.  Inductive signatures are not apt at distinguishing axle configuration thus 

this diversity maybe partly to blame for lower performance in these classes.  

The models developed in this section can be improved in several ways.  The first ave-

nue for improvement is through model selection.   The MCS approach is very promising and 

could be enhanced by expanded the diversity of the base classifiers, or by training base 

classifiers on different feature sets or different sample sets, for example.  Furthermore, in 

addition to the NBC and MV strategies, alternate combining architectures could be consid-

ered.  Second, alternate signature preprocessing and feature extraction algorithms can be 

employed.   For instance, Oh et al. (2007) suggested using extracting skewness, kurtosis, 

degree of symmetry, area, and standard deviation values from the inductive signature to 

use as features.   Additionally, the feature set can be expanded by incorporating axle and 

weight information.  Using Blade sensor technology which produces inductive signatures 

that capture axle information, Tok (2009) and Oh (2007) derived highly detailed body class 

information.   In the next section (Section 5.3), the inductive signature based body classifi-

cation model is integrated with WIM system data including axle spacing, axle weight, and 

vehicle length.    

Table 5.13 Inductive Signature Only Model Tier 3 Results Summary 

Model 
Training 

Samples 

Testing 

Samples 

Body 

Classes 
CCR (%) 

Volume 

MAPE (%) 

Single Units 1,553 1,476 13 72.3 15.4 

Single Units with Trailers 714 746 8 94.2 8.2 

Single Semi Trailers 3,720 6,113 19 74.2 11.3 

Multiple Semi Trailers 375 605 7 90.4 7.0 

Overall 6,362 8,940 47 
34 models 

CCR > 70% 

27 models 

APE < 10% 
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Figure 5.11 Summary of Model Accuracy for Naïve Bayes Combination and Majority Vote 

MCS Methods for Inductive Signature Only Tier 3 Models 

 

5.3 Integrated WIM and Inductive Signatures Truck Body Classification 
 

Using WIM data alone, the WIM-only model (Section 5.1) was capable of predicting 

body class volumes for five axle semi-tractor trailer combination trucks across five body 

class groups.  Using signature data alone, the Inductive Signature only model was capable 
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of predicting the body class of each vehicle across two vehicle configuration groups, five 

body configuration groups, and 43 body classes.   In this section, the integrated model 

which combines WIM data and inductive signatures is presented.  The integrated model 

represents the highest resolution at which body class can be obtained from the two data 

sources.     

5.3.1 Data 
 

The data used for model training and testing follows the same division by day and 

site as the data used in the Inductive Signature only model.  Inductive signatures were pre-

processed using the same basic approach presented in Section 5.2.1 for the Inductive Signa-

ture Only Model (Figure 5.7).   For five axle semi-tractor trailer units, axle spacing meas-

urements were used to parse inductive signatures into tractor and trailer portions, as 

shown in Figure 5.12.  The raw inductive signature (Figure 5.12a) is first normalized by 

length using the measured vehicle length determined from the WIM system (Figure 5.12b).  

Next, the spacing of the drive (axle 1) and steering axles (axle 2) are used to parse the sig-

nature into the tractor and trailer segments (Figure 5.12c).  An assumption of the frontal 

overhang, i.e. the distance from the beginning of the inductive signature to the location of 

the first axle, is required to determine the location of the steering axle.  An assumed value 

of 4ft of frontal overhang was used.  Next, rather than normalizing the magnitude by the 

maximum magnitude of the entire signature, the trailer portion of the signature is normal-

ized by the maximum magnitude of the trailer portion of the signature (Figure 5.12d).  Fi-

nally, the parsed section of the signature representing the trailer was processed according 

to the same feature extraction procedure used for the Inductive Signature Only Model.  The 

signature parsing approach can help improve classification accuracy since the model will 
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not be influenced by features from the tractor in predicting the body class of the trailer.  

The parsing procedure is only applied to FHWA class 9 five axle semi-tractor trailers.  
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Figure 5.12 Inductive Signature Parsing using WIM axle spacing measurements 
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5.3.2 Modeling Approach 
 

Like the Inductive Signature only model, the WIM-Signature integrated model also 

follows a tiered approach.  The first tier uses the FHWA axle configuration classification 

sieve to determine the axle configuration group to which the vehicle belongs.   The sieve 

uses axle count, spacing measurements between all axle pairs, vehicle length, and gross ve-

hicle weight to determine which of the 14 axle class groups the vehicle should be assigned 

to.  Then, for each of the 14 axle groups, body class is subsequently determined using in-

ductive signature data and additional WIM system measurements.  For single unit trucks, 

the body class of the drive unit was modeled.   For semi-tractor trailers, the body class of 

the trailer unit was modeled.  For single unit trucks with single trailers, the modeled body 

class corresponds to the combination of the drive unit and trailer unit.  A separate model 

was estimated for each truck axle configuration group corresponding to the FHWA scheme, 

yielding a total of nine body classification models.  

Furthermore, trucks designated as FHWA class 5 were separated into more refined 

axle configuration classes prior to body class modeling.  FHWA class 5 contains single unit 

trucks with and without small trailers.  The axle count from the WIM system can be used to 

easily separate single unit trucks with trailers (e.g. axle count greater than two) from those 

without trailers (e.g. axle count of two) excepted in the case of missing axle detections.  Due 

to the low weight of small trailers, sometimes the WIM controller fails to detect the pres-

ence of the trailer.  In this case, a two axle single unit truck with a small two axle trailer 

might be reported as having only two total axles by the WIM controller when it actually has 

four total axles.   This type of error occurred in approximately 2.0% (74 samples) of the 

records classified by the WIM controller as FHWA class 5 single unit trucks.  Luckily, the 
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inductive signature detects the presence of the small trailer regardless of the WIM missed 

axle detection.   Therefore, an additional tier (Tier 2) was added prior to body classification 

(Tiers 3a and 3b) to separate trucks with trailers from those without.  The model is imple-

mented as MLFF based on inductive signature features.  The third tier subsequently classi-

fied non-trailer trucks by body type following the MCS method.  Due to low sample size for 

FHWA class 5 trucks with trailers a stable model could not be estimated for these vehicles 

and is therefore not included in this dissertation.  The model framework for FHWA Class 5 

Single Unit Trucks is shown in Figure 5.13. 

   

 

Figure 5.13 FHWA Class 5 Model Framework 

 

Even though based on axle spacing, length, and gross vehicle weight each vehicle 

types shown in Figure 5.14 fall into the FHWA class 8 category, each has a very different 

body configuration and inductive signature pattern.  Therefore, vehicles classified into 

FHWA class 8 by the axle based classification sieve were first separated into four further 

refined axle based categories: three or four axle semi-tractor trailers (Figure 5.14 a), two 

axle single unit trucks with trailers (Figure 5.14 b), two axle small trucks with trailers 

Axle Count 

= 2 

FHWA 5 w/ Trailer  

Body Class Model 

(Tier 3a)* 

Trailer Axle Configura-

tion Detection (Tier 2) 

Yes 

No 

Yes 

Trailer? 
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Inductive Signatures 

*Due to low sample size, no model was estimated for this class 
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(Figure 5.14 c), and three axle trucks with lift axles (Figure 5.14 d).  A MLFF neural network 

was used to classify vehicles designated as FHWA class 8 into the four refined axle catego-

ries.  Only those predicted to be three or four axle semi-tractor trailers, approximately 71% 

of the FHWA class 8 records, were subsequently classified by body type.  Vehicles predicted 

to be two axle single unit trucks with trailers became part of the FHWA class 5 with trailer 

model.  Vehicles predicted to be three axle trucks with lift axles became part of the FHWA 

class 7 model.  Lastly, vehicles predicted to be two axle small trucks with trailers were re-

moved from modeling efforts since these are not trucks.  

 

 
 

(a)Three or Four Axle Semi-Tractor Trailers 

 

 
 

 
(b) Two Axle Single Unit Truck with Trailers 

 
 

(c)Two Axle Small Trucks with Trailers 
 

(d) Three Axle Trucks with Lift Axles 

Figure 5.14 Examples of Axle Groups with FHWA Class 8 

 

Multi-trailer units (FHWA 11 and 12) differ in the axle count and configuration but 

share the same set of trailer body types, so the two classes were merged into one model.  

Multi-trailer configurations consisted of two trailers of the same body type, so the body 

class model outputs a single prediction representing all trailers of a truck.  Seven or more 

axle multi-unit trucks (FHWA 13) tend to be specialized equipment movers or other unique 
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body types and had only three samples in the observed data, so no model was developed 

for this class.   

The framework for the WIM-Signature Integrated Body Classification Model is 

shown in Figure 5.15. Each model uses a slightly varied set of inputs but are invariably 

comprised a combination of WIM measurements and inductive signature features as shown 

in Table 5.14.  WIM input features include axle spacing (feet) and weights (kips), vehicle 

length (feet), and several derived features such as overhang (feet) and ratios between axle 

weights.  Overhang represents the front and rear portions of the vehicle extending beyond 

the axles, and is obtained as the arithmetic difference between the overall length and the 

sum of all axle spacing measurements.  Weight ratios are calculated as the ratios between 

the steering, drive, or trailer axles.   For all FHWA classes except FHWA class 9, WIM meas-

urements are raw measurements that have not been normalized.  For FHWA class 9, the 

WIM measurements used in the model have been normalized by the spacing between the 

2nd and 3rd axles for the reasons described in Section 5.1.1.   
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Figure 5.15 WIM-Signature Integrated Model Framework 
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Table 5.14 Summary of Input Feature Sets for WIM-Signature Model 

FHWA 

Class 
WIM Feature Set [# features] 

Inductive Signature Feature Set [# 

features] 

Total Number 

of Features 

Single Unit Trucks 

FHWA 4 Overhang and Length [2] 

30 normalized interpolated magnitudes 

and 29 magnitude differences [59] 

61 

FHWA 5 

(Tier 3) 

Spacing between 1st and 2nd ax-

les, Ratio of 1st to 2nd axle 

weight, Length [3] 

62 

FHWA 6 Overhang and Length [2] 61 

FHWA 7 Overhang and Length [2] 61 

Semi-Tractor with Single Semi-Trailers 

FHWA 8 

(Tier 3) 

Spacing between 2nd and 3rd 

axles, Ratio of 2nd axle weight to 

GVW, Overhang,  and Length [4]  

30 normalized interpolated magnitudes 

and 29 magnitude differences [59] 
63 

FHWA 9 
Spacing between 3rd and 4th 

axles, Overhang, Length 1 [3] 

30 normalized interpolated magnitudes 

and 29 magnitude differences  + 30 

normalized magnitudes of the trailer 

portion of the signature [89] 

91 

FHWA 10 Overhang and length [2] 
30 normalized interpolated magnitudes 

and 29 magnitude differences [59] 
61 

Semi-Tractor with Multiple Semi-Trailers 

FHWA 11-

12 
Overhang [1] 

30 normalized interpolated magnitudes 

and 29 magnitude differences [59] 
60 

Single Unit Trucks with Single Trailers 

FHWA 14 

Spacing between 2nd and 3rd 

axles , Spacing between 3rd and 

4th axles [2] 

30 normalized interpolated magnitudes 

and 29 magnitude differences [59] 61 

1 Normalized by the spacing between the 2nd and 3rd axles 

 

5.3.3 Results 
 

In this section, a summary of the training data and modeling results are presented in 

term of the cross classification table for the MCS with NBC model combination, CCR, Preci-

sion, volume APE and MAPE, and summary of MCS base classifier performance.   Full re-

sults are shown in this section for FHWA class 5 without trailers and FHWA class 9 semi-

trailers.  Results for all other axle groups are provided in Appendix 3.  In the summary table 

of the MCS base classifier performance, models with less than ideal performance, deemed 

to be less than 60% CCR, have been highlighted in red to emphasize the cases where an in-

dividual base classifier would not perform well.   
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 FHWA Class 4 Body Classification Model  5.3.3.1

Vehicles classified into FHWA class 4 are meant to be of two or three axle buses, the 

classification sieve captured several non-bus body classes including vans and platforms, as 

well as recreational vehicles (RVs).  The model was trained with 63 samples and tested on 

62 samples.  A summary of the MCS base classifier performance is provided in Table 5.15.  

The overall CCR for the MCS approach with NBC voting was 95.2% and for MV the CCR was 

98.4%.  None of the five base classifier models exceeded the CCR of the NBC or MV ap-

proach across all body classes.  CCR and precision are near or above 90% across all four 

body classes.  The model underestimates the volume of 30ft buses with single rear axles by 

12% but the overall MAPE stands at 9.7%. SMOTE produced a minor positive improvement 

of 0.2% in CCR with the greatest improvement seen for vans or platforms.   

 

Table 5.15 FHWA Class 4 MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Van or Platform 26 92.3 92.3 76.9 88.5 96.2 96.2 92.3 

30ft Bus Tandem 11 100.0 100.0 90.9 81.8 45.5 100.0 90.9 

30ft Bus Single 25 96.0 0.0 84.0 100.0 100.0 100.0 100.0 

RV 0  - -   -  -  -  -  - 

Overall CCR (%) 62 95.2 56.5 82.3 91.9 88.7 98.4 95.2 

 

 

 FHWA Class 5 Trailer Axle Detection Model (Tier 2) 5.3.3.2

The second tier of the FHWA class 5 model divides vehicles designated as FHWA 

class 5 two axle trucks by the FHWA classification sieve into those with trailers and those 

without.    A total of 2,078 samples were included in model training and 947 in testing.  Ap-

proximately 3% of the vehicles have trailers.   The overall CCR is 99.3% for the two class 



 

151 

 

model.  Single unit trucks without trailers had CCR of 99.7% while those with trailers have 

CCR of 87.1%.   Only 31 of the 947 samples were vehicles with trailers. 

 FHWA Class 5 without trailers Body Classification Model 5.3.3.3

Vehicles detected with only two axles by the WIM system or those identified by the 

axle detection model shown above as having no trailer are included in the FHWA class 5 

without trailer body classification model.  A total of 10 groups were created from the 21 

body classes observed in the data.  Groups were formed based on shared body characteris-

tics, general usage characteristics, and the models ability to distinguish between particular 

classes.  Of note are platforms and vans which were not able to be distinguished effectively 

by the models and were therefore lumped into a body class group.  Also, platform trucks 

were separated into four types that represent body class characteristics matching other 

vehicles in the dataset.  For example, cab over platforms were grouped with cab over vans 

since both have similar body characteristics and could not be distinguished by the models.   

Vehicles grouped into the ‘other’ category were not able to be distinguished as any of the 

18 listed body classes.  

The CCR results of the MCS base classifiers and combination strategies are summa-

rized in Table 5.16.  The overall CCR of the NBC approach was 75.3%.  Of all the base classi-

fier models, the SVM classifier performs best overall with 71.3% CCR, however has CCR be-

low 60% for several classes while the NBC approach achieves CCR above 60% for all but 

one class (‘other’ trucks).  The cross classification table for the NBC approach is given in 

Table 32.  The majority of body classes have CCR and precision above 70%.  Low perform-

ing classes include light vans/RVs, 12 passenger vans, and ‘other’ trucks.   Misclassifications 

tend to occur by assigning vehicles into the van/platform and utility/platform/pickup cat-
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egories.   The MCS with NBC approach yields a MAPE in volume of 6.8% with volume APE 

for each class between 0.0% and 25.0%.  Overall the SMOTE increased CCR by 2.3% with 

the largest improvement attributed to light van/RV, tow truck/platform, and bobtails.  

Table 5.16 FHWA Class 5 without Trailer MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Cab Over Van/Platform 215 41.4 73.5 47.9 54.0 63.3 65.6 71.6 

Conv. Van/Platform 180 86.1 89.4 58.9 80.0 86.7 88.3 88.3 

Utility/Platform/Pickup 174 66.1 62.1 49.4 62.6 64.4 70.7 73.6 

Light Van/RV 104 67.3 51.9 47.1 61.5 54.8 68.3 67.3 

20ft Bus 71 83.1 87.3 69.0 71.8 18.3 85.9 83.1 

Tow Truck/Platform 61 67.2 47.5 26.2 49.2 60.7 65.6 70.5 

12 Pass Van 41 73.2 78.0 58.5 63.4 19.5 73.2 65.9 

30ft Bus 32 87.5 96.9 93.8 81.3 84.4 93.8 96.9 

Other 22 63.6 18.2 59.1 45.5 22.7 59.1 22.7 

Bobtail 12 91.7 91.7 100.0 91.7 83.3 100.0 91.7 

Overall CCR (%) 912 67.1 71.3 53.5 64.4 61.5 74.6 75.3 
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Table 5.17 FHWA Class 5 without Trailer Cross Classification Table 
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Cab Over Van/Platform 154 6 25 9 4 8 2 1 6 0 215 154 71.6 0.9 

Conv. Van/Platform 8 159 2 0 0 9 0 0 1 1 180 159 88.3 0.6 

Utility/Platform/Pickup 18 5 128 2 4 3 4 0 9 1 174 128 73.6 4.6 

Light Van/RV 12 5 4 70 3 5 0 3 1 1 104 70 67.3 6.7 

20ft Bus 5 0 4 3 59 0 0 0 0 0 71 59 83.1 -1.4 

Tow Truck/Platform 0 4 5 4 1 43 0 0 4 0 61 43 70.5 6.6 

12 Pass Van 1 0 9 3 1 0 27 0 0 0 41 27 65.9 -2.4 

30ft Bus 0 0 0 1 0 0 0 31 0 0 32 31 96.9 3.1 

Other 4 1 6 1 0 3 1 0 5 1 22 5 22.7 -4.5 

Bobtail 0 0 0 0 0 0 0 0 1 11 12 11 91.7 8.3 

Total 202 180 183 93 72 71 34 35 27 15 912 687 75.3 2.3 

Correct 154 159 128 70 59 43 27 31 5 11 

 

 

Precision (%) 76.2 88.3 69.9 75.3 81.9 60.6 79.4 88.6 18.5 73.3  

Volume APE (%) 6.0 0.0 5.2 10.6 1.4 16.4 17.1 9.4 22.7 25.0   
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 FHWA Class 6 Body Classification Model  5.3.3.4

There were 215 samples in the training dataset representing 15 distinct body class 

which collapsed into the eight included in the model. Dump, dumpster transport, and gar-

bage trucks are the most prevalent in this class.  The CCR of each base classifier by body 

class and the MCS combining strategies are shown in Table 5.18.   The MCS with NBC com-

bination has an overall CCR of 80.5% with class CCR all above 60%.   The MV combination 

strategy did reasonably well but had significantly poorer performance for trucks with trail-

ers which were commonly misclassified as platform trucks.   The model performs excep-

tionally well in identifying bobtail tractors with 91.5% CCR and 95.6% precision, and 

trucks with trailer assigned to FHWA class 6 with 92.9% CCR and 100.0% precision.  Com-

mon cross classification occurred into the ‘platform/van/tank/other’ class.  However this is 

to be expected given the wide diversity of body types and feature distributions within this 

class.   The MCS approach has a MAPE in volume of 9.4% with class specific APE ranging 

from 0.0% to 27.6%.  Garbage trucks and concrete mixers possess the largest APEs in vol-

ume, while bobtails, buses, and dumpster transport truck have APE in volume below 10%.  

SMOTE has an overall positive effect of increasing the CCR by 1.4% with much of the im-

provement stemming from the ‘platform/van/tank/other’ truck class.  Unfortunately, the 

SMOTE method resulted in a decrease in CCR for concrete trucks.  This could be due to the 

synthetic samples being drawn from two small of a population which may have contained 

noisy signatures.  
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 Table 5.18 FHWA 6 MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Dumpster 95 72.6 74.7 42.1 76.8 67.4 80.0 78.9 
Bobtail 94 92.6 97.9 85.1 89.4 90.4 96.8 91.5 

Platform/Van/Tank/Other 89 59.6 39.3 53.9 65.2 92.1 61.8 73.0 
Dump 88 75.0 76.1 40.9 47.7 60.2 77.3 78.4 

Garbage 29 72.4 89.7 86.2 51.7 37.9 75.9 79.3 
Concrete 16 81.3 93.8 93.8 68.8 18.8 81.3 68.8 

FHWA 6 w/ trailer 14 57.1 92.9 85.7 85.7 35.7 57.1 92.9 
Bus 1 0.0 100.0 100.0 100.0 0.0 100.0 100.0 

Overall CCR (%) 426 74.4 75.1 60.3 69.5 71.1 78.4 80.5 
 

 FHWA Class 7 Body Classification Model  5.3.3.5

FHWA Class 7 three axle single unit trucks are divided into four body classes.  From 

the observed data it was found that two axle single unit trucks with extended lift axles were 

often categorized as three axle trucks by the FHWA classification sieve.  Therefore the body 

classes include two axle dump trucks and concrete mixers with lift axles in addition to 

three axle dump trucks (‘dump triple’) and garbage trucks (‘garbage triple’).  The 72 sam-

ples in the training data come from the Irvine and Fresno sites as none were observed at 

the Willows or Redding sites.   This was to be expected since three axle single unit trucks 

tend to be urban service trucks, e.g. garbage or dump trucks, and would therefore not be 

found in more rural areas like Redding and Willows.   

The test dataset was comprised of a limited set of 19 samples.  Table 5.19 summa-

rizes the performance of the base classifiers and MCS combination methods on the test da-

ta.  The MCS with NBC performs with 100.0% CCR across all body classes, significantly im-

proving upon all of the individual base classifiers and the MV combination method.   Since 

the MCS with NBC had 100.0% CCR and Precision accuracy there were no cross classifica-

tions.   The MAPE in volume was 0.0%.  Lastly, the SMOTE method had no effect on the CCR 
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performance of the MCS method using MV or NBC although minor improvements in CCR 

were found for each of the base classifiers using SMOTE.    

 

Table 5.19 FHWA 7 MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Garbage Triple Tandem Axle 9 77.8 0.0 100.0 100.0 66.7 77.8 100.0 

Concrete Tandem w/ Lift  7 100.0 100.0 42.9 100.0 42.9 100.0 100.0 

Dump Triple Tandem Axle 1 100.0 0.0 100.0 100.0 100.0 100.0 100.0 

Dump Tandem w/ Lift  2 100.0 100.0 50.0 100.0 100.0 100.0 100.0 

Overall CCR (%) 19 89.5 47.4 73.7 100.0 63.2 89.5 100.0 

 

 FHWA Class 8 Trailer Axle Detection Model (Tier 2) 5.3.3.6

The FHWA Class 8 Trailer Axle Detector Model distinguishes four refined axle con-

figurations found within the FHWA class 8 data using an MLFF neural network.   The over-

all CCR is 93.6% with class specific CCR between 78.7 and 100.0%.   The MAPE in volume is 

8.9%.   Those vehicles identified as two axle single unit trucks with lift axles and two axle 

single unit trucks with trailers, are then sent to the body class models for FHWA class 7 and 

5 with trailers, respectively.  Vehicles identified as two axle small trucks with trailers are 

terminally identified.   Vehicle predicted to be three or four axle semi-tractor trailers are 

fed into the FHWA class 8 body class model shown in the next section.   

 FHWA Class 8 Semi-Trailer Body Classification Model 5.3.3.7

There were seven unique trailer body classes observed for FHWA class 8 three or 

four axle semi-tractor trailer combination trucks.   Of the seven trailer body classes, five 

trailer body class groups were formed.   Enclosed van trailer are the dominate class ac-

counting for 76% of the training samples and 80% of the test data.  Unique minority trailer 
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body classes include beverage, livestock, and agricultural trailers.  Aggregate results are 

shown for the minority classes, e.g. all vehicle classes except vans, since even a simple 

model predicting every vehicle as a van would be correct at least 76% of the time.   

The results of the base classifiers and MCS combining methods are shown in Table 

5.20.  The MCS with NBC achieves 90.9% and 71.1% CCR for the overall and minority clas-

ses, respectively.  The majority of cross classification occur between platform and van trail-

ers.   If van and platform trailers were to be combined into a single class, the CCR of the 

combined class would be 97.6%.   Low chassis van/platform and beverage trailers had CCR 

of 77.8 and 100.0%, respectively.  Unfortunately agricultural van trailers were not found in 

the test data set.  However, the validation dataset performance shows that the base classifi-

er models were able to predict agricultural van trailers with CCR of 50%.    The MCS based 

model generally produces accurate volume estimates with MAPE of 4.3%.  Platforms are 

the largest source of volume error with APE of 20.0%.  The effect of SMOTE was a 0.5% im-

provement in CCR with an even greater improvement of 5.3% for the minority classes.  

 

Table 5.20 FHWA Class 8 MCS Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Van 149 90.6 99.3 94.0 83.9 63.1 94.6 96.0 

Platform 20 45.0 15.0 40.0 60.0 90.0 45.0 55.0 

Low Chassis Van/Platform  9 88.9 55.6 77.8 77.8 33.3 77.8 77.8 

Beverage 9 100.0 100.0 100.0 33.3 88.9 100.0 100.0 

Agricultural Van 0 - - - - - - - 

Overall CCR (%) 187 86.1 88.2 87.7 78.6 65.8 88.8 90.9 

Minority Class CCR (%) 38 68.4 44.7 63.2 57.9 76.3 65.8 71.1 
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 FHWA Class 9 Body Classification Model 5.3.3.8

FHWA class 9 semi-tractor trailer combination trucks have the widest diversity of 

body types compared to all other FHWA classes.   The training data consists of 3,205 sam-

ples from the Irvine, Willows, Redding, and Fresno data collection sites.  The 20 unique 

body classes were collapsed into 16 body class groups, two of which contain multiple body 

types: (1) the platform group contains basic platforms, bulk waste transport, and 20ft con-

tainers on platforms;  (2)the tank group contains liquid, dry bulk, and pneumatic tanks. 

Grouping of the trailer body types was based on physical and use characteristics as well as 

cross classifications evident in the training results.    Unique body classes include 20ft, 40ft, 

and 53ft intermodal containers as well as refrigerated vans and containers (‘reefer’).  

Commodity specific classes include tank, automotive transport, livestock, agricultural, and 

logging trailers.  

Table 5.21 summarizes the base classifiers and MCS model combining strategies for 

the FHWA class 9 trailer body class models.  The MCS with NBC achieves 75.5% CCR overall 

and 77.7% for minority classes while the MV method achieves 73.2% CCR overall and 

76.8% for minority classes.   The SVM base classifier has the best performance for minority 

classes (79.2%) but sacrifices classification accuracy for the majority class as a result.  Four 

of the 16 trailer body class groups have CCR above 90%, five between 80 and 90%, and 

four between 70 and 80% using the MCS with NBC approach.  Lower than acceptable classi-

fication performance resulted for 53ft containers.  Cross classifications (Table 5.22) are 

common between enclosed vans, reefer vans, and 53ft containers due to their similar 

length, overhang, and chassis characteristics.  Classification accuracy of enclosed vans 

could be increased to 92.1% CCR by merging these three classes.  The model performs ex-
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ceptionally well for many of the unique minority classes.  For example, 40ft containers, 20ft 

containers, automobile transport, and livestock trailers have CCR above 90% and precision 

above 70%.   The MCS with NBC applied to the test data across all sites results in MAPE of 

12.0% and 11.1% for all classes and minority classes, respectively.   High APE was ob-

served for 40ft reefer containers and drop frame vans, both of which were overestimated.  

Commodity specific body classes such as auto transport, logging, livestock, and agricultural 

van trailers had APE in volume less than 20%.   

Overall there is a 0.4% decrease in CCR but a 0.8% increase for minority classes due 

to the SMOTE technique.  The biggest improvements are due to 53ft containers (27.6%) 

and 20ft containers (38.5%).   Because the SMOTE algorithm creates a training dataset with 

equal sample sizes, the models cannot rely on prior distributions to predict body class, thus 

the performance of the majority class tends to decrease as observed for the enclosed van 

trailers.  

Table 5.21 FHWA Class 9 MCS Results Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Enclosed Van 2,210 35.8 53.8 74.8 69.3 61.2 67.7 71.9 

Reefer Vans 1,564 64.5 82.4 24.3 72.4 61.0 73.2 74.9 

53ft Box Container 116 69.0 71.6 7.8 59.5 13.8 51.7 55.2 

40ft Container 131 74.0 77.1 66.4 58.8 16.8 76.3 81.7 

40ft Reefer Container  16 87.5 93.8 18.8 81.3 87.5 87.5 93.8 

20ft Container 13 92.3 84.6 100.0 92.3 100.0 100.0 100.0 

Platforms 734 51.0 72.5 89.5 77.4 88.6 84.2 81.3 

Tank 259 65.3 74.1 81.5 76.4 71.8 77.2 78.4 

Open Top Van 152 61.2 79.6 16.4 67.8 33.6 71.7 80.3 

Auto 67 89.6 92.5 94.0 74.6 82.1 97.0 94.0 

Low Boy Platform 166 80.1 81.9 90.4 81.9 88.6 91.0 88.6 

Dump 51 62.7 80.4 41.2 45.1 68.6 64.7 66.7 

Drop Frame Van 43 65.1 76.7 32.6 58.1 58.1 65.1 74.4 

Logging 14 78.6 78.6 85.7 85.7 85.7 85.7 85.7 

Livestock 45 95.6 100.0 64.4 84.4 62.2 93.3 95.6 

Agricultural Van 22 90.9 72.7 4.5 77.3 40.9 77.3 63.6 

Overall CCR (%) 5,603 52.9 69.2 59.4 71.5 63.7 73.2 75.5 

Minority Class CCR (%) 3,393 64.1 79.2 49.4 72.9 65.3 76.8 77.7 
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Table 5.22 FHWA Class 9 Cross Classification Table for All Sites 
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Enclosed Van 1590 419 29 0 0 3 45 1 48 0 12 60 3 0 0 0 2210 1590 71.9 -2.4 

Reefer 257 1172 0 1 0 0 61 0 36 0 0 33 4 0 0 0 1564 1172 74.9 -1.3 

53ft Container 49 1 64 0 0 0 2 0 0 0 0 0 0 0 0 0 116 64 55.2 27.6 

40ft Container 0 1 0 107 1 0 10 2 4 0 0 0 6 0 0 0 131 107 81.7 11.5 

40ft Reefer 0 0 0 0 15 0 0 0 0 0 0 0 1 0 0 0 16 15 93.8 6.3 

20ft Container 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 13 13 100.0 38.5 

Platform 16 7 0 13 13 1 597 22 18 2 21 9 9 0 0 6 734 597 81.3 -3.8 

Tank 0 0 0 5 3 1 29 203 4 0 2 0 11 0 0 1 259 203 78.4 3.5 

Open Top Van 1 0 0 4 0 0 14 3 122 0 0 1 7 0 0 0 152 122 80.3 4.6 

Auto Transport 0 0 0 0 0 0 0 0 0 63 3 1 0 0 0 0 67 63 94.0 -1.5 

Low Boy Platform 0 0 0 0 0 0 4 0 0 0 147 12 0 0 3 0 166 147 88.6 -1.8 

Drop Frame Van 1         2 7 32 0  1  43 32 77.4 4.6 

Dump    5 1   11    0 34    51 34 66.7 5.9 

Logging 0 0 0 0 0 0 2 0 0 0 0 0 0 12 0 0 14 12 85.7 7.1 

Livestock 0 0 0 0 0 0 0 0 0 0 2 0 0 0 43 0 45 43 95.6 0 

Agricultural Van 0 0 0 0 0 0 1 2 2 0 0 0 7 0 0 14 22 14 63.6 18.1 

Total 1914 1600 93 135 33 18 765 244 234 67 194 148 82 12 47 21 5603 4228 75.5 -0.4 

Correct 1590 1172 64 107 15 13 597 203 122 63 147 32 34 12 43 14 
  

 

Precision (%) 83.1 73.3 68.8 79.3 45.5 72.2 78.0 83.2 52.1 94.0 75.8 21.6 41.5 100.0 91.5 66.7 
  

 

Volume APE (%) 13.4 2.3 19.8 3.1 106.3 38.5 4.2 5.8 53.9 0.0 16.9 244.2 60.8 14.3 4.4 19.2 
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 FHWA Class 10 Body Classification Model 5.3.3.9

The FHWA Class 10 model was limited by the number of samples available for mod-

el training and testing.  Due to low sample size, the MCS approach could not be applied and 

a single SVM model was used for prediction instead.  The six unique trailer body classes 

were collapsed into four groups: 20ft intermodal containers, platforms, low chassis vans 

and platforms, and enclosed vans.  The overall CCR was 100.0% for the test data consisting 

of a limited set of 10 samples.  The model preforms well given the limited training data. 

   FHWA Class 11 and 12 Body Classification Model 5.3.3.10

From the nine unique trailer body classes representing dual semi-trailers, seven 

groups were created.   The majority of samples are enclosed vans, platform, and bottom 

dump trailers. Minority body types included pneumatic tanks, hoppers, and agricultural 

vans.  The MCS results are shown in Table 5.23 for the test set of 302 samples.  The overall 

CCR for the MCS with NBC was 92.6% compared to the MV approach with CCR of 91.7%.  

The MLFF neural network base classifier has an overall higher CCR than the NBC method, 

however, it achieve slightly lower accuracy for bottom dump and tank trailers.  CCR values 

were above 80% for all but one class (Hopper trailers) and precision exceeding 80% for all 

but one class (Tanks).  This is due to cross classifications that occurred between platform 

and tank trailers.   The MAPE in volume of the MCS with NBC was 8.0%.  The largest APE in 

volume results from platforms being misclassified as tanks, all other class specific APE in 

volume were less than 15%.  Lastly, SMOTE greatly increases the CCR of tanks by 33% but 

results in a 0.6% decrease in overall CCR due to the slight decrease in CCR of the majority 

class, i.e. platforms.  
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Table 5.23 FHWA 11 and 12 MCS Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Platform 108 92.6 88.9 42.6 77.8 87.0 90.7 91.7 
Van 88 95.5 96.6 87.5 88.6 90.9 95.5 95.5 

Bottom Dump 67 98.5 100.0 98.5 97.0 100.0 100.0 100.0 
Hopper 33 81.8 63.6 45.5 75.8 81.8 75.8 75.8 

Pneumatic Tank 25 88.0 80.0 64.0 72.0 68.0 84.0 88.0 
Tank 3 66.7 66.7 66.7 66.7 33.3 66.7 100.0 

Agricultural Van 2 100.0 0.0 100.0 50.0 0.0 100.0 100.0 
Overall CCR (%) 326 92.9 89.3 68.7 83.7 87.7 91.7 92.6 

 

  FHWA Class 14 Body Classification Model 5.3.3.11

The body class model for FHWA class 14 single unit trucks with single trailers con-

sists of five body classes.  The body classes represent the truck and trailer body of the vehi-

cle.  For example, ‘Dump-Dump’ refers to a single unit dump truck pulling a single dump 

trailer.  The training set consisted of 145 samples, dominated by ‘dump-dump’ trucks.   

Overall the CCR for the test data of 244 samples was 96.7% for the MCS with NBC method 

compared to 95.9% for the MV method.  Dump-Dump, Tank-Tank, and RV-Small trailer 

classes have CCR and prevision above 90%.  Platform-Platform trucks are the only under-

performing class due to cross classifications as tank-tank and dump-dump trucks.  MAPE in 

volume of the MCS with NBC was 1.7%.  All body classes had APE in volume of less than 

2%.  Only the Platform-Platform class exceeded 10% APE.  The SMOTE training algorithm 

had an overall positive effect (1.2%) on CCR with significant increase in the CCR of RV-

Small trailer (23.5%) and minor decrease in performance for tank-tank trailers.   
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Table 5.24 FHWA 14 MCS Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB MV NBC 

Dump-Dump 171 94.7 98.2 83.6 84.2 98.2 99.4 99.4 

Tank-Tank 31 87.1 90.3 71.0 90.3 90.3 90.3 90.3 

RV-Small Trailer 25 92.0 100.0 100.0 88.0 100.0 100.0 100.0 

Platform-Platform 17 64.7 52.9 11.8 52.9 52.9 64.7 76.5 

Livestock-Livestock 0 - - - - - - - 

Overall CCR (%) 244 91.4 94.3 78.7 83.2 94.3 95.9 96.7 

 

5.3.4 Discussion and Conclusions 
 

Both the results and depth of detailed body classes depicted in these models go well 

above the capabilities of previous classification models which were limited to at most five 

body classes using current in-pavement technology (Lu et al., 2011).  A major advantage of 

integrating the WIM site with inductive signature capabilities is that the body classification 

model is able to predict among body types found within an axle configuration class where-

as previous inductive signature based models had the added challenge of predicting among 

all vehicle body and axle configurations.  In all, eight separate body classifications models 

were developed from an extensive data set of 18,967 truck records distinguishing an un-

precedented total of 26 single unit truck, 25 semi-trailer body configurations, and 12 multi-

unit trucks as shown in the summary in Table 5.25.   Of the 63 body classes, 51 had CCR 

greater than 70% and 33 had APE in volume less than 10%.   Figure 5.16 catalogues the 

model accuracy in terms of classification error rates (100%-CCR), precision error, and vol-

ume APE across all 63 body classes include in the eight models.  
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Table 5.25 WIM-Signature Model Summary 

Model 
No. Training 

Samples 

No. Test-

ing Sam-

ples 

No. Body 

Classes 
CCR (%) 

Volume APE 

(%) 

FHWA 4 63 62 4 95.2 9.7 
FHWA 5 without Trailers 1,172 912 10 75.3 6.8 

FHWA 6 215 342 8 80.5 9.2 
FHWA 7 72 19 4 100.0 0.0 

FHWA 8 Semi Trailers 224 187 5 90.9 4.2 
FHWA 9 3,198 5,603 16 75.4 12.2 

FHWA 10 17 13 4 92.3 7.7 

FHWA 11 and 12 508 326 7 92.7 8.0 
FHWA 14 145 244 5 96.7 1.7 
Overall 5,614 7,708 63 

52 with CCR > 

70% 

37 with APE < 

10% 

 

 

The model for FHWA class 4 effectively distinguishes buses from vans and platforms 

which have been misclassified by WIM controllers into this class.  Hence, this model actual-

ly improves classification accuracy according to the FHWA scheme since FHWA class 4 is 

meant to only contain buses.  For two axle single unit trucks (FHWA 5), body configura-

tions are extremely heterogeneous, and axle measurements and weights overlap signifi-

cantly, however the model still effectively separated buses, passenger vans, utility and 

pickup trucks, bobtails (tractor drive units), and enclosed vans.  Models for FHWA classes 6 

and 7 differentiated several industry specific categories including concrete, dump, garbage, 

dumpster transport, and vans.  These are important distinctions if one desires to compare 

possible freight and non-freight related vehicle volumes, since passenger related vehicles 

like buses or service oriented trucks such as pickups are not freight carriers.   

Five axle combination trucks (FHWA 9) possessed the widest diversity of trailer 

body types.  Enclosed vans formed the majority, while several unique and industry specific 

classes like logging and intermodal containers comprised the minority.  Remarkably, the 

model can even distinguish refrigerated from non-refrigerated vans as well as refrigerated 
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from non-refrigerated 40ft intermodal containers.  This level of distinction paves new pos-

sibilities for advanced tracking of perishable commodities, especially those that are Port-

related.   Also, because length is included in the model, 20ft intermodal containers can be 

classified with high accuracy.  Other commodity specific body types such as automobile 

transport, logging, and livestock trailers had CCR above 85%.   Unfortunately, the model is 

not able to accurately distinguish 53ft intermodal containers from enclosed vans due to 

overlap in signature and axle configuration features thus it would be appropriate to col-

lapse these classes into one group.    

Across all axle configuration groups, the MCS approach which combined five base 

classifiers – MLP, SVM, CPNN, DT, and NB – using NBC had higher overall CCR than any sin-

gle base classifier model.  While several base classifiers undoubtedly demonstrated ade-

quate performance at predicting certain classes, there was always a tradeoff with low per-

formance of the same classifier on other classes.  To illustrate this important facet of MCS, 

the class specific CCRs less than 60% were highlighted in red in each of the MCS summary 

tables.  Each classifier has a set of classes where it performs quite poorly, hence the need 

for the MCS method which consequently produced fewer class specific CCRs under 60%.   

In the FHWA class 9 model, for example, the SVM base classifier produced more ac-

curate predictions than any base classifier for livestock trailers (100.0%) but had the low-

est performance among all base classifier for enclosed van trailers (53.8%).  If the SVM 

model had been applied alone, the accuracy in predicting enclosed vans would have been 

sacrificed in favor of livestock trailers.   But by combining all models, the CCR for enclosed 

vans was elevated to 71.9%, well above the ability of the SVM model, while still maintaining 

the high accuracy for livestock trailers (95.6%).   Accordingly, for all eight models (FWHA 
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class 4 through 11/12) the overall CCRs were above 75% using the MCS approach.   Alter-

natively, had only the MLFF approach been implemented, for example, only six of the eight 

models would achieve CCRs above 75%.    

Since NBC calculates an array of probabilities for the set of possible body classes 

based on the joint distribution arising from each base classifier’s cross classification matrix, 

the strengths of each base classifier are captured and weaknesses are controlled.  For ex-

ample, an unknown vehicle could be classified as a reefer by the CPNN model, which had a 

CCR of only 24% for this class because most reefers were misclassified as enclosed vans.  In 

NBC, the CPNN model will contribute little ‘evidence’ toward the estimated probability of 

the vehicle being a reefer (i.e. the number of records that were truly reefers and predicted 

as such is low) but contribute significant ‘evidence’ toward the estimated probability of the 

vehicle being an enclosed van (i.e. the number of records that were truly reefers but classi-

fied as enclosed vans is high).  In the simplest possible interpretation, this approach allows 

the best model to be used for each class.   Without this approach, there is no way to prede-

termine which base classifier should be applied to an unknown vehicle.    
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Figure 5.16 Summary of Model Accuracy for Naïve Bayes Combination and Majority Vote 

MCS Methods for WIM-Signature Models 

 

 

 

5.4 Sensitivity Analysis 

5.4.1 Spatial Transferability 
 

Spatial transferability analysis was performed for the FHWA class 9 semi-tractor 

trailer body class model since this model possess the widest array of body classes and spa-

tial differences in body class distributions were observed to be particularly significant for 
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this class of trucks.  To assess the spatial transferability of the model, the data from the Ir-

vine data collection site was held out from model training, and then the trained MCS with 

NBC method was applied to the data collected from the Irvine site.   

Table 5.26 displays the CCR and APE in volume for the Irvine data.  The CCR of the 

Irvine data consisting of 589 samples was 64.3% overall and 55.6% for the minority clas-

ses.  The precision ranges from around 40% to 100%.  It should be noted that several body 

classes reported as 0.0% precision had only one misclassification, i.e. only one vehicle was 

predicted as that vehicle class.  Logging and livestock trailers had 100% precision meaning 

that neither of these vehicle types were predicted at the Irvine site.  The MAPE in volume 

was 30.4% and 41.3% for the overall and minority classes, respectively.  The highest error 

arises from 53ft containers which had very low CCR.   

In all, lower performance resulted from leaving the Irvine data out from the model 

training, however, this was to be expected because each of the four sites possessed widely 

different body class distributions.  Thus, leaving any site out of the training would mean 

excluding unique samples from the data.  For the most accurate model, data from the Irvine 

site and potentially other sites around the state should be included to fully encompass the 

diversity of vehicle types.   
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Table 5.26 Spatial Transferability Analysis Cross Classification Table for Irvine Data 
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Enclosed Van 180 16 5 0 0 0 24 1 4 0 0 1 0 0 0 0 231 180 77.9 

Reefer 39 53 0 0 0 0 11 0 0 0 0 0 1 0 0 0 104 53 51.0 

53ft Container 33 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 44 11 25.0 

40ft Container 0 0 0 4 0 0 3 0 3 0 0 0 0 0 0 0 10 4 40.0 

40ft Reefer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

20ft Container 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Platform 4 1 0 3 1 0 45 3 1 1 0 2 0 0 0 1 62 45 72.6 

Tank 0 0 0 2 0 1 7 8 0 0 1 0 0 0 0 0 19 8 42.1 

Open Top Van 6 2 0 0 0 0 23 0 25 0 0 0 0 0 0 0 56 25 44.6 

Auto Transport 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 11 10 90.9 

Low Boy Platform 0 0 0 0 0 0 1 0 0 0 24 2 0 0 0 0 27 24 88.9 

Drop Frame Van 0 0 0 0 0 0 0 0 0 1 0 9 0 0 0 0 10 9 90.0 

Dump 0 0 0 1 0 0 0 4 0 0 0 0 10 0 0 0 15 10 66.7 

Logging 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Livestock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Agricultural Van 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Total 262 72 16 10 1 1 114 16 33 12 26 14 11 0 0 1 589 379 64.3 

Correct 180 53 11 4 0 0 45 8 25 10 24 9 10 0 0 0 
   

Precision (%) 68.7 73.6 68.8 40.0 0.0 0.0 39.5 50.0 75.8 83.3 92.3 64.3 90.9 100 100 0.0 
   

Volume APE (%) 13.4 30.7 63.6 0.0 - - 83.8 15.8 41.1 9.1 3.7 40.0 26.7 0.0 0.0 -    
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5.4.2 Multiple Classifier System Diversity 
 

Diversity among base classifiers is an important consideration in developing a mul-

tiple classifier system and should be evaluated as part of the ensemble design.  While there 

are many methods to assess classifier diversity, Kuncheva and Whitaker (2003) suggest 

using the pairwise Q-statistic (Yule, 1900) averaged over all possible pairs of classifiers in 

an ensemble due to its ease of calculation and interpretation.  For each classifier Di the out-

put can be represented by an N dimensional binary vector yI = [y1,i…yN,i] which that y = 1 if 

Di correctly classifies record n and 0 otherwise.  The pairwise Q-statistic is calculated for a 

pair of classifiers Di and Dk as follows:  

��,� = #��#vv −#v�#�v#��#vv +#v�#�v		 
 

 

where Nab is the number of records for which yj,i = a and yj,k = b.  

If classifiers are independent then Q is zero.  Q ranges from -1 to 1 such that classifi-

ers which recognize the same objects correctly will have a positive Q statistic and classifi-

ers who produce errors on different objects will result in a negative Q statistic.  An ensem-

ble with low Qav is said to have greater diversity than an ensemble with higher Qav.  For a 

set of base classifiers, the average Q statistic for the ensemble is the average overall all 

pairwise Q statistics and is formulated as follows: 

�[} 	 2�	�� − 1�� � ��,�
�

�����

�O�

���
																													 

 
 

where L = number of base classifiers in the ensemble. 
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An analysis of classifier diversity was carried out to ensure that the set of five base 

classifiers used in the MCS (MLFF, SVM, CPNN, DT, and NB) provided the highest level of 

accuracy.  The 5,603 test samples from the FHWA Class 9 trailer body classification model 

were used for diversity analysis.    

All possible pairwise Q statistics were calculated for classifier ensembles ranging in 

size from two to five base classifiers.  The pairwise Q statistics were then averaged to ob-

tain Qav for each ensemble combination.  There were five possible combinations of base 

classifiers for an ensemble of four classifiers (e.g. MLFF-SVM-CPNN-NB, MLFF-SVM-CPNN-

DT, MLFF-SVM-DT-NB, etc.), 10 combinations for an ensemble of three classifiers, and 10 

pairwise combinations representing two classifier ensembles.  The Qav statistic for each of 

the 25 combinations and the MCS with all five base classifiers is shown in Figure 5.17. 

The combination of five base classifiers (MLFF-SVM-CPNN-DT-NB) had Qav of 0.585.  

Paired classifiers exhibiting the most diversity (i.e. lowest Qav) included SVM-CPNN and 

MLFF-CPNN.  Several three and four classifier combinations exhibited higher diversity than 

the five classifier combination.   

Kuncheva and Whitaker (2003) note that although diversity is an important aspect 

to consider when developing a MCS it is not the only predictor of an ensemble’s accuracy.   

Therefore, the classification accuracy was compared across all ensemble combinations us-

ing the NBC model combination approach. Figure 5.18 depicts the overall and minority 

class CCR for each of the 26 ensemble combinations.  The size of the point is based on Qav 

such that larger circles represent lower values of Qav (i.e. higher diversity).  The ensemble 

with five base classifiers achieves moderate diversity while maintaining the highest overall 
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CCR and third highest minority class CCR.   In summary, the set of five base classifiers 

achieves an appropriate balance among diversity measures, overall CCR, and minority CCR.   

 

Figure 5.17 Diversity Statistic (Qav) for Various Ensemble Combinations 
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Figure 5.18 Classifier Diversity by Overall CCR and Minority Class CCR for Base 

Classifier Combinations 

 

5.5 Conclusions 
 

The three models represent increasing levels of detail in the input data and output 

classification resolution.  Beginning with WIM data only, the body type of the tractor and 

trailer units of five axle semi-tractor trailers (FHWA class 9) was estimated at the aggregate 

volume level.  The models accurately predicted individual classification of two tractor body 

types and volumes of five trailer body class groups including vans, tanks, platforms, con-

tainers, and others.  Increasing the input data resolution to incorporate inductive signa-

tures, four body class models were developed distinguishing 47 body classes, 22 of which 

had classification accuracy of over 70% and 19 of which had volume error less than 10%.  

Although the inductive signature model separated vehicles into broad axle configuration 

categories, inductive signatures alone are not the ideal mechanism for distinguishing exact 

axle configurations.   Thus, the next model combined inductive signature and WIM data to 
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distinguish 63 body classes with eight separate body class models- one for each axle con-

figuration class defined by the FHWA scheme.  This model represents the highest level of 

input resolution as it includes axle spacing measures, length, and in some cases axle 

weights along with inductive signature features.   The output resolution is also at the high-

est among the three models because not only does the model predict body class for each 

vehicle but each vehicle record also consists of a measured weight and axle configuration.   

The MCS approach was superior to any of the five base classifiers when comparing the 

CCR for each body class.  While many of the base classifiers produced more accurate classi-

fications for some classes, no single base classifier was capable of producing accurate clas-

sifications across all classes.  The MCS approach with NBC combination efficiently and ef-

fectively combined the five base classifier predictions by considering the performance of 

the base classifiers on an independent validation dataset.  In this way, the MCS with NBC 

was able to produce classification accuracy for each class in some cases exceeding the clas-

sification accuracy of even the best base classifier.  Compared to the MV method of model 

combining, the NBC method achieved the same or better classification accuracy across all 

body classes than the MV approach.   

Spatial transferability analysis was performed on the model by removing data from the 

Irvine site from model development and then testing the trained model on that site.  Alt-

hough the overall classification rate was lower than desirable due to cross classification be-

tween enclosed vans, reefer vans, and 53ft containers, the model correctly predicted sever-

al unique classes including auto transport, low boy platform, drop frame van, and dump 

trailers.  The model accurately depicted the low to non-existent volume of commodity spe-

cific body classes including logging, livestock, agricultural, and 40ft reefer containers.   
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From the spatial testing it is clear that inclusion of a variety of site data is crucial for devel-

oping an accurate model.  The four sites selected for data collection each possessed a 

unique array of body classes and were selected based on this diversity, thus leaving any out 

of model development would result in less than superior performance.  Ideally, as demon-

strated by the spatial transferability analysis data other sites around the state should be 

incorporated into the model for more accurate classification. 

A comparison of the MCS with five base classifiers (MLFF, SVM, CPNN, NB, and DT) to 

all other possible combinations of varied ensemble size was carried out to demonstrate the 

superiority of the chosen set of five base classifiers.  The Q-statistic suggested by Kuncheva 

and Whitaker (2003) was used to assess the diversity of each of the 26 ensemble combina-

tions.  While the MCS with five classifiers did not possess the highest diversity, it did 

achieve the highest overall CCR and third highest minority class CCR.   This evidence sup-

ports the conclusion that the five base classifiers used in the MCS for all body classification 

models developed in this dissertation represents the best possible combination.  

Further improvements can be made through alternate signature preprocessing meth-

ods, further refinement of the body classification scheme within each class, collecting addi-

tional data at specific sites within the State and adapting model combining techniques.  In 

terms of model combining, a threshold on the value of support estimated for each class un-

der NBC could be applied to improve performance.   Estimated probabilities falling below 

the threshold could be marked as ‘unclassified’.   This would introduce a tradeoff between 

prediction accuracy and the total number of classified records but could be beneficial for 

applications such as commercial vehicle enforcement, where extremely high accuracy is 

required.   
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6 Applications 

Three applications of truck body class data are presented in this section including a 

time of day analysis, average payload estimation, and gross vehicle weight interpolation.   

The applications highlight specific contributions of this work and suggest ways in which 

State or Federal agencies might use the integrated data source and resulting models for 

policy analysis, travel forecasting, and operations.  

6.1 Time of Day Analysis 

Freight flows are commonly expressed as annual flows while policy decisions (e.g. 

capacity expansion or design of facilities) are based on daily or hourly flows (NCFRP, 

2010).  This discrepancy means that annual freight flows should be converted to decision 

level flows using a simplifying conversion assuming between 295 (about 85% of the work-

ing days per year) and 310 working days per year (NCFRP, 2010).   By tying together body 

type with commodity carried, we can determine commodity flows at the hourly, daily, and 

seasonal aggregation levels to better account for temporal distribution of commodity flows.   

For emissions modeling, time of day truck count estimates such as what could be provided 

by implementing the ILD signature based classification model at a VDS site are critically 

important due to diurnal and seasonal air quality impacts of trucks.  Furthermore, tempo-

rally continuous truck body classification data at either VDS or WIM sites can allow deci-

sion makers to evaluate policies such as time of day shifts targeted toward specific indus-

tries such as intermodal shipping since body class can be reasonably tied to certain indus-

tries.   The current best method to obtain body class data, e.g. VIUS, falls short of accom-
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plishing either of the outlined goals.   VIUS does not provide any information on link/route 

or temporal patterns.  Rather, only static proportions of body class can be inferred on the 

national scale.   The next best approach would be to collect site specific classification data 

through direct observation, although this would be extremely labor intensive and any data 

collected would have a short lifespan due to seasonal and long term changes in body class 

proportions.    

Using the integrated system we can estimate truck body class for each and every ve-

hicle to produce temporally continuous estimates of body class.   To demonstrate, body 

class volumes estimated from the WIM-Signature body class model are compared (Figure 

6.1) against the directly observed volumes from the same time period in which the model 

was applied (November 7th, 2012) and static proportions gathered from the next day’s ob-

servations (November 8th, 2012) for a select set of body classes within FHWA class 9 at the 

Fresno data collection site from 11:00AM to 4:30PM.   The predictive model is able to 

match the volume and track the pattern of each body class more closely than the static 

based approach.    

Likewise, data from the predictive model, observed, and static proportions are shown 

in Figure 6.2 for select body classes in FHWA class 5 (single unit trucks) for the Irvine site 

on October 2nd, 2012.   For freight modeling it is important to separate freight (e.g. conven-

tional truck) and non-freight (e.g. tow truck and light van/RV) vehicle movements which 

the WIM-signature model effectively achieved by matching the observed volumes and fol-

lowing the observed pattern more closely than the static proportions.      
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Figure 6.1 Time of Day Plot for Select Body Classes in FHWA Class 9 for Fresno 

 

 

 

Figure 6.2 Time of Day Plot for Select Body Classes in FHWA Class 5 for Irvine 
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6.2 Average Payload Estimation 

Determination of average payloads are a particularly useful application of the body 

class models developed with WIM and ILD signature data.  Average payload refers to the 

weight of the commodity carried by a truck and is calculated by subtracting the unloaded 

weight of the truck from the loaded weight.  Average payloads are typically computed for 

each State by body class and commodity group.    For example, the Freight Analysis Frame-

work (FAF) computes average payloads for nine body classes within the five axle semi-

tractor trailer axle configuration group, and for 51 commodity groups.  

Several different types of freight models exist ranging from simple truck flow factor-

ing methods to more complex models based on economic, lane use, and transportation in-

teractions (Chow et al., 2010).  Commodity based freight forecasting models such as the 

California Statewide Freight Forecasting Model (CSFFM) first predicts the flow of commodi-

ties (in tons) across the State’s freight analysis zones and subsequently converts commodi-

ty flows to truck trips using payload estimates.  After assigning the predicted truck volumes 

to the highway network, the model is validated against WIM truck count data.  Thus, pay-

loads estimated from observed data would be useful as would truck count data by body 

type at both WIM and VDS stations.  Beyond California, in developing a nationally recom-

mended architecture for freight model development, the National Cooperative Freight Re-

search Panel (NCFRP) highlighted two stages at which truck body class data could supple-

ment modeling efforts:  Estimation of payload and temporal factors and generation of ser-

vice/non-freight trucks.  NCFRP Report 8 (2010) also suggested that more detailed vehicle 

classification can assist in determining more general research areas such as truck trip 

chaining and distance based classification.    
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Commodity based freight forecasting models use surveys such as VIUS to develop fac-

tors to convert commodity tons to truck volumes (NCHRP, 2008).   However, when com-

pared to WIM data contained in the Vehicle Travel Information System (VTRIS), VIUS de-

rived estimates of average payload and empty weights are often much higher than those 

recorded in VTRIS (Alam and Rajamanickam, 2007).  Alam and Rajamanickam (2007) re-

port this discrepancy across all 50 states, body classes, weight classes, and axle configura-

tions.  Unfortunately, because WIM data is limited to axle based class resolution compari-

sons to VIUS estimates can only be undertaken at a very aggregate level, e.g. for all FHWA 

class 9 trucks rather than by body type.  VIUS derived data are prone to some error as re-

spondents are asked to report their average empty weight, truck body type, and commodi-

ty transported over the course of an entire year.  Deriving average payloads by commodity 

and body type can be somewhat erroneous as a result since a trucker can report combina-

tions of commodity and body type that are inconsistent.  For example, the payload equiva-

lency factors derived from VIUS which are used by FAF provide a conversion for tons of 

‘live animals and live fish’ to a platform trucks (Battelle, 2007).   Furthermore, VIUS does 

not provide intermodal container truck information, and thus cannot be used to determine 

average payloads for container traffic.  In FAF, where average payloads are used to deter-

mine payload equivalency factors by vehicle body type, the source of discrepancy between 

average payloads in observed WIM data and reported VIUS data are attributed to misclassi-

fications of smaller, non-freight-related trucks into freight truck axle categories (FAF, 

2012).  For example, the FHWA Class 9 five axle truck category may contain three axle 

pickup trucks pulling larger two axle trailers which are not freight-related and due to their 
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lower weight, skew the gross vehicle weight distribution of FHWA Class 9 trucks.  In FAF, 

no adjustments are undertaken to account for the noted discrepancy. 

 Since truck body type is a general indication of the type of commodity transported, it 

could be used to derive average payloads.  For instance, truck body types for trucks in 

FHWA class 9 (five axle semi-tractor trailers) such as logging, open top vans, hoppers, agri-

cultural vans, specific tank types, cement/concrete, and refrigerated vans or containers 

tend to transport specific commodities.   From the proposed integrated system body type 

can be predicted and truck weight is measured.   Examples of such an application are 

demonstrated in this section for FHWA class 9 and 11/12 semi-tractor trailer combination 

trucks.  

First, in order to determine the empty truck weight by body type, the gross vehicle 

weight (GVW) distribution is modeled as a Gaussian Mixture Model (GMM) of two or three 

components.  A GMM is a linear composition of individual Gaussian distributions combined 

via a mixing parameter as follows (Hastie et al., 2009).   

)��� 	 	 � 	LI ∙ ���; �I, ΣI�
�

I��
 

 

where  

m = number of mixture components 

 �(�I, ΣI) = Gaussian distribution with mean μ and covariance matrix Σ 

p� is the mixing proportion 

With three components (Figure 6.3(a)), the first component is assumed to represent 

the empty trucks, the second represents partially loaded trucks, and the third component 

represents the fully loaded trucks.   For mixtures of two components (Figure 6.3(b)), the 
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first component represents the distribution of empty weight while the second represents 

the distribution of loaded weight.   Trucks of certain body classes tend to follow either tri-

modal or bimodal GVW distributions.   For example, tank trailers travel either fully loaded 

or empty for safety purposes related to the movement of liquids under partially loaded 

conditions.  

The average payload is measured by subtracting the mean weight of the empty trucks 

from the mean weight of the loaded trucks.  This follows the methodology used in VIUS and 

VTRIS for estimating average payloads.   Thus, for the observed body class GVW data mix-

tures of only two components were calculated.   In this case, the mean weight of the loaded 

trucks represents both the partially and fully loaded trucks.   The average payload was then 

calculated from the observed data by subtracting the mean of the empty trucks from the 

mean of the partial and loaded trucks combined.  

 

  

(a) Three component GMM (b) Two component GMM 

Figure 6.3 Examples of GMM for Van and Open Top Van Trailers 
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 FAF estimates of the average payload by body type at the national level were 

compared against estimated payload factors from the groundtruthed data across all four 

data collection sites in California for the following body class groups: 

1. Vans (basic enclosed, drop frame, insulated non-refrigerated, curtainside, beverage) 

2. Platform (flatbed, lowboy, stake, and platform) 

3. Bulk (dump, open top van, hopper) 

4. Reefer 

5. Logging 

Estimated average payloads from the integrated WIM-Signature system were systematical-

ly lower than the VIUS estimates as shown in Figure 6.4 perhaps due to higher weight regu-

lations allowed in many states whereas California has an 80,000lb weight limit.   This high-

lights the fact that using nationally derived payloads might not be appropriate for state lev-

el analysis.  A major contribution of the body class data derived from the integrated data 

source can provide more spatially disaggregate average payload estimates. 

 A second comparison of average payloads is made for body types that correspond to 

specific commodity groups.  For example, agricultural vans are assumed to carry ‘all other 

agricultural products’ commodities and open top vans are assumed to carry ‘all other waste 

and scrap’.  Note that average payloads of containers are reported in VIUS only for the 

commodity labeled ‘empty shipping containers’.  For this commodity/body type combina-

tion, only the average weight of the unloaded (left most GMM distribution) was used.  

Again, the payloads estimated from VIUS tend to be higher than those from the integrated 

system for the same hypothesized reasons. 
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Figure 6.4 Average Payloads by VIUS Body Class estimated from VIUS and the Integrated 

WIM-Signature System 

 

 

Figure 6.5 Average Payloads by VIUS Commodity estimated from VIUS and the 

Integrated WIM-Signature System 
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6.3 Gross Vehicle Weight Interpolation 

 

Truck weight data is key for pavement management, emissions estimation, and freight 

modeling but is not widely collected since it requires WIM or static scales.  VDS, even those 

equipped to collect ILD signatures, do not measure weight nor do GPS based tracking 

methods.  However, if weight measurements can be obtained at VDS then truck weight data 

will be available at more than just the sparse WIM locations thus providing valuable data 

for the abovementioned applications.   The objective of this section is to estimate gross ve-

hicle weight (GVW) distributions at loop detector stations using a combination of body 

class volume and spatial relationships between VDS and WIM detectors.    

6.3.1 Methods 

The overarching premise to this analysis is that GVW distributions can be modeled as 

GMM as shown in Section 6.2.   Each site is assumed to possess a GVW distribution follow-

ing a GMM comprised of three components represented by three means, three variances, 

and three mixing proportions as follows: 

)��� 	 	L� ∙ ���; ��, Σ�� +	L� ∙ ���; ��, Σ�� +	Lu ∙ ���; �u, Σu� 
 

where  

 �(�I, ΣI) = Gaussian distribution with mean μ and covariance matrix Σ 

p� is the mixing proportion 

To estimate a GMM at a new site, nine parameters (LI, �I, ΣI) need to be determined.  

To determine these parameters, two approaches are suggested.   

First, each body class exhibits a uniquely shaped GVW distribution such that the overall 

GVW at a site is a mixture of the GVW distributions for each body class at that site.  This 
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means that the overall GVW distribution at a site is the volume weighted combination of 

each body classes’ individual GVW distribution.  To demonstrate, each of the five body class 

groups shown in Figure 6.6 consists of a three component mixture model that have been 

combined via a GMM of 5 by 3 (i.e. 15) components weighted by their corresponding vol-

ume to produce the overall GVW distribution shown in the bottom right of the figure.  

Moreover, certain body classes such as tanks and platforms exhibit unique GVW patterns. 

For example, tanks travel either loaded or empty for safety purposes resulting in GVW dis-

tributions with two clear peaks.   Under these principles, a regression model was developed 

to relate body class volumes at each site to the GMM parameters (LI, �I, ΣI) for m = 1:3.  

Nine regression models were estimated, one for each dependent variable (i.e. each GMM 

parameter) using the volumes of vans, tanks, platforms, container, and ‘other’ trailer body 

class volumes as independent variables.  The linear regression model takes the following 

form: 

LI 		�I,v +��I,3D3
%

3��
 

�I 		�I,v +��I,3D3
%

3��
 

ΣI 		�I,v +��I,3D3
%

3��
 

where m = the mth GMM component (m = 1…3) 

 �I,v = constant 

�I,3 = regression coefficient for mth GMM component for body class b 

D3 = body class volumes for body class b 
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To produce a GVW distribution, the estimated component parameters would be com-

bined in a final mixture as follows: 

)
��� 	 	 � LI ∙ ���; �I, ΣI�
u

I��
 

 

where   

 �(�I, ΣI) = the mth Gaussian distribution for site i with mean μ and covariance matrix Σ 

LI = mixing proportion 

 

To apply the model, body class volumes at a VDS site would be estimated via the ILD 

signature classification model and used to predict each of the nine mixture model compo-

nents.  This model assumes a linear relationship between body class volume and GMM pa-

rameters and also assumes a static relationship between body class volume and GMM pa-

rameters across space.  The latter is a simplifying assumption to be accounted for by the 

second approach. 
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Figure 6.6 Example of GVW distribution by Body Class Group Contributing to Overall 

Site GVW Distribution 

 

Second, GVW distributions are related spatially such that sensors along the same route 

in the same direction within the same region see similar GVW distribution patterns.  Figure 

6.7 shows a small subsample of GVW distributions for FHWA class 9 trucks at four WIM 

sites in Northern California in the southbound direction along I-5 and SR-97.  Each of the 

sites has a significant volume of loaded trucks.  This is due to shared trips along common 

routes and commodity flow patterns within a region.  Given a reasonable assumption about 

spatial relationships between sites, a GMM can be estimated at a VDS by combining the 

GMMs at each of the sites that are spatially related to the VDS site using the assumed spa-

tial distances as weights in the mixture model.  Thus, for site j, the GMM components �	and 

Σ can be estimated as follows: 
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)
��� 	 	�� ��,
 ∙ ���; ��,�, Σ�,��
u

I��

A

���
 

 

where   

N = number of neighboring sites, i = 1…N 

 �(�I,�, ΣI,�) = the mth Gaussian distribution for site i with mean μ and covariance matrix Σ 

��,
 = spatial distances between sites i and j used as a mixing proportion 

 

 

 

Figure 6.7 GVW Distributions along Southbound I-5 and SR-97 in Northern California 
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A common method to assess spatial relationships is to use coordinate locations, how-

ever this fails for directional data where sites of opposite directions share the same coordi-

nate but tend to have very different GVW distributions.  For example, at the port of Long 

Beach, most incoming container traffic in the westbound direction is heavily loaded while 

the outgoing container traffic in the eastbound direction is empty.   Using route based dis-

tances would also not account for bi-directional sites, nor would it accurately capture the 

spatial relationship for trucks.  For example, I-5 and SR-99 are parallel routes in the central 

valley and sites located at Willows along I-5 and Chico along SR-99 are only 90 miles apart 

by highway routes but would never reasonably see the same trucks and therefore might 

not have the same GVW weight distribution patterns.    

In order to derive reasonable spatial relationships between sites, GPS data from the 

American Trucking Research Institute (ATRI) was used to assess the number of shared 

trips between sites.  The sampling period and sampling frame of the ATRI GPS data are lim-

ited.  The samples were obtained from four two-week periods from the month of February, 

May, August and November in 2010, and were limited to trucks that subscribe to the pro-

gram.  Trucks in ATRI tend to travel long distance, hence, there might be bias in the spatial 

patterns learned from the ATRI data.  Still, ATRI GPS data can be used to evaluate the num-

ber of shared trips between WIM and VDS sites.   

6.3.2 Data 

A spatially diverse set of WIM sites with GVW data was needed to model the proposed 

two solutions described above.  The data collected for body classification modelling con-

sisted of only four sites spread across California and was therefore not dense enough to use 

to estimate a reasonable model.   Instead, archived WIM data from 2010 was used.  Since 
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WIM data contains GVW, axle spacing, and vehicle length measures but not body class, the 

WIM-only body class volume model (Section 5.1) was applied to estimate body class vol-

umes of FHWA class 9 trucks.   In summary, GMM parameters (LI, �I, ΣI) representing the 

GVW distribution and body class volumes (vans, platforms, tanks, containers, other) were 

estimated for all 114 sites included in the archived WIM data for the year 2010.    

The time aggregation level was determined by examining the time of day (off peak, AM 

peak, midday, and PM peak), day of week (Monday through Friday), and seasonal (fall, 

spring, summer, winter) changes in GVW distribution parameters.  For exposition purpos-

es, the models were developed for data disaggregated to the midday (10am to 2PM) time 

period on Wednesdays in the Fall season.    

Finally, WIM system measurements can contain systematic measurement error due to 

sensor calibration issues.  Although there are sophisticated methods (Jeng et al., 2015) by 

which to assess calibration issues, a simple approach of normalizing each vehicles GVW 

measurement by the weight of the steering axle was employed for this analysis.  The steer-

ing axle has a relatively static weight across locations and body types so it can be used as a 

reference for calibration error.   All GVWs displayed in the following tables and figures ref-

erence the normalized GVW.  

ATRI GPS pings converted to truck trip trajectories have poor resolution due to the 15 

minutes between consecutive pings.  As a result, truck trip trajectories (shown as green 

lines in Figure 6.8) could not be directly “snapped” to the road network and linked to WIM 

sites to derive the spatial weight matrix.  Instead, screenlines were manually drawn at each 

of the sites for each direction to capture the truck trip trajectories passing through a site.  

After placing screenlines, the number of truck trip trajectories that passed through each 
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pair of WIM sites were counted and converted into a directional spatial weight matrix (a 

sub-sample shown in Table 6.1) with cells(i,j) representing the number of shared trips 

from WIM site i to WIM site j.  Figure 6.9 shows an example of the resulting spatial relation-

ships arising from the screenline capture approach for the northbound Lodi WIM site lo-

cated along I-5 in the Sacramento area.   The site with the most shared trips is WIM site 

number 105 with 969 shared trips.   

 

 

Figure 6.8 ATRI Truck Trip Trajectories 
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Table 6.1 Directional Spatial Weight Matrix from GPS Truck Trip Trajectories 

Row Labels 1_N 1_S 10_N 10_S 100_S 101_N 102_N 102_S 103_S

1_N 0 70 0 0 0 135 0

1_S 0 0 64 0 0 0 128

10_N 70 0 0 0 0 1611 0

10_S 0 64 0 0 0 0 1506

100_S 0 0 0 0 0 0 0

101_N 0 0 0 0 0 0 0

102_N 135 0 1611 0 0 0 0

102_S 0 128 0 1506 0 0 0

103_S 0 0 0 0 0 0 0 0
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Figure 6.9 Shared Truck Trip Trajectories with the Lodi Northbound WIM Site as an 

origin 
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6.3.3 Results 

 

The Kolmogorov-Smirnov (KS) test was used to assess the fit of the GVW distributions 

resulting from the regression and spatial weight based methods.  The null hypothesis was 

that the estimated distribution is from the same continuous distribution as the observed 

GVW data.  The alternative hypothesis was that the estimated distribution is from a differ-

ent continuous distribution than the observed GVW data.   Testing was performed by hold-

ing out one site from model development (i.e. estimation of the regression coefficients) and 

then applying estimated model to the data from the held out site.   This process was repeat-

ed for all 112 of the sites in the dataset.  Two sites were identified as outliers based on their 

observed GVW mean and variance, leaving 110 viable samples for modeling.  In total, 93 

stations had shared truck trajectories from which a GMM based on spatial weights could be 

estimated.  For the regression based approach, 65.2% of the sites failed to reject the null 

hypothesis (α = 0.05).  This means that for 72 of the 110 sites their estimated GVW distri-

butions matched their observed GVW distribution.   For the spatial weight based approach, 

67.7% of the sites failed to reject the null hypothesis (α = 0.05) meaning that for 63 of the 

93 sites the estimated GVW distribution matched the observed distribution.   

Lastly, the regression and spatial weight based models were combined to produce a fi-

nal GMM model for each site by weighting each of the models equally.  For the combined 

model approach, 65.2% of the sites failed to reject the null hypothesis.  Detailed results 

show that for some cases, where both the regression and spatial weight models failed to 

match the observed data, the combined model provided a suitable match. 

Results for a sample of directional GVW distributions are shown in Figure 6.10 for WIM 

sites 10 north and southbound along I-5 in Fresno in central California and sites 22 east 
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and westbound along I-8 near the southern California- Mexico border.   The observed GVW 

distributions at each of these sites are quite different however for all except the regression 

model at the 22W site, the models produced statistically significant matches to the ob-

served data. 

 

 

Figure 6.10 Spatial Interpolation of GVW Distributions Results 

 

6.3.4 Conclusions  

The spatial interpolation of GVW distributions is an example of the type of analysis that 

can be performed with knowledge of weight data.  The results indicate that by combining 

GMM from spatial weights GMM from regression 

GMM from combined Observed 
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body class volume estimates and incorporating spatial relationships between WIM sites, 

GVW distributions can be estimated with relative accuracy.   This application serves as a 

baseline for what can be accomplished in regards to weight interpolation.   

Several key areas for improvement should be undertaken in future studies.  First, a 

more advanced normalization approach should be applied to the GVW data at each site pri-

or to determining GMM parameters.   Second, an obvious improvement will arise by pre-

dicting body class volumes based on ILD signature data rather than WIM data alone.  With 

more accurate classification data, more accurate GVW distributions should be possible.   

Also, with the WIM-Signature based body classification method, GVW distributions can be 

stratified by body class, so that the spatial weight combination method can pull from the 

stratified GVW distributions rather than the overall distribution.   Third, rather than using a 

global regression model, spatially based regression approaches could be evaluated.   
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7 Closing Remarks 

7.1 Contributions 

 

The method presented in this dissertation to integrate WIM and ILD signature tech-

nologies and the resulting models developed to predict detailed truck body class will 

uniquely fill the existing gaps in freight and air quality monitoring data sources by provid-

ing complete, temporally continuous, and spatially diverse truck characters data along ma-

jor truck corridors.  In this work, two methods were introduced to overcome the limita-

tions of previous ILD signature based vehicle classification studies.  First, a Multiple Classi-

fier System (MCS) approach which combined the predictions of five independent classifiers 

including a multilayer feed forward neural network, a probabilistic neural network, a sup-

port vector machine, a decision tree, and a naïve Bayes classifier combined using Naïve 

Bayes Combination (NBC) was used to improve classification generalization.  The MCS with 

NBC proved to be more accurate than any single classifier used in the ensemble and in 

some cases exceeded the accuracy of even the best classifier in the ensemble.   Second, to 

account for class imbalance during model development the Synthetic Minority Over-

sampling Technique (SMOTE) algorithm which generates additional samples of minority 

class feature sets was used to induce higher classification accuracy for minority classes.  

Through the SMOTE algorithm body classes with low sample counts realized increased 

classification accuracy as high as 43% while only diminishing the performance of the ma-

jority class by at most 4%.  Comparisons to previous classification models using ILD signa-

ture are difficult to make due to the low number of commercial vehicle samples used in 

previous efforts, however, the number of body classes depicted in this dissertation far ex-
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ceed any found in existing research.  In regards to this point, previous vehicle classification 

problems suffered from a lack of a comprehensive set of commercial vehicle data.  In this 

dissertation, models were developed from around 33,000 commercial vehicle records rep-

resenting over 60 body classes.  The data itself is a valuable asset for truck characteristics 

analysis as it contains a very diverse array of body types, time periods, and locations.  

Even though state transportation planning and air quality monitoring agencies would 

benefit most from the work described in this dissertation as shown in the Applications sec-

tion (Chapter 6), there are many additional applications and potential uses.  The table be-

low outlines the major expected contributions of the proposed work.  

 

Table 7.1 Summary of Contributions by Application Area 

Application  Potential Use 

Freight  

Modeling 
• Payload factors that are typically estimated from VIUS can be supplemented, replaced, 

and/or corrected with observed truck body type volumes. 

• The ability to distinguish freight from non-freight trucks, the percentage of empty 

movements, and long and short haul trucks can be used for validation of freight fore-

casting models. 

• Seasonal and hourly traffic by truck body and commodity type can be used to convert 

annual flows to daily flows at the commodity and industry level. 

Emissions  

Estimation 
• Body class data can contribute to the development of more detailed emissions models 

which currently rely on broad weight or axle categories to estimate vehicle emissions.  

• Agencies can design policies and programs to reduce emissions that are aimed at spe-

cific industries that produce those commodities.  

Operations 

and Man-

agement 

• Infrastructure Management: The spatial weight interpolation method would allow for 

weight information to be available at a wider spatial and temporal range of state high-

ways.  This could allow for better monitoring of pavement damage. 

• Safety: The types of crashes by body type could be important since body type may be a 

predictor of accident severity and delay time.  For instance, a tanker involved accident 

may cause more damage, be more dangerous, and cause more delay, then say an in-

termodal container involved accident since a tanker is more likely to be carrying fuel or 

other corrosive liquid.  

• Calibration: WIM stations can be evaluated for systematic measurement errors by con-

sidering truck body type and how body type relates to the occurrence of calibration er-

rors 
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7.2 Future Work 

 

While the work in this dissertation can fill many of the exiting gaps identified for 

freight forecasting, emissions modeling, and infrastructure management, there are several 

paths for improvement as well as additional applications that can be investigated.  First, 

although the body classification scheme is very comprehensive it can be expanded by col-

lection of additional data in regions of the state that may possess vehicles of different body 

types.  This could improve the spatial transferability of the model and also provide addi-

tional data for body classes with low samples.  Second, the MCS with NBC method em-

ployed a simple set of five base classifiers but, as shown in the diversity analysis, classifica-

tion accuracy of the majority and minority classes benefited from incorporating an in-

creased number of classifiers.  Future work could investigate alternate sets of classifiers 

with increasing complexity of each base classifier as well as the architecture under which 

the base classifiers are designed.  For example, one could employ a gating model such as a 

neural network to fuse the outputs of the base classifiers in the ensemble.  Third, alternate 

feature sets and pre-processing methods could be developed to further improve classifica-

tion accuracy.  The methods in this dissertation relied on an interpolation approach to 

smooth signatures followed by extraction of inductive magnitudes and differences between 

interpolated magnitudes.  A method such as that proposed by Tok (2008) to smooth dis-

torted signatures prior to feature extraction could help with the spatial and temporal trans-

ferability under congested conditions.  Lastly, the fusion of data at the feature level was on-

ly carried out for FHWA class 9 tractor trailers by parsing the inductive signature into trac-

tor and trailer portions.  Future work can focus on more advanced fusion algorithms as 

well as develop alternate architectures for data fusion.  For example, the model could be 
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multi-tiered with different WIM and/or ILD signature feature sub-sets used at each tier, or 

if using the MCS approach, different feature sub-sets could be used in each base classifier.  

In terms of applications, the method outlined to spatially interpolate total vehicle 

weights at VDS from surrounding WIM data showed potential but suffered from lack of 

body class data.  If body class data resulting from the body class models developed in this 

dissertation are available at a large number of sites, spatial weight interpolation could be 

performed by body class rather than the aggregate level allowing for more detailed and po-

tentially more accurate total weight distributions.  Also, the spatial relationship matrix can 

be augmented by other types of vehicle tracking data.  Besides GPS records, vehicle re-

identification techniques using inductive signature and WIM data separately or in conjunc-

tion has the potential to produce truck OD patterns.  The OD patterns could then be used to 

spatially relate WIM and VDS sites.  

7.3 Conclusions 

 

By leveraging existing infrastructure, a novel, readily implementable approach to in-

tegrate two exceptionally complementary data collection devices, WIM systems and ad-

vanced ILDs, to produce high resolution truck data was developed in this dissertation.   For 

each vehicle traversing a WIM site, an ILD signature was collected along with WIM meas-

urements such as axle spacing and weight which were then used as inputs to a series of 

truck body classification models that encompass all truck classes in the axle-based FHWA 

classification scheme.   A MCS with NBC was adopted for classification while the SMOTE al-

gorithm was implemented for pre-processing model training data to account for class im-

balance.    



 

202 

 

Three families of classification models were developed showcasing increased levels of 

output class resolution at increased levels of input data resolution.   The WIM only model 

which uses only WIM variables as input can be used for historical body class volume analy-

sis given only historical WIM measurement data.  This would allow for freight model vali-

dation to backcast years.   A major benefit of the ILD signature model is that it is intended 

to be implemented at VDS sites thus converting simple traffic count stations into classifica-

tion stations.   As an application, a method to interpolate vehicle weight distributions at 

VDS sites based on surrounding WIM sites and body class characteristics was outlined to 

further demonstrate the potential of the ILD signature model.  Knowledge of weight distri-

bution at VDS sites is extremely useful for emissions modeling and pavement infrastructure 

planning and maintenance.   Finally, the most complex model, which integrated WIM meas-

urements and ILD signatures, was able to classify over 63 body types across the eight axle 

configuration groups.  The main benefit of this model is not only increased body classifica-

tion resolution, but the ability to associate each body class with axle and total vehicle 

weight measurements, which allows for better prediction of several freight model parame-

ters including average payload estimation by body class and for some commodities.    
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Appendix A1: WIM-Only Body Classification Model Results 
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Figure A-1 Adapted Decision Tree Model for WIM-Only Trailer Body Classification 
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Table A1-1 Results of the WIM-Only Trailer Body Classification Model for Fresno, 

Redding, and Willows 

Site Van Platform Tank 
40ft Con-

tainer 
Other 

Overall 

APE (%) 

Overall 
Actual Volume 2353 515 208 108 139 3323 

APE (%) 1.7% 5.4% 21.2% 31.5% 22.3% 5.3% 

Fresno 

Actual Volume 1131 286 160 61 72 
1710 

Estimated Volume 1151 294 131 47 87 

Difference 20 8 -29 -14 15 86 

APE (%) 1.8% 2.8% 18.1% 23.0% 20.8% 5.0% 

Redding 

Actual Volume 223 53 11 4 29 
320 

Estimated Volume 224 60 9 3 25 

Difference 1 7 -2 -1 -4 15 

APE (%) 0.4% 13.2% 18.2% 25.0% 13.8% 4.7% 

Willows 

Actual Volume 999 176 37 43 38 
1293 

Estimated Volume 980 189 50 24 50 

Difference -19 13 13 -19 12 76 

APE (%) 1.9% 7.4% 35.1% 44.2% 31.6% 5.9% 

 

 

 

Table A1-2 APE comparisons of observed site specific proportions and ADT approaches by 

Site and Body Group 

Site Van Platform Tank 
40ft Con-

tainer 
Other 

Overall APE 

(%) 

Overall 
Actual Volume 2353 515 208 108 139 3323 

APE (%) 4.8% 13.2% 14.9% 25.9% 27.3% 8.4% 

Fresno 

Actual Volume 1131 286 160 61 72 
1710 

Estimated Volume 1077 308 188 51 86 

Difference -54 22 28 -10 14 128 

APE (%) 4.8% 7.7% 17.5% 16.4% 19.4% 7.5% 

Redding 

Actual Volume 223 53 11 4 29 
320 

Estimated Volume 240 51 10 3 19 

Difference 17 -2 -1 -1 -10 31 

APE (%) 7.6% 3.8% 9.1% 25.0% 34.5% 9.7% 

Willows 

Actual Volume 999 176 37 43 38 
1293 

Estimated Volume 957 220 39 26 52 

Difference -42 44 2 -17 14 119 

APE (%) 4.2% 25.0% 5.4% 39.5% 36.8% 9.2% 
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Table A1-3 APE comparisons of VIUS proportions and ADT approaches by Site and Body 

Group 

Site Van Platform Tank 
40ft Con-

tainer 
Other 

Overall APE 

(%) 

Overall 
Actual Volume 2353 515 208 108 139 3323 

APE (%) 22.3% 54.8% 52.4% 100.0% 306.5% 43.6% 

Fresno 

Actual Volume 1131 286 160 61 72 
1710 

Estimated Volume 941 410 68 0 291 

Difference -190 124 -92 -61 219 686 

APE (%) 16.8% 43.4% 57.5% 100.0% 304.2% 40.1% 

Redding 

Actual Volume 223 53 11 4 29 
320 

Estimated Volume 176 77 13 0 54 

Difference -47 24 2 -4 25 102 

APE (%) 21.1% 45.3% 18.2% 100.0% 86.2% 31.9% 

Willows 

Actual Volume 999 176 37 43 38 
1293 

Estimated Volume 711 310 52 0 220 

Difference -288 134 15 -43 182 662 

APE (%) 28.8% 76.1% 40.5% 100.0% 478.9% 51.2% 
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Appendix A2: Inductive Signature Only Body Classification Model 

Results 
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Table A2-1 Inductive Signature Only Model Tier 3 Single Unit Truck with Trailer Cross Classification Table  
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SU small trailer 496 2 2 1 0 10 0 4 515 496 96.3 -0.4 

Tow Truck w/ towed vehicle 1 6 0 0 0 1 0 0 8 6 75.0 25.0 

Platform-Platform 1 0 13 3 3 0 0 0 20 13 65.0 15.0 

Dump-Dump 0 0 0 87 0 0 0 0 87 87 100.0 0.0 

Tank-Tank 0 0 7 0 23 0 0 0 30 23 76.7 -6.6 

RV w/ Towed Vehicle 4 3 0 0 0 42 0 0 49 42 85.7 -10.2 

Concrete w/Lift Axle 0 0 0 0 0 0 34 0 34 34 100.0 0.0 

Dump w/ Lift Axle 0 0 0 0 0 0 1 2 3 2 66.7 0.0 

Total 502 11 22 91 26 53 35 6 746 703 94.2 -0.6 

Correct 496 6 13 87 23 42 34 2  

Precision (%) 98.8 54.5 59.1 95.6 88.5 79.2 97.1 33.3 

Volume APE (%) 2.5 37.5 10.0 4.6 13.3 8.2 2.9 100.0 
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Table A2-2 Inductive Signature Only Model Tier 3 Multiple Semi Tractor Trailer Combination Trucks Cross Classification 

Table  
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Enclosed Van 235 10 0 0 0 0 8 253 235 92.9 2.0 

Platform/Tank 10 109 1 1 0 0 0 121 109 90.1 0.8 

Dump 0 3 114 0 8 0 1 126 114 90.5 5.6 

Pneumatic Tank 0 2 0 27 7 0 0 36 27 75.0 0.0 

Hopper 0 0 3 0 42 1 0 46 42 91.3 13.0 

Agricultural Van 0 0 0 0 0 2 0 2 2 100.0 0.0 

Low Chassis  3 0 0 0 0 0 17 20 17 85.0 -5.0 

Total 248 124 118 28 57 3 26 604 546 90.4 3.0 

Correct 235 109 114 27 42 2 17  

Precision (%) 94.8 87.9 96.6 96.4 73.7 66.7 65.4 

Volume APE (%) 2.0 2.5 6.3 22.2 23.9 50.0 30.0 
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Appendix A3: WIM-Signature Body Classification Model Result 

Table A3-1 FHWA class definition with body class unit modeled and number of body 

classes  

FHWA 

Class 
FHWA Class Description 

Number of 

Body Clas-

ses 

FHWA 4 2 or 3 axle Buses 4 

FHWA 5 2 axle, 6 tires (dual rear tires)  10 

2 axle with small trailer 5 

FHWA 6 3 axle 8 

FHWA 7 4 or more axles 4 

FHWA 8 3 or 4 axles 5 

FHWA 9 5 axles 16 

FHWA 10 6 or more axles 4 

FHWA 11 5 or less axles 
7 

FHWA 12 6 axles 

FHWA 13 7 or more axles - 

FHWA 14 5 axles  5 

 

Table A3-2 FHWA Class 4 Model Training Data 

Body Class Volume 

Van or Platform 33 

30ft Bus with tandem rear axle (30ft Bus Tandem) 19 

30ft Bus with single rear axle (30ft Bus Single) 9 

RV 2 

TOTAL 63 

 

Table A3-3 FHWA Class 4 Cross Classification Table 

Body Class 
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Van or Platform 24  2 0 26 24 92.3 3.8 

30ft Bus Tandem  10 1  11 10 90.9 -9.1 

30ft Bus Single 0  25 0 25 25 100.0 0.0 

RV 0  0 0 0 0 - - 

Total 24 10 28 0 62 59 95.2 0.2 

Correct 24 10 25 0 
 

 

Precision (%) 100.0 100.0 89.3 100.0 

Volume APE (%) 7.7 9.1 12.0 -   
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Table A3-4 FHWA Class 5 Trailer Axle Detection Model (Tier 2) Cross Classification 

Table 

Axle Group  No trailer Trailer Total Correct CCR (%) 

No trailer 913 3 916 913 99.7 

Trailer 4 27 31 27 87.1 

Total 917 30 947 940 99.3 

Correct 913 27 

 Precision (%) 99.6 90.0 

 

Table A3-5 FHWA Class 5 without Trailer Training Data 

Body Class  Volume Body Class Group 

Conventional Van (Conv. Van) 163 Conv. Van/Platform 

Cab Over Van 159 Cab Over Van/Platform 

Utility 131 Utility/Platform/Pickup 

Pickup 98 Utility/Platform/Pickup 

Light Van 87 Light Van/RV 

Cab Over Platform (Type 1) 74 Cab Over Van/Platform 

20ft Bus 65  

12 Pass Van 55  

30ft Bus 49  

Conventional Platform (Type 2) 45 Conv. Van/Platform 

Platform for Autos (Type 3) 44 Tow Truck/ Platform 

Pick-up type Platform (Type 0) 35 Utility/Platform/Pickup 

Multi-stop van 33 Cab Over Van/Platform 

Tow Truck 23 Tow Truck/ Platform 

Bobtail 22  

RV 22 Light Van/RV 

Wrecker 22 Utility/Platform/Pickup 

Crane/Winch 16 Utility/Platform/Pickup 

Dump 13 Other 

Tank 12 Other 

Garbage 4 Other 

TOTAL 1,172 10 Groups 
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Table A3-6 FHWA Class 6 Training Data 

Body Class Count Body Class Group 

Dump 25  

Dumpster Transport 33  

Garbage 39  

Concrete 14  

Platform 22 Platform/Van/Tank/Other 

Tank 10 Platform/Van/Tank/Other 

Van 3 Platform/Van/Tank/Other 

Crane/Winch 10 Platform/Van/Tank/Other 

Bobtail 48  

Wrecker 1 Platform/Van/Tank/Other 

30ft Bus 1  

Platform w/ Trailer 2 FHWA 6 w/ trailer 

Van w/Trailer 1 FHWA 6 w/ trailer 

Passenger Car 

w/Trailer 

5 FHWA 6 w/ trailer 

Crane/Winch w/Trailer 1 FHWA 6 w/ trailer 
TOTAL 215 8 Groups 

 

 

Table A3-7 FHWA 6 Cross Classification Table 
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Dumpster 75 0 8 4 7 1 0 0 95 75 78.9 -4.2 

Bobtail 0 86 7 1 0 0 0 0 94 86 91.5 4.3 

Platform/Van/Tank/Other 9 0 65 8 6 1 0 0 89 65 73.0 11.2 

Dump 1 4 13 69 1 0 0 0 88 69 78.4 1.1 

Garbage 4 0 2 0 23 0 0 0 29 23 79.3 -6.9 

Concrete 0 0 5 0 0 11 0 0 16 11 68.8 -12.5 

FHWA 6 w/ trailer 0 0 1 0 0 0 13 0 14 13 92.9 0.0 

Bus 0 0 0 0 0 0  1 1 1 100.0 0.0 

Total 89 90 101 82 37 13 13 1 426 343 80.5 1.4 

Correct 75 86 65 69 23 11 13 1 

 

 

Precision (%) 84.3 95.6 64.4 84.1 62.2 84.6 100.0 100.0  

Volume APE (%) 6.3 4.3 13.5 6.8 27.6 18.8 7.1 0.0   
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Table A3-8 FHWA Class 7 Training Data 

Body Class Count 

Dump Tandem w/ Lift Axle 33 

Concrete Tandem w/Lift Axle 14 

Dump Triple 13 

Garbage Triple 12 

TOTAL 72 

 

 

Table A3-9 FHWA Class 8 Trailer Axle Detection Model (Tier 2) Cross Classification 

Table 
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Two axle single unit truck with lift axle (FHWA 7) 2    2 2 100.0 0.0 

Two axle small trucks with trailers (FHWA 3)  12  2 14 12 85.7 7.1 

Two axle single unit truck with trailer (FHWA 5 w/ trailer)  2 48 11 61 48 78.7 19.7 

Three or four axle semi-tractor trailer trucks (FHWA 8)  1 1 188 190 188 98.9 5.7 

Total 2 15 49 201 267 250 93.6 [8.9] 

Correct 2 12 48 188 

 

 

Precision (%) 100.0 80.0 97.9 93.5  

 

Table A3-10 FHWA Class 8 Training Data 

Trailer Body Class Volume Trailer Body Class Group 

Enclosed Van 171 Van 

Basic Platform 25 Platform 

Drop frame Van 11 Low Chassis Van/Platform 

Beverage 7 
 

Low Boy Platform 6 Low Chassis Van/Platform 

Agricultural Van 2  

Livestock 2 Low Chassis Van/Platform 

TOTAL 224 5 Groups 
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Table A3-11 FHWA Class 8 Cross Classification Table 
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Van 143 3 2 1 0 149 143 96.0 -0.7 

Platform 8 11 1 0 0 20 11 55.0 10.0 

Low Chassis Van/Platform  0 2 7 0 0 9 7 77.8 0.0 

Beverage 0 0 0 9 0 9 9 100.0 0.0 

Agricultural Van 0 0 0 0 0 0 0 - - 

Total 151 16 10 10 0 187 170 90.9 0.5 

Correct 143 11 7 9 0 

 Precision (%) 94.7 69.8 70.0 90.0 100.0 

Volume APE (%) 1.3 20.0 11.1 11.1 100.0  

 

Table A3-12 FHWA Class 9 Training Data 

Trailer Body Class Volume Trailer  Body Class Group 

Enclosed Van 1218  

Enclosed Van Reefer 811  

Platform 380 Platform 

Tank 166 Tank 

Open Top Van 138  

Low Boy Platform 120  

53ft Container 94  

40ft Container 43  

Automotive Transport 42  

End Dump or Bottom/Belly Dump 41 Dump 

Drop Frame Van 30  

Livestock 24  

Agricultural Van 22  

Pole/ Logging/ Pipe 20 Logging 

40ft Container Reefer 19  

Pneumatic Tank 14 Tank 

Bulk Waste Transport 7 Platform 

20ft Container 6  

20ft Container on 40ft Chassis 5 Platform 

Container Chassis 4 Platform 

20 Body Classes 3,205 16 Groups 
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Table A3-13 FHWA Class 10 Training Data 

Trailer Body Class Volume Trailer Body Class Group 

20ft Box Container 1 
 

20ft Container on 40ft Chassis 5 Platform 

Basic Platform 5 Platform 

Drop Frame Van 1 Low Chassis 

Enclosed Van 1 
 

Low Boy Platform 4 Low Chassis 

6 body classes 17 4 Groups 

 

 

Table A3-14 FHWA Class 10 Cross Classification Table 
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Platform 2    2 2 100.0 

Container  3   3 3 100.0 

Van   2  2 2 100.0 

Low Chassis    3 3 3 100.0 

Total 2 3 2 3 10 10 100.0 

Correct 2 3 2 3 

 Precision (%) 100.0 100.0 100.0 100.0 

Volume APE (%) 0.0 0.0 0.0 0.0  
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Table A3-15 FHWA 11 and 12 Training Data 

Body Class Volume Body Class 

Group 

Enclosed Van 205  

Platform 110  

Bottom Dump 89  

Pneumatic Tank 37  

Hopper 27  

Drop Frame Van 17 Van 

Open Top Van 11 Platform 

Tank 10  

Agricultural Van 2  

9 Body Classes 508 7 Groups 

 

 

Table A3-16 FHWA 11 and 12 Cross Classification Table 
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Platform 99 4 0 0 0 5 0 108 99 91.7 -2.8 

Van 2 84 1 1 0 0 0 88 84 95.5 1.1 

Bottom Dump 0 0 67 0 0 0 0 67 67 100.0 0.0 

Hopper 0 0 7 25 1 0 0 33 25 75.8 0.0 

Pneumatic 

Tank 0 0 0 3 22 0 0 25 22 88.0 -4.0 

Tank 0 0 0 0 0 3 0 3 3 100.0 33.3 

Agricultural 

Van 
0 0 0 0 0 0 2 2 2 100.0 0.0 

Total 101 88 75 29 23 8 2 326 302 92.6 -0.6 

Correct 99 84 67 25 22 3 2 
 

 

Precision (%) 98.0 95.5 89.3 86.2 95.7 37.5 100.0  

Volume APE (%) 6.5 0.0 11.9 12.1 8.0 166.7 0.0   
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Table A3-17 FHWA 14 Training Data 

Training Data Count 

Dump Truck with Dump Trailer (Dump-Dump) 73 

Tank-Tank 32 

RV with Small Trailer (removed from FHWA 8) 24 

Platform-Platform 12 

Livestock-Livestock 4 
Total 145 

 

 

Table A3-18 FHWA 14 Cross Classification Table 
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Dump-Dump 170 1 0 0 0 171 170 99.4 0.6 

Tank-Tank 1 28 0 2 0 31 28 90.3 -6.5 

RV-Small 

Trailer 
0 0 25 0 0 25 25 100.0 23.5 

Platform-

Platform 
2 2 0 13 0 17 13 76.5 0.0 

Livestock-

Livestock 
0 0 0 0 0 0 0 - - 

Total 173 31 25 15 0 244 236 96.7 1.2 

Correct 170 28 25 13 0 
 Precision (%) 98.3 90.3 100.0 86.7 100.0 

Volume APE 

(%) 
1.2 0.0 0.0 11.8 0.0  
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Table A3-19 Cross Classification Table for FHWA Class 9 Body Class Model at Irvine 
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Enclosed Van 180 16 5 0 0 0 24 1 4 0 0 0 1 0 0 0 231 180 77.9 

Enclosed Van Reefer 39 53 0 0 0 0 11 0 0 0 0 1 0 0 0 0 104 53 51.0 

53ft Container 33 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 44 11 25.0 

40ft Container 0 0 0 4 0 0 3 0 3 0 0 0 0 0 0 0 10 4 40.0 

40ft Reefer Container 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

20ft Container 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Platforms 4 1 0 3 1 0 45 3 1 1 0 0 2 0 0 1 62 45 72.6 

Tank 0 0 0 2 0 1 7 8 0 0 1 0 0 0 0 0 19 8 42.1 

Open Top Van 6 2 0 0 0 0 23 0 25 0 0 0 0 0 0 0 56 25 44.6 

Auto 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 11 10 90.9 

Low Boy Platform 0 0 0 0 0 0 1 0 0 0 24 0 2 0 0 0 27 24 88.9 

Dump 0 0 0 1 0 0 0 4 0 0 0 10 0 0 0 0 15 10 66.7 

Drop Frame Van 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 10 9 90.0 

Logging 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Livestock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Agricultural Van 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Total 262 72 16 10 1 1 114 16 33 12 26 11 14 0 0 1 589 379 64.3 

Correct 180 53 11 4 0 0 45 8 25 10 24 10 9 0 0 0 

  Precision (%) 68.7 73.6 68.8 40.0 0.0 0.0 39.5 50.0 75.8 83.3 92.3 90.9 64.3 100.0 100.0 0.0 
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Table A3-20 Volume APE for FHWA Class 9 Body Class Model at Irvine 

Body Class 

Training Data Test 

Data 

Vol. 

Predicted Vol-

ume 

APE (%) 

[MAPE] 

Vol. Prop. (%) Prop.  MCS Prop. MCS  

Enclosed Van 869 37.5 231 221 262 4.3 13.4 

Enclosed Van Reefer 614 26.5 104 156 72 50.2 30.8 

53ft Container 40 1.7 44 10 16 76.9 63.6 

40ft Container 35 1.5 10 9 10 11.0 0.0 

40ft Container Reefer 13 0.6 0 3 1   

20ft Container 5 0.2 0 1 1   

Platform 291 12.6 62 74 114 19.4 83.9 

Tank 156 6.7 19 40 16 108.9 15.8 

Open Top Van 70 3.0 56 18 33 68.2 41.1 

Automotive Transport 22 1.0 11 6 12 49.1 9.1 

Low Boy Platform 82 3.5 27 21 26 22.7 3.7 

Dump 32 1.4 15 8 11 45.7 26.7 

Drop Frame Van 20 0.9 10 5 14 49.1 40.0 

Logging 20 0.9 0 5 0  0.0 

Livestock 24 1.0 0 6 0  0.0 

Agricultural Van 22 1.0 0 6 1   

Overall  2,315 100 589 589 589 [32.5] [30.4] 

 

 

 


