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Computing with Physical Systems

Abstract

The investigation of microscopic nonequilibrium thermodynamic systems is a wide a varied

field of study. While hard to pin down with one particular frame of reference, the technological

importance of understanding what happens when small systems are driven out of equilibrium

is undeniable. While it is theoretically possible to do most control processes without driving a

system very far from an equilibrium state, it generally takes an inordinate amount of time to do so.

Computing itself is the process of preserving, transforming and translating a physical system’s states

though various nonequlibrium procedures in finite time; thus, the mechanical computers that we

all rely on are, at a fundamental level, nanoscale nonequilibrium thermal systems. In the following,

various properties of nonequilibrium systems are discussed with an eye towards useful operations

in computing. In chapter 1 the issue is tackled from a historical perspective; we see that controlling

information can have a cost even using only equilibrium considerations. Next, chapter 2 moves

away from purely equilibrium considerations by considering the costs that come from operating

in finite time. Chapter 3 reviews a suite of relatively recent equalities that extend arbitrarily far

outside the regime of equilibrium, as well as introducing novel equalities and applications for these

new results. Chapter 4 investigates the applicability and scope of the new results, and in doing

so, reveals the connection between a class of highly nonequlibrium processes and the precision of

currents within them. Finally, in chapter 5, this class of protocol is leveraged to design highly

efficient devices that are capable of universal computation that operate on similar timescales of

todays state of the art machines, but hold the promise of being 4 or 5 orders of magnitude more

efficient energetically.
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Introduction

In his 1871 book Theory of Heat, Maxwell first formally introduced a seeming paradox: a “fi-

nite being” that could, in essence, capture individual thermal fluctuations to extract macroscopic

amounts of work from a heat bath in violation of the Second Law [1]: rendering disordered heat

energy into useful, ordered work. Over the following decades, many attempted resolutions ad-

dressed purely mechanical limitations imposed by how a given Maxwell demon (MD) acted on its

observations to sort molecules [2].

Thomson makes this point quite explicitly in a lecture given before the Royal Institution in

1879, where he closes his abstract [3]:

The conception of the ‘sorting demon’ is merely mechanical, and is of great value

in purely physical science. It was not invented to help us to deal with questions

regarding the influence of life and of mind on the motions of matter, questions

essentially beyond the range of mere dynamics.

Thomson highlights two key distinctions made in early conceptions of the demon. First, the demon’s

intelligence serves primarily as a means to physically sort microscopic particles by their individual

characteristics. Second, MD cannot shed light on the influence of “mind” on the behavior of matter.

(This presumably addressed Maxwell’s and others’ repeated appeals to undefined notions such as

“intelligent beings”.)

Not until 1929, when Leo Szilard published his seminal work “On the decrease of entropy in a

thermodynamic system by the intervention of intelligent beings” [4], was a direct connection estab-

lished between a thermodynamic cost and what Maxwell called “intelligence”—and what we now

call “information”.1 In this, Szilard showed that both of Thomson’s assertions could be relaxed.

Notably, Szilard’s constructions do not involve the direct manipulation of individual molecules, but

always involve their observation (measurement) and control by an “unintelligent” protocol. The

genius in this was to introduce a new, operational, and minimal definition of “mind” as storing

information in physical states; thus, inextricably linking a demon with its physical instantiation.

While Szilard acknowledged that the biological phenomena governing the working of a “finite being”

were beyond the scope of physics, he delineated the minimal capabilities a mind needed to exhibit

1Notably, Szilard discussed his manuscript’s development with Albert Einstein [5].
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MD-like behavior and then created idealized machines with these abilities. Szilard’s conclusion: if

the Second Law is to hold, a physical memory’s interaction with a thermodynamic system must

entail entropy production.

This exchange marks the beginning of one of the most significant revolutions in science in technology

of all time: the information age. Communication technology advanced and mechanical computers

began to replace human ones, but these advances only exacerbated the confounding questions that

come with the union of control theory and thermodynamic theory. Information theory was formal-

ized to deal with the questions, but with the definitions of the information theoretic Shannon and

Von Neumann entropies – the very idea that entropy always increases over time was thrown into

question, as both are conserved globally. Over time, the central conceit of thermodynamics (the

‘thermodynamic limit’) has eroded. The smaller the system of interest is, the less well-founded it

becomes to assume, for example, that one piece of it can act like an ideal thermal bath. Nanotech-

nology and the miniaturization of machines, however, necessitates the investigation of such systems.

Even neglecting non-ideal bath treatments, questions as simple as ‘what is equilibrium?’ become

nontrivial when the system in contact with the bath is, for example, a single molecule. In what way

can we say that a single classical degree of freedom is in a Boltzmann distribution? Regardless of

these nagging questions, the central goal remains the same: what are the consequences of control-

ling systems with inherent and uncontrollable noise? The case of equilibrium thermodynamics has

been worked out, but nonequilibrium theory is quite another matter. The past few decades have

seen leaps in theoretical and technological advances in nonequilibrium studies through fluctuation

theorems, uncertainty relations, quantum information, and biomolecular processes but there is as

of yet no unified picture. And, it seems entirely possible that no such unified picture exists because

the scope of the field is so large. A field of study defined by what it is not is necessarily difficult to

circumscribe. It brings to mind Stanislaw Ulam’s (apocryphal?) comparison of nonlinear science

to the study of ‘non-elephant’ animals.

Given predicted explosive growth in societal demands for information processing and that digital

microelectronics is now approaching the physical limits of available architectures [6], exploring

alternative computing paradigms is not only prudent but necessary. One alluring vision for the
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future involves hybrid devices, composed of a suite of computing modules—classical/quantum,

digital/analog, deterministic/thermal—each with its own architecture and function that operate in

concert. A hybrid architecture allows dynamically harnessing the processing node best suited for

the task at hand. The underlying insight is that a computing device’s physical substrate should

match its desired processing function [7].

It can be shown that systems driven slightly out of equilibrium are more wasteful than those

driven to stay in equilibrium, yet a system driven far enough out of equilibrium can regain a signif-

icant portion of this efficiency. The difference between these two processes, as will be discussed in

the following chapters, is regime. Macroscale, microscale; underdamped, overdamped; as physicists

we want one theory to connect these qualifiers that lie on opposite ends of their spectrums. This

goal is worthy, and the results (if found) are elegant– but when it comes to controlling a system for

a particular purpose the differences between the two extremes are not a problem to be solved, but

indicative of two distinct and useful tools. An underdamped system can tolerate a nonequilibrium

state for far longer than an overdamped system, and so will be useful when the preservation of

such a state is favorable and will be pernicious otherwise. My research program at UC Davis has

evolved towards the following approach when exploring nonequilibrium thermodynamic systems:

Instead of thinking about what is possible given a set of constraints, think about what the goal is–

and what type of dynamics match the goal effectively; I did not, however, begin there– so neither

will we. We start by looking back the the inception of the idea of intelligent control of thermal

systems, and the first attempts to rectify this intervention with the second law of thermodynamics.

So, let us return to Szilard.
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CHAPTER 1

Maxwell’s Demon and Szilard’s Engines

That Szilard’s prescient analysis of measurement anticipated by two decades Claude Shannon’s

information theory has been often mentioned, with varying levels of credulity [2, 8, 9, 10]. It is

generally overlooked, however, that Szilard’s 1929 work laid out three different constructions of

thermodynamic machines. Taken together, they were his attempt to account more generally for

how the flow of heat, work, and information (our modern word, not his1) drive each step of a

thermodynamic process. In today’s parlance we refer to these devices as information engines

[11]. Since then, as history would have it, the descriptor “Szilard Engine” came to refer only to

his first construction—the single-molecule engine. In light of recent experimental and theoretical

developments allowing new treatments of information engines, it is pertinent to revisit Szilard’s

foundational work en toto. What additional insights can be gleaned from the other Szilard devices,

if any? How do they compare to his first, oft-cited single-molecule engine?

Below, we retrace Szilard’s steps in constructing his second device and investigate his reasoning

using more contemporary ideas and techniques for analyzing deterministic chaotic systems, infor-

mation flow, and the energetics of thermodynamic transformations. Once completed, we turn to

his third construction: a thermodynamic analysis of the process of measurement itself. We show

that the second one, though a markedly different implementation employing a population of dis-

tinct molecular species and semipermeable membranes, is informationally and thermodynamically

equivalent to an ideal gas of the single-molecule engines. One concludes that (i) it reduces to a

chaotic dynamical system—called the Szilard Map, a composite of three piecewise linear maps and

associated thermodynamic transformations that implement measurement, control, and erasure; (ii)

its transitory functioning as an engine that converts disorganized heat energy to work is governed

by the Kolmogorov-Sinai entropy rate; (iii) the demon’s minimum necessary “intelligence” for op-

timal functioning is given by the engine’s statistical complexity; and (iv) its functioning saturates

1“Information” appears only once and, then, in a narrative sense.
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thermodynamic bounds and so it is a minimal, optimal implementation. We show that Szilard’s

third construction is rather different and addresses the fundamental issue raised by the first two:

the link between entropy production and the measurement task required to implement either of his

engines. The analysis gives insight into designing and implementing novel nanoscale information

engines by investigating the relationships between the demon’s memory, the nature of the “working

fluid”, and the thermodynamic costs of erasure and measurement.

1.1. Demon Gas: Szilard’s Second Engine

Consider an ensemble of demon-particle molecules contained in a long cylindrical tube in contact

with a thermal reservoir at temperature T . See Fig. 1.1 (Top). Each demon-particle i = 1, . . . , N

is defined by two variables: a particle-type variable si ∈ {�, } and a variable that relates to the

demon’s knowledge yi ∈ {0, 1} about the particle type. Demon i “knows” its molecule’s type when

yi’s value exactly correlates that of si. We refer to yi as demon i’s memory.

Particles spontaneously convert “monomolecularly”—Szilard’s phrasing—from one type to the

other at a given rate. This rate is chosen to maintain a particular desired equilibrium distribution

ρ0(s) in which the probability of being one type is given by Pr(si = �) = δ and the other by

Pr(si = ) = 1 − δ. Total particle number N is conserved. This equilibrium distribution of types

can be enforced by there being an energy difference ∆ε between the particle types or, perhaps,

by spin statistics—as in the case of ortho- and para-hydrogen [12]. Thus, it is not necessary that

the particle-type energies differ significantly. We assume that the energies do differ for the sake

of generality, but the masses do not for the sake of clarity. As such, we define the N -particle

Hamiltonian:

H0 = ε©N© + ε�N� +

N∑
i=1

p2
i

2m
,(1.1)

where ε© and ε� are the particle-type energies (∆ε = ε© − ε� > 0), the particle numbers N© and

N� sum to the total N , m is the particle mass, and pi the ith particle’s momentum.

The cylinder walls are impermeable to either type of particle. Inside the cylinder, there are four

thin membranes set perpendicularly to the cylinder axis. Two are also impermeable and all of the

molecules lie between them. Paralleling Szilard, we denote the impermeable membranes by and
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`

`

Figure 1.1. Second-engine components: (Top) Two movable overlapping compart-
ments inside of the cylinder, each bounded by one of the two sets of membranes.
The distance ` between (�) and ′ (�′) remains fixed as they move. (Bottom)
Particle-type separation: Two volumes of constant length ` slide through each other,
blue-circle particles are moved from the original left (L) volume to the right and
red-square particles � are unaffected. A membrane permeable to s (�s) is depicted
as a vertical line of squares (circles), as they are, in essence, walls for the �s ( s)
only.

�. (Reusing type labels as membrane labels will become clear.) These membranes are initially set

a distance ` apart. The other two membranes, denoted ′ and �′, are permeable to only one of the

two particle types, � or particle types, respectively. Each semipermeable membrane is initially

set just inside of the impermeable membranes: ′ being set next to and to the right of � and �′

next to and to the left of .
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The four membranes move along the cylinder axis, but are constrained to keep the distance

between and ′ and between � and �′ fixed at `. In short, the system operates on two overlapping

volumes of fixed length ` that slide relative to each other. Each volume has impermeable walls, an

impermeable membrane ( or �) at one end, and a semipermeable membrane ( ′ or �′) at the

other. Refer to Fig. 1.1 (Top).

Szilard’s second construction is a protocol executed by translation and manipulation of these

membranes. The protocol breaks down into three key transformations:

(1) Measurement : in which each particle’s initial type si is stored in its memory yi;

(2) Control : in which the system’s thermodynamic resources are manipulated; and

(3) Erasure: in which the measurements are leveraged to return the overall system to its initial

configuration.

These steps generally describe the behavior of information engines as they leverage information

resources to gain thermodynamic advantage. Let’s describe each of these in turn and in detail.

The first step of the protocol cycle is measurement. Initially, the ensemble’s particle-type dis-

tribution is given by ρ0(s) and the distribution f(y) of the memory variable y is uncorrelated to

particle type: Pr(s, y) = ρ0(s)f(y). We choose the parameter γ to represent the initial distribu-

tion over the memory state of the particles, so that f(y) is initially distributed as Pr(yi = 0) = γ

and Pr(yi = 1) = 1 − γ. During measurement, the current type si of each particle is imparted

to its memory yi such that each type � ( ) particle has its y variable set to 0 (1). Here, the

distribution f(y) changes so that the conditional distribution f(yi|si) is deterministic or, equiva-

lently, the joint distribution over s and y is given by nonzero elements Pr(yi = 0, si = �) = δ and

Pr(yi = 1, si = ) = 1 − δ . See Fig. 1.2, where particle type is depicted via shape and particle

memory via color.2 Szilard does not, at this point, give a physical mechanism that implements how

each particle’s memory yi becomes correlated with its type si. However, this is addressed by his

third engine—the subject of a later section below.

Next, the engine enters the control step. The volume bounded by and ′ slides to the right

until the semipermeable membranes ( ′ and �′) come into contact with each other. In doing so,

2Note that Szilard does not consider the energetic or entropic costs associated with manipulation of the memory state
variable. He provides only a description of the correlations the memory must be able to create and sustain. Indeed,
neglecting the cost of manipulating the memory is central to Szilard’s point.
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Figure 1.2. Measurement in Szilard’s second engine: Particle type variable s ∈
{�, } is depicted by shape and memory variable y ∈ {0, 1} by color. (Left)
Initially-uncorrelated demon-particle states—particle type is not correlated with
memory (shape is not correlated with color). (Right) Configuration of the gas after
measurement. Tracking from the left diagram to the right, the measurement process
establishes a correlation between color (y) and shape (s): � → red and → blue.
There are only �s and s.

the semipermeable membranes separate the particles by type. This is done without any input of

work or heat since, from the perspective of each particle, its container is merely being translated

or held fixed; as demonstrated in Fig. 1.1 (Bottom). This transformation separates the particles

into one of two compartments (L or R). See Fig. 1.3 (Top). Particles that are type � are all in

the original volume (compartment L) bounded by the membranes � and �′; those that are type

have been shifted to the right compartment (R) that is bounded by the membranes and ′.

Time scales are important here. Type separation must happen sufficiently slowly that the gas

is always in equilibrium with respect to its compartment’s spatial volume, but fast enough that

no particle changes type during the process. This is not a generally prohibitive constraint, as we

can assume the time-scale for a gas to fill its container uniformly is generally short. After the

separation, each particle type exists independently in a container of the same size as the initial

container.

Each compartment is no longer in equilibrium with respect to the type variable, though. Again,

refer to Fig. 1.3 (Top). In principle, we can recover an equilibrium distribution with respect to

H0 within the individual containers either by waiting for the system to re-thermalize with the heat

bath or by taking an active role by instituting a protocol involving the input or output of work.

See Fig. 1.3 (Bottom). The latter is discussed in detail in Sec. 1.2 shortly.
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At this point in the engine’s operation, Szilard claims the “entropy has certainly increased”.

The entropy change ∆S from the initial macrostate to the macrostate in which the particles have re-

achieved equilibrium can be found by the Sakur-Tetrode equation (detailed in App. 1.B), yielding:

∆S

N
= −kB (δ ln δ + (1− δ) ln(1− δ))

≡ S(δ) .(1.2)

The system’s entropy has increased, as Szilard claimed. In the most efficient control scheme, we

reach the equilibrium distribution reversibly and there must be a corresponding decrease −S(δ) in

thermal reservoir entropy. Note that we cannot easily move the cylinders back into each other now,

since there are particles of both types on each side of the semipermeable membranes.

Finally, the engine enters the erasure step of the protocol cycle. It erases by making clever

use of its memory (y): the engine exchanges the type (shape, s) semipermeable membranes with

memory (color, y) semipermeable membranes; see Fig. 1.4.

1, R0, L

�′′�

Figure 1.3. Control step particle-type equilibration: (Top) Deterministic distribu-
tions PrL(s = �) = PrL(y = 0) = 1 and PrR(s = ) = PrL(y = 1) = 1 at the end of
sliding-separation of Fig. 1.1. (Bottom) Distributions after a period of particle-type
conversion. Particles are no longer separated by shape type s ∈ {�, }, but still are
separated by memory state (color) y ∈ {0, 1}). That is, ρL(s) = ρR(s) = ρ0(s) but
the memory state distribution in each compartment remains deterministic.
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Figure 1.4. Erasure: First, replace the type (shape) semipermeable membranes
with memory (color) semipermeable membranes.

The system is then ready to operate the reverse strategy of the particle-type separation of Fig.

1.1 to bring the particles back into the same volume (`). Like the particle separation step, this

action is effectively a translation, and can be accomplished work-free if the process unfolds on the

proper time scale. See Fig. 1.5. Now that the particles are back within the original volume again,

they are no longer separated by color or shape. Thus, the erasure step returns the system to its

initial ρ0(s) macrostate,3 without interacting with the heat bath. See Fig. 1.6.

The change in entropy for the system over the entire protocol cycle is, then, zero: the start

macrostate is the final macrostate. The thermal reservoir, however, experienced a net decrease of

entropy during the reversible control step. Here, Szilard appeals to the validity of the Second Law,

stating that [4]:

If we do not wish to admit that the Second Law has been violated, we must con-

clude that . . . the measurement of s by y, must be accompanied by a production

of entropy.

That is, to resolve the apparent violation of the Second Law, Szilard associates measurement with

a change in thermodynamic entropy and gives a functional form for this entropic cost in Eq. (1.2).4

The careful reader will notice several issues that require further investigation and refinement.

First, Szilard does not specify an explicit mechanism for measurement, when the particle types si

are stored in the memory variables yi. Second, he does not determine the work required to drive the

reversible control transformation he postulates. Third, one notes that the final distribution over

the memory variable y, while not correlated with type variable s at the cycle’s end, is necessarily

3This is not, strictly speaking, a full erasure without special tuning of δ and γ. However, it is an apparent macrostate
reset as long as we ignore the energetics of the y dimension. Again, this “oversight” is crucial to Szilard’s point.
4Here, Szilard anticipates Shannon’s communication theory and its measure of information [13] by nearly two decades.
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Figure 1.5. Erasure: Second, leveraging the memory variable y with the newly
inserted memory (color) semipermeable membranes to reintegrate molecules, return
to the initial macro-state.

distributed so that Nδ particles are in the y = 0 memory state and N(1 − δ) particles are in the

y = 1 memory state; that is, unless we include an additional erasure step that resets y to some

arbitrary initial distribution. In addressing these (and related) concerns we shall see that, while the

selection of the initial distribution f(y) over memory variables yi is arbitrary, the choice impacts

the thermodynamic costs of measurement and erasure. First, we investigate the bounds on the

Figure 1.6. Reintegration with sliding the memory-state (color) semipermeable
membranes recovers the original distribution over particle type in the initial con-
tainer.

11



work required to perform Szilard’s reversible control transformation. Then, we turn to analyze the

information dynamics of the second engine as a thermodynamical system.

1.2. Engine Version 2.5

During the control step, each compartment begins in a nonequilibrium (completely determin-

istic) macrostate ρL(s, y) (or ρR(s, y)) (Fig. 1.3 (Top)) and ends in the canonical equilibrium

macrostate ρ0 (Fig. 1.3 (Bottom)). To understand the effects of this transformation, we appeal to

recent developments in information theory and stochastic thermodynamics [14,15,16] that allow

us to connect the Gibbs statistical entropy :

S(ρ) = −kB

∑
s∈{ ,�}

ρ(s) ln ρ(s)

= kB〈− ln ρ〉ρ

to the energetics of the isothermal equilibration process.

The two compartments (L and R) interact separately with the heat bath, so we take the

following process to be executed independently within each compartment. As such, we drop the L

and R subscripts for clarity and take the final extensive quantities to be of the form S(ρ) ≡ S(ρL)+

S(ρR). Moreover, since the memory state remains fixed for all particles within each compartment

throughout the control step, the only relevant distribution is the marginal distribution—ρL(s) or

ρR(s)—over particle type.

Assuming perfect manipulation of the Hamiltonian at any point during the transformation

allows us to design the most efficient protocol for the equilibration process. Consider the particle-

cylinder system immediately after particle separation, in contact with a thermal bath at tempera-

ture T . Initially, the Hamiltonian is that given in Eq. (1.1). We break the process into two distinct

steps. Both steps are executed in each compartment as follows.

First, we instantaneously shift the Hamiltonian from H0 to Hρ = −kBT ln ρ. Tautologically, ρ

is now the equilibrium distribution since e−βHρ = ρ. Shifting the Hamiltonian requires a minimum

amount W∆H of work given by the difference ∆H in the system’s total energy under the two

12



Hamiltonians:

W∆H = 〈Hρ〉ρ − 〈H0〉ρ .

Next, we quasistatically shift the Hamiltonian back to H0, which keeps the system in equilibrium

by definition.

The transformation is now complete—the Hamiltonian returned toH0 and the system’s macrostate

is given by ρ0. Energy conservation in the second step implies that thermal reservoir and system

energies change according to the work Wqs invested in the transformation:

Wqs = ∆Ures + ∆Usys .

Assuming the reservoir maintains constant volume, we write the Wqs in terms of initial and final

free energies:

Wqs = F (ρ0)− F (ρ) .

(Appendix 1.C gives the details.) Then, the total work Wdrive ≡Wqs +W∆E to drive the two-step

transformation is:

Wdrive = 〈H0〉ρ0 − 〈H0〉ρ + TS(ρ)− TS(ρ0) .

Each term is readily interpreted in the present setting.

When considering the sum of both compartments—recall 〈H0〉ρ = 〈H0〉ρL +〈H0〉ρR—the energy

expectation values for ρ and ρ0 are the same. The average kinetic energy KEavg will be the same

since the whole system is thermalized to the same temperature, so we can neglect its contribution.

For the initial nonequilibrium distribution ρ we have:

〈H0〉ρ = Nε©δ +Nε�(1− δ) .
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And, under the ρ0 distribution:

〈H0〉ρ0 =Nδ(ε©δ + ε�(1− δ))

+N(1− δ)(ε©δ + ε�(1− δ)) .

〈H0〉ρ0 simplifies trivially to 〈H0〉ρ. Together they make no contribution to Wdrive. The TS(ρ)

term vanishes since the initial distribution of particle types within each compartment (L and R) is

deterministic. The final term, the equilibrium state entropy, is S(ρ0) = NS(δ). And so:

Wdrive = −TS(ρ0)

= −NTS(δ) .

It is now clear that the thermodynamic cycle is an engine. The work to drive the most efficient

transformation that takes the engine from Fig. 1.3 (Top) to Fig. 1.3 (Bottom) is negative, signifying

that there is an opportunity to extract work from the heat bath. Once again, we are faced with the

reality that either measurement must involve compensating thermodynamic costs or admit that

Szilard’s second engine is a type of perpetual motion machine.

1.3. Demon Gas as a Thermodynamical System

To investigate the cost of measurement thermodynamically, we must choose a specific imple-

mentation of the device. We start with a 3-dimensional unit cube containing N particles and in

contact with a heat bath at temperature T . The previous section established that the work ex-

tracted by Szilard’s engine is independent of the energy difference ∆ε. We are, then, free to set this

difference to zero—yielding a box of particles that are all identical according to H0. The particles

need not interact with each other to perform any of the necessary operations, so we take them to

be noninteracting. Thus, our system is an ideal gas of N identical particles.

The membranes separating the particles into the L and R compartments slide along the box’s

x axis. We take all particles to start in the region x < `, with an ideal barrier inserted along x = `

to keep them from moving thermally into the region x > `. This defines two compartments L and

R corresponding to xi < ` and xi > `, respectively.
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δ
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xi

Figure 1.7. Markov partition of a demon-particle’s state space—3D unit box. The
ith particle’s position on the s axis corresponds to its particle type as Si = � when
si < δ (and Si = when si > δ). The y-axis partition corresponds to the memory
state as Yi = 0 when yi < γ (and Yi = 1 when yi > γ). The depth dimension,
parameterized by `, corresponds similarly to particle position being in the left or
right compartment. Note that ` must be equal to 1/2 for the L ↔ R transition to
always be work free, as Szilard noted.

We still need an operational definition of particle type which satisfies Szilard’s requirements

that there is a fixed particle-type equilibrium and that particles convert monomolecularly (N is

constant) from one type to another. For our particle type, we use the position of a particle along

the s dimension. If the coordinate of a particle is si < δ or si > δ we consider it to be particle

type � or , respectively. As the particles move about thermally, they cross back and forth across

the line s = δ, exactly modeling Szilard’s monomolecular type conversion. Additionally, varying

parameter δ sets the equilibrium distribution over particle type, relying on the gas’ tendency to

quickly fill its container uniformly.

This choice for particle type also allows us to define semipermeable particle-type membranes

as ideally impermeable membranes that cover only the region associated with the relevant particle

type. It is well known that the physical position of particles stores information [17]. And so, we

choose a particle’s memory states to be stored in its y coordinate with 0 (1) corresponding to yi < γ

(yi > γ). See Fig. 1.7 for the full symbolic partitioning of the demon-particle system.
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γ

δ

Figure 1.8. Second Szilard engine as a chaotic dynamical system: Its action on
the unit-cube demon-particle-compartment state space decomposed into individual
steps on an initially uniform distribution. Dashed outlines show the planes where
s = δ and y = γ. The ideal barriers used to execute the protocol are depicted as
low opacity gray planar partitions. Color is illustrative, to help track the separate
manipulations of the particles that start in the regions s < δ and s > δ.

This choice of memory state follows Ref. [11], and much of Sec. 1.1’s analysis can be enhanced

by comparing. As such, App. 1.A briefly summarizes the essential arguments from it and compares

them to Sec. 1.1.

We are now ready to (i) analyze this engine’s thermodynamics, (ii) set up the symbolic dynamics

for the demon-particle gas, and (iii) analyze the engine’s intrinsic computation.

1.3.1. Thermodynamics. This model allows us to easily probe the thermodynamics of each

step in the Szilard Engine V. 2.5 operation, as just described in Sec. 1.1. Given this representation

of Szilard’s second engine, the overall thermodynamic cycle is the series of transformations shown

in Fig. 1.8: measure, control, and erase. These operations are executed by inserting, sliding, and

removing barriers.
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The measure step, for example, involves three barriers. First, we insert a barrier along s = δ.

This is thermodynamically free, since the gas is identical on either side of the barrier. Next, we use

a barrier perpendicular to the y axis that extends until s < δ to compress the particles that are

in the � partition to fit entirely within the 0 partition. Similarly, we use a barrier perpendicular

to the y axis that covers s > δ to compress the particles that are in the partition to fit entirely

within the 1 partition. This establishes the necessary correlation between type and memory state:

all particles are either � or .

For the control step, the first operation separates particles by type into either the L or R parti-

tion. This involves translating the particles to the R partition by inserting a barrier perpendicular

to the x axis at x = 0 that covers from s = δ to s = 1. Then, along with the s > δ section of

the initial barrier, this barrier translates the gas to the rear partition. This requires no interaction

with the heat bath, since the volume of the gas remains constant. (See Control 1: Separate in

Fig. 1.8.)

The second part of the control step expands along the particle-type dimension by allowing the

two sections of the particle-type partition corresponding to x < ` and x > ` to slide independently of

one another. The work Wdrive the gas exerts on the barrier for an isothermal operation is calculated

easily as −
∫
PdV , with P = NkBT/V :

Wdrive = −
∫ `γ

`δγ

NkBT

V
dV −

∫ `(1−γ)

`(1−δ)(1−γ)

NkBT

V
dV

= NkBT (ln δ + ln(1− δ))

= −NTS(δ) .

This accords with the value calculated previously above. Thus, the model achieves the ideal effi-

ciency bound. (See Control 2 in Fig. 1.8.)

We can also calculate the thermodynamic costs of the measurement and erasure transformations.

In these, the gas’ internal energy remains fixed and so Qsys = −Wsys. To investigate the energy

that is dissipated in the heat bath, we draw a relation between Qsys, which is positive when heat

flows into the system from the bath, and Qdiss = −Qsys, which is positive when heat is being
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dissipated into the heat bath. For measurement we have:

QM =−
∫ `δγ

`δ

NδkBT

V
dV −

∫ `(1−δ)(1−γ)

`(1−δ)

N(1− δ)kBT

V
dV

= NkBT (−δ ln γ − (1− δ) ln(1− γ))

= NkBT

(
δ ln

1− γ
γ
− ln(1− γ)

)
.

Figure 1.9 (Top) displays a contour plot of the measurement heat QM as a function of the

partition parameters γ and δ. We see that the measurement thermodynamics strongly depends on

these parameters and that heat will always be dissipated during measurement. To implement an

efficient engine, then, we would select a set of parameters that minimizes the heat dissipated in

measurement.

Measurement is only part of the overall engine cycle, though. There is also the erasure transfor-

mation. The first erasure step in Fig. 1.8, which translates the particles back into the same {L,R}

partition, is similar to the first control operation. The current model makes it abundantly clear

that this is not sufficient to return the gas to its initial state, though. The gas above and below

the memory-state partition (inserted at the beginning of the measurement step) will not generally

have the same pressure.

We require an additional step to return the gas to it’s initial maximum-entropy state. Translat-

ing the boxes back to the L compartment does not require any thermodynamic input or output, so

this final step is the source of the thermodynamic costs of erasure. The final step allows the gas to

slide the partition that separates our memory states until the pressure on each side equalizes—until

it rests at y = δ. The barrier may then be removed at no cost or it may be left in the box and al-

lowed to move freely along with the next cycles without affecting the thermodynamics. Calculating

the energetic cost of this transformation is as simple as that preceding, yielding:

QE = NkBT

(
(1− δ) ln

1− γ
1− δ

+ δ ln
γ

δ

)
.

It is not surprising that the entropy cost of erasure vanishes when δ = γ, since then the barrier

at γ is already in the equal-pressure position before the final step. Figure 1.9 (Bottom) shows that

erasure does not incur a cost: instead, the erasure provides yet another opportunity to extract
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energy from the heat bath. This is as expected, as the erasure process always increases the entropy

of the system. However, examining QM +QE we see that choosing the parameters to maximize the

energy extraction in erasure increases the cost of measurement commensurately. Suggestively, the

total thermodynamic cost of measurement and erasure is algebraically independent of the memory

parameter γ:

QM +QE
NkBT

=

(
(1− δ) ln

1− γ
1− δ

+ δ ln
γ

δ

)
+

(
δ ln

1− γ
γ
− ln(1− γ)

)
= −(1− δ) ln(1− δ)− δ ln δ

Or:

QM +QE
NT

= S(δ) .

That is, the total combined cost of measurement and erasure depends only on δ, as in NTS(δ).

This is exactly the energy necessary to compensate for the work extracted from the heat bath

during control. Since the choice of γ affects neither the total work extracted from the heat bath

nor the total cost of the measurement and erasure processes together, one can set γ = δ so that

erasure is cost neutral and all of the extracted work comes from the control process.

In this way, we need only consider the “cost” of measurement and the “revenue” from control.

Of course, there is no net profit. Even in the most efficient system, the Second Law holds. This was

one of Szilard’s main points—the point that resolved Maxwell’s paradox. By giving the demon (or

control subsystem) a physical embodiment and properly accounting for its thermodynamics, there

is no Maxwell demon paradox.

Interestingly, the distinction between measurement and erasure turns out to be, in a sense,

arbitrary. We may increase or decrease the cost of one, but we do so at the expense of the

other. This harkens back to Szilard’s original set-up, where he assigned entropy production to “the

measurement” and then went on to demonstrate with a specific measurement apparatus that the

erasure step increases the entropy. (Section 1.4 below discusses this apparatus in detail.) Szilard
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Figure 1.9. Measurement thermodynamic cost (heat dissipation) QM/NkBT
(Top) and erasure cost QE/NkBT (Bottom) as a function of partition location pa-
rameters δ—particle-type—and γ—memory.

was not so much concerned about the details of whether erasure or measurement was the costly

step. Instead, and presciently again, he points out that entropy production is associated with the

entire process of establishing and destroying correlations between particle type and memory state

as whole.

This contrasts with the view advocated by Landauer and Bennett half a century after—the

logical irreversibility of erasure solely determines thermodynamic costs [18, 19]. We now see, as
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others have recently emphasized [11,20,21,22,23], a more balanced view that there is a generalized

principle bounding the total costs of measurement and erasure.

1.3.2. Computational Mechanics of Demon-Particle Gas Symbolic Dynamics. The

coarse-graining of the microstate-space’s unit box, depicted in Fig. 1.7, is a Markov partition [24]

of the microstate dynamics under the macroscopic thermodynamic transformations that make up

the Szilard engine. This immediately suggests defining a vector of binary-valued random variables

(Si ∈ {�, }, Yi ∈ {0, 1}, Xi ∈ {L,R}), sufficiently-long sequences of which accurately track of the

engine’s microscopic dynamical behavior.

At each protocol step a compound symbol SY X is generated according to the particle’s loca-

tion in the state-space box. For example, a particle that ends a protocol step and generates the

compound symbol �0L corresponds to a particle that is currently type �, was particle type when

the most recent measurement was performed, and is in the Left compartment.

We must remind ourselves that the state space of this gas is large. There are N demon-particles

each with three dimensions, so the full state space describes a 3N -dimensional dynamical system.

However, since the particles are noninteracting, Szilard’s second engine is actually a collection

(direct product) of N 3D particle state spaces. Applying computational mechanics’ predictive

equivalence relation collapses the 3N -dimensional state-space to 3 dimensions of equivalent causal

states [25]. Thus, we can use the symbolic dynamics of a single particle to find the engine’s

effective information processing behavior—and scale it to the demon-particle gas with a prefactor

of N . (Appendix 1.E reviews the dimension reduction for an ideal gas.)

The problem simplifies even further since, having faithfully considered Szilard’s initial problem

statement, it is clear that the LR dimension of the state-space box is redundant in the current

model. In Szilard’s original construction, the LR dimension stops particles corresponding to the

different memory states from intermixing during the control stage. However, the current engine

already stores the memory and type information in positional coordinates, so the barrier used to

compress the gas in the cycle’s measure step already serves this purpose. Thus, we do not even

need the full 3-dimensional state-space box to model the system’s information and thermodynamic

action. (Also see App. 1.E.)
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Instead, we examine the action of Szilard’s second engine on a 2-dimensional projection onto

the sy plane of the box in Fig. 1.8. The resulting 2-dimensional map is nearly identical to the

Szilard Map introduced in Ref. [11], constructed by considering Szilard’s first (single-molecule)

engine. The primary difference between the two being a difference in what is considered the “initial

state”. For more details, see App. 1.A.3.

We now track the probability density of a particle within the gas. Having abandoned tracking

each particle’s exact position within the box by using the coarse-graining into discrete symbols, we

now consider the actions of a deterministic map on the probability density as a whole. Each step

in the process depicted in Fig. 1.8 compresses or expands the probability density along a particular

dimension. The composite map τSzilard that includes each step when δ = γ is given by:

τSzilard(s, y) =


(
s
δ , yδ

)
s < δ(

s−δ
1−δ , δ + y(1− δ)

)
s > δ

.

Appendix 1.F gives the maps for each individual measure, control, and erase step.

Leaving in the memory-state partitions that are added each cycle, allows the map’s action to

build up the same self-similar interleaving within the particle’s state-space probability distribution

as seen in the Baker’s Map [26]. While the probability density is not uniform throughout each

component map step, we find that the distribution over the state space is uniform and constant for

the composite map τSzilard that includes each step in the protocol.

We can again apply computational mechanics’ predictive equivalence relation—now not to the

gas’ microscopic state space but to the symbolic dynamics induced by Markov partition of Fig. 1.7.

This leads directly to an ε-transducer [27] that captures the information processing embedded in

the engine’s operation via causal states and their transitions. Appendix 1.A and 1.A.2 discusses

these ε-transducers and compares them to Ref. [11]’s results. The agreement of the two analyses

on various information-theoretic quantities establishes that Szilard’s first and second engines are

informationally and thermodynamically equivalent, though they arise from rather different imple-

mentations.
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While the detailed analysis of the ε-transducers can be found in the Appendix, we close by

simply noting that the computational-mechanics analysis gives physically- and informationally-

interpretable results and identified functionally-relevant structure. This achieved the principle

aims of: (i) determining the correct information generation (entropy) rate, (ii) demonstrating that

this and the joint-machine information metrics align with those in Ref. [11], and (iii) identifying a

signature of the choices made in constructing the map.

1.4. Szilard’s Third Engine: Measurement as a Thermodynamic Cycle

The Szilard Map stores its memory state in an additional state-space dimension. Section 1.3 and

Ref. [11] teased out the thermodynamic and information-processing consequences of this choice.

The following introduces an alternative implementation of information storage—one introduced

by Szilard himself, acknowledging that his first two engines did not completely specify physical

measurement.

After concluding that the measurement process in his engines must generate entropy, Szilard

introduces a bound on the entropy production from a binary measurement:

e−S�/kBT + e−S©/kBT ≤ 1 ,

where S� and S© are the entropies that a protocol generates when taking the measurement value

� or , respectively. Investigating this limit further, he adopts a specific mechanical system

that performs the minimal measurement tasks that his engines require. We now examine this

implementation in detail, before returning to Szilard’s thermodynamic bound on measurement.

The essential measurement tasks needed to implement either of Szilard’s engines are as follows.

First, establish a correlation between the instantaneous value of a fluctuating variable x and another

variable y. Second, store that value in the “memory” of the second variable so that if x later changes,

y remains fixed. Finally, return to a default state so that the system is ready to perform another

measurement.

In this third construction of Szilard’s, the variable to be measured is the position x of a pointer

that moves back and forth according to a completely general protocol, either stochastic or deter-

ministic. The variable y that stores the position is a function of the temperature of a body K that
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P (x < d) = δ P (x > d) = 1 − δ

x
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Figure 1.10. (Top) Default state before measurement: Variable x tracks the po-
sition of the pointer and y is a function y(T ) of the temperature T of body K.
(Bottom) Measuring position of the pointer by temperature of K. The pointer lo-
cation at the time of measurement determines if K is cooled to TA or heated to TB.
Consequently, y is set to either y(TA) or y(TB).

is mechanically connected to the end of the pointer. As this pointer moves back and forth, it brings

K in contact with one of two intermediate temperature reservoirs, A or B. These reservoirs are

connected by movable heat-conducting rods to a continuum of temperature reservoirs that span

from a cold temperature TA to a hot temperature TB > TA. Initially, both rods are connected to

an intermediate temperature T0; see Fig. 1.10.

Coarse-graining the pointer position into two regions, A and B, the device can make a binary

measurement. The measurement, which must happen over a timescale during which the pointer is

stationary, involves moving the connecting rods through the continuum of heat reservoirs so that

the intermediate reservoir A (B) is cooled (heated) to TA (TB). In this K either is heated or cooled
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depending on where the pointer was; see Fig. 1.10. This process can be done with arbitrarily small

dissipation, if it is performed slowly enough that the rods, intermediate reservoirs, and K remain

in thermal equilibrium at all times. This accomplishes a binary measurement: K is either at TA or

TB, depending on the position of the pointer at the moment of measurement.

Next, the entire assembly of reservoirs is thermally isolated from the pointer and K so that,

as the pointer continues to move, K maintains its temperature either at TA or at TB, even as the

pointer leaves the interval it was in at the time of measurement. In this condition, the measurement

value is stored in K’s energy content.

Now, to be ready to make another measurement, the system must return to its initial state. If

one knew with certainty K’s temperature, the system could be returned to the default state without

entropy cost: Simply wait until the pointer is in the region that corresponds to K’s temperature,

bring the system back into contact with the reservoirs, and institute the measurement protocol in

reverse. This is, of course, actually two different protocols—and requires knowledge (measurement)

of the result of each measurement to decide which to implement on each cycle.

There is no single protocol that can blindly return the system to its original state without

producing entropy. Anticipating, by more than three decades, Landauer’s well-known argument

for resetting a particle in a bistable well [19], Szilard notes that an increase in entropy “cannot

possibly be avoided” because [4]:

After the measurement we do not know . . . whether [K] had been in connection

with TA or TB in the end. Therefore neither do we know whether we should use

intermediate temperatures between TA and T0 or T0 and TB.

We create, then, a single protocol that returns the system to its original state—the “erasure”

process—and measure its total entropy production. While the pointer is still uncoupled to the sys-

tem, we return A and B to the equilibrium temperature T0. Once again, this can be done reversibly

on an appropriate timescale; see Fig. 1.11. Then, we bring K back into thermal equilibrium. This

step cannot be done reversibly. This gives merit to the idea that erasure is the source of the entropic

cost. Quantitative accounting for the entropy generation reveals additional insight.

All said, the body K undergoes a cyclic process—measurement itself is an engine.
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Figure 1.11. (Top) While K stores the location of the pointer at the time of
measurement, A and B are returned to T0. (Bottom) K is returned to T0 by thermal
contact with A or B, incurring an unavoidable entropic cost.

Quantitatively, over the measurement cycle the net change in system entropy is zero. Thus, we

consider the entropy change only in the reservoirs. If the pointer was at a location that caused K to

cool (heat) to TA (TB), then the reservoir’s entropy increases (decreases) during the measurement

period by
∫
dQ/T . Similarly, when K is returned to T0 the reservoir’s entropy decreases (increases)

by ∆E/T0. We see that, while only the erasure process causes the entropy of the universe to

increase, both the measurement and erasure processes play a role in increasing and decreasing

the reservoir entropy. Szilard was unconcerned with keeping measurement and erasure as two

different actions since he already concluded that it was possible for either to produce or consume

the reservoirs’ entropic resources. This is an insight that only recently received renewed attention

26



[11,20,21,22,23]. Furthermore, Szilard had also already concluded that the need to erase a binary

random variable to a default state had unavoidable entropic costs.

To determine quantitatively the entropy gain from each measurement, Szilard adopts a 2-level

system. The body K can be on one of two energy levels: a low energy state and a high energy

state. Using standard canonical ensemble calculations, he shows that in the limiting process where

the probability of the low (high) energy state at TA (TB) approaches unity the entropy generated

by each process is:

SA = −kB ln p

SB = −kB ln q ,

where p = p(T0) and q = q(T0) are the probabilities that K is in the lower and upper energy state

at temperature T0, respectively. Szilard ended his analysis here. He does note that for this model:

e−SA/k + e−SB/k = 1

and that this represents the minimum amount of entropy generation necessary according to his

bound:

e−SA/kBT + e−SB/kBT ≤ 1 .

1.5. Szilard Measurement in Szilard Engines

To complete our analysis of Szilard’s constructions, we couple the Szilard measurement device

(SMD) of Sec. 1.4 to one of his engines. For a simple physical picture, we specialize to the

more familiar single-particle Szilard engine [4,11,18], where a classical particle in a box is used to

extract work from a temperature bath by inserting a partition and allowing the particle to move the

partition. In essence, this engine leverages the measurement of a thermal fluctuation to do work.

The considerations above show that the multi-particle second engine has the same thermodynamic

and information processing behavior as the more-oft-quoted single-particle engine. And so, we lose

nothing by specializing to his first, simpler model.
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Now, take the SMD’s pointer to be mechanically connected to the particle inside the Szilard

engine, so that the position of the pointer tracks the particle’s thermal motion. The SMD is

calibrated so that the particle on the left- (right-) hand side of the partition corresponds to the

pointer being at x < δ (x > δ). The SMD is thermally isolated from the rest of the engine, as

having its own set of reservoirs is crucial to its operation. In this example, the body K plays the

demon’s role. K changes length depending on its energy state, allowing K’s state to select the

engine’s protocol; for example, by the position of a switch connected to K.

In this way, the entropy generated by one engine cycle is the sum of the entropy generated in the

SMD’s reservoirs and the particle-box system’s reservoirs. The particle moves thermally through

the entire box, so the probability that it falls in one or the other section of the box depends on

the relative volume on either side of the inserted partition. During a cycle, the entropy generation

in the system’s reservoirs is proportional to either ln δ or to ln(1− δ) depending on if the particle

starts on one or the other side of the partition, respectively. The mean entropy generated in the

system reservoir over many cycles is then:

〈∆Sress〉 ∝ δ ln δ + (1− δ) ln(1− δ)

= −H(δ) .

The mean entropy generation in the SMD’s reservoirs over many cycles of the measurement

process is:

〈∆Sresm〉 ∝ δSA + (1− δ)SB

= −δ ln p− (1− δ) ln q .

Adding the two contributions yields the average entropy generated in the universe per cycle:

∆S ∝ (1− δ) ln
1− δ
1− p

+ δ ln
δ

p

= DKL(δ||γ) ,

where the relative information DKL(·||·) is positive for all values of δ 6= p and vanishes when δ = p.

28



We see that, once again, there is no Maxwell demon paradox, since the total entropy generation

is positive. In the case that p = δ, the mean entropy produced in the SMD reservoirs during

the measurement cycle is exactly enough to compensate the decrease of entropy in the system’s

reservoirs during work extraction. This encoding of the information yields the most efficient cycle.

However, there is no physical requirement that p = δ. The inner workings of body K need not

match where the partition between the physical regions A and B lies.

It is tempting to directly compare p and the memory-state parameter γ discussed above, but

there is a distinct difference between the two. Under the action of the transformations described

in Sec. 1.3, there is inherent interaction between the parameters δ and γ that manifests itself in

the density of the ideal gas that serves as the engine’s “working fluid”. When one part of the gas

is compressed into a particular memory partition, the size of that partition determines the cost

of the next step. If the partition is small, it is “more difficult” to squeeze in the same number of

particles. Consequently, both δ and γ appear in the cost of both measurement and erasure. This

coupling between the two dimensions becomes relevant when we take into account the total cost of

measurement and erasure, finding that γ drops out of consideration. The result is an engine that

is ideally efficient for every parameter setting.

When coupling the SMD to the first engine, the importance in the inherent interaction of δ and

γ in the Szilard Map becomes even more apparent. Unlike γ, the engine is no longer ideally efficient

for any choice of parameter p. Instead, we must choose the distribution of K’s energy states at the

equilibrium temperature to have the same distribution as the particle’s position states. If not, the

engine suffers additional dissipation from a mismatch of the system and the measurement device.

(Reference [28] recently considered the energy costs of such mismatches.) Thus, the relationship

between p and δ is qualitatively different than that between γ and δ.

Looking across the sweep of progress since his original results, we now see that Szilard’s con-

struction is a concrete example of Ashby’s Principle of Requisite Variety [29]: the variety of actions

available to a system controller must match the variety of perturbations it is able to compensate.

Specifically, Szilard recognized that a minimal system controller for a binary measurement must

have two states. (Yet again, Szilard predated the cybernetics era by several decades—a prescience

also noted by Ref. [2].)
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However, we also see a stricter requirement used to avoid unnecessary dissipation. The actual

distribution over the controller’s internal states must be the same as the system’s. This also touches

on the general arguments put forth in Ref. [30] that consider the efficiency of a thermodynamically-

embedded information ratchet which interacts with an information reservoir to extract work. Fi-

nally, one sees a clear parallel between the information-theoretic concept of optimal encoding [14]

in which minimizing the memory needed to store a particular message, the highest-probability

events are given the shortest code-words. And so, it should not be surprising that it is optimal to

match the controller to the system. However, it is gratifying to see such a clear and straightforward

example—an example unfortunately ignored by Szilard’s future colleagues.

The SMD model of measurement also provides a clear physical picture of adding memory to

a Maxwell Demon engine. If we imagine that the SMD has two bodies K1 and K2 that store

information, the single-particle Szilard engine can operate for two cycles without having to go

through an erasure process. Instead of erasing the first body at the end of the first cycle, the SMD

moves on to operate on K2—leaving K1 in whatever final state the first cycle determined. This

avoids increasing the universe entropy while extracting work from the Szilard engine heat bath.

This violation of the Second Law is only transient, though. To perform a third cycle, the SMD

must erase K1 or K2 to store the next measurement. At the point immediately before erasure in

each cycle, the joint system must pay the entropic cost for two fewer measurements than it has

made.

It is easy to see how this construction generalizes to larger physical memories consisting of N

memory “bits” K1,K2, . . . ,KN . With more memory, the joint system of the Szilard engine and

the SMD can continue to extract work from the engine’s reservoirs for additional cycles before

having to finally pay the cost of its first measurement. From that point forward, though, every

new measurement must be associated with an erasure of a previous one. This restores the Second

Law with respect to the erased measurement. Each measurement is eventually paid for and, as the

number of cycles grows large, the transient leverage from having a large memory becomes less and

less noticeable.
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1.6. Conclusion

Since Szilard’s day in 1929, the once-abstract conception of a molecular-scale “neat fingered

and very observant” being [1] that interacts with heat and information reservoirs has only be-

come more tenable, as modern computing emerged and micromanipulators were invented and then

miniaturized through nanofabrication techniques. Thus, understanding the workings of informa-

tion engines—microscopic machines interacting with such reservoirs—is now highly relevant, es-

pecially compared to the days when Maxwell first offered up the idea as a pedagogical absurdity.

This is evinced by, if nothing else, a constant and increasing stream of recent efforts that take

Szilard’s original single-molecule engine as a jumping off point to investigate how measurement,

information, thermodynamics, and energy interact with one another in support functional behav-

iors [31,32,33,34,35,36].

Szilard’s early models grounded Maxwell’s demon in physical embeddings. Since their intro-

duction they provided the bedrock for much debate and occasional insights over the past century,

largely through his first, brilliantly-simple single-particle engine. Here, we found that his second

(multi-particle) engine, though more obtuse in construction, captures all of the same compelling

consequences suggested by the first. Additionally, by setting the demon memory state to another

positional coordinate, it maps exactly on to the first engine’s operation as analyzed in Ref. [11].

In several important ways, though, his second engine is more physical and plausible. And so, the

multiparticle-membrane engine is more robust to criticism arising from concerns about applying

classical statistics to the behavior of the first engine’s single particle. Thus, the second engine’s

relationship to its single-particle sibling supports the physicality of the limits on information costs

as developed in Refs. [16,18,19,30,37].

Beyond the conceptual insights that arise from Szilard’s various engines, we can even be some-

what literal-minded. Szilard’s first engine has been the inspiration for a diverse set of models and

experimental realizations [38, 39, 40, 41, 42]. Recent developments in nanofabrication suggest at-

tempting to realize Szilard’s multi-particle engine, as well. For example, the graphene membrane

fabrication techniques discussed in Ref. [43] can provide mesoscale membranes with tunable pore

size, pore density, and mechanical strength that are well suited to molecular gas separation. Re-

call, too, that only-moderately complex biomolecules can store information in their conformational
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states. Thus, with the right gas ensemble, it is possible these designable membranes are good

candidates for the semipermeable membranes required by Szilard’s second engine. When coupled

with modern biomolecule synthesis and nanomechanical device design, a tantalizing engineering

challenge to implement Szilard’s second engine presents itself.

Szilard’s engines are simple enough to be readily analyzed, as we showed, with all hitherto

relevant thermodynamic and information calculations analytically solvable. We even have a measure

of the required demon “intelligence” in the controller’s memory—the statistical complexity. This

thorough-going look at Szilard’s original constructions gave reassuring results—results consistent

with the fundamentals of both information theory and thermodynamics.
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Appendix

1.A. Boyd and Crutchfield (2016)

The following summarizes components of Ref. [11] relevant to the main text’s arguments and

points out key comparisons between the two.

1.A.1. Thermodynamics. Reference [11] analyzes Szilard’s famous single-molecule engine

by choosing the demon’s memory to be stored in an auxiliary positional dimension. From this

perspective, the engine’s operation is captured by a three-stage piecewise chaotic linear map of

the unit square. Additionally, the thermodynamic cost of each stage is calculated by assuming the

working fluid behaves as an ideal gas under isothermal expansion and compression.

Reference [11] calculated the costs of measurement and erasure, finding:

QM = −kBT (1− δ) ln
1− γ
γ

and

QE = −kBT (1− δ) ln
1− γ
γ

+
T

kB
S(δ) .

As in Sec. 1.3.1’s analysis, erasure and measurement appear as a conjugate pair and the sum

total of the two is independent of γ and proportional to S(δ). Thus, the net thermodynamic cost

of the second engine is nothing more than N particles worth of the single-molecule engine cost.

1.A.2. Transducers ε-transducers. We again apply computational mechanics’ predictive

equivalence relation—now not to the gas’ microscopic state space but to the symbolic dynamics in-

duced by Markov partition of Fig. 1.7. This leads directly to an ε-transducer [27] that captures the

information processing embedded in the engine’s operation via causal states and their transitions.

Figures 1.A.1 and 1.A.2 show the transducer for each dimension—type and memory—separately

and Fig. 1.A.3 shows the ε-machine for the joint process.
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Composing Figs. 1.A.1 and 1.A.2 transducers with the period-3 input process—that specifies the

measure-control-erase protocol—gives an ε-machine that generates the output process for particle

type or for memory state. (In this case, this is trivially implemented by dropping the input symbols

{M,C,E} from the ε-transducer transitions.)

The two resulting ε-machines and that in Fig. 1.A.3 are counifilar [44]. Moreover, the processes

are not cryptic and this greatly simplifies calculating various informational properties. For example,

the entropy rate of the joint system’s machine (Fig. 1.A.3) is 1
3 H(δ) per step, consistent with the

analytical result for the Baker’s Map from Pesin’s theorem. It is also immediately clear from Figs.

1.A.1 and 1.A.2 that the statistical complexities Cxµ and Cyµ are equal though, the calculations for

Cµ are straightforward, nonetheless:

Cxµ = Cyµ

= −
[

1

3
log2

1

3
+

2

3

(
δ log2

δ

3
+ (1− δ) log2

1− δ
3

)]
= log2 3 +

2

3
H(δ) .

This reflects two choices in the construction of the map: first, setting the memory and type

parameters equal (γ = δ); second, choosing a uniform distribution over the full state space as the

initial and final state of the system. These choices symmetrize the stored information with respect

to particle type and memory state.

Appendix 1.A discusses these ε-machines and compares them to Ref. [11]’s results. The agree-

ment of the two analyses on various information-theoretic quantities establishes that Szilard’s first

and second engines are informationally and thermodynamically equivalent, though they arise from

rather different implementations.

While more insights on the engine physics can be extracted in terms of the ε-machines and

ε-transducers, we close by simply noting that the computational-mechanics analysis gave physically-

and informationally-interpretable results and identified functionally-relevant structure. This achieved

the principle aims of: (i) determining the correct information generation (entropy) rate, (ii) demon-

strating that this and the joint-machine information metrics align with those in Ref. [11], and (iii)
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|M :1− δ

�|E:1 |E:1

Figure 1.A.1. ε-Transducer for the particle type (x) subsystem. Protocol steps
are designated by color: (control, measure, erase) ⇔ (blue, green, red). Numbers
inside states correspond to the asymptotic state probability. The transition notation
s|d : p corresponds to emitting the symbol s with probability p given the driving
symbol d.

δ
3

1−δ
3

1
3

δ
3

1−δ
3

0|E:1

1|E:1

0|C:δ

1|C:1− δ

0|M :1 1|M :1

Figure 1.A.2. ε-Transducer for the memory state (y) subsystem. Notation as in
previous figure.

identifying a signature of the choices made in constructing the map, which was reflected in the

marginal machines’ symmetrized Cµs.

1.A.3. Information and Intelligence. Reference [11] concludes (i) the single-molecule en-

gine is represented by a chaotic map that converts disorganized heat energy to work at a rate

governed by the Kolmogorov-Sinai entropy rate and (ii) the engine’s minimum necessary “intelli-

gence” for optimal functioning is given by the engine’s statistical complexity. To investigate how
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0:1
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1:1

Figure 1.A.3. ε-Machine for the joint demon-particle system: Protocol steps des-
ignated by color as in Figs. 1.A.1 and 1.A.2. Driving symbols are suppressed in
the transition notation for clarity—s : p corresponds to emitting the symbol s with
probability p.

these ideas play out in Szilard’s second engine, we apply the predictive equivalence relation to find

a minimal representation of the thermodynamic system introduced in Sec. 1.3.1, as well as to find

the associated ε-machines that embody its information-processing; see Sec. 1.3.2).

The 2D Szilard Map introduced in Ref. [11] and that analyzed in Sec. 1.A.2 are both versions

of the well-known Baker’s Map. The primary difference between these maps arises from selecting

different initial-state distributions. In Ref. [11], the system’s initial state is chosen such that the

working fluid is compressed into the region y < γ—rather than occupying the full range y ∈ [0, 1]

with uniform density. We could easily reconstruct the second Szilard engine to have the same

initial state as the single-particle engine. For the purpose of illustration, though, we investigate the

map under the new default memory state. At this point, though, one fully expects the results to

agree with Ref. [11] on all quantities deriving from the thermodynamic cycle as a whole. Certainly,
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substage or marginal quantities may be shuffled around, but when examining the protocol cycle as

a whole one anticipates agreement with Ref. [11].

Once having constructed the ε-machines (Figs. 1.A.2, 1.A.1, and 1.A.3), we retrace the steps

in Ref. [11] to establish that Szilard’s first and second engines are informationally and thermody-

namically equivalent, though they arise from rather different implementations. First, we tackle the

one place in which the machines in Sec. 1.A.2 and in Ref. [11] differ.

There is a slight variation from Ref. [11]’s analysis of the statistical complexity Cµ—the infor-

mation in an ε-machine’s causal-state distribution {S}. Recall that:

Cxµ = Cyµ = log2 3 +
2

3
H(δ) .

In Ref. [11], it was not the case that the two marginal ε-machines had the same Cµ. Here, we see

the different choice of initial state playing out: the choice symmetrizes the stored information with

respect to particle type and memory state.

These results differ quantitatively from those in Ref. [11], but only due to an intentional change

to what we consider the default distribution. This, however, is the extent of the differences.

We can also calculate the join machine’s statistical complexity, finding: C joint
µ = 4

3 H(δ) + log2 3.

If we consider the relationship between the second engine’s three machines, we obtain C joint
µ =

Cxµ +Cyµ − log2 3. When analyzing the same relationship for the ε-machines in Ref. [11], we obtain

the exact same expression.

So, we see that the first and second engines have the same information related to synchronization

of their two respective subsystems—demon controller and particle “thermodynamic” subsystem.

For the original single-molecule engine these subsystems were demon memory and molecule position;

for Engine Version 2.5, they are shape and color subsystems.

We can explicitly check that all other informational measures for the ε-machines in Sec. 1.A.2

agree with those in Ref. [11]. In doing so, we recover the same values for the asymptotic commu-

nication rate (mutual information between type and memory processes):

lim
L→0

I[X0:L;Y0:L]

L
=

1

3
H(δ) ,
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the correlation rate (also a mutual information, but between particle-type causal states and particle-

memory causal states):

lim
L→0

I[Sx0:L;Sy0:L]

L
=

1

3
H(δ) ,

and the interdependence of the correlation during the protocol steps (a conditional mutual infor-

mation):

I[X0 : Y0|M ] = H(δ) .

Note that the measurement step is where the single-symbol correlation is established. So, it

stands to reason that the correlation dependence is localized there.

1.B. Entropy Change

Our goal is to determine ∆S in Szilard’s second engine. The Sakur-Tetrode equation, the

starting point, is:

S = NkB ln
V

N
+

3

2
NkB ln

4πmU

3h2N
+

5

2
NkB .

Terms that remain constant throughout an engine cycle can be neglected for our purposes. Cursory

inspection reveals that ∆S will be determined by, at most:

NkB ln
V

N
+

3

2
NkB ln

U

N
.

In our case, the energy density term also drops out, since both the initial and final macrostates

reach the equilibrium distribution N� = δN and N© = (1− δ)N . And so:

U

N
= δεA + (1− δ)εB + KEavg ,

for any number of particles, where KEavg is the average kinetic energy. Finally, since each container

has the same volume, the volume term does not contribute. Calculating the resulting entropy change
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is straightforward, but requires attention. After some algebra, we have:

∆S

kB
= −δ lnN� − (1− δ) lnN© + lnN

= − (δ ln δ + 1− δ ln(1− δ))

= S(δ) .

1.C. Free Energies

A similar need arises for obtaining the free energy in Szilard’s second engine. We start observing

that:

Wqs = ∆Ures + ∆Usys .

If reservoir volume remains constant, we note that Qres = ∆Ures. Then, using the expression above,

we find ∆Sres = Qres/T is given by:

T∆Sres = Wqs −∆Usys .

Thus, the total entropy change, including both the system and the reservoir must then be:

T∆Sres + T∆Ssys = Wqs + T∆Ssys −∆Usys .

The difference of T∆Ssys − ∆Usys is nothing more than the change in the system’s free energy

−∆Fsys. Following Szilard’s statement, we choose a reversible process (∆Sres + ∆Ssys = 0). This

allows us to find the work to drive the quasistatic step:

Wqs = F (ρ0)− F (ρ) .
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Adding the energy change W∆H = 〈Hρ〉ρ−〈H0〉ρ and the quasistatic work Wqs yields the the total

driving work for both steps of the equilibration process:

Wdrive = 〈Hρ〉ρ − 〈H0〉ρ + (〈H0〉ρ0 − TS(ρ0))

− (〈Hρ〉ρ − TS(ρ))

= 〈H0〉ρ0 − 〈H0〉ρ + T (S(ρ)− S(ρ0)) .

1.D. An Erasure Alternative

Consider a different choice for the final erasure step in the Szilard Map.

We could simply remove the partition and allow the gas to spontaneously re-equilibrate. This

gives the same relationship in terms of entropy, but we forego the advantage of a clear way to

extract work that can be harnessed by the entropy increase.

Specifically, the change in entropy when mixing two identical gases at different densities depends

only on that part of the entropy given by ln(V/N). Initially, there are two separate gases with the

relevant entropy components:

SA + SB = NkBδ ln
`γ

δN
+NkB(1− δ) ln

`(1− γ)

(1− δ)N
.

In the final state, we have a single gas:

SF = NkB ln
`

N
.

The difference gives the entropy change:

∆S

NkB
= ln

1

N
− δ ln

γ

δN
− (1− δ) ln

1− γ
(1− δ)N

= −
(

(1− δ) ln
1− γ
1− δ

+ δ ln
γ

δ

)
.

1.E. Ideal Gas Causal States and Szilard Engine Demon-Particle Gas

This section details the key steps showing the dynamics in the high-dimensional microstate space

of the Szilard engine demon-particle gas reduces to the evolution of a distribution of demon-particles

under a two-dimensional map of the unit square. One step argues that applying computational

40



mechanics’ predictive equivalence relation to a 1D ideal gas reduces its 2N -dimensional microstate

space to a space (of causal states) that describe a single-particle dynamics. That is, we need

only track the evolution of a distribution of demon-particles under the single-particle dynamic.

This happens since an ideal gas of N particles reduces to having microstates that evolve with

no history; that is, the gas-particle trajectories individually evolve as independent, identically

distributed random variables. Then we show how the predictive equivalence relation reduces the

demon-particle 3D state space to a 2D state space.

Generally, the predictive equivalence ∼ε relation reduces the high-dimensional microstate his-

tory χ−∞:0 to only that information from the past needed to predict the microstate’s future evolu-

tion χ0:∞ [25]:

χ−∞:t ∼ε χ∞:t′ ⇐⇒

Pr(X0:|X:0 = χ−∞:t) = Pr(X0:|X:0 = χ−∞:t′) ,

where t 6= t′. In brief, it groups histories that are equally-predictive of the future. Those groups are

a process’ effective states. Here, the semi-infinite past χ−∞:t = (χ−∞, χ−∞+τ , . . . , χt−τ , χt) and,

similarly, χt:∞ denotes the semi-infinite future. Note that time is discretized on a timescale τ .

Consider an ideal gas composed of N particles in 1+1 dimensions, with time discretized on the

scale of our Szilard map substages. The microstate trajectory χ−∞:t at time t holds all possible

information about the system: it stores the position and velocity of each particle at each time

up to time t: χ−∞:t = (x1
−∞:t, v

1
−∞:t), (x

2
−∞:t, v

2
−∞:t), . . . , (x

N
−∞:t, v

N
−∞:t). The microstate χ is over

burdened: It is not necessary to store the semi-infinite past if the goal is to predict future behavior.

Instead, since the ideal-gas dynamics are Markov, we need only store the current state variables.

Thus, the semi-infinite past is equivalent to the present under the predictive equivalence relation:

χ−∞:t ∼ε χt =
(
(x1, v1), (x2, v2), . . . , (xN , vN )

)
t
. This is a familiar theoretical shorthand: identify

states that have the same present with each other, regardless of their pasts.

Moreover, the gas demon-particles are also noninteracting, so the causal state can be expressed

as a direct product: χt = (x1, v1)t × (x2, v2)t × . . .× (xN , vN )t.

This reduction is quite general. We can further reduce the dimensionality of our specific system,

however, by applying the causal equivalence relation again. Since time is discretized on a scale τ that
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is much longer than the time scale on which the demon-particle equilibrates, we consider (xi, vi)t+τ

to be uncorrelated with (xi, vi)t. This second application of the causal equivalence relation reduces

our system to each particle having the same state: for any particle, xt+τ is chosen by a uniform

distribution over any position in the gas’ container—regardless of its coordinates at time t. Thus,

the causal state for each particle is only what container it is in at time t.

In the case of a single container, there is only one causal state σ—in which the future is decided

by N flips of a “fair coin” over the gas’ container; χt = σ1 × σ2 × σ3 × . . . σN .

Furthermore, the particles are indistinguishable, so there is also an equivalence between any

states that are related by shuffling particle indices. There is no meaning to the labeling of the

different particles, and they all are contained in the same causal state. Thus, the previous causal

state reduces simply to N copies of the single particle dynamic: χt = N · σ.

The predictive equivalence relation also helps explain the dimensional reduction of our engine’s

positional coordinates under the Markov partitioning of Fig. 1.7’s symbolic dynamics. Inspect-

ing the transformations that make up the Szilard engine cycle (Fig. 1.8), we find two types of

transformation. The first (measurement, for example) is of the form:

(�, 0, L)

(�, 1, L)
→ (�, 0, L)

and

( , 0, L)

( , 1, L)
→ ( , 1, L) .

This transformation includes state collapse, and so might prove to be thermodynamically relevant.

However, the (L,R) dimension does not play a role here. The state (�, 0) is just as useful pre-

dictively as (�, 0, L). Truncating the third symbol, thus, gives a smaller (minimal) representation

that is just as informative.
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We also need to consider the other type of transformation, which is the first part of the control

step:

(�, 0, L)→ (�, 0, L)

and

( , 1, L)→ ( , 1, R) .

The (L,R) dimension does come into play here, but this step has no merging or expanding in

state space—thus, it is thermodynamically mute. The (L,R) dimension is a bystander in the first

example: present but not participating. In the second example, the (L,R) dimension does play a

role—but it is the only thing changing and the transformation is a deterministic state translation.

Each of the transformations in Fig. 1.8 falls into the two categories above, so the (L,R) dimension

is not part of a minimal representation. It can be ignored and so the effective dimension of the

symbolic dynamics is reduced further.

1.F. Szilard Engine Maps

There are three discrete-time maps of the unit-square state-space that correspond to

measurement :

τM(s, y) =


(s, yγ) s < δ

(s, y(1− γ) + γ) s > δ

,

control :

τC(s, y) =


(
s
δ , y
)

y < γ(
s−δ
1−δ , y

)
y > γ

,

and erasure:

τE(s, y) =


(
s, yγ δ

)
y < γ(

s, (y−γ)(1−δ)
1−γ + δ

)
y > γ

,

respectively.
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Taken together, and specializing to the case where δ = γ, we have the composite Szilard Map:

τSzilard(s, y) = τE ◦ τC ◦ τM

=


(
s
δ , yδ

)
s < δ(

s−δ
1−δ , δ + y(1− δ)

)
s > δ

.
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CHAPTER 2

Simulating Computers and Engines

While there is great didactic power in using an ideal gas undergoing quasi-static isothermal

processes to rectify the second law in a Szilard engine, it is also profoundly unsatisfying. It leaves

many questions (both practical and detailed) unanswered. First and foremost among these is

what happens when we leave the idealized behavior behind: when our system has a finite size (less

‘thermodynamic’) and operates on a finite time scale (less quasi-static)? To answer this question, we

turn to the perspective of thermodynamic computing [45], a framework in which degrees of freedom

are treated as thermal particles evolving in a time dependent potential energy surface. In doing so,

we also make an important conceptual shift from ‘engines’ to ‘computations’. Instead of thinking

about small physical systems as substrates for energy extraction, we can consider these systems as

computational devices. The task becomes enacting a particular operation on the distribution over

the system’s states, and the energetic costs (heat, work) are byproducts of this goal; the work cost

may be negative, and in this case we can consider the machine to be an engine. In this way, a

larger range of devices are considered taking into account the full interplay of information, energy,

and thermodynamic entropy.

2.1. What is a Computation?

In the most general sense, a computation can be thought of as any information processing

operation: an operation that interfaces with Claude Shannon’s notion of information. Taking

Shannon’s definition of information as the average value of the log probability over some distribution

H(ρ) = 〈− ln ρ〉. Here, information is a functional of a distribution, so a computation is a map

between two distributions. We take a system from one state of knowledge to another through

some dynamics. This is appealing due to its obvious breadth, but it is preferable to have a more

specific and limited perspective, so we turn to modern ideas of digital computation. Consider,

for example, a two state system m ∈ {0, 1} defined by a distribution at time t′ given by ρt′ =
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(Pr(x = 0|t = t′), P r(x = 1|t = t′)). If we simply want to take this system from a distribution

ρ0 = (.4, .6) to ρτ = (.2, .8) at time τ there are infinite ways to do so. One way is to take state 1 to

itself, but takes state 0 to either 0 or 1 with even probability. Another method would be to map

0 to 1 with certainty and map 1 to 0 with probability 1/3. In a very real sense, we can consider

these as different computations despite affecting the same change in Shannon entropy. In digital

computing, the object of interest is not the overall distribution over inputs and output states but

the conditional maps between input and output states. Thus, we consider a computation to be

a conditional map C = Pr[m(τ)|m(0)] over some set of states M from an initial memory state

m(0) ∈ M to a final one m(τ) ∈ M. This map evolves the distribution of states according to the

equation ρτ = Cρ0.

On top of the mathematical definition above, we also consider that all computations must be

physically embedded. Thus, when considering how to implement the map C, limitations from the

physical substrate are of incredible importance. In order to get a more focused picture, we again

limit the scope of our interests. First, we will deal systems whose degrees of freedom are operating

only in the classical regime. The restriction to the classical regime means that the two level system

described above cannot be thought of as the microscopic degrees of freedom of some system. In

the classical regime: the degrees of freedom are continuous– a microscopically two-level system is

not possible. Instead, our memory states M represent a set of mesoscale states that are some

coarse graining over the microscopic states S. Second, we will look at systems that operate on

energy scales that are comparable to the energy scales of the thermal environment. This choice is

to allow us to consider the most efficient protocols possible, since information theoretic bounds on

information processing are typically at or near the kBT scale.

2.2. Memory and Metastability

In order for M to represent operationally useful states, the coarse graining needs to satisfy

certain criteria. We first explain through an example by using the coarse graining used to define

the informational states in the previous chapter ( see section 1.3.2.) The 3D unit box contained

impermeable membranes that could either allow or disallow transitions between the coarse grained
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states, so it was possible to define a set of discrete mesostates that faithfully captured the infor-

mation processing in the protocol. In this case, the walls were ideal in that they were able to

completely invalidate transitions between certain memory states. This means our coarse graining

into informational states is useful on any timescale we choose. The downside is that such forbidden

transitions require the energetic barrier between states to be infinitely large. Because we are look-

ing to operate on kBT scales, this needs to be relaxed. To do so, we need to maintain a concept

of ‘information lifetime’. This can be described approximately with a heuristic: the transitions

between microstates that make up a particular m ∈ M must happen on a shorter time scale than

the transitions that happen between microstates that belong to different m’s. This transition rate

between disparate m’s is what defines the ‘information lifetime’, it tells us how long a microstate

that starts in one memory state is likely to stay there. A coarse grainingM is useful at timescales

that lie between the two scales: long enough that there is good mixing of the microstates that lie

with a memory state but short enough that there is negligible mixing between them.

Going back to at least Landauer’s seminal paper on erasure [19], it was recognized that degrees

of freedom that have multi-well potential energy surfaces were great candidates for information

storing systems. Here, the energetic barriers that separate the wells needn’t be infinite. Instead

we can think of a barrier energy as setting the temperature and timescale at which the relevant

wells serve as good memory mesostates. Assuming no stochastic thermal agitation, if a particle

has energy less than the barrier height then it will stay within one well, and the well serves as a

good memory state. For particles in contact with a thermal bath the energy of a particular particle

changes over time, and is potentially subject to large fluctuations. Nevertheless, energy fluctuations

from a thermal bath defined by inverse temperature β are exponentially damped in βE, so these

energy fluctuations are rare provided that the energy barrier necessary to leave a well is larger than

kBT .

Notationally, the N memory states along a particular dimension q will be written asmq ∈ N0:N−1

with a joint memory state over both q1 and q2 given by mq1q2 ∈ N0:N1−1 ⊗ N0:N2−1, different

states along a particular dimension will simply be numbered so that a dimension broken into a

binary(trinary) state space will have its states labeled 0, 1(0, 1, 2). This is a standard choice, and

lines up well with contemporary digital computing where a continuous set of possible electrical
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currents are coarse grained into a low current 0 state and an high current 1 state. For a multi-well

potential energy surface, it is the continuous set of positional degree of freedom that are coarse

grained into the memory states. Provided that each positional dimension only stores a binary

degree of freedom, it is simplest to coarse grain so that the information is stored in the sign of the

position. This is Landauer’s picture of the symmetric bi-stable well storing a ‘bit’ of information;

a particle with a negative(positive) x value is likely to be near the bottom of the well located in

the negative(positive) semi-plane. We will follow this sign coarse graining unless explicitly noted

otherwise.

2.3. Langevin Dynamics

With a basic understanding of the neccesities, we begin by building a compelling and appropriate

toy model. Assume a ‘universe’ governed by a hamiltonianH that obeys the deterministic equations

of motion of classical physics. Our interest, however, lies in only a small subset of the entire

universe– the computational system H(x) = 1
2mẋ

2 +U(x, t)– which is composed of some relatively

small number of classical degrees of freedom that we are able to control by changing the potential

energy over time. The dynamics of this partially observed system are no longer deterministic, but

stochastic, due to unobserved differences in the initial state of the rest of the universe– which we call

the environment. If the environment is a large weakly-coupled heat bath, with degrees of freedom

that relax sufficiently quickly, the effective dynamics for our system of interest S are well modeled

by Langevin dynamics:

dx = vdt(2.1)

Mdv = −γvdt− ∂xU(x, t)dt+
√

2γkBT r(t)
√
dt .(2.2)

In these dynamics we can see the interplay between stochastic impulses from the bath in the

third term, viscous damping in the first, and the deterministic control that we apply in the second.

Simulating these equations of motion for different systems and protocols will serve as our primary

way to investigate finite time nonequilibrium effects. Before going on to these simulations, we first

cast the equation in terms of dimensionless equations of motion in order that they be suited for easy
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simulation. Our procedure for non-dimensionalization will include a redefinition of all dimensional

variables (x, t,M,U, T ) according to the prescription x → xxc where the dimensional variable is

now expressed as a demensional scaling xc and a dimensionless number x. Applying this to the

equations of motion above yields

dxxc = vvcdttc(2.3)

dvvc = − γ

Mc
vvcdttc − ∂x

1

MMcxc
UcU(x, t)dttc+

√
2γkBTTctc
M2M2

c

r(t)
√
dt(2.4)

With a few ‘common sense’ definitions we can recover a Langevin dynamic for the dimensionless

variables. First, we define our scales so that vc = xc
tc

. This recovers the relation dx = vdt for the

dimensionless variables. This leaves the second equation as

dv = −
(
γtc
Mc

)
vdt−

(
t2cUc

MMcx2
c

)
∂xU(x, t)dt+

(√
γkBTTct3c
x2
cM

2M2
c

)
√

2r(t)
√
dt(2.5)

Direct inspection can show that each term in parenthesis is a dimensionless quantity in its own

right. First we recognize that γ must have units of mass
time from the original equations of motion.

This makes the first term trivially dimensionless. The second term is clearly dimensionless because

energies have the same units as mass ·velocity2. The third term can be recognized as dimensionless

by writing it as a product of two dimensionless terms:

(√
γtc
MMc

)(√
kBTTct2c
x2
cMMc

)

We can define a simulation parameter for each dimensionless prefactor in equation 2.5, yielding

a simplified Langevin equation in terms of purely dimensionless variables and these parameters.

dx = vdt(2.6)

dv = −λvdt− θ∂xU(x, t)dt+ η
√

2r(t)
√
dt .(2.7)
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The definitions of the simulation parameters (λ, θ, η) can be inferred by comparison with equation

2.5. Of course, setting these parameters to particular values will represent certain relationships

between the dimensional parameters– but interpreting these relationships will depend heavily on

the system of interest because the problem is largely underdetermined at this level of abstraction.

There are many different relationships between the parameters that will give you η = 1, for example.

2.4. The Szilard Engine as a time-dependent potential

Now that we are equipped with an appropriate framework and toolset, we can investigate the

question at hand: what are the energetic consequences of implementing a Szilard engine in finite

time, rather than the infinite time case considered in chapter 1. The process is straightforward.

First, create a time dependent potential that will implement the conditional maps we want. Second,

using the Langevin equation, simulate an ensemble of trajectories with the initial states sampled

from the equilibrium distribution according to the potential energy landscape at t = 0. Lastly,

analyze the results by looking at the ensemble of simulated trajectories.

The first order of business is to construct a time dependent potential that will implement the set

of conditional maps that define the steps of the Szilard engine: measurement, control, and erasure.

Recall that the engine is implemented in a 2D state space, with each dimension separated into two

different memory states. Our Szilard implementing system must have 4 distinct states (potential

energy minima) mxy ∈ (00, 01, 10, 11). This suggests a polynomial potential with at least 4th order

terms in each dimension to allow for a bistable potential in each direction. Quadratic terms are

also necessary, to provide an energy barrier between the wells. Recall that the Szilard engine begins

with a uniform distribution over the state space. The analog here is a uniform distribution over

the memory states ρ0 = (.25, .25, .25, .25) which can be achieved with an initial potential energy

surface that is symmetric in x and y exchange (see the left panel of figure 2.4.1). To implement

measurement, we want to implement the following map on the memory state space.

Cmeasure =


1 1 0 0

0 0 0 0

0 0 0 0

0 0 1 1


.(2.8)
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This represents establishing a coupling between the x and y memory states. If the initial

marginal x memory state was mx = 0(1), the full state will now be mxy = 00(11) with certainty.

However, recognizing the stochasticity from the thermal environment, a perfect map is not assumed

to be possible. Rather, we can consider that each zero in the map above is some small nonzero

number quantifying an error rate. In a physically instantiated protocol, the first column of the

matrix above will actually be (1− ε00, ε00,01, ε00,10, ε00,11) where ε00 =
∑

ij 6=00 ε00,ij is defined such

that the matrix is column stochastic and ε00,01 denotes the error rate of trials that started in

state 00 and ended in state 01 instead of 00. The total error rate of the computation is given by

ε = ρ0 · (ε00, ε01, ε10, ε11). To avoid verbosity in the expression, these ε’s will be suppressed in the

transformation matrices.

While the operation is defined in terms of the coarse grained informational state space M, the

potential energy landscape and the Langevin dynamics operate on the underlying phase space vari-

ables of our system. In terms of these microstates, the operation can be implemented by removing

the barrier between the wells that correspond to the same sign of x and then lowering the energy

of the desired end state, depending on wether x is positive or negative (for a qualitative depiction,

see the center panel of figure 2.4.1.) On some time-scale the particles will locally equilibrate to this

new potential energy surface within their mx memory state; hopping over the barrier that separates

mx = 0 and mx = 1 will be surpressed by the energetic barrier provided that it does not take too

long for the aforementioned local equilibration to occur. This can be thought of as two ‘erasure’ or

‘reset’ processes, where the reset state is different in the left and right semi-planes. The necessity

of such a potential energy profile reveals the need for terms that are odd in both x and y, because

the potential is not symmetric across the axes, and terms that couple the two variables together,

because the need for the final my state to be conditioned on the mx state.

The control stage of the engine, in which work is extracted from the system, is a re-equilibration

along the x dimension. Raising the barriers between my = 0 and my = 1 again, we then lower the

barriers that separate the wells that correspond to memory states with the same value for my, as

depicted in the right panel of figure 2.4.1. The idealized map is

51



Figure 2.4.1. Qualitative potential energy landscapes that will implement the Szi-
lard engine. Left is the initial potential energy profile, center is the potential energy
profile during the middle of the measurement step, and right during the control step.

Ccontrol =
1

2


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


.(2.9)

Again, errors have been suppressed. A similar argument as above holds: because the barrier that

separates my into 0 and 1 is still raised, the equilibration between 00 and 10 will happen on a

much shorter timescale that equilibration that involves hopping over the energetic barrier. The

final step is erasure, where we close the loop of the cycle. The potential is returned to its initial

profile by once again raising a barrier between mx = 0 and mx = 1. Because the distribution over

the four memory states is already approximately uniform at the end of the control step, the erasure

step does not change the distribution and should be costless in the quasi-static limit. This is not

surprising since the considerations in chapter 1.3.1 revealed that the cost of erasure vanished in the

case that γ = δ.

2.4.1. The explicit potential. Having laid out the overall qualitative shapes that the po-

tential energy must take, an explicit form must be chosen. The simplest potential that can display

the behavior would be of the form:

U(x, y) = Ax4 +By4 + Ex2 + Fy2 +Gxy +K .
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Here, the capital letters represent time dependent parameters so the potential is implicitly time de-

pendent. It is not evident merely from inspection how to change the parameters to yield the desired

potential energy landscapes, so we turn to feature focused way of understanding the landscape.

Rather than the most general form, we look at the potential as a sum of pieces U(x, y) =

Uwell + Uoffset + Uwell. Each piece provides topological features in the potential energy surface

that can be adjusted individually. The simplest is Uwell, which represents four symmetric wells at

(x, y) = (±`,±`) of depth swW :

Uwell = swW
(
(x− `)2(x+ `)2 + (y − `)2(y + `)2

)
.(2.10)

Writing the well depth a dimensional scale sw and non-dimensional W allows for the separation of

the control protocol and the scale of the energetics involved, which is a useful abstraction because it

allows the same time dependent signal (W (t)) to be used for multiple energetic scales. Importantly,

the terms in Uwell are the only 4th order terms in U(x, y); for coordinates that lie far from the four

well region of state space it will always dominate.

This allows us to define the other two pieces of the potential energy to have a local impact

without interrupting the global stability of the potential. The next term Uoffset allows for localized

offsets for each well. It is composed of functions of the form

g(L, x, y) = (L+ x)(L+ y) .(2.11)

This function energetically biases the quadrant that contains the point x = L and y = L since

the product will be maximized there while being minimized near any point for which x = −L or

y = −L (which will happen near the minima of the wells in every other quadrant.) In full, the

offset term is given by the following expression:

Uoffset = sL (D00g(L,−x,−y) +D01g(L, x,−y) +D10g(L,−x, y) +D11g(L, x, y)) .(2.12)

The prefactors Dmxmy determine the local offset of each well and the L parameter sets the

intensity of how quickly the offset drops off over space as well as the location where the boost is
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maximized. The last component of the potential, and the most complicated are local barriers that

can be used to control the probability of a particle jumping from one well to the other. The base

unit for the barriers are functions of the form

h(L, x, y) = (L+ x)(L+ y)(L− y) .(2.13)

Intuitively, this potential is a barrier between the wells located on either side of y = 0 that both

have a positive x coordinate. Again, L gives a length scale for the intensity of how quickly the

barrier drops off over space. The full term for all four barriers is given by:

Uoffset = sB (D+,±h(B, x, y) +D−,±h(B,−x, y) +D±,+h(B, y, x) +D±,−h(B,−y, x)) .(2.14)

Where the prefactors are named suggestively so that D±,−, for example, parameterizes the height

of the barrier between positive and negative x values for the wells that are both located at negative

y values.

All said and done, the explicit form of this potential is very verbose– but having broken down the

potential into operationally useful features, we are able to have an incredible amount of flexibility

in control. In a general sense, this potential takes the form of

U(x, y) = Ax4 +By4 + Cx2y +Dxy2 + Ex2 + Fy2 +Gxy +Hx+ Jy +K .

So the tradeoff of this readily programable potential is additional terms beyond the minimally

required ones, specifically the terms that are linear in x and y and also the third order terms xy2

and x2y.

2.4.2. The Szilard Protocol. To implement the Szilard protocol outlined above, we will

need to control ‘knobs’ that allow us to lower the energy level of the 00 and 11 wells (represented

by the parameters D00 and D11), and all four barriers (represented by the various D±,± terms). All

other parameters are held fixed over time. The left panel of figure 2.4.1 shows the initial potential
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energy profile, which corresponds to setting W = 0, Dmxmy = 0, and D±,± = 1. The protocol is

implemented in six distinct steps:

(1) The barriers that separate wells that share an x coordinate are lowered by decreasing D−,±

and D+,± from 1 to 0

(2) The 00 and 11 wells are made energetically favorable by lowering their energy values. This

is accomplished by decreasing D00 and D11 from 0 to −1. The potential energy profile

now resembles the middle panel of figure 2.4.1

(3) The barriers that separate wells that share an x coordinate are raised again by increasing

D−,± and D+,± from 0 to 1

(4) The barriers that separate wells that share an y coordinate are lowered by decreasing D±,−

and D±,+ from 1 to 0

(5) The 00 and 11 wells are returned to their original energy values. This is accomplished

by increasing D00 and D11 from −1 to 0. The potential energy profile now resembles the

right panel of figure 2.4.1

(6) The barriers that separate wells that share an y coordinate are raised again by increas-

ing D±,− and D±,+ from 0 to 1. This returns the potential to its initial configuration,

completing the cycle.

A graphical representation of the time dependent signal for each nontrivial parameter can be

found in figure 2.4.2. It is worth noting that this implementation is, in no way, the unique solution.

There are many different ways to implement the desired maps even assuming that we restrict our

control knobs to the ones already described. For example, the order of steps 4 and 5 above could

be swapped without ruining the qualitative integrity of the computation.

2.5. Finite time Cycle

Despite concerns of a lack of unique implementation, the behavior that we wish to showcase,

the thermodynamic costs’ behavior as we leave the quasistatic regime, is largely implementation

agnostic. In infinite time, the process will take arbitrarily little work to accomplish (because

the process is cyclic, and thus the free energy of the initial and final distribution is the same)

and generate an arbitrarily small amount of entropy in the reservoir. As we diverge from this
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Figure 2.4.2. A graphical representation of the six steps of the Szilard protocol.
This can be interpreted as time dependent control signals that are sent to the six
tuning knobs we need to implement the protocol. Even from such a simple con-
struction, it is easy to see that the protocol is not unique. The linear ramps could
be sigmoids, or step functions, or even overshoot the target values. Additionally,
the order of some of the steps– such as the first and second steps– can be changed
or combined into a single step where two signals change at the same time. This is
worth noting, because it hints at the high dimensional space that needs to be swept
to find optimal implementations, but is not a pressing concern for the questions at
hand. Animations of the protocol and a sample of simulated trajectories can be
found at https://kylejray.github.io/szilard/
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case and compute more quickly, the distribution is no longer always the equilibrium distribution

associated with the instantaneous potential energy profile and thus heat begins to dissipate into

the bath as the particles re-thermalize. General treatment of this nonequilibrium behavior is

not trivial, though there are many results that give qualitative patterns within specific regimes

( [46,47,48,49,50,51,52,53,54] to name only a tiny fraction). Armed with many such theoretical

treatments of control protocols, simulation can serve as a testbed against which we judge the validity

of these various results and see how their consequences play out in explicitly formed systems.

With the explicit dynamics, potential energy surface, and control signal given in the preceding

sections, a suite of simulations can be carried out that show us what happens when we implement

a cyclic protocol in finite time. Of primary importance is the net work cost of the protocol on

average. The work cost represents the amount of energy exchanged with the work reservoir during

a protocol when changing the energy level of the system’s states, and can be calculated as a function

of a particular system trajectory x(t) = (x(t), y(t)) by

W (x) =

∫ τ

0
∂tU(x(t), t)dt .(2.15)

In the case of a discretized simulation the trajectories are defined over some finite set of times ti,

and the integral is well approximated by the following sum W (x) ≈
∑

i U(x(ti), ti+1)−U(x(ti), ti)

provided a sufficiently fine time resolution. By sampling a large ensemble of N trajectories from the

equilibrium distribution associated with U(x, 0) we can then estimate the average work necessary

to implement the operation with a straight average〈W 〉 = 1
N

∑N
j=1Wj .

Figure 2.5.1 shows the results of averaging over ensembles of 10,000 simulated trajectories.

In each ensemble, the particles were exposed to the potential and time dependent control signal

described above– twelve different values for the dimensionless duration τ were chosen from τ = 1

to τ = 200. A common result for the work cost of thermodynamic control protocols implemented

in a finite time τ is what the work cost is expected to grow as 〈W 〉 ∼ 1
τ [46,47,48,49,50,51]. This

result is borne out in the simulations, but there are also hints that the 1
τ is only valid in certain

regimes.

Looking from the longest to the shortest values of τ , three regimes can be identified. The first

regime, indicated by a blue highlight, is what we might think of as the quasi-static regime. Here,
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the instantaneous distribution over the system states closely follows the instantaneous equilibrium

distribution. In this regime, the 1
τ scaling of the work is very reliable and τ can be considered large–

which means that the work cost is not very sensitive to changes in the computation timescale and

is very close to the infinite-time equilibrium result of 〈W 〉 = 0.

The next regime, which we will refer to as the ’barely-static’ regime, is indicated by an orange

highlight. Here, the 1
τ is still valid– but τ is no longer large. The work cost becomes sensitive to

changes in timescale; while the fidelity of the computation remains high, it costs more and more

work to maintain. In this regime, the instantaneous distribution of the system states begin to

depart markedly from the equilibrium distribution. It is somewhat remarkable that even as the

distribution departs from the intuitive distribution used to create the protocol the 1
τ scaling is

carried over from the linear-reponse regime.

This cannot continue forever though, and a third regime emerges for short timescale protocols.

In this case, the distribution becomes very different from the equilibrium distribution and a 1
τ

scaling of the work cost ceases to accurately describe the behavior. This regime is indicated by a

red highlight, and is characterized by a significant decrease in the fidelity of the computation. The

protocol is attempting to operate faster than the system can adequately respond to it, and so the

protocol begins to have an effect that departs from the desired one. As the timescale becomes very

short, the work cost drops– but so does the fidelity. Thus, while it is costing very little to do the

protocol– this drop in cost merely means that the computation is failing. It costs very little, but

also accomplished very little.

This glimpse into the world of nonequilibrium protocols only brings up further questions. For

example: what mechanism explains the increased work values? what quantities determine the

timescale over which the linear response approximations break down? To answer these more detailed

questions, we need to appeal to more detailed simulations. Figure 2.5.2 shows the results of more

detailed simulations in which 100,000 trajectories were simulated at four different values of τ . More

trajectories allows us to look at the distribution of work values rather than rely on the average alone.

In the quasistatic case, where τ = 400, we gain very little from looking at the distribution

rather than the average. The average value is displaced somewhat from 0, the distribution over

different work values is narrow, unimodal, and symmetric. As we proceed from the top to the
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Figure 2.5.1. ((left, center) The results of implementing the Szilard protocol at
twelve different timescales. Three regimes can be identified: the quasistatic regime
(blue), the barely-static regime (orange), and the failure regime (red). (right) A
qualitative curve showing the idealized 1

τ behavior of the work cost’s dependence
on the timescale of the computation according to a wealth of different analyses (see
references in text).

bottom of figure 2.5.2, the distributions are no longer well approximated by their average values

alone. While the average work costs will display 1
τ scaling regardless of the protocol implementation,

the distributions over work outcomes and the timescale over which these distributions morph will

depend on the specifics of the system. This is one reason that simulations of ensemble trajectories

can yield powerful and unique insights about the nonequilibrium properties of thermodynamic

control protocols. Armed with data for all the trajectories, we can even preform an even more

detailed analysis that looks at only pieces of the full trajectory ensemble. This can be used to gain

some insight about the mechanism by which the work distributions are deformed by nonequilibrium

effects.

Consider that the difference between the first half of the protocol and the second half is that

the first half mostly lowers the energy levels of the system states and the second half re-raises

them to their initial values. Thus, if we separate each trajectory into its first and second half, we

expect to see the first half to have a negative work value and the second to have a positive one.

In the quasi-static case, because the net distribution is nearly symmetric, we would expect these

positive and negative contributions will be nearly symmetric as well. What will happen, though,

as we depart from the known case? Is the drift towards positive average work caused primarily by

changes in the negative work parts of the trajectory, or the positive work parts? Figure 2.5.3 shows

the same data as before, but with additional density plots for the work during the first and second

half of he protocol.
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Figure 2.5.2. Work distributions for 100,000 at four different computation
timescales τ . The top case is essentially a quasistatic protocol. While there are
signatures of finite time in that the average value is displaced from 0, the distri-
bution is simple: narrow, unimodal, and symmetric. As we proceed from the top
to the bottom, the distributions are no longer well approximated by their average
values alone. Each plot is a density histogram with a log scale in the y axis.

The plot shows that, while both distributions evolve interesting features and skew towards

positive work, the part of the protocol that has negative work on average is more heavily affected

by the finite time effects of quick computation.

2.6. Fluctuation Theorems

In order to understand this, and other nonequilibrium effects, a more fundamental theory than

purely equilibrium or linear-response thermodynamics is required. This theory falls under the now
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Figure 2.5.3. The same work distributions showed in figure 2.5.2 with sub-
stage distributions overlayed on top. The orange(green) distributions include the
first(second) half of the protocol only.

large umbrella of ‘fluctuation theorems’, which we will deal with in the next chapter. However, as

a small preview, let’s look at a well-founded thermodynamic equality that will hold true for all four

timescales: the Jazynski equality. The equality, which applies in the case of cyclic protocols like

the Szilard cycle, is given by the relation:

〈e−βW 〉 = 1(2.16)
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Figure 2.6.1. The Jarzynski equality applied to the full work distributions. The
x axis is scaled as 1

τ , so that the point on the far right with the most variance is the
fastest protocol– where equilibrium considerations matter the least. The error bars
do not quite hit 1 for all cases, this is due to a known issue with sampling, which
can cause large biases from a small subset of individual trajectories. This issue
is addressed in section 3.2 in detail. The simulation was originally run to analyze
work distributions, rather than the Jarzynski equality, and so did not involve enough
samples or a small enough dt to overcome the issue. The fact that the exponential
average is close regardless is actually quite remarkable.

Looking at figure 2.6.1 reveals that each of the four simulations obey this law. And, by breaking

the law down, some insight is gained about how the lawfulness of work fluctuations leads to the

increase in average work.

As a simple example, consider a bimodal distribution that can have only two potential work

outcomes: ±β−1W0 with probabilities p(W0) and p(−W0) = 1 − p(W0). The Jazrkynski equality

tells us that p(W0)e−W0 + p(−W0)eW0 = 1. They key point here is that the law that governs the

probability of positive and negative work exponentially amplifies the term proportional to p(−W0).

Another perspective says that for large values of W0, even a very small probability negative event

will have a significant impact on the distribution. The result of this, is that thermodynamics

abhors a high probability, negative work event. Meanwhile, the average work value is given by

〈W 〉 = βW0(p(W ) − p(−W )). In this average, whatever term has the higher probability will

dominate, which means that the the average skews towards the positive outcome as W0 gets larger.
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With this in mind, we return to the behavior of the plots in figure 2.5.3. While the exact

profiles of the marginal distributions are beyond such a simple analysis, we can start to understand

the behavior in a very general way. As the average work costs increase, it is impossible for the

full distribution and its two marginal components to, in concert, move in the same direction and

maintain their shapes because this would cause violations of the Jarzynski equality– in which

negative work events must have their probabilities shifted differently then their corresponding

positive counterparts. Negative work is treated differently than positive work, and the more negative

it is– the more differently it is treated. However, we have only scratched the surface of fluctuation

theorems at this point. The next chapter will serve as a brief review of modern fluctuation theorems,

with a heavy focus on interesting applications rather than the mathematical underpinnings. We

will also investigate some of the most recent advances in the field: trajectory class fluctuation

theorems [55], and thermodynamic uncertainty relations [56].
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CHAPTER 3

In the preceding chapter, we have implicitly departed from the historical equilibrium thermo-

dynamic mode of thinking where the fundamental quantities of interest are macroscopic variables.

The ‘thermodynamic limit’ assures that these variables, though really averages over a microscop-

ically noisy and stochastic system of many individual pieces, are found with near certainty to be

at their theoretical values. The sheer scale of the problems considered, and the restriction to equi-

librium distributions suppresses fluctuations perfectly. The fundamental conceit underlying the

‘thermodynamic limit’ is that we do not need to consider the energetic or entropic consequence

of a particular particle in the ensemble taking a particular trajectory; we care strictly about well

defined averages over ensembles.

Stochastic thermodynamics [15] is a nonequilibrium theory that works in the other direction:

the fundamental quantities of interest are trajectory-wise heats, works, or entropies and the histor-

ical macroscopic quantities are the mean values of a well defined distribution over these quantities.

The transition into stochastic thermodynamics was made possible by both numerical and theoreti-

cal advancements. Numerically, simulations of trajectory ensembles that number in the hundreds of

thousands of trajectories are accessible even without access to high performance computing hard-

ware, allowing for easy numerical probing of system scales that were previously inaccessible. On

the theory side, the distributions are bound by a new set of theoretical results known as ‘fluctuation

theorems’.

The study of stochastic thermodynamics goes all the way back to Einstein’s treatment of Brow-

nian motion [57], but the first result that has a direct line to the modern treatment was by Bochov

and Kuzovlev in 1977 [58]. Despite the prescience of the result in hindsight, the work failed to

elicit many immediate follow on results. Then, starting in the mid 1990s, rapid progress was made

as results begin to pile up and connect with one another. To name a tiny sample of the full set

of important works in this time period, we have: Evans’ and Searle’s 1994 paper that discusses
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the exponential suppression of negative entropy producing trajectories [59], Jarzynski’s 1997 paper

that introduces the Jarzynski equality [60], and Crooks’ 1999 paper that expanded the realm appli-

cability beyond reversible dynamics [61]. By this time, a consensus had been reached detailing two

overarching types of fluctuation theorems: ‘integral fluctuation theorems’ that yield results about

the moments of the distribution of a stochastic thermodynamic variable, and ‘detailed fluctuation

theorems’ that yield results about the trajectory-wise values such a variable can take.

A recent development [55] introduces ‘trajectory class fluctuation theorems’, which defines a

new suite of fluctuation theorems that allow us to define equalities for any arbitrary subset of

trajectories thus interpolating between the ‘detailed’ and the ‘integral’ theorems. In the following,

we will discuss new and historical uses of these theoretical results as well as provide both novel

and familiar proofs of key results. We will conclude by using a fluctuation theorem to derive a

new thermodynamic uncertainty relation [56], which is currently one of the most active subjects of

study in stochastic thermodynamics.

3.1. The Jarzynski equality

One of the most prominent fluctuation theorems is the aforementioned Jarzynski equality (JE),

which gives a simple relationship between the amount of work it takes to implement a control

protocol for a thermostatted system,

〈−eβW 〉 = e−β∆F .(3.1)

The average on the left is an average over many repeated iterations of the same procedure, and the

free energy change is the difference in free energy between the equilibrium states for the initial and

final values of whatever control system is implementing the protocol. Below we outline a straight-

forward proof of the relation, provided by Jarzynski [62].

Assume a Hamiltonian of the form H(Γ, λ) = HE(y) + HS(x, λ) + HI(x, y). Here we have made

a distinction between two subspaces of the Hamiltonian, breaking the full phase space Γ into the

‘system’ degrees of freedom x and the environment degrees of freedom y. Note also the parameter
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λ which is the control parameter. It represents an external agent that manipulates the Hamiltonian

of the system in a deterministic way. All the energy that this agent inputs or absorbs is useful

work, generating no entropy. Once thermodynamically consistent way of thinking about this is that

this ‘work reservoir’ is a heat bath with infinite temperature. The interaction HI(x, y) between the

system and environment need not be small for the proof to work, but for simplicity of exposition

we assume that it is.

Now, assume that we begin this composite system in an equilibrium state associated with the

inverse temperature of the thermal environment β, ρ(Γ0) = Z−1
λ0
e−βH(Γ0,λ0). With the normal-

ization given by Z(λt) =
∫
dΓe−βH(Γ,λt). The system is then exposed to a protocol by changing

lambda over time. Examining the LHS of equation 3.1, we have:

〈e−βW 〉 =

∫
dΓ0p(Γ0)e−βW (Γ0|λ)(3.2)

Note that the amount of work it will take to implement the protocol λ = (λ0, ..., λτ ) is a determin-

istic function of the initial point in the join phase space Γ0 because the entire composite system

evolves deterministically, so a function has been defined W (Γ0|λ). The work required to change

the Hamiltonian of the system though a control parameter a small bit dW is given by ∂HS(x,λ)
∂λ dλ.

Importantly, because of the derivative with respect to λ, the only term in the Hamiltonian that

matters for the work done is HS , so ∂λHS(x, λ) = ∂λH(Γ, λ). This gives us an expression for the

work:

W =

∫
dW =

∫ τ

0

∂HS(xt, λt)

∂λ
λ̇dt(3.3)

=

∫ τ

0

∂H(Γt, λt)

∂λ
λ̇dt(3.4)

=

∫ τ

0

d

dt
H(Γt, λt)dt(3.5)

= H(Γτ , λτ )−H(Γ0, λ0)(3.6)
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This, in turn can be plugged into equation 3.2, which yields:

〈e−βW 〉 =

∫
dΓ0p(Γ0)e−β(H(Γτ ,λτ )−H(Γ0,λ0))(3.7)

= Z−1(λ0)

∫
dΓ0e

−βH(Γτ ,λτ )(3.8)

=
Z(λτ )

Z(λ0)
(3.9)

The last equality is justified by a change of variables. The change of integration variable from dΓ0

to dΓτ is trivial because Liouville’s theorem ensures no state space contraction or expansion and

so the phase space volume element corresponding to dΓ0 and dΓτ have the same volume. With

this in mind, the remaining integral is simply the normalization factor Z(λτ ). In the case of weak

coupling, HI << min(HE , HS) and is neglected, yielding Z(λ) = Zx(λ)Zy. Because HE is constant

, the Zy in both the top and bottom of the fraction cancels. The familiar result is what remains:

〈e−βW 〉 =
Zx(λτ )

Zx(λ0)
= e−β∆F .(3.10)

3.1.1. Jarzynski Equality in Practice. This integral fluctuation theorem can be put to im-

mediate use. By invoking Jensen’s inequality for convex functions (〈f(x)〉 > f(〈x〉)), the Jarzynski

equality recovers the second law of thermodynamics: 〈W 〉 > ∆F . We also gain some insight as to

why is it that trajectories that produce work (W < 0) cause such a problem, as briefly discussed

in the previous section. In short: the work value associated with each realizations is exponentiated

in our average, so even a small amounts of negative work can come to dominate the expression.

But, because the equation involves the entire distribution rather than just the average, it

contains more information than just the second law. We can illustrate this with the case of a cyclic

process, for which ∆F = 0. In this case, 〈e−βW 〉 = 1. Let’s call this type of system and protocol

an engine, for an engine must always return to its initial state in order to be reused. This theorem

places limits on how an engine can be designed. Can we, for example, create an engine that most

of the time produced a small chunk of work and occasionally would have a compensating work

cost that would offset the transient gain? Could we create an engine that produces an arbitrarily
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large amount of work with an arbitrarily large probability, at the cost of an arbitrarily rare and

arbitrarily catastrophic ‘black swan’ driving event that levies an enormous cost? Using the fact

that the driving work must be no less than zero work on average this seems like a plausible scheme,

but let’s investigate further using the fluctuation theorem. Assume an engine with N possible work

outcomes of value Wi and probability pi. The yields the following equation:

N∑
i=1

pie
−βWi = 1 .(3.11)

Singling out a special value of the work, Wj , gives:

N∑
i 6=j

pie
−βWi = 1− pje−βWj(3.12)

The LHS of the equality above is a sum of manifestly positive terms, so the RHS must itself be

positive, this gives us

pje
−βWj < 1(3.13)

−βWj < − ln pj(3.14)

βWj > ln pj(3.15)

There is, then, a limit to how negative we can make the work of any given Wj . It is bounded by

the likelihood of our engine realizing a trajectory that produces that much work. This yields an

emphatic ”no” to the original query. It is impossible make an arbitrarily beneficial (work wise)

trajectory happen arbitrarily often– no matter what the rest of the work distribution looks like.

Each possible work value is bound by its own probability to happen, and only an incredibly rare

event (pi → 0) can output a significant amount of work by having a large negative driving work

value.

Additional insight can be gleaned from the Jarzynski equality as well. Consider, again, an

arbitrary work distribution {Wi} with probabilities {pi}. Inspired by the connection above between

the probability of an even and its work production, a set of numbers qi can be defined as βWi =

ln pi − ln qi. This is, admittedly, an odd thing to do– but certainly can be accomplished for any
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set of {Wi} and {pi}. The result above that βWi > ln pi implies that 0 < qi < 1. If we plug this

expression for work into the fluctuation theorem, the following is obtained:

∑
pie
− ln pi+ln qi = 1(3.16) ∑

qi = 1 .(3.17)

The {qi} satisfy the conditions of a distribution (qi > 0 and
∑
qi = 1). Now, consider the

average work 〈βW 〉 =
∑

i pi ln pi
qi

. Because the qi form a distribution, the average is the Kullback-

Leibeler divergence between p and q: 〈βW 〉 = DKL(p||q) ≥ 0. The inequality is saturated only

when the distributions {pi} and {qi} are identical, and so all Wi = 0. Values of Wi shift away from

zero only create engines that are less efficient on the average. Trying to get more work out of one

kind of cycle at the expense of the others being more costly will always be more inefficient.

An interesting example is of the single particle Szilard engine: ignoring the demon memory, it

has two outcomes βW1 ∼ ln δ and βW2 ∼ ln 1 − δ with probabilities p1 = δ and p2 = 1 − δ. Now

what the result above tells us is that the demon memory operation is at its most efficient when it

takes exactly −kT ln δ work for the demon to synchronize and control the system during the first

outcome and exactly −kT ln 1−δ work for the demon to synchronize and control the system during

the second outcome. This result, is exactly that predicted by Szilard himself! Now, let us consider

a more general case.

The considerations above ought not to be surprising. The engine was not provided any ‘fuel’

from which to extract energy. Relaxing the cyclic condition of our engine, and allowing the engine

to consume a free energy resource, the fluctuation theorem becomes 〈e−βW 〉 = e−β∆F where ∆F is

the change in free energy associated with the thermal equilibrium states of the control Hamiltonian

at the beginning and end of our process. In this case, we have
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∑
pie
− ln pi+ln qi = e−β∆F(3.18) ∑

qi = e−β∆F .(3.19)

The qi no longer constitute a distribution. The qi still encode how much a given work distribu-

tion changes the state of the machine used to enact it– but the encoding is not as straightforward.

Using the same tactic as before, separating out a particular Wj , gives:

N∑
i 6=j

qi = e−β∆F − pje−βWj .(3.20)

Again, note that the LHS is strictly positive. This means that the RHS can be written as an

inequality

pje
−βWj < e−β∆F ,(3.21)

which simplifies to

βWj > ln pj + β∆F .(3.22)

In the presence of ∆F , there is no bound that requires common trajectories have (at best)

very small benefits. The inequality suggest a redefinition of our general work value expression from

βWi = ln pi − ln qi to βWi = ln pi − ln qi + β∆F to include the dependence the work has on the

change in equilibrium free energy by a redefinition of qi. This subsumes the previous case, because

it reduces to the previous expression when ∆F = 0. Revisiting the fluctuation theorem with the

re-scaled qi gives us:

∑
pie
− ln pi+ln qi−β∆F = e−β∆F(3.23)

e−β∆F
∑

pie
− ln pi+ln qi = e−β∆F(3.24) ∑

qi = 1(3.25)
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Thus, we recover the property that qi is a distribution. For illustrative purposes, consider a simple

binary machine with outcomes W1,W2.

To build the desired ‘black swan’ machine, W1 should be as negative as possible (recall that

negative work in this context means work done on the environment), thus, ∆F must be negative

as well. To make the event arbitrarily likely, p1 can be set equal to 1− γ, and to make the work as

favorable as possible βW1 = ln(p1)+β∆F+ε (where γ, ε are small parameters). Using the Jarzynski

equality, the other work outcome is now completely constrained. First, note that − ln q1 = ε which

yields q1 = e−ε

βW2 = ln γ − ln q2 + β∆F(3.26)

= ln γ + β∆F − ln
(
1− e−ε

)
(3.27)

Where the second equality used the fact that q2 = 1 − q1. Expanding the exponential in the

log to order ε yields:

βW2 = ln γ + β∆F − ln ε(3.28)

So we see that by being ε close to the best case for W1 we pay for it in the W2 outcome with a

factor of − ln ε. Thus, the fluctuation theorem does not outright restrict the creation of a common

useful cycle at the cost of a catastrophic result. In fact, the cost may not even be so catastrophic–

if γ can appropriately compensate. The two parameters are actually working at odds with one

another, and if ε scales the same as γ it appears we will have a cancellation. However, we must first

make sure that these scalings are permitted by the second law of thermodynamics. The average

work ought to satisfy 〈βW 〉 > β∆F . Our definition of work in therms of {q} and {p} allows us to

write the equality:
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〈βW 〉 = (1− γ) (ln(1− γ)− β|∆F |+ ε) + γ (ln γ − β|∆|F − ln ε)(3.29)

= (1− γ) (ln(1− γ) + ε) + γ (ln γ − ln ε) + β∆F(3.30)

= [(1− γ)ε− γ ln ε−H(γ)] + β∆F(3.31)

.(3.32)

Where H(γ) is the binary Shannon entropy associated with the value of γ. In order for the

term in square brackets to be strictly positive, the following must be true:

ε > γ ln ε+H(γ) + γε(3.33)

The inequality above puts bounds on how close to the lowest work cost possible can be to the ideal

case of ε = 0. Thus, there exists a nontrivial relationship here between the maximum fidelity we

can permit ourselves (γ) and the ‘idealness’ of the common cycle (ε).

As an illustrative example, it is simple to consider the case where γ ≈ ε. This yields

ε > ε2 − (1− ε) ln(1− ε)(3.34)

ε > ε2 − (−ε− ε2

2
− ε3

3
)(3.35)

0 >
3

2
ε2 +O(ε3)(3.36)

Because this cannot be satisfied by any value of ε, the Jarzynski equality forbids the case where

ε and γ take the same value. While these considerations show how the JE can provide analytic

tools beyond those given by the second law of thermodynamics alone, they are of primarily the-

oretical interest. Fluctuation theorems also provide incredibly powerful practical tools useful in

experimental physics.
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3.2. Free Energy Estimation and Rare Events

One of the most immediately useful applications of the Jarzynski equality, lies in recognizing

it provides an equality that relates a nonequilibrium quantity (the work done) to an equilibrium

quantity (the free energy change). One of the first experimental verifications of the equality [63]

put this to good use by repeatedly stretching a single RNA molecule and using the work done to

do so to calculate the change in free energy between the stretched and unstretched state of the

molecule. To this end the JE can be rearranged :

∆F = −β−1 ln〈e−βW 〉 .(3.37)

From which, it is clear that the important quantity to estimate is the exponential average of the

work cost: 〈e−βW 〉 ≈ 1
N

∑N
i=0 e

−βWi . Crucially, the exponential means that some terms in the

average will dominate. While previous discussion above danced around the topic, we now look at it

head on– with an analysis that roughly follows the approach in reference [64] to explain convergence

issues that pop up in experiment because of the dominance of certain terms.

First, we point out the problem by example. Returning to the simple cyclic engine (∆F = 0)

of the previous section, imagine a work distribution that contains two work outcomes ±β−1A with

probabilities p±. Expanding out the Jarzynski Equality gives

(1− p−)e−A + p−e
A = 1(3.38)

p−(eA − e−A) = 1− e−A(3.39)

p− =
1− e−A

eA − e−A
,(3.40)

And here we have a mathematical expression for the damping of negative work outcomes; for

example, the probability to see negative work outcomes with a magnitude equal to even 10 kBT

are already approximately 1 in 100,000. Nevertheless, these outcomes are of critical importance to

estimating free energy. To be specific, consider the case of A = 2 for which p− ≈ .12. The straight

work average is
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〈W 〉 = p+A− p−A(3.41)

2 = .88 ∗ 2− .12 ∗ 2 ,(3.42)

here, the common outcome accounts for the lions share of the average. For the average of the

exponential work we have

〈e−W 〉 = p+e
−A + p−e

A(3.43)

1 = .12− .88 ,(3.44)

which displays opposite behavior. The outcomes that are the least common are responsible for the

majority of the average. In point of fact, the roles of the two work outcomes have swapped.

With this demonstration of how uncommon events can come to dominate averages in mind, we

define two separate ideas of importance in a distribution. One is the usual sense of importance,

called the ‘typicality’ of a realization, and is simply the probability of the event. The other sense,

called the ‘dominance’, is how important the event is in a given average. This ’dominance’ of a

particular outcome in an average over f(x) can be associated, in the discrete case, with a number

between 0 and 1 that indicates how much of the average comes from that realization with the

following equation:

D(X = x) =
Pr(X = x)f(x)

〈f(x)〉
.(3.45)

With this definition, the dominance of the event W = −β−1A in the straight average is .12 but its

dominance in the exponential average is .88. This is a general effect, algebraically:

D(W = −β−1A) = p−e
A(3.46)

=
1− e−A

1− e−2A
(3.47)

= 1− p− .(3.48)
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Figure 3.2.1. The typicality versus the dominance of the negative work outcome
in the average of the exponential work. Frustratingly, the less likely you are to see
the event, the more important it becomes in the average

See figure 3.2.1 for a graphical representation. The conclusion here is somewhat sobering: as the

probability of an event goes to zero– it also becomes exclusively responsible for the average that

allows an estimate of the free energy. While the math is a bit more tedious, the same issue holds

for other distributions that are less trivial wether they are discrete or continuous.

In order to understand this, we shall turn to another analysis of the JE by means of a ’detailed

fluctuation theorem’. In order to proceed, it will be prudent to discuss and define a set of ‘time

reversed’ quantities and associated notation. Again, take a Hamiltonian system containing a system

specific piece that depends only on a control parameter λ and the system’s degrees of freedom. A

‘process’ P (x) ≡ Pr(X = x|Λ = λ) will be defined as a probability distribution over the set of

system trajectories x ∈ X, conditioned on the system being exposed to the control protocol λ =

λ(t). Similarly, the conditional process P (x|a) ≡ Pr(X = x|X0 = a,Λ = λ) is the probability that

the system undergoes trajectory x conditioned on both starting in state a at time t = 0 and being

exposed to the control protocol λ. A final useful piece of notation is pt(a) ≡ Pr(Xt = a|Λ = λ);

combining these yields the following equality P (x|a)p0(a) = P (x) (which would be a bit ponderous

to write without the shorthand).
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The reverse protocol associated with P will be denoted as R(x) ≡ Pr(X = x†|Λ = λ†). R(x)

gives the probability that the same system will undergo the trajectory x† provided that it is exposed

to the reverse control protocol λ† = λ(τ − t); similarly R(x|a) ≡ Pr(X = x†|X0 = a∗,Λ = λ†) can

be defined as well as rt(a) ≡ Pr(Xt = a∗|Λ = λ†). For every trajectory x of the system of interest,

which is defined by a set of values in the phase space of the system (x = (x0...xτ ) for discrete time

and x = x(t) for continuous time), we can define also a reversed trajectory x† = (x∗τ , ...x
∗
0). The ∗

indicates sending any time odd quantity to its negative value, spin for example. This becomes rele-

vant for the the phase space coordinates of the system, because they contain canonical momentum

variables which do change sings under the time reversal conjugation.

Assume the same Hamiltonian as before: H(Γ, λ) = HE(y) + HS(x, λ) + HI(x, y), and that the

system begins in thermal equilibrium with the environment. At t = 0, the system and environment

are isolated from each-other by turning the interaction to 0 and the system is allowed to evolve un-

der its own dynamics (driven by the time dependent λ) until t = τ . Similarly, the reversed process

begins in equilibrium with the thermal environment– but since λ†0 = λτ the starting distribution is

different.

A detailed fluctuation theorem deals with relationships between how a trajectory behaves in

the forward process to how its reversed trajectory behaves in the reverse process, so we need

expressions for both. Notably, because the system is allowed to evolve under its own Hamiltonian

(deterministic) dynamics we can say that, for any valid trajectory that the system can undergo,

P (x|a) = δx0,a – meaning there is one and only one possible trajectory for each starting point

x0 = a, or P (x) = p0(x0). Since both processes begin in equilibrium with their environments at

some inverse temperature β, this gives:

P (x) = Z−1
x (λ0)e−βHS(x0,λ0) = e−βHS(x0,λ0)+βFλ0(3.49)

R(x) = Z−1
x (λτ )e−βHS(x∗τ ,λτ = e−βHS(x∗τ ,λτ )+βFλτ(3.50)

For the rest of this section, β is set equal to 1 to help with clarity. Assuming that the Hamiltonian

has only time symmetric terms HS(x∗, λt) = HS(x, λt) will allow a direct comparison of the two
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probabilities:

P (x)

R(x)
= e∆HS(x)−∆F (λ)(3.51)

R(x)

P (x)
= e−∆HS(x)+∆F (λ) .(3.52)

Above ∆H and ∆F represent quantities that are explicitly about the process and not the reverse

process: the change in energy of the system when it undergoes trajectory x and the change in the

free energy of the system as it undergoes the control protocol λ.

Following the same logic as in equation 3.7, the Hamiltonian evolution of the system implies

that the change in the energy of the system is equal to the work done in the process during the

trajectory x, ∆HS(x) = W (x). The same can be said for the work done in the reverse process,

which yields

WR(x) = H(x0, λ0)−H(xτ , λτ ) = −W (x) .(3.53)

Using the definition of work to rewrite the ration gives us the relation

P (x)

R(x)
= e(W (x)−∆F ) = e−(WR(x)+∆F ) .(3.54)

This ‘detailed fluctuation theorem’ must hold true in order for the remaining conclusions to hold.

It has been shown that the above holds for several classes of dynamics, notably including stochastic

Markovian dynamics [65]; Therefore, the proof above should be considered not as restrictive but

as illustrative of a particular regime in which the equality does hold true.

Introducing the ‘dissipated work’ in the processWd = W −∆F , the JE tells us

〈e−Wd〉 = 1(3.55) ∫
dxP (x)e−Wd(x) = 1(3.56) ∫

dxQ(x) = 1 .(3.57)

Where Q is defined implicitly from the preceding line. The function Q(x) is a distribution with

the same measure and support as the probability distribution P (x)– but is peaked where there are
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large contributions to the average of the exponential work. Returning to the concepts of ‘typicality’

and ‘dominance’, Q(x) is a way to quantify the dominance the trajectory x in the continuous case

in the same way P (x) quantifies its typicality.

A particularly interesting result comes form considering how Q(x) relates to the detailed fluc-

tuation theorem in equation 3.54:

Q(x) = P (x)e−Wd(x) = R(x) .(3.58)

High dominance in the process is associated with high typicality in the reserve process. And, using

the JE on the reverse process to obtain an analogous QR(x) with yield an analogous expression

QR(x) = P (x). The reverse of typical trajectories in the forward process become dominant ones in

the reverse process. The natural extension of this concept is to consider not just a single trajectory

but sets, or ‘classes’, of them. Instead of doing an integral over the entire set of trajectories we

can define an integral
∫
C dxf(x) =

∫
[x ∈ C] dxf(x) where [expression] is equal to 0 unless the

expression inside is true. More will come on trajectory classes, but this is sufficient for the question

at hand. Given a set of trajectories C, the typicality and dominance of C are given by :

P (C) =

∫
C
dxP (x)(3.59)

D(C) =

∫
C
dxQ(x) .(3.60)

Defining the ‘reverse set’ of trajectories C† composed of a x† for every x in C, we get

R(C) =

∫ †
C
dx†R(x†)(3.61)

DR(C) =

∫ †
C
dx†QR(x†) .(3.62)

Now, because the systems evolve with Hamiltonian dynamics, the Jacobian to transforms between

the forward dx and reverse dx† is 1. Through equation 3.58, the first equation above can be written
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as:

R(C) =

∫ [
x† ∈ C†

]
dxQ(x)(3.63)

=

∫
[x ∈ C] dxQ(x)(3.64)

=

∫
C
dxQ(x) = D(C)(3.65)

Thus, provided that the dynamics obey equation 3.54, the dominance of a trajectory class in a

process is equal to the typicality of the class of reversed trajectories in the reversed process.

The exact same argument leads to the conclusion that P (C) = DR(C). The intuition here is

actually quite informative. Trajectories that are dominant in the forward process are ones that

will appear to move backwards in time: while the ensemble as a whole starts in an equilibrium

distribution and then is driven out of it, these rare trajectories will starts as large fluctuations away

from equilibrium and then appear to ‘thermalize’ by ending close to the equilibrium distribution

associated with the final value of the driving parameter. The more out of equilibrium that the

system is driven in the process, the less likely these kind of trajectories are. While it is possible

to obtain equilibrium quantities from processes driven arbitrarily far from equilibrium through the

JE, there exists a tradeoff: the probability of observing the outcomes that make the calculation

possible becomes smaller as the system is driven further away from equilibrium.

3.3. Trajectory Class Fluctuation Theorems

The success of the treatment of arbitrarily subsets of trajectories at the end of section 3.2 is a

hint that more can be done in this direction. Indeed, there exist detailed and integral fluctuation

theorems for any class of trajectories. A rigorous proof will not be provided here, but one can be

found in the work that introduced the trajectory class fluctuation theorem(TCFT) [55]. Instead,

this section will provide a brief proof sketch and then focus on applications of the TCFT.

3.3.1. Trajectory Classes. While alluded to in the previous section, it is prudent at this

point to be explicit about what a trajectory class C is. C is defined by a function c(x) that takes

a trajectory to a boolean: c : X→ B. Of all possible trajectories x ∈ X, C is the set of trajectories

for which c(x) is True. In standard mathematical notation, C : {x ∈ X|c(x)}. This notation

79



allows us to define the reverse class C† clearly, C† : {x ∈ X|c(x†)}. Note that the x† ‘reverse

trajectories’ come from the same space as the ‘forward trajectories’. The dagger operator acting

on a trajectory means conjugate time reversal, if we think of trajectories over a time τ as being

composed of a bunch of instantaneous position and momentum coordinates x(t) = (xt, vt)∀t ∈ [0, τ ]

then x†(t) = (xτ−t,−vτ−t).

As an example, consider a class of all trajectories with positive initial velocity, and so defined

by the function c(x) = [v0 > 0]. Suggestively, the class can be called v0+. The reverse class v†0+ is

v†0+ : {x ∈ X|c(x†)}(3.66)

v†0+ : {x ∈ X| − vτ > 0}(3.67)

v†0+ : {x ∈ X|vτ < 0}(3.68)

We see that reverse class is the set of trajectories that end with a negative velocity; we might, for

example, call it vτ−.

3.3.2. Proof Sketch. The integrated TCFT can be derived from the existence of a generalized

detailed fluctuation theorem between a trajectory wise quantity Ω(x), a process P (x) and a process

conjugate to Ω called PΩ(x). PΩ(x) is the probability of the same trajectory in the conjugate

process, though at this point the form of the conjugacy is left completely general. It is whatever it

needs to be to satisfy the equality

P (x)

PΩ(x)
= eΩ(x)(3.69)

Assuming a conjugacy of the form above, deriving a TCFT is very straightforward: simply integrate

over some measurable subset of trajectories (There are some details about integration that are

important mathematically, but not necessary to understand the shape of the proof. For a rigorous

proof, refer to [55].) ∫
C
P (x)e−Ω(x) =

∫
C
PΩ(x)(3.70) ∫

C
P (C)P (x|C)e−Ω(x) =

∫
C
PΩ(x)(3.71)
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The second equality comes from the fact that P (x) = P (x, C) because the integration is over

trajectories in C only. Recognizing that P (C) is independent of the integrand, the final line can

be rearranged to read:

〈e−Ω〉C =
PΩ(C)

P (C)

This is a very general statement of the TCFT, but under relatively common assumptions it can

be easily interpreted alongside other common fluctuation theorems. If the system is coupled to a

sufficiently ideal heat bath at inverse temperature β and the reverse process has the property that

r0(xτ ) = pτ (xτ )– the Crooks detailed fluctuation theorem [61] takes the form of equation 3.69 in

which PΩ(x) = R(x), and Ω = Σ. Here, R(x) is as described in the previous section, and Σ is the

entropy production Σ(x) ≡ −βQ+ ln p0(x0)
pτ (xτ ) . Q is the heat absorbed by the system from the bath,

so −βQ is the entropy generated in the thermal bath. In this setting, the TCFT becomes:

〈e−Σ〉C =
R(C)

P (C)

3.3.3. Trajectory Class Jarzynski Equality. In the spirit of section 3.2, we set the initial

distribution for P is the equilibrium distribution associated with λ0, π0 and the initial distribution

for R is the equilibrium distribution for associated with λτ , πτ . Using a first law ∆E = Q+W for

the system, the entropy production breaks into

Σ(x) = β(W −∆E) + ln
π0(x0)

πτ (xτ )
(3.72)

= −β(HS(xτ , λτ )−HS(x0, λ0)−W ) + ln
Zτe

−βHS(x0,λ0)

Z0eβHS(xτ ,λτ )
(3.73)

= βW + ln
Zτ
Z0

(3.74)

= β(W (x)−∆F ) = Wd(3.75)
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The result is a class conditioned version of the Jarzynski equality estimation of the free energy,

containing a correction term compensating for the incomplete integration:

〈e−Wd〉C =
R(C)

P (C)
(3.76)

eβ∆F 〈e−βW 〉C =
R(C)

P (C)
(3.77)

β∆F = − ln〈e−βW 〉C − ln
P (C)

R(C)
.(3.78)

The takeaway is that we a fluctuation theorem can estimate the equilibrium free energy in a process

where it is not possible to sample all trajectories. The tradeoff when compared to the JE is a need

for additional information: the probabilities of the trajectories in both the forward and reverse

process. This opens up the ability to avoid regions that might suffer from the existence of very rare

but very dominant events, which will be discussed more in section 3.4

3.3.4. Nonequilibrium Free Energy. The result in section 3.3.3 is actually a special case

of a more general results. For a larger class of processes, the trajectory wise entropy generation

can be written as Σ(x) = β(W (x) −∆f(x, ρτ , ρ0)) where we have defined a pointwise free energy

f(x, ρ) = E(x)+β−1 ln ρ(x) and a trajectory wise free energy difference ∆f(x, ρτ , ρ0) = f(xτ , ρτ )−

f(x0, ρ0) = ∆E(x) + β−1 ln ρτ (xτ )
ρ0(x0) . These free energies are often referred to as ’nonequilibrium free

energy’ because they define a free energy over arbitrary distributions. In the case above, the normal

equilibrium free energy falls out because Fλ = −β−1 lnZλ = f(x, πλ). However, we can also ask

questions about the nonequilibrium free energy difference proper. From this perspective, as long

as we choose a class for which all trajectories have the same nonequilibrium free energy difference

∆f(x, ρf , ρ0) = ∆fc ∀ x ∈ C the TCFT result from equation 3.76 will apply:

β∆fc = − ln〈e−βW 〉C − ln
P (C)

R(C)
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An interesting extension assumes that we partition all trajectories in classes defined by their

∆f , and then average over all classes:

β〈∆f〉 = β
∑
c

P (C)∆fC(3.79)

= −
∑

P (C) ln〈e−βW 〉C +
∑

P (C) ln
P (C)

R(C)
(3.80)

= − ln〈e−βW 〉+
∑

P (C) ln
P (C)

R(C)
(3.81)

= β∆F +
∑

P (C) ln
P (C)

R(C)
(3.82)

P (C) and R(C) are two distributions over the set of trajectory classes and so the last term can be

written as DKL(P ||R). Thus the equilibrium free energies can be written in terms of a weighted

average over all possible non-equilibrum free energies and coarse-grained statistics on the parti-

tioning. While it isn’t, at this point, clear how to access f experimentally in a general way, it

can at least be argued that this tells us the average 〈∆f〉 is bounded from below by the change in

equilibrium free energy through the positivity of the DKL.

3.3.5. Metastable Free Energy. A notable set of processes/classes that allow for easy par-

titioning into classes of constant and physically interpretable ∆f ’s are processes that begin and end

in metastable distributions. A metastable distribution means that the state space can be separated

into metastable regions inside of which the distribution appears equilibrium– though it need not

be globally in equilibrium. This is typical in a ‘computational’ physical setting– which requires

the coexistence of multiple distinguishable, long lasting, informational states m. Recall that the

memory states m are defined by a coarse graining on the space of X by a partitioning the full state

space into subsets {Xm}. A metastable distribution can be described by a set of ρm(x) = wmπm(x)

where
∑

mw
m = 1. The πm(x) = 1

Zm e
−βE(x) are the local equilibrium distributions and are unique

for a given process. wi, the relative weights of the regions, are not unique; they are only subject

to the normalization constraint. Note that these Zm define ‘local free energies’ Fm = −β−1 lnZm.

The probability of a point in phase space, x, in a metastable distribution is ρ(x) = δxmρ
m(x) (here

δxm is the Iverson bracket δxm = [x ∈ {Xm}]).
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If a process begins in metastable distribution ρλ0(x, {w}) and ends in a metastable distribution

ρλτ (x, {u}), the nonequilibrium free energy difference for a trajectory that starts in metastable

region i and ends in metastable region j is:

∆fij = E(xτ ) + β−1 lnujπj(xτ )− E(x0)− β−1 lnwiπi(x0)(3.83)

= β−1 ln
uj

Zj
− β−1 ln

wi

Zi
(3.84)

Importantly, the trajectory dependence is gone so this is a case of a class of constant free energy

difference.

β∆fij = ln
uj

wi
+ β ln

Zi

Zj
(3.85)

= β∆F ij + ln
uj

wi
(3.86)

Here, the explicit definition of ∆F is ∆Fij = F jλτ − F
i
λ0

, a difference of ‘local free energies’ for the

memory states i and j for any process with the given control protocol. The quantity ∆fij we call the

difference in metastble free energy. Metastable free energy being defined as fm ≡ Fm + β−1 lnwm.

These metastable free energies are a special case of the nonequilibrium free energy– which means

it tells you the minimum average work it takes to drive an ensemble of particles in the initial well

with the given initial weight to the second well with the second weight. Plugging this case into

equation 3.76 yields:

β∆Fij = − ln〈e−βW 〉ij − ln
P (Cij)

R(Cij)
− ln

uj

wi
.(3.87)

An important thing to note here is that while R(Cij) means the probability of C†ij in the

reverse process,t the initial distribution of the reverse process is undetermined. Determining this

is absolutely crucial and different choices will give different results. One such example is setting

the initial weights of the forward and reverse process such that ln
P (Cij)
R(Cij)

+ ln uj

wi
= 0. In this

case, averaging over the local free energies for all possible combinations of memory states will the

equilibrium free energy change of the computation. This approach might be be useful to leverage
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the accuracy of several careful experiments that start in particular memory states rather than

attempting to find the entire work distribution all at once.

3.4. Correcting Experimental Errors with the TCFT

In a typical experiment to estimate free energy using the nonequilibrium work distribution, one

might perform the following:

(1) initialize a system in equilibrium

(2) drive the system out of equilibrium, measuring the work W needed to do so

(3) repeat the above using the same driving protocol N times

(4) use statistics to find ¯JE = 1
N

∑N
i=0 e

−βWi ≈ 〈e−βW 〉 and its variance s2
JE

(5) use ¯JE and s2
JE as estimators for the free energy and the variance of the estimate using

the JE .

In section 3.2, some of the pitfalls of this method were discussed. In this section, we compare the

baseline approach of free energy estimation outlined above to an augmented method that requires

also an experiment of the reverse process and uses the TCFT (equation 3.76):

β∆F = − ln〈e−βW 〉 − ln
P (C)

R(C)
,(3.88)

to estimate the free energy. Rather than analyze the cases analytically, we will turn to numerics

here. A simple protocol will be outlined, and then a large ensemble of realizations will be simulated.

Since the exact free energy is known, it will be a simple matter to estimate it through different

methods and compare the methods. Before talking specifically about an example system, we briefly

touch on error estimation in these systems. In a general sense, when using the TCFT, there are three

sources of error instead of just one because P (C) and R(C) need to be estimated as well. However,

since these are sample proportions rather than sample means– their error scaling is straightforward.

Using the formula σ2
lnx+ln y =

(
σx
〈x〉

)2
+
(
σy
〈y〉

)2
for two uncorrelated variables, we assume that

σ2
∆F =

(
σ2
JE
¯JE

)2

+

(
σ2
P

P̂ (C)

)2

+

(
σ2
R

R̂(C)

)2

(3.89)
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where the variances for each variable are calculated using the standard formulas for sample means

and standard deviations for variables that satisfy the central limit theorem. Using the full JE is

akin to choosing the class of all trajectories. The benefit is that there is no uncertainty in P (C) or

R(C) as they both equal 1 with certainty; the downside is that you must take an average over all

possible trajectories– which includes the exponentially rare, but dominant events.

3.4.1. The Untilt Process. In order to provide a simple example of a metastable process,

we investigate an ‘untilt’ control protocol. Using 1D Langevin dynamics, as described in section

2.3, we set the potential energy to have only two potential energy minima located at x = ±x0. At

t = 0, the well corresponding to the memory state mx = 1(mx = 0) (recall that our convention sets

this memory state to be defined by the region x > 0(x < 0)) will have a depth of U1(U0). Initially,

U1 > U0 which means that the equilibrium distribution at this time favors being in the right well.

As time progresses form t = 0 to t = τ , the right well is raised linearly with time until U1 = U0 (see

figure for the energy landscapes and equilibrium distributions 3.4.1). This is done on a timescale

that is faster than the time it would take for the wells to equilibrate between each other, but slow

enough that the local distributions conditioned on being in each well are not perturbed very far

away from equilibrium. The reverse simulation, following section 3.3.3 will begin in the equilibrium

distribution associated with the U1 = U0 energy landscape– and then follow the reverse protocol of

lowering the energy of the right well.

Our first numerical experiment will go as follows:

(1) Sample a large ensemble of initial conditions from the equilibrium distribution for both

the forward and reverse processes.

(2) Simulate the the system being driven out of equilibrium in both processes, and measure

the work W needed to do so for each trajectory.

(3) Take a sample out of of a specific size n from the forward process trajectories

(4) Use the samples statistics to estimate the free energy change during the protocol using the

JE and the forward process only, as described above

(5) Take a sample out of of a specific size n from the reverse process trajectories

(6) Use the samples’ statistics to estimate the free energy change during the protocol using

the TCFT (equation 3.76) under a suite of different trajectory classes
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Figure 3.4.1. The initial and final equilibrium distributions and potential energy
profiles for the untilt process; under the exchange of τ ↔ 0, the same but for the
reverse untilt process.

(7) Repeat steps 3-5 with another value of n to observe how the different estimates converge

The process above was carried out with an ensemble of 500,000 trajectories and n =1,000, 4,000,

20,000, and 100,000. Figure 3.4.2 displays the results. With the intent of showing how the various

possible trajectory classes behave in a stripped down example, a suite of different trajectory classes

are investigated:

(1) The most basic trajectory class ‘jarz’ is the set of all trajectories. This trajectory class is

simply using the traditional JE, and gains nothing from reverse process.

(2) vi+ trajectories for which the initial velocity is positive, and its compliment vi− for which

initial velocities are negative. The conjugate classes for these two are v†i+ = vf− and

v†i− = vf+. Because both processes begin and end in equilibrium, these classes are not

expected to be advantageous– there is no coupling between position and velocity in the

equilibrium distribution so we would expect these two classes to have the same attributes

as the entire trajectory set– but with approximately half the sample size. These classes are

expected to be outperformed by the traditional JE in every way. They should be similarly
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unbiased as estimators, but there is nothing to be gained from using this class instead of

the full set of outcomes

(3) xi< and its compliment xi> (and their conjugate classes xf< and xf>) represent trajectories

that start close(far) from the minimal of their local potential well. The idea of these classes

is to separate initial conditions that are typical of the equilibrium distribution and those

that represent large fluctuations in energy. In the figures that follow, the threshold was set

so that the typical class contained 68% of initial conditions. It is not clear which of these

should provide better estimates. On the one hand, one might think that the larger energy

fluctuations explore more of the state space and so can provide more information about

the energy landscape. On the other hand, the sample size is smaller and the proportions

will be far from the case of p̂ = .5, for which the variance is the smallest.

(4) xmax< and its compliment xmax> have the same conditions as the previous two classes,

but applied over the entire trajectory rather than just the initial point. Rather than

separating into trajectories that start out as large fluctuations or not, the separation is

into trajectories that don’t experience any unusual fluctuation and those that do (note

that the conjugate classes for these two are the same as the forward classes.) Keeping

the same threshold as above yielded approximately 20% of trajectories in the in first and

80% in the second. Thus, the issue of the larger fluctuations having a small probability

is ameliorated. Therefore, relative to the analogous classes above we can expect each to

perform worse and better respectively.

(5) mi 6=f : this trajectory class is the set of ‘transitional’ trajectories that end in a different

memory state than they start in. The conjugate class is the same as the original class since

the class contains two event mi = 0,mf = 1 and mi = 1,mf = 0 that map to each other

under C† which swaps the i and f but not the memory state (which is a coarse graining

of a time symmetric variable.) Because of the protocol design, the probability of such a

trajectory will be very low in the forward process. This should make it nearly impossible

to get good statistics. This class implies two complementary classes 0 and 1, which are

the two classes that stay in the well they begin in for the entire protocol.
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(6) The final trajectory class, W> contains trajectories that have a work cost higher than a

particular threshold, in this case W > .8kBT which makes up about 96% of simulated

trials. Its conjugate class is the set of trajectories that cost work less than the negative

of the threshold W < −.8kBT and makes up about 50% of the trajectories in the reverse

process. This class intentionally neglects the exponentially damped work outcomes that

have very negative values, in an attempt to avoid the problems of rare event dominance.

Crucially, even though these events dominate the average– the TCFT should allow an

‘un-biasing’ of the estimate given proper statistics on the reverse protocol.

To really appreciate the TCFT, it is informative to focus in on a class like the 0 class. A

remarkable feature of the 0 class, is that it is an incredibly unlikely set. In the forward process,

the probability that a trajectory occupies only the 0 state for the entire protocol is only about 2%.

However, provided that a good estimate can be made of the class probability in the reverse process

( it is known to be ≈ .5 from the setup of the untilt process, but it is estimated by the reverse

process statistics in plots anyway), a mere 2% of trajectories can form an unbiased estimator of the

free energy. This can be seen in figure 3.4.3 which shows a histogram of 100 different attempts at

estimating the free energy using only 1000 trajectories each time. While using all trajectories will

provide a lower variance between different attempts, the fact that such a highly biased and unlikely

trajectory class can provide an unbiased estimate is staggering. While one might expect the TCFT

to do little for the 1 class, which already makes up close to 98% of all trajectories, figure 3.4.3 shows

the variance when using the TCFT is significantly lower, even though both estimates appear to be

unbiased. A counter argument is that the TCFT uses twice as many trajectories to estimate (since

information is needed about two different processes), but the reduction in variance is more than

what would be expected by using twice as many trajectories in the forward process and ignoring

the TCFT. In that case, the error would be expected to shrink by a factor of 1√
2
≈ .707; however,

the use of the TCFT shrinks the variance by .0907
.0295 ≈ .325.

The analysis above is quite informative, but knowing which trajectory classes need the least

statistics to be accurate does not on its own translate to a better experiment. For example, it

might not be possible to select whichever class of trajectories is best. Instead, a more typical setup

might be that a measurement device itself measures only a particular trajectory class which is not
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jarz vi + vi xi < xi > xmax < xmax > mi f 0 1 W>
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jarz vi + vi xi < xi > xmax < xmax > mi f 0 1 W>
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jarz vi + vi xi < xi > xmax < xmax > mi f 0 1 W>
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Figure 3.4.2. The results of applying the TCFT to the suite of trajectory classes
described in the text. We can see that each class behaves in accordance with the
expected behavior. Not also that in every single case, an unbiased estimator is
formed, even if the trajectory class in question is very biased. Remarkably, there
exist trajectory classes that work better to estimate the free energy than just using all
trajectories. The two best trajectories are 1 and W>, which have high probabilities
in the forward process without being especially rare in the reverse process. This
allows for the benefit of being able to ignore rare forward process events without
offsetting the gain in uncertainty with a high uncertainty in R(C). The transitional
class mi 6=f is so rare that the a sample is not likely to even contain a single trajectory
in both the forward and reverse processes until n ≈ 100, 000.
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2.6 2.8 3.0 3.2 3.4 3.6

TCFT for m = 0 class:    = 0.2086;   JARZ:   = 0.0898
F

jarz
TCFT

2.6 2.8 3.0 3.2 3.4 3.6

TCFT for m = 1 class :     = 0.0295;   JARZ:   = 0.0898
F

jarz
TCFT

Figure 3.4.3. Detailed study of two classes from figure 3.4.2, (top) the class that
always stays in the left well 0 and (bottom) the class that always stays in the right
well 1. For each plot, 1000 trajectories were taking 100 different times from a pool of
500,000 trajectories and the resulting estimate of the free energy was plotted using
both the JE and all trajectories as well as the TCFT and just the trajectories that
belonged to the class in question.

controlled by an experimenter so much as an inherent bias of the machine. For example, perhaps

work values that fall under a certain threshold cannot be measured well because the measurement

instrument is not sensitive to a work value that s much less than kBT . Or, large energy fluctuations

escape the detector and thus are ignored. These types of measurement shortcomings can cause

additional bias uncertainty in the free energy estimate. From this perspective, the TCFT provides

an invaluable tool take charge of these measurement errors– reversing the effect of missing some

trajectories. The question is slightly different here, so the experiment will also differ slightly. Instead

of focusing on the scaling behavior of TCFT estimates across different classes and sample sizes,
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Figure 3.4.4. A histogram of taking 100 samples of 1000 trajectories each from a
pool of 500,000 trajectories. In each case, a ‘naive Jarzynski’ estimate was performed
by throwing away the trials that did not fit in the class 0, and then using the JE to
estimate the free energy. The ‘TCFT’ estimate was made by simulating the reverse
trajectory and estimating the probability of the 0 class.

the focus will be on the TCFT as a correction to JE in the absence of an unbiased measurement

device.

A first example will be the following: suppose the measurement device ignored every trajectory

in the forward process that ever occupied the 0 state. In this case, the experiment is still able to

measure about 98% of all trials– and so it still might seem reasonable that it wont bias the free

energy estimate too much. However, knowing that even rare events can dominate the free energy

estimate, this might not be the case. Ignoring the TCFT, an experiment might use the faulty data–

knowing that a bias was inherent in the machine but unable to account for it. However, in this

case the class that is missed by the machine is symmetric with respect to C† conjugation, so if the

probability of failing to measure a trajectory in the reverse process is estimated– the TCFT can be
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used to completely correct the shortcomings of the machine. Figure 3.4.4 displays this by showing

two different distributions. In one, the impoverished data is used to apply the JE to find the free

energy and in the other and estimate of a measurement failure in the reserve process is estimated

as well (by simulation) and then the TCFT is used. It is immediately obvious that the missing 2%

of trajectories provides an enormous bias to the result, but that the TCFT is able to reverse the

bias even with relatively few trials. The additional error in the TCFT corrected distribution comes

from having to estimate both P (C) and R(C).

3.5. Thermodynamic Uncertainty Theorem

Fluctuation relation symmetries have proven themselves useful in estimating free energies, but

they can also be used for other interesting applications. One common recent focus is on a class

of results termed Thermodynamic Uncertainty Relations (TURs) [56]. The chapter to come will

discuss these at length, but here we show how a type of fluctuation theorem symmetry can lead to

a new theorem: the Thermodynamic Uncertainty Theorem.

Define current J to be observations of a system S that flip sign under time reversal. Formally,

a system trajectory is the sequence ~s ≡ s0sdt · · · sτ−dtsτ , where each st ∈ S is the system’s state

at time t. The current associated with a reversed trajectory R(~s) ≡ s†τs
†
τ−dt · · · s

†
dts
†
0 is minus the

current of the forward trajectory:

J(R(~s)) = −J(~s).(3.90)

If the system S is influenced by an external control parameter λ†τ−t = λt and the protocol conjugates

the distribution under the operation pτ (s†) = p0(s) then the probability of a reverse trajectory is

exponentially damped by the entropy production [66]:

Pr(R(~s),−Σ) = e−Σ Pr(~s,Σ).(3.91)

This is the Detailed Fluctuation Theorem (DFT) for a Time-Symmetrically Controlled Computa-

tion (TSCC) [67,68,69]. It includes non equilibrium steady state (NESS) dynamics for which the

control parameter is constant λt = λt′ . It can also describe, as explored here, computations that
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begin in equilibrium and are then allowed to relax after the application of a time-symmetric control

signal. These latter symmetries are ubiquitous in computing [70].

The symmetry imposed by the TSSC imbues J ’s statistics with special properties in stochastic

nonequilibrium systems when compared with the entropy production Σ. Namely, the TURs related

the entropy production to the scaled variance ε2(J) = var(J)/〈J〉2. Given a TSCC operating

over the time interval [0, τ ], described by probability distribution Pr(~s,Σ) over state trajectories

~s and entropy productions Σ, our task is to find a current function J(~s) = −J(R(~s)) of the state

trajectories ~s that minimizes this scaled variance.

3.5.1. Proof. Currents are functions of state trajectories, so they can be applied to the dis-

tribution that characterizes the TSCC Pr(~s,Σ) to derive a three-variable joint distribution over

currents, state trajectories, and entropy productions:

Pr(J,~s, σ) ≡ δJ,J(~s) Pr(~s,Σ).

From this, one can determine a variety of marginal distributions. Most relevant to us is the joint

probability of currents and entropy productions Pr(J,Σ), and the probability of a current given an

entropy production Pr(J |Σ). From the latter, we define the entropy-conditioned current j(Σ) as

the average current in the system given that the entropy Σ was dissipated in the NESS:

j(Σ) ≡
∑
J

J Pr(J |Σ).(3.92)

If the entropy production is a function of the state trajectory, as is the case for systems satisfying

local detailed balance, then we can use the entropy conditioned current to define a new function of

the trajectories

J ′(~s) ≡ j(Σ(~s)).(3.93)

J ′ is a well-defined current within the system, because J ′(R(~s)) = −J ′(~s), as shown in Appendix

3.A.
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The newly defined entropy-conditioned current has the convenient property that it’s average

〈J ′〉 ≡ 〈j〉 is the same as for the current that was used to define it

〈J ′〉 =
∑

Σ

Pr(Σ)j(Σ)

=
∑

Σ

Pr(Σ)
∑
J

J Pr(J |Σ)

=
∑
Σ,J

J Pr(J,Σ)

=
∑
J

J Pr(J)

≡ 〈J〉.

On the other hand, the variance of the entropy-conditioned current is not the same. When we

evaluate the average square of the newly defined current

〈J ′2〉 =
∑
σ

Pr(σ)j(σ)2

=
∑
σ

Pr(σ)

(∑
J

J Pr(J |σ)

)2

,

we can apply Jensen’s inequality (
∑

J J Pr(J |σ))2 ≤
(∑

J J
2 Pr(J |σ)

)
to show that

〈J ′2〉 ≤
∑
σ

Pr(σ)

(∑
J

J2 Pr(J |σ)

)

=
∑
J,σ

Pr(J, σ)J2

= 〈J2〉.

As a result, the entropy-conditioned current produces scaled variance that is less than or equal to

the current that was used to define it

ε2J ≥ ε2J ′ .(3.94)
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Thus, we need only consider currents which are functions of the entropy production in order to find

the minimum-variance current.

Given that any current’s scaled variance can be reduced by finding its corresponding entropy-

conditioned current, given some TSCC process Pr(~s,Σ), we need only find the function j(Σ) that

minimizes the scaled variance ε2j = 〈j2〉
〈j〉2 − 1. There is a single important constraint that applies to

these functions, which is that j(−Σ) = −j(Σ), meaning that this is a constrained optimization.

However, we can ignore this constraint by using the TSCC DFT and summing over the state

trajectories of Eq. 3.91 to produce:

Pr(−Σ) = e−Σ Pr(Σ),(3.95)

where we’ve set Boltzmann’s constant to kB = 1 for ease of notation. We use this to express the

average j and j2 can in terms of positive entropy productions

〈j2〉 =
∑
Σ>0

Pr(Σ)(1 + e−Σ)j(Σ)2(3.96)

〈j〉 =
∑
Σ>0

Pr(Σ)(1− e−Σ)j(Σ).

This means that ε2j can be expressed in terms of only positive entropy productions. j(Σ) is uncon-

strained over positive Σ, so the minimum occurs when

∂

∂j(Σ)
ε2j =

1

〈j〉2

(
∂〈j2〉
∂j(Σ)

− 2〈j2〉
〈j〉

〈j〉
∂j(Σ)

)
(3.97)

= 0 for all Σ > 0.

Applying the derivative with respect to the positive-entropy current j(Σ) to the averages shown in

Eq. 3.97 yields

∂〈j〉
∂j(Σ)

= (1− ε−Σ) Pr(Σ)

∂〈j2〉
∂j(Σ)

= (1 + ε−Σ) Pr(Σ)2j(Σ).
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Finally, plugging these into Eq. 3.97, we solve for the current with the minimum scaled variance

jmin(Σ) =
〈j2

min〉
〈jmin〉

1− e−Σ

1 + e−Σ
,(3.98)

which applies as long as Σ is in the support of the entropy distribution. Note that, even though

the expression for the minimal current was derived for Σ > 0, it applies to Σ ≤ 0 as well, because

of the condition that a current must satisfy j(−Σ) = −j(Σ). Indeed, jmin(0) = 0 and jmin(−Σ) =

〈j2〉
〈j〉

1−eΣ
1+eΣ

= 〈j2〉
〈j〉

e−Σ−1
eΣ+1

= −jmin(Σ). Thus, we have found the form of the current that minimizes

scaled variance, and it depends exclusively on the entropy production of the process

Jmin(~s) = jmin(Σ(~s)).

For simplicity, note that we can choose any real value for k = 〈j2
min〉/〈jmin〉, and the entropy-

conditioned current jmin(Σ) will minimize the scaled variance. Moreover, 1−e−Σ

1+e−Σ = tanh(Σ/2).

Whatever the entropy production distribution Pr(Σ) may be, the current

Jmin(~s) = k tanh(Σ(~s)/2),(3.99)

will set a lower bound on the all other currents of the system

ε2J ≥ ε2Jmin(3.100)

=
〈tanh(Σ/2)2〉
〈tanh(Σ/2)〉2

− 1,

where the constant k = 〈j2〉/〈j〉 has factored out. This bound on the scaled variance is tight,

because it is realized by our newly defined Jmin(~s). For this reason, ε2Jmin
represents the tightest

possible bound on the scaled variance for the process Pr(Σ, ~s).
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Once again, the TSCC DFT (Pr(Σ) = eΣ Pr(−Σ)) simplifies:

〈tanh(Σ/2)2〉 =
∑
Σ>0

Pr(Σ)(1 + e−Σ)

(
1− e−Σ

1 + e−Σ

)2

=
∑
Σ>0

Pr(Σ)(1− e−Σ)

(
1− e−Σ

1 + e−Σ

)
= 〈tanh(Σ/2)〉.(3.101)

As a result, we have the simplified bound on the scaled variance in terms of the entropy production.

ε2J ≥ ε2Jmin =
1

〈tanh(Σ/2)〉
− 1 .(3.102)

3.5.2. Testing the theory. The TUT, equation 3.102, provides an intriguing and theoreti-

cally saturable bound that relates the precision of a current to the entropy generation that underlies

the dynamics of a system. While the bound is indeed, saturable in theory– it is quite a bit less

clear what kind of physical systems display entropy production distributions for which this bound

is useful. It turns out that the answers to these questions are rather more subtle than might be

expected; in discussing, they reveal the possibility of alternative computational frameworks that

outcompete the status quo significantly. As such: in order to really answer the question, a more

detailed chapter discussing the past, present, and future of TURs will be necessary.
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Appendix

3.A. Well-defined current

Let us define function J ′ of state trajectories in terms of the entropy-conditioned current

J ′(~s) ≡ j(Σ(~s)),

where the entropy conditioned current is defined

j(Σ) ≡
∑
J

J Pr(J |Σ).

Note that we can evaluate J ′ for the time-reversal of a trajectory

J ′(R(~s)) = j(Σ(R(~s))).

The TSCC fluctuation theorem

Pr(R(~s),−Σ) = e−Σ Pr(~s,Σ),

implies both a marginalized version,

Pr(−Σ) = e−Σ Pr(Σ),

as well as equality of the conditional probabilities

Pr(R(~s)| − Σ) = Pr(~s|Σ).
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Thus, the entropy conditioned current is an odd function of the entropy

j(−Σ) =
∑
J

J Pr(J | − Σ)

=
∑
J,~s

J Pr(J,~s| − Σ)

=
∑
J,~s

JδJ,J(~s) Pr(~s| − Σ)

=
∑
~s

J(~s) Pr(~s| − Σ)

=
∑
~s

J(R(~s)) Pr(R(~s)| − Σ)

=
∑
~s

−J(~s) Pr(~s|Σ)

= −j(Σ).

Having assumed that Σ is a function state trajectory, we can re-express the TSSC fluctuation

theorem

Pr(R(~s))δΣ(R(~s)),−Σ′ = e−Σ′ Pr(~s)δΣ′,Σ(~s),

This can only be true if the entropy production is itself a current Σ(R(~s)) = −Σ(~s). Thus, we see

that our new function of the trajectories J ′ is indeed a current as well

J ′(R(~s)) = j(Σ(R(~s)))

= j(−Σ(~s))

= −j(Σ(~s))

= −J ′(~s).
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CHAPTER 4

The Thermodynamic Uncertainty Theorem

Since Onsager’s and Kubo’s pioneering discovery of the fluctuation-dissipation theorem (FDT) [71,

72,73], determining the universal properties of fluctuations in out-of-equilibrium processes, as well

as their role in dissipation, has been a cornerstone of stochastic thermodynamics. In the 90s,

Jarzynski and Crooks generalized the FDT through the fluctuation relations (FR) [65,74,75,76,

77, 78, 79, 80, 81, 82, 83, 84]. At the microscopic scale, the FR refine the famous Second Law of

Thermodynamics 〈Σ〉 ≥ 0 by determining the distribution of thermodynamic fluctuations. That is,

the FRs replaced the familiar Second law inequality with an equality from which the Second Law

is easily derived through Jensen’s inequality.

More recently, a third milestone was crossed by connecting thermodynamic fluctuations out

of equilibrium to dissipation. These broad results, called thermodynamic uncertainty relations

(TURs), were originally discovered in nonequilibrium steady-states of classical time-homogeneous

Markov jump-processes satisfying local detailed balance [56,85]. Today, though, TURs have been

generalized to finite-time processes [86,87,88], periodically-driven systems [89,90,91,92,93,94,

95], Markovian quantum systems undergoing Lindblad dynamics [96, 97, 98], and autonomous

classical [87,99] and quantum [99,100,101] systems in steady-states close to linear response.

In all these, TURs bound the fluctuations of any (time-reversal anti-symmetric stochastic)

thermodynamic quantity J as a function of the average entropy production 〈Σ〉:

ε2J ≡
var(J)

〈J〉2
≥ f(〈Σ〉) .(4.1)

with 〈J〉 and var(J) = 〈J2〉 − 〈J〉2 being the average and variance of J , respectively. In this way,

the scaled variance ε2J can be seen as the inverse of current J ’s signal-to-noise ratio. Since f is

generally a monotonically-decreasing function, TURs express the trade-off that increased precision

in J inevitably comes at the cost of more dissipation. In the previous section, a proof was provided
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by analyzing the impact of higher statistical moments of the entropy production on the signal-to-

noise ratio of thermodynamic currents J . Specifically, it replaces the r.h.s. f(〈Σ〉) with 〈fmin(Σ)〉,

giving:

ε2J ≥
1

〈tanh(Σ/2)〉
− 1.(4.2)

Now, the bound is a functional of the stochastic entropy production Σ distribution and so, critically,

accounts for all higher moments. It is important to stress that g(〈fmin(Σ)〉) appearing in Eq. (4.2)

agrees and coincides with a recent result obtained in Ref. [102], albeit via a completely different

derivation. Our approach, however, focuses on realizing the bound by also finding an explicit

expression for the minimum-variance current Jmin(~s) that saturates Eq. (4.2):

Jmin(~s) =
〈J2

min〉
〈Jmin〉

tanh (Σ(~s)/2) .(4.3)

This minimum depends sensitively on the entropy production’s higher-order fluctuations. In

much the same way that fluctuation theorems [68, 103, 104] reframe the Second Law from an

inequality to an equality, the TUT replaces the bounds set by TUR with a saturable equality.

Applying the TUT to thermodynamic simulations of fundamental bit swap and reset computations,

we now demonstrate that current fluctuations can depart substantially from previous bounds set

by TURs.

4.1. Background

Before analyzing examples that saturate (or not) the new bound, it is worthwhile to do a

short review on some of the most important TUR bounds in the literature to date. Barato and

Seifert [105] derived the first thermodynamic uncertainty relation in terms of rates of entropy

production. They considered the precision of currents J through the inverse of the signal to noise

ratio: the scaled variance. We focus on integrated quantities over the time interval (0, τ). Ref. [106]

proves such a “finite time” uncertainty relation. Horowitz and Gingrich set a lower bound on the

scaled variance of the time-integrated current J . Remarkably, they found that the precision couldn’t
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be maximized without a corresponding increase in the average entropy production

ε2J ≥
2

〈Σ〉
.(4.4)

Because Barato and Seifert discovered this form of the bound, we denote it the Barato-Seifert (BS)

bound on scaled variance

ε2BS ≡
2

〈Σ〉
.(4.5)

Further exploration found that detailed fluctuation theorems [68, 104] can be used to prove

modified thermodynamic uncertainty relations. Hasegawa and Van Vu [107] used Eq. 3.91 1 to

demonstrate that the scaled variance is bounded below by:

ε2J ≥
2

e〈Σ〉 − 1
≡ ε2HVV,(4.6)

where we have labeled their bound by ε2HVV. Also using the fluctuation theorem, Timpanaro,

Guarnieri, Goold, and Landi [108] showed another bound using the average entropy production

ε2J ≥ csch2[g(〈Σ〉)] ≡ ε2TGGL(4.7)

where g(x) is the inverse of x tanh(x), and we have again labeled the bound for the authors. This

bound is tighter than ε2HVV. In fact, it is the tightest possible bound on scaled variance that can

be determined from the average entropy [108].

All three bounds above, while far from complete list, are functions of average entropy produc-

tion, so we can consider which set the tightest and most accurate bounds for different TSCCs.

It is also worth noting that our results is reminiscent of the recently introduced notion of hyper-

accurate currents [109,110], defined as those possessing the maximum signal-to-noise ratio. While

in that case, however, the form of these current, whose precision therefore can be used to bound

the precision of any other thermodynamic current (thus much alike, in spirit, to Eq. (3.102)) was

found within classical and quantum thermoelectrics given a coherent transport modelization in the

1Ref. [107] makes a slightly different assumption, which is that the computation preserves the initial distribution
pτ (s) = p0(s). Their assumption is often sufficient, when time-antisymmetric variables like momentum are thermal-
ized, such as in overdamped Langevin dynamics. However, it is necessary to account for the conjugation of the system
state to establish the most general conditions for the DFT.

103



Landauer-Büttiker formalism, in our work we derive them by imposing the TSCC symmetry on

Pr(~s,Σ).

4.2. Comparison to Past Uncertainty Relations

It is natural to ask for direct comparisons between these different bounds. Comparing these

bounds independent of the TUT, one can see in Figs. 4.3.2 and 4.2.1 that they are ordered:

ε2BS(〈Σ〉) > ε2TGGL(〈Σ〉) > ε2HVV(〈Σ〉).(4.8)

(See also App. 4.A for a proof.) Note that, since ε2TGGL and ε2HVV were derived from the TSCC

DFT, which is our starting point as well, the minimum scaled variance is bounded below by these

TURS but not necessarily ε2BS.

With ε2Jmin’s exact form determined, though, a natural next question is how close the previous

bounds, which all depend only on the average entropy production 〈Σ〉, are to the actual minimum.

Fortunately, Timpanaro et al. also showed that a particular bimodal distribution:

Pr
min

(Σ) ∝ δ(Σ− a) + e−aδ(Σ + a)

achieves their lower bound ε2TGGL. This is the simplest distribution satisfying Pr(−Σ) = e−Σ Pr(Σ).

That is, it consists of a delta function at entropy production Σ = a and then contains a mirror

of that entropy production at Σ = −a reduced by the exponential factor e−a. Any other NESS

entropy distribution can be constructed from a superposition of such distributions. We investigate

the TUT by exploring a variety of possible distributions. We take a similar strategy, breaking the

entropy distribution into the piecewise function:

Pr
(
Σ|µ, σ2

)
= n(µ, σ2)


e

(Σ−µ)2

2σ2 if Σ ≥ 0

eΣe
(−Σ−µ)2

2σ2 if Σ < 0

.(4.9)

Here, n(µ, σ2) =
∫∞

0 e
(Σ−µ)2

2σ2 dΣ +
∫ 0
−∞ e

Σe
(−Σ−µ)2

2σ2 dΣ is the normalization factor. In essence, our

probability distribution is a normal distribution with average µ and variance σ2 over the positive

interval. And, the TSCC DFT defines the distribution to be Pr(Σ) = eΣ Pr(−Σ) on the negative

interval.
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Figure 4.2.1. Three dashed lines show previous TURS—ε2BS, ε2HVV, and ε2TGGL—
all functions of average entropy production 〈Σ〉. While they make nearly identical
predictions for small entropy production, they diverge as entropy increases, setting
very different bounds for average entropy production as low as 〈Σ〉 = 2kB. In
contrast, the minimum scaled variance ε2Jmin is not strictly a function of average
entropy. The entropy distribution Pr

(
Σ|µ, σ2

)
depends on the variance parameter

σ2 and is shown on a sliding scale from high to low variance (from dark to light).
σ2 ranges from ≈ 8× 10−3 to 8× 103. While µ is adjusted to keep 〈Σ〉 fixed. This
yields entropy distributions of the form shown on the right. The lowest values of
σ2 and var(Σ) closely match ε2TGGL. As σ2 increases, the variance of the entropy
production increases, and the curve become lighter, achieving and surpassing the
dashed line for ε2BS. Between these two extremes, there is a purple dashed line that
shows the minimum scaled variance of normal entropy distributions.

The variance σ2 and average µ of the positive entropy portion of the distribution Pr
(
Σ|µ, σ2

)
define it. In the limit σ2 � kBµ, the positive entropy distribution is nearly a delta function, and

we recover roughly the distribution Prmin(Σ) proposed by Timpanaro et al [108]. We show this on

the lefthand side of Fig. 4.2.1 where σ2 ≈ 10−3kBµ, corresponding to a two-peaked distribution.

105



In this case, ε2Jmin closely matches the bound ε2TGGL, as expected. However, Fig. 4.2.1 also shows

that the average entropy production is not the sole determinant of the minimum scaled variance of

the current.

As the variance of the positive normal distribution σ2 increases, Fig. 4.2.1 shows that the

minimum scaled variance increases. Amidst that progression is a special distribution, where σ2 =

2kBµ, for which Pr
(
Σ|µ, σ2

)
is a normal distribution over the full range of entropy production.

It can be quickly shown that the variance for a normal distribution that satisfies the TSCC DFT

must be σ2 = 2kBµ. We highlight this special case with a purple dashed line in Fig. 4.3.2. NESSs,

the most frequently studied subclass of TSCC processes, approach a normal entropy production

distribution in the long time limit. Interestingly, the minimal variance currents of the typical

asymptotic behavior in NESSs clearly violate the original TUR given by ε2BS in the long-time limit.

If we continue beyond the normal distribution to higher variances labeled in lighter colors

in Fig. 4.2.1, the minimum scaled variance ε2Jmin continues to increase, until it surpasses the

bound ε2BS [105]. Thus, by changing the parameter σ2 of the NESS distribution Pr
(
Σ|µ, σ2

)
and

thus its variance var(Σ) as well as other higher moments of the entropy distribution Pr(Σ), we

can interpolate between the TUR set by Timpanaro et al. and that set by Barato and Seifert.

Moreover, we can find entropy distributions that far exceed even Barato and Seifert’s bound.

4.3. Thermodynamic Simulations

The entropy production distribution Pr
(
Σ|µ, σ2

)
is convenient to examine, but it is not obvious

how it can be physically generated. We now describe two computational protocols that are able to

show similar breadth of behavior, but are firmly rooted in dynamical models of physical processes.

Both are TSCCs in that they are implemented with time symmetric control of a potential energy

landscape, where the thermal influence of a bath is applied through Langevin dynamics.

4.3.1. Reset. First, consider a simple reset protocol. A system consisting of a single positional

variable x in asymmetric double well potential U store is initially set up in equilibrium with a thermal

environment at temperature T . If the two metastable states are 0 and 1, then take 0 as the one with

a deeper well and higher initial probability. Then, the energy landscape is tilted and the energy

106



barrier is removed. This computational potential U comp is held so that probability mass flows from

A to B. This is a “reset” in that it re-initializes the system to the B state.

The system begins in equilibrium with a thermal reservoir, exposed to a storage potential

U store. At t = 0, a computational potential U comp is applied until t = τ and then the system is

re-exposed to U store. Because the potential energy surface changes only at t = 0 and t = τ , the work

W (x0, xτ , U
comp, U store) done during any particular microscopic trajectory is given by the sum of

the work invested at t = 0 and that invested at t = τ . Once the system relaxes back to equilibrium,

any energy added to the system in the form of work has been dissipated into the environment:

generating entropy in the heat bath equal to βW . Thus, the entropy generated by a trajectory can

be calculated simply as:

β−1Σ(~x) = β−1Σ(x0, xτ ) = W0 +Wτ

= U comp(x0)− U store(x0) + U store(xτ )− U comp(xτ )(4.10)

A large enough ensemble of initial conditions allows for an estimate of the entropy production

distribution and, through equation 3.102, an estimate of the minimum scaled variance that can be

achieved by any current defined on the system. For both the reset, U comp was chosen to be an

asymmetric double square-well potential with wells of depths D0, D1, widths `, and centered at

x = ±L (See fig 4.3.1.)

The simulation of the reset used non-dimensionalized overdamped Langevin dynamics:

dx = −Ω∂xU(x, t)dt+ ξ
√

2 r(t)
√
dt ,

Here, r(t) is a memoryless Gaussian variable, and all parameters and variables have been scaled

to be dimensionless by the scheme q′ = q · qc. q′ is some dimensional quantity with qc a scaling

factor and q the dimensionless variable. The dimensionless simulation parameters Ω and ξ are

combinations of the scaling factors and the familiar dimensional Langevin parameters. For all

overdamped simulations, Ω = ξ = 1. This represents some relationship between the physical

parameters of the system, but the exact relationship is not important for our purposes. Note also
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Figure 4.3.1. Potential energy landscapes during (a) storage, (b) the reset com-
putation, and (c) the swap computation. The offset from D0 in the right well during
the reset computation creates the same energy barrier as the left well during the
storage potential.

that we choose our scaling factor for energies to be kBT so that the potential energy can be thought

of as being in units of the thermal energy.

In order to see the reset could approach the TUT bound, a suite of 1366 simulations was

performed using a Monte Carlo Markov Chain (MCMC) inspired approach to find parameters for

which ε2Jmin, as estimated by equation 3.102, is minimized. On each iteration of algorithm, a

new value was chosen for 2 (chosen randomly, with replacement) of the 4 parameters L, `,D0, D1

using a Gaussian distribution centered on its current value, checking to make sure that ` < L

and D0 > D1. After performing the simulation and measuring ε2Jmin, the proposed parameter

change was accepted with certainty if the new ε2Jmin was less than the original and accepted with

a probability p ∝ e−∆ε2Jmin if it was greater. Jumps for which the average entropy production did

not satisfy 1.5 ≤ 〈βΣ〉 ≤ 6 we also rejected, to keep the algorithm from exploring an untenable
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range of parameter space. The end result is that for the simulations in figure 4.3.2 the parameters

were sampled from the following ranges, though not uniformly or independently: L ∈ (.2, 1.2),

` ∈ (0, 1.1), D0 ∈ (1, 6.2) and D1 ∈ (.2, 3.6). Here, L, ` are in units of the non-dimensional position

and D0, D1 in units of kBT

The resulting entropy productions in minimum-variance currents are shown in the left panel

of Fig. 4.3.2. Some computations are considerably less precise than specified by ε2BS, the original

TUR, but many lie well below this bound. As expected, all computations are less precise than the

bounds ε2TGGL and ε2HVV, but none of them come very close to the tightest theoretical bound given

by ε2TGGL. Instead, there is another curve that seems to bound all of these time-symmetric erasures,

shown in dashed red. It might be expected that the resulting entropy production distribution would

closely mirror the bimodal distribution case from figure 4.2.1 because the square shape of the well

means there are only two dominant values that the work can take: most trajectories will go from

the 0 to the 1 well, and experience a work value of ≈ D0 −D1, a few will go the opposite direction

and experience D1−D0. However, the results are not in line with this assumption. This is because

the 0 work trajectories that stay in their respective wells have a nontrivial effect.

4.3.1.1. Discrete Bound. In order to see why the reset operation as described cannot generate

a truly bimodal distribution, consider a simplified version of the continuous state dynamics that

implement the reset operation: a two-level system operating in the regime of rate equation dy-

namics. Here, the ‘potential energy landscape’ is defined simply by setting the energy levels of

the two states x ∈ {A,B}. The U store energy levels are EA = E,EB = 0 so that the equilibrium

distribution over the two states is given by ρ0 = (Pr(X0 = A), P r(X0 = B) = (pE , 1− pE). Here,

U comp will swap the two energy levels so that EA = 0, EB = E and τ will be long enough that the

system has enough time to equilibrate to U comp yielding ρτ = (1 − pE , pE). Using equation 4.10

reveals only three possible outcomes for Σ(x0, xτ ):

Σ(A,A) = Σ(B,B) = 0

Σ(B,A) = −Σ(A,B) = 2βE.

Because the system has been given time to equilibrate the state at time t = 0 is not correlated

with the state at time t = τ so the probabilities of these different events can be readily calculated,
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swap
<latexit sha1_base64="uA9LtoOix/cUVtmHGJddSIejvYA=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YA0lM122i7dbMLuRC2hP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbITMghYIGCpTQTjSwKJTQCkc3U7/1ANqIWN3jOIEgYgMl+oIztJLfQXjCzDyyZNItld2KOwNdJl5OyiRHvVv66vRinkagkEtmjO+5CQYZ0yi4hEmxkxpIGB+xAfiWKhaBCbLZyRN6apUe7cfalkI6U39PZCwyZhyFtjNiODSL3lT8z/NT7F8FmVBJiqD4fFE/lRRjOv2f9oQGjnJsCeNa2FspHzLNONqUijYEb/HlZdKsVrzzSvXuoly7zuMokGNyQs6IRy5JjdySOmkQTmLyTF7Jm4POi/PufMxbV5x85oj8gfP5AwxekcA=</latexit>

reset
<latexit sha1_base64="JwtAjFsI4gjtO9pjvQilIyDLp2s=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0oWy203bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuhMyAFAqaKFBCJ9HAolBCOxzfzvz2I2gjYvWAkwSCiA2VGAjO0Eq+j/CEmQYDOO2VK27VnYOuEi8nFZKj0St/+f2YpxEo5JIZ0/XcBIOMaRRcwrTkpwYSxsdsCF1LFYvABNn85ik9s0qfDmJtSyGdq78nMhYZM4lC2xkxHJllbyb+53VTHFwHmVBJiqD4YtEglRRjOguA9oUGjnJiCeNa2FspHzHNONqYSjYEb/nlVdKqVb2Lau3+slK/yeMokhNySs6JR65IndyRBmkSThLyTF7Jm5M6L86787FoLTj5zDH5A+fzB9OUkjI=</latexit>

Figure 4.3.2. Bounds ε2BS > ε2TGGL > ε2HVV in solid lines (blue, red, and black
respectively) and specific thermal processes with dashed lines: The blue dashed line
is the minimum scaled variance ε2Gaussian of any process that generates a Gaussian
entropy production distribution, which is achieved in the long-time limit of NESS
processes. The red dashed line is the minimum scaled variance ε2Discrete of an ideal
discrete erasure. We compare two computational classes to the these bounds. (Left)
we plot 1366 different time-symmetric erasures. As expected (see App. 4.3.1.1) they
are bounded by the scaled variance of the ideal discrete erasure ε2Discrete, which lies
well above the bounds ε2TGGL and ε2HVV. A number of erasure operations are well
above the minimum ε2TGGL set by Barato and Seifert. (Right) we plot the result
1193 different bit-flips. As with the erasure protocol, many computations are above
the Barato-Seifert bound. However, many computations achieve a minimum scaled
variance well below the discrete erasure bound ε2Discrete. Many computations are
quite close to the strongest possible TUR ε2TGGL, indicating that this theoretical
bound is indeed achievable with TSCCs.

yielding the full distribution of entropy production:

Pr(Σ(A,A)) = Pr(Σ(B,B)) = pE ∗ (1− pE)

Pr(Σ(A,B)) = p2
E

Pr(Σ(B,A)) = (1− pE)2
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For the two-level system, pE = e−βE

1+e−βE
. For any anti-symmetric function J(Σ) = −J(−Σ), we have

〈J(Σ)〉(E) = J(2βE)((1− pE)2 − p2
E)

= J(2βE)(1− 2pE) = J(2βE)
1− e−βE

1 + e−βE

= J(2βE) tanh(βE/2).

Where the zero entropy events do not appear directly in the first line because J(0) = 0 for any

function J that is odd in Σ. We use this equation to readily calculate both the average entropy

production

〈Σ〉(E) = 2βE tanh(βE/2),(4.11)

and the minimum variance current for the distribution (through equation 3.102)

ε2Jmin(E) =
1

〈tanh(Σ/2)〉(E)
− 1

=
1

tanh(βE) tanh(βE/2)
− 1.(4.12)

We can then use the parameter E to find the effective bound that equation 4.3 sets for a given

average entropy production in the reset process. Fig. 4.3.2 shows that, while this bound lies below

the one for a normally distributed entropy production– it lies far above previous bounds, ε2TGGL

and ε2HVV, that used only the TSCC DFT in 3.91. And, for the reset processes simulations the

bound appears tight. This example showcases the flexibility of 4.3, as we see it can be used to

set operationally useful regime and/or protocol specific bounds by including information about the

system of interest.

4.3.2. Swap. In order to generating an entropy production distribution that allows for the

most accurate current possible– we turn to a different kind of protocol with a different type of

dynamic. Consider the same initial metastable states A and B, which are stored in local equilibrium.

Then, instantaneously implement a harmonic potential and hold the energy landscape for half a

period of the oscillation. If the coupling to the thermal environment is weak, then this implements

a reliable swap between A and B, using momentum as memory to carry the distributions into
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their new states. Crucially, this simulation must use underdamped Langevin dynamics rather than

overdamped:

dx = vdt

dv = −λvdt−Θ∂xU(x, t)dt+ η
√

2λ r(t)
√
dt ,

A similar scaling strategy as that described in Appendix 4.3.1 leads to three dimensionless

parameters: λ,Θ, η. Θ = η = 1 for all simulations but λ, which parameterizes the system’s

coupling to its thermal environment, was allowed to change.

The computational potential for the swap is a harmonic potential with k = mπ2 (see Fig. 4.3.1.)

If λ = 0, the system undergoes a harmonic oscillation with a period of 2 time units. Exactly halfway

through the oscillation, the particles that were in the left(right) well of U store should now be located

where the right(left) well is. Thus, if U store is turned back on at t = 1 we have implemented a ‘swap’

operation between asymmetric wells. Because the dynamics are underdamped, this type of protocol

also persists in the case of nonzero λ, since the system will undergo the same oscillation, with some

amount of dissipation. The work cost distribution to implement this protocol will approach a

bimodal distribution, with particles starting in the left well costing an energy value near D0 −D1

and those starting in the right yielding an energy surplus near D1 − D0. This distribution is

sharpened by narrower wells and lower values of λ.

Instead of only attempting to minimize ε2Jmin, the point of this simulation is to showcase that

ε2Jmin can faithfully capture all cases: from where ε2TGGL is tight, to where ε2BS is tight, to where

neither is a good approximation. The protocol described above generates the bimodal distribution

that saturates ε2TGGL under some cases, but can also produce entropy production distributions where

the minimal scaled variance is well above ε2BS (see the right panel of figure 4.3.2.) To showcase this

variety, a MCMC approach was again used. On each iteration of algorithm, a new value was chosen

for 3 (chosen randomly, with replacement) of the 5 parameters L, `,D0, D1, λ using a Gaussian

distribution centered on its current value, checking to make sure that ` < L, D0 > D1 ,and λ > 0.

In this case, all jumps for which 〈Σ〉 fell between 2 and 5 were accepted, and those that did not were

accepted with a probability that exponentially decayed in |〈Σ〉−3.5|. The plot in figure 4.3.2 shows

a suite of 1193 simulations, that stem from 8 different starting points for λ ∈ (0, .15), but all other
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parameters the same. As the algorithm evolved, all free parameters were allowed to shift with the

result being that parameters were sampled from the following ranges: L ∈ (.14, .68), ` ∈ (0, .39),

D0 ∈ (1.2, 10.5) and D1 ∈ (.39, 3.6), λ ∈ (0, .2).

The entropy and scaled variance of these swaps are shown on the right-hand side of Fig. 4.3.2.

They span the same space of possibilities shown for Pr
(
Σ|µ, σ2

)
in Fig. 4.2.1: some lying above

ε2BS and some TSCCs sitting just above the minimum set by ε2TGGL.

4.4. Momentum

Analogous to the transition from the Second Law inequality to the fluctuation relations of

Crooks and Jarzynski, we have developed a treatment of the entropy production that recognizes

it as a stochastic quantity with lawful fluctuations. This treatment yields a result—the Thermo-

dynamic Uncertainty Theorem—that is (i) an equality rather than an inequality and (ii) depends

on the stochastic entropy production’s fluctuations rather than on only its average value. This

generalization of previous TURs can be used to derive them, to better understand their domains of

applicability, and to establish new system-specific bounds on the variance of currents. In this way,

the Thermodynamic Uncertainty Theorem moves further to fully quantifying the relationship be-

tween fluctuations and dissipation in out-of-equilibrium processes—the unifying goal in stochastic

thermodynamics. In the process of this discovery, we find that the underlying system’s momentum

coordinate was key in generating an entropy production distribution that permitted most accu-

rate currents allowed by the TSCC DFT symmetry. The revelation opens the door for exploring

a new class of computational protocols, named ‘Momentum Computing’, that leverage both the

position-like and momentum like coordinates of a systems phase space.
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Appendix

4.A. Proof that ε2J ≥ ε2Jmin ≥ ε2TGGL

Let us start by considering the expressions for the two TUR bounds ε2jmin and ε2TGGL, which

can be proven to bound the noise-to-signal ratio (or scaled variance) ε2J ≡
Var(J)
〈J〉2 of any current

J (assumed to be anti-symmetric under time-reversal) in steady-state regime under the constraint

that the probability distribution for the entropy production Σ satisfies the so-called Evan-Searles

(or exchange) fluctuation relation symmetry

(4.13) p(−Σ) = p(Σ)e−Σ.

Our main result is that, under no additional assumptions about the distribution over Σ, the fol-

lowing bound can be placed

(4.14) ε2J ≥ ε2jmin ≡
1

〈tanh(Σ/2)〉
− 1.

The other bound, proven in [108] shows instead if on top of the above the averages of the entropy

production and of a generic current, i.e. 〈Σ〉 and 〈J〉, are fixed and satisfy a joint fluctuation

relation symmetry of the form

(4.15) p(−Σ, J) = p(Σ, J)e−Σ,

then the following TUR bound can be derived

(4.16) ε2J ≥ ε2TGGL ≡ csch2(g(〈Σ〉/2)).

where g(〈Σ〉) is the function inverse of 〈Σ〉 tanh(〈Σ〉).
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Is there a relationship between these two bounds? In these brief notes we provide a positive

answer to this question.

The first step to show this is to re-express the right hand side of Eq. (4.16) as

(4.17) ε2J ≥ ε2TGGL ≡
1

tanh2(g(〈Σ〉/2))
− 1

by using the identity csch2(x)+1 = 1/ tanh2(x). In order to proceed, let us then define the following

quantities:

z(Σ) ≡ tanh2

(
Σ

2

)
(4.18)

h(Σ) ≡ Σ tanh

(
Σ

2

)
.(4.19)

Furthermore, let us introduce the inverse function of h(Σ) and denote with by g, i.e. g(h(Σ)) = Σ.

Notice that this is possible since h(Σ) is a monotonically increasing function of Σ whenever Σ ≥ 0.

This is not a limitation, since, thanks to the fluctuation relation symmetry Eq. (4.13), it amounts

to consider

(4.20) 〈(. . .)〉 ≡
∑

Σ

(. . .)p(Σ) =
∑
Σ>0

(. . .)p(Σ)
(
1 + e−Σ

)
.

The way to make use of the above-introduced quantities is to realize that the composite function

w(h) ≡ f(g(h)) is a concave function of h (when h ≥ 0), since w′(h) > 0 w′′(h) < 0. This allows

us to exploit Jensen’s inequality (with the “norm” being given by the average 〈. . .〉 calculated with

the probability distribution p(Σ)(1 + e−Σ), as discussed a few lines ago) and obtain the following

inequality

〈tanh

(
Σ

2

)2

〉 = 〈z(Σ)〉 = 〈z(g(h(Σ)))〉(4.21)

≤ z(g(〈h(Σ)〉)) = z(g(〈Σ〉)),(4.22)

where on the last passage we have used the fact that 〈Σ〉 = 〈h(Σ)〉. Notice that the quantity that

appears on the right hand side of this inequality, i.e. z(g(〈Σ〉)), is nothing but the denominator in

the first term of the r.h.s. of Eq. (4.16).
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The final step to conclude the proof then consists in realizing that 3.101 means that the the

l.h.s. of the inequality (4.21) is the denominator in the first term of the r.h.s. of Eq. (4.14).

In view of Eq. (4.21) then immediately follows that

(4.23) ε2jmin ≥ ε
2
TGGL.

4.A.1. Simulation Details. Each dot in the simulation plot was calculated from an ensemble

of 50,000 trajectories sampled from the equilibrium distribution, using a Monte Carlo method. In

order to reduce the size of errorbars, averages shown in figure 4.3.2 were calculated using only the

positive entropy production events according to equation 3.97, which assumes a system that obeys

the TSCC DFT. This numerical trick does not change any of the qualitative results, but allows

for plots in which the error bars are small enough to not be relevant in the plot. For example,

figure 4.A.1 shows a plot of the same simulation data that generated figure 4.3.2 but with 3σ

error bars calculated from the full simulation, rather than just the well-sampled positive events.

The Langevin simulations of the dimensionless equations of motion for both the underdamped

and overdamped cases employed a fourth-order Runge-Kutta method for the deterministic portion

and Euler’s method for the stochastic portion of the integration with dt set to 5 × 10−5. Python

NumPy’s Gaussian number generator was used to generate the memoryless Gaussian variable r(t).
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Figure 4.A.1. The same simulation data that generated figure 4.3.2 but with 3σ
error bars calculated from the full simulation, rather than just the well-sampled
positive events.
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CHAPTER 5

Momentum Computing

Practical, useful computations are instantiated via physical processes. Information must be

stored and updated within a system’s configurations, whose energetics determine a computation’s

cost. To describe thermodynamic and biological information processing, a growing body of re-

sults embraces rate equations as the underlying mechanics of computation. Strictly applying these

continuous-time stochastic Markov dynamics, however, precludes a universe of natural computing.

Within this framework, operations as simple as a NOT gate ( flipping a bit) and swapping bits

are inaccessible. We show that expanding the toolset to continuous-time hidden Markov dynamics

substantially removes the constraints, by allowing information to be stored in a system’s latent

states. We demonstrate this by simulating computations that are impossible to implement without

hidden states. We design and analyze a thermodynamically-costless bit flip, providing a counterex-

ample to rate-equation modeling. We generalize this to a costless Fredkin gate—a key operation in

reversible computing that is Turing complete (computation universal). Going beyond rate-equation

dynamics is not only possible, but necessary if stochastic thermodynamics is to become part of the

paradigm for physical information processing.

The burgeoning field of thermodynamic computing leverages recent progress in nonequilibrium

thermodynamics and information and computation theories [23,111,112,113,114] to establish a

new paradigm for physical information processing. It promises to increase computational power and

efficiency and to reduce energy dissipation in a next generation of computers [45]. Thermodynamic

computing is distinguished from alternative paradigms by its focus on an information-processing

device’s physical embedding; specifically, by constructively working with kBT -scale fluctuations that

a thermal environment generates. More broadly, a general framework rooted in thermodynamics, as

thermodynamic computing is, will provide the tools to understand the physics of computation in all

its many forms. The following illustrates its breadth by introducing non-Markovian, momentum-

based computing—a paradigm that is both computation universal and thermodynamically efficient.
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We describe physically-embedded computation as a stochastic mapping within a system’s set

M of memory states—Landauer’s information-bearing degrees of freedom (IDoF) [115]. Carried

out over time interval t ∈ (0, τ), the mapping is the conditional probability p of transitioning from

an initial memory state m(0) ∈ M to a final state m(τ) ∈ M: pm(0)→m(τ) = Pr [m(τ)|m(0)]. The

mapping p determines the probability of the final memory state given the initial memory state,

and so updates the state distribution ~p(τ) = p ~p(0).

This describes the physical dynamics underlying a computation, but what of its thermody-

namic consequences? To address this, we must first identify the constraints on dynamics that can

implement computations.

5.1. Computing with Continuous-Time Markov Chains

To date, proposed frameworks for the required mappings in thermodynamic computing assume

that the memory state m obeys stochastic Markovian dynamics [116,117, and references therein].

Taking time to be continuous, the dynamics are continuous-time Markov chains (CTMCs), where

the state distribution changes continuously as a function of itself ~̇p(t) = f(~p, t). The resulting

dynamics are necessarily represented by a master equation over the memory-state distribution

~̇p(t) = A(t)~p(t) [116,117]; that is, by rate equations. This is a powerful framework for stochastic

thermodynamics [111,118,119] that yields insight into physical realizations of computations such

as bit erasure and measurement [120].

The constraint that the computation p is generated by integrating continuous-time master

equations comes at a substantial compromise, though, as it limits both the range of possible com-

putations and the energetic consequences of the computations that are possible. One example is the

‘discrete bound’ derived in the previous chapter that prevented the overdamped ‘reset’ from gen-

erating entropy production distributions that could contain very precise currents. There are other

limitations as well: for example, only input-output mappings whose determinants are positive are

allowed when memory-state dynamics are restricted to obey CTMCs [117]. This eliminates many

common and useful computations, including flipping a single bit of information. Reference [116]

takes these restrictions as delineating the possible physically realizable computations. Given that

any computation we can observe—a bit flip, to take one example—is necessarily physical, one
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must instead interpret the restrictions as a limitation of the CTMC framework, rather than of the

physical world.

Understanding both the merits and limitations of the CTMC framework requires a look at the

physical mechanisms that underpin it. It might seem natural to say that the memory states M

are microstates of a physical memory system S, evolving under Hamiltonian dynamics. However, a

physical computation device is typically coupled to an environment—which suggests treating S as a

stochastic subsystem of a deterministic universe. If the environment is a large weakly-coupled heat

bath, with degrees of freedom that relax sufficiently quickly, the effective dynamics for S are also

Markov, and therefore CTMC [111, 121, 122, 123, 124]. In essence, coarse-graining the thermal

environment allows for accurate, probabilistic predictions about the memory system, while avoiding

the task of tracking the full Hamiltonian dynamics of the joint system and bath.

This justification of the Markov evolution of a memory system recognizes an important fact:

S’s states are not themselves full descriptions of physical degrees of freedom. Instead, they are

mesostates defined by a coarse-graining over the thermal environment’s microstates. This coarse-

graining is appropriate since the environment does not retain information about the past.

Computationally-useful memory statesM—Landauer’s IDoF—are mesostates that also coarse-

grain over S’s CTMC-evolving states. It is possible, depending on the variables and timescales of

interest, that this coarse-graining ignores only rapidly-relaxing subsystems of S and, then, the IDoF

inherit the Markov property of the memory system [125]. The result is a powerful and widely-

used framework for thermodynamic computing in which the IDoF also obey CTMC dynamics.

This case is typified by IDoF that are positional degrees of freedom and where S is described by

overdamped Langevin dynamics. It is from this perspective that a bit flip is forbidden: in order to

cause realizations that fall in the region representing m = 0(m = 1) at t = 0 to move to the region

of state space representing m = 1(m = 0) at t = τ , the two must overlap at some intermediate

time. If the dynamics ofM are restricted to be Markovian (memoryless), the two disparate initial

conditions cannot be distinguished from each other once the overlap occurs—rendering it impossible

to selectively control them to end in separate memory states.
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5.2. Computing with Continuous-Time Hidden Markov Chains

However, in the most general case, the IDoF coarse-grain over subsets of S that carry informa-

tion relevant for predicting a computation’s performance. That is, the states thatM coarse-grains

over are hidden in that they contain dynamically relevant information not determined from in-

stantaneous realizations of the memory. The resulting memory dynamics are non-Markovian, since

information is transmitted from past to future without ever appearing in the present memory

state [126]. The sobering fact is that a general analytical treatment of partially-observed (and

therefore non-Markovian) systems is highly nontrivial [114, 124, 127, 128, 129]. No matter, hid-

den states allow for more general forms of computation [117, 130], since non-Markov dynamics

relax the constraints imposed by CTMCs. Following this argument to its conclusion, the following

demonstrates that the appropriate setting for thermodynamic computing is continuous-time hidden

Markov chains (CTHMCs), in which hidden variables store computationally-relevant information.

Moreover, when memory is stored in positional degrees of freedom, the conjugate momentum

variables are particularly useful hidden variables for flexibly designing computations. We demon-

strate this first by implementing a thermodynamically-costless bit flip—a simple computation that

is explicitly forbidden by CTMCs. We then generalize this to a costless Fredkin gate—a key com-

ponent in reversible computing that is also impossible to implement with CTMCs. This operation

is computation universal (Turing complete), meaning that combinations of the Fredkin gate can

implement any logical operation [131]. The implementation of this universal and reversible-logic

gate via CTHMCs demonstrates that non-Markovian dynamics are essential to thermodynamic

computing and that a new class of momentum-based computation is within reach.

5.2.1. Momentum Computing Realization. Consider a computation that happens faster

than the equilibration timescale of the physical substrate and its thermal environment. In this

regime, a particle’s instantaneous momentum can be commandeered to carry useful information

about its future behavior. Our protocol operates on this timescale, using the full phase space

of the underlying system’s degrees of freedom to transiently store information in their momenta.

Due to this, the instantaneous microstate distribution is necessarily far from equilibrium during

the computation. Moreover, the coarse-grained memory-state dynamics during the swap are not
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Markovian; despite both the net transformation over the memory states and the microscopic phase

space dynamics being Markovian. Nonetheless, the system operates orders of magnitude more

efficiently than current CMOS but, competing with CMOS, the dynamics evolve non-adiabatically

in finite time—on nanosecond timescales for our physical implementation below.

In this way, momentum computing offers up device designs and protocols that accomplish

information processing that is at once fast, efficient, and low error. There is a trade-off—a loss of

Markovianity in the memory-state dynamics. That noted, the dynamics of the memory states are

faithfully described by continuous-time hidden Markov chains (CTHMCs) [130, 132, 133], rather

than the continuous-time Markov chains (CTMCs) that are common in stochastic thermodynamics

[114,134].

Formally, auxiliary systems can be added to the set of memory states. Done correctly this

again permits using CTMCs in the augmented state space to accomplish the computation [135].

However, physically-embedded computations do not generally allow the required perfect control

over the system Hamiltonian. Indeed, one need look no further than the present work to see how

nontrivial it is to implement an operation as simple as a harmonic oscillation in a physically-realistic

device.

Moreover, adding auxiliary subsystems increases state-space dimension and complicates control

apparatus and control protocols. Due to the increased complication, in many settings, adding aux-

iliary dimensions is simply not physically feasible. On top of this, the timescale of these augmented

computations must be longer than the equilibration time of the auxiliary systems and thermal en-

vironment. In this way, adding auxiliary systems imposes additional speed limits to computations.

In short, adding auxiliary subsystems addresses the shortfalls of CTMCs, but does not sidestep

their fundamental limitations.

We illustrate this by considering an efficient bit swap implemented via a Markovian embedding.

First, it augments the system with an unoccupied auxiliary state A to serve as a transient memory.

It then quasistatically translates memory state 0 to A, while memory state 1 is translated to 0.

Finally, it quasistatically translates A to 1.

Quasistatic processes cost arbitrarily little work, but they take arbitrarily-long times. To com-

pute faster (τ → 0), the work cost will diverge as 1/τ [46,52,53,54]. Increasing fidelity requires
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raising the scale of the barrier separating the states. Doing so, though, increases the energetic

cost at a given computational speed; maintaining the same work cost, then, requires slowing the

operation. In short, the trade-offs in Markovian embedding complicate design and, more to the

point, reduce performance.

5.3. Flipping a Bit

The ideal bit swap has no error, but in the thermodynamic setting one is also interested in

an implementation’s fidelity. And so, we write a swap with error rates ε0 and ε1 as a stochastic

mapping between memory states m ∈ {0, 1} from time 0 to time τ :

Pε(mτ |m0) =

 ε0 1− ε0

1− ε1 ε1

 .

To execute a single bit flip over a time interval t ∈ [0, τ ], the first step is to store a bit of

information. One candidate is a particle with a single position dimension x ∈ R and corresponding

momentum p ∈ R in an even potential energy landscape V store(x) containing only two potential

minima at x = ±x0 with an associated energy barrier between them equal to {V store(0)−V store(x0).

The particle’s environment is a thermal bath at temperature T . As the height of the potential energy

barrier rises relative to the bath energy scale kBT , the probability that the particle transitions

between left (x < 0) and right (x ≥ 0) decreases exponentially. In this way, if we assign the left half

of the position space to memory state 0 and the right half to memory state 1, the energy landscape

is capable of metastably storing a bit m ∈ {0, 1}.

To execute a flip operation, we instantaneously reduce the coupling to the thermal reservoir

to zero such that the memory system now follows dissipationless Hamiltonian dynamics. Simulta-

neously, the potential energy landscape changes to a positive quadratic well: V comp(x, t = 0+) =

kx2/2. The resulting particle motion is harmonic oscillation: x(t) = x∗ cos
(
t
√
k/µ+ φ

)
, where

µ is the particle mass, x∗ is the maximum distance from the cycle’s origin, and φ is the phase

difference from maximum distance at the time t = 0+. Maintaining the thermally decoupled sys-

tem in the quadratic potential energy landscape for half the oscillation period t ∈ (0, π
√
µ/k), the

particle’s new position becomes: x(π
√
µ/k) = x∗ cos(π + φ) = −x∗ cos(φ) = −x(0). Thus, over the

computation interval τ = π
√
µ/k, the position flipped sign so that the memory state has flipped
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as well: m(τ) = 1 − m(0). Finally, we instantaneously return the potential energy landscape to

V store(x) and recouple to the thermal bath.

The work W involved is the time-integrated rate of potential energy change due to the change in

the protocol parameter [136]: W =
∫
dt∂U(x, t′)/∂t′|x(t),t. The work cost for a particular trajectory

is the instantaneous change in potential energy at t = 0 and t = τ :

W =V (x(0), 0+)−V (x(0), 0)+V (x(τ), τ)−V (x(τ), τ−),(5.1)

where 0+ and τ− are times immediately after and before t = 0 and t = τ , respectively. Recall that

the potential is time-symmetric (V (x, t) = V (x, τ − t))), that x(τ) = −x(0), and that the potential

is even in x. These three qualities yield −V (x(0), 0) +V (x(τ), τ) = V (x(0), 0+)−V (x(τ), τ−) = 0.

No net work is generated during the protocol.

5.4. The Fredkin Gate

The bit-flip implementation may seem obvious in its simplicity. However, sophisticated and

functional computing can be built from a similar passive processes. Below we outline an imple-

mentation of the Fredkin gate, a reversible and computation universal logical gate [131], using

the same strategy. This establishes that CTHMCs give straightforward access to complex and

Turing-complete thermodynamic computing.

The Fredkin gate operates on three bits M = {0, 1}3. That is, we encode the physical sub-

strate as three particle-position variables (x, y, z) that are each separated into negative and posi-

tive memory-state regions, as above. This splits the memory states into eight respective octants:

(x < 0, y < 0, z < 0) corresponds memory state m = 000, (x < 0, y ≥ 0, z < 0) to m = 010,

and so on. The information-storing Hamiltonian is a straightforward sum of bistable, even, one-

dimensional storage potentials: V store(x, y, z) = V store(x) + V store(y) + V store(z). This provides

metastable regions corresponding to each memory state mxmymz ∈ {0, 1}3.

Given this construction, we design physical transformations that implement the Fredkin gate

with zero cost in finite time. The Fredkin gate is also known as the controlled swap gate, as it

exchanges inputs my and mz only if the control mx is set to 1. In other words, the gate maps all

inputs to themselves, excluding 101 and 110 that swap with each other. The implementation uses
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the bit-flip strategy of decoupling from the thermal reservoir and applying a harmonic potential

over the time interval t ∈ (0, τ), then recoupling and resetting the original information-storing

Hamiltonian. The only difference is that the harmonic potential driving the computation is now

embedded in the higher-dimensional space.

To execute the Fredkin gate, first note that the memory-state x-index must always be fixed:

mx(τ) = mx(0). Moreover, behavior in the y − z plane should only depend on x up to whether it

is positive or negative. Thus, we first split the potential into two pieces: V (x, y, z, t) = V store(x) +

V yz(x, y, z, t). If mx(0) = 0 then my and mz must also not change. This suggests using the

information-storing potential for this region of state space: V (x < 0, y, z, t) = V store(x, y, z) during

the entire computation. For mx = 1, however, we must nontrivially compute on my and mz:

V yz(x ≥ 0, y, z, t ∈ (0, τ)) = V comp(y, z). Here, V comp determines that part of the Hamiltonian

which implements the switch 101 → 110 and 110 → 101 and remains unchanging over t ∈ (0, τ).

Due to decoupling from the x-axis, particle behavior in either the positive or negative x regions

can be considered as being purely the result of two-dimensional dynamics.

To swap 101 and 110, while keeping 111 and 100 fixed, consider a new basis for the yz-space.

Define new variables: y′ = (y − z)/
√

2 and z′ = (y + z)/
√

2, such that the local equilibrium

distributions for states 110 and 101 are centered around z′ = 0 and those for states 111 and 100

are centered around y′ = 0. Thus, our goal is to swap the distributions in the y′-coordinate while

preserving their z′-coordinate.

Given this, we split the computation Hamiltonian again into independent components: V comp(y, z) =

V (y′) +V (z′). Flipping in the y′-coordinate employs the same Hamiltonian as for the previous bit-

flip protocol: V (y′) = ky′2/2. As a result, when waiting half a period τ = π
√
µ/k, the y′ coordinate

changes sign y′(τ) = −y′(0), as does its momentum. We choose the z′ coordinate’s potential to

be quadratic as well, but with an induced period of oscillation that is half as long: V (z′) = 2kz′2.

z′ then undergoes a full cycle after the duration τ , returning to its original value z′(τ) = z(0), as

does its momentum. Over the control interval t ∈ (0, τ) the Hamiltonian operates piecewise with
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Figure 5.4.1. Particle ensemble initialized in equilibrium with V store(x, y, z) un-
dergoing the Fredkin gate protocol with zero coupling to the thermal reservoir. Each
snapshot of the state evolution is separated by a time interval of τ/8, with the black
arrows indicating forward time. Color encodes in which informational state each
trial begins. The 101 (red) and 110 (blue) states only oscillate by a quarter period
in the time (τ/2) it takes the 100 (yellow) and 111 (green) states to oscillate by
a half cycle. As the 100 and 111 trials return to their initial positions, the 110
and 101 states approach their final positions: a half cycle from where they started
(right). The states have been swapped. Additional Animations are available online
at https://kylejray.github.io/fredkin/.

V (x, y′, z′, t) = V store(x) + V yz(x, y′, z′, t), where:

V (x, y′, z′, t) =


V store(x, y, z) if x < 0

V store(x) + ky′2

2 + 2kz′2 if x ≥ 0

.

In our original coordinates, this passive Hamiltonian transforms the particle’s state by swapping y

and z, but only when when x > 0 (mx = 1); thus, it implements the Fredkin gate.

For a particular trajectory (x, y, z)(t), the work invested only comes from the initial and final

instantaneous changes in the energy landscape, as noted above. Recall that x(t) is exponentially

unlikely to change sign, since the energy barrier between states is much higher than the vast

majority of thermal fluctuations can access. Thus, we assume that paths maintain a single sign for

x(t). If x(t) is negative, then there is no instantaneous change, as the system is held in the same

double-well potential, so W = 0.
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(a) (b)

Figure 5.4.2. Slice of the potential energy landscape V (x, y, z) in the y− z plane:
(a) information-storing domain (x = −x0) and (b) controlled-swap domain (x = x0)
during the Fredkin gate operation.

That said, if x(t) is positive, then the work invested also vanishes. For these trajectories, note

that the y− z subspace potential is symmetric with respect to exchange of the y and z coordinates

and that the action of the map is to swap y and z. Thus, using the same arguments as for the

bit flip, we see that the work production vanishes. The only work-producing trajectories are the

exponentially suppressed barrier crossing events—so the average work production is nearly zero.

Figure 5.4.1 demonstrates the evolution of the phase space on an ensemble of initial condi-

tions drawn from the equilibrium distribution of a quartic storage potential. As shown by the

particle coloring, those that start in 110 and 101 swap while all others are fixed. Moreover, none

of the particles’ x-coordinates change informationally, confirming the effectiveness of the overall

transformation.

5.5. Langevin Simulation

The preceding stipulated that the logical system be isolated from its thermal environment

during the swap. It might not seem surprising then, that we are able to accomplish a work-free bit

flip, given that other classical implementations of efficient reversible computing—such as ballistic

computing with billiards [131]—necessarily operate in a dissipationless environment.

However, a key and somewhat surprising point is that the Fredkin gate implemented above

tolerates imperfect isolation from its thermal environment. The gate’s robustness to fluctuations

separates it from other implementations that are dynamically unstable, such as billiard computing.
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To demonstrate this, we investigated how robust the operation is to thermal agitation by us-

ing underdamped Langevin dynamics. A simulation was carried out by initializing particles in

the equilibrium distribution with a thermal reservoir under a quartic information-storing potential

V store(x, y, z). Next, as described above, we exert work on the system by turning on the computa-

tional potential V comp in the region x > 0. However, rather than reducing the thermal coupling to

λ = 0, we drop the coupling coefficient to a nonzero value in the weak coupling regime. This cou-

pling value and potential are held fixed for time τ = π
√
µ/k. (The Appendix provides additional

detail).

5.6. Thermodynamically Robust Fredkin Gate

The particles experience thermal fluctuations as the weak coupling to the bath perturbs their

trajectories from the otherwise expected harmonic motion. The work gained from shutting off the

potential will not generally be the same as the work invested to turn it on (as in the idealized

case of zero thermal coupling). In fact, the Second Law guarantees that, generally, positive work

is invested for such cyclical transformations, because the net change in equilibrium free energy is

zero. Nevertheless, one expects the behavior to approximate the desired Fredkin-gate dynamics if

the coupling is sufficiently weak. Figure 5.6.1 shows that the logical fidelity approaches unity. And,

it does so with zero slope, revealing that this Fredkin gate implementation is robust even in the

presence of thermal fluctuations.

This also gives evidence that the implementation should have practical use for reversible uni-

versal computing in a thermal environment. This regime is particularly well suited, for example,

to superconducting flux qubits working in the classical regime [137] in which a tunable resistance

can act as a control parameter for damping.

As expected and shown in Fig. 5.6.1, the work invested approaches zero with decreasing cou-

pling. However, as the coupling to the thermal reservoir increases, the average work required to

compute increases to multiples of kBT . This cost scaling is evidence that the thermal agitation has

become significant enough to take the particles appreciably far from their ideal (costless) trajecto-

ries; nevertheless the protocol maintains high fidelity, even in this regime. Note that the work cost
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Figure 5.6.1. Logical fidelity (successful trials/total trials) in the low-coupling
Fredkin gate and the average net work required to implement it for different values
of the thermal coupling constant λ, measured in units of πµ/τ . Computational bits
refers to states that fall in the region x > 0, where the computational potential is
in effect.

is exponentially unlikely to come from trajectories that “jump” over the x = 0 boundary, since the

storage bits maintain perfect fidelity.

5.7. The Future of Computation?

Ever since the first exorcism of Maxwell’s demon [4], determining how much energetic input a

particular computation requires has been a broadly-appreciated theoretical question. In the current

century, however, the question has taken on a markedly practical bent; a familiar example is the

evolution of Moore’s Law from initially provocative speculations decades ago to now addressing

material, thermodynamic, and fabrication restrictions [138,139,140,141,142]. Transistor-based

microprocessing presents fundamental scaling challenges that strictly limit potential directions for

future optimization, and these challenges are no longer speculative. Clock speed, to take one

example, has been essentially capped for two decades due to energy dissipation at high rates

[143, 144]. By some measures, Moore’s law is already dead—as integrated circuit manufacturers

go vertical, rather than face the expense of creating smaller transistors for 2D circuits that yield

only marginal gains [145,146,147].
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In the preceding sections, we introduced a design framework and theory for an arbitrarily low-

cost, high-speed bit swap, a logically-reversible gate (the only known logical framework with no

nontrivial lower bound on its dissipation [6, 148, 149].) Additionally, we showed that a universal

reversible gate—a Fredkin gate [131, 150]—can be built by coupling three such devices together.

However, any particular physically-instantiated implementation will come with its own restrictions

and considerations that are likely to disallow performing the swap exactly as theorized. And so,

an implementation linked to a particular substrate must be built and analyzed in its own right.

In order to test the physical feasibility of such protocols, we next present a physically-realizable

device and control protocols that implement a bit swap gate that operates in the sub-kBT energy

regime using superconducting Josephson junctions (JJs)—a well-known and scalable microtech-

nology. This device was recently used to measure the thermodynamic performance of bit era-

sure [151,152]. That extensive experimental effort demonstrated in practical terms that the device

proposed here is realizable with today’s microfabrication technologies and allows for detailed studies

of thermodynamic costs. We use extensive, physically-calibrated simulations to demonstrate that

the device performance is robust and that momentum computing can support thermodynamically-

efficient, high-speed, large-scale general-purpose computing that circumvents Landauer’s bound.

And so, the device’s design and control protocol open up exploring the energy scales of highly

energy-efficient, high-speed, general-purpose computing.

5.8. The Landauer

The first task is to come up with a reasonable benchmark to compare the efficiency of com-

putational devices. While there are many different quantities one might wish to optimize, the

perspective here sets the goal as minimizing the net work invested W when performing logical op-

erations. It is well known that the most pressing physical limits on modern computation are power

constraints [153], thus the measure is well suited to diagnose the problems with current devices as

well as potential strengths of new ones.

For over half a century now Landauer’s Principle has exerted a major impact on the contem-

porary approach to thermodynamic costs of information processing [18, 19]. Its lower bound of
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kBT ln 2 energy dissipated per bit erased has served as standard candle for energy use in physical in-

formation processing. To aid comparing other computing paradigms and protocols, we refer to this

temperature-dependent information-processing energy scale as a Landauer : approximately a few

zeptojoules at room temperature, and a few hundredths of a zeptojoule at liquid He temperatures.

To appreciate the potential benefits of momentum computing operating at sub-Landauer en-

ergies we ask where contemporary computing is on the energy scale. Consider recent stochastic

thermodynamic analyses of single-electron transistor logic gates [154, 155]—analogs to conven-

tional CMOS technology. The upshot is that these technologies currently operate between 103 and

104 Landauers. More to the point, devices using CMOS-based technology will only ever be able to

operate accurately above ≈ 102 Landauers [6,148]. In short, momentum computing can promise

substantial improvements in efficiency with no compromise in speed.

Environment Temperature T Thermodynamic Energy
Kelvin(K) Joules(J)

Microprocessor 373 5.2× 10−21

Room Temp 293 4.0× 10−21

Liquid N2 77 1.1× 10−21

Liquid He 4.2 5.7× 10−23

1 K 1.0 1.4× 10−23

1 mK 0.001 1.4× 10−26

Table 5.8.1. Thermodynamic energy in environments at various temperatures.

Operation Landauers (L) Environment T Energy
Kelvin (K) Joules (J)

CMOS gate [154] 7000 293 1.9× 10−17

CMOS gate [155] 3000 293 8.4× 10−18

CMOS bound [6,148] 100 293 2.8× 10−19

Bit Erase (Ideal) [19] 1 293 2.8× 10−21

Bit Erase (Ideal) [19] 1 1 9.6× 10−24

Bit Swap (JJ) 0.43 1 4.1× 10−24

Bit Swap (Ideal) 0 293 0
Bit Swap (Ideal) 0 1 0

Table 5.8.2. Landauers and work energies (Joules) for various information process-
ing operations in environments and at temperatures where thermodynamic comput-
ers may operate.

Recently, the paradigm of thermodynamic computing emerged to frame probing the limits of

efficient computation [156]. In this setting, Landauer’s Principle says that kBT ln 2 energy units
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must be expended to erase a single bit of information. Beyond erasure, though, his principle also

stands as a challenge—Can conventional computing paradigms operate at sub-Landauer scales? It

seems not. Landauer’s theory and follow-on results [16,157,158] and recent experiments [49,159]

verified the lower bound.

To apply more broadly, Landauer’s Principle generalizes to W ≥ kBT∆H, where ∆H is the

change in Shannon entropy between a computational system’s initial and final information-bearing

states [16,17,160]. Despite the Principle’s generalization beyond bit erasure, the Landauer scale

remains a familiar reference point for the energy costs of binary operations; its familiar use coming

at the expense of ignoring specifics of any given logical operation [51].

An efficient bit-swap operation, for example, has zero generalized Landauer cost, as it is logi-

cally reversible. However, since many thermodynamic computing architectures do not have access

to dynamics that can accomplish reversible computing efficiently, the Landauer scale provides a

common reference to compare gate performance across physical substrates and design paradigms.

It also facilitates comparing across substrates that operate at different temperatures. Table 5.8.1

lists thermodynamic energies for a range of physical environments. Table 5.8.2 gives Landauer work

energies for various information processing operations in environments and at temperatures where

thermodynamic computers operate.

5.9. The Energetic Scale of Momentum Computing

The Landauer cost stood as a reference for so long since bit erasure is the dominant source

of unavoidable dissipation when implementing universal computing with transistor logic gates. It

is the elementary binary computation that most changes the Shannon entropy of the distribution

over memory states. In this way, one sees kBT ln 2 not just as the cost of erasure, but as the cost of

the maximally dissipative elementary operation on which conventional computing relies. And so,

the Landauer naturally sets the energy scale for conventional computing.

Taking inspiration from Landauer’s pioneering work, we investigate the cost of the most ex-

pensive operation necessary to physically implement universal momentum computing: a bit swap.

The bit swap’s dominance in the cost of universal momentum computing can be appreciated by

considering the input-output mapping of the Fredkin gate—a 3-bit universal gate with memory
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Figure 5.9.1. A display of the ‘work per swap’ in the Fredkin gate, and two 1D
swaps. We see that the Fredkin gate cost lies very close to the line that we would
expect if its cost was dominated by the costs of its component 1D swaps.

states mxmymz, mi ∈ {0, 1}. All inputs are preserved except for the exchange 101↔ 110. We can

decompose the informational state space into two regions. If mx = 0, the operation is simply an

identity, which trivially is costless. If mx = 1 and my = mz, we once again have an identity. Thus,

it is only the subspace of mx = 1, where my 6= mz that a swap must take place.

Provided that the above holds true, the Fredkin gate from section 5.6 should have a work cost

that is dominated by the different 1D swaps that make it up. The Fredkin gate essentially has three

different swaps occurring at two different timescales: 110↔ 101 at a timescale of τ , and then two

111 ↔ 100 swaps at double the speed. The obvious assumption is that Wfred = 2Wfast + Wslow

where the work costs are the cost of the full Fredkin, the fast swap and the slow swap, respectively.

In order to test this, simulations were preformed to supplement those of the thermally agitated

Fredkin gate in figure 5.6.1: bit swaps at the slow speed k = 1 and the fast speed k = 4. Since

the Fredkin gate has three swaps, we divide its cost by three to arrive at an average cost per swap.

The results are shown in figured 5.9.1; remarkably, the naive assumption that the Fredkin gate is

entirely dominated by the costs of the 1D swaps holds rather well. Thus, we view the cost of a bit

swap as momnetum computing’s analog to the cost of an erasure.
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5.10. Physical Instantiation

Due to its conceptual simplicity the protocol from section 5.9 does not require any particular

physical substrate. That said, the practical feasibility of performing such a computation must be

addressed. One obvious point of practical concern is assuming the system can be isolated from

its thermal environment during the computation. However, total isolation is not necessary. If

τ � τR—the relaxation timescale associated with the energy flux rate between the system and its

thermal bath—then the device performs close to the ideal case of zero coupling.

The simulations in section 5.6 showed that this class of protocol is robust: thermodynamic

performance persists in the presence of imperfect isolation from the thermal environment, albeit at

an energetic cost. Thus, a system that obeys significantly-underdamped Langevin dynamics is an

ideal candidate as the physical substrate for bit swap.

We analyze in detail one physical instantiation—a gradiometric flux logic cell (Fig. 5.10.1), a

mature technology for information processing. With suitable scale definitions, the effective degrees

of freedom—Josephson phase sum ϕ and difference ϕdc—follow a dimensionless Langevin equation

[151,152,161,162,163,164]:

dv′ = −λv′dt′ − θ∂x′U ′ + ηr(t)
√

2dt′ ,(5.2)

where x′ ≡ (ϕ,ϕdc) and v′ ≡ (ϕ̇, ˙ϕdc) are vector representations of the dynamical coordinates.

Enacting a control protocol on this system involves changing the parameters of the potential over

time:

U ′(t′) = U/U0(5.3)

= (ϕ− ϕx(t′))2/2 + γ(ϕdc − ϕxdc(t
′))2/2

+ β cosϕ cos(ϕdc/2)− δβ sinϕ sin(ϕdc/2) .

The relationships between the circuit parameters and the parameters in the effective potential

U ′ are as follows. ϕ = (ϕ1 +ϕ2)/2−π and ϕdc = (ϕ2−ϕ1), where ϕ1 and ϕ2 are the phases across

the two Josephson elements; ϕx = 2πφx/Φ0 − π and ϕxdc = 2πφxdc/Φ0, where Φ0 is the magnetic

flux quantum and (φx, φxdc) are external magnetic fluxes applied to the circuit; U0 = (Φ0/2π)2 /L,
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Figure 5.10.1. Gradiometric flux logic cell: The superconducting current has two
important flow modes. One circulation around the inner loop—a DC SQUID. And,
the other, a flow through the Josephson junctions in the inner loop and around
the outer conductor pickup loops—an AC SQUID [162]. This is the origin of the
variable subscripts to distinguish ϕ from ϕdc and ϕx from ϕxdc.

Figure 5.10.2. (Left) V store, the bistable storage potential. (Right) V comp, the
“banana-harmonic” potential. These potential energy profiles serve as qualitative
pictures to represent prototypical computational and storage potentials, and do not
represent any particularly favorable parameter set.

γ = L/2`, β = I+2πL/Φ0, and δβ = I−2πL/Φ0, where L and 2` are geometric inductances; and

I± ≡ Ic1 ± Ic2 are the sum and difference of the critical currents of the two Josephson junctions.

All parameters are real and it is assumed that γ > β > 1� δβ.

Some particularly important parameters of U ′ are ϕx and ϕxdc, which control the potential’s

shape by where the the dynamical variables ϕ and ϕdc localize in equilibrium, and γ, which controls

how quickly ϕdc localizes to the bottom of the quadratic well centered near ϕdc = ϕxdc. At certain

control parameters (ϕx, ϕxdc), the effective potential contains only two minima: one located at
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ϕ < 0 and one at ϕ > 0. So, the device is capable of metastably storing a bit, as described above.

In point of fact, the logic cell has been often used as a double well in ϕ with a controllable tilt and

barrier height [151,162,164].

The Langevin equation’s coupling constants, λ and η, determine the rate of energy flow between

the system and its thermal environment and the. They depend on the parameters L, R, and C.

In the regimes at which one typically finds L, C, and R and with temperatures around 1 K, the

system is very underdamped; ring-down times are O(103) oscillations about the local minima.

(Notably, the device thermalizes at a rate proportional to R−1. A tunable R allows the device

to transition from the underdamped to overdamped regime, allowing for rapid thermalization, if

desired.) Finally, θ is a dimensionless factor that depends on the relative inertia of the two degrees

of freedom, it depends on the circuit architecture. Appendix 5.C gives the equations of motion and

thorough definitions of all parameters and variables in terms of dimensional quantities.

5.10.1. Realistic Protocol. With the device’s physical substrate set, we now show how to

design energy-efficient bit-swap control protocols. There are four parameters that depend primarily

on device fabrication: Ic1, Ic2, R, and C. Two that depend on the circuit design: L and `. And, four

that allow external control: ϕx, ϕxdc, T (the environmental temperature), and τ (the computation

time). Without additional circuit complexities to allow tunable L, R, and C, we assume that once

a device is made, any given protocol can only manipulate ϕx, ϕxdc, T , and τ . A central assumption

is that computation happens on a timescale over which the thermal environment has minimal effect

on the dynamics, so the primary controls are ϕx, ϕxdc, and τ . ϕx is associated with asymmetry

in the informational subspace, and will only take a nonzero value to help offset asymmetry from

the δβ term in U ′. Thus, ϕxdc primarily controls the difference between V comp and V store, while τ

governs how long we subject the system to V comp.

V store must be chosen to operate the device in a parameter regime admitting two minima on

either side of ϕ = 0 as in Fig. 5.10.2. They must also be sufficiently separated so that they are

distinct memory states when immersed in an environment of temperature T .

In the ideal case, V comp is a quadratic well with an oscillation period τ = π
√
m/k. However, U

will never give an exact quadratic well unless β = δβ = 0. So, a suitable replacement is necessary.

The closest approximate is at the relatively obvious choice ϕxdc = −2π. In this case, the minima of

136



Figure 5.10.3. A dynamic computation: 1, 500 trajectories from V store’s equilib-
rium distribution in the ϕ (top) and ϕdc (bottom) dimensions. V comp is applied at
t ∈ (1, 1 + τ), denoted by heavy black lines. ϕdc oscillations are several times faster
than the others, as expected when γ � 1. The work done on the system by the
control apparatus, W0 = V comp(t = 1)−V store(t = 1), by its intervention at t = 1 is
largely offset by the work absorbed into the apparatus by its intervention at t = 1+τ ,
Wτ = V store(t = 1+τ)−V comp(t = 1+τ), when V comp re-engages. Visually, we can
track this energy flux by the nonequilibrium oscillations induced at t = 1 and the
return to a near-equilibrium distribution at t = 1 + τ . Time is measured in units of√
LC, which is ≈ 2ns for the JJ device. Animations of the protocol and a sample of

simulated trajectories can be found at https://kylejray.github.io/gslmc/

both the quadratic and the periodic part of the potential lie on top of each other and the potential

is well approximated by a quadratic function over most of the relevant position-domain.

However, due to restrictions on V store, transitioning between V store and V comp may induce

unnecessarily large dissipation since the oscillations in the ϕdc dimension have a large amplitude.

(See Appendix 5.D for details.) Instead, to dissipate the minimum energy, the control parameters

must balance placing the system as close as possible to the pitchfork bifurcation where the two wells

merge, while still maintaining dynamics that induce the ϕ < 0 and ϕ > 0 informational states to

swap places due to an approximately harmonic oscillation. Near this parameter value, one typically

finds a “banana-harmonic” potential energy landscape. (See Fig. 5.10.2 for a comparison of the

distinct potential profiles for storage and computation.)
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5.10.2. Computation Time. The final design task determines the computation timescale

τ . Under a perfect harmonic potential, the most energetically efficient τ is simply π
√
m/k. This

ensures that x(t = 0) = −x(t = τ). Since the design has an additional degree of freedom beyond

that necessary—the ϕdc dimension—however, we must not only ensure our information-bearing

degree of freedom switches signs, but also ensure that ϕdc(t = 0) ≈ ϕdc(t = τ). This means

that during time τ , the ϕ variables must undergo n + 1/2 oscillations and the ϕdc variables must

undergo an integer number of complete oscillations. (See Fig. 5.10.3.) Hence, τ must satisfy

matching conditions for the periods of the oscillations in both ϕ and ϕdc during the computation:

ωτ ≈ (2n− 1)π

ωdcτ ≈ 2nπ .

Figure 5.10.4 showcases this by displaying the behavior observed during simulations near the

ideal timescale. The local work minima coincide with local minima in the average kinetic energy,

but not every kinetic energy minimum coincides with a work minimum. While there are kinetic

energy minima every half-integer oscillation in ϕdc, only integer multiples of ϕdc oscillations yield

minimum work.

The equations of motion governing the system are stochastic, dissipative, and nonlinear, so the

frequencies of the different oscillations ω, ωdc are nontrivial nonlinear stochastic mappings of device

parameters, initial positions, and protocol parameters. They are not easily determined analytically.

However, they change smoothly with small changes in the parameters they depends on. Thus, we

were able to use an algorithmic approach to find the timescales that yield local minima and explore

the regions surrounding them.

5.10.3. Physically-Calibrated Bit Swap. We are most interested in the effect of parameters

that are least constrained by fabrication. And so, all simulations assume constant fabrication

parameters with I+, R, and C set to 2.0 µA, 371 Ω, and 4.0 nF, respectively. To explore how

the I− asymmetry affects work cost, we simulated protocols with both a nearly-symmetric device

(I− = 7 nA) and a moderately-asymmetric device (I− = 35 nA). Given devices with the parameters

above, what values of the other parameters yield protocols with minimum work cost? This involves
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Figure 5.10.4. Performing a successful and low-cost bit swap: (Top) Ensemble
averages, conditioned on initial memory state, of the fluxes and their conjugate mo-
menta. Line width tracks the distribution’s variance. The shaded region indicates
timescales that are potentially successful swap operations. These are probed more
closely in the bottom two plots. (Middle) Ensemble averaged work, kinetic energy,
and conjugate momentum in the ϕdc coordinate. Note that work minima occur
only at whole-integer oscillations of the momentum. Each dataset is scaled to its
maximum value, so that it saturates at 1. This emphasizes the qualitative relation-
ships rather than the quantitative. (Bottom) Computational fidelity f of the swap,
approaching a perfect swap.

a twofold procedure. First, create a circuit architecture by setting L and γ, thus fully specifying

the device; details in Appendix 5.E. Second, determine the ideal protocols for that combination of

device parameters.

5.10.4. Computational Fidelity. To determine the best successful protocol, we must define

what a successful bit swap is. First, we set a lower bound for the fidelity f : f ≥ 0.99. We define f

over an ensemble of N independent trials as: f = 1−Ne/N , with Ne counting the number of failed

trials, trials for which sign[ϕ(t = 0)] = sign[ϕ(t = τ)]. Second, the distribution over both ϕ(t = τ)

and ϕ(t = 0) must be bimodal with clear and separate informational states. The criteria used for
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this second condition is:

〈ϕ < 0〉+ 3σϕ<0 < 〈ϕ > 0〉 − 3σϕ>0 ,(5.4)

were σs and 〈s〉 are standard deviations and means of ϕ conditioned on statement s being true.

The final choice concerns the initial distribution from which to sample trial runs. For this, we

used the equilibrium distribution associated with V store with the environmental temperature set to

satisfy kBT = 0.05U0. Here, we ensure fair comparisons between different parameter settings by

fixing a relationship between the potential’s energy scale and that of thermal fluctuations. This

resulted in temperatures from 400 − 1400 mK, though it is possible to create superconducting

circuits at much higher temperatures [165,166,167,168] using alternative materials.

Sampling initial conditions from a thermal state assumes no special intervention created the

system’s initial distribution. We only need wait a suitably long time to reach it. Moreover, this

choice is no more than an algorithmic way to select a starting distribution. It is not a limitation

or restriction of the protocol. Indeed, if some intervention allowed sampling initial conditions from

a lower-variance distribution, it could be leveraged into even higher performance.

5.11. Performance

Appendix 5.E lays out the computational strategy used to find minimal 〈W 〉 implementations

among the protocols that satisfy the conditions above. Since the potential is held constant between

t = 0 and t = τ , work is only done when turning V comp on at t = 0 and turning it off at t = τ .

The ensemble average work done at t = 0 is W0 ≡ 〈V comp(ϕ(0), ϕdc(0)) − V store(ϕ(0), ϕdc(0))〉

and returning to V comp at time τ costs Wτ ≡
〈
V store(ϕ(τ), ϕdc(τ))− V comp(ϕ(τ), ϕdc(τ))

〉
. Thus,

the mean net work cost is the sum 〈W 〉 = W0 + Wτ . As we detail shortly, this yielded large

regions of parameter space that implement bit swaps at sub-Landauer work cost. This result and

others demonstrate the notable and desirable aspects of momentum computing: accuracy, low

thermodynamic cost, and high speed. Let’s recount these one by one.

5.11.1. Accuracy. Tradeoffs between a computation’s fidelity and its thermodynamic cost

are now familiar—an increase in accuracy comes at the cost of increased W or computation time

[46,47,48,49,50,51]. These analyses conclude that accuracy generally raises computation costs.
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Figure 5.11.1. Performance of the minimum work protocol as γ, the ratio of device
inductances, goes from a region where the computation fails (f < 0.99) to a region
of perfect fidelity (f = 1.0). Note that in the parameter space region in which the
computation becomes successful, the work costs decrease as the fidelity approaches
unity. Finally, τ decreases as the work cost minimizes to ≈ 1 Landauer—showing
that the work cost does not display 1/τ adiabatic compute-time scaling. The pa-
rameter γ controls the starting parameters for the suite of simulations represented
by each data point and should not be read as the primary independent variable
responsible for the behavior. Rather, the plots show τ , f , and 〈W 〉min evolving
jointly to more preferable values.

Momentum computing does not work this way. In fact, it works in the opposite way. The low

cost of a momentum computing protocol comes from controlling the distribution over the computing

system’s final state. Due to this, fidelity and low operation cost are not in opposition, but go hand

in hand, as Figs. 5.10.4 and 5.11.1 demonstrate.

5.11.2. Low Thermodynamic Cost. Conventional computing, based on transistor-network

steady-state currents, operates nowhere near the theoretical limit of efficiency for logical gates.

Even gates in Application Specific Integrated Circuits (ASICs) designed for maximal efficiency

operate on the scale of 104 − 106 Landauers [169, 170]. The physically-calibrated simulations

described above achieved average costs well below a Landauer for a wide range of parameter values

with an absolute minimum of 〈W 〉min = 0.43 Landauers, as shown in Figure 5.11.2 (left). For the
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less-ideal asymmetric critical-current device (right panel), the cost increases to only 〈W 〉min = 0.60

Landauers. And, the bulk of the protocols we explored operated at < 10 Landauers. Altogether,

the momentum computing devices operated many orders of magnitude lower than the status quo.

Moreover, the wide basins reveal robustness in the device’s performance: an important feature for

practical optimization and implementation.

5.11.3. High Speed. Paralleling accuracy, the now-conventional belief is that computational

work generally scales inversely with the computation time: W ∼ 1/τ [46,52,53,54]. Again, this

is not the case for momentum computing, as Figs. 5.10.4 and 5.11.1 demonstrate. Instead, there

are optimal times τ∗ that give local work minima and around which the work cost increases.

Optimal τ∗s are upper bounded: the devices must operate faster than particular timescales—

timescales determined by the substrate physics. The bit swap’s low work cost requires operating

on a timescale faster than the rates at which the system exchanges energy and information with

the environment. Thus, momentum computing protocols have a speed floor rather than a speed

limit.

However, even assuming perfect thermal isolation there is a second bound on τ∗. The compu-

tation must terminate before the initially localized ensemble—storing the memory—decoheres in

position space due to dispersion. For our JJ device this is the more restrictive timescale. Due to

local curvature differences in the potential, the initially compact state-space regions corresponding

to peaks of the storage potential’s equilibrium distribution begin to decohere after only one or two

oscillations. Once they have spread to cover both memory states, the stored information is lost.

This means it is most effective to limit the duration of the swap to just a half-oscillation of the ϕ

coordinate. For our devices, this typically corresponds to operating on timescales < 15 ns.

5.12. Other Approaches to Reversible and Ballistic Computing

Reversible computing implementations of various operations have been proposed many times

over many decades. Perhaps the most famous is the Fredkin billiards implementation [131]. While

ingenious, it suffers from inherent dynamical instability (deterministic chaos) and cannot abide any

interactions with the environment. At the other end of the spectrum is a family of superconducting

adiabatic implementations [171,172,173,174,175,176,177,178]. These are low cost in terms of

142



Figure 5.11.2. Thermodynamic energy cost 〈W 〉min for momentum-computing bit-
swap over 5, 120 parameter combinations of L and γ. (Left) Slightly asymmetric
device with I− = 7 nA gives the overall minimum 〈W 〉min = 0.43 Landauers (large
solid white circle). (Right) Substantially asymmetric device with I− = 35 nA gives
the overall minimum 〈W 〉min = 0.60 Landauers (large solid white circle). (Both)
Small white circles indicate parameter values with protocols yielding 〈W 〉min < 1
Landauer. Black squares (lower right in each) represent parameter values where no
successful swap was accomplished. Note that when the asymmetry is low, it can
effectively be offset by the parameter ϕx, but for higher asymmetry, protocols that
cost less than 1 Landauer are less common.

dissipation and are stable, but they suffer from fundamental speed limits due to the adiabaticity

requirement: 〈W 〉 ∝ 1/τ .

Other recent implementations [179, 180, 181] of reversible logic using JJs are more akin to

the proposal at hand, in that they require nearly-ballistic dynamics and attempt to recapture

the energy used in a swap at the final step. While these implementations are markedly different,

their motivation follows similar principles. Particularly, the framework for asynchronous reversible

computing proposed in [180,181] might serve as a testbed for momentum computing elements.
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Another distinguishing feature of the present design is that the phenomenon supporting the

computing is inherently linked to microscopic degrees of freedom evolving in the device’s phase

space. This moves one closer to the ultimate goal of using reversible nanoscale phenomena as the

primitives for reversible computing—a goal whose importance and difficulty were recognized by

Ref. [182]. Working directly with the underlying phase space also allows incorporating the thermal

environment. And, this facilitates characterizing the effect of (inevitable) imperfect isolation from

the environment.

It is worth noting the similarity between the optimal timescales τ∗ and the principal result in

Ref. [183] in which a similar local minima emerges when comparing thermodynamic dissipation to

computation time. These minima also come from certain matching conditions between the rate of

thermalization and the system’s response time to its control device. Another qualitatively similar

result [184] found faster operation could lead to reduced errors in overdamped JJs under periodic

driving. These similarities could point to a more general principle at play.

5.13. What Next?

Rate-equation dynamics is certainly a venerable and powerful framework, central to reaction

kinetics in chemistry [185, 186] and key to the master equations of applied statistical mechanics

[111, 118, 119]. Due to the remarkable successes of continuous-time Markov chain predictions of

many thermodynamic behaviors, it might seem natural to claim that to be “physically realizable”,

thermodynamic computing and biological information processing should only be described and

analyzed as rate-equation dynamics [116].

The results here demonstrated that this does not hold generally. And so, it cannot form a

complete basis for thermodynamic computing. Moreover, it levies a heavy penalty, precluding

engineering and analyzing Maxwellian information ratchets, which are the physical equivalent of

Turing machines [157,187,188,189]. The limits are especially draconian, since they preclude effi-

cient time-symmetrically controlled computations consisting of involutions [70]— such operations

are composed of bit swaps and identity maps in positional memory.

As a constructive alternative, we proposed employing continuous-time hidden Markov chains

to realize non-Markovian momentum computing. We demonstrated it provides a more complete
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framework, using two explicit examples that are forbidden if one is restricted to rate equations to

describe the evolution between memory states [116]. Additionally, we introduced explicit mecha-

nisms for implementing both in finite time with zero work, proving them “physically realizable”.

However, we did fully acknowledge the increased analytical complexity posed by CTHMC dynamics.

Fortunately, requisite tools have been developed that render the behaviors analytically tractable

and in closed form [190,191].

Our detailed, thermodynamically-calibrated simulation of microscopic trajectories demonstrated

that momentum computing can reliably (i) implement a bit swap at sub-Landauer work costs at

(ii) nanosecond timescales in (iii) a well-characterized superconducting circuit.

These simulations serve two main purposes. The first highlights momentum computing’s ad-

vantages. The proposed framework uses the continuum of momentum states to serve as the aux-

iliary system that allows a swap. In doing so, it eliminates the associated tradeoffs between en-

ergetic, temporal, or accuracy costs that are commonly emphasized in thermodynamic control

analyses [46,47,48,49]. Momentum computing protocols are holistic in that low energy cost, high

fidelity, and fast operation times all come from matching parallel constraints rather than competing

ones.

The second purpose points out key aspects of the proposed JJ circuit’s physics. The simu-

lations reveal several guiding principles—those that contribute most to decreasing work costs for

the proposed protocols. The system is so underdamped that thermal agitation is not the primary

cause of inefficiency. The two main contributors are (i) the appearance of dispersive behavior in the

dynamics of an initially-coherent region of state space and (ii) asymmetries inherent to the device

that arise from differing critical currents in the component superconducting JJ elements. Notably,

if the elements are very close to each other in Ic, then symmetry can be effectively restored by

setting the control parameter ϕx to counteract the difference. However, the more asymmetry, the

harder it is to find ultra low-cost protocols; cf. Fig. 5.11.2 left and right panels. Note, too, that

initial-state dispersion can be ameliorated by using a V comp that is as harmonic (quadratic) as

possible. However, this typically requires lower inductance L, possibly complicating circuit fabrica-

tion. Additionally, the potential-well separation parameter β’s linear dependence on L hinders the

system’s ability to create two distinct states during information storage. Though these tradeoffs
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are complicated, our simulations suggest that dispersion can be controlled, yielding swap protocols

with even lower work costs.

Since the protocol search space is quite high-dimensional and contains many local-minima,

we offer no proof that the protocols found give the global work minimum. Very likely, the ther-

modynamic costs and operation speed of our proposed JJ momentum computing device can be

substantially improved using more sophisticated parameter optimization and alternative materials.

Even with the work cost as it stands, though, sub-Landauer operation represents a radical change

from transistor-based architectures. One calibration for this is given in the recent stochastic ther-

modynamic analysis of a NOT gate composed of single-electron-state transistors [154] that found

work costs 104 times larger.

Note, too, that running at low temperatures requires significant off-board cooling costs, as

required in superconducting quantum computing. Our current flux qubit implementation requires

operating at liquid He temperatures [151, 152]. However, there are also JJs that operate at N2

temperatures, promising system cooling costs that would be 2 to 3 orders of magnitude lower

[165,166,167,168].

Additionally, the physics necessary to build a momentum computing swap—underdamped be-

havior and controllable multiwell dynamics—is far from unique to superconducting circuits. As

an example, nanoelectromechanical systems (NEMS) are another well-known technology that is

scalable with modern microfabrication techniques. NEMS provide the needed nonlinearity for

multiple-well potentials, are extremely energy efficient, and have high Q factors even while operat-

ing at room temperature [192,193,194]. Momentum computing implemented with NEMS rather

than superconductors completely obviates the cooling infrastructure and so may be better suited

for large-scale implementations.

That said, the JJ implementation at low temperatures augmented with appropriate calorimetry

will provide a key experimental platform for careful, controlled, and detailed study of the physical

limits of the thermodynamic costs of information processing. Thus, these devices are necessary to

fully understand the physics of thermodynamic efficiency. And so, beyond technology impacts, the

proposed device and protocols provide a fascinating experimental opportunity to measure energy

flows that fluctuate at GHz timescales and at energy scales below thermal fluctuations. Success
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in these will open the way to theoretical investigations of the fundamental physics of information

storage and manipulation, time symmetries, and fluctuation theorems [50,195].
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Appendix

5.A. Langevin Dynamics for the Fredkin Gate

To explore the performance of the proposed Fredkin gate protocol when there is nonzero cou-

pling to a thermal bath, we modeled the system as obeying the Langevin equations of motion:

dq = vqdt

µ dvq = −λvqdt− ∂qV (q, t)dt+
√

2kBTλ r(t)
√
dt ,

over three position coordinates q = x, y, or z. Here, vq is the corresponding velocity, m is the mass,

λ is the damping coefficient, and r(t) is a memoryless Gaussian random variable with zero mean

and unit variance. We used a quartic storage potential of the form V store(q) = αq4 − βq2 (see Fig.

5.4.2) with coefficients α and β.

To simulate the above system, we nondimensionalized the equations of motion. First, we defined

nondimensional quantities via the following equalities (̃· denotes a nondimensional quantity):

t = t̃

√
µ

k
q = q̃

√
kBT

k
vq = ṽq

q/q̃

t/t̃
= ṽq

√
kBT

µ

α = α̃
k2

kBT
β = β̃k V = Ṽ kBT.

Inserting these scales into the equation of motion, yields the nondimensional potentials:

Ṽ store(q̃) = α̃q̃4 − β̃q̃2

Ṽ comp(ỹ′, z̃′) =
1

2
ỹ′

2
+ 2z̃′

2
,
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and the following equation of motion for the nondimensional variables,

dq̃ = ṽqdt̃

dṽq = −γṽ dt̃+ ∂q̃Ṽ dt̃+
√

2η r(t̃)
√
dt̃ ,

where and γ and η are two additional nondimensional parameters implicitly defined as being equal

to whatever is left over after the substitution. The first of these two is γ = λ/
√
µk, suggesting

that γ is a nondimensional version of the thermal coupling parameter λ =
√
µkγ. Plugging this

definition of λ into the expression for η yields η =
√
γ. For all simulations, the following nondi-

mensional parameters were fixed: τ̃ = π, α̃ = 2, β̃ = 16, where τ̃ is the nondimensional duration of

the computation interval.

These choices are equivalent to relationships between the dimensional parameters. The following

three equalities held for all simulations: (i) τ = π
√
µ/k, (ii) w = 2

√
kBT/k, and (iii) h = 32kBT ,

where τ is the dimensional duration of the computation interval, w =
√
β/2α is the positional

distance from the central maximum to the minima in the one-dimensional storage potential V store,

and h = β2/4α is the energy difference between those points.

As a final note, we can use the expression for τ to write the relationship between λ and γ

as λ = πµγ/τ . Thus, we see that setting γ = 1, for example, corresponds to setting λ = πµ/τ .

All simulations were carried out by simulating the nondimensionalized equations above and then

converting to dimensional relationships using the relevant scales. For clarity, the next section

discusses the simulation exclusively in terms of dimensional variables and parameters.

5.B. Simulation and Figure Generation for the Fredkin Gate

Figure 5.6.1 was generated from simulation using the following procedure. First, an ensemble

of 20,000 initial values were chosen from an approximate equilibrium distribution of V store(x, y, z)

using the Monte Carlo algorithm. Second, this ensemble was thermalized while coupled to a bath

(λ = πµ/τ) until the ensemble energy changed by no more than 1 part in 1,000 over a time interval

of
√
µ/k. This ensemble was then used as the start state for the Fredkin gate operation. Third,

for each value of thermal coupling tested, λ dropped down to a low coupling value λ ∈ (0, 3
10
πµ
τ )
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and exposed the particles to the computational potential:

V (x, y′, z′, t) = V store(x) + V yz(x, y′, z′, t)

=


V store(x, y, z) if x < 0

V store(x) + ky′2

2 + 2kz′2 if x ≥ 0

.(S5)

Fourth, we measured the work required to change the potential across our ensemble. Fifth, the

potential was then held fixed for the computation duration τ using an integration step dt ≈

0.0005τ/π. Finally, immediately following the computation interval, we measured the second work

contribution—the work that would be harvested by dropping the potential back to V store. The

average net work is the ensemble average difference between the work invested when raising the

potential and the work harvested when lowering it. The plot displays 3σ error bars. The er-

rors, though, are sufficiently small that they do not show up appreciably. Statistical errors were

estimated using standard procedures for sample means and proportions.

Figure 5.4.1 was generated by starting the particles in the approximate equilibrium distribution

described above and running the simulation above with λ = 0, to simulate dissipationless oscillatory

dynamics. For clarity, the plot shows a sample of 200 trials, rather than the full 20, 000. Figure

5.4.1 gives a more complete picture, with snapshots every τ/8.

All the simulations of the nondimensional equations of motion above employed a fourth-order

Runge-Kutta method for the deterministic portion and Euler’s method for the stochastic portion of

the integration. (Python NumPy’s Gaussian number generator was used to generate the memoryless

Gaussian variable r(t).)

5.C. Flux Qubit Dimensionless Equations of Motion

In terms of the dimensional degrees of freedom, the flux qubit equations of motion are [151,

162,164]:

¨̂ϕ = − 2

RC
˙̂ϕ− 1

C
∂ϕ̂U(ϕ̂, ϕ̂dc)(S6)

¨̂ϕdc = − 2

RC
˙̂ϕdc −

4

C
∂ϕ̂dcU(ϕ̂, ϕ̂dc) ,(S7)
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where the dimensional ϕ̂s are related to the main text’s dimensionless fluxes and phases by the

magnetic flux quantum 2π/Φ0. With the addition of thermal noise, the Langevin equation is:

dvi = − νi
mi
vidt−

1

mi
∂xiU(x)dt+

1

mi
r(t)

√
2νiκdt ,(S8)

where κ ≡ kBT . Matching these variables to the equations of motion yields:

x = (ϕ̂, ϕ̂dc)(S9)

v =
(

˙̂ϕ, ˙̂ϕdc

)
(S10)

m =

(
C,
C

4

)
, and(S11)

ν =

(
2

R
,

1

2R

)
,(S12)

where subscript i has been dropped in favor of a vector representation.

The task is to write each physical quantity z in terms of a dimensional constant and dimen-

sionless variable by defining scaling factors according to the following prescription: z ≡ z′zc, where

zc is a dimensional constant.

Setting mc = C and νc = 1/R are obvious choices. Additionally, since the potential factors into

U = U0 × U ′( 2π
Φ0
· x), a good choice for positional scaling is xc = Φ0/2π.

It is advantageous to write nondimensional kinetic energies as 1
2m
′v′2 without additional scaling

factors. This means setting the energy scaling as:

Ec = mc
x2
c

t2c
.(S13)

This does not uniquely determine the energetic scale, since tc is still free. The two obvious

choices are to scale to the temperature—KE′ = 1 corresponds to kBT units of dimensional energy—

or to the potential energy scale—KE′ = 1 corresponds to U0 units of dimensional energy. Choosing

the latter yields:

Ec = U0 = mc
x2
c

t2c
and(S14)

x2
c

L
= mc

x2
c

t2c
.(S15)
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Evidently, the timescale is tc =
√
LC, which is a workable timescale for our purposes given that

the dynamics of interest happen on the scale of τ ≈ ωLC . Setting the timescale to the potential

energy rather than the thermal energy may well become common practice in simulating momentum

computation, since protocols must be timed precisely with respect to the dynamics of the potential

energy surface.

The Langevin equation, in terms of the nondimensional quantities defined above, becomes:

dv′
xc
tc

= − ν ′νc
m′mc

v′xcdt
′ − 1

m′mc

(
U0

xc
∂x′U

′(x′)

)
tcdt

′(S16)

+
1

m′mc
r(t)

√
2ν ′νcEcκ′tcdt′ .

Simplifying algebra then yields:

dv′ = −
√
LC

RC

ν ′

m′
v′dt′ − 1

m′
∂x′U

′(x′)dt′(S17)

+

(
L

R2C

)1/4
√
ν ′κ′

m′
r(t)
√

2dt′ .

Finally, we define λ, θ, and η as nondimensional parameters that serve as our dimensionless

Langevin coefficients. This yields the Langevin equation for the simulations detailed in Appen-

dix 5.E:

dv′ = −λv′dt′ − θ∂x′U ′ + ηr(t)
√

2dt′ ,(S18)

with:

λ =

√
LC

RC

ν ′

m′
,(S19)

θ =
1

m′
, and(S20)

η =

√
λκ′

m′
,(S21)
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where:

x′ = (ϕ,ϕdc),(S22)

v′ =
d

dt′
x′,(S23)

ν ′ = (2, 1/2),(S24)

m′ = (1, 1/4), and(S25)

κ′ =
kBT

U0
.(S26)

5.D. Effective Potential and Simulation Details for the Flux Qubit

We consider two cases: critical-current symmetric and asymmetric JJ pairs.

5.D.1. Symmetric Approximation. We can obtain reasonable estimates for good ϕxdc val-

ues by assuming a perfectly symmetric device δβ = 0. Furthermore, we also set ϕx = 0 for all

cases. This allows two symmetric wells on either side of ϕ = 0. In practice, since δβ 6= 0 in a real

device, ϕx would be calibrated to compensate for the asymmetry; see Sec. 5.D.2.

In the symmetric case, the potential splits into two components—periodic and quadratic:

β cosϕ cos
ϕdc

2
+

1

2
ϕ2 +

γ

2
(ϕdc − ϕxdc)

2 .(S27)

The periodic term allows for multiple minima, while the quadratic terms force the dynamical

variables to stay close to their respective parameters. This localization means we focus only on the

the area near ϕ = ϕx and ϕdc = ϕxdc.

To employ the potential most flexibly, we must characterize the relevant fixed points that occur

in this region. Following Refs. [151, 163], we choose to search in the domain −π < ϕ < π and

−2π < ϕdc < 0. Fixed points occur when all components of the gradient vanish:

∂ϕU
′ = −β sinϕ cos

ϕdc

2
+ ϕ = 0(S28)

∂ϕdc
U ′ = −β

2
sin

ϕdc

2
cosϕ+ γ(ϕdc − ϕxdc) = 0(S29)
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The first condition is met whenever ϕ = 0 and, also, when ϕ
β sinϕ = cos 1

2ϕdc. Consider the case

where ϕ = 0—the “central” fixed point. To find the ϕdc location of the fixed point ϕ0
dc, we look to

the gradient’s second term. This yields the condition:

ϕ0
dc −

β

2γ
sin

ϕ0
dc

2
= ϕxdc(S30)

F 0(ϕdc = ϕ0
dc, β, γ) = ϕxdc .

The central fixed point occurs close to the parameter ϕxdc, but is offset by a value ≤ β/2γ.

The equation above can be solved numerically with ease to find the location of the central fixed

point. To classify the fixed point, we look at the Hessian. While the general expression for the

eigenvalues is rather verbose, the case where ϕ = 0 simplifies to:

λ1 = −β cos
ϕ0

dc

2
+ 1(S31)

λ2 = γ − β

4
cos

ϕ0
dc

2
.(S32)

λ2 > 0 as long as γ > β/4. And, since we assume γ > β, this condition is always met. Thus,

this fixed point is either a saddle point or a minimum based on whether ϕ0
dc is greater or less than

ϕcdc ≡ −2 cos−1 1
β , respectively. (We only use the negative branch of cos−1 due to the domain of

ϕdc.) See Fig. S1 for an example of the behavior of the central fixed point for typical parameters.

We can also find an expression for ϕcxdc(β, γ) ≡ F 0(ϕdc = ϕcdc), the critical value of the control

parameter at which the central fixed point transitions between a saddle point and a minimum:

ϕcxdc(β, γ) = ϕcdc −
β

2γ
sin

ϕcdc

2

= −2 cos−1 1

β
+

β

2γ

√
1− 1

β2
.(S33)

Naively, the best strategy to form a low cost protocol is to take values of ϕxdc just above and

below ϕcxdc. However, there are several factors that introduce complications. For one, the energy

scale separating the two wells when ϕxdc ≈ ϕcxdc is very small and it will typically be overwhelmed by

thermal energy at the temperatures of interest (400−1400 mK). A second is that the approximation

of δβ = 0 actually has a most pernicious effect near ϕxxdc. (This is discussed in Sec. 5.D.2.)
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Figure S1. Fixed point at ϕ = 0 in an ideal device with β = 6.2 and γ = 12.0: Red
(Blue) background indicates regions where the fixed point is a saddle point (local
minimum). For example, if ϕxdc = −2.35, the central fixed point is a saddle point
at ϕdc = −2.6. To find a stable fixed point at ϕ = 0, a control parameter less than
ϕcxdc is necessary, which falls at −2.56 in the example above.

Finally, we have yet to consider the other fixed points at ϕ 6= 0. Doing so reveals that some-

times ϕcxdc corresponds to a subcritical pitchfork bifurcation—yielding a potential with a third

(undesirable) minimum rather than a single one.

When ϕ 6= 0 we can rewrite Eqs. (S28) and (S29):

ϕ

β sinϕ
= cos

1

2
ϕdc(S34)

β

4γ
sin

ϕdc

2
cosϕ− 1

2
ϕxdc =

1

2
ϕdc .(S35)

The potential is symmetric, so these fixed points come in pairs ϕ±. Substituting ϕdc/2 =

− cos−1(ϕ±/β sinϕ±) into the second equation yields the following for ϕ±:

ϕxdc =
β

2γ

√
1−

(
ϕ±

β sinϕ±

)2

cosϕ± − 2 cos−1 ϕ±

β sinϕ±
(S36)

ϕxdc = F±(ϕ = ϕ±, β, γ) .(S37)
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Figure S2. ϕ 6= 0 fixed points appear when the value of the function plotted equals
the external ϕxdc parameter. Note that for some β and γ combinations, there is a
qualitatively different behavior. Especially for larger β, there is a coexistence region
of three potential minima. For the β ≈ γ example, one would want to set ∆C > 0.5
to make sure V comp falls well outside of the three minima range. Horizontal lines
show the values of ϕcxdc. (See Appendix 5.E.)

Note that the sign changes due to the domain restriction of ϕdc. Figure S2 shows how these

fixed points behave as β, γ, and ϕxdc change. The value of ϕxdc tangent to the curve when

ϕ = 0 corresponds to the critical control parameter value ϕcxdc, which can be seen by verifying

limϕ→0 F
±(ϕ) = ϕcxdc.

As a last note, different values of β and γ have qualitatively different fixed point profiles

depending on whether the central fixed point undergoes a supercritical or subcritical pitchfork

bifurcation when ϕxdc = ϕcxdc. The critical value β∗ where the bifurcation of the central fixed point

transitions between being supercritical and subcritical is given by:

lim
ϕ→0

∂2
ϕF
±(ϕ, β∗, γ) = 0 .(S38)
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Once again, the full derivative is quite verbose. However, taking the limit ϕ→ 0 gives:√
β∗2 − 1

6β∗2

(
−3β∗

2
+ 4γ + 2

)
= 0(S39)

β∗ =

√
4γ + 2

3
.(S40)

Interestingly, when β > β∗, there is always a parameter space region with three distinct minima.

This might be useful, in fact, for single-bit computations that require more states. For bit swap,

though, the goal is for the system to jump between a V store with 2 minima and a V comp with a

single minimum (see Figure S4). And so, care must be taken to avoid the three-minima regions

when β > β∗.

5.D.2. δβ 6= 0. The device just considered is ideal. In reality δβ 6= 0, and exact analytic work

is much less fruitful. Introducing the asymmetric terms augments the potential:

Uasym(ϕ,ϕx, δβ, ϕdc) =
1

2
ϕ2
x − ϕϕx − δβ sinϕ cos

ϕdc

2
.(S41)

In short, one must vary ϕx to offset the effect of δβ, provided a symmetric potential is preferred.

There are two obvious strategies to minimize the effects of asymmetry. Either a strategy that

minimizes the effect of Uasym at the central fixed point—the “min of mid” strategy—or at the fixed

points at ϕ±—the “min of max” strategy. It stands to reason that one uses the former to set ϕx

for V comp and the latter for V store.

The “min of mid” strategy is easy to implement. Simply set the derivative of ∂ϕUasym|ϕ=0 = 0,

with the intent of having the asymmetrical part of the potential be as flat as possible near ϕ = 0.

Simple algebra yields: ϕx = −δβ sinϕdc/2.

The “min of max” strategy requires numerical solution. First, note that the maximum value

of Uasym occurs when ϕ = ϕmax = arccos
(

ϕx
δβ sin .5ϕdc

)
. Then, use a symbolic solver (e.g., SymPy’s

nsolve function) to find the value of ϕx that minimizes Uasym(ϕmax, ϕx, δβ, ϕdc).

Figure S3 shows that the effect of δβ 6= 0 is, unsurprisingly, the most noticeable near the

bifurcation of the central fixed point. For the bit swap, as described in Sec. 5.3, we need only

two different profiles for the potential: one in which we have two symmetric wells and one in

which we have a single well placed midway between them. Thus, we must keep the ϕxdc parameter
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Figure S3. Fixed point bifurcation diagram for the (left) idealized δβ = 0 device
and (right) a device with δβ = 0.2. Blue indicates stable minima and red saddle
points. On the right plot, the δβ = 0 fixed points are plotted as well, with low
opacity to help see the difference. The naive “minimum of maximum” strategy has
been used to minimize the effect of Uasym. And, we can see that the symmetric
approximation works fairly well as long as |ϕxdc − ϕcxdc| > .2. It is likely that more
evolved solution strategies will improve results.

Figure S4. (Left) V store, the bistable storage potential. (Right) V comp, the
“banana-harmonic” potential. These potential energy profiles serve as qualitative
pictures to represent prototypical computational and storage potentials, and do not
represent any particularly favorable parameter set.

sufficiently far away from ϕcxdc. The strategy employed in the simulations described below always

involves setting a minimum distance that ϕxdc must be from ϕcxdc, in order to avoid falling into the

pitfalls described here.

5.E. Searching for Minimal-Work Bit Swaps

The following lays out the computational strategy to find low work-cost implementations.
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We are most interested in the effect of parameters that are the most removed from fabrication, so

all simulations assume JJ elements with I+, R, and C set to 2.0 µA, 371 Ω, and 4.0 nF, respectively.

To explore how asymmetry affects work cost, we simulated protocols with a nearly-symmetric device

with I− = 7 nA, a moderately-symmetric device with I− = 35 nA, and an asymmetric device with

I− = 60 nA. Additionally, kBT is always scaled to U0, so that κ′ ≡ kBT/U0 = 0.05.

Given devices with the parameters above, what values of the remaining parameters yield pro-

tocols with minimum work cost? This involves a twofold procedure. First, create the circuit

architecture by setting L and γ by hand; thus, fully specifying the device. Second, determine the

ideal protocols for that combination of device parameters through simulation.

L’s order of magnitude was chosen from previous results [151, 152, 161, 162, 163, 164] to be

10−9H. Noting that a lower L results in a more harmonic potential during computation, we set a

minimum L to be 0.3nH. This is in order to stay within the parameter range for which β > 1 and

we can still use the analytic expressions derived above. To assure γ > β, γ values were tested in

the range [3.0, 20.0].

After choosing a pair of circuit parameters L and γ, we turn to simulation. First, V store must be

chosen by setting ϕstore
x and ϕstore

xdc . This is done by calculating ϕstore
xdc ≡ ϕcxdc +∆S, where ϕcxdc(γ, β)

is from Eq. (S33). The parameter ∆S is initialized manually to a value ∆S∗ when starting a new

round of simulations. (∆S∗ = 0.16 was used in the heatmaps shown in Fig. 5.11.2.) Then, using

the “min of max” method (Sec. 5.D.2), we set ϕstore
x .

Finally, V store is tested by sampling 50,000 states from V store’s equilibrium distribution using

a Monte Carlo algorithm. The resulting ensemble is verified by determining that it contains two

well-separated informational states by asserting that:

〈ϕ < 0〉+ 3σϕ<0 < 〈ϕ > 0〉 − 3σϕ>0 ,(S42)

where 〈s〉 and σs are means and standard deviations of ϕ conditioned on s being true. If the

ensemble fails the test, ∆S is incremented and the process is repeated. If the ensemble succeeds,

we have found a viable V store.

Then, we move on to establish V comp by choosing ϕcomp
x and ϕcomp

xdc . Similar to ϕstore
xdc , ϕcomp

xdc ≡

ϕcxdc − ∆C with ∆C manually set. The value of ∆C does effect the eventual work cost, but the
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Figure S1. Thermodynamic performance under changing ∆C for devices with
three different symmetry parameters: In each case, the x axis variable is L ∈
(0.3, 1)nH and the y axis γ ∈ (3, 20). The numerical figures at the top of each
panel are the minimum and average values of 〈W 〉min. The outlined (black line)
regions represent pieces of parameter space where the minimal work protocols cost
less than one Landauer. The simulations represented by each point in the heatmaps
used 10, 000 samples from the equilibrium distribution. And, 1, 200 parameter sets
were tested in each map.

work costs vary smoothly, and a single value of ∆C tends to work well over a large parameter

range. Manually setting a single value for ∆C, rather than allowing it to adjust itself to fall into

a local minimum, substantially reduces simulation run time. However, we expect that given more

compute resources a wider range of sub-Landauer protocols will be discovered. Figure S1 shows

the effect of changing ∆C for three different devices. Once ∆C is chosen, we use the “min of mid”

(Sec. 5.D.2) method to set ϕcomp
x and fully determine V comp.

Next, a preliminary simulation is run to identify an approximate value of the computation time

τ . To make the simulation run quickly, the ensemble above is coarse-grained into two partitions

based on whether ϕ > 0 or ϕ < 0. Then, each partition is coarse-grained again into ≈ 250
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representative points through histogramming. A Langevin simulation is run over the histogram

data, exposing it to V comp for a time O(10)
√
LC. This ensures capturing the time with the best

bit swap. Next, weighting the simulation results by histogram counts within each partition, we

obtain conditional averages for an approximation of the behavior over the entire ensemble. These

averages are parsed for a set of times at which there are indications of a successful and low-cost bit

swap: 〈ϕ(t = 0) < 0〉 > 0, 〈ϕ(t = 0) > 0〉 < 0, and values of 〈ϕ̇〉 and 〈 ˙ϕdc〉 that are close to zero.

See, for example, the blue highlighted portion on the top panel of Fig. 5.10.4. In this way, a range

(τmin, τmax) is determined for τ .

Now, a larger simulation is completed to determine τ that give the lowest work value. Another

40,000 samples are generated from V store’s equilibrium distribution, and a Langevin simulation is

run on the full ensemble by exposing it to V comp for τmax time units. Since the potential is held

constant between t = 0 and t = τ , work is only done when turning V comp on at t = 0 and turning

it off at t = τ . The average work done at t = 0 is W0 ≡ 〈V comp(ϕ(0), ϕdc(0))−V store(ϕ(0), ϕdc(0))〉

and returning to V comp at time t costs Wt ≡
〈
V store(ϕ(t), ϕdc(t))−V comp(ϕ(t), ϕdc(t))

〉
. Thus, the

mean net work cost at time t is the sum W (t) = W0 +Wt.

Additionally, for each t ∈ (τmin, τmax) we calculate the fidelity f(t) and whether the final states

are well-separated informational states, s(t):

f(t) = 1− 1

N

N∑
i=1

bool [signϕi(t = 0) = signϕi(t = t)]

s(t) = bool [〈ϕ < 0〉+ 3σϕ<0 < 〈ϕ > 0〉 − 3σϕ>0] .

(S43)

Finally, we choose the minimum work protocol via inf (W (t) : f(t) ≥ 0.99, s(t) = True).

After this, we move on to the next pair of L and γ. Typically, these are chosen to be individually

close to the last pair. And, and instead of re-initializing ∆S to its initial value by hand, we

decrement ∆S from its current value by a small amount if ∆S > ∆S∗, using this value as the

starting point for the next L and γ pair. This allows the value of ∆S to drift from its starting

point towards more favorable values as the parameters change, while still preferring to be close to

the known well-behaved parameter value ∆S∗. Setting a new initial value for ∆S goes full circle,

to find the next minimum work protocol by repeating the procedure.
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This procedure yielded rather large ranges of parameter space over which we found very low

work-cost bit swap protocols. Here, we offer no proof that the protocols found achieve the global

minimum work, since the protocol space is high dimensional and contains many local minima. That

said, improved algorithms and a larger parameter-range search should result in even lower work

costs.

Langevin simulations of the dimensionless equations of motion employed a fourth-order Runge-

Kutta method for the deterministic portion and Euler’s method for the stochastic portion of the

integration with dt set to 0.005
√
LC. (Python NumPy’s Gaussian number generator was used to

generate the memoryless Gaussian variable r(t).)
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