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Forecasting malaria in a highly endemic 
country using environmental and clinical 
predictors
Kate Zinszer1,2*, Ruth Kigozi3, Katia Charland1, Grant Dorsey4, Timothy F Brewer5, John S Brownstein2, 
Moses R Kamya6 and David L Buckeridge1

Abstract 

Background: Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate 
disease forecasts can provide public and clinical health services with the information needed to implement targeted 
approaches for malaria control that make effective use of limited resources. The objective of this study was to deter-
mine the relevance of environmental and clinical predictors of malaria across different settings in Uganda.

Methods: Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance 
Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific fore-
casting models of confirmed malaria were developed using multivariate autoregressive integrated moving average 
models and produced weekly forecast horizons over a 52-week forecasting period.

Results: The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were 
retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting 
horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%.

Conclusions: Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in 
endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is neces-
sary to improve its accuracy and value in practice, including examining other environmental and intervention predic-
tors, including insecticide-treated nets.
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Background
Malaria forecasting methods have become more sophis-
ticated since Christophers’ early work [1] on forecasting 
malaria epidemics using rainfall, fever-related deaths, 
and wheat prices although the intent has remained 
unchanged: to inform malaria control and prevention by 
predicting burden or early warning of increasing burden. 
With the mounting cost of the global fight against malaria 
[2–4] and the drive towards elimination in many coun-
tries, accurate forecasts of malaria could be a valuable 

tool for public and clinical health services. Accurate dis-
ease predictions and early warning signals of an increase 
in disease burden can provide the information needed to 
implement targeted approaches for malaria control and 
prevention that make effective use of limited resources.

Malaria forecasting models have been developed in 
many endemic countries [5–9], although the accuracy 
of the models is varied and difficult to interpret across 
studies given the diversity of forecasting methods used, 
including the way in which models are evaluated [9]. 
Typically, these models use data on environmental risk 
factors, such as weather conditions, to forecast malaria 
for a specific geographic area over a certain interval of 
time. Clinical predictors, such as anti-malarial treatment, 
have not been explored in previous forecasting work. 
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Inappropriate anti-malarial treatment has the potential 
to be a predictor of future malaria cases, for example, 
as it could result in the ongoing transmission of malaria 
within the community, leading to an increase of malaria 
cases at the health facility [10–12].

Uganda experiences one of the highest burdens of 
malaria in the world [4], where the disease is endemic in 
greater than 95% of the country and remains the leading 
cause of morbidity and mortality [13]. A national house-
hold survey in 2009 estimated a 42% malaria prevalence 
among children less than 5 years old [14]. Furthermore, 
in 2013, Uganda was ranked first in the world in terms of 
the number of malaria cases and ninth for malaria-related 
deaths [4]. The objective of this study was to determine 
the relevance of environmental and clinical predictors of 
malaria across different settings in Uganda.

Methods
Uganda
Uganda is an East African landlocked country situated on 
a large plateau, bordered by mountains, valleys, and Lake 
Victoria [15]. Uganda has a relatively high altitude, 1,300–
1,500 m above sea level, and a mean annual temperature 
that ranges from 16°C in the southwest, to 30°C in the 
northeast and 25°C in rest of the country [14]. The veg-
etation is diverse, with tropical rain forests in the south, 
wooded savanna in central Uganda, and semi-desert 
conditions in the north. There are two rainy seasons in 
the south from March to May and from September to 
December, although the timing varies depending upon 
geographic area. In the north and northeast, there tends 
to be a single rainy season from April to October.

Clinical data
Outpatient health facility data collected by the Uganda 
Malaria Surveillance Project (UMSP) were used for this 
study. UMSP has adopted a sentinel site approach for 
monitoring malaria burden in Uganda. The six senti-
nel sites were established in pre-existing health facilities 
and implemented in a staggered fashion, starting in July 
2006 with the last site opening in August 2008 (Figure 1). 
These sites were selected to represent the diversity of 
malaria transmission in Uganda and include six different 
health facilities that provide patient care free-of-charge, 
including diagnostic tests and medications [16]. All sen-
tinel site staff received training in malaria diagnosis, case 
management, and data collection along with support for 
laboratory testing. Individual-level data collected from all 
patients presenting to the outpatient department include 
results of malaria diagnostic testing, diagnoses, treat-
ments, as well as demographic information and parish 
of residence. Parishes are the second smallest adminis-
trative unit in Uganda with approximately 5,000–6,000 

inhabitants. Data on the parish of residence for patients 
were used to determine the catchment area of each sen-
tinel site [17]. The methodology for catchment definition 
has previously been explained but briefly, parishes of 
individuals with confirmed malaria were excluded from 
a facility’s catchment area if the observed utilization of 
malaria-related services was statistically significantly 
lower than that of the expected utilization. The number 
of parishes within each health facility’s catchment area 
ranges from three to seventeen with an average catch-
ment population of 60,000.

Ethical issues
Ethical approval of the study was provided by the insti-
tutional review boards at McGill University, Makerere 
University, and Uganda National Council for Science and 
Technology.

Environmental data
Satellite sensor-derived environmental data were 
obtained from the Tropical Rainfall Measuring Mission 
(TRMM) and moderate resolution imaging spectroradi-
ometer (MODIS) instruments onboard the Terra satellite. 
The TRMM product (TRMM3B42) provided daily rain-
fall estimates with a spatial resolution of 0.25° × 0.25° or 
27.8 km × 27.8 km (at the equator). Daytime and night-
time temperature estimates (land surface temperature; 
LST) were obtained from MODIS (MOD11A2) using 
8-day composite images at a 1 km × 1 km resolution. The 
enhanced vegetation index (EVI) was also processed from 
MODIS (MOD13A1) using 16-day composite images at a 
0.5 km × 0.5 km resolution.

Measurement
The primary outcome of interest was defined as the 
weekly number of laboratory-confirmed malaria cases 
diagnosed at each sentinel site, which are also called 
the response series. The predictive power of the clini-
cal variables was assessed and included the proportion 
of suspected cases (defined by the presence of fever) 
that were tested for malaria, the number of suspected 
cases that tested negative for malaria, the type of anti-
malarial treatment prescribed, and the appropriate-
ness of treatment as defined by the Ugandan National 
Malaria Control Programme Policy [13, 18]. For exam-
ple, uncomplicated malaria (laboratory confirmed) for 
individuals (over 5 kg, over 4 months of age, or not in the 
first trimester of pregnancy) should receive a prescrip-
tion of an artemisinin-based combination therapy, such 
as artemether-lumefantrine or artesunate plus amo-
diaquine. For uncomplicated malaria (laboratory con-
firmed) for women in their first trimester of pregnancy 
or for infants under 5 kg or under the age of 4 months, 
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oral quinine should be prescribed. Each series was based 
upon the health facility’s catchment area and the individ-
ual-level data were aggregated to a weekly frequency.

Mean EVI and mean daytime and nighttime tempera-
ture for each catchment area was calculated by overlying 
the parish boundaries with the raster environmental data 
(i.e., TRMM and MODIS). The weighted mean pixel or 
cell value for temperature and EVI for each parish was 
calculated and based on the proportion of the parish 
area contained within each pixel [19]. Rainfall for a par-
ish was calculated from the pixel that intersected with 
the center point of the parish polygon as the TRMM 
pixels were often larger than a parish. Total rainfall was 
the cumulative total of rainfall over a 1-week period and 
other measures of rainfall were explored including loga-
rithmically transformed total rainfall, maximum weekly 
rainfall, minimum weekly rainfall, and the weekly rainfall 
range. EVI and temperature values were interpolated to 
a weekly temporal resolution, given the different tempo-
ral frequencies. A linear spline was used to interpolate 
EVI and a quadratic spline to interpolate temperature 
measures. Approximately 9% of the observations were 

missing for nighttime temperature, and these values were 
imputed during the interpolation process using a quad-
ratic spline. All polygons (parishes) were projected using 
the Universal Transverse Mercator system; zone 35 north 
(UTM35N).

Once weekly time series of environmental predictors 
were created for each parish, a weekly average across all 
parishes within a sentinel site’s catchment area was then 
calculated as a summary measure for each health facil-
ity. All environmental and clinical predictor series began 
from the start of consistent data collection, often coin-
ciding with the sentinel surveillance programme’s imple-
mentation date, at each site until 31 May 2013. All series 
are listed in Table 1.

Analysis
ARIMA (autoregressive integrated moving average) 
models are regressions that are designed to account 
for serial autocorrelation in time series [20]. The ARI-
MAX form of ARIMA models was used for this study, 
which is a multivariate autoregressive integrated mov-
ing average model and includes current and past values 

Figure 1 Map of the outpatient health facilities of the Uganda Malaria Surveillance Program (UMSP).
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of independent variables as predictors. The ARIMAX 
(p,d,q) models were fitted with three components: the 
autoregressive order (p), differencing order (d), and the 
moving average order (q). ARIMAX models were devel-
oped for each sentinel site with a 52-week forecast hori-
zon, resulting in 52 weekly forecasts over the year period 
of 1 June 2012–31 May 2013. The series were divided into 
training (site implementation-31 May 2012) and testing 
(1 June 2012–31 May 2013) series. The training portion 
of the series was used for model building and the testing 
series were reserved for assessing the forecast accuracy of 
the models.

The best possible combination of environmental and 
clinical covariates was determined by Akaike’s informa-
tion criterion (AIC) using the training series. The fit of 
the training series model was reassessed using the AIC-
value, after it was adjusted for the model parameters. 
Following pre-whitening, the significant lags between 
the predictor series and the response series were identi-
fied and considered in the model building. This would 
allow the lag between, for example, a rainfall event 
and the associated response in the malaria series, to be 

incorporated into the model. The cross-correlations of 
predictor and response series (pre-whitened series) were 
assessed to determine significant lags [21].

Model fit was assessed through inspection of residual 
autocorrelation diagnostics via the autocorrelation func-
tion (ACF), the partial autocorrelation function (PACF), 
and the Ljung–Box test. Further, histograms of the resid-
uals and normal quantile plots were used to assess the 
distribution of the residuals. The model fit and model 
building was an iterative process. Each model was used 
to generate weekly forecasts up to 52 weeks in the future, 
from 1 June 2012 to 31 May 2013, using the parameters 
for predictors that were chosen during model selection. 
The models were implemented in a rolling fashion; after 
each weekly forecast, the model would be updated to 
include the observed malaria counts and covariate val-
ues that occurred during that week before forecasting the 
malaria counts for the following week.

The final model for each site analysed for accuracy, by 
comparing the actual versus forecasted cases for the test-
ing period (1 June 2012 until 31 May 2013) for each week 
or forecast horizon during the 52  weeks of forecasting. 

Table 1 Response series (confirmed malaria) and potential clinical and environmental predictors series

a Inappropriate treatment was also a potential predictor which was the opposite of appropriate treatment (e.g., the number of individuals who were not prescribed 
an ACT when they should have or were prescribed inappropriately).

Series Description

Clinical data

 Confirmed malaria Number of individuals with positive microscopy or rapid diagnostic test of malaria

 Negative for malaria Number of suspected (presence of fever) tested negative for malaria

 Proportion tested Proportion of suspected (presence of malaria) tested for malaria

 Appropriate treatmenta Number of individuals who received appropriate anti-malarial prescriptions based upon their malaria 
status and NMCP treatment guidelines

 Artemisinin-based combination therapy 
(ACT)

Number of ACTs prescriptions

 Appropriate ACTa Number of individuals who were appropriately prescribed ACTs according to guidelines and malaria 
status

 Quinine Number of quinine prescriptions

 Appropriate quininea Number of individuals who were appropriately prescribed quinine according to guidelines and 
malaria status

 Chloroquine Number of chloroquine prescriptions

 Inappropriate chloroquine Number of individuals who were prescribed chloroquine

Environmental data

 Daytime temperature Temperature at 3 pm (8-day composite image)

 Nighttime temperature Temperature at 3 am (8-day composite image)

 Total rainfall Cumulative sum of daily rainfall over a week period

 Log total rainfall Log of cumulative sum of daily rainfall over a week period

 Mean rainfall Mean daily rainfall over a week period

 Minimum rainfall Minimum daily rainfall over a week period

 Maximum rainfall Maximum daily rainfall over a week period

 Rainfall range Difference between the maximum and minimum rainfall over a week period

 Vegetation Enhanced vegetation index (16-day composite image)
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The symmetric mean absolute percentage error (SMAPE) 
was used to measure accuracy:

where SMAPEaveh is the average SMAPE value for a hori-
zon (h), Yi is the observed value, Ŷi is the forecasted value, 
and n is the number of forecasts or observations for that 
horizon [22]. There were multiple forecasts per forecast 
horizon, given the rolling implementation of the models. 
Therefore, a SMAPE value was calculated for each hori-
zon, resulting in a total of 52 SMAPE values, one for each 
forecast horizon. For example, there were 52 forecasts of 
all 1-week ahead forecasts (horizon one) and the error 
of these forecasts would be averaged to obtain an overall 
one-week ahead forecast error. Negative forecast values 
were set to zero. The upper bound of the SMAPE met-
ric is 200%, producing a range of possible values from 0 
to 200%. In addition, the percent error of the total fore-
casted burden (number of cases) over the 52-week period 
was compared to the actual burden that occurred from 
1 June 2012 to 31 May 2013. The first forecasted obser-
vation from each forecast horizon (1 to 52) was used to 
obtain the cumulative forecasted burden over the fore-
casting period.

RStudio v0.93 was used for data management, SAS v9.3 
was used for the analyses, ERDAS Imagine v10.1 was 
used for processing the satellite images, and ArcGIS v10 
was used for spatial analyses.

Results
There were slightly more females than males with con-
firmed malaria at each site and the mean annual tem-
peratures were relatively similar with a 2°C difference 
across the sites (Table  2). Nagongera had the youngest 
malaria cases in age and generally, there were slightly 

SMAPEaveh =
1

n

n
∑

i=1

∣

∣

∣
Yi − Ŷi

∣

∣

∣

(Yi + Ŷi)

/

2

× 100

more female than male confirmed malaria cases at each 
site. On average, Nagongera had the highest daytime 
temperatures (29.8°C) and received the most rain in 2012 
(1.66 m).

The predictors included in the final models varied by 
sentinel site (Table  3). A commonly included category 
of predictor was drug treatment, with at least one treat-
ment predictor series included in every model. Appropri-
ate treatment and the number of courses of ACT were 
the most frequently included treatment predictors. Total 
rainfall was the most commonly retained environmen-
tal predictor. Kamwezi’s models contained the smallest 
number of predictors, four, whereas Walukuba contained 
the most, fourteen. Approximately half the predictor 
series were lagged, ranging from lags of 1 to 52 weeks. A 
table of the predictors, parameters, and lags are included 
in an appendix (See Additional file 1: Table S1).

Seasonality was visually assessed for each model 
using the ACF and PACF, although none of the models 
included seasonal terms as non-seasonal parameters and 
predictors were sufficient to capture any seasonal varia-
tion. All models had one order of differencing and a mov-
ing average term of one order. However, the orders of the 
autoregressive (AR) terms ranged from 1 to 43.

The short-term horizons (e.g., 1- to 4-weeks ahead) 
were better at predicting high-frequency variation 
in malaria cases compared to longer-term horizons 
although the short-term horizons predicted the peaks 
1 to 4 weeks after they were observed (Figure 2). Kam-
wezi had the highest error with an average of 128% 
across all 52 forecast horizons and Nagongera had the 
lowest average error at 27% (Table 4). When examining 
the forecasting accuracy by forecast horizon, horizon 
one forecasts (i.e., 1-week ahead forecasts), typically 
resulted in the smallest error. The weekly SMAPE 
error was highest when the observed counts were low 
or zero which occurred most often with the Kamwezi 
site (Figure 3). When examining the ability of models to 

Table 2 Characteristics for each UMSP outpatient health facility

a Total number of weeks or time points for the series (training and testing series).

Site Series start  
(no. of weeks)a

Cumulative  
number of cases

Average age 
(years)

% Female Average daytime 
temperature (°C)

Average  
nighttime  
temperature (°C)

Cumulative  
rainfall for  
2012 (m)

Aduku 5 November 2007 
(291)

14,963 10.7 59 29.1 17.6 1.29

Kamwezi 8 September 2008 
(247)

18,882 15.8 56 27.7 15.8 1.01

Kasambya 10 March 2008 (273) 20,636 13.7 57 27.3 15.4 1.02

Kihihi 9 June 2008 (261) 21,278 20.0 63 27.3 16.5 1.05

Nagongera 16 June 2008 (259) 20,716 8.4 56 29.8 17.5 1.66

Walukuba 28 April 2008 (266) 29,664 15.0 59 28.6 16.9 1.22
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predict the total number of cases during the forecasting 
period, Nagongera had the lowest percent error at 2% 
(Figure 4). The Kihihi model had the largest error with 

an overprediction of 22% and the average error was 9% 
for the 52-week forecasted malaria burden across all six 
sites.

Table 3 Categories of clinical and environmental predictors included in final forecasting models

Predictor Aduku Kamwezi Kasambya Kihihi Nagongera Walukuba

Rainfall ✓ ✓ ✓ ✓ ✓ ✓
Temperature ✓ ✓ ✓ ✓ ✓
Vegetation ✓ ✓ ✓ ✓ ✓ ✓
Treatment ✓ ✓ ✓ ✓ ✓
Suspected ✓ ✓ ✓ ✓ ✓
Proportion screened ✓ ✓ ✓ ✓ ✓
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Figure 2 Plot of weekly observed and forecasted malaria counts (horizon 1 forecasts) for each UMSP site from 1 June 2012 to 31 May 2013.

Table 4 Error for selected forecast horizons by UMSP site

a Average error across all forecast horizons (horizons 1–52).

Site Horizon 1 (%) Horizon 4 (%) Horizon 12 (%) Horizon 26 (%) Horizon 52 (%) Average (%)a

Aduku 31.6 43.2 62.1 73.7 99.5 70.7

Kamwezi 57.8 117.0 125.6 147.1 127.0 127.8

Kasambya 31.3 42.8 56.0 42.9 13.5 46.6

Kihihi 20.9 31.1 46.3 31.2 33.4 37.0

Nagongera 19.4 27.8 32.5 31.9 2.0 26.3

Walukuba 22.1 30.7 35.2 37.3 34.6 30.8
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Discussion
The Abuja Declaration noted the importance of accurate 
disease prediction for targeting and evaluating control 
measures [23]. For forecasting models to be useful for 
clinical and public health decision-making, models must 
produce accurate forecasts. This study examined vari-
ous predictors across six different settings in Uganda and 

consistently found that both environmental and clinical 
predictors were necessary to achieve the highest possi-
ble predictive power. This is the first study that examines 
clinical predictors, other than malaria cases, in combi-
nation with environmental predictors for forecasting 
malaria. Future forecasting work should consider clinical 
predictors given the likelihood of their relevance in dif-
ferent endemic settings.

Incorporating clinical predictors such as anti-malarial 
treatment, the proportion of individuals screened for 
malaria, and the number of malaria negative individuals, 
produced models with the best predictive power across a 
range of settings in Uganda and across forecast horizons. 
In addition, rainfall, temperature, and EVI were also 
identified as necessary for several of the models in terms 
of achieving the greatest predictive ability. The accuracy 
of the models varied widely between the sites, with mod-
els at some sites (e.g., Kamwezi) influenced by low and 
zero counts in the response series, leading to large rela-
tive error measures (200%).

It is not known if the observed cases were incident or 
recrudescent. Inclusion of recrudescent cases in the out-
come series would weaken the predictive ability of environ-
mental covariates [5], which have a stronger relationship 
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with incident cases, although inclusion of recrudescent 
cases may strengthen the predictive ability of certain treat-
ment predictors [10–12]. There are different ways in which 
measurement error could have influenced the findings. 
Remote sensing data was used in lieu of ground observa-
tions due to data availability, and these remote sensing 
observations are subject to measurement error [23–29]. 
The treatment data were based upon prescriptions and not 
on dispensed anti-malarial medication or treatment taken 
by the patient, which may have introduced noise into the 
series, and facility-level factors likely influenced the accu-
racy of the observed counts of confirmed malaria. Finally, 
incorporate other predictors, such as humidity and inter-
vention data (e.g., insecticide-treated nets, indoor residual 
spraying), were not included which may further improve 
the forecasting accuracy. The Aduku region, for example, 
has been subject to rounds of indoor residual spraying 
[30], which likely accounts for some of the unexplained 
variation. All of these factors have likely resulted in meas-
urement error, increasing the noise of the different series 
and decreasing their ability to predict malaria.

The models were not developed to explain causal rela-
tionships but were developed with the goal of achieving the 
highest predictive power. Consequently, multicollinearity 
was present between various predictor series and influ-
enced which predictors and respective lags were included 
in the final models. The biological interpretation of specific 
lags and combination of predictors is therefore limited.

There are different potential users of malaria forecasts. 
Health facilities could use the forecasts to plan for patient 
visits, for example, in ensuring that sufficient diagnostic 
and treatment materials are available. Policy-makers and 
those involved with malaria control strategy planning could 
use the information to understand the burden of malaria 
in a particular location for the coming year, to inform the 
procurement of anti-malarials and diagnostic equipment, 
and also in informing malaria control strategy, such as tar-
geting intervention efforts. With the increasing availability 
of electronic medical records and electronic systems, clini-
cal predictors could be collected and analysed in real-time 
in conjunction with remote sensing data, if meteorological 
data are not an option. Using malaria forecasting models in 
practice would also allow us to understand how accurate a 
model needs to be, in order to be useful. Potential barriers 
to the utility of the models include the supply chain manage-
ment approach, if supply decisions are made at the national 
level through a national store (‘push’ system) [31] versus at 
the health-facility level as well as a lack of resources required 
to guide community-tailored prevention measures.

Conclusions
Clinical data such as drug treatment could be used to 
improve the accuracy of malaria predictions in a highly 

endemic setting when coupled with environmental pre-
dictors. Future research should consider other non-envi-
ronmental predictor series and the practical implications 
of accuracy should be examined to determine the impact 
of forecast accuracy on disease control decisions. Accu-
rate malaria forecasting models are needed to guide effi-
cient allocation of resources for prevention and response; 
further exploration of malaria forecasting is necessary to 
improve its value in practice.
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