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Abstract

Selective attention to predictive cues is often considered an ef-
ficient way to address the exploration-exploitation dilemma in
decision-making. Yet in some circumstances, it can also lead
to sub-optimal decision-making due to false beliefs about the
environment acquired early in learning - a learning trap. In
this study, we examined the relationship between attention se-
lectivity and the emergence of a one-dimensional learning trap
in a multidimensional categorization learning task. Combin-
ing empirical work (N=75) and computational modeling, we
find that more selective attention, especially in the early phase
of learning, increases the likelihood that an individual will fall
into a learning trap. This finding sheds light on the causal role
of attentional biases in the way that individuals explore and
learn about choice-options.

Keywords: selective attention, decision-making, catego-
rization, category learning, exemplar models

Introduction
From everyday decisions like grocery shopping to significant
investments such as buying a house, we often rely on beliefs
learned from prior experience to guide our choices. For in-
stance, when engaging in a real estate transaction, we may
reflect on our past experiences with an agent to determine
if we would like to hire an agent this time. Regardless of
our desire to know everything everywhere all at once, deci-
sion makers are inevitably constrained by the exploration-
exploitation dilemma (Sutton & Barto, 2018) when making
decisions from experience (Hertwig, Barron, Weber, & Erev,
2004; Hills, 2006; Mehlhorn et al., 2015). To maximize over-
all rewards, we need to balance the potential gain from learn-
ing new knowledge with the benefits from utilizing existing
knowledge.

Selective attention plays an essential role in addressing
the exploration-exploitation dilemma (Nosofsky, 1986; Kr-
uschke, 1992; Niv et al., 2015). It allows decision makers
to focus on relevant information while filtering out irrele-
vant details (Desimone & Duncan, 1995; Soto, Hodsoll, Rot-
shtein, & Humphreys, 2008). Nevertheless, this seemingly

efficient mechanism can sometimes result in sub-optimal de-
cisions (Hoffman & Rehder, 2010; Rich & Gureckis, 2018;
Blanco, Turner, & Sloutsky, 2023; Kruschke & Blair, 2000).
A negative experience with a tech stock, may lead an investor
to believe that all tech stocks are bad and avoid trades with
those stocks, regardless of the potential for some of them to
yield a good return. This is an example of a “learning trap”
- where early negative experience leads the decision maker
to form a false belief about the reward structure of the envi-
ronment, causing them to avoid exploring choice options that
would disconfirm the false belief. Such traps can lead people
to miss out on potential rewards (Rich & Gureckis, 2018) and
fail to learn causal relations (Liquin & Gopnik, 2022), which
have been implicated in the development of negative stereo-
types of out-groups (Denrell, 2005) and the maintenance of
psychopathologies such as depression (Teodorescu & Erev,
2014).

Rich and Gureckis (2018) suggested that selective atten-
tion plays a key role in the formation of learning traps. In our
investment example, the trap emerges because the investor
focuses on a single salient feature (i.e., whether the stock is
tech-related) to guide subsequent decisions, while ignoring
other key indicators (e.g., the relative strength index). Some
existing work supports this relationship between selective at-
tention and trap formation in learning (Rich & Gureckis,
2018; Blanco et al., 2023). Blanco et al. (2023) identi-
fied a group-level distinction in attention distribution dur-
ing learning between adults and children using eye-tracking
data. They found that children who distributed their attention
across stimulus features more broadly during learning were
less likely to fall into a learning trap than adults who tended
to focus on a small number of predictive features.

The current work aimed to carry out an in-depth exam-
ination of the relationship between selective attention and
learning trap formation with a joint approach of experimen-
tal methods and quantitative model fitting. We examined
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trap formation in a task where different categories (i.e., types
of cartoon bees) were associated with rewards or losses. A
conjunctive rule involving two feature dimensions could per-
fectly predict the category bound. On each learning trial,
participants chose to approach or avoid a bee. Approach-
ing the bee led to the associated outcome, while avoidance
meant that no gain or loss was incurred. Using a similar task,
Rich and Gureckis (2018) found that when learners only re-
ceived outcome feedback if they approached a stimulus (but
not when they chose to avoid), many fell into the trap of using
an overly simplistic one-dimensional category rule. That is,
they avoided losses but also earned fewer rewards than those
who learned the optimal two-dimensional rule.

Unpacking the relationship between selective attention,
representation of the environment, and exploratory behavior
is challenging (Turner & Sloutsky, 2024). Causal relations
between these processes are likely to run in both directions.
For instance, a belief that a single feature dimension predicts
category membership could lead to selective attention to that
feature and less exploration of alternative features, which then
enhances the original belief.

In the current work, we probed the relationship between se-
lective attention and the learning trap with a novel approach
of assessing the link between a model-based measurement for
selective attention and the likelihood of falling into a trap.
Rich and Gureckis (2018) showed that the ALCOVE-RL
model, which extends Kruschke’s (1992) well-known AL-
COVE model of category learning to incorporate aspects of
reinforcement learning, could generate learning trap forma-
tion. The current work goes beyond simulations. Using pa-
rameters estimated from model fitting of ALCOVE-RL to in-
dividual learning data, we derived a model-based measure-
ment that quantified learners’ trial-by-trial degree of attention
selectivity. This allowed a granular-level test of the relation-
ship between selective attention and the emergence of a one-
dimensional trap over the course of learning. In particular, we
examined whether individuals who showed more attentional
biases toward a subset of predictive features early in learning
were more at risk of falling into a trap, as opposed to those
who distributed their attention more broadly.

Methods

Participants

A total of 75 participants (26 women, 48 men, 1 non-binary;
age: M = 35.72 , SD = 12.38), recruited from the Prolific
online platform, completed the study. The sample size were
determined prior to data collection, based on a preliminary
power analysis (Rich & Gureckis, 2018).

All participants who completed the study were paid with
a £2 base rate and a performance-based bonus ranging from
£0 to £1.70. The amount of the bonus was determined by the
points participants accumulated throughout the experiment.
Each point was worth £0.01. No participant was excluded
from the data analyses.

Materials
We adapted the bee stimuli used by Rich and Gureckis
(2018), generating eight unique stimuli by factorially com-
bining three binary-valued bee dimensions (Figure 1a), in-
cluding numbers of legs (two vs. six), numbers of wing pairs
(single vs. double), and body pattern (striped vs. dotted).

For each participant, two of these binary-valued dimen-
sions were randomly selected as relevant for categorization.
Two feature values on relevant dimensions were randomly as-
signed as potentially dangerous (denoted by 1), and the other
two were assigned as friendly features (denoted by 0). The
category membership of each stimulus was determined by
the conjunction of features on relevant dimensions (Figure
1b). The stimuli having friendly features on both relevant di-
mensions (s00), and the stimuli having a single friendly fea-
ture (s01 and s10) were members of the friendly category.
The stimuli incorporating both potentially dangerous features
(s11) belonged to the dangerous category. For example, when
the relevant dimensions were legs and body pattern, a bee
with the two potentially dangerous features of two legs and
dotted body (s11) was dangerous. The bee types having six
legs and striped body (s00), six legs and dotted body (s01),
and having two legs and striped body (s10) were friendly.
Feature values on the third, irrelevant dimension (wings in
this example) were not predictive of category membership.

The experiment was programmed in jsPsych (de Leeuw,
2015) and run online via the Prolific platform. Model fitting
was conducted in R (R Core Team, 2023) and statistical anal-
yses were conducted in Jamovi (jamovi, 2021).

(a) (b)

2 or 6 legs

Single or double wings

Striped or dotted body

s11s01
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Relevant Dimension 1

Re
le

va
nt

 D
im

en
sio

n 
2

0 1

0
1

Friendly
(Approach)
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Figure 1: Exemplar bee features and categories used in the
experiment. Panel (a): Exemplar binary-valued bee features.
Two dimensions were relevant for predicting category mem-
bership and one was irrelevant. Panel (b): Schematic cate-
gory structure (friendly vs. dangerous) of different bee types
(i.e., s00, s01, s10, s11) based on relevant dimensions. The
bee type composed of two potentially dangerous features (i.e.,
s11) is dangerous and should be avoided. All other bee types
are friendly and should be approached.
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Procedure

Participants were given the role of beekeeper in a virtual
game, with the goal of maximizing the honey harvested from
bees, quantified as accumulated points. They were informed
that some bees were friendly - approaching these bees would
yield honey valued at +1 points; while some bees were dan-
gerous - approaching these bees would lead to a loss of 3
points. During the instruction session, participants saw the
features of all three binary-valued dimensions (see Figure 1a).
They were not informed of the category rule, but were told
that perfect prediction on bee categories was possible. Be-
fore learning commenced, participants had to achieve a per-
fect score on a comprehension survey that queried: (1) the
three dimensions that would vary across stimuli, (2) the task
goals, and (3) the consequences of avoiding a bee.

There were 112 trials in the experimental session, divided
into six learning blocks and one test block. Transition be-
tween blocks was not signaled. In each block, 12 friendly
bees and 4 dangerous bees were presented in random order.
Each unique bee stimulus appeared twice in a block. On each
trial, a bee stimulus appeared on screen and participants had
to make an approach/avoid decision. Responses were made
by clicking on on-screen buttons. In learning blocks, after an
action was chosen, the stimulus was replaced by a feedback
screen for 2s, giving the associated outcomes. The test block
was similar except that no feedback was given on any trials.
Points were still accumulated throughout the test block.

Participants commenced the task with an endowment of 50
points. Accumulated points appeared on the top-right of the
screen on each trial. On completion, participants received
payment based on their final points tally.

Results
Learning of Category Rules

We assessed the categorization rules that learners acquired
by examining their approach and avoidance patterns in the
training and test blocks, using a scoring method similar to
Rich and Gureckis (2018). Those who learned the correct
two-dimensional (2D) rule should approach all three types of
friendly bee types (s00, s01 and s10 in Figure 1b) and avoid
the dangerous bee type (s11). Those using a sub-optimal one-
dimensional (1D) rule would only use values on a single rele-
vant dimension to guide decisions. Given the stimulus struc-
ture, there are two versions of the 1D rule, either approaching
s00 and s01 but avoiding s11 and s10, or approaching s00
and s10 but avoiding s11 and s01. Those using either ver-
sion were classified together as “1D rule learners”. A par-
ticipant was deemed to use a category rule within a block if
their approach/avoid decisions were consistent with that rule
on at least 15 out of 16 trials. Participants whose choices
were inconsistent with both rules were labeled as unclassified
learners. We analysed and modeled the responses of all par-
ticipants. However, for brevity, we focus on results of 1D-
and 2D-rule learners.

As shown in Figure 2, the proportion of participants em-
ploying either a 1D or 2D rule increased over the course of
learning. The proportion of 2D-rule learners increased from
0.013 in the first block to 0.480 in the last block (χ2(6) =
74.9, p < 0.001), and the proportion of 1D-rule learners
increased from 0.013 to 0.213 (χ2(6) = 28.0, p < 0.001).
Hence, similar to what was found in previous studies (Rich
& Gureckis, 2018; Blanco et al., 2023), a substantial minor-
ity of learners fell into the trap of using an overly simplistic
one-dimensional rule to guide approach and avoid decisions.
To assess the progress of category learning across blocks,
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Figure 2: Proportions of participants employing different di-
mensional category strategies in each block. Note that the
proportions of 1D learners combine different versions of this
rule - focusing on either of the two relevant dimensions.

we classified participants into one of two sub-groups based
on the category rule they employed most frequently across
blocks. Approach responses to different bee types for each
sub-group are shown in Figure 3. Stimuli that were unam-
biguously “friendly” (s00) were approached and stimuli that
were unambiguously “dangerous” (s11) were avoided by both
2D and 1D rule users. The groups diverged in their approach
of stimuli (s01, s10) that were actually friendly but would
have been believed dangerous if one focused only on features
from a single relevant dimension. Notably, this divergence in
approach behavior was evident at an early stage of learning
(i.e., in the first two blocks). This suggests that an early se-
lective attention bias may have contributed to the formation
of a persistent learning trap. The results of a mixed effects
linear regression model (Table 1) supported the significance
of the observed patterns in Figure 3.

Modeling the Relationship Between Selective
Attention, Category Learning and Learning Traps
The goal of our modeling was to (1) examine the capability
of ALCOVE-RL model in capturing choice patterns of dif-
ferent category strategies, and (2) more importantly, to probe
how selective attention to a subset of relevant features early
in learning contributes to the one-dimensional learning trap.
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Figure 3: Choice proportions for approaching bees of differ-
ent types, by subgroups using different category rules. Error
bars denote the standard error of the mean.

Table 1: The results of omnibus tests for the fixed effects in
the mixed regression model predicting P(approach) as a func-
tion of Stimulus Type, Dimensional Rule and Block, after ac-
counting for by-subject random intercepts.

Fixed Effect F d fbetween d fwithin p-value

Stimulus Type 1498.13 3 2632 < 0.001
Dimensional Rule 519.77 1 2632 < 0.001
Block 12.96 6 2632 < 0.001
Stimulus Type ×DimensionalRule 169.33 3 2632 < 0.001
Stimulus Type ×Block 14.87 18 2632 < 0.001
Dimensional Rule ×Block 1.53 6 2632 0.165
Stimulus Type ×DimensionalRule×Block 2.06 18 2632 < 0.001

A Brief Description of ALCOVE-RL Model ALCOVE-
RL belongs to the class of connectionist models of exemplar-
based category learning (Nosofsky, Palmeri, & McKinley,
1994; Eiser, Fazio, Stafford, & Prescott, 2003). Follow-
ing the structure of the original ALCOVE model (Kruschke,
1992), ALCOVE-RL describes the underlying categorization
mechanism as a network connecting a hidden layer of exem-
plar nodes to a hidden layer of action nodes. The exemplar
layer captures the mapping of dimensional inputs (ain

i ) from
stimuli to an exemplar-based representation (h ji) through a
similarity-based function (Equation 1).

ahid
j = exp[−c(∑

i
αi|h ji −ain

i |)],

j = exemplar index, i = index of input dimension.
(1)

It implements a selective attention mechanism through the in-
corporation of attention weights for feature dimensions (αi

in Equation 1). Same values of attention weights on di-
mensions indicate that each dimensional input is contributing
equally to the activation of exemplars for categorization deci-
sions; while asymmetrical attention weights suggest an atten-
tion bias to ward certain dimensions when encoding stimulus.
These attention weights are our key measure in assessing the
role of selective attention in learning trap formation. c is a
specificity parameter that reflects overall psychological dis-
criminability when activating exemplars.

The layer of action nodes captures the cognitive mapping
of exemplar nodes to action outputs (Equation 2), which is
regulated by learnable association strength ω.

aout
k = ∑

j
ωk jahid

j /∑
j

ahid
j , k = action index (2)

The choice probability of taking an action is computed us-
ing a classic probabilistic choice model (Equation 3, Luce,
1959), regulated by a parameter φ that reflects the overall de-
gree of determination of taking an action

P(K) =
exp(φaout

k )

∑k exp(φaout
k )

(3)

ALCOVE-RL involves a reinforcement learning algorithm
to improve its prediction on reward outputs with outcome
sampling. Specifically, the association weights (i.e., α and
ω) of the model are updated based on the difference between
the predicted reward of the model and the actual reward of a
chosen action on each trial (Equation 4 ). Prediction improve-
ment does not take place for the action that is not taken by the
learner (see Rich & Gureckis, 2018, for a detailed model de-
scription). The updating speed is regulated by the learning
rates (lα and lω).

∆ωk j = lω(tk −aout
k )ahid

j

∆αi =−lα ∑
j
[∑

k
(tk −aout

k )ωk j]ahid
j c|h ji −ain

i |
(4)

Categorization Choices with Different Degrees of Atten-
tion Bias We fitted ALCOVE-RL to each participant’s data
and obtained the maximum-likelihood estimations of the
model parameters, including a specificity constant c (M =
5.43, 95% CI = [3.96, 6.91]) in the activation function for ex-
emplars (Equation 1), a deterministic parameter φ (M = 2.72,
95% CI = [2.38, 3.06]) in the probabilistic choice function
(Equation 3), and two learning rates lα (M = 0.179, 95% CI =
[0.169, 0.188]) and lω (M = 0.162, 95% CI = [0.148, 0.176])
in the error-driven learning function (Equation 4).

The attention weights for each feature dimension were then
derived for each trial based on Equation 4. Initial weights
were set to be identical for all three dimensions at the begin-
ning of learning. As depicted in Figure 4a, with the advance
of experiment, the estimated attention weights on both rel-
evant dimensions (a1 and a2) increased while those on the
irrelevant dimension (a3) decreased, suggesting that partici-
pants directed their attention to relevant dimensions as learn-
ing progressed.
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Figure 4: Panel (a): Estimated attention weights on each
binary-valued dimension across blocks. a1 and a2 are weights
for the relevant dimensions, a3 is the weight between the irrel-
evant dimension. Panel (b): The distribution of absolute dif-
ferences in attention weights for relevant dimensions, divided
into five regions with evenly-spaced quantiles. Panel(c): Ap-
proach proportions for each bee type, estimated from partic-
ipants with different levels of attention bias. Error bars de-
note the standard error of the mean. Panel (d): Proportions of
category-rule users in each quantile region of bias.

We quantified the degree of attention bias by the abso-
lute difference between normalized attention weights on the
two relevant dimensions. For instance, if the estimated a1,
a2, and a3 were 0.8, 1.6, 0.1, respectively, the absolute dif-
ference in attention weights between relevant dimensions
was |0.8−1.6|

0.8+1.6+0.1 = 0.32. Figure 4b summarizes the full dis-
tribution of absolute attention-weight differences estimated
from trials of all participants. Four quantiles (20%, 40%,
60%, 80%) divided the values of weight differences into five
regions, reflecting different levels of dimensional attention
bias. Weight-difference values in R1 reflected the null or
marginal attention bias, while those in R5 reflected the rel-
atively strongest bias toward a single relevant dimension.

Figure 4c shows the choice proportions of approach de-
cisions for participants in different attention-bias groups.
The null/marginal attention-bias group (R1) demonstrated a
choice pattern consistent with use of a 2D rule (green bars
in Figure 2b). They tended to always approach the friendly
bees (s00, s01 and s10) and avoid the dangerous bees. In
contrast, learners with high levels of bias (R4-R5) demon-
strated a choice pattern consistent with use of a 1D-rule; that

is, they were less likely to approach the ambiguous friendly
bees (s01 and s10). The patterns observed in Figure 4c were
supported by the results of mixed effects regression model
(R2

Conditional = 0.593), confirming the significance of main
effects of both Stimulus Type (F(3,2010) = 814.65, p <
0.001), and Overall Attention Bias (F(4,70) = 4.20, p =
0.004), as well as their interaction (F(12,2010) = 15.31, p<
0.001) on the choice proportion of approaching bees.

In a similar vein, Figure 4d shows how levels of attention
bias quantified by model-based measurement were related to
use of different category rules inferred from approach/avoid
choice patterns. There was a significant association between
these measures, χ2(4) = 20.2, p < 0.001. Participants with
the highest levels of attention bias were most likely to be clas-
sified as falling into the 1D learning trap,

So far, these results reveal that observed differences in use
of one- or two-dimensional rules for categorization decisions
are reflected in the attention bias estimates derived from the
ALCOVE-RL model. In the next section, we turn to the more
interesting question of whether model-based estimates of at-
tention bias early in learning can predict the later emergence
of a one-dimensional learning trap.

Early Attention Bias and the Emergence of Learning
Traps Figure 5a plots the values of absolute attention-
weight differences as a function of blocks for different
category-rule learners, reflecting how attention selectivity
changed with learning for different learners. The absolute
differences of the 2D-rule learners started near zero and re-
mained at a consistent level across blocks, suggesting an even
distribution of attention on stimulus dimensions during cat-
egory learning. In contrast, the absolute differences of the
1D-rule learners started with a positive value and increased
with the advance of blocks. This suggests that 1D-rule learn-
ers initiated learning with an uneven distribution of attention,
and the attention biases toward a single dimension became
stronger as learning progressed. The observed patterns were
supported by the results of the mixed effects regression model
(R2

conditional = 0.870), which confirmed the significance of
main effects of Block (F(6,787) = 7.44, p < 0.001) and Di-
mensional Rule (F(1,761) = 88.61, p < 0.001), as well as
their interactions (F(6,786) = 45, p < 0.001), on the abso-
lute attention-weight differences. These results hinted at a
distinction in early attention bias between groups using dif-
ferent category strategies.

Figure 5b takes a closer look at this issue. Participants
were divided into R1 to R5 groups based on their abso-
lute attention-weight differences estimated from the first two
learning blocks. Choice proportions were estimated from the
last block (the test block), reflecting the category strategies
participants employed after the completion of learning phase.

The choice patterns in Figure 5b show a clear effect of
early attention-bias degree on subsequent categorization deci-
sions. Participants with a null/marginal initial attention-bias
degree (i.e., R1) ended up with a choice pattern consistent
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with a 2D-rule. As the initial attention bias increased, there
was a reduction in the likelihood of a participant to approach
the ambiguous friendly bees (s01 or s10) in the final blocks.
Hence, an early bias towards selective attention to a single
relevant feature meant that a participant was more likely to
eventually fall into a learning trap. The statistical results of
the mixed regression model (R2

Conditional = 0.624) supported
the observed patterns, confirming the significance of main ef-
fects of Stimulus Type (F(4,2530) = 709.17, p < 0.001) and
Early Attention Bias (F(4,70) = 5.49, p < 0.001), as well
as their interactions (F(16,2530) = 21.13, p < 0.001), on
choice proportions in the last block.
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Figure 5: Panel (a): Estimated absolute attention-weight
differences across blocks of different category-rule learners.
Panel (b): Proportion of approaching bees of different types
in the last test block, estimated from participants with dif-
ferent levels of early attention-bias. Bias was quantified by
the estimated absolute attention-weight differences in the first
three blocks. Error bars denote the standard error of the mean.

Discussion
This study examined the relationship between attention se-
lectivity and the emergence of a learning trap in a multi-
dimensional category learning task. After an extended pe-
riod of learning, we found that a substantial proportion of
learners fell into the trap of using an overly simplistic one-
dimensional rule to classify stimuli, avoiding stimuli that
would have earned them rewards. We utilized a model-based
measurement of attention bias, derived from fitted parame-
ters of ALCOVE-RL (Rich & Gureckis, 2018), to probe how
individual levels of selective attention related to trap devel-
opment. A crucial finding was that selective attention in the
initial stages of learning was linked to later trap formation.
Participants who started with a broad distribution of attention
were more willing to explore the full outcome space in the
early phase of learning and hence more likely to eventually
learn the correct two-dimensional rule. In contrast, partic-
ipants who showed higher levels of selective attention to a
single feature dimension early in learning were less willing
to explore the full space of outcomes and more likely to fall
into a learning trap.

The current findings are consistent with suggestions that
individuals may differ in their tendency to explore novel stim-
uli or exploit known options (e.g., Gershman & Tzovaras,
2018; Hills & Hertwig, 2010). Importantly, our work makes
a novel contribution by highlighting the crucial role of early
selective attention in subsequent exploration of novel options,
as evidenced by both empirical and modeling results.

Other types of individual differences may also contribute to
various attentional bias identified in the current experimental
context. It has been shown in range of decision-making en-
vironments that the disutility of a loss tends to be perceived
greater than the utility of a gain (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1991). In our study, we suspect that
loss aversion might affect the underlying interplay between
attention selectivity and under-exploration in the early phase
of learning. Losses from approaching dangerous bees may
have a larger hedonic impact than gains from approaching
friendly bees for some participants. This may have driven
these learners toward a conservative learning strategy, specif-
ically focusing attention on features that could help them pre-
dict losses rather than earn rewards. Once this loss-avoidance
strategy was in place, no further attention to other stimulus
features was required. Li et al. (2021) found that using a con-
trasting payoff schedule, that is rewarding approaching the
conjunctive bee type (s11) while penalizing approaching the
disjunctive bee types (s00, s01, and s10), could attenuate the
learning trap, even when participants were informed about
the frequency of positive versus negative stimuli. These re-
sults indicate that the formation of learning trap may relate
to the perceived incentives for exploration in addition to loss
attention (Lejarraga, Schulte-Mecklenbeck, Pachur, & Her-
twig, 2019; Yechiam & Hochman, 2013).

Our results support the Rich and Gureckis(2018) hypoth-
esis that selective attention plays a key role in the develop-
ment of learning traps. However, as noted, the causal re-
lations between representation of the learning environment,
selective attention and exploratory behaviour are complex,
and bi-directional in many cases (Turner & Sloutsky, 2024).
We therefore need to be cautious about making strong claims
about early attentional biases being the primary factor driving
later formation of learning traps. Our understanding of these
complex issues could be advanced in future work through
the use of direct measures of selective attention, such as eye
tracking (e.g., Blanco et al., 2023), and direct probes of peo-
ple’s beliefs about the structure of their learning environment
at multiple points during learning. These data could be used
to further constrain computational modeling, allowing us to
track how both attention and learning parameters change over
the course of learning and how each is related to trap forma-
tion.
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