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Immersive Virtual Reality Simulations of Bionic Vision

JUSTIN KASOWSKI,
University of California, Santa Barbara, USA

MICHAEL BEYELER
University of California, Santa Barbara, USA

Abstract

Bionic vision uses neuroprostheses to restore useful vision to people living with incurable 

blindness. However, a major outstanding challenge is predicting what people “see” when they 

use their devices. The limited field of view of current devices necessitates head movements to scan 

the scene, which is difficult to simulate on a computer screen. In addition, many computational 

models of bionic vision lack biological realism. To address these challenges, we present VR-SPV, 

an open-source virtual reality toolbox for simulated prosthetic vision that uses a psychophysically 

validated computational model to allow sighted participants to “see through the eyes” of a bionic 

eye user. To demonstrate its utility, we systematically evaluated how clinically reported visual 

distortions affect performance in a letter recognition and an immersive obstacle avoidance task. 

Our results highlight the importance of using an appropriate phosphene model when predicting 

visual outcomes for bionic vision.

Additional Key Words and Phrases:
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1 INTRODUCTION

The World Health Organization has estimated that by the year 2050, roughly 114.6 million 

people will be living with incurable blindness and 587.6 million people will be affected 

by severe visual impairment [8]. Although some affected individuals can be treated with 

surgery or medication, there are no effective treatments for many people blinded by severe 

degeneration or damage to the retina, the optic nerve, or cortex. In such cases, an electronic 

visual prosthesis (“bionic eye”) may be the only option [18]. Analogous to cochlear 

implants, these devices electrically stimulate surviving cells in the visual pathway to evoke 

visual percepts (“phosphenes”). The phosphenes produced by current prostheses generally 

provide users with an improved ability to localize high-contrast objects and perform basic 

orientation & mobility tasks [1], but are not yet able to match the acuity of natural vision.

Despite their potential to restore vision to people living with incurable blindness, the number 

of bionic eye users in the world is still relatively small (roughly 500 retinal prostheses 

implanted to date). To investigate functional recovery and experiment with different implant 

designs, researchers have therefore been developing virtual reality (VR) prototypes that 

rely on simulated prosthetic vision (SPV). The classical method relies on sighted subjects 
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wearing a VR headset, who are then deprived of natural viewing and only perceive 

phosphenes displayed in a head-mounted display (HMD). This allows sighted participants 

to “see through the eyes” of the bionic eye user, taking into account their head and/or eye 

movements as they explore a virtual environment [27].

However, most SPV studies simply present stimuli on a computer monitor or an HMD, 

without taking into account eye movements, head motion, or locomotion [26]. This leads to 

a low level of immersion [25, 36], which refers to technical manipulations that separate the 

existence of the physical world from the virtual world [34]. Seeing the real world, using a 

keyboard or joystick to move, and sounds present in the real environment are factors which 

lead to lower levels of immersion. However, the role of immersion for behavioral tasks in 

SPV is still unclear as no previous study has assessed whether behavioral performance is 

comparable across monitor-based and HMD-based versions of the same task.

In addition, most current prostheses provide a very limited field of view (FOV); for example, 

the artificial vision generated by Argus II [31], the most widely adopted retinal implant 

thus far, is restricted to roughly 10 × 20 degrees of visual angle. This forces users to 

scan the environment with strategic head movements while attempting to piece together the 

information [16]. The emergence of immersive VR as a research tool provides researchers 

with the ability to simulate this in a meaningful way.

Moreover, a recent literature review found that most SPV studies relied on phosphene 

models with a low level of biological realism [26]. It is therefore unclear how the findings of 

most SPV studies would translate to real bionic eye users.

To address these challenges, we make three contributions:

• We present VR-SPV, a virtual reality (VR) reality toolbox for simulated 

prosthetic vision (SPV) that allows sighted participants to “see through the eyes” 

of a bionic eye user (Figure 1).

• Importantly, we use an established and psychophysically validated computational 

model of bionic vision [4] to generate realistic SPV predictions.

• We systematically evaluate how different display types (HMD or monitor) affect 

behavioral performance in a letter recognition and an obstacle avoidance task. To 

the best of our knowledge, this is the first SPV study that uses a within-subjects 

design to allow for a direct comparison between display types of the same tasks.

2 BACKGROUND

2.1 Restoring Vision with a Bionic Eye

The only FDA-approved technology for the treatment of retinal degenerative blindness are 

visual neuroprostheses. These devices consist of an electrode array implanted into the eye 

or brain that is used to artificially stimulate surviving cells in the visual system. Two retinal 

implants are already commercially available (Argus II: 60 electrodes, Second Sight Medical 

Products, Inc. [31]; Alpha-AMS (1600 electrodes, Retina Implant AG, [43]), and many other 

emerging devices have reached the clinical or pre-clinical stage [2, 17, 29]. In order to create 
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meaningful progress within these devices, there is a growing need to understand how the 

vision these devices provide differs from natural sight [16].

One common fallacy is the assumption that each electrode produces a focal spot of light 

in the visual field [28, 39, 42]. This is known as the scoreboard model, which implies that 

creating a complex visual scene can be accomplished simply by using the right combination 

of pixels (analogous to creating numbers on a sports stadium scoreboard). On the contrary, 

recent work suggests that phosphenes vary in shape and size, differing considerably across 

subjects and electrodes [6, 19, 32].

Increasing evidence suggests that perceived phosphene shape in an epiretinal implant is 

a result of unintended stimulation of nerve fiber bundles (NFBs) in the retina [6, 40]. 

These NFBs follow polar trajectories [23] away from the horizontal meridian, forming 

arch-like projections into the optic nerve (Fig. 2, left). Stimulating a NFB would result in 

the activation of nearby retinal ganglion cells (RGCs) that are upstream in the trajectory, 

resulting in phosphenes that appear elongated (Fig. 2, right).

Ref. [6] demonstrated through simulations that the shape of elicited phosphenes closely 

followed NFB trajectories. Their computational model assumed that an axon’s sensitivity to 

electrical stimulation:

i. decayed exponentially with ρ as a function of distance from the stimulation site,

ii. decayed exponentially with λ as a function of distance from the cell body, 

measured as axon path length.

In other words, the values of ρ and λ in this model dictate the size and elongation of 

phosphenes, respectively. This may drastically affect visual outcomes, as large values of λ 
are thought to distort phosphene shape.

2.2 Related Work

The use of virtual reality has emerged as a tool for assisting users with low vision (see 

[26] for a review of recent literature). This includes not just accessibility aids, but also 

simulations aimed at understanding low vision. A number of previous SPV studies have 

focused on assessing the impact of different stimulus and model parameters (e.g., phosphene 

size, phosphene spacing, flicker rate) on measures of visual acuity. Stimuli for these low-

level visual function tests were often presented on monitors [30, 49] or in HMDs [9, 52]. 

Some studies also tested the influence of FOV [41, 45] and eye gaze compensation [46] on 

acuity. Others focused on slightly more complex tasks such as letter [56], word [38], face 

[11, 14], and object recognition [33, 50, 55]. In most setups, participants would view SPV 

stimuli in a conventional VR HMD, but some studies also relied on smart glasses to present 

SPV in augmented reality (AR).

However, because most of the studies mentioned above relied on the scoreboard model, 

it is unclear how their findings would translate to real bionic eye users. Although some 

studies attempted to address phosphene distortions [20, 44, 52], most did not account for 

the neuroanatomy (e.g., NFB trajectories) when deciding how to distort phosphenes. Only 

a handful of studies have incorporated a great amount of neurophysiological detail into 
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their setup [24, 45, 49, 50], only two of which [45, 50] relied on an established and 

psychophysically validated model of SPV. One notable example is the study by Thorn et al. 
[45], which accounted for unintentional stimulation of axon fibers in the retina by adding 

a fixed “tail” length to each phosphene. However, a fixed-length tail is a simplification of 

the model [6] as the size of phosphenes (and their tails) have been shown to vary with 

stimulation parameters such as amplitude, frequency, and pulse duration [35].

In addition, being able to move around as one would in real life has shown to significantly 

increase the amount of immersion a user experiences [36]. However, the level of immersion 

offered by most SPV studies is relatively low, as stimuli are often presented on a screen [50, 

53]. In contrast, most current prostheses provide a very limited FOV (e.g., Argus II: 10×20 

degrees of visual angle), which requires users to scan the environment with strategic head 

movements while trying to piece together the information [16]. Furthermore, Argus II does 

not take into account the eye movements of the user when updating the visual scene, which 

can be disorienting for the user. Ignoring these human-computer interaction (HCI) aspects of 

bionic vision can result in unrealistic predictions of prosthetic performance, sometimes even 

exceeding theoretical acuity limits (as pointed out by [10]).

In summary, previous SPV research has assumed that the scoreboard model produces 

phosphenes that are perceptually similar to real bionic vision [48, 56], and that findings 

from an HMD-based task would more accurately represent the experience of a bionic eye 

user than a monitor version [41, 45, 54]. In this paper we aim to systematically evaluate 

these assumptions with a within-subjects (repeated measures) design, allowing for direct 

comparisons in performance across different model parameters and display conditions.

3 METHODS

3.1 VR-SPV: A Virtual Reality Toolbox for Simulated Prosthetic Vision

The VR-SPV system consisted of either a wireless head-mounted VR headset (HTC 

VIVE Pro Eye with wireless adapter, HTC Corporation) or a standard computer monitor 

(Asus VG248QE, 27in, 144Hz, 1920×1080p). Both HMD and monitor versions used the 

same computer for image processing (Intel i9-9900k processor and an Nvidia RTX 2070 

Super GPU with 16GB of DDR4 memory). All software was developed using the Unity 

development platform, consisting of a combination of C# code processed by the central 

processing unit (CPU) and fragment/compute shaders processed by the graphics processing 

unit (GPU). The entire software package, along with a more in-depth explanation, is 

available at https://github.com/bionicvisionlab/BionicVisionXR.

The workflow for simulating bionic vision was as follows:

i. Image acquisition: Utilize Unity’s virtual camera to acquire the scene at roughly 

90 frames per second and downscale to a target texture of 86 × 86 pixels.

ii. Image processing: Conduct any image preprocessing specified by the user. 

Examples include grayscaling, extracting and enhancing edges, and contrast 

maximization. In the current study, the image was converted to grayscale and 

edges were extracted in the target texture with a 3 × 3 Sobel operator.
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iii. Electrode activation: Determine electrode activation based on the visual input as 

well as the placement of the simulated retinal implant. In the current study, a 3 × 

3 Gaussian blur was applied to the preprocessed image to average the grayscale 

values around each electrode’s location in the visual field. This gray level was 

then interpreted as a current amplitude delivered to a particular electrode in the 

array.

iv. Phosphene model: Use Unity shaders to convert electrode activation information 

to a visual scene in real time. The current study re-implemented the axon map 

model available in pulse2percept [4] using shaders.

v. Phosphene rendering: Render the elicited phosphenes either on the computer 

monitor or the HMD of the VR system.

The VR-SPV system is designed to handle any retinal implant by allowing users to 

specify the location and size of each electrode in the simulated device. It can also handle 

other phosphene models, including cortical models, by replacing the model provided by 

pulse2percept with any phosphene model of their choosing.

While not considered in this study, VR-SPV can also be used to model temporal interactions 

by integrating electrode activation from previous frames or by only rendering at a specific 

frequency. The software is also capable of utilizing the VIVE’s eye tracking hardware to 

elicit a “gaze lock”. This function moves the rendered image to the center of the user’s gaze, 

attempting to replicate the inability of a prosthetic user to scan the presented image with 

eye movements. Neither of these optional functions were used in this study as they were not 

the focus of the current work, and it was unclear how these settings would influence any 

findings on the parameters being studied. VR-SPV also includes a function to change the 

source of the visual input from a virtual environment to the HMD’s front-facing camera for 

supporting AR applications.

3.2 Simulated Prosthetic Vision

The underlying phosphene model for this experiment was a re-implementation of the 

pyschophysically validated axon map model [6] provided by pulse2percept [4]. To support 

real-time execution, an initial mapping of each electrode’s effects on the scene were pre-

calculated with pulse2percept before starting the experiment. The shape of the elicited 

phosphenes was based on the retinal location of the simulated implant as well as model 

parameters ρ and λ (see Section 2). As can be seen in Fig. 2 (left), electrodes near the 

horizontal meridian activated cells close to the end of the NFBs, limiting the potential 

of elongation along an axon. This resulted in more circular phosphenes, whereas other 

electrodes were predicted to produce elongated percepts that differed in angle based on 

whether they fell above or below the horizontal meridian.

We were particularly interested in assessing how different SPV model parameters affected 

behavioral performance. Importantly, ρ and λ vary drastically across patients [6]. Although 

the reason for this is not fully understood, it is clear that the choice of these parameter values 

may drastically affect the quality of the generated visual experience. To cover a broad range 

KASOWSKI and BEYELER Page 5

Augment Hum (2022). Author manuscript; available in PMC 2022 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of potential visual outcomes, we simulated nine different conditions by combining ρ = {100, 

300, 500} μm with λ = {50, 1000, 5000} μm.

We were also interested in how the number of electrodes in an implant and the associated 

change in FOV affected behavioral performance. In addition to simulating Argus II, we 

created two hypothetical near-future devices that used the same aspect ratio and electrode 

spacing, but featured a much larger number of electrodes. Thus the three devices tested 

were:

• Argus II: 6 × 10 = 60 equally spaced electrodes situated 575 μm apart in a 

rectangular grid. To match the implantation strategy of Argus II, the device was 

simulated at −45° with respect to the horizontal meridian in the dominant eye.

• Argus III (hypothetical): 10 × 16 = 160 electrodes spaced 575 μm apart in a 

rectangular grid implanted at 0°. A recent modeling study suggests that this 

implantation angle might minimize phosphene streaks [5].

• Argus IV (hypothetical): 19 × 31 = 589 electrodes spaced 575 μm apart in a 

rectangular grid implanted at 0°.

3.3 Participants

We recruited 17 sighted participants (6 female and 11 male; ages 27.4 ± 5.7 years) from 

the student pool at the University of California: Santa Barbara. Participation was voluntary 

and subjects were informed of their right to freely withdraw for any reason. Recruitment and 

experimentation followed protocols approved by the university’s Institutional Review Board, 

along with limitations and safety protocols approved by the university’s COVID-19 response 

committee.

None of the participants had previous experience with SPV. Participants were split into two 

equally sized groups; one starting with the HMD-based version of the first experiment while 

the other started with the monitor-based version.

In order to get accommodated with the SPV setup, participants began each task with 

the easiest block; that is, the scoreboard model (λ=50 μm) with the smallest possible 

phosphene size and the highest number of electrodes. The order of all subsequent blocks was 

randomized for each participant.

4 EXPERIMENTS AND RESULTS

To study the impact of SPV parameters and level of immersion, we replicated two 

popular tasks from the bionic vision literature. The first task was a basic letter recognition 

experiment [13], tasking participants with identifying the letter presented to them. The 

second one was a more immersive orientation & mobility task, requiring subjects to walk 

down a virtual hallway while avoiding obstacles [22].

To allow for a direct comparison across all conditions, we chose a within-subjects, 

randomized block design. This systematic side-by-side comparison minimized the risk of 
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learning effects and other artifacts that may arise from inhomogeneity between groups, 

allowing for meaningful statistics with a relatively small number of subjects.

The procedures and results for each task are presented separately below, followed by a joint 

discussion on both experiments in the subsequent sections.

4.1 Task 1: Letter Recognition

4.1.1 Original Task.—The first experiment was modeled after a letter recognition task 

performed by Argus II recipients [13]. In the original task, following a short training period, 

participants were instructed to identify large and bright white letters presented on a black 

screen situated 0.3 m in front of them. Participants were given unlimited time to respond. 

The experiment was carried out in a darkened room. Both the initial training period and 

the actual experiment featured all 26 letters of the alphabet. The letters were grouped by 

similarity and tested in batches of 8, 8, and 10 letters.

4.1.2 Experimental Setup and Procedure.—To emulate the experiment described in 

[13], we carefully matched our virtual environment to the experimental setup of the original 

task. The setup mainly consisted of a virtual laptop on top of a virtual desk (Fig. 3). A 

virtual monitor was positioned 0.3 m in front of the user’s head position. In agreement 

with the original task, participants were presented letters that were 22.5 cm tall (subtending 

41.112° of visual angle) in True Type Century Gothic font. For the monitor version of 

the task, the camera was positioned at the origin and participants could simulate head 

movements by using the mouse.

Each combination of 3 devices × 3 ρ values × 3 λ values were implemented as a block, 

resulting in a total of 27 blocks. All 27 blocks were completed twice; once for the HMD 

version of the task, and once for the monitor version of the task. Rather than presenting 

all 26 letters of the alphabet (as in the original experiment), we limited our stimuli to the 

original Snellen letters (C, D, E, F, L, O, P, T, Z) for the sake of feasibility.

All nine Snellen letters were presented in each block, resulting in a total of 243 trials. 

Participants were limited to 1 minute per trial, after which the virtual monitor would go dark 

and the participant had to select a letter before the experiment continued.

To acclimate participants to the task and controls, we had them perform an initial practice 

trial using normal vision. After that, the lights in the virtual room were turned off and 

the VR-SPV toolbox was used to generate SPV. To mimic the training session of [13], 

participants completed three practice trials using SPV at the beginning of each block. 

Participants were able to repeat each practice trial until they had selected the correct letter. 

To prevent participants from memorizing letters seen during practice trials, we limited 

practice trials to the letters Q, I, and N.

Participant responses and time per trial were recorded for the entirety of the experiment.

4.1.3 Performance Evaluation.—Perceptual performance was assessed using F1 

scores, which represent the harmonic mean between precision and recall, allowing for a 
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slight penalty towards false positive choices compared to recall (proportion correct) on its 

own. This had the advantage of eliminating bias towards specific letter choices. F1 values 

were calculated for each block using the scikit-learn ‘f1_score’ function [37]. We also 

measured time per trial with the assumption that easier trials could be completed faster than 

trials that were more difficult.

Due to ceiling and floor effects, neither outcome measure (F1 scores and time per trial) 

were normally distributed, violating the assumptions of the standard ANOVA. We therefore 

performed a subsequent aligned rank transform (ART) with the R package AR-Tool [51] for 

both F1 scores and time per trial. This method of analysis allows for a factorial ANOVA 

to be performed on repeated measures, non-uniform data, and lower subject counts [51]. 

Post-hoc analyses were performed on significant groups by analyzing the rank-transformed 

contrasts [15]. The Tukey method [47] was used to adjust p-values to correct for multiple 

comparisons. All code used in the analysis, along with the raw data, is provided at https://

github.com/bionicvisionlab/2022-kasowski-immersive.

4.1.4 Results.—Results from the letter recognition task are summarized in Table 1 and 

distributions are plotted in Fig. 4. Group F-values, along with their significance, are reported 

in Table 2. Each data point in Fig. 4 represents a subject’s F1 score (Fig. 4A–C) and time per 

trial (Fig. 4D–F) across all letters in a block. F1 score ranged from 0 to 1 with higher values 

representing better performance. Assuming a different letter is chosen for each selection, a 

chance-level F1 score would equal the probability for randomly guessing the correct letter 
1
9 = 0.1111 .

As expected, increasing the number of electrodes (Fig. 3A) significantly increased F1 scores 

in both HMD (light gray) and monitor (dark gray) versions of the task. It is worth noting 

that participants were consistently above chance levels, even with the simulated Argus II 

(6×10 electrodes) device. Increasing the number of electrodes also decreased the time it took 

participants to identify the letter (Fig. 3D). However, increasing the number of electrodes 

from 10 × 16 to 19 × 31 did not further decrease recognition time.

Contrary to previous findings, F1 scores and recognition time did not systematically vary as 

a function of phosphene size (ρ, Fig. 3B, E). In both HMD and monitor-based conditions, 

median F1 scores were highest for ρ = 300 μm (Table 1). However, participants achieved 

similar scores with ρ = 100 μm in the HMD version and with ρ = 500 μm in the monitor-

based version of the task.

The most apparent differences in performance were found as a function of phosphene 

elongation (λ, Fig. 3C, F). Using λ = 50 μm, participants achieved a perfect median F1 

score of 1.0, but this score dropped to 0.741 for λ = 1000 μm and 0.185 for λ = 5000 μm 

(Table 1). Increasing λ also significantly increased the time it took participants to identify 

the letter.

A trend toward a higher F1 score when using the HMD was observed across all conditions 

(Fig. 4, Top), but the trend failed to reach significance for the device with the lowest 

number of electrodes (6×10 array) or across the larger distortion parameters (ρ=1000 μm 
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and λ=5000 μm) (Fig. 4, Top). While average time per trial was faster across all conditions 

with the HMD, the effect was not significant (Fig. 3, Bottom).

4.2 Task 2: Obstacle Avoidance

4.2.1 Original Task.—The second task was modeled after an obstacle avoidance 

experiment performed by Argus II recipients [22]. In this task, participants were required 

to walk down a crowded hallway with one to three people located at one of four fixed 

distances on either the left or right side of the hallway. Participants were permitted the use 

of a cane and were allowed to touch the walls with the cane (but not the standing persons). 

Participants were given unlimited time to complete the task and were closely monitored by 

the experimenter to avoid dangerous collisions. For each trial, the experimenter instructed 

the participant to stop when they reached the end of the hallway.

4.2.2 Experimental Setup and Procedure.—To emulate the experiment described in 

[22], we designed a virtual hallway (Fig. 5, Left) modeled closely after the description and 

pictures of the physical hallway.

Participants were tasked with successfully navigating the virtual hallway while avoiding 

collisions with obstacles (simulated people). Each trial consisted of navigating past either 

two or three obstacles (three trials per condition, six trials total) located on either the left or 

right side of the hallway (Fig. 5).

To acclimate participants to the task and controls, we had them perform three initial practice 

rounds using normal vision. After that, participants completed three more practice rounds 

with a high-resolution scoreboard model (31 × 19 electrodes, ρ = 100 μm, λ = 50 μm). 

Participants were instructed to complete the trials as quickly as possible while avoiding 

collisions. They were informed that collisions would result in audio feedback; a sample of 

each sound was played at the beginning of the experiment.

Each combination of 3 devices × 3 ρ values × 3 λ values were implemented as a block, 

resulting in a total of 27 blocks. Block order was randomized and participants completed 

six trials per block for a total of 162 trials for each version (HMD/monitor) of the task. 

Participants were limited to 1 minute per trial, after which vision was returned to normal and 

participants walked to the end of the hallway to begin the next trial.

To ensure the safety of participants during the HMD-based version of the task, we positioned 

rope at the real-life location corresponding to each wall of the hallway (Fig 5, Top, Left). 
The rope served to guide the participants safely along the path while keeping them in 

bounds, but was also a substitution for the cane usage in the previous research. This 

substitution was necessary, because our testing facility was much larger than the hallway 

in the original experiment; thus the virtual walls did not coincide with physical walls.

An experimenter was always nearby to ensure the safety of the participants but did not 

otherwise interact with them during the experiment. At the end of each trial, the screen 

turned red and on-screen text instructed participants to turn around and begin the next trial in 

the other direction.
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The monitor version of the task was similar, but each new trial would start automatically 

without the subject needing to turn around. Participants were seated in front of a monitor 

and were able to use the keyboard to move and the mouse to look around. The size of 

the hallway and positions of the obstacles were identical between versions, but participants 

started 1.5m closer to the first obstacle in the HMD version due to size restrictions of the 

room.

Collisions were detected using Unity’s standard continuous collision detection software, 

with each obstacle having a 0.7 m × 0.4 m hitbox and the participant having a radius of 0.4 

m. Subject locations and orientations were continuously recorded. Time per trial, along with 

individual positions and timings of each collision, were recorded for each trial.

4.2.3 Evaluating Performance.—Performance was assessed by counting the number 

of collisions per trial and the amount of time to complete a trial, with a lower number of 

collisions or lower time per trial expected on easier trials. Analogous to the first task, these 

two metrics were averaged across trials in a block for each subject and analyzed using ART 

ANOVA. Post-hoc analyses were performed on significant groups using the Tukey method 

for multiple comparison adjustments.

4.2.4 Results.—Results are summarized in Table 3 and Fig. 6. Each data point in 

Fig. 6 represents a subject’s number of collisions (Fig. 6, Top) and time to completion 

(Fig. 6, Bottom) averaged across repetitions in a block. Group F-values, along with their 

significance, are reported in Table 4.

Contrary to our expectations, neither the number of electrodes (Fig. 6A) nor phosphene 

size (Fig. 6B) had a significant effect on the number of collisions. Although the number 

of collisions decreased slightly with higher electrode counts (Table 3), this did not 

reach statistical significance. The only statistical differences could be found between the 

scoreboard model (λ=50 μm) and axon map models (λ={100, 300}μm) for the HMD-based 

version of the task. However, participants performed around chance levels in all tested 

conditions.

The time analysis revealed a downward trend in time (better performance) with higher 

electrode counts, but only among the groupings in the monitor version. This trend in time 

reached significance for all comparisons within the monitor version (Fig. 6D). Similarly to 

comparisons across groupings of ρ values, there was a slight downward trend across the 

median time taken as phosphene distortion increased (Fig. 6, F).

A comparison between the two different versions of the task showed a clear difference 

in performance, with performance for the HMD version being drastically higher than the 

monitor version of the task. This trend reached significance across any grouping of device, 

ρ, or λ (Fig. 6, Top). There was also a difference in time taken between the versions of the 

task, with the HMD version taking longer for all groupings (Fig. 6, Bottom).
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5 DISCUSSION

5.1 Using an HMD May Benefit Behavioral Performance

The present study provides the first side-by-side comparison between HMD and monitor 

versions of different behavioral tasks using SPV. Importantly, we used a psychophysically 

validated SPV model to explore the expected behavioral performance of bionic eye users, 

for current as well as potential near-future devices, and found that participants performed 

significantly better in the HMD version than the monitor version for both tasks.

In the letter recognition task, participants achieved a higher mean F1 score across all 

conditions (Table 1). However, this trend was only significant for the hypothetical future 

devices and smaller phosphene sizes and elongations (Fig. 4, Top). While average time per 

trial was faster across all conditions with the HMD, the effect was not significant (Fig. 3, 

Bottom).

The difference in performance was even more evident in the obstacle avoidance task, where 

performance (as measured by number of collisions) for the HMD version was significantly 

higher than the monitor version across all conditions (Fig. 6, Top). It is also worth pointing 

out that participants were able to complete the task faster with higher electrode counts in the 

monitor-based version of the task. Since the walking speed was fixed across all conditions, 

this likely indicates that the task was easier with higher electrode counts.

Overall these results suggest that participants were able to benefit from vestibular and 

proprioceptive cues provided by head movements and locomotion during the HMD version 

of the task, which is something that is available to real bionic eye users but cannot be 

replicated by a mouse and keyboard.

5.2 Increased Phosphene Elongation May Impede Performance

Whereas previous studies treated phosphenes as small, discrete light sources, here we 

systematically evaluated perceptual performance across a wide range of common phosphene 

sizes (ρ) and elongations (λ). As expected, participants performed best when phosphenes 

were circular (scoreboard model: λ = 50 μm; Tables 1 and 3), and increasing phosphene 

elongation (λ) negatively affected performance.

In the letter recognition task, participants using the scoreboard model (λ=50 μm) achieved a 

perfect median F1 score of 1.0 (Fig. 4C), which is much better than the behavioral metrics 

reported with real Argus II patients [13]. Conversely, performance approached chance levels 

when increasing λ to 5000 μm.

In the obstacle avoidance task, the only significant findings within one version of the 

experiment were between the scoreboard model (λ = 50 μm) and either of the larger λ 
values. This suggests that elongated phosphenes make obstacle avoidance more challenging 

than the scoreboard model. However, participants performed around chance levels in all 

tested conditions, which was also true for real Argus II patients [22].
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Contrary to our expectations, phosphene size (ρ) did not systematically affect performance 

(Fig. 4B, Fig. 6B). The best performance was typically achieved with ρ = 300 μm. This is in 

contrast to previous literature suggesting smaller phosphene size is directly correlated with 

higher visual acuity [12, 21]

Overall these findings suggest that behavioral performance may vary drastically depending 

on the choices of ρ and λ. This is important for predicting visual outcomes, because ρ 
and λ have been shown to vary drastically across bionic eye users [6], suggesting future 

work should seek to use psychophysically validated SPV models when making theoretical 

predictions about device performance.

5.3 Increasing the Number of Electrodes Does Not Necessarily Improve Performance

As expected, letter recognition performance improved as the size of the electrode grid (and 

therefore the FOV) was increased from 6 × 10 to 10 × 16 and 19 × 31 (Fig. 4A). This 

performance benefit was also observed in the time it took participants to recognize the letter 

(Fig. 4D), and is consistent with previous literature on object recognition [45].

However, electrode count did not affect behavioral performance in the obstacle avoidance 

task. Whereas there was a slight increase in performance scores for devices with more 

electrodes (Fig. 6A), this effect did not reach significance.

Overall these results are consistent with previous literature suggesting that, for most tasks, 

the number of electrodes may not be the limiting factor in retinal implants [3, 7].

5.4 Limitations and Future Work

Although the present study addressed previously unanswered questions about SPV, there are 

a number of limitations that should be addressed in future work as outlined below.

First, in an effort to focus on the impact of phosphene size and elongation on perceptual 

performance, we limited ourselves to modeling spatial distortions. However, retinal implants 

are known for causing temporal distortions as well, such as flicker and fading, which may 

further limit the perceptual performance of participants [7].

Second, the displayed stimuli were not contingent on the user’s eye movements. Even 

though current retinal implants ignore eye movements as well, there is a not-so-subtle 

difference between a real retinal implant and a simulated one. Since the real device is 

implanted on the retinal surface, it will always stimulate the same neurons, and thus produce 

vision in the same location in the visual field—no matter the eye position. This can be 

very disorienting for a real patient as shifting your gaze to the left would not shift the 

vision generated by the implant. In contrast, a participant in a VR study is free to explore 

the presented visual stimuli with their gaze, thus artificially increasing the FOV from that 

offered by the simulated device. Consequently, the here presented performance predictions 

may still be too optimistic. In the future, simulations should make use of eye tracking 

technologies to update the scene in a gaze-contingent way.
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Third, we did not explicitly measure the level of immersion across the two display types 

(HMD and monitor). Instead, we assumed that viewing a scene that updates with the user’s 

head movement through an HMD would lead to a higher level of immersion. Although this 

may be true for realistic virtual environments [34], this has yet to be demonstrated for SPV 

studies. Future SPV work should therefore explicitly measure the level of immersion and/or 

a user’s sense of presence.

Fourth, the obstacle avoidance task did not have a meaningful time metric. Although 

participants performed the task significantly faster in the monitor-based version, this is likely 

an artifact due to the walking speed of participants not being consistent between versions of 

the task. Participants moved much slower with the HMD as they were not able to see the real 

world around them. Future studies should take this into consideration and correct for each 

participant’s walking speed within desktop versions of tasks.

Fifth, the study was performed on sighted graduate students readily available at the 

University of California, Santa Barbara. Their age, navigational affordances, and experience 

with low vision may therefore be drastically different from real bionic eye users, who tend 

to not only be older and prolific cane users but also receive extensive vision rehabilitation 

training.

Interestingly, we found vast individual differences across the two tasks (individual data 

points in Figs. 4 and 6) which were not unlike those reported in the literature [13, 

22]. Subjects who did well in one experiment tended to do well across all versions of 

both experiments (data not shown), suggesting that some people were inherently better 

at adapting to prosthetic vision than others. Future work should therefore zero in on the 

possible causes of these individual differences and compare them to real bionic eye users. 

Studying these differences could identify training protocols to enhance the ability of all 

device users.

6 CONCLUSIONS

The present work constitutes a first essential step towards immersive VR simulations 

of bionic vision. Data from two behavioral experiments demonstrate the importance 

of choosing an appropriate level of immersion and phosphene model complexity. The 

VR-SPV toolbox that enabled these experiments is freely available at https://github.com/

bionicvisionlab/BionicVisionXR and designed to be extendable to a variety of bionic 

eye technologies. Overall this work has the potential to further our understanding of the 

qualitative experience associated with different bionic eye technologies and provide realistic 

expectations of prosthetic performance.
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• Human-centered computing → Accessibility technologies; Virtual 
reality; Empirical studies in visualization
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Fig. 1. 
Immersive virtual reality simulations of bionic vision. A microelectrode array is implanted 

in the eye to stimulate the retina → Anatomical data is used to position a simulated 

electrode array on a simulated retina to create a “virtual patient” → Visual input from a 

virtual reality environment acts as stimulus for the simulated implant to generate a realistic 

prediction of simulated prosthetic vision (SPV) → The rendered SPV image is presented to 

the virtual patient and behavioral metrics are recorded
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Fig. 2. 
A simulated map of retinal NFBs (left) can account for visual percepts (right) elicited 

by retinal implants (reprinted with permission from [5]). Left: Electrical stimulation (red 

circle) of a NFB (black lines) could activate retinal ganglion cell bodies peripheral to the 

point of stimulation, leading to tissue activation (black shaded region) elongated along the 

NFB trajectory away from the optic disc (white circle). Right: The resulting visual percept 

appears elongated; its shape can be described by two parameters, λ and ρ.
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Fig. 3. 
Letter recognition task. Top: The lights in the virtual room are turned off and the image 

seen by the user is passed to the preprocessing shader which performs edge extraction/

enhancement before the axon model shader renders SPV. Modeled afer [13]. Bottom: Output 

of the axon model shader across the various devices and ρ / λ combinations.
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Fig. 4. 
Letter recognition task. Data points represent each subject’s average performance in a block 

with boxplots displaying median and interquartile ranges. Top: Average F1 score across 

blocks for each subject within the condition specified by the x-axis. Bottom: Average 

time across blocks for each subject within the condition specified by the x-axis. Statistical 

significance was determined using ART ANOVA (*<.05, **<.01, ***<.001).
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Fig. 5. 
Obstacle avoidance task. Left: Layout of the virtual hallway environment modeled after 

[22]. Empty circles represent the possible locations for obstacles. Right/Top: View of the 

real environment → participant’s view is passed to the preprocessing shader which performs 

edge extraction/enhancement before the axon model shader renders SPV. Bottom: Output of 

the axon model shader across the various devices and ρ / λ combinations.
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Fig. 6. 
Obstacle avoidance. Data points represent each subject’s average performance in a block 

with boxplots displaying median and interquartile ranges. Top: Average number of collisions 

across blocks for each subject within the condition specified by the x-axis. Red line 

represents chance level (1.25 collisions). Bottom: Average time across blocks for each 

subject within the condition specified by the x-axis. Statistical significance was determined 

using ART ANOVA (*<.05, **<.01, ***<.001).
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Table 2.

Letter recognition task: F-value table for Aligned Rank Transform (ART) ANOVA. Values were calculated 

with the ARTool software package. “device” refers to the three simulated electrode grids, while “display” 

refers to the use of an HMD or monitor.

F1 Score Time

F-Value Signif. F-Value Signif.

device 150.8174 9.17E-57 25.1232 2.51E-11

ρ 9.9004 5.62E-05 8.6049 2.00E-04

λ 535.8116 3.60E-151 80.6779 8.42E-33

display 31.5610 2.62E-08 1.4799 2.24E-01

device : ρ 0.7838 5.36E-01 0.5371 7.09E-01

device : λ 18.2971 1.98E-14 5.6673 1.67E-04

ρ : λ 10.0737 5.72E-08 0.5573 6.94E-01

device : display 0.3742 6.88E-01 1.3682 2.55E-01

ρ : display 0.2668 7.66E-01 0.5586 5.72E-01

λ : display 1.9499 1.43E-01 5.1031 6.27E-03

device : ρ : λ 1.3828 2.00E-01 2.4198 1.38E-02

device : ρ : display 0.3410 8.50E-01 0.3107 8.71E-01

device : λ : display 0.3956 8.12E-01 0.1496 9.63E-01

ρ : λ : display 0.7717 5.44E-01 0.6527 6.25E-01

device : ρ : λ : disp 0.4598 8.84E-01 0.6592 7.28E-01
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Table 4.

Obstacle avoidance task: F-value table for Aligned Rank Transform (ART) ANOVA. Values were 

calculated with the ARTool software package. “device” refers to the three simulated electrode grids, while 

“display”refers to the use of an HMD or monitor.

Num Collisions Time

F Signif. F Signif.

device 4.7538 8.85E-03 7.2265 2.51E-11

ρ 9.2904 1.02E-04 25.1790 2.00E-04

λ 4.8301 8.21E-03 19.8199 8.42E-33

display 207.3125 3.27E-42 335.6442 2.24E-01

device : ρ 1.2885 2.73E-01 3.6222 7.09E-01

device : λ 1.2039 3.08E-01 3.5733 1.67E-04

ρ : λ 0.2015 9.38E-01 1.1654 6.94E-01

device : display 1.3595 2.57E-01 6.5119 2.55E-01

ρ : display 0.3381 7.13E-01 0.9380 5.72E-01

λ : display 3.8149 2.24E-02 9.0722 6.27E-03

device : ρ : λ 1.0423 4.02E-01 3.1542 1.38E-02

device : ρ : display 0.9071 4.59E-01 1.9217 8.71E-01

device : λ : display 0.6814 6.05E-01 1.2380 9.63E-01

ρ : λ : display 1.5045 1.99E-01 2.0618 6.25E-01

device : ρ : λ : disp 0.9815 4.49E-01 2.2511 7.28E-01
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