
UC San Diego
UC San Diego Previously Published Works

Title
SmartTrap: An On-Field Insect Monitoring System Empowered by Edge Computing 
Capabilities

Permalink
https://escholarship.org/uc/item/7331p41b

Authors
Nguyen, Quan M
Pham, Duy A
Pham, Dong T
et al.

Publication Date
2023-12-25

DOI
10.1109/rivf60135.2023.10471810

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7331p41b
https://escholarship.org/uc/item/7331p41b#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


SmartTrap: An On-Field Insect Monitoring System
Empowered by Edge Computing Capabilities

Quan M. Nguyen
School of Electrical and
Electronic Engineering

Hanoi University of Science and
Technology

Hanoi, Vietnam
hust.seee.quanminhnguyen@gmail.com

An D. Le
Department of Electrical and

Computer Engineering
University of California, San Diego

San Diego, USA
d0le@ucsd.edu

Duy A. Pham
Computer Science Department

Hochschule Bonn-Rhein-Sieg
Sankt Augustin, Germany

duyanhpham@outlook.com

Nguyen Q. H. Vo
Department of Electrical and

Computer Engineering
Vietnamese-German University

Binh Duong, Vietnam
16004@student.vgu.edu.vn

Dong T. Pham
Graduate School of

Bioresource and Bioenvironmental Sciences
Kyushu University
Fukuoka, Japan

phamtdong0406@gmail.com

Hien B. Vo
Department of Electrical and

Computer Engineering
Vietnamese-German University

Binh Duong, Vietnam
hien.vb@vgu.edu.vn

Abstract—Fruit flies pose a significant threat to fruit yields,
necessitating immediate detection solutions for effective pest
management. In this study, we present our approach using
YOLOv7 and the Jetson Nano 4GB for rapid and accurate
fruit fly detection. Our method achieves an impressive Average
Precision (AP) at Intersection over Union (IoU) of 0.75 score
of 0.993, enabling near-instantaneous counting of trapped fruit
flies during field deployment. The system sends this data to
a designated local or cloud-based server, empowering users to
identify areas with high fruit fly populations for targeted pesticide
application. This targeted approach has significant implications
for sustainable agriculture as it reduces the need for widespread
spraying. Moreover, our flexible method can be adapted for the
detection of other pests such as aphids or beetles, making it a
valuable tool for agricultural scenarios and beyond.

Index Terms—fruit fly, environmental data, smart IoT, edge
computing, YOLOv7-tiny, Jetson Nano

I. INTRODUCTION

Horticultural crops, such as fruits, vegetables, and ornamen-
tal plants, play a vital role in agriculture due to their nutritional
value and economic importance [1]. However, fruit flies pose
a significant challenge worldwide by causing economic losses
through the deterioration of mature fruits [2]. These pests are
difficult to manage due to their adaptability to different regions
and ability to infest various host plants [3]. Effective control
measures are crucial to minimize losses and maintain crop
quality [3]. Fruit flies, specifically those from the Tephritidae
family, are polyphagous pests that target soft-bodied fruits and
vegetables like sapodillas, peaches, guava, oranges, bananas,
pumpkins, and bitter gourds [4]. Improper pesticide scheduling
can result in pesticide residues and environmental damage [5]
[6]. Yield losses caused by Tephritidae fruit flies can reach
up to 90-100 percent, depending on factors such as popula-

tion, location, crop variety, and season [7]. To address these
challenges, we introduce the SmartTrap, a novel approach to
fruit fly management. By utilizing the YOLOv7-tiny model,
an advanced object detection algorithm, our solution offers
a targeted, efficient, and sustainable method for controlling
fruit fly infestations. Equipped with cameras and powered by
the Jetson Nano board, the SmartTrap employs machine vision
techniques for real-time pest detection and count, reducing the
need for manual monitoring. This solution not only minimizes
pesticide use but also contributes to environmental preserva-
tion and promotes sustainable agriculture. Our research aims
to demonstrate the practicality and potential of machine vision
techniques in modern pest management by evaluating the
efficacy, speed, and power consumption of the YOLOv7-
tiny model in the SmartTrap. The SmartTrap represents a
significant step towards intelligent, eco-friendly, and efficient
pest control methods, ensuring the security and sustainability
of global horticultural production.

II. RELATED WORK

The economic significance of tephritid fruit flies (FF) has
led to the widespread adoption of electronic traps (e-traps)
as effective monitoring systems. These pests pose challenges
to existing control methods, creating a need for efficient and
timely monitoring solutions [8].

An e-trap consists of a trap mechanism and an embedded
computing device. Its primary function is to attract and cap-
ture insects. Additional devices like cameras, meteorological
sensors, and wireless modules are often integrated into the
trap for image capture, data collection, and transmission to a
remote server [9]. Strategic deployment of e-traps allows for



comprehensive field data collection and statistical analysis of
fruit fly pests [10] [11].

To gather vital information on fruit fly populations and
distribution, practical and efficient traps are essential. The
McPhail trap [12] [13], a cylindrical plastic device with
liquid bait, and the yellow sticky paper [14] [15], designed
with adhesive substances on yellow-colored paper, are widely
employed for fruit fly monitoring. Both methods effectively
capture fruit flies [14] [15].

In their study, G.E. Haniotakis et al. [16] found that the
combination of a yellow sticky trap and pheromone was the
most effective among various trap types tested, including the
McPhail trap, yellow color trap, and pheromone. The Lynfield
trap, which utilizes cuelure instead of a protein food lure to
attract male fruit flies, outperformed the McPhail trap [17].
Despite the popularity of the yellow trap in our region, glare
caused by its mechanical design when exposed to sunlight
compromised our model’s detection accuracy. Therefore, we
chose the Lynfield trap for our project after careful consider-
ation.

However, using a camera inside the trap presents a challenge
of condensation on the lens, particularly in the morning,
causing a foggy appearance. To address the condensation issue
on the camera lens inside the trap, we continued to implement
the Lynfield trap while also employing other strategies, such
as using moisture-resistant lens covers or cameras. Our main
mechanical traps consist of the Lynfield trap, and we utilize
pheromones to attract the fruit flies, enabling us to gather
crucial information on fruit fly populations and distribution.

Zekai Cheng et al. [18] proposed YOLOLite-CSG, a
lightweight crop pest detection method based on convolutional
neural networks (CNNs). They optimized the overall structure,
introduced k-means++ for generating high-quality prior boxes,
and incorporated lightweight sandglass blocks and coordinate
attention. Experimental results on the CP15 dataset comprises
3000 crop pests images [18] showed that YOLOLite-CSG
achieved a detection precision of 82.9 percent while signif-
icantly reducing the number of parameters (8.1 percent of
YOLOv3 [19]) and computations (15 percent of YOLOv3
[19]).

Pham et al. [9] studied fruit fly detection using AI object de-
tection methods, evaluating three models: SSD-MobileNetv1,
SSD-MobileNetv2, and YOLOv4-tiny, and comparing their
performance. YOLOv4-tiny achieved the highest overall per-
formance in accuracy, recall, F1-score, and AP. However, SSD-
MobileNetv2 showed comparable performance with faster
processing speed. According to Pham et al. [9], YOLOv4-tiny
outperforms other models in accuracy, recall, F1-score, AP,
and meanIoU, while SSD-MobileNetv2 is the most promising
model for real-time fruit fly detection. is the most promising
model for real-time fruit fly detection.

In their comprehensive investigation, Salamut et al. [20]
evaluated Faster R-CNN, SSD, RetinaNet [21], and YOLOv5
[22] deep learning models for detecting cherry fruit flies
on yellow sticky traps. Faster R-CNN achieved the highest
performance (AP score of 0.88), followed closely by RetinaNet

(0.86) and SSD (0.84). YOLOv5 also showed promising
results with an AP score of 0.75. The choice of backbone net-
works (MobileNet, ResNet, VGG-16) significantly influenced
the models’ effectiveness. Utilizing pre-trained backbone net-
works improved the accuracy and efficiency of the models,
enhancing their classification ability for cherry fruit flies.

Insect detection models require a balance between perfor-
mance and processing time, hence the rise in interest in deep
learning models. However, high computational models like
RCNNs do not fit our research objectives, prompting us to
consider single-stage models that balance accuracy and speed.
We’ve chosen the YOLOv7 model for our research due to
its promise in improving both accuracy and speed compared
to other models [23]. The adoption of YOLOv7 aligns with
our goals and opens doors for further progress. Our aim is to
enhance the detection system’s accuracy and efficiency using
YOLOv7, advancing beyond prior research efforts.

The subsequent sections are organized as follows: Section
III provides a comprehensive depiction of the trap system,
offering detailed insights into its constituent elements. In
Section IV, we delve into the conducted experiments and
conduct an in-depth analysis of the system’s performance.
Finally, Section V concludes our research by presenting a
comprehensive overview of future prospects and potential
advancements that can be explored after implementing the
SmartTrap. This section outlines the anticipated outlook and
highlights possibilities for further development and enhance-
ments related to the SmartTrap system.

III. SYSTEM OVERVIEW

SmartTrap comprises two main components: hardware and
software. In this section, we will discuss in detail the methods,
procedures, and rationale behind their development.

A. Hardware

In general, the hardware components of SmartTrap include
Lynfield trap, Jetson Nano Developer-kit, power supply , and
actuators which are illustrated in Figure 1.

• Lynfield’s trap: The Lynfield trap component of our
system is a mechanical trap designed in the shape of a
Lynfield trap, comprising a cylindrical plastic box with
four holes drilled on the sides. The bottom is covered with
a fly adhesive sheet, and a pheromone-soaked cotton ball
is placed inside. The trap follows the standard dimensions
of 10 cm height and 7 cm diameter specified by the
Food and Agriculture Organization of the United Nations,
International Atomic Energy Agency, Vienna, 2018 [24].
To ensure consistent detection quality under sunlight
exposure, a translucent white box was chosen based on
research by Pham et al. [9], which found comparable fly
attraction to white and yellow traps after 12 days, and
considering potential effects of glossy plastic material
used in yellow traps in Vietnam.

• Jetson Nano: The Jetson Nano Dev Kit A is equipped
with a Quad-core ARM A57 CPU running at 1.43 GHz,
providing powerful processing capabilities. The kit also
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Fig. 1. Overview of the trap system

includes 4 GB of 64-bit LPDDR4 memory, operating
at a speed of 25.6 GB/s, ensuring efficient data han-
dling. Additionally, the NVIDIA Maxwell GPU with 128
CUDA cores enables high-performance AI processing.
With two MIPI CSI-2 DPHY lanes supporting high-
resolution cameras, the Jetson Nano is well-equipped
for capturing detailed imagery. The electrical box is
securely suspended from a fruit-bearing tree branch using
a specialized wire, ensuring stability and protection while
capturing data. Jetson Nano, housed in a waterproof
electrical box with sensors and power system, was chosen
for its design features, shown in Figure 2.

• Power Supply: In terms of energy supply for the trap,
we utilized a UPS module specifically designed for the
Jetson Nano, along with four 3.7V lithium batteries.
Additionally, to facilitate the charging of this system,
we employed a setup comprising two 12V-5A solar
energy panels accompanied by an adjustable voltage solar
charging circuit. Over a duration of three days, we con-
ducted comprehensive testing, and the system exhibited
a satisfactory level of stability throughout its operation.

• Actuators: The actuator consists of a sensor module
system and an object recognition system. The sensor
module system measures three parameters: temperature,
humidity, and light. We do not require an intermediate
microcontroller as the Jetson Nano provides sufficient
GPIO pins for seamless data connection and retrieval.
Furthermore, the camera system is directly connected to
the Jetson Nano, serving the purpose of data acquisition.
It provides the necessary input for the Jetson Nano to
perform detection and counting of fruit flies, transmitting
the results to a web application and issuing alerts when
the fly count exceeds a certain threshold.

B. Software

The software framework plays a crucial role in data ac-
quisition by capturing fly images, performing fly recognition
and counting, as well as collecting data from sensor modules.

Fig. 2. Hardware system inside the terproof electrical box

This data is stored in a database and transmitted to a web ap-
plication. The web application displays the most recent image
depicting the status of the fly adhesive, along with information
about sensor module data and the count of flies, accompanied
by relevant advice. Additionally, email notifications are sent
to the user when the fly count exceeds a certain threshold.

• Yolov7 - tiny: YOLOv7, as described by Wang et al. [25],
is a standout object detection model due to its impressive
speed and accuracy, operating between 5 to 160 FPS and
reaching a 56.8 percent AP. It outperforms other real-
time detectors running at 30 FPS or higher on GPU
V100 and outshines models like SWINL Cascade-Mask
R-CNN and ConvNeXt-XL Cascade-Mask R-CNN. It
also surpasses various detectors, including YOLOR [25],
YOLOX [26], Scaled-YOLOv4 [27], YOLOv5 [22], and
others like DETR [28], Deformable DETR [29], DINO-
5scale-R50 [30], and ViT-Adapter-B [31]. Its excellent
performance is due to its exclusive training on the MS
COCO dataset without using additional data or pre-
trained weights. YOLOv7-Tiny, a reduced version with
1/6 of the parameters, outperforms YOLOv4-Tiny by 7
percent to 14.2 percent across various metrics. This makes
it an optimal choice for fine-tuning fruit fly data in our
project.

• User-dashboard: Our photography system cycles every
20 minutes, capturing images for data collection and con-
current fly quantification. In tandem, our environmental
sensor system collects data at one-minute intervals. This
gathered information, including images of the fly trap,
temperature and humidity sensor readings, light intensity,
fly count, and the UPS battery level of Jetson Nano,
is consolidated and sent to Firebase Realtime Database
and Firebase Cloud Storage. This data is then relayed to
a Node-RED server deployed on AWS Cloud, making
it accessible to all registered users. If the fly count
surpasses 60, an alerting mechanism triggers an email
warning to the user, providing timely notifications to
mitigate potential risks and safeguard their garden spaces



effectively.

IV. EXPERIMENTS AND EVALUATIONS

A. Hardware

In terms of hardware, in addition to using pheromone as bait
and following the trap’s size and color recommendations from
Pham et al.’s research [9], we also incorporated the attractant
method proposed by G.E. Haniotakis et al. [16]. Moreover,
a solar energy system has been implemented, allowing the
device to operate for extended periods of time.

• Mechanical trap system: Figure 3 showcases the trap
system installed on a sapodilla tree in the garden during
the peak activity period for fruit flies (6:00 AM to 6:00
PM). Fruit flies are generally inactive at night and during
rainfall [32]. Figure 4 displays consistent patterns in
the number of flies captured over a 12-hour interval
across two consecutive days. The graph reveals a gradual
increase in fly numbers until 1:00 PM, followed by
a relatively stable count. These results provide strong
evidence of the trap system’s effectiveness in a natural
environment. Over the course of two days, the trap
successfully captured 79 and 62 fruit flies, respectively,
demonstrating its ability to attract and capture these
pests. These promising results serve as motivation to
further develop and enhance the trap system’s quality,
performance, stability, and reliability in combating fruit
fly infestations. We are committed to optimizing the
system to achieve even greater effectiveness.

• Power system: When not under charge, the battery of
the Jetson Nano provides continuous power for up to 6
hours. To overcome this limitation, we have implemented
a system where the Jetson Nano restarts every 20 minutes
to run the detection process, followed by a shutdown
and cycle repetition. Additionally, we have integrated a
solar circuit with an 8.4V 2A output, compatible with
the uninterruptible power supply (UPS), to facilitate the
recharging of the UPS battery. This ensures a consistent
and stable power supply for the Jetson Nano throughout
its periods of extended operation. Due to the limited
trapping time in the garden, we were able to test this
system for only 3 consecutive days, and it performed well
during that period. We are continuing our research and
will provide further updates in the upcoming report.

B. Software

In our project, we used the AlertTrap dataset with 248 fruit
fly images from Pham et al. [20] for training and comparison
between Yolov7-tiny and Yolov4-tiny models. We also tested
the model’s detection speed on the Jetson Nano platform.
While the user dashboard has advanced, its final services are
still being decided. The model training occurred on Google
Colab, with an 80-20 train-test split, a batch size of 16, and
ran for 50 epochs, finishing in under 30 minutes. These details
were crucial for our model’s efficient training and evaluation.

• Evaluation metrics: In this experiment, we assess candi-
date models using key metrics: accuracy, recall, F1 score,

Fig. 3. Trap set up at the sapodilla garden

Fig. 4. Fly population fluctuations in the sapodilla garden over 12 hours

and average precision (AP) at IoU thresholds of 0.25, 0.5,
and 0.75. We also evaluate processing time to determine
real-time viability. Accuracy, recall, and F1 score are
computed based on true positives (TP), false negatives
(FN), and false positives (FP). Accuracy represents the
ratio of correct detections to total detections, while recall
signifies the ratio of correct detections to total ground-
truth instances. The F1 score offers an overall evaluation
of model performance. AP measures the average preci-
sion of models using different confidence score criteria.
Lastly, we analyze the average processing time across all
test sets to assess real-time feasibility.

• Model Evaluations and Discussion: The model was
trained using the dataset from Pham et al.’s AlertTrap
project [9], delivering promising results with AP scores
matching those of AlertTrap. The comparison of recall,
F1-score, and AP metrics at an IoU threshold of 0.75
between AlertTrap and the SmartTrap models are pre-
sented in TABLE 1. Figure 5 demonstrates YOLOv7-
tiny’s successful fruit fly detection, including those in
close proximity, while effectively ignoring a worm, thus
proving its high quality and performance. Furthermore,
the software was rigorously tested for scenarios with high
fruit fly counts and overlaps, with ’numerous’ and ’over-
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lapping’ referring to instances of 9 to 24 fruit flies and
closely situated or superimposed fruit flies, respectively.
Tables II and III display the model’s robust performance
in these situations using IoU thresholds of 0.25, 0.5, and
0.75. Notably, the model improved the AP score at 0.75
by 18.9 percent compared to AlertTrap [9].

TABLE I
PERFORMANCE COMPARISON BETWEEN YOLOV4-TINY AND

YOLOV7-TINY AT AN IOU THRESHOLD OF 0.75 ON THE TEST DATASET.

Models Precision Recall F1 Score AP
Yolov4-tiny 0.847 0.847 0.847 0.802
Yolov7-tiny 0.991 0.932 0.960 0.993

TABLE II
YOLOV7-TINY PERFORMANCE ON TEST DATASET WITH NUMEROUS

FLIES AT DIFFERENT IOU THRESHOLDS

IoU Threshold Precision Recall F1 Score AP
0.25 0.952 0.925 0.938 0.930
0.5 0.944 0.90 0.921 0.902

0.75 0.839 0.877 0.857 0.871

TABLE III
YOLOV7-TINY PERFORMANCE ON TEST DATASET WITH OVERLAPPING

FLIES AT DIFFERENT IOU THRESHOLDS

IoU Threshold Precision Recall F1 Score AP
0.25 0.950 0.845 0.894 0.831
0.5 0.928 0.856 0.890 0.845

0.75 0.846 0.768 0.805 0.819

The model training yielded promising results, with ap-
proximate Average Precision (AP) scores of 0.25 and
0.5, comparable to AlertTrap’s results. Notably, the AP
score at 0.75 reached 0.991, representing an 18.9 percent
improvement over AlertTrap [9].

• Detection Speed: The software’s detection speed was
evaluated on a Jetson Nano, achieving real-time speeds
of 0.236 FPS with GPU acceleration and 0.02 FPS with
CPU utilization. These results highlight the significant
improvement in detection speed facilitated by GPU ac-
celeration, enabling more efficient and real-time fruit
fly detection within the trap. It should be noted that
the detection speed may vary based on hardware con-
figuration and algorithm complexity. Nonetheless, these
findings showcase the system’s practicality in real-world
scenarios, allowing for timely and efficient monitoring of
fruit flies in agricultural or research settings.

• Dashboard for user: The user features and interface
for the dashboard have been nearly completed, and the
system is functioning well with smooth performance.
Currently, we are utilizing services such as Firebase,
Node-red, and AWS for the product demonstration. How-
ever, as we scale up the project to accommodate a larger
number of traps, we have recognized that the associated
costs could become significantly high. Therefore, we are
actively exploring alternative services that can provide

Fig. 5. Detection Example using Yolov7-tiny model

cost-effective solutions to ensure the project remains
financially feasible. Figure 6 illustrates a demonstration
of a user-dashboard utilizing a Node-RED server.

Fig. 6. Demonstration of User-Dashboard using Node-RED Server

Overall, SmartTrap surpasses its predecessor, AlertTrap,
in model accuracy, processing speed, orchard testing, and
user interface/web application functions. Compared to
Zekai Cheng’s research, which used a dataset of 200
images per insect species, SmartTrap’s model boasts an
AP index that’s 27 percent higher than their best model,
YOLOlite-CSG (82.9 percent).

V. CONCLUSION AND OUTLOOK

SmartTrap, utilizing the YOLOv7-tiny model, presents an
innovative solution for fruit fly detection in horticultural pest
control. This innovation sets the stage for sustainable pest
management enhancements. For further performance boosts,
there’s potential in refining training, enlarging datasets, and
adding model variations. Effective trapping requires address-
ing factors like the spread of pheromone doses and the influ-
ence of natural elements such as rain and wind on dispersion.
Certain areas within fruit tree plots have higher yellow fly
attractions, necessitating meticulous placement strategies. By
harnessing machine learning and past data, we can create
adaptive methods, dynamically adjusting traps and issuing
early warnings. A more connected SmartTrap system would
provide richer data on fruit fly population trends.
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Additionally, transitioning to smaller, cost-efficient models
suitable for low-power devices like microcontrollers is a
priority. This shift aims to make the system more affordable,
especially for farmers with limited resources.

To sum it up, SmartTrap offers an intelligent approach to
fruit fly management in horticulture, with avenues for further
refinement in system performance, trap placement, and the
adoption of cost-effective hardware.
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