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ABSTRACT OF THE THESIS

Exploring the Efficacy of of GPT-3.5 in Code Smell Detection

By

Yang Liu

Master of Science in Software Engineering

University of California, Irvine, 2024

Assistant Professor Iftekhar Ahmed, Chair

Code smell is a widely recognized term in the software community, used to describe low-

quality software designs. It adversely affects the comprehensibility and maintainability of

software systems, ultimately reducing their overall quality. Despite the development of

various static analysis tools for identifying code smells, many complex code smells are not

properly detected because they cannot be fully captured by specific rules and patterns.

The emergence of Large Language Models (LLMs) provides a new opportunity to identify

code smells through natural language processing, which may be advantageous for detecting

complex code smells. In this paper, we present experiments exploring the efficacy of GPT-3.5

in code smell detection, conducted on 14 Open-Source Software (OSS) projects, totaling 9,740

Python files. We select three code smells in Python to assess: too many parameters (TMP),

too many nested blocks (TMNB), and unused variable (UV). We use the static analysis tool

Pylint to automate the detection of code smells and create a dataset. Subsequently, we fine-

tune the GPT-3.5 model specifically for code smell detection. To evaluate the performance of

the fine-tuned model, we apply it to four additional OSS projects. Our results demonstrate

that GPT-3.5 has the potential to replace traditional static analysis tools in code smell

detection. However, it still requires more data and refinement to improve accuracy and

reliability for certain smells. Additionally, we reveal that the size of the dataset significantly

influences the performance of GPT-3.5. We also present conjectures for future research in

vii



code smell detection and LLM fine-tuning.
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Chapter 1

Introduction

1.1 Background

While code smells may not instantly affect the code’s functionality, they can eventually result

in maintenance difficulties, diminished readability, and a greater risk of introducing bugs[6].

Code smells function as early indicators of potential design flaws or bugs within the software

system.

Static analysis tools have been developed to automatically detect code smells and other

issues in software systems. These tools analyze the source code without executing it. Early

efforts primarily revolved around heuristic-based methods. Relying on predefined rules and

patterns, these approaches identified code smells such as God Class, Feature Envy, and

Duplicated Code by analyzing structural and semantic characteristics of source code[6]. Over

the years, static analysis tools have evolved to become more sophisticated, employing various

algorithms and heuristics to detect a wide range of code smells. Many formulating metrics-

based rules that capture deviations from good design principles and heuristics are applied in

identifying design flaw[13]. These approaches leverage features extracted from source code,
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including metrics like cyclomatic complexity, code churn, and code coupling, to automatically

identify potential code smells. Popular static analysis tools include Pylint [12], PMD [17],

and Checkstyle [3].

Static analysis tools have been developed to automatically detect code smells and other issues

in software systems. These tools analyze source code without executing it. Early efforts

primarily revolved around heuristic-based methods, relying on predefined rules and patterns

to identify code smells such as God Class, Feature Envy, and Duplicated Code by analyzing

structural and semantic characteristics of the source code[6]. Over the years, static analysis

tools have evolved to become more sophisticated, employing various algorithms and heuristics

to detect a wide range of code smells. Many of these tools formulate metrics-based rules

that capture deviations from good design principles, applying heuristics to identify design

flaws[13]. These approaches leverage features extracted from source code, including metrics

like cyclomatic complexity, code churn, and code coupling, to automatically identify potential

code smells. Popular static analysis tools include Pylint[12], PMD[17], and Checkstyle[3].

While these tools offer significant advantages in maintaining code quality, they also come

with certain disadvantages. Code smell detectors often produce varying results and rarely

agree with each other [5]. Typically, these tools operate by calculating a set of metrics to

identify specific smells. The metrics used can vary; for instance, in detecting the Large Class

smell, one tool might employ diverse cohesion and complexity metrics, while another might

rely solely on the lines of code (LOC) metric. Furthermore, even when the same metrics are

used, the threshold values for these metrics can be different. Another problem regards the

high configuration effort. Setting up static analysis tools to align with the specific coding

standards and requirements of a software can be time-consuming, and previous findings

indicate that developers are often unwilling to configure these tools [19].

In recent years, the application of machine learning (ML) techniques in code smell detection

has garnered considerable attention from the software engineering community. Palomba et
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al. [16] proposed an approach to identify five distinct code smells—namely, divergent change,

shotgun surgery, parallel inheritance, blob, and feature envy—by leveraging change history

information mined from version control systems. Gupta et al. [10] introduced a novel method

for detecting code smells in heterogeneous data using a modified domain invariant transfer

kernel learning (DITKL), which is a technique in transfer learning. Das et al. [4] presented

a deep learning-based approach to detect two specific code smells: Brain Class and Brain

Method.

OpenAI’s GPT-3.5, a state-of-art NLP model, has showcased exceptional abilities in com-

prehending and generating human-like text [2]. Trained on an extensive dataset comprising

billions of parameters, GPT-3.5 is capable of assimilating a vast repository of linguistic

knowledge. This comprehensive pretraining endows it with the ability to contextually un-

derstand code. Moreover, GPT-3.5 can be fine-tuned on domain-specific datasets or adapted

to specific tasks through further training, facilitating continual learning and adaptation to

evolving requirements [11]. This adaptability enables the model to be customized for code

smell detection, significantly reducing the time required for tool configuration.

GPT-3.5 has the potential to overcome the limitations of traditional static analysis tools

in detecting code smells. Our research aims to explore the efficacy of GPT-3.5 for this

purpose. We focused on three specific code smells in Python: too many parameters, too

many nested blocks, and unused variable. We begin by using the static analysis tool Pylint

to identify these code smells across 14 Open-Source Software (OSS) projects, comprising

a total of 9,740 Python files sourced from GitHub. This process enables the creation of a

comprehensive dataset. Subsequently, we fine-tune a new GPT-3.5 model specifically for

detecting these code smells. To evaluate the performance of our model, we applied it to four

additional OSS projects.
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1.2 Research Questions

Specifically, this paper addresses the following research questions:

• RQ1: How effective is GPT-3.5 in detecting code smells?

• RQ2: Which code smells does GPT-3.5 effectively detect?

• RQ3: What impact does the size of dataset have on the performance of GPT-3.5 in

code smell detection?

1.3 Contributions and Organization of the Thesis

The contributions of this paper are listed below:

• We explore the potential of using large language models in identifying code smells.

• We report the results on the effectiveness of GPT-3.5 in detecting code smells.

• We explore the factors that might impact the performance of GPT-3.5 in identifying

code smells.

• We propose several conjectures for future research on code smell detection and the

fine-tuning of large language models.

The remainder of the paper is organized as follows. Chapter 2 introduces the methodology

in detail, smelly code extraction, dataset creation, and fine-tuning. Chapter 3 presents our

results and findings. Chapter 4 discuss some conjectures inspired from our results. Chapter

5 concludes with a summary of the key findings and future work.
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Chapter 2

Methodology

This study aims to investigate the potential of GPT-3.5 in detecting code smells. Specifically,

we focus on identifying code smells in Python, one of the most widely used programming

languages globally. GPT-3.5, with its extensive access to Python-related data, is well-suited

for this task. To evaluate the performance of GPT-3.5, we employ Pylint, a source code

analyzer that identifies programming errors and enforces coding standards.

We examine three code smells: too many parameters, too many nested blocks, and unused

variable. Initially, we select 14 open-source software projects, totaling 9,740 Python files,

primarily written in Python and sourced from GitHub. These projects are chosen based on

their number of stars on GitHub. We then use Pylint to automatically detect the three code

smells in these software projects, thus creating a dataset for GPT-3.5. Subsequently, we fine-

tune a new GPT-3.5 model. Finally, we apply the newly fine-tuned model to four additional

software projects from GitHub and evaluated its performance. Furthermore, we investigate

the impact of the dataset on GPT-3.5’s performance. Figure 2.1 presents the overall pro-

cedural steps of our methodology. The subsequent sections will provide a comprehensive

explanation of each phase.
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Figure 2.1: Methodology procedures

2.1 Code Smell Selection and Description

In the investigation conducted by prior research [8], a list of five code smells was identified,

which violate the design structure of code and hinder its maintainability and readability

based on their severity, as shown in Table 2.1. In the severity column, numerical values

denote the intensity levels of these code smells. A rating within the range of [5.5-7.75)

is classified as moderate, while those within [7.75-10) are classified as major. Due to the

constraints imposed by Pylint, our study focuses on three specific code smells that it can

detect: ‘Collapsible IF’, ‘Many Parameter’, and ‘Unused Variable’.

Table 2.1: Severity index of code smells [8]

Python Code Smells Severity
Cognitive Complexity 8.01

Collapsible ‘IF’ 7.37
Many Parameter 7.02

Naming Conventions 6.22
Unused Variable 7.07

In Pylint’s terminology, ‘Collapsible IF’ is described as ‘too many nested blocks’, while ‘Many

Parameter’ is termed ‘too many parameters’. Our research aligns with Pylint’s nomenclature

for these code smells.
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2.1.1 Too Many Parameters (TMP)

‘Too many parameters’ can arise when an excessive number of inputs are provided to a single

method [9]. In an effort to generalize a routine with multiple variations, a developer may

inadvertently pass too many parameters. Another possible cause is a lack of understanding

of the relationships between objects, leading to the inclusion of all entities as parameters

instead [20].

Essentially, the longer the parameter list, the harder it is to comprehend. We align with

Pylint’s default setting, which limits the maximum number of parameters to five. Figure

2.2 presents an illustrative example. The code snippet on the left features a smelly function

with 13 parameters, far exceeding the limit of five. Conversely, the non-smelly code snippet

on the right adheres to the limit, containing no more than five parameters.

Figure 2.2: Smelly code (too many parameters, left) and non-smelly code (right)
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2.1.2 Too Many Nested Blocks (TMNB)

‘Too many nested blocks’ refers to a coding practice where multiple nested statements can

be consolidated into a single statement with compound conditions [20]. This structure tends

to become increasingly complex over time as developers continue to add conditions and

additional levels of nesting [21].

Initially, we use Pylint’s default setting, which limits the maximum number of nested blocks

to five. However, we find this threshold to be unreasonable and subsequently adjust it to

three. The detailed reasoning behind this adjustment is discussed in Chapter 2. Figure 2.3

illustrates the concept: the smelly code on the left contains six nested blocks, exceeding the

threshold of three, whereas the non-smelly code on the right contains only two nested blocks.

Figure 2.3: Smelly code (too many nested blocks, left) and non-smelly code (right)

2.1.3 Unused Variable (UV)

‘Unused variable’ refers to a variable that has been declared but is not used or referenced

elsewhere in the code [8]. Such variables can lead to confusion, misunderstandings, and

hinder code maintainability. In Figure 2.4, the smelly code on the left contains an unused

variable, ‘fruit2’.
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Figure 2.4: Smelly code (unused variable, left) and non-smelly code (right)

2.2 Dataset Creation

In this section, we detail the steps of selecting data sources, identifying and extracting smelly

code, creating prompts for fine-tuning, formatting the data, and fine-tuning the GPT-3.5

model.

2.2.1 Software Selection

We selected 14 open-source software projects from GitHub, totaling 9,740 Python files, based

on their star ratings to create our dataset. Additionally, we chose four open-source software

projects, totaling 749 Python files, for testing purposes. Table 2.2 shows the star number of

the software used for training, and Table 2.3 shows the star number of the software used for

testing.

2.2.2 Smelly Code Detection and Extraction

We use Pylint to identify smelly Python files. Then, we extract the smelly functions to form

our prompt, which is used for fine-tuning GPT-3.5, based the location information of smelly

code from Pylint. Initially, we employ the thresholds, which are the default settings of Pylint,

as outlined in Table 2.4, and the resulting distribution of code smells is depicted in Figure

2.5. However, a notable observation emerges: the occurrence of the ‘too many nested blocks’

code smell is markedly lower than the other two smells (96% less). This disparity is aberrant.

9



Table 2.2: Star of the software for training

Software Star (in thousands)
Django 77.1
Fastapi 71.5
Flask 66.5

Scikit-learn 58.3
Requests 51.4
Pandas 42.1
Streamlit 32.1
Matplotlib 19.4

Click 15.1
Natural Language Toolkit 13.1

Gunicorn 9.5
Sqlalchemy 8.9
Pygame 7.0

Flask-restful 6.8

Table 2.3: Star of the software for testing

Software Star (in thousands)
Scrapy 51.2
Celery 23.6
Tornado 21.5
Boto3 8.7

Upon closer examination, the threshold set for this smell is unreasonable in practical coding

practices; more than five nested blocks are infrequent in real-world scenarios. There is no

consensus on an exact value in existing research.

To facilitate further research, we adjust the threshold to three, a more empirically reasonable

value, enabling us to capture a broader range of relevant data. Additionally, we randomly

select 791 instances of non-smell data for training. The distribution of code smells with

updated thresholds is presented in Figure 2.6.

Table 2.4: Initial threshold setting for code smell detection

Code Smell Threshold
Too Many Parameters Maximum number = 5

Too Many Nested Blocks Maximum number = 5
Unused Variable None

10



Figure 2.5: Code smell distribution (TMP: too many parameters, TMNB: too many nested
blocks, UV: unused variable)

2.2.3 Prompt

A prompt in generative AI models refers to the textual input provided by users to guide

the model’s output. This input ranges from simple questions to detailed descriptions or

specific tasks. In the context of GPT-3.5, prompts vary from straightforward queries to

intricate problem statements [1]. Basic prompts in GPT-3.5 involve asking direct questions

or providing straightforward instructions for a task. Advanced prompts, on the other hand,

employ more complex structures, such as ’chain of thought’ prompting, where the model is

guided to follow a logical reasoning process to reach an answer. Following the guidance from

prior research [7], we develop an advanced prompt with detailed descriptions to fine-tuned

GPT-3.5, as shown in Table 2.5.

11



Figure 2.6: Code smell distribution with new thresholds (TMP: too many parameters,
TMNB: too many nested blocks, UV: unused variable)

2.2.4 Data Format

As required by OpenAI, the dataset for fine-tuning must adhere to a specific format [15].

This format consists of three parts: system, user, and assistant.

System

The system part describes the model’s functionality, as detailed in Table 2.6.

User

As shown in Table 2.7, the user segment simulates a scenario in which a user interacts with

GPT-3.0. The advanced prompt is included in the content.

12



Table 2.5: Advanced prompt

1 Below are descriptions of three prevalent code smells:
2 1. Too many parameters: This smell occurs when more than five (including

five) parameters are provided as input for a single method.
3 2. Too many nested blocks: This smell occurs when three or more if statements

are nested together.
4 3. Unused variable: This smell occurs when a variable has been declared but

it is not being used or referenced anywhere else in the code.
5 How many code smells (too many parameters, too many nested blocks, and unused

variable) are present in the following Python code?
6 Python function
7 You are required to respond in the following JSON format. “Code smell” refers to

the name of the smell, and “Message” describes why the smell is identified. If there
are no code smells detected, return an empty list [] in JSON format.

8 [
9 {
10 “Code smell”: “Too many parameters”,
11 “Message”: “Too many arguments (6/5)”
12 },
13 {
14 “Code smell”: “Unused variable”,
15 “Message”: “Unused variable ‘lr’ ”
16 },
17 {
18 “Code smell”: “Too many nested blocks”,
19 “Message”: “Too many nested blocks (5/3)”
20 },
21 ...
22 ]

Assistant

In Table 2.8, the content of the assistant represents the correct answer in JSON format,

which we expect GPT-3.5 to respond with.

13



Table 2.6: System content

1 {
2 “role”: “system”,
3 “content” : “I am a chatbot that can detect the three types of code smells

below exists in the Python code:”
1. Too many parameters: This smell occurs when more than five (including

five) parameters are provided as input for a single method.
2. Too many nested blocks: This smell occurs when three or more if statements

are nested together.
3. Unused variable: This smell occurs when a variable has been declared but

it is not being used or referenced anywhere else in the code.
4 }

Table 2.7: User content

1 {
2 “role”: “user”,
3 “content” : Advanced prompt
4 }

Table 2.8: Assistant content

1 {
2 “role”: “assistant”,
3 “content” : Code smell detection result in JSON format
4 }

14



2.3 Fine-tuning and Evaluation

2.3.1 Fine-tuning

We select GPT-3.5-turbo-0125 [14] as our base model. We fine-tune the base model three

times. In the first fine-tuning, we train the model to detect two code smells: ‘too many

parameters’ and ‘unused variable’. In the second fine-tuning, we train the model with non-

smelly data. In the third fine-tuning, we train the model to detect the code smell: ‘too many

nested blocks’.

2.3.2 Evaluation

Since these three code smells are rule-based, Pylint does not make trivial mistakes. For

instance, in the case of the ”too many parameters” code smell, Pylint does not flag a function

that contains only two parameters as smelly. We also randomly select smelly Python files

detected by Pylint and manually verify them, finding no false positives or false negatives.

Therefore, Pylint can be considered a reliable baseline for evaluating our model.

To answer RQ1 (How effective is GPT-3.5 in detecting code smells?) and RQ2 (Which code

smells does GPT-3.5 effectively detect?), we report the standard precision, recall, and F1-

score to assess the performance of our model. We list the formulas for measuring precision,

recall, and F1-score below. We also compare the performances of GPT-3.5 in both zero-shot

and four-shot settings through our experiments.

• Precision: The proportion of correct identifications within the predicted labels for a

particular category.

precision =
TP

TP + FP
(2.1)

15



• Recall: The proportion of correct identifications within a particular category based

on the original labels.

recall =
TP

TP + FN
(2.2)

• F1 score: The harmonic mean of precision and recall.

recall =
2TP

2TP + FP + FN
(2.3)

To answer RQ3 (What impact does the size of dataset have on the performance of GPT-3.5

in code smell detection?), we resize the dataset and fine-tune another GPT-3.5 model. We

then compare this newly fine-tuned model with the original fine-tuned model and GPT-3.5.
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Chapter 3

Results

3.1 RQ1: How effective is GPT-3.5 in detecting code

smells?

To answer this research question, we assess the performance of three GPT-3.5 models (zero-

shot, four-shot, and fine-tuned) in identifying three code smells: too many parameters, too

many nested blocks, and unused variable. The evaluation metrics used are precision, recall,

and F1 score, with results summarized in Tables 3.1, 3.2, and 3.3.

Precision Analysis

Precision measures the accuracy of positive predictions. Higher precision indicates fewer

false positives. Below is a summary of the analysis:

• Too many parameters: The four-shot model achieves the highest precision (0.67),

followed by the fine-tuned model (0.63) and the zero-shot model (0.47).
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• Too many nested blocks: The fine-tuned model achieves a precision of 0.59, out-

performing the zero-shot (0.54) and four-shot (0.33) models.

• Unused variable: The zero-shot and four-shot models both score 0.37, whereas the

fine-tuned model scores the lowest at 0.20.

Table 3.1: Precision of all models

Zero-shot Four-shot Fine-tuned model
Too Many Parameters 0.47 0.67 0.63
Too Many Nested Blocks 0.54 0.33 0.59
Unused Variable 0.37 0.37 0.20

Observation 1: GPT-3.5 tends to generate false positives in code smell detection,

necessitating additional refinement.

The precision results suggest that GPT-3.5, in its current state, is prone to generating false

positives in code smell detection, as evidenced by precision values all below 0.8. This issue is

particularly concerning for ‘unused variable’ detection. Even after fine-tuning, the precision

does not meet the desired threshold for reliable detection. Therefore, further refinements are

required to enhance GPT-3.5’s precision in accurately detecting code smells.

Recall Analysis

Recall indicates GPT-3.5’s ability to capture all relevant instances. A higher recall signifies

fewer false negatives. The summary of the analysis is as follows:

• Too many parameters: The fine-tuned model achieves perfect recall (1.00), surpass-

ing the zero-shot (0.99) and four-shot (0.88) models.

• Too many nested blocks: The fine-tuned model again achieves a recall of 0.39,

outperforming the zero-shot (0.27) and four-shot (0.17) models.
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• Unused variable: The fine-tuned models consistently achieve a perfect recall of 1.00,

significantly outperforming the zero-shot (0.67) and four-shot (0.57) models.

Table 3.2: Recall of all models

Zero-shot Four-shot Fine-tuned model
Too Many Parameters 0.99 0.88 1.00
Too Many Nested Blocks 0.27 0.17 0.39
Unused Variable 0.67 0.57 1.00

The fine-tuned model demonstrates the highest recall across all code smell categories, indi-

cating that GPT-3.5 significantly enhances its ability to identify code smells post fine-tuning,

as shown in Figure 3.1.

Figure 3.1: Comparison of recall (TMP: too many parameters, TMNB: too many nested
blocks, UV: unused variable)

Observation 2: GPT-3.5 significantly enhances its ability to identify code smells

after fine-tuning.
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F1 Score Analysis

The F1 score, as the harmonic mean of precision and recall, serves as a balanced metric for

assessing both the precision and recall of GPT-3.5’s performance.

• Too many parameters: The fine-tuned model slightly outperforms the others with

an F1 score of 0.77, followed closely by the four-shot model with a score of 0.76, and

the zero-shot model with a score of 0.64.

• Too many nested blocks: The fine-tuned model achieves an F1 score of 0.47, out-

performing the zero-shot model, which scores 0.36, and the four-shot model, which

scores 0.22.

• Unused variable: The zero-shot model attains the highest F1 score (0.48), surpassing

both the four-Shot model (0.44) and the fine-tuned model (0.34).

Table 3.3: F1 score of all models

Zero-shot Four-shot Fine-tuned model
Too Many Parameters 0.64 0.76 0.77
Too Many Nested Blocks 0.36 0.22 0.47
Unused Variable 0.48 0.44 0.34

Observation 3: GPT-3.5 exhibits instability in code smell detection and tends to

make mistakes, yet further fine-tuning may increase its reliability.

The fine-tuned model consistently demonstrates the highest F1 scores for detecting ‘too

many parameters’ and ‘too many nested blocks’, while the zero-shot model excels in identi-

fying ”unused variables.” However, only for ‘too many parameters’ do the fine-tuned models

achieve an ideal F1 score of 0.77. For other code smells, all models have F1 scores lower

than 0.5. These results indicate that GPT-3.5 is not consistently reliable in code smell detec-

tion and tends to make mistakes. Fine-tuning, however, improves the stability of GPT-3.5
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in identifying specific code smells (‘too many parameters’ and ‘too many nested blocks’),

suggesting that further fine-tuning could enhance its stability.

Overall, even though GPT-3.5 demonstrates instability in code smell detection, our findings

reveal that its precision and stability can be improved with further fine-tuning.

3.2 RQ2: Which code smells does GPT-3.5 effectively

detect?

Based on Tables 3.1, 3.2, and 3.3, we observe that GPT-3.5 performs well in detecting the

‘too many parameters’ code smell. Our fine-tuned model exhibits high recall in identifying

true positives. Although the model occasionally generates false positives, its F1-score of 0.77

indicates reliability in detecting ‘too many parameters’.

In the case of ‘unused variable’ detection, our fine-tuned model excels in true positives with

a perfect recall of 1.00. However, its F1-score is only 0.34, suggesting unreliability in this

detection task. For the ‘too many nested blocks’ smell, we find that GPT-3.5 still requires

improvements in both precision and stability.

Observation 4: While GPT-3.5 effectively detects the ‘too many parameters’ code

smell, it still needs to improve its reliability in identifying ‘too many nested blocks’

and ‘unused variables’.
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3.3 RQ3: What impact does the size dataset have on

the performance of GPT-3.5? in code smell detec-

tion?

To examine the influence of dataset size, we resize our dataset as shown in Figure 3.2. Since

the smell ”too many nested blocks” is less common compared to the other two smells, we

only reduce the dataset size for ‘too many nested blocks’ to 85% of its original size. We then

adjust the sizes of the datasets for the other smells and non-smells to be similar.

We fine-tune a new GPT-3.5 model using the resized dataset. Tables 3.4, 3.5, and 3.6 present

the performance comparison of models fine-tuned with different dataset sizes. Below is the

summary of the change of GPT-3.5’s performance in resizing dataset.

• Too many parameters: The model increases to 0.96 in precision and decreases to

0.47 in recall, which means it obtains better capability in identifying non-smelly code

but performs worse in detecting smelly code. Its F1 score reduces from 0.77 to 0.64,

indicating that the model has less reliability.

• Too many nested blocks: The model exhibits a slight reduction in precision (0.54)

but a notable increase in recall (0.98). This outcome indicates improved performance

in code smell detection. The F1 score rises to 0.70, suggesting that the model is more

reliable compared to the model with the full-size dataset.

• Unused variable: The model attains a precision of 0.5, a recall of 0.0, and an F1

score of 0.02, demonstrating its failure to detect ’unused variable’ smells.

Overall, our analysis reveals that dataset size significantly affects GPT-3.5’s overall perfor-

mance. The model’s effectiveness declines in detecting ‘too many parameters’ and ‘unused
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Table 3.4: Precision of the models with different dataset sizes

Full-size dataset Resized dataset Change
Too Many Parameters 0.63 0.96 +0.33
Too Many Nested Blocks 0.59 0.54 -0.05
Unused Variable 0.20 0.50 +0.30

variable’, while it shows notable improvement in identifying ‘too many nested blocks’. Par-

ticularly, in detecting ‘unused variable’, the F1 score plummets from 0.34 to 0.02 with the

resized dataset, suggesting it almost fails to identify any ‘unused variable’ issues.

Figure 3.2: Data distribution after resizing dataset (TMP: too many parameters, TMNB:
too many nested blocks, UV: unused variable)

Observation 5: The performance of GPT-3.5 is significantly influenced by the size

of the dataset.
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Table 3.5: Recall of the models with different dataset sizes

Full-size dataset Resized dataset Change
Too Many Parameters 1.00 0.47 -0.53
Too Many Nested Blocks 0.39 0.98 +0.59
Unused Variable 1.00 0.00 -1.00

Table 3.6: F1 score of the models with different dataset sizes

Full-size dataset Resized dataset Change
Too Many Parameters 0.77 0.64 -0.13
Too Many Nested Blocks 0.47 0.70 +0.23
Unused Variable 0.34 0.02 -0.32

3.4 Threats to Validity

The primary threat to the external validity of our evaluations is the dataset size. While we

have created a comprehensive dataset from multiple projects and performed fine-tuning with

varying dataset sizes to explore the impact, our dataset remains smaller compared to those

commonly used for training large language models (LLMs). Therefore, our dataset needs

further expansion.

The primary threat to the internal validity of our evaluations is the accuracy of Pylint. Pylint

may produce false positives or false negatives, and we do not manually verify its results for

the entire dataset due to our lack of expertise in software projects and the substantial effort

required for manual checking. Additionally, we only assess three code smells. The evaluation

would be more robust if we could extend it to include more code smells.
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Chapter 4

Discussion

In this section, we will discuss the conjectures from the results presented in the previous

section.

4.1 Discussion 1: Is GPT-3.5’s performance correlated

to the context length of code smells?

Figure 4.1 presents an example function, “detect good apple”, which exhibits all three iden-

tified code smells. This example illustrates the detection areas required for each type of code

smell. The ‘unused variable’ smell demands the most extensive context, encompassing the

entire function. The ‘too many nested blocks’ smell requires a more focused context, limited

to the area containing the if statement. The ‘too many parameters’ smell needs the least

context, only the line where the function is defined. Table 4.1 presents the context length

ranking of the three code smells from high to low.

To explore the relation between context length and the complexity of code smells, we use
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Figure 4.1: Code smell context areas (TMP: too many parameters, TMNB: too many
nested blocks, UV: unused variable)

Table 4.1: Rank of three code smells based on context length(from high to low)

Rank Code Smell
1 Unused Variable
2 Too Many Nested Blocks
3 Too Many Parameters

Radon [18] to calculate three code metrics: cyclomatic complexity, maintainability index,

halstead difficulty, and halstead effort. Below is a summary of each metric’s function:

• Cyclomatic Complexity: Evaluates the number of linearly independent paths within

a program’s source code. This metric aids in assessing the complexity of a function

or method, providing insights into its potential difficulty in testing and maintenance.

Higher values suggest increased complexity and a greater likelihood of errors.

• Maintainability Index: This method combines multiple metrics, including cyclo-

matic complexity, halstead volume, and lines of code, to generate a unified score re-
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flecting code maintainability. Higher scores signify greater maintainability.

• Halstead Difficulty: Assesses the complexity involved in writing or comprehending

the program.

• Halstead Effort: Indicates the level of effort needed to develop or comprehend the

code.

Table 4.2 presents the metrics for three code smells. The ‘unused variable’ consistently ex-

hibits the highest values in cyclomatic complexity (8), halstead difficulty (1.5), and halstead

effort (128.76). It also has the lowest maintainability index (61.08). These results indicate

that ‘unused variable’ is the most complex code smell compared to the other two. Table 4.2

also shows that ‘too many nested blocks’ is the second most complex code smell, and ‘too

many parameters’ is the least complex.

This pattern aligns with the code lengths observed in Figure 4.1. This correlation is evident

because the larger the code context required by the code smell, the more context must be

comprehended and taken into account.

Table 4.2: Complexity metrics of code smells (CC: cyclomatic complexity, MI: maintain-
ability index, HM (D): halstead difficulty, HM (E): halstead effort)

CC MI HM (D) HM (E)
Unused Variable 8 61.08 1.5 128.76
Too Many Nested Blocks 7 64.31 1.5 105.49
Too Many Parameters 1 100 0 0

Conjecture 1: The difficulty of identifying code smells is associated to their context

length.

According to the F1 score shown in Table 3.3 and the rank shown in Table 4.1, we find that

the performance of GPT-3.5 is related to the complexity and context length of code smells.

This relation is illustrated in Figures 4.2.
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Figure 4.2: Relation between maintainability index and F1 score (TMP: too many param-
eters, TMNB: too many nested blocks, UV: unused variable)

Conjecture 2: GPT-3.5 is effective at identifying code smells in shorter contexts;

however, its precision and stability diminish when dealing with longer contexts.

4.2 Discussion 2: Does increasing the amount of data

for fine-tuning lead to more false positives in GPT-

3.5?

Based on the results shown in 3, we find a relation between precision and recall. As illustrated

in Figure 4.3, we analyze the precision and recall of the zero-shot model, the model fine-

tuned with the resized dataset, and the model fine-tuned with the full-size dataset. We

observe that the trend of precision and recall is asymmetrical. Subsequently, we calculate

the Pearson correlation coefficient of precision and recall, as displayed in Table 4.3. The

results indicate a negative correlation between precision and recall. This implies that when

we fine-tune GPT-3.5 to detect code smells, as its performance in identifying smelly code

improves, its performance in detecting non-smelly code diminishes.
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Figure 4.3: Precision (up) and recall (down) trend (TMP: too many parameters, TMNB:
too many nested blocks, UV: unused variable)

Conjecture 3: Increasing the amount of data used to fine-tune GPT-3.5 leads to

more false positives, despite its improved ability to identify smelly code.

4.3 Discussion 3: Will training sequence influence the

performance of GPT-3.5?

As mentioned in 2, we fine-tune GPT-3.5 three times. During the first fine-tuning, we train

it to detect Python code with ‘too many parameters’ and ‘unused variable’ smells. We

find that GPT-3.5 can distinguishes between smelly and non-smelly code. However, after
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Table 4.3: Pearson correlation coefficient of precision and recall

Pearson correlation coefficient
Unused Variable -0.94
Too Many Nested Blocks -0.36
Too Many Parameters -0.96

the second fine-tuning, which focuses on training it to detect non-smelly Python code, the

results show all false positives, meaning it identifies all code as non-smelly. Finally, after the

third fine-tuning, GPT-3.5 detects smelly code but fails to identify non-smelly code correctly.

Conjecture 4: Training sequence may effect GPT-3.5’s performance.
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Chapter 5

Conclusion and Future Work

In this study, we explore the efficacy of GPT-3.5 in detecting code smells, focusing on three

smells in Python: too many parameters, too many nested blocks, and unused variable.

Through comprehensive experiments involving 14 open-source software projects for fine-

tuning and four additional projects for evaluation, our findings demonstrate that GPT-3.5

shows potential in code smell detection but still requires refinement and more data for fine-

tuning.

The results indicate that GPT-3.5 is particularly effective in identifying the ‘too many pa-

rameters’ code smell, demonstrating reliable performance with a high F1 score of 0.77 post

fine-tuning. However, its performance in detecting ‘too many nested blocks’ and ‘unused

variables’ is less consistent, with F1 scores of 0.47 and 0.34, respectively, indicating a need

for improvement in both precision and stability. Our research also reveals that dataset size

significantly impacts GPT-3.5’s performance in fine-tuning. Additionally, based on the re-

sults, we present several conjectures, including the relation between GPT-3.5’s performance

and the context length of code smells, the relation between dataset size and false positives,

and the influence of training sequences.
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Our future work involves incorporating a broader range of open-source projects, including

additional code smells and projects written in various programming languages. This expan-

sion helps to generalize the model’s applicability and performance across diverse codebases

and environments. Another direction involves exploring and refining additional factors that

may influence GPT-3.5’s performance during fine-tuning, such as temperature and steps.
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