UCSF UC San Francisco Previously Published Works

Title

Data on the transcriptional response to MESH1 knockdown and mammalian stringent response.

Permalink

https://escholarship.org/uc/item/7347p6xf

Authors

Chi, Jen-Tsan Sun, Tianai Ding, Chien-Kuang

Publication Date

2023-04-01

DOI

10.1016/j.dib.2023.108938

Peer reviewed

eScholarship.org

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the transcriptional response to MESH1 knockdown and mammalian stringent response

Tianai Sun^{a,b,1}, Chien-Kuang Cornelia Ding^{a,b,1}, Jen-Tsan Chi^{a,b,*}

^a Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, United States ^b Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States

ARTICLE INFO

Article history: Received 30 November 2022 Revised 12 January 2023 Accepted 20 January 2023 Available online 28 January 2023

Dataset link: The transcriptional response to MESH1 silencing (Original data) Dataset link: TAZ overexpression partially rescued the transcriptomic reprogramming triggered by MESH1 silencing (Original data)

Keywords: MESH1 Stringent response SpoT Ferroptosis TAZ Proliferation arrest Stress response

ABSTRACT

MESH1 is the metazoan homolog of bacterial SpoT, the main phosphatase that dephosphorylates and degrades (p)ppGpp, the alarmone involved in the bacterial stringent response. The functional role of MESH1 in human cells is unknown. To define the global transcriptional response to MESH1 knockdown, we employed microarrays to perform transcriptome analysis of H1975 when the MESH1 was knocked down using three independent siRNAs targeting MESH1. The changes of each gene were derived by zero-transformation, followed by filtering to derive the genes affected by MESH1 knockdown. These datasets showed the transcriptional features of the mammalian stringent response and identified a prominent TAZ repression. Thus, we performed a second experiment to determine the contribution of TAZ repression to the transcriptional response of MESH1 knockdown by comparing the effects of MESH1-knockdown gene signatures in H1975 cells transduced with control or constitutive active TAZ (TAZS89A). The transcriptional response of these two cells to MESH1 was derived by zero transformation, followed by the effects of TAZ restoration to define the contribution of TAZ repression to the transcriptome features of human stringent response. The transcriptome data will be useful for the

* Corresponding author at: Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, United States.

- E-mail address: jentsan.chi@duke.edu (J.-T. Chi).
- Social media: 🔰 @ckcding (C.-K.C. Ding), 🍏 @TsanJen (J.-T. Chi)

¹ These authors contributed equally to this work.

https://doi.org/10.1016/j.dib.2023.108938

2352-3409/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

mechanistic understanding of the functional role of MESH1 in human cancer cells.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Biological sciences Omics: Transcriptomic
Specific subject area	Study the function of human MESH1, a metazoan homolog of SpoT [1], a bacterial protein involved in regulating the level of (p)ppGpp and bacterial stringent responses. The transcriptional response to MESH1 shows significant similarity with the bacterial stringent response and potential evolutionary conservation [2].
Type of data	Table
How the data were acquired	In the first experiment, MESH1 was knocked down in H1975 cells by control or three MESH1-targeting siRNAs in triplicates [3,4]. Total RNAs were collected, and their quality was assessed with the Agilent BioAnalyzer. 200 ng RNA was used to generate cDNA using the Ambion MessageAmp kit and interrogated with an Affymetrix U133A GeneChip. The microarray data was normalized by the RMA, and zero transformed to the negative control (siNT) as before [5,6]. The transcriptional responses to MESH1 knockdown (Table 1) are based on the filtering criteria of at least seven observations with absolute log2 values >0.47. GSEA (Gene Set Enrichment Analysis) revealed a depletion of multiple cell cycle and proliferated pathways upon MESH1 knockdown. MESH1 knockdown also reduced the expression of RRM1 (ribonucleotide reductase M1) and RRM2, subunits of ribonucleotide reductase (RNR) responsible for dNTP synthesis. In the second experiment, the contribution of TAZ repression to the transcriptome response was defined by comparing MESH1-knockdown gene signatures between the control and TAZS89A-transfected H1975. TAZ restoration reversed the changes of at least 1.5 fold of the MESH1-affected genes (Table 2).
Data format	Analyzed Filtered
Description of data collection	Total RNAs were isolated by RNeasy Mini Kit (Qiagen, #74104) and used to generate cDNA using the Ambion MessageAmp Premier RNA Amplification. The labeled cDNA samples were interrogated with an Affymetrix U133A GeneChip. The data were normalized by the RMA and the expression value of each genes in the siMESH1 groups was compared with the expression value of the same genes in the negative control (siNT) to derive the changes in gene expression. Data were then filtered with Cluster 3.0 and clustered by the genes and shown in tables.
Data source location	 Duke School of Medicine Durham, North Carolina USA
Data accessibility	Name: NCBI Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135358 The transcriptional response to MESH1 silencing https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135346 TAZ overexpression partially rescued the transcriptomic reprogramming triggered by MESH1 silencing Mendeley Data:
	Chi, Jen-Tsan Ashley (2022), "Genes whose expression are affected by MESH1 knockdown in H1975", Mendeley Data, V2, doi:10.17632/hgy8rxmj62.2
Related research article	For a published article: Sun T, Ding CC, Zhang Y, Zhang Y, Lin CC, Wu J, Setayeshpour Y, Coggins S, Shepard C, Macias E, Kim B, Zhou P, Gordân R, Chi JT. MESH1 knockdown triggers proliferation arrest through TAZ repression. Cell Death Dis. 2022 Mar 10;13(3):221. doi:10.1038/s41419-022-04663-6. PMID: 35273140; PMCID: PMC8913805.

Value of the Data

- These data are the first transcriptome studies of the functional role of MESH1 in human cancer cells.
- Transcriptome analysis of mammalian stringent response will enable the cross-kingdom analysis from bacteria [7], Drosophila [1] and human cancer cells [3,4,8].
- Ferroptosis is a newly recognized form of cell death with important disease relevance [9]. We have performed forward genetic screens to identified many novel determinants of ferroptosis [10–13]. MESH1 was identified in a genome-wide RNAi screen [14] and the knockdown of MESH1 robustly protected ferroptosis [4]. In addition, MESH1 knockdown is associated with dramatic proliferation arrest with therapeutic potential. Therefore, the data presented may provide insight into ferroptosis.
- The data could be of interest to any investigators interested in the bacterial stringent response and other stress responses in different organisms across evolution.
- These data represent a novel stress response of human tumors that has not been described.
- The transcriptome data can be useful for another investigator to study the conservation of stress response.
- Identify the unexpected association between other biological processes and chemical/genetic perturbations.

1. Objective

While MESH1 was found to regulate ferroptosis by degrading NADPH, its knockdown also robustly reduced the proliferation of cancer cells. To understand the mechanisms underlying such dramatic phenotypes, we performed transcriptome analysis to fully characterize the genes and molecular pathways affected by MESH1 knockdown. Such analysis will also allow us to compare the transcriptional response of mammalian stringent response with what has been published in flies and bacteria. These data highlighted the importance of TAZ mRNA repression as a critical feature of the MESH1 knockdown and mammalian stringent response. Therefore, we performed the second transcriptome experiment in which TAZ is over-expressed as MESH1 was knockdown. These experiments allowed us to dissect the transcriptome changes of MESH1 knockdown into TAZ-dependent vs. TAZ-independent components. The data article adds value to the published articles by highlighting the scientific rationales and experimental designs of these two transcriptome experiments for the academic community.

2. Data Description

To define the transcriptional response to MESH1 knockdown, we knockdown MESH1 in H1975 cells with independent siRNAs and performed transcriptomic analysis [2].

First, the raw data in the GSE135358 were generated by the microarray interrogation of the RNA samples of H1975 transfected with control or three different siRNA targeting MESH1 in triplicate [3,4]. After 48 h of transfection, the total RNAs were collected from these cells and quality was validated using the Agilent BioAnalyzer. 200 ng RNA was used to generate cDNA using the Ambion MessageAmp kit and interrogated with an Affymetrix U133A GeneChip. The microarray data were normalized by the RMA, and zero transformed to the negative control (siNT) as before [5,6].

Table 1 showed the genes whose expression was affected by MESH1 knockdown in H1975 cells. The microarray data were normalized by the RMA, and zero transformed to the negative control (siNT) as before [5,6]. The genes were then filtered based on the filtering criteria of at least seven observations with absolute log2 values >0.47 and cluster of genes affected by MESH1 knockdown were listed in Table 1. The seven was used as filtering criteria to select changes

Table 1

List of differentially expressed genes in H1975 upon the knockdown of MESH1 by three independent siRNAs targeting MESH1.

Gene Symbol	
NREP	
NREP	
HDAC5	
SYT1	
CA11	
AKR1C3	
PCDHA1 /// PCDHA10 /// PCDHA11 /// PCDHA12 /// PCDHA13 /// PCDHA2 /// PCDH	HA3 /// PCDHA4 /// PCDHA5 //
PCDHA6 /// PCDHA7 /// PCDHA8 /// PCDHA9 /// PCDHAC1 /// PCDHAC2	
ZNF467	
KLRC3	
GSN	
ARG2	
DDAH1	
NMNAT2	
CDC14B	
DIP2C	
DZANK1	
RUNDC3A	
STK19	
HIST1H2BC /// HIST1H2BE /// HIST1H2BF /// HIST1H2BG /// HIST1H2BI	
HISTIH2BC /// HISTIH2BE /// HISTIH2BF /// HISTIH2BG /// HISTIH2BI HIST1H2BE	
HIST1H2BD	
HIST1H2BC /// HIST1H2BE /// HIST1H2BF /// HIST1H2BG /// HIST1H2BI	
IFT22	
INPP5A	
SIK1	
CFB	
ATF3	
RHOD	
KLK6	
MGLL	
UAP1L1	
DSP	
KLHDC3	
KLHDC3	
GOLGB1	
DDAH2	
DDAH2	
DDAH2	
TPM4	
KDM2A	
CCDC176	
FLRT2 /// LOC100506718	
CCPG1 /// DYX1C1-CCPG1	
CCPG1 /// DYX1C1-CCPG1	
RRAGD	
LCAT	
ZBTB5	
CFDP1	
IQCJ-SCHIP1 /// SCHIP1	
SAT1	
SAT1	
SAT1	
CASP7	
UBE2L6	
RABAC1	
OAZ3	
C11orf80	
NABP1	

Gene Symbol	
ITGB5	
PLAG1	
CXADR	
COL18A1	
PIM1	
MCCC1	
OPTN	
VAMP5	
ATP9A	
HABP4	
ZER1	
CDC14B	
HBP1	
TBC1D9	
UBAP2L	
AKR1A1	
BBS1	
CTSB	
E2F3	
EHD1	
EHD1	
EHD1	
DNAJC1	
ARID3A	
CCDC93	
CARS	
RRAGD	
TMEM43	
DYNC1H1	
TTC9	
CARHSP1	
SIGIRR	
SIGIRR	
SPCS3	
LPIN2	
LTBP1	
ITGB5	
HDAC9	
C11orf95	
ADCY9	
SLC2A3	
DNAJB9	
CTSB	
SLC2A3	
CTSB	
EDEM1	
SLC2A14 /// SLC2A3	
KLF9	
AGR2	
ZNF83	
G3BP2	
ZNF267	
PHACTR2	
ACYP2 /// LOC101927144	
PAEP	
VPS28	
CREBL2	
DLG5	
ANKRA2	
KIAA1598	
02-Mar	

 Gene Symbol
 HIST1H1C
CDKN1C
CDKN1C
CDKN1C
CDKN1C
AHNAK2
CREBL2
IFT20
FOS
KDR
KCNJ15
DPYSL3
MTF2
RSL1D1
PHTF2
RSL1D1
HIST1H2BC /// HIST1H2BE /// HIST1H2BF /// HIST1H2BG /// HIST1H2BI
ANGPTL4
IL24
OSTM1
MAFF
DUSP3
PHACTR2
RGL2
STX4
SPAG7
TUSC3
CTSB
CDYL
NUPL1
BIK
EFTUD1
RAB17
PLEKHA1
KAT2B
ZNF702P
LY96
CHIC2
MAPK6
TLK2
CBY1
EMC6
CDC37L1
ILGR
CREB3
ARL14
MUT
JUN
HIST1H4H
IFT88
HIST1H2AG /// HIST1H2AH /// HIST1H2AI /// HIST1H2AK /// HIST1H2AL /// HIST1H2AM
BSPRY
HIST1H2BG /// HIST1H2BJ
HIST1H2AE
BICD2
HIST2H2AA3 /// HIST2H2AA4
HIST2H2AA3 /// HIST2H2AA4
LINCO0339
\$100A13

_

PRPF4

Gene Symbol		
PSENEN		
CCDC53		
AHNAK		
DDX43		
C2orf54		
MAD2L1		
CCT2		
MCM6		
PLK1		
GTSE1 /// TRMU		
EPB41L2		
ACOX2		
ACLY		
ABCE1		
EVI2B		
SRSF1		
LHX6		
ACLY		
EOGT		
PRPS1		
KIF14		
MIR636 /// SRSF2		
RAD54B RFWD3		
MDFIC		
NAA50		
MIS18BP1		
SLC29A1		
STRAP		
MRTO4		
TMPO		
RAC2		
HNRNPH1		
H2AFX		
IL1RL1		
TUBGCP3		
UBE2D2		
ARHGAP22		
RAB28		
KPNA4		
PARN		
DUSP9		
TLE3		
FBXO11		
NBN		
HIP1		
RGS4		
GJA9-MYCBP /// MYCBP		
HNRNPA2B1		
DAZAP1		
ARTN		
ARTN		
ARTN		
PPP6R3		
RBM8A		
NHLRC2		
WDR77		
WWTR1		
PRR3		
IDH3A		

Gene Symbol		 	
NAA15			
ARF6			
HIPK2			
IL1RN			
C6orf62			
STIP1			
BCLAF1			
BCLAF1			
NBN			
WWTR1			
PIGL			
DHX15			
SERBP1			
MIR4745 /// PTBP1			
SMC4			
GPR107			
BUB1			
ENO1			
PRKAR2B			
CD44			
LOC101928747 /// RBMX	/// SNORD61		
DARS2			
CEP152			
SRSF11			
BCLAF1			
TRIM14			
TRIM14			
MBNL1			
TMED2			
ARF1 /// MIR3620			
TUBB2A /// TUBB2B			
STC1 STC1			
CSNK2A1			
LPAR1 RBM12			
ZNF586			
HNRNPD			
SORD			
SORD			
BASP1			
PDHA1			
HNRNPD			
06-Mar			
KIAA1462			
PRMT3			
NT5DC2			
PTGES			
C6orf62			
PRKX			
TIA1			
H2AFV			
H2AFV			
FAM115A /// LOC100294	033		
FAM115A /// LOC100294			
ELAVL1			
ALDH3A2			
ALDH1A3			
KRAS			
ARMC9			
ZNF207			

Gene Symbol	
GPR125	
ADO	
CYB5B	
DESI1	
LIPG	
GTPBP8	
SDHD	
LRRC59	
MRPL44	
GPRC5B	
SCLY	
FUBP1	
ANKLE2	
QRSL1	
AMACR /// C1QTNF3-AMACR	
SPATS2L	
MALL	
PSME3	
HNRNPUL1	
NAP1L1	
OPA1	
PPP2R1B	
TRIM14	
LRRK1	
ACTR3B	
HNRNPUL1	
MAP3K7	
ACSL3	
ACSL3	
SEC23IP	
ARHGEF26	
ALDOC	
METAP1	
POT1	
FASTKD2	
PUS7	
GATC	
CALML4	
CALML4	
TIA1	
NAP1L1 RRP15	
PEG10	
CA2	
ARHGAP29	
ACTB	
FCF1	
ABLIM1	
THEMIS2	
U2SURP	
PAPOLA	
HHEX	
METAP2	
PTER	
DLG1	
TAF6L	
FAH	
EVI2A	
NETO2	

CDC25C CDC6 SRSF6 GINS1 FADS1 /// MIR1908 FADS1 /// MIR1908 FADS1 /// MIR1908 CBLL1 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 VDR3 MOCOS LIRC40 GEMIN2 AIDA RRM2 RRM1	Gene Symbol
SRSF6 GINS1 FADS1 /// MIR1908 FADS1 /// MIR1908 FADS1 /// MIR1908 CBL1 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	CDC25C
GINS1 FADS1 /// MIR1908 FADS1 /// MIR1908 FADS1 /// MIR1908 CBL1 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	CDC6
FADS1 /// MIR1908 FADS1 /// MIR1908 FADS1 /// MIR1908 CBL1 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM1	SRSF6
FADS1 /// MIR1908 FADS1 /// MIR1908 CBL11 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	GINS1
FADS1 /// MIR1908 CBL1 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
CBLL1 NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM2	FADS1 /// MIR1908
NRP1 DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
DKK1 VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM2	
VDAC1 FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM2 RRM1	
FUS TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM2	
TBCE CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM2	
CKB AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
AASDHPPT HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
HIRA ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
ATP2A2 STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
STARD7 WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM2 RRM1	
WDR3 MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
MOCOS LRRC40 GEMIN2 AIDA RRM2 RRM1	
LRRC40 GEMIN2 AIDA RRM2 RRM1	
GEMIN2 AIDA RRM2 RRM1	
AIDA RRM2 RRM1	
RRM2 RRM1	
RRM1	
K K IVI I	
	KKM1

consistent in more than two sample groups. Such analysis revealed a prominent transcriptional repression of TAZ, but not YAP, upon MESH1 knockdown.

Next, to determine the role of TAZ repression in the transcriptional response of MESH1, we produced the raw data in GSE135346. H1975 cells were first transduced by control empty vector or TAZS89A, a constitutive form of TAZ. The cells were then selected by puromycin to select cells with control or TAZS89A-overexpression lentivirus. These cells were then transfected with control or MESH1-targeting siRNAs for 48 h. At this point, the total RNAs were collected from these cells and quality was validated using the Agilent BioAnalyzer. 200 ng RNA was used to generate cDNA using the Ambion MessageAmp kit and interrogated with an Affymetrix U133A GeneChip. The microarray data were normalized by the RMA, and zero transformed to the negative control (siNT). Table 2 showed the list of genes whose expression was affected by MESH1 knockdown, but then reversed upon TAZS89A expression by at least 1.5-fold (Table 2).

Table 2

List of differentially expressed genes affected by TAZS89A at least 1.5-fold in MESH1-knockdown H1975.

Gene Symbol	
BLNK	
AKR1C3	
CCL5	
HOXD1	
KIAA0125	
VTCN1	
CCL5	
CHI3L1	
CHI3L1	
PDE4DIP /// LOC727893	
TNFSF10	
CLIC2	
SP100	
C5orf13	
MN1	
C10orf81	
CLEC2B /// CDRT15P	
HLA-DPA1	
NFE2	
HLA-DRA	
NAV3	
SOX2	
ABCA1	
POU2F3	
LYPD1	
SPP1	
VAV3	
GNAL	
GBP1	
CTSS	
PDE4DIP	
ABCA1	
GBP1	
ZBTB1	
HLA-DMB	
HLA-DRA	
TNFSF10	
HLA-DMA	
MSMB	
BIRC4BP	
PDE4DIP	
NAV2	
LMO2	
TJP3	
CASC1	
C9orf61	
HPGD	
TJP3	
CTSS	
OAS1	
GBP2	
MMP13	
ABCA12	
AGT	
MPPE1	
CYR61	
KLHL24	
TNFSF10	
INDO	
CYR61	
	(continued on next na

Gene Symbol	
SNAI2	
BDKRB2	
PDGFD	
KLRC3	
FA2H	
GRAMD1C	
HPGD	
S100P	
MUC16	
СМАН	
TP73L	
SLC28A3	
IGHA1	
MX1	
04-Sep	
CFB	
MAF	
LDB3	
HPGD	
MPPE1	
KLHL24	
OAS1	
IL1R1	
AVIL	
RSAD2	
ABAT	
CEBPD	
IGHA1 /// IGHA2 RALGPS1	
SLC16A4	
ADRB1	
CTNNA2	
SLAMF7	
KLF4	
ASAH1	
PDE4DIP	
VPS13C	
GABARAPL1 /// GABARAPL3	
KLF4	
CTGF	
RAB15	
DSC2	
C5orf13	
HIST1H4H	
ISGF3G	
HIST1H2AM	
HIST1H2AE	
MGC17330	
MLLT3	
TncRNA	
HERC6	
PBXIP1	
HIST1H2AG	
LOC653483	
SLC2A5 SLC12A8	
KLF2	
C5orf13	
MIA3	
STK38L	
511502	

Gene Symbol	
LASS4	
TXNIP	
NUPR1	
HDAC9	
GABARAPL1	
PBXIP1	
ASAH1	
IFI44L	
GLUL	
FGFR3	
-	
RELN	
CDH5	
PPAP2A	

3. Experimental Design, Materials and Methods

The primary objective of this experiment was to identify the genes whose expression might be affected by the knockdown of the MESH1 as the transcriptional features of the mammalian stringent response. Furthermore, we will determine the degree to which TAZ restoration can mitigate the transcriptional response to the MESH1 knockdown.

3.1. Cell Lines and Cell Culture

H1975 cell lines were obtained from ATCC and cultured in the standard cell culture conditions with DMEM with 10% FCS, glutamine and penicillin/streptomycin. To mimic the loss of MESH1, we transfected H1975 with control siRNAs and three additional siRNAs that target MESH1 at different regions of MESH1 mRNA. The successful knockdown of the MESH1 were validated by qRT-PCR and Western blots.

3.2. RNA Extraction, Quality Control and Microarray Profiling

Total RNA was extracted from H1975 cells treated with control of MESH1-targeting siRNAs in triplicate using RNeasy Mini Kit (Qiagen, Germany) based on the manufacturer's protocol. Total RNAs were collected with RNeasy Mini Kit (Qiagen, #74104) and assessed with the Agilent BioAnalyzer. RNA quality and quantity were determined using Bioanalyzer (Agilent Corporation, USA) and NanoDrop spectrophotometer (Thermo Fisher Scientific, Wilmington, USA) for concentration cDNAs were generated from 200 ng RNA using the Ambion MessageAmp Premier RNA Amplification (Life Technologies, Grand Island NY, USA) to generate biotin-labeled samples for hybridization. The resulting probes were then hybridized with GeneChip arrays overnight in the Affymetrix hybridization oven at 42 °C. Next, the Affymetrix GeneChip Fluidics Station 450 performs the automated Affymetrix wash and stain protocols. Afterward, The Affymetrix GeneChip Scanner 3000 7G is used to generate the resultant GeneChip array image at the Duke Microarray Facility.

3.3. Data Analysis

The microarray data were normalized by the RMA (Robust Multi-Array) algorithm. and zero transformed to the negative control (siNT), where we compared transcript levels for each gene

in siMESH1 groups to the siNT group (n=3 biologically independent replicates in each siRNA group). Data were then filtered with Cluster 3.0 based on the criteria at least seven observations with absolute log2 values >0.47and then clustered by the genes. The list of genes affected by MESH1 knockdown were shown in Table 1. For the TAZ-affected genes, the genes were selected by affecting at least 1.5-fold by TAZS89A as shown in Table 2.

Ethics Statements

This study does not involve human subjects or samples derived from human materials. It also does not involve vertebrate animals. However, we have used human cancer cell lines from ATCC and other commercial sources, whose use has been approved under the Duke Biosafety Protocol 14-0048-05.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The transcriptional response to MESH1 silencing (Original data) (GEO). TAZ overexpression partially rescued the transcriptomic reprogramming triggered by MESH1 silencing (Original data) (GEO).

CRediT Author Statement

Tianai Sun: Conceptualization, Methodology, Investigation, Writing – original draft, Writing – review & editing; **Chien-Kuang Cornelia Ding:** Conceptualization, Methodology, Investigation, Writing – review & editing; **Jen-Tsan Chi:** Conceptualization, Supervision, Project administration, Funding acquisition, Writing – review & editing.

Acknowledgments

Funding: This work was supported by DOD (W81XWH-17-1-0143, W81XWH-15-1-0486, and DOD KC180120) and NIH (R01GM124062, R21-AI149205-01, R21-AG077075).

References

- [1] D. Sun, G. Lee, J.H. Lee, H.Y. Kim, H.W. Rhee, S.Y. Park, K.J. Kim, Y. Kim, B.Y. Kim, J.I. Hong, C. Park, H.E. Choy, J.H. Kim, Y.H. Jeon, J. Chung, A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses, Nat. Struct. Mol. Biol. 17 (10) (2010) 1188–1194, doi:10.1038/nsmb.1906.
- [2] A.A. Mestre, P. Zhou, J.T. Chi, Metazoan stringent-like response mediated by MESH1 phenotypic conservation via distinct mechanisms, Comput. Struct. Biotechnol. J. 20 (2022) 2680–2684, doi:10.1016/j.csbj.2022.05.001.
- [3] T. Sun, C.K.C. Ding, Y. Zhang, Y. Zhang, C.C. Lin, J. Wu, Y. Setayeshpour, S.A. Coggins, C. Shepard, E. Macias, B. Kim, P. Zhou, R. Gordân, J.T. Chi, MESH1 knockdown triggers proliferation arrest through TAZ repression, Cell Death Dis. 13 (3) (2022) 221, doi:10.1038/s41419-022-04663-6.
- [4] C.C. Ding, J. Rose, T. Sun, J. Wu, P.H. Chen, C.C. Lin, W.H. Yang, K.Y. Chen, H. Lee, E. Xu, S. Tian, J. Akinwuntan, J. Zhao, Z. Guan, P. Zhou, J.T. Chi, MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis, Nat. Metab. 2 (3) (2020) 270–277, doi:10.1038/s42255-020-0181-1.
- [5] X. Tang, J. Wu, C.K. Ding, M. Lu, M.M. Keenan, C.C. Lin, C.A. Lin, C.C. Wang, D. George, D.S. Hsu, J.T. Chi, Cystine deprivation triggers programmed necrosis in VHL-deficient renal cell carcinomas, Cancer Res. 76 (7) (2016) 1892– 1903, doi:10.1158/0008-5472.CAN-15-2328.

- [6] X. Tang, C.K. Ding, J. Wu, J. Sjol, S. Wardell, I. Spasojevic, D. George, D.P. McDonnell, D.S. Hsu, J.T. Chang, J.T. Chi, Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling, Oncogene 36 (30) (2017) 4379, doi:10.1038/onc.2017.192.
- [7] S.E. Irving, N.R. Choudhury, R.M. Corrigan, The stringent response and physiological roles of (pp)pGpp in bacteria, Nat. Rev. Microbiol. 19 (4) (2021) 256–271, doi:10.1038/s41579-020-00470-y.
- [8] C.C. Lin, C.C. Ding, T. Sun, J. Wu, K.Y. Chen, P. Zhou, J.T. Chi, The regulation of ferroptosis by MESH1 through the activation of the integrative stress response, Cell Death Dis. 12 (8) (2021) 727, doi:10.1038/s41419-021-04018-7.
- [9] S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, A.J. Bauer, A.M. Cantley, W.S. Yang, B. Morrison, B.R. Stockwell, Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell 149 (5) (2012) 1060–1072, doi:10.1016/j.cell.2012.03.042.
- [10] W.H. Yang, C.C. Lin, J. Wu, P.Y. Chao, K. Chen, P.H. Chen, J.T. Chi, The hippo pathway effector YAP promotes ferroptosis via the E3 ligase SKP2, Mol. Cancer Res. 19 (6) (2021) 1005–1014, doi:10.1158/1541-7786.MCR-20-0534.
- [11] C.C. Lin, W.H. Yang, Y.T. Lin, X. Tang, P.H. Chen, C.C. Ding, D.C. Qu, J.V. Alvarez, J.T. Chi, DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway, Oncogene 40 (11) (2021) 2018– 2034, doi:10.1038/s41388-021-01676-x.
- [12] P.H. Chen, J. Wu, C.C. Ding, C.C. Lin, S. Pan, N. Bossa, Y. Xu, W.H. Yang, B. Mathey-Prevot, J.T. Chi, Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism, Cell Death Differ. 27 (27) (2019) 1008–1022, doi:10.1038/s41418-019-0393-7.

- [13] W.H. Yang, C.K.C. Ding, T. Sun, D.S. Hsu, J.T. Chi, The hippo pathway effector TAZ regulates ferroptosis in renal, Cell Carcinoma Cell Rep. 28 (10) (2019) 2501–2508 e4.
- [14] P.H. Chen, J. Wu, Y. Xu, C.C. Ding, A.A. Mestre, C.C. Lin, W.H. Yang, J.T. Chi, Zinc transporter ZIP7 is a novel determinant of ferroptosis, Cell Death Dis. 12 (2) (2021) 198, doi:10.1038/s41419-021-03482-5.