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dDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care 
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Abstract

Background: Short-term exposure to high or low temperatures is associated with increased 

mortality and morbidity. Less is known about effects of long-term exposure to high or 

low temperatures. Prolonged exposure to high or low temperatures might contribute to 

pathophysiological mechanisms, thereby influencing the development of diseases. Our aim was 
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to evaluate associations of long-term temperature exposure with cardiovascular disease (CVD) 

hospitalizations.

Methods: We constructed an open cohort consisting of all fee-for-service Medicare beneficiaries, 

aged ≥65, living in the contiguous US from 2000 through 2016 (~61.6 million individuals). We 

used data from the 4 km Gridded Surface Meteorological dataset to assess the summer (June–

August) and winter (December–February) average daily maximum temperature for each year for 

each zip code. Cox-equivalent Poisson models were used to estimate associations with first CVD 

hospitalization, after adjustment for potential confounders. We performed stratified analyses to 

assess potential effect modification by sex, age, race, Medicaid eligibility and relative humidity.

Results: Higher summer average and lower winter average temperatures were associated with 

an increased risk of CVD hospitalization. We found a HR of 1.068 (95% CI: 1.063, 1.074) per 

IQR increase (5.2 °C) for summer average temperature and a HR of 1.022 (95% CI: 1.017, 

1.028) per IQR decrease (11.7 °C) for winter average temperature. Positive associations of higher 

summer average temperatures were strongest for individuals aged <75 years, Medicaid eligible, 

and White individuals. Positive associations of lower winter average temperatures were strongest 

for individuals aged <75 years and Black individuals, and individuals living in low relative 

humidity areas.

Conclusions: Living in areas with high summer average temperatures or low winter average 

temperatures could increase the risk of CVD hospitalizations. The magnitude of the associations 

of summer and winter average temperatures differs by demographics and relative humidity levels.

Keywords

Cardiovascular disease; Climate; Temperature

1. Introduction

Current climate change scenarios predict warmer meteorological conditions and more 

weather extremes in the future (IPCC. Global Warming of 1.5 °C, 2018). To assess 

potential health impacts of climate change scenarios, it is important to evaluate the health 

effects of exposure to temperature. Numerous epidemiological studies have shown that 

short-term exposure to extreme and moderately (temperatures above and below the optimum 

temperature) high or low temperatures are linked to increased mortality (Gasparrini et al., 

2015; Chen et al., 2018; Yu et al., 2012) and morbidity (Schwartz et al., 2004; Ye et al., 

2012).

Not much is known about health effects of long-term exposure to high or low temperatures. 

Few studies have reported positive associations of long-term summer average temperature 

exposure with mortality (Shi et al., 2015, 2016). Living in a warm or cold climate 

(prolonged exposure to high or low temperatures) might contribute to pathophysiological 

mechanisms, thereby influencing the development of diseases. For example, some studies 

reported higher hypertension prevalence in populations living closer to the poles (Li et 

al., 2015; Neufcourt et al., 2019). A meta-analysis reported that annual mean temperature 

is negatively associated with metabolic rate and could explain why populations living in 

warmer areas tend to have a lower metabolic rate than populations living in cooler areas 
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(Froehle, 2008). Recent reviews showed that higher long-term (annual or seasonal) average 

temperature exposures were associated with a range of adverse health outcomes (Zanobetti 

and O’Neill, 2018; Zafeiratou et al., 2021). However, the number of studies that evaluated 

associations with cardiovascular diseases (CVD) was limited.

The aim of this paper was to study whether local temperatures were associated with CVD 

hospitalization in the contiguous US. We evaluated associations of long-term exposure 

to summer (June–August) and winter (December–February) average temperature with 

CVD hospitalizations in all fee-for-service Medicare beneficiaries aged ≥65 years from 

2000 through 2016 (~61.6 million individuals). Our study thus differs from some long-

term temperature studies that evaluated associations between annual mortality and annual/

seasonal summaries of heat and cold to address the question of whether short-term effects 

represent “harvesting” (Rehill et al., 2015a; Armstrong et al., 2017; Goggins et al., 2015). 

This study evaluates the health impact of spatial contrasts in local long-term exposures, and 

is similar in design to long-term air pollution studies (Klompmaker et al., 2021; Shi et al., 

2020).

2. Methods

2.1. Study population

We created an open cohort using data from Medicare (the US national health insurance 

program). Medicare provides health insurance for Americans aged 65 and older and for 

younger people with disability status. Our cohort included all 65+ years, fee-for-service 

(FFS) Medicare beneficiaries, living in the contiguous US from 2000 (January 1) through 

the end of 2016 (December 31). Follow-up started on January 1st, 2000 or January 1st of 

the year following Medicare enrolment. We followed each beneficiaries till the first CVD 

hospital admission, the end of the follow-up time, death or censoring. Beneficiaries under 65 

years of age were excluded from analyses.

2.2. Outcome definition

Hospital admissions for all Medicare FFS beneficiaries were derived from the Medicare 

Provider Analysis and Review dataset. In this dataset, ICD-9 (2000 - the third quarter 

of 2015) and ICD-10 (third quarter of 2015–2016) codes were used to define hospital 

discharge diagnosis. We used first hospital admissions with a primary discharge diagnosis of 

CVD (ICD-9: 390–459, ICD-10: I00–I99). For secondary outcomes, we used first hospital 

admissions with a primary discharge diagnosis of coronary heart disease (ICD-9 code: 410–

414, ICD-10 codes: I20–I25), and cerebrovascular disease (ICD-9 codes: 430–438, ICD-10 

codes: I60–I69), hereafter referred to as CHD, and CBV, respectively. We created separate 

cohorts for each outcome.

2.3. Exposure assessment

We used data from the Gridded Surface Meteorological dataset (Abatzoglou, 2013) to assess 

the summer and winter average daily maximum air temperature. This dataset is based on 

a combination of data from the North American Land Data Assimilation System Phase 2 

(Mitchell et al., 2004), and of the Parameter-elevation Regressions on Independent Slopes 
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Model (Daly et al., 2008). Attributes of the NLDAS-2 and PRISM were blended to create 

a daily high-resolution meteorological dataset. Detailed information about the development 

and validation of the dataset can be found elsewhere (Abatzoglou, 2013).

The Gridded Surface Meteorological data provides daily surface fields of maximum air 

temperature at ~4 km spatial resolution covering the contiguous US from 1979 onwards. 

We used Google Earth Engine (Gorelick et al., 2017) to assess the spatially weighted 

daily maximum temperature for each zip code for each day. Next, we calculated spatially 

weighted summer (June–August) and winter (December–February) average daily maximum 

temperature for each zip code for each year of follow-up, hereafter referred to as summer 

and winter average temperature. Winter average temperature for a specific year was based 

on January and February of that year and December of the previous year. Summer and 

winter average temperatures are based on daily maximum temperature estimates, as the 

Gridded Surface Meteorological dataset does not contain information about daily average 

temperatures. We note that previous studies showed very strong correlations between daily 

maximum temperature and daily mean temperature (Metzger et al., 2010; Barnett et al., 

2010). We also calculated spatially weighted summer and winter average daily minimum 

temperature for each zip code for each year.

Further, we calculated the spatially weighted annual (January–December) average daily 

maximum temperature for each zip code for each year of follow-up. We calculated the 

summer and winter average temperature for each zip code for the entire study period (2000–

2016).

All temperature exposures were assigned to beneficiaries who lived within that zip code in a 

given calendar year. For example, 2002 summer (June–August 2002) and winter (December 

2001, January–February 2002) average temperature estimates were assigned to beneficiaries 

for the year 2002.

2.4. Covariates

The Medicare beneficiary file contains information about sex, age (at year of Medicare 

enrolment), race, Medicaid eligibility, year of entry, and zip code of residence for all 

Medicare beneficiaries for each year. Medicaid is a federal health insurance program 

for people with limited income. We use Medicaid eligibility as it is a proxy for low 

socioeconomic status (SES). Information about Medicare beneficiary race and ethnicity 

is generally obtained from the Social Security Administration, which collects race and 

ethnicity data at the time of application for a Social Security Number (Filice and Joynt, 

2017). Race was included in our models as it is documented that non-white individuals 

have higher prevalence of cardiovascular risk factors, such as hypertension and diabetes 

(Brewer and Cooper, 2014). As SES and race have been linked to CVD and CVD risk 

factors (Brewer and Cooper, 2014; de Mestral and Stringhini, 2017), we linked several 

zip code-level SES variables: population density, median household income, median home 

value, percent below the poverty level, percent of owner-occupied housing units percent 

Black, percent Hispanic and percent of the population with less than a high school degree. 

These variables were derived from the US Census and American Community Survey. From 

the nationwide Behavioral Risk Factor Surveillance System (BRFSS), we derived two 
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county-level lifestyle variables (mean BMI and percent population that were ever smokers) 

as these are important risk factors for CVD. BRFSS is an annual national telephone and 

cellular surveillance survey that collects information about modifiable risk behaviours and 

chronic disease prevalence. Zip code-level SES (2000, 2009–2016) and county-level lifestyle 

(2000–2011) variables were available for some years but not all. We temporally interpolated 

data for years with missing information using a moving average algorithm within each zip 

code, as described previously (Di et al., 2017).

For each zip code for each year (2000–2016), daily ambient specific humidity, maximum 

relative humidity and daily total precipitation were estimated using data from the Gridded 

Surface Meteorological dataset (Abatzoglou, 2013). We calculated the spatially weighted 

summer and winter average specific humidity, relative humidity and precipitation for each 

zip code for each year. We also assessed seasonal temperature variability. Temperature 

variability was based on the standard deviation of the spatially weighted daily maximum 

temperature within the summer/winter for each zip code for each year. Further, we defined 

heat and cold waves as a minimum of two consecutive days with a maximum temperature 

above (heat waves) or below (cold waves) a threshold. For each zip code, the cold wave 

temperature threshold was defined as the 1st percentile of daily maximum temperature in 

that zip code for all days from 2000 to 2016. The heat wave temperature threshold was 

defined as the 99th percentile of daily maximum temperature in each zip code for all days 

from 2000 to 2016. The number of heat wave days and cold wave days was calculated 

for each zip code for each year. We also used zip code-level annual average particulate 

matter less than 2.5 μm (PM2.5) and ozone concentration estimates based on predictions 

from well-validated spatio-temporal ensemble models (Di et al., 2019; Requia et al., 2020). 

Annual average concentrations were estimated by averaging the predictions at grid cells 

whose centroids fall within the boundary of that ZIP code (Di et al., 2019; Requia et al., 

2020). US climate regions were defined according to the National Oceanic and Atmospheric 

Administration (Fig. S1).

2.5. Statistical analysis

We applied a Cox-equivalent re-parameterized Poisson approach to overcome computational 

challenges caused by our large-scale cohort. Within this approach, individual-level records 

were collapsed to a high-dimensional space of features, while keeping the integrity of 

stratum units for analysis (Shi et al., 2020). We aggregated all beneficiaries included in our 

cohort with the same sex, race (White, Black, other/unknown), Medicaid eligibility, 2-year 

categories of age at study entry, year of follow-up, that live within the same zip code in a 

specific year, and treated them as one single grid cell, because they belonged to the same 

stratum and as such were treated as interchangeable in the analysis. Detailed information 

about this approach is presented elsewhere (Shi et al., 2020).

Briefly, a stratified quasi-Poisson model was used to evaluate associations of time-varying 

average temperature with the rate of first CVD hospitalizations. The dependent variable 

was the count of first CVD (or CHD, CBV) hospitalizations in each stratum (as described 

above), using the corresponding total person-time in each stratum as the offset. This model 

is mathematically equivalent to a time-varying Cox proportional hazard model under an 
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Anderson-Gill representation. To calculate statistically robust 95% confidence intervals 

(95% CIs), we applied an m-out-n bootstrap method using zip code units to account for 

within zip code correlated observations across years. This bootstrap method is described in 

detail elsewhere (Shi et al., 2020).

Summer average and winter average temperature were included simultaneously in the 

model. The main model included calendar year, population density, median household 

income, median home value, percent below the poverty level, percent of owner-occupied 

housing units percent Black, percent Hispanic, percent of the population with less than 

a high school degree, mean BMI, percent population that were ever smokers, summer 

and winter relative humidity, an offset for total person-time, and strata for all possible 

combinations of sex, race, Medicaid Eligibility, age at study entry (2-year categories), and 

follow-up year. We evaluated the shape of the exposure-response curves for each exposure 

by adding natural splines (2 or 3 degrees of freedom) to the temperature terms. To evaluate 

whether the observed associations were modified by demographics, we performed stratified 

analyses to assess potential effect modification by sex (male, female), age in follow up 

year (<75 years, 75–84 years, 85+ years), race (White, Black), Medicaid eligibility (yes/no, 

as an indicator for SES). Further, we examined potential effect modification by tertiles 

of summer and winter average relative humidity. We did not test whether spline models 

were statistically significantly different from linear models or whether interaction terms 

were significant, as even very small differences would result in significant p-values in this 

large-scale cohort. Hence, we visually inspected exposure-response curves and focused on 

differences in strength of the effect estimates.

We assessed multiple sensitivity analyses to test whether associations were robust. To 

exclude potential prevalent CVD cases, we excluded individuals who had their first hospital 

admission within the first year of their follow-up and all records in the year 2000. We used 

summer and winter average temperature for the entire study period (2000–2016) instead of 

yearly estimates. We used summer and winter average temperature based on daily minimum 

temperature instead of daily maximum temperature. Further, we adjusted for summer and 

winter average specific humidity instead of relative humidity, to control for the air’s actual 

amount of moisture instead of the relative amount of moisture. We also additionally adjusted 

for summer and winter average precipitation, annual average PM2.5, annual average ozone, 

and the number of heat and cold wave days per year. The rationale to adjust for summer and 

winter average precipitation was to control for meteorological differences not adjusted for 

by the other covariates in the model. The rationale to control for heat and cold wave days 

was to control for peak temperature exposures and only capture effects of long-term average 

temperature. We also examined potential effect modification by climate regions. Further, 

we used annual average temperature and we evaluated associations of summer and winter 

average temperature with CHD and CBV hospitalization.

Beneficiaries with missing data in any of the variables included in the main model were 

removed from the cohort (~2%). Hazard ratios (HRs) and 95% confidence intervals (CI) 

were expressed per interquartile range (IQR) increase for summer average temperature and 

per IQR decrease for winter average temperature.
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We conducted analyses on the Harvard Research Computing Environment, which is 

supported by the Institute for Quantitative Social Science at Harvard University. We used R 

software (R Project for Statistical Computing) version 3.6.1 for our analyses.

3. Results

The full cohort consisted of 61, 612, 471 Medicare beneficiaries aged ≥65 living in the 

contiguous US in 2000–2016. We observed 18, 130, 973 first CVD hospital admissions 

in 390, 753, 808 person years, the median follow-up period was 5 years. Most Medicare 

beneficiaries were white, not eligible for Medicaid and between 65 and 74 years of age 

at study entry (Table 1). The hospitalization rate (# hospitalizations/person years) was 

highest for males, individuals aged 85+ years, Black individuals and individuals eligible for 

Medicaid (Table S1). The median (IQR) summer and winter average temperature were 29.8 

°C (5.2) and 8.4 °C (11.8), respectively (Table 1 and Table S2). As expected, summer 

and winter average temperature were higher in the South of the US (Fig. 1). Winter 

average temperature was moderately positively correlated with summer average temperature 

(Pearson r = 0.58, Fig. S1).

Exposure-response curves showed no or small deviations from linearity for all exposures 

(Fig. S2). Higher summer average temperatures and lower winter average temperatures were 

associated with an increased risk of CVD hospitalization. We observed a HR of 1.068 (95% 

CI: 1.063, 1.074) per IQR (5.2 °C) increase in summer average temperature and a HR of 

1.022 (95% CI: 1.017, 1.028) per IQR (11.7 °C) decrease in winter average temperature. 

We found slightly stronger positive associations of higher summer and lower winter average 

temperature for the 65–74 and 75–84 age groups than for 85 years of age or older (Fig. 2, 

Table S3). Positive associations of summer average temperature were stronger for Medicaid 

Eligible individuals than for individuals not eligible for Medicaid. For a decrease in winter 

average temperature, positive associations were stronger for Black individuals, while for 

an increase in summer average temperature, positive associations were stronger for White 

individuals. Positive associations of lower winter average temperatures were strongest in low 

humidity areas, and no associations were observed in high humidity areas (Fig. S3 shows the 

spatial variability of summer and winter average relative humidity).

Associations of summer and winter average temperature were generally robust to additional 

adjustment for precipitation, PM2.5, ozone, heat and cold wave days, exclusion of potential 

prevalent cases and the use of mean 2000–2016 temperature exposures (Table S4). 

Positive associations of higher summer and lower winter average temperatures based on 

daily minimum temperature estimates were slightly stronger than associations of higher 

summer and lower winter average temperature based on daily maximum temperature 

estimates. When we adjusted for summer and winter average specific humidity instead of 

summer and winter average relative humidity, the positive association of higher summer 

average temperatures attenuated and the positive association of winter average temperatures 

strengthened. Additional adjustment for summer and winter temperature variability also 

strengthened the positive association of winter average temperatures.
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We observed limited variability in temperature exposures within most climate regions (Fig. 

S5). Stratified analyses by climate zones showed that in some climate regions associations 

were in the unexpected direction and/or non-linear (Fig. S5).

Higher annual average temperatures were associated with an increased risk of CVD 

hospitalization [HR: 1.055, 95%CI: 1.051, 1.060 per IQR (8.0 °C) increase]. We observed 

that higher summer average temperatures were associated with an increased risk of CHD 

and CBV hospitalization (Table S5). Lower winter average temperatures were associated 

with an increased risk of CHD, but not CBV, hospitalization.

4. Discussion

We observed that higher summer average temperatures and lower winter average 

temperatures were associated with an increased risk of CVD hospitalizations. Positive 

associations of higher summer average temperatures with CVD hospitalization were stronger 

for individuals aged <75 years, Medicaid eligible, and White individuals, while positive 

associations of lower winter average temperatures were stronger for individuals aged <75 

years and Black individuals and individuals living in areas with a low winter average relative 

humidity.

Two reviews reported that long-term exposure to temperature is associated with several 

health outcomes (Zanobetti and O’Neill, 2018; Zafeiratou et al., 2021). However, because 

there are relatively few studies examining associations of long-term temperature exposures 

with health outcomes, it was difficult to make conclusions about specific health outcomes 

(Zanobetti and O’Neill, 2018; Zafeiratou et al., 2021). Our findings are in line with studies 

that evaluated associations between long-term seasonal temperature and mortality in the 

US (Shi et al., 2015, 2016). Previous studies in New-England and the Southeastern US 

showed that higher summer average temperatures and lower winter average temperatures 

were associated with increased all-cause mortality (Shi et al., 2015, 2016).

Two recent reviews of long-term and short-term temperature exposure reported more 

consistent associations of low temperatures with CVD mortality compared to high 

temperatures (Zafeiratou et al., 2021; Moghadamnia et al., 2017). In this study, positive 

associations of higher summer average temperatures were stronger in magnitude than 

associations of lower winter average temperatures. Measurement error might differ between 

summer and winter temperatures, which could have resulted in less strong associations with 

winter average temperature. Studies showed stronger relations between indoor and outdoor 

temperatures during the warm season compared to the cold season (Nguyen et al., 2014; 

Tamerius et al., 2013; Nguyen and Dockery, 2016). These relations might differ between 

warmer and cooler areas and SES groups, as prevalence of central heating systems and air 

conditioning, home insulation and other adaptive measures likely differ between warmer and 

cooler areas and SES groups.

Positive associations of lower winter average temperatures were strongest for Black 

individuals, while positive associations of higher summer average temperature were 

strongest for White individuals. This could be due to differences in regional demographics, 

Klompmaker et al. Page 8

Environ Res. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative humidity levels, the impacts of structural racism in the US, or a combination of 

these factors. The Black population is higher in Southeast of the US where temperatures 

are generally higher and houses may be less insulated and lack proper heating systems, 

which could make them more vulnerable to cold. The White population is higher in 

the North where temperatures are generally lower and air conditioning is less common. 

The stronger positive associations of summer average temperature for Medicaid eligible 

individuals could be related to the lack of proper cooling systems. We found slightly 

stronger positive associations in individuals under 75 years of age, in contrast with other 

studies that evaluated associations with mortality (Shi et al., 2016; Zanobetti et al., 2012; 

Rehill et al., 2015b). Associations of temperature might differ between CVD hospitalization 

and all-cause mortality. The stronger positive associations with individuals aged <75 years 

could be due to differences in time-activity patterns, including more outside activities than 

the older population, or because of differences in baseline hazards that may translate 

into weaker HRs on the multiplicative scale. The stronger positive associations of lower 

winter average temperatures in low relative humidity areas could be due to irritation of the 

respiratory system and increased risk of getting a cold and the flu, which could affect CVD 

hospitalizations. We did not find stronger associations of summer average temperature in 

high relative humidity areas. This could be due to a higher prevalence of air conditioning in 

areas with higher temperature and humidity levels.

This study investigated whether living in a zip code with a specific climate (long-term 

temperature) affects CVD hospitalizations. Our study thus differs from other studies, 

that used annual series of heat and cold, using a degree-day approach as mean annual 

degrees above/below minimum mortality temperature, to evaluate harvesting due to acute 

effects of heat and cold (Rehill et al., 2015a; Armstrong et al., 2017; Goggins et al., 

2015). Associations of long-term temperature exposures by definition cannot be short-term 

displacement of effects (harvesting) as we are looking at yearly averages and displacement 

of effects by a few weeks will not influence these.

Short-term temperature studies examine health effects attributable to non-optimum daily 

temperatures variations (Gasparrini et al., 2015; Chen et al., 2018; Yu et al., 2012; Schwartz 

et al., 2004; Ye et al., 2012). They generally observe that the optimum temperature differs 

between countries/climate regions (Gasparrini et al., 2015), suggesting potential adaptation 

effects. However, these studies focus on daily temperature exposure and do not examine the 

impact of long-term temperature exposures. Our study examines the impact of long-term 

temperature exposure on CVD hospitalization. Long-term temperature studies require a 

large-scale geographical dimension and power to separate the effects of temperature from 

other population characteristics that differ between climate regions (Zafeiratou et al., 2021). 

We adjusted for several important area-level SES indicators and relative humidity in our 

main model and sensitivity analyses showed that results were robust to additional adjustment 

for several meteorological/environmental confounders that vary between climate regions, 

including precipitation, specific humidity (instead of relative humidity), heat and cold wave 

days, temperature variability, PM2.5, and ozone.

We did not observe positive associations of an increase in summer average temperature 

and a decrease in winter average temperature within several climate zones. This may 
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indicate that the associations in the full cohort could be due to regional differences other 

than temperature. However, the unexpected associations could also be due to limited 

temperature variability within each climate zone and the moderate to strong correlations 

between summer and winter average temperature that may have resulted in limited power 

and unstable effect estimates in climate zone effect modification analyses.

Our study could not disentangle if associations of seasonal temperature exposures with 

CVD hospitalization are due to cumulative effects of short-term exposures or physiological 

responses of long-term exposures. Exposure to high temperatures can result in a lowered 

metabolic rate, increased blood volume and increased sweat production (Dhillon, 2012; 

Périard et al., 2016). Exposure to low temperatures on the other hand can lead to 

vasoconstriction, inflammatory responses and elevated resting metabolism and blood 

viscosity (Tansey and Johnson, 2015; Castellani and Young, 2016; Woodhouse et al., 1993, 

1994; Keatinge et al., 1984). These responses may on the long term affect the risk of CVD 

hospitalization, especially for elderly as cardiovascular functions decline with age.

This study has several strengths. For the contiguous US, for each year, daily temperature 

data was available on a relatively fine spatial scale (~4 km spatial resolution). We were able 

to adjust for several important weather exposures, such as relative and specific humidity 

and number of heat wave days. We included all Medicare FFS beneficiaries aged 65+ years 

living in the contiguous US and therefore cover a large geographical region with different 

climates. The inclusion of all FFS Medicare beneficiaries in our cohort also allowed us to 

have a fairly representative sample of individuals aged 65+ years across the US. However, 

we note that our cohort did not include all Medicare beneficiaries [Medicare HMO (Health 

Maintenance Organisations, private plans) beneficiaries were not included]. Medicare FFS 

beneficiaries may have switched to a Medicare HMO and back during our follow-up period, 

which could have resulted in some missed cases in our data, as we have no information on 

Medicare HMO hospitalizations. We also note that the portion of Medicare FFS and HMO 

beneficiaries differed over time and by region.

Our study also has some limitations. We had no information about individual-level SES 

(other than Medicaid eligibility), lifestyle factors and use of heating and cooling systems, 

which may have resulted in an over- or underestimation of the associations. Several zip 

code-level SES factors that are likely related to individual SES were included, but the 

potential for residual confounding remains. Further, we used current year temperature 

exposures, and did not look at previous year exposures or any lagged effects. However, the 

median correlation between the zip code-level temperature exposures in consecutive years 

was very strong (Pearson r = 0.94 for summer average temperature, Pearson r = 0.98 for 

winter average temperature, Table S6), indicating that the spatial variation of the exposures 

does not change much between years and the impact of potential temporal misalignment 

would be small. The 4 km resolution of our temperature data may add some measurement 

error; however, seasonal temperatures do not vary on a small spatial scale and therefore we 

believe this error is minimal.

Klompmaker et al. Page 10

Environ Res. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Conclusions

In conclusion, living in areas with high summer average temperatures or low winter 

average temperatures could increase the risk of CVD hospitalizations. The magnitude of 

the associations of summer and winter average temperatures differs by demographics and 

relative humidity levels.
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Fig. 1. 
The spatial variation of summer and winter 2000–2016 average temperature per zip code 

in the contiguous US. Note: Summer 2000–2016 average temperature = spatially weighted 

summer (June–August) 2000–2016 average daily maximum temperature. Winter 2000–2016 

average temperature = spatially weighted winter (December–February) 2000–2016 average 

daily maximum temperature.
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Fig. 2. 
Associations of summer and winter average temperature with CVD hospitalization in 

stratified analyses.

Note: Associations are expressed per IQR increase (5.2 °C) for summer average temperature 

and per IQR decrease (11.7 °C) for winter average temperature. Poisson models included 

summer and winter average temperature and were adjusted for calendar year, median home 

value, median household income, population density, percent Hispanic, percent Black, 

percent of the population with less than a high school degree, percent below the poverty 

level, and percent of owner-occupied housing units, percent population that were ever 

smokers, mean BMI, summer average relative humidity, winter average relative humidity, an 

offset for total person-time and strata for all possible combinations of sex, race, Medicaid 

Eligibility, age at study entry (2-year categories), and follow-up year. To define summer and 

winter relative humidity strata, we used the following quantiles (q33.3, q66.7) based on the 

aggregated data: summer relative humidity (%): 86.8, 93.3, winter relative humidity (%): 

82.9, 88.8. Person years and CVD hospitalizations are shown in Table S1, HRs are shown in 

Table S3.
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Table 1

Descriptive statistics of all US Medicare fee-for-service beneficiaries aged >65 living in the contiguous US.

Demographics at study entry

Individual-level covariates N (%)

Sex

 Female 33,985,877 (55.2)

 Male 27,626,594 (44.8)

Age

 65–74 years 47,199,810 (76.6)

 75–84 years 10,571,973 (17.2)

 85+ years 3,840,688 (6.2)

Race

 White 51,998,567 (84.4)

 Black 5,418,919 (8.8)

 Other/unknown 4,194,985 (6.8)

Medicaid Eligibility

 Not eligible 53,950,444 (87.6)

 Eligible 7,662,027 (12.4)

Aggregated data (2000–2016)a

Zip code-level covariates Median (IQR)

Temperature

 Summer average temperature (◦ C) 29.8 (5.2)

 Winter average temperature (◦C) 8.4 (11.8)

US census covariates

 Population density (persons/mile2) 629.5 (3068.4)

 Median home value ($1000) 144.3 (148.4)

 Median household income ($1000) 46.6 (25.3)

 % with less than a high school degree 24.5 (21.4)

 % below the poverty level 8.5 (8.0)

 % owner-occupied housing units 71.4 (21.9)

 % Black 3.9 (13.7)

 % Hispanic 5.3 (14.3)

BRFSS covariates

 % ever smoked 46.2 (9.1)

 Average BMI 27.4 (1.3)

Other environmental exposures

 Summer average max relative humidity (%) 90.3 (10.9)

 Winter average max relative humidity (%) 86.0 (9.4)

a
Descriptive statistics of the zip code level covariates are given for the strata (aggregated data based on zip code, year, sex, race, Medicaid 

eligibility, 2-year categories of age at study entry and year of follow-up).
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